

1 ***Vibrio cholerae*'s mysterious Seventh Pandemic island (VSP-II) encodes**
2 **novel Zur-regulated zinc starvation genes involved in chemotaxis and**
3 **autoaggregation**

4

5 Shannon G. Murphy^{1,2}, Brianna A. Johnson^{1,3}, Camille M. Ledoux^{1,3}, Tobias Dörr^{1,2,3#}

6

7 ¹ Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA

8 ² Department of Microbiology, Cornell University, Ithaca NY 14853, USA

9 ³ Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca NY 14853, USA

10 # correspondence: tdoerr@cornell.edu

11

12 Running title: Zur-regulated aerotaxis in *Vibrio cholerae*

13

14 Key words: *Vibrio cholerae*, El Tor, pandemic, zinc starvation, Zur, transcription, chemotaxis, aerotaxis

15

16 **Abstract**

17 *Vibrio cholerae* is the causative agent of cholera, a notorious diarrheal disease that is typically
18 transmitted via contaminated drinking water. The current pandemic agent, the El Tor biotype, has
19 undergone several genetic changes that include horizontal acquisition of two genomic islands (VSP-I
20 and VSP-II). VSP-I and -2 presence strongly correlates with pandemicity; however, the contribution of
21 these islands to *V. cholerae*'s life cycle, particularly the 26-kb VSP-II, remains poorly understood. VSP-
22 II-encoded genes are not expressed under standard laboratory conditions, suggesting that their
23 induction requires an unknown signal from the host or environment. One signal that bacteria encounter
24 under both host and environmental conditions is metal limitation. While studying *V. cholerae*'s zinc-
25 starvation response *in vitro*, we noticed that a mutant constitutively expressing zinc-starvation genes
26 (Δ zur) aggregates in nutrient-poor media. Using transposon mutagenesis, we found that flagellar

27 motility, chemotaxis, and VSP-II encoded genes are required for aggregation. The VSP-II genes
28 encode an AraC-like transcriptional activator (VerA) and a methyl-accepting chemotaxis protein (AerB).
29 Using RNA-seq and *lacZ* transcriptional reporters, we show that VerA is a novel Zur target and activator
30 of the nearby AerB chemoreceptor. AerB interfaces with the chemotaxis system to drive oxygen-
31 dependent autoaggregation and energy taxis. Importantly, this work suggests a functional link between
32 VSP-II, zinc-starved environments, and aerotaxis, yielding insights into the role of VSP-II in a metal-
33 limited host or aquatic reservoir.

34

35 **Author Summary**

36 The Vibrio Seventh Pandemic island was horizontally acquired by El Tor pandemic strain, but its role in
37 pathogenicity or environmental persistence is unknown. A major barrier to VSP-II study was the lack of
38 stimuli favoring its expression. We show that zinc starvation induces expression of this island and
39 describe a transcriptional network that activates a VSP-II encoded aerotaxis receptor. Importantly,
40 aerotaxis may enable *V. cholerae* to locate more favorable microenvironments, possibly to colonize
41 anoxic portions of the gut or environmental sediments.

42

43 **Introduction**

44 The Gram-negative bacterium *Vibrio cholerae*, the causative agent of cholera (Harris et al.
45 2012), is well-adapted to two distinct lifestyles: as a colonizer of macroinvertebrates in the aquatic
46 environment and as a potentially lethal pathogen inside the human intestine (Reidl and Klose 2002). *V.*
47 *cholerae* persists in aquatic reservoirs by colonizing a variety of (mostly chitinous) biotic surfaces, such
48 as copepods (Huq et al. 1983; de Magny et al. 2011; Tamplin et al. 1990; Sochard et al. 1979), shellfish
49 (Twedt et al. 1981; Hood et al. 1981), and arthropods (Purdy and Watnick 2011; Broza and Halpern
50 2001). *V. cholerae* is ingested via contaminated drinking water or, less commonly, via undercooked
51 seafood (DePAOLA 1981; Kaysner and Hill 2014). Once inside the human host, pathogenic varieties of
52 *V. cholerae* (O1 and O139 serovars, (Chatterjee and Chaudhuri 2003)) rely on virulence factors to

53 establish infection; the toxin co-regulated pilus (TCP) facilitates attachment to the intestinal wall (Thelin
54 and Taylor 1996; Krebs and Taylor 2011) and cholera toxin (CTX) secretion ultimately drives efflux of
55 water and salts from the intestinal epithelium (Sanchez and Holmgren 2008). CTX additionally
56 promotes nutrient competition via depletion of free (i.e., not heme-bound) iron in the intestine (Rivera-
57 Chávez and Mekalanos 2019).

58 The current (seventh) cholera pandemic agent, the O1 serovar El Tor biotype, arose from a
59 non-pathogenic precursor via acquisition of TCP and CTX virulence factors (Hu et al. 2016). Unlike its
60 pandemic predecessor (the Classical biotype), El Tor underwent several changes that include, among
61 others (Son et al. 2011), the development of resistance against the antimicrobial peptide polymyxin B
62 (Henderson et al. 2017; Hankins et al. 2012) and horizontal acquisition of two genomic islands (VSP-I
63 and VSP-II) (Dziejman et al. 2002; O'Shea 2004). Presence of islands VSP-I and -II strongly correlates
64 with pandemicity; however, only genes encoded on VSP-I have been directly linked to increased fitness
65 in a host (Davies et al. 2012). VSP-II is a poorly understood 26-kb island that contains 24 ORFs
66 (vc0490-vc0516) (O'Shea 2004), only two of which have validated functions: an integrase (vc0516,
67 (Murphy and Boyd 2008)) and a peptidoglycan endopeptidase (vc0503, (Murphy et al. 2019)). The
68 remaining uncharacterized genes are predicted to encode transcriptional regulators (VC0497, VC0513),
69 ribonuclease H (VC0498), a type IV pilin (VC0502), a DNA repair protein (VC0510), methyl-accepting
70 chemotaxis proteins (VC0512, VC0514), a cyclic di-GMP phosphodiesterase (VC0515), and 14
71 hypothetical proteins (O'Shea 2004). It is unclear if or how VSP-II enhances the pathogenicity or
72 environmental fitness of El Tor. Intriguingly, VSP-II genes are not expressed under standard laboratory
73 conditions (Mandlik et al. 2011), suggesting that their induction requires an unknown signal from the
74 host or environment.

75 One signal that bacteria encounter under both host and environmental conditions is metal
76 limitation. Bacteria must acquire divalent zinc cofactors from their surroundings to perform essential
77 cellular processes; however, vertebrate hosts actively sequester zinc and other essential transition
78 metals to limit bacterial growth (i.e. nutritional immunity) (Palmer and Skaar 2016; Kehl-Fie and Skaar
79 2010; Hood and Skaar 2012; Hennigar and McClung 2016). In the environment, *V. cholerae* frequently

80 colonize the chitinous exoskeletons of aquatic and marine invertebrates and exposure to chitin
81 oligomers has been suggested to induce zinc and iron starvation in *V. cholerae* (Meibom et al. 2004). In
82 order to cope with zinc starvation stress, *V. cholerae* encodes a set of genes under the control of the
83 well-conserved Zur repressor. When zinc availability is low, Zur dissociates from a conserved promoter
84 sequence, allowing for expression of downstream genes. *V. cholerae* genes containing a known Zur
85 binding region include those encoding zinc import systems (ZnuABC and ZrgABCDE) (Sheng et al.
86 2015), ribosomal proteins (RpmE2, RpmJ) (Novichkov et al. 2013; Panina et al. 2011), a GTP
87 cyclohydrolase (RibA), and the VSP-II-encoded peptidoglycan endopeptidase (ShyB) (Murphy et al.
88 2019).

89 Here, we show that many genes of the VSP-II island are expressed during zinc starvation.
90 These findings stemmed from an initial observation that a *V. cholerae* Δ zur mutant aggregates at the
91 bottom of nutrient-poor liquid cultures. We hypothesized that this behavior was mediated by unidentified
92 members of the Zur regulon. Using a transposon mutagenesis screen and RNA-seq, we identified Zur-
93 regulated aggregation factors encoded on VSP-II. These included the transcriptional activator VerA
94 encoded within the vc0513-vc0515 operon. VerA (*Vibrio* energytaxis regulator A) activates expression
95 of the AerB (aerotaxis B) chemotaxis receptor encoded by vc0512. We show that AerB mediates
96 oxygen-dependent autoaggregation and energy taxis. Importantly, these results implicate a role for
97 VSP-II encoded genes in chemotactic movement within zinc-starved environments.

98

99 **Results**

100 ***V. cholerae* Δ zur mutant aggregates in minimal medium**

101 We noticed serendipitously that a *V. cholerae* N16961 Δ zur mutant (but not the wild type) aggregated at
102 the bottom of a culture tube when grown shaking overnight in M9 minimal medium (**Fig. 1A; Movie S1**).
103 *V. cholerae* aggregations in liquid culture are reportedly mediated by numerous mechanisms (e.g.
104 quorum sensing, attachment pili (Jemielita et al. 2018; Taylor et al. 1987; Sun et al. 1997; Kirn et al.
105 2000; Adams et al. 2019; Trunk et al. 2018)) and stimuli (e.g. autoinducers, calcium ions (Jemielita et
106 al. 2018), cationic polymers (Perez-Soto et al. 2018)), but none had been tied to zinc homeostasis. We

107 therefore sought to identify factors that were required for Δ zur to aggregate. Aggregation (quantified as
108 the ratio of optical densities (OD_{600nm}) in the supernatant before and after vortexing) was alleviated by
109 complementing *zur* in *trans*, excluding polar effects resulting from *zur* deletion (**Fig. 1B**). We next
110 examined the role of zinc availability on aggregate formation. Since metals can absorb to the surface of
111 borosilicate glass culture tubes (Struempler 2002), we instead grew *V. cholerae* in plastic tubes and
112 noted that Δ zur still aggregated at the bottom (**Fig. S1A**), indicating that this phenotype is not linked to
113 the properties of the culture vessel. Imposing zinc starvation via deletion of genes encoding *V.*
114 *cholerae*'s primary zinc importer ZnuABC caused cells to aggregate similarly to the Δ zur mutant.
115 Aggregation of Δ znuABC (which still elaborates the low-affinity zinc transporter ZrgABC (Sheng et al.
116 2015)) was reversed by zinc supplementation (**Fig. 1C**). In contrast, the Δ zur mutant, which
117 constitutively expresses zinc starvation genes, aggregated in both the presence and absence of
118 exogenous zinc. These data indicate that aggregation occurs in minimal medium when the Zur regulon
119 is induced (i.e., during zinc deficiency or in a *zur* deletion strain) and is not a direct consequence of zinc
120 availability *per se*. Surprisingly, none of the annotated members of the Zur regulon were required for
121 aggregation (**Fig. 1D**, **Fig. S1B**), suggesting that there may be other Zur-regulated aggregation genes
122 yet to be identified.

123

124 ***Azur aggregation requires motility, chemotaxis, and VSP-II encoded proteins***

125 We reasoned that we could leverage the Δ zur aggregation phenotype to identify novel components of
126 *V. cholerae*'s zinc starvation response. To find such Zur-regulated "aggregation factors", we subjected
127 the Δ zur mutant to transposon mutagenesis and screened for insertions that prevent aggregation (see
128 Methods for details) (**Fig. 2A**). Δ zur transposon libraries were inoculated into M9 minimal medium and
129 repeatedly sub-cultured until no pellet formed. Transposon insertion sites were identified using
130 arbitrary PCR on isolated colonies (O'Toole et al. 1999). The insertions that prevented aggregation
131 overwhelmingly mapped to loci encoding motility and chemotaxis genes (**Fig. 2B**). Twenty-four out of
132 48 recovered transposon mutants were disrupted in flagellar components or motility regulators. We
133 reconstituted these types of mutations in Δ zur by inactivating flagellum assembly (major flagellin

134 subunit, *fliC*) or rotation (motor protein, *motB*). Both Δ *zur* Δ *fliC* and Δ *zur* Δ *motB* failed to form a pellet
135 (**Fig. 2C**), and aggregation could be restored by complementing each of these genes *in trans*. These
136 data suggest that Δ *zur* aggregation is a motility-dependent process. Additionally, seven transposons
137 inserted within genes encoding parts of *V. cholerae*'s chemotaxis machinery (*che-2*) (**Fig. 2B**); this
138 system modulates bacterial movement in response to a chemical gradient. Mutating a component of
139 this chemotactic phosphorelay (*cheA*::STOP) was sufficient to prevent aggregation in Δ *zur*, while *trans*
140 expression of *cheA* restored pellet formation to the Δ *zur* *cheA*::STOP mutant (**Fig. 2C**). Deletion of
141 other *che-2* open reading frames also prevented Δ *zur* from aggregating (**Fig. S1C**). Collectively, these
142 data suggest that motility and chemotaxis are required for Δ *zur* aggregation in minimal medium.

143 We noted that the Δ *zur* phenotype resembles aggregation in *E. coli* rough mutants, which have
144 reduced expression of lipopolysaccharides (Nakao et al. 2012). We observed similar aggregation in *V.*
145 *cholerae* rough mutants (*vc2205::kan*), but this aggregation did not require motility to form (**Fig. S1D**)
146 and is therefore mediated by a distinct mechanism. We anticipated initially that Δ *zur* pellet formation
147 was a group behavior that may require processes associated with surface attachment (e.g., biofilm
148 formation, attachment pili) or cellular communication (e.g., quorum sensing); however, such mutants
149 were not identified by the transposon screen. We thus separately assessed this in a targeted fashion by
150 testing whether Δ *zur* aggregates when deficient in biofilm formation (Δ *vspL*) or type IV pili attachment
151 (Δ 4: Δ *tcpA* Δ *mshA* Δ *pilA*, and orphan pilin Δ *vc0504*). Consistent with these processes not answering
152 our screen, biofilm and type IV pili encoding genes were not required for Δ *zur* to aggregate (**Fig. SF**).
153 Notably, N16961 contains an authentic frameshift mutation in the quorum sensing gene *hapR*
154 (Heidelberg et al. 2000; Joelsson et al. 2006); however, a repair to *hapR* (Stutzmann et al. 2016) did
155 not alter aggregation dynamics in Δ *zur* (**Fig. S1E**). We additionally demonstrated that other quorum
156 sensing genes (Δ *csqA*, Δ *csqS*, Δ *tdh*, Δ *luxQ*, or Δ *luxS*) were dispensable for Δ *zur* aggregation (**Fig.**
157 **S1F**). Taken together, these data indicate that Δ *zur* pellet formation is not a clumping phenomenon
158 driven by typical colonization and aggregation factors, but rather a chemotaxis/motility-mediated
159 assembly in the lower strata of a growth medium column.

160 Since aggregation appeared to require induction of the Zur regulon, we were surprised that the
161 transposon screen was not strongly answered by genes with an obvious Zur binding site in their
162 promoters. We reasoned, however, that our screen did not reach saturation due to the large number of
163 motility genes encoded in the *V. cholerae* genome. We therefore refined the screen by pre-selecting for
164 mutants that retained motility on soft agar, followed by a subsequent screen for loss of pellet formation
165 in the motile subset of the mutant pool, as described above. Interestingly, 19 of the 34 transposon
166 insertions answering this screen mapped to the Vibrio Seventh Pandemic island (VSP-II) (**Fig. 2B, Fig.**
167 **S2**), a horizontally acquired genomic region that is strongly associated with the El Tor biotype and the
168 current (seventh) cholera pandemic. Transposons concentrated in a section of VSP-II that encodes a
169 putative AraC-like transcriptional activator (VC0513, henceforth “VerA”), two ligand-sensing chemotaxis
170 proteins (VC0512, formerly Aer-1 is henceforth referred to as “AerB”, and VC0514), and a cyclic di-
171 GMP phosphodiesterase (VC0515). Notably, the *vc0513-vc0515* operon is preceded by a canonical Zur
172 binding site and is thus a novel candidate for Zur-dependent regulation.

173 To validate the VSP-II genes’ involvement in Δ zur aggregation, we inactivated each gene in a
174 Δ zur background through either clean deletion or, to avoid polar effects on other genes in the same
175 operon, through insertion of a premature stop codon. Δ aerB and verA::STOP mutations prevented Δ zur
176 from aggregating, whereas respective complementation with aerB and verA restored aggregation (**Fig.**
177 **2C**). To determine if these VSP-II genes were sufficient to generate aggregation, we overexpressed
178 them in a wild-type and a Δ vsp-II background. Both aerB and verA overexpression caused the wild-type
179 to aggregate, but only the aerB chemoreceptor triggered aggregation in a strain lacking other VSP-II
180 genes (**Fig. 2D**). These data indicated that AerB drives aggregation and raised the possibility that VerA
181 functions as a transcriptional activator of aerB. We additionally tested a deletion of the entire VSP-I
182 island and mutations in all other open-reading frames on VSP-II (including vc0514 and vc0515), none
183 of which were required for Δ zur aggregation under the conditions tested (**Fig. S1G**). These two screens
184 indicate that pellet formation in Δ zur is driven by chemotactic flagellar movement, with assistance from
185 a VSP-II encoded transcriptional activator (VerA) and chemoreceptor (AerB). These results were
186 intriguing given that very little is known about the regulation or function of VSP-II encoded genes.

187

188 **Several VSP-II genes are significantly upregulated in a Δ zur mutant**

189 Prior inquiry into VSP-II function was made difficult by a lack of native gene expression under
190 laboratory conditions; thus, we prioritized mapping the transcriptional networks embedded in this island.
191 Our data implies that the VSP-II genes of interest are expressed in Δ zur. Indeed, the vc0513-vc0515
192 promoter region contains a highly conserved Zur-binding sequence approximately 200 bp upstream of
193 the mapped transcription start site (determined by 5'-RACE in a Δ zur mutant, **Fig. 3A, S4A**). Although
194 the distance between the Zur box and transcriptional start site is greater than that observed for most *V.*
195 *cholerae* Zur targets, equivalent or greater distances are noted for the Zur-regulated *ribA* (140-210 bp
196 upstream of the ORF) and *zbp* (~380 bp upstream of ORF) in closely related *Vibrio* spp., respectively
197 (Novichkov et al. 2013). To verify regulation by Zur, we measured *verA* promoter activity via a *lacZ*
198 transcriptional fusion (P_{verA} -*lacZ*), which encodes β -galactosidase (LacZ) and gives a colorimetric
199 readout in the presence of a cleavable substrate (e.g., ONPG). As expected, transcription from the *verA*
200 promoter in zinc-rich LB medium was robust in Δ zur relative to wild-type or a *zur* complemented strain
201 (**Fig. 3B**). This data indicates that Zur negatively regulates *verA* transcription in a rich medium. We also
202 tested P_{verA} -*lacZ* expression in M9 minimal medium in a wild-type, Δ zur, and Δ znuABC background and
203 noted that promoter activity corresponded to the conditions in **Fig. 1C** that triggered aggregation (**Fig.**
204 **3C**). For example, relative to a wild-type background, P_{verA} activity was robust in both Δ zur and a mutant
205 deficient in zinc uptake (Δ znuABC). Consistent with Zur's zinc sensing function, Δ zur P_{verA} -*lacZ* strain
206 retained high levels of β -galactosidase activity regardless of zinc availability, whereas P_{verA} -*lacZ* in
207 Δ znuABC was repressible with exogenous zinc. These data, in conjunction with the highly conserved
208 Zur binding site, suggest that the VerA-encoding vc0513-vc0515 operon is a novel component of the
209 Zur-regulated zinc starvation response in N16961.

210 Global transcriptomic studies of the Zur regulon have been conducted in a number of bacteria,
211 but none thus far have been reported in the *Vibrio* genera (Hensley et al. 2012; Sigdel et al. 2006;
212 Kallifidas et al. 2010; Gaballa et al. 2002; Bütof et al. 2017; Pawlik et al. 2012; Neupane et al. 2017;
213 Mazzon et al. 2014; Moreau et al. 2018; Mortensen et al. 2014; Li et al. 2009; Lim et al. 2013; Pederick

214 et al. 2015; Mastropasqua et al. 2017; Latorre et al. 2015; Schröder et al. 2010; Eckelt et al. 2014;
215 Owen et al. 2007). We thus performed an RNA-seq experiment comparing transcript abundance in
216 wild-type N16961 and *Δzur* to assess *V. cholerae*'s Zur regulon more comprehensively (including
217 indirect effects). To ensure sufficient repression of Zur targets in the wild-type, cells were grown to mid-
218 log phase in LB medium. Analyses identified 58 differentially expressed genes in *Δzur* (log2 fold
219 change >1, adjusted p-value <0.05) (**Fig. 3D, Table S2**). Seven promoters (situated in proximity to 23
220 of the 42 upregulated genes) contained an upstream canonical Zur-binding site. Among them were
221 known or inferred (based on *E. coli*) Zur regulon components, including genes that encode zinc uptake
222 systems (ZnuABC, ZrgACD), an alternative ribosomal protein (RpmE2), and a GTP cyclohydrolase
223 (RibA). This transcriptomic analysis also uncovered what appears to be a bidirectional promoter with a
224 Zur box: this locus encodes a strongly upregulated ABC-type transporter (vca1098-vca1101) in one
225 direction and upregulated portions of the chemotaxis-3 (*che-3*) cluster (vca1091-vca1095, vca1097) in
226 the other. Using a *lacZ* transcriptional reporter, we verified that the ABC-type transporter is indeed Zur-
227 regulated (**Fig. S3**). Neither the transporter nor the *che-3* cluster, however, were required for *Δzur*
228 aggregation (**Fig. S1F**). We observed a striking cluster of nine up-regulated genes on VSP-II
229 (comprising 35% of the annotated open reading frames on VSP-II), including the previously
230 characterized peptidoglycan hydrolase ShyB (encoded by vc0503) and the vc0513-vc0515 operon,
231 consistent with our transcriptional fusion data and the transposon screen (**Fig. 3D-E**).

232 The RNA-seq analysis also identified 36 differentially expressed genes that lacked canonical
233 Zur binding sites. Nineteen of these genes were significantly up-regulated in *Δzur*, including several
234 genes on VSP-II (vc0504-vc0508 and vc0512) (**Fig. 3D-E, Table S2**) and VSP-I (*vspR*, *capV*). Other
235 upregulated transcripts in *Δzur* encode for cholera toxin (*ctxA/B*), the toxin co-regulated pilus
236 biosynthesis proteins (*tcpT/H*), and a chitin binding protein (*gbpA*). Seventeen genes were significantly
237 down-regulated in *Δzur*, many of which were related to vibrio polysaccharide (VPS) synthesis and
238 biofilm formation (Fong et al. 2010) (**Fig. 3D, Table S2**). Thus, a *zur* deletion affects numerous genes
239 indirectly, possibly through Zur-dependent secondary regulators (e.g. VC0515, cyclic di-GMP

240 phosphodiesterase; VerA, AraC-like transcriptional regulator), via secondary responses to the influx of
241 zinc that the Δ zur mutant is expected to experience, or via Zur-dependent small RNA interference.

242

243 **VerA is a Zur-regulated transcriptional activator of aerB**

244 Our mutational analyses above raised the possibility that the putative MCP AerB is controlled by
245 the transcriptional activator VerA. Given the importance of AraC-family regulators in governing *V.*
246 *cholerae*'s host-associated behaviors (e.g., ToxT, intestinal colonization and virulence (DiRita 1992;
247 DiRita et al. 1991; Higgins et al. 1992; Weber and Klose 2011); Tfos, chitin-induced natural
248 competence (Metzger and Blokesch 2016; Yamamoto et al. 2014; Dalia et al. 2014)) we sought to
249 characterize the full VerA regulon. We performed an RNA-seq experiment comparing transcript
250 abundance in N16961 overexpressing *verA*, relative to an empty vector control. Surprisingly, only three
251 other genes were significantly upregulated (log-2-fold change >1 , adjusted p-value <0.05):
252 *vc0512/aerB*, *vc0514*, and *vc0515* (Fig. 4A, Table S3). We validated these findings using *lacZ*
253 transcriptional reporters. Plasmid-mediated *verA* overexpression was sufficient to induce P_{verA} -*lacZ* in
254 rich LB medium (Fig. 4B), consistent with autoregulation. To remove the autoregulatory effect of native
255 VerA from our analysis, we performed additional measurements in a parent strain lacking VSP-II (and
256 thus native *verA*). These data suggest that loss of Zur binding may lead to only a small increase in *verA*
257 transcription, which is further amplified by a VerA-dependent positive feedback loop.

258 Interestingly, the *aerB* promoter lacks a conserved Zur binding site; however, our transcriptomic
259 data suggests that Zur-regulated VerA promotes *aerB* transcription. To verify this, we constructed a
260 P_{aerB} -*lacZ* transcriptional reporter. Our initial attempt using a small (400 bp) promoter fragment did not
261 yield detectable signal under inducing conditions (Fig. S4B-C). 5'-RACE mapping of the transcription
262 start indicated that *aerB* is part of a much longer transcript (extending >1 kb upstream of the start
263 codon). Thus, we designed a new reporter construct to include this entire region. P_{aerB} activity in
264 standard LB medium fell below our threshold for detection (Fig. 4C, Fig. S4C), but we found that VerA
265 overexpression was sufficient to activate the *aerB* promoter. P_{aerB} was strongly induced in a Δ zur strain
266 background – consistent with our initial RNA-seq – but only if the strain also carried a native or *trans*

267 copy of *verA*. These data indicate that *aerB* expression is dependent upon VerA-mediated activation. In
268 summary, we found that VerA is a Zur-regulated, transcriptional activator that upregulates four genes
269 (*aerB*, *vc0513*-*vc0515*).

270

271 **AerB mediates aerotaxis away from air-liquid interface**

272 Induction of AerB drives *V. cholerae* to aggregate in minimal medium. AerB is predicted to encode a
273 methyl accepting chemotaxis protein (MCP) that senses concentration gradients of a particular ligand
274 (either an attractant or repellent) and relays that signal via Che proteins that alter flagellar rotation (Ud-
275 Din and Roujeinikova 2017). To determine if AerB indeed functions as a chemotaxis receptor, we first
276 tested whether AerB interacts with the chemotaxis coupling protein, CheW. In a bacterial two hybrid
277 assay, AerB and CheW were each fused with one domain of the adenylate cyclase (AC) protein (T18 or
278 T25) and co-transformed into an *E. coli* strain. If the proteins of interest interact, the proximal AC
279 domains will synthesize cAMP and induce *lacZ* expression a cAMP-CAP promoter; thus, a positive
280 protein interaction will yield blue colonies in the presence of X-gal. *E. coli* co-transformed with T18-AerB
281 and CheW-T25 (or the reciprocal tags) yielded bright blue spots (**Fig. 5B**). We additionally detected
282 strong protein-protein interaction between T18-AerB and T25-AerB, indicating that our chemoreceptor
283 can dimerize (or oligomerize) like other MCPs (Ringgaard et al. 2018). To confirm that AerB's MCP
284 signaling domain is required for aggregation, we next mutated a glycine residue within the highly
285 conserved C-terminal hairpin loop (R-A-**G**-E/D-X-G) (Alexander and Zhulin 2007) of AerB (**Fig. S5B**),
286 which is required for *in vitro* signal generation in other MCPs (Matthew D Coleman et al. 2005). A Δvsp -
287 *II* strain expressing AerB[G385C] was unable to aggregate (**Fig. 5A**), consistent with MCP function.
288 Together, these data indicate that AerB indeed functions as a chemotaxis receptor.

289 Intriguingly, the chemical ligands for AerB and the vast majority of *V. cholerae*'s 46 encoded
290 MCPs are yet to be determined (Boin et al. 2004). The AerB N-terminus harbors a PAS domain
291 (Kanehisa et al. 2004), a protein family that typically senses light, oxygen, redox stress, or electron
292 acceptors (Taylor 2007). We hypothesized that the PAS-containing chemoreceptor mediates energy
293 taxis along the oxygen gradient in our vertical culture tubes. We first tested whether oxygen was

294 required for Δzur to aggregate. Wild-type and Δzur were cultured in both aerobic and anoxic tubes in
295 M9 minimal medium with the terminal electron acceptor fumarate to enable anaerobic glucose
296 respiration. Unlike the aerobic cultures, Δzur did not aggregate under anoxic conditions (Fig. 5C). A
297 similar result was observed under glucose-fermenting conditions (i.e., when fumarate was omitted from
298 the medium) (Fig. S6E). These data indicate that Δzur aggregation is oxygen-dependent and implicate
299 AerB in energy taxis.

300 AerB shares 31% amino acid identity with *V. cholerae*'s aerotaxis receptor Aer-2 (renamed here
301 to AerA, as numbers in bacterial gene names can be confused with mutant alleles) (Fig. S5A), which
302 exhibits a positive response to oxygen (Boin and Häse 2007). Other homologs include Aer^{EC} (31%
303 identity), which positively responds to oxygen via sensing the electron acceptor FAD (Bibikov et al.
304 1997; 2000; Taylor 2007). Alignment of AerB with these homologs and Aer^{AB} (from *Azospirillum*
305 *brasilense* (Xie et al. 2010)) revealed conservation of a critical FAD-binding tryptophan residue, among
306 others (Fig. S5B). The corresponding amino acids were mutated in *aerB* and each mutant was
307 expressed in a $\Delta\text{vsp-II}$ background to determine whether they still promoted aggregation. Strains
308 expressing W74F failed to aggregate, suggesting the FAD-binding residue is essential for function (Fig.
309 6A). Two additional mutants (R61A and H62A), corresponding to *E. coli* FAD-binding residues, were
310 also unable to aggregate. The requirement for oxygen and these highly conserved FAD-binding
311 residues suggests that AerB may bind FAD or a similar ligand to facilitate aerotaxis.

312 Based on our aggregation phenotype, we hypothesized that in contrast to AerA and Aer^{EC}, AerB
313 appears to mediate a negative response to oxygen and cause cells to accumulate at the bottom of the
314 culture tube. To further interrogate aerotaxis, we examined the swarming dynamics of *V. cholerae* in an
315 established aerotaxis assay, which uses soft agar with carbon sources that vary in their ability to
316 accentuate aerotaxis behavior (Bibikov et al. 1997; Boin and Häse 2007). Succinate, for example, can
317 only be catabolized via respiration, which consumes oxygen, thereby generating an O₂ gradient that
318 increases with distance from the inoculation site. Since no other classical attractants/repellents are
319 present, motility on succinate plates reveals aerotaxis as the primary taxis behavior (Bibikov et al.
320 1997). In contrast, maltose agar provides other cues for chemotaxis (including chemotaxis towards

321 maltose itself), obscuring an aerotactic response. The diameter of diffusion in succinate and maltose (at
322 30°C) was measured two days post-inoculation. All assays were performed in a Δ zur background to
323 ensure robust expression of aerB from the native promoter and aerA mutants were included as a
324 control. Compared to Δ zur, the diameter of Δ zur Δ aerB migration on succinate was significantly
325 increased (**Fig. 5D, Fig. S6A-B**). This is consistent with AerB promoting a negative response to
326 oxygen. Conversely, Δ zur Δ aerA showed a significant decrease in swarming ability, consistent with
327 AerA promoting a positive response to oxygen, as previously reported (Boin and Häse 2007). (**Fig. 5E**,
328 **Fig. S6C-D**). In contrast to succinate, there were no significant differences between the swarm
329 diameter of Δ zur and the aer mutants on maltose swarming plates. These assays were additionally
330 performed in a wild-type background and aerB showed no effect on swarming behavior, consistent with
331 lack of aerB transcriptional expression in wild-type background (**Fig. S6A-D**). These results corroborate
332 AerB's function as an aerotaxis receptor and suggest that it mediates an inverse response relative to
333 AerA.

334

335 ***A model for oxygen-dependent V. cholerae aggregation in zinc starved environments***

336 In summary, we propose the following model for Δ zur aggregation in M9 minimal medium (**Fig. 6**). In
337 zinc rich conditions, Zur acts as a repressor of the VerA-encoding vc0513-vc0515 operon on VSP-II. In
338 the absence of Zur or in zinc starvation, the VerA transcriptional activator induces expression of its own
339 operon and the nearby aerB. AerB serves as a receptor for oxygen-dependent energy axis and relays
340 changes in signal concentration to the core chemotaxis machinery and the flagellum. This facilitates
341 aggregation at the bottom of the culture tube in an oxygen-dependent manner.

342

343

344 **Discussion**

345 The mysterious Vibrio Seventh Pandemic Island (VSP-II) present in the El Tor biotype has largely
346 evaded characterization due to lack of knowledge of stimuli that favor its induction. We report that Zur,
347 the transcriptional repressor of the zinc starvation response, is a direct and indirect regulator of

348 numerous VSP-II genes. Novel Zur targets reported here include the *vc0513-vc0515* operon, which
349 encodes the VerA transcriptional activator that increases expression of VSP-II chemotaxis and motility-
350 related genes. One of these secondary targets, AerB, encodes a chemoreceptor involved in aerotaxis
351 and autoaggregation.

352

353 **The role of zinc availability in VSP-II induction**

354 It has long been suspected that VPS-II functions as either a pathogenicity or environmental
355 persistence island; however, we and others have not yet identified a set of growth conditions under
356 which VSP-II confers a competitive advantage (O'Shea 2004; Taviani et al. 2010; Sakib et al. 2018;
357 Pant et al. 2020) (**Fig. S7**). Given the robust expression of VSP-II loci in the absence of Zur, we
358 propose two contexts where *V. cholerae* may encounter zinc starvation and express these island-
359 encoded genes: within the human host, and/or on (chitinous) biotic surfaces in aquatic reservoirs. The
360 human host a well-studied example of a metal-limited environment. Vertebrate hosts sequester
361 desirable metal cofactors (e.g. zinc) in order to restrict the growth of potentially harmful bacteria (i.e.
362 nutritional immunity, (Palmer and Skaar 2016; Kehl-Fie and Skaar 2010; Hood and Skaar 2012;
363 Hennigar and McClung 2016)). Pathogens lacking zinc acquisition systems often exhibit colonization
364 defects *in vivo* (Davis et al. 2009; Sheng et al. 2015; Ammendola et al. 2007; Campoy et al. 2002;
365 Bobrov et al. 2017; Nielubowicz et al. 2010; Sabri et al. 2009; Corbett et al. 2012; Hood et al. 2012),
366 potentially because they are unable to compete against the microbiota for precious metal cofactors
367 (Gielda and DiRita 2012). Induction of zinc starvation genes in pathogenic *V. cholerae* appears to be
368 dependent upon the animal model used; for example, the primary zinc importer and the *vc0513-vc0515*
369 operon are upregulated in a mouse but not in a rabbit model (relative to LB) (Mandlik et al. 2011).
370 Deletion of *V. cholerae*'s zinc importers led to only modest colonization defects in a mouse infection
371 model (Sheng et al. 2015). More generally, *V. cholerae* experiences metal starvation within thick
372 bacterial communities and thus metal transporters and regulators contribute optimal *V. cholerae* biofilm
373 formation (Mueller et al. 2007). Zur-regulated genes (including *vc0503* and *vc0513-vc0515*) are
374 reportedly induced by exposure to chitin oligomers (Meibom et al. 2004), raising the possibility that *V.*

375 *cholerae* is zinc-limited while colonizing copepods or crustaceans in the environment. It is thus
376 plausible that the Zur-regulated VSP-II genes may be expressed in either of *V. cholerae*'s distinct
377 lifestyles.

378

379 **VSP-II-encoded genes facilitate chemotactic responses**

380 Connections between zinc homeostasis and altered motility patterns have been reported in
381 other bacteria, but these phenotypes appear to be indirect consequences of zinc availability rather than
382 Zur repression of secondary transcriptional regulators (Lai et al. 1998; Nielubowicz et al. 2010;
383 Ammendola et al. 2016; Yeo et al. 2017). The VerA-regulated chemoreceptor, AerB, generates
384 aggregation in liquid culture and appears to mediate energy taxis. This is in apparent contradiction with
385 a report that did not find a role for AerB (referred to as Aer-1) in aerotaxis (Boin and Häse 2007);
386 however, this may be explained by a lack of native *aerB* expression under their experimental
387 conditions. The balanced action of aerotactic responses conferred by AerA and AerB may function
388 analogously to the Aer and Tsr receptors (Rebbapragada et al. 1997), which enable *E. coli* to navigate
389 to an optimum oxygen concentration.

390 Although the role of chemotaxis in autoaggregation has not been previously reported in *V.*
391 *cholerae*, this phenomenon has been characterized in several distantly related bacteria (Alexandre
392 2015). *A. brasiliense*, for example, aggregates in response to oxygen/redox stress via a PAS-containing
393 chemoreceptor homologous to AerB (33% amino acid identity, **Fig. S5A**) (Xie et al. 2010; Bible et al.
394 2008; Russell et al. 2013). This aerotaxis system may enable *V. cholerae* to avoid redox stress in low-
395 zinc environments, since deletion of zinc importer systems is associated with heightened redox
396 susceptibility in *E. coli* (Sabri et al. 2009). We speculate that AerB may allow *V. cholerae* to colonize
397 other niches within the host (e.g., anaerobic parts of the gut), similar to a redox-repellent chemotaxis
398 system in *Helicobacter pylori* that enables gland colonization *in vivo* (Collins et al. 2016; 2018).
399 Alternatively, this chemotaxis system may allow *V. cholerae* to exploit different niches within the aquatic
400 reservoir (e.g., anoxic sediments with chitin detritus); however, each of these biologically relevant
401 conditions are difficult to recapitulate *in vitro*.

402 Chemotaxis enhances virulence in a number of enteric pathogens, but this does not seem to
403 generally hold true for *V. cholerae* (Butler and Camilli 2005). In an infection model, non-chemotactic
404 (counter-clockwise biased) mutants outcompeted wild-type *V. cholerae* and aberrantly colonized parts
405 of the upper small intestine (Butler and Camilli 2004), suggesting that chemotaxis is dispensable and
406 possibly deleterious for host pathogenesis. *V. cholerae* appears to broadly downregulate chemotaxis
407 genes in a mouse infection model (Mandlik et al. 2011) and in stool shed from human patients (Merrell
408 et al. 2002). Intriguingly, this decrease may be mediated in part by VSP-I; the island-encoded DncV
409 synthesizes a cyclic AMP-GMP signaling molecule that decreases expression of chemotaxis genes and
410 enhances virulence (Davies et al. 2012). Specific chemoreceptors, however, are upregulated within a
411 host and/or enhance virulence (see (Matilla and Krell 2017) for a review). Given the conflicting roles for
412 chemotaxis within a host, we alternatively suggest that VSP-II encoded chemotaxis genes may serve a
413 purpose in an aquatic environment with oxygen and nutrient gradations.

414

415 **Stress and starvation responses can be co-opted by acquired genetic elements**

416 We report that targets of the Zur-regulated VerA appear to be restricted to VSP-II, at least under
417 the conditions tested. This restriction is logical given that transcriptional activators require specific DNA-
418 binding sequences, and these may not be present in the native chromosome of a horizontal transfer
419 recipient. Zur control of secondary regulators, including those that impact gene expression more
420 broadly via signaling molecules (i.e., cyclic di-GMP phosphodiesterases like VC0515) may function to
421 expand the complexity and tunability of the Zur-regulon in response to zinc availability and
422 compounding environmental signals.

423 Horizontal acquisition of genomic islands can help bacteria (and pathogens) evolve in specific
424 niches. VSP-II retains the ability to excise to a circular intermediate in N16961, indicating the potential
425 for future horizontal transfer events (Murphy and Boyd 2008). We observed that 35% of the ORFs on
426 the prototypical VSP-II island are expressed in the absence of Zur. Intriguingly, genomic island
427 “desilencing” in response to zinc starvation has been reported in diverse bacterium, including

428 *Mycobacterium avium* ssp. Paratuberculosis (Eckelt et al. 2014) and *Cupriavidus metallidurans* (Bütof
429 et al. 2017).

430

431 **In summary**, investigation of our Zur-associated aggregation phenotype enabled identification of novel
432 components of the zinc starvation response present on the El Tor Vibrio Seventh Pandemic Island -II.
433 Further characterization of these island-encoded genes may aid in establishing VSP-II's role as either a
434 pathogenicity or environmental persistence island.

435

436 **Methods**

437

438 **Bacterial growth conditions.**

439 Bacterial strains were grown by shaking (200 rpm) in 5 mL of LB medium at 30°C (for *V. cholerae* and
440 *E. coli BTH101*) or 37°C (for other *E. coli*) in borosilicate glass tubes, unless otherwise specified. M9
441 minimal medium with glucose (0.2%) was prepared with ultrapure Mili-Q water to minimize metal
442 contamination. Antibiotics, where appropriate, were used at the following concentrations: streptomycin,
443 200 μ g ml^{-1} ; ampicillin, 100 μ g ml^{-1} , and kanamycin, 50 μ g ml^{-1} . IPTG was added to induce P_{iptg}
444 promoters at indicated concentrations.

445

446 **Plasmid and strain construction.**

447 For all cloning procedures, N16961 gDNA was amplified via Q5 DNA polymerase (NEB) with
448 the oligos summarized in **Table S1**. Fragments were Gibson assembled (Gibson et al. 2009) into
449 restriction-digested plasmids. For gene deletions, 700 bp flanking regions were assembled into XbaI-
450 digested pCVD442 (Amp^R). For complementation experiments, genes of interest were amplified with a
451 strong ribosome binding site and assembled into SmaI-digested pHLMob (kan^R) and pTD101 (Amp^R)
452 downstream of an IPTG-inducible promoter. *lacZ* transcriptional reporters were built by amplifying the
453 desired promoter region and assembling into NheI-digested pAM325 (Kan^R). The resulting promoter-
454 *lacZ* fusions were amplified for assembly into SphI-digested pJL1 (Amp^R). Cloning for bacterial two-

455 hybrid assays are described in a separate section below. All assemblies were initially transformed into
456 DH5alpha λpir and subsequently into an *E. coli* donor strain (MFD λpir or SM10 λpir). For conjugations
457 into *V. cholerae*, stationary phase recipients and MFD λpir donor strains were washed of antibiotics,
458 mixed in equal ratios, and spotted onto an LB DAP plate. After a 4-h incubation at 37°C, cells were
459 streaked into a selective plate (LB plus ampicillin or kanamycin) to select for transconjugants.
460 Conjugations using SM10 λpir donors were performed in the absence of DAP and with the addition of
461 streptomycin to selective plates. pHLmob transconjugants were purified on an additional kanamycin LB
462 agar plate. Integration vectors were cured through two rounds of purification on salt-free sucrose (10%)
463 agar. Gene deletions or STOP codon replacements introduced by pCVD442 were verified by PCR
464 using the oligos indicated in **Table S1**. Successful integration of *lacZ* targeting vectors (pTD101, pJL1)
465 were identified by blue-white screening on plates containing 5-Bromo-4-chloro-3-indolyl-β-d-
466 galactopyranoside (X-Gal, 40 μg ml⁻¹). pJL-1 vectors were additionally checked via PCR. All strains
467 used in this study are summarized in **Table S1**. *V. cholerae* strains were derived from N16961, unless
468 otherwise indicated as E7946 (Miller et al. 1989), C6706 (not strep^R) (Thelin and Taylor 1996), or Haiti
469 (Son et al. 2011). The N16961 accession numbers for genes referenced in this study are as follows:
470 *zur*/vc0378, *znuABC*/vc2081-vc2083, *zrgABC*/vc2551-2553, *ribA*/vc1263, *rpmE2*/vc0878,
471 *rpmJ2*/vc0879, *shyB*/vc0503, *aerB*/vc0512, *verA*/vc0513, *fliC*/vc2199, *motB*/vc0893, *cheA-2*/vc2063,
472 *cheW-1*/vc2059, *cheZ*/vc2064, *cheY*/vc2065, *vpsL*/vc0934, *csqS*/vca0522, *csqA*/vc0523, *tdh*/vca0885,
473 *luxS*/vc0557, *luxQ*/vca0736, and *aerA*/vca0658.

474

475 **Site-directed mutagenesis.**

476 Site-directed mutagenesis was performed using NEB kit #E0554S according to manufacturer
477 instructions. A pTD101 plasmid carrying *aerB* was used as the template for Q5 amplification with the
478 following mutagenic primer pairs: R61A, SM-1294/1295; and H62A, SM-1296/1297 (**Table S1**).
479 Products were purified and treated with kinase, ligase, and Dpn1 at 37°C for 30 minutes. This reaction
480 mixture was transformed into DH5α λpir. Mutations were confirmed via Sanger Sequencing. *aerB*

481 fragments containing W74F (SM-1306) and G395C (SM-1307) were chemically synthesized by
482 Integrated DNA Technologies (IDT) and assembled into pTD101; sequences are listed in **Table S1**.
483

484 **Aggregation assays**

485 Bacterial aggregation was quantified by measuring absorbance (OD600) in a spectrophotometer of the
486 culture supernatant before and after a brief vortex (5 seconds). Aggregation score represents the ratio
487 of before and after pellet disruption; a ratio closer to one indicates that the culture is homogenous, a
488 ratio closer to zero indicates that the cells are concentrated at the bottom of the culture tube.
489

490 **Transposon Mutagenesis Screen & Arbitrary PCR**

491 *V. cholerae* N16961 Δ zur was mutagenized with Himar1 mariner transposons via an SM10 λ pir donor
492 strain carrying pSC189 (Chiang and Rubin 2002). Four independent Δ zur transposon libraries were
493 generated, as previously described (Murphy et al. 2019). Each library was separately harvested from
494 the plate using sterile rubber scrapers, vortexed into LB, and preserved in glycerol at -80°C. Individual
495 culture tubes containing 5 mL of M9 minimal medium with glucose (0.2%) and kanamycin were
496 inoculated with transposon libraries. Overnight cultures were back-diluted 1000-fold into fresh medium
497 and incubated overnight; this process was repeated until no visible pellet had formed. Isolated colonies
498 were tested to verify that they did not generate a pellet. The second screen was described identically to
499 the first, except that cultures were first inoculated into a M9 motility plate (0.3% agar) and allowed to
500 migrate for 48 hours at 30°C degrees. Scrapings from the outer zone (collected with a 1 mL pipette tip)
501 were inoculated a culture tube containing M9 minimal medium. For both screens, the transposon
502 insertion site for each isogenic colony was identified by arbitrary PCR (O'Toole et al. 1999). As
503 described elsewhere, this technique amplifies the chromosomal DNA adjacent to the mariner
504 transposon. Amplicons were Sanger sequenced at the Cornell Institute of Biotechnology, and regions of
505 high-quality were aligned to the N16961 reference genome using BLAST (Altschul et al. 1990).
506

507 **RNA-seq and analysis**

508 Overnight cultures of wild-type N16961 and the Δ zur mutant were diluted 1:100 into LB and
509 grown shaking at 37°C until cells reached mid-log phase (optical density at 600 nm [OD₆₀₀], 0.5). RNA
510 was extracted using mirVana™ miRNA Isolation Kit (Invitrogen, AM1560). Genomic DNA contamination
511 was removed through two DNAfree (Ambion) treatments each followed by glass fiber column
512 purification. Library preparations, Illumina sequencing, and data analysis were performed by GENEWIZ
513 (South Plainfield, NJ). Differentially expressed genes were those with log 2-fold change >1 and an
514 adjusted p-value <0.05.

515 For VC0513 overexpression, wild-type N16961 carrying either pHLmob or pHLmob(P_{ipg-}
516 vc0513) was sub-cultured into LB kanamycin IPTG (500 mM) and grown at 37°C for 3 hour (~ mid-log
517 phase). Total RNA isolations and DNase treatments were performed as described above. Library
518 preparations, Illumina sequencing, and data analysis (using DESeq2 (Love et al. 2014)) were
519 performed by the Cornell Transcriptional Expression Facility. Differentially expressed genes were those
520 with log 2-fold change >1 and an adjusted p-value <0.05.

521

522 **5'-Rapid Amplification of cDNA Ends (5'-RACE).**

523 Transcription start sites were identified with 5'-RACE. To obtain vc0512, vc0513, and vca1098
524 transcripts, the Δ zur mutant was grown in LB at 37°C until cells reached mid-log phase (optical density
525 at 600 nm [OD₆₀₀], 0.5) and RNA extractions and DNase treatments were performed as described for
526 RNAseq. PCR was performed to check for genomic DNA contamination; no amplicons were detected
527 within 34 cycles. Reverse transcription was performed with the Template Switching Reverse
528 Transcriptase enzyme mix (NEB #M0466) according to manufacturer protocols using gene specific
529 primers (vc0512, SM-1133; vc0513, SM-1131; vca1098, SM-1129) and the Template Switching Oligo
530 (TSO). PCR Amplification of 5'-transcripts was performed with diluted cDNA, Q5 Hot Start High-Fidelity
531 Master Mix (NEB #M0494), TSO-specific primer, and gene-specific primers (vc0512, SM-1134; vc0513,
532 SM-1132, vca1098, SM-1130). Products were sanger sequenced using the following primers: SM-1134,
533 SM-1156, and SM1157 for vc0512, SM-1132 for vc0513, and SM-1130 for vca1098. Primer sequences
534 are listed in **Table S1**.

535

536 **β-galactosidase activity measurements.**

537 *V. cholerae* strains carrying promoter-*lacZ* fusions were grown overnight in LB at 30°C, with kanamycin
538 for plasmid maintenance. Strains were diluted 1:100 into LB containing Kan and IPTG (1 mM) and
539 grown shaking at 37°C. Exponential phase cells were harvested (~ 3hr) and β-galactosidase activity
540 against an ortho-Nitrophenyl-β-galactoside substrate (ONPG) substrate was quantified as described
541 elsewhere (Miller 1972; Zhang and Bremer 1995).

542

543 **Motility Assays.**

544 Motility plates (0.3% agar) were prepared with M9 minimal medium with variable carbon sources
545 (succinate, 30 mM; and maltose, 0.1 mM). Strains were grown overnight in LB medium and washed
546 three times in M9 without a carbon source. Plates were inoculated via toothpick stabs and incubated
547 30°C 48 hours. The migration diameter (mm) was recorded.

548

549 **Bacterial two hybrid assays.**

550 Protein-protein interactions were detected using the BACTH bacterial two hybrid system (Karimova et
551 al. 1998). *cheW* and *aerB* (excluding transmembrane domains and native start/stop codons) were
552 cloned into SmaI-digested pUT18(C) (Kan^R) or pK(N)T25 (Amp^R) expression vectors to yield N-terminal
553 T(18/25)-Aer or C-terminal CheW-T(18/25) fusions, respectively. Electrocompetent *E. coli* BTH101
554 were co-transformed with a pUT18 and pKT25 vector that carried either: an unfused adenylate cyclase
555 domain (T18 or T25), the CheW-T(18/25) fusion or the T(18/25)-AerB fusion. Following 1 hr of
556 outgrowth in SOC at 30°C, 10 µL of concentrated outgrowth was spotted onto LB agar containing
557 kanamycin and ampicillin (for selection), X-gal (for blue-white detection), and inducer (IPTG, 500 mM).
558 Plates were incubated overnight at 30°C and for an additional day at room temperature before being
559 imaged.

560

561 **Anaerobic Cultures.**

562 5 mL of M9 minimal medium without MgSO₄, CaCl₂, or carbon source were added to glass culture
563 tubes. Tubes were sealed with rubber stoppers, crimped, purged for 10 cycles (20 sec vacuum, 20 sec
564 N₂ purge), and autoclaved (gravity, 20 min). Post-autoclaving, the medium was amended with sterile
565 solutions of MgSO₄ (to 2 mM), CaCl₂ (to 0.1 mM), glucose (to 0.5%) and with or without fumarate (to
566 50mM) using sterile syringes and needles. Tubes were injected with a *V. cholerae* cell suspension and
567 grown overnight shaking at 30°C. Aerobic tubes containing M9 glucose (0.5%) with or without fumarate
568 were included as a control. Aggregation was measured via spectrophotometry, as described above.

569

570 Acknowledgements

571 We thank Sean Murphy and Dr. Daniel Buckley for providing assistance with anoxic culturing, and Dr.
572 John Mekalanos and Dr. Melanie Blokesch for generously sharing *V. cholerae* strains. We thank
573 members of the Dörr lab for helpful discussions. This study was in part supported by NIH grant
574 R01GM130971 to TD and by the Cornell Institute of Host-Microbe Interactions and Disease (CIHMID)
575 (CML, BAJ).

576

577 Figure Legends

578 Figure 1. *V. cholerae* Δ zur mutant aggregates in M9 minimal medium.

579 All strains were grown overnight in M9 minimal medium supplemented with glucose (0.2%).
580 Aggregation was quantified by measuring the optical density (at 600 nm) of the culture supernatant
581 before and after a brief vortex. A ratio close to 1 represents a homogenous culture, a ratio closer to 0
582 indicates aggregation (**A-B**) Representative images and aggregation measurements in medium
583 containing inducer (IPTG, 500 μ M) are shown for cultures of wild-type, Δ zur, and Δ zur carrying an
584 integrated, IPTG-inducible copy of zur (denoted + zur). (**C**) Aggregation was measured in wild type,
585 Δ zur, and a zinc importer mutant (Δ znuABC) grown in the absence (solid bars) or presence (checkered
586 bars) of exogenous zinc (ZnSO₄, 1 μ M). (**D**) Aggregation was measured in wild type, Δ zur, and Δ zur
587 lacking components of the zinc starvation response (znuABC, zrgABC, ribA, rpmE2/rpmJ2, or shyB).
588 For all plots, the shown raw data points are biological replicates, error bars represent standard

589 deviation, and asterisks denote statistical difference via Ordinary one-way ANOVA test (****, p <
590 0.0001; **, p < 0.001; n.s., not significant).

591

592 **Figure 2. zur pellet formation requires motility and components of VSP-II.**

593 **(A)** Δ zur was mutagenized with mariner transposons to generate a library of insertion mutants (see
594 Methods for details). Non-aggregating mutants within the library were enriched via repeated
595 subculturing of the supernatant until no pellet formed. Transposon insertions were mapped using
596 arbitrary PCR. In a modified version of this screen (v.2), the transposon library was pre-filtered to select
597 for motile mutants on soft agar (0.3%). **(B)** Transposon insertions mapped to VSP-II genes (24 hits,
598 orange/horizontal lines), genes encoding flagellar components and regulators (21 hits, yellow) and
599 chemotaxis proteins (7 hits, purple/vertical lines). **(C)** Select motility (*fliC*, *motB*), chemotaxis (*cheA*),
600 and VSP-II genes (*vc0512/aerB*, *vc0513/verA*) were mutated in a Δ zur background (solid bars) and
601 complemented back *in trans* (+) under an IPTG inducible promoter integrated within chromosomal *lacZ*.
602 (Note: $P_{\text{iptg}}\text{-verA}$ on a multicopy plasmid was used for complementing the Δ zur *verA*::STOP mutant.
603 These cultures were grown with kanamycin to ensure retention of the control or *verA*-expressing
604 plasmid). Aggregation in M9 glucose (0.2%) supplemented with inducer (IPTG, 100 μ M) was quantified
605 by measuring the optical density (at 600 nm) of the culture supernatant before and after a brief vortex.
606 **(D)** Using the same approach described in **C**, chromosomal copies of *aerB* or *verA* were overexpressed
607 in wild-type and Δ vsp-II (or a Δ aerB) background. Ten and 200 μ M of IPTG were used for *aerB* and
608 *verA* induction, respectively. For all plots, the shown raw data points are biological replicates, error bars
609 represent standard deviation, and asterisks denote statistical difference via Ordinary one-way ANOVA
610 test (****, p < 0.0001; **, p < 0.01; n.s., not significant).

611

612 **Figure 3. Several VPS-II genes are upregulated in a Δ zur mutant.**

613 **(A)** A predicted Zur-binding site (TGTTATGTTATAACA) located approximately 200 bp upstream of the
614 *verA* open reading frame was aligned with the *Vibrio* Zur binding consensus sequence
615 (Novichkov et al. 2013). Predicted start codon is indicated by bold “ATG”. **(B)** $P_{\text{verA}}\text{-lacZ}$ transcriptional

616 reporters were introduced into a wild-type and Δ zur background, paired with either an empty vector or
617 IPTG-inducible copy of zur (+ zur). Strains were grown overnight and diluted 1:100 into LB with
618 kanamycin and inducer (IPTG, 200 μ M). After 3 hours of growth at 37°C (to mid/late exponential
619 phase), promoter activity was quantified in Miller Units by measuring β -galactosidase (LacZ) activity
620 against an ONPG chromogenic substrate (see Methods for more details). (C) Wild-type, Δ zur, and
621 Δ znuABC mutants carrying the P_{verA} -lacZ reporter were grown in M9 minimal medium in the presence
622 (+) and absence (-) of exogenous zinc (ZnSO₄, 1 μ M). After overnight growth (16 h), promoter activity
623 was measured in Miller units. For bar graphs, raw data points represent biological replicates, error bars
624 represent standard deviation, and asterisks denote statistical difference via Ordinary one-way ANOVA
625 (****, p < 0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.05; and n.s., not significant). (D-E) RNA was
626 isolated from cells at mid-log phase and prepared for RNA-seq (see Methods and Materials). Genes
627 with significant differential expression in Δ zur (log 2-fold change > 1, adjusted p-value <0.05) relative to
628 wild-type N16961 are shown. (D) The heat map indicates increased (orange) or decreased (purple)
629 expression relative to the wild-type strain. Black circles represent putative Zur binding sites and lines
630 represent corresponding operons. (E) Log 2-fold expression changes for all VSP-II genes (vc0490-
631 vc0516) are shown alongside a schematic of VSP-II open reading frames. Black circles indicate present
632 of canonical Zur binding sites.

633

634 **Figure 4. VerA is an AraC-like transcriptional activator that positively regulates aerB and the**
635 **vc0513-vc0515 operon.**

636 (A) Overnight cultures of wild-type N16961 carrying either an IPTG-inducible copy of verA (+ verA) or
637 empty vector (control) were diluted 1:100 in fresh LB containing kanamycin and IPTG (1 mM). RNA was
638 isolated from cells at mid-log phase and prepared for RNA-seq (see Methods and Materials). Heat map
639 shows normalized expression values for differentially expressed genes across three biological
640 replicates. (B-C) Overnight cultures strains carrying lacZ transcriptional reporters were diluted 1:100 in
641 LB and grown for 3-hr at 37°C. Kanamycin and inducer IPTG (500 μ M) were included in the growth
642 medium for trans expression (+) of verA or zur from an IPTG-inducible promoter. (B-C) Promoter

643 activity (in Miller Units) was measured via β -galactosidase assays (See Methods and Materials). **(B)**
644 P_{verA} -*lacZ* activity was measured in wild-type, Δ zur, Δ vsp- II , and Δ zur Δ vsp- II strains carrying a plasmid-
645 borne, IPTG-inducible copy of *verA* (+, striped bars) or an empty vector control (-, solid bars). **(C)**
646 Activity from a P_{aerB} -*lacZ* reporter was measured in wild-type, Δ zur, and Δ zur *verA*::STOP backgrounds
647 harboring a plasmid-borne, IPTG-inducible copy of *verA* or *zur* (+, striped bars) or empty vector control
648 (-, solid bars). **(D)** Proposed model for Zur repression of the *verA* promoter (solid line, red) via a
649 conserved Zur binding site and subsequent VerA-dependent activation (green dashed arrow) of the
650 *aerB* and *verA* promoters.

651

652 **Figure 5. AerB encodes a methyl-accepting chemotaxis protein involved in aerotaxis.**

653 **(A)** Δ vsp- II strains carrying an integrated, IPTG-inducible copy of either *aerB* or *aerB* point mutants
654 (G385C, R61A, H62A, or W74F) were grown shaking overnight in M9 minimal medium supplemented
655 with glucose (0.2%) and inducer (IPTG, 10 μ M) at 30°C. Aggregation was quantified by measuring the
656 optical density (at 600 nm) of the culture supernatant before and after a brief vortex. **(B)** In a bacterial
657 two-hybrid assay, *E. coli* BTH101 was co-transformed with vectors carrying one domain of adenylate
658 cyclase (T18 or T25) or an adenylate cyclase fusion with a protein of interest: CheW-T(18/25) or
659 T(18/25)-AerB. Co-transformants were spotted onto an LB agar containing kanamycin and ampicillin
660 (for selection), X-gal (for blue-white detection), and inducer (IPTG, 500 mM). Plates were incubated
661 overnight at 30°C and for an additional day at room temperature. Blue color signifies positive protein-
662 protein interactions. **(C)** Wild-type and Δ zur were grown overnight in 5 mL M9 minimal medium plus
663 glucose (0.5%) plus a terminal electron acceptor (fumarate, 50 mM) and cultured aerobically (+ O_2).
664 Another set up tubes was prepared anoxically by purging with N_2 (- O_2) (see Methods for details).
665 Tubes were grown shaking overnight at 30°C and aggregation was quantified as described above.
666 Representative images of the bottom of each culture tube showing pellet presence (for Δ zur + O_2) or
667 absence (all others) are shown. **(D-E)** Strains were grown overnight in LB medium and washed thrice in
668 M9 minimal medium lacking a carbon source. A sterile toothpick was used to inoculate cells into M9
669 soft agar (0.3%) containing either **(D)** succinate (30 mM) or **(E)** maltose (0.1 mM) as a carbon source.

670 The diameter of diffusion (mm) was measured following a 48-hr incubation at 30°C and representative
671 diffusion patterns are shown for each strain. For all bar graphs, raw data points represent biological
672 replicates, error bars represent standard deviation, and asterisks denote statistical difference via
673 Ordinary one-way ANOVA test (****, p < 0.0001; *, p < 0.05; n.s., not significant).

674

675 **Figure 6. Summary model of Zur-regulation of VSP-II encoded genes the downstream effects on**
676 **chemotaxis.** Zur (orange hexagon) forms a complex with divalent zinc ions (blue circle) and binds with
677 high affinity to specific DNA sequences (black rectangle), repressing transcription of downstream genes
678 (red line). In the absence of *zur* or during zinc starvation, VSP-II genes, including the *vc0513-vc0515*
679 operon are derepressed. The *vc0513*-encoded transcriptional activator VerA induces transcription
680 (green arrow) of *aerB*, which encodes a chemotaxis receptor. AerB interacts with the chemotaxis
681 coupling protein CheW (purple) and mediates a signal relay that alters flagellar (yellow) rotation and
682 tumbling. AerB induction in minimal medium causes *V. cholerae* to aggregate in an oxygen-dependent
683 manner away from the air-liquid interface.

684

685 **Supplemental Movie 1. A *V. cholerae* N16961 Δzur mutant aggregates at the bottom of culture**
686 **tubes.** Δzur was grown overnight shaking (200 rpm) in M9 minimal medium with glucose (0.2%) at
687 30°C.

688

689 **Supplemental Table 1. Summary of strains and oligos used in this study.** Strains used in this
690 study are listed with unique identifiers (SGM-#). For *E. coli* donor strains, the primers or gene block
691 used to construct each plasmid are listed in the “Oligos” column. Genetic changes introduced into *V.*
692 *cholerae* were screened using the method indicated in the “Confirmation” column: either PCR using the
693 indicated primers (SM-#), kanamycin resistance, or blue-white screening on X-gal containing plates.

694

695 **Supplemental Table 2. Genes differentially expressed in Δzur relative to wild-type *V. cholerae***
696 **N16961.** Transcript abundances in Δzur relative to wild-type were measured using RNA-seq (see

697 Methods for details). Gene ID's and putative ontology (Kanehisa et al. 2004) are shown for all
698 significant (adjusted p-value < 0.05) differentially expressed (log 2-fold change > 1) genes. Positive
699 values represent up-regulation and negative values represent down-regulation in Δzur relative to the
700 wild-type. Superscripts denote (a) a nearby conserved Zur box, (b) location on VSP-I or (c) location on
701 VSP-II.

702

703 **Supplemental Table 3. Genes differentially expressed in a *V. cholerae* strain overexpressing**
704 **VerA.** Transcript abundances in a strain overexpressing VerA (VC0513) relative to an empty-vector
705 control were measured using RNA-seq (see Methods for details). Gene ID's and descriptions (Kanehisa
706 et al. 2004) are shown for all significant (adjusted p-value < 0.05) differentially expressed (log 2-fold
707 change > 1) genes.

708

709 **Figure S1. Targeted genetic mutations exclude the involvement of a variety of genes in Δzur**
710 **aggregation in M9 minimal medium.**

711 All strains were grown overnight in M9 minimal medium plus glucose in **(A)** plastic or **(B-G)** borosilicate
712 glass culture tubes. Aggregation was quantified by measuring the optical density (at 600 nm) of the
713 culture supernatant before and after a brief vortex. The following mutants were tested in a Δzur
714 background: **(B)** other putative Zur-regulatory targets ($\Delta vca1098$ - $vca1101$ or $\Delta vca1090$ - $vca1097$), **(C)**
715 chemotaxis genes ($cheA$::STOP, $\Delta cheY$, $\Delta cheZ$), **(E)** N16961 $hapR$ ^{repaired}, **(F)** type IV pili ($\Delta tcpA$,
716 $\Delta mshA$, $\Delta pilA$, and $\Delta vc0504$), biofilm formation genes ($\Delta vspL$), quorum sensing genes ($\Delta csqA$, $\Delta csqS$,
717 Δtdh , $\Delta luxS$, or $\Delta luxQ$), **(G)** the Vibrio Seventh Pandemic (VSP) island -I ($\Delta vc0175$ - $vc0185$), regions of
718 VSP-II (" $\Delta VSP-II$ ", $\Delta vc0491$ - $vc0515$; $\Delta vc0490$ - $vc0510$, $\Delta vc0511$, $\Delta vc0512$, $\Delta vc0513$ or $vc0513$::STOP,
719 $\Delta vc0514$ or $vc0514$::STOP, $\Delta vc0515$, or $\Delta vc0516$). **(D)** A wild-type, Δzur , a rough mutant
720 ($vc0225$::STOP), and a rough mutant harboring deletions for $\Delta fliC$, $\Delta motB$, or $\Delta vsp-II$ were assayed for
721 aggregates. Data points represent biological replicates, error bars represent standard deviation, and
722 asterisks denote statistical difference relative to the wild-type strain via **(A)** unpaired t-test or **(B-G)**
723 Ordinary one-way ANOVA (****, p < 0.0001; ***, p < 0.001;).

724

725 **Figure S2. Transposon insertions that prevented Δzur from aggregating in M9 minimal medium.**

726 **(A)** Table indicating the number of transposon insertions within motility, chemotaxis, and VSP-II genes
727 for the screens (without pre-selection, v.1; and with pre-selection of motile mutants, v.2) described in
728 **Figure 2. (B)** Approximate location of transposon insertions (triangles) determined by arbitrary PCR
729 (O'Toole et al. 1999) and Sanger sequencing are shown.

730

731 **Figure S3. Zur-dependent regulation of the *vca1098* promoter.**

732 **(A)** Diagram of the *vca1098* promoter region annotated the following features: predicted Zur box, red;
733 predicted -10 region, purple (Solovyev and Salamov 2011); transcription start site, +1 (5'-RACE);
734 predicted ribosome binding site, yellow; proposed start codon, green. Asterisks indicate Zur box
735 nucleotides that were altered in mutant reporters described below. **(B)** *vca1098* promoter - *lacZ*
736 transcriptional reporters ($P_{vca1098}$ -*lacZ*, solid bars) or mutated versions ($P_{vca1098}^{Zur\ box^* A\ or\ B}$ -*lacZ*, striped
737 bars) were inserted into a wild-type or Δzur background harboring a plasmid-borne, IPTG-inducible
738 copy of *zur* (+) or empty vector control (-). Patterned bars indicate a mutated version of the reporter
739 was used, as described in **A**. Strains were grown overnight in LB and kanamycin, diluted 1:100 in fresh
740 media containing inducer (IPTG, 400 μ M), and grown for 3 hours at 37°C. Promoter activity (in Miller
741 Units) was measured via β -galactosidase assays (See Methods and Materials). **(C)** Wild-type and Δzur
742 strains carrying $P_{vca1098}$ -*lacZ* or mutant derivatives were streaked onto M9 minimal medium agar with
743 glucose (0.2%), X-gal, and with or without added zinc ($ZnSO_4$, 10 μ M). Plates were incubated overnight
744 at 30°C and then for an additional day at room temperature. *vca1098* promoter activity is indicated by a
745 blue colony color.

746

747 **Figure S4. Transcription start sites and construction of *lacZ* transcriptional reporters.**

748 **(A)** Diagram of the *verA* promoter regions annotated the following features: predicted Zur box (red),
749 predicted -10 and -35 regions (purple) (SOFTBERRY), suggested start codon (green). **(B)** Schematics
750 for two attempted P_{aerB} -*lacZ* reporters containing either 400 bp or 1,314bp of the promoter region are

751 shown. **(C)** The $P_{aerB}^{400\text{ bp}}\text{-}lacZ$ and $P_{aerB}^{1,314\text{ bp}}\text{-}lacZ$ reporters in a wild-type or Δzur background were
752 struck onto LB X-gal plates and incubated overnight at 30°C and then for an additional day at room
753 temperature. P_{aerB} expression is indicated by a blue colony color.

754

755 **Figure S5. AerB protein alignment with homologs in *V. cholerae*, *E. coli* and *A. brasiliense*.**

756 **(A)** Results of protein BLAST (Altschul et al. 1990) and **(B)** Clustal Omega alignment (Larkin et al.
757 2007) of AerB against homologs from *V. cholerae* (AerA, encoded by vca0685) *E. coli* (Aer^{EC}, encoded
758 by b3072) and *A. brasiliensis* (AerC^{AB}, encoded by AKM58_23950). Conserved ligand binding and
759 MCP residues targeted for mutation are indicated by orange and pink arrows, respectively.

760

761 **Figure S6. *V. cholerae* swarm assays with chemoreceptor mutants.**

762 **(A-D)** The indicated strains were grown overnight in LB medium and washed thrice in M9 minimal
763 medium lacking a carbon source. A sterile toothpick was used to inoculate cells into M9 soft agar
764 (0.3%) with either **(A-B)** succinate (30 mM) or **(C-D)** maltose (0.1 mM) as a carbon source. The
765 diameter of diffusion (mm) was measured following a 48-h incubation at 30°C and representative
766 swarms are shown **(A,C)**. Note: Data for Δzur , $\Delta zur \Delta aerB$, $\Delta zur \Delta aerA$, and $\Delta zur \Delta aerA \Delta aerB$ are the
767 same as shown in **Fig. 5** and are shown here for comparison with a wild-type background. **(E)** Wild-
768 type and Δzur were grown overnight in 5 mL M9 minimal medium plus glucose (0.5%) fermentatively
769 (without a terminal electron acceptor) and cultured under aerobic (+ O₂) or anoxic (- O₂) conditions (see
770 Methods for details). Tubes were grown shaking overnight at 30°C and aggregation was quantified via
771 spectrophotometry as described previously. All data points represent biological replicates, error bars
772 represent standard deviation, and asterisks denote statistical difference via Ordinary one-way ANOVA
773 test (****, p < 0.0001; ***, p < 0.001, *, p < 0.05, and n.s., not significant).

774

775 **Figure S7. Presence of VSP islands does not impact growth in zinc-chelated medium.** Wild-type,
776 $\Delta vsp-l$, and $\Delta vsp-l l$ were grown overnight in M9 minimal medium with glucose (0.2%) at 30°C. Cultures
777 were washed twice and diluted 1:100 into **(A)** fresh M9 minimal medium glucose (0.2%), **(B)** plus the

778 zinc-specific chelator TPEN (250 nM), or (C) plus TPEN and exogenous zinc (ZnSO₄, 1 μM). Growth at
779 30°C of each 200-μl culture in a 100-well plate was monitored by optical density at 600 nm (OD₆₀₀) on a
780 Bioscreen C plate reader (Growth Curves America).

781

782 References

783

784 Adams DW, Stutzmann S, Stoudmann C, Blokesch M. 2019. DNA-uptake pili of *Vibrio cholerae* are
785 required for chitin colonization and capable of kin recognition via sequence-specific self-interaction.
786 **4**: 1545–1557.

787 Alexander RP, Zhulin IB. 2007. Evolutionary genomics reveals conserved structural determinants of
788 signaling and adaptation in microbial chemoreceptors. *Proc Natl Acad Sci USA* **104**: 2885–2890.

789 Alexandre G. 2015. Chemotaxis Control of Transient Cell Aggregation ed. W. Margolin. *Journal of*
790 *Bacteriology* **197**: 3230–3237.

791 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *J Mol*
792 *Biol* **215**: 403–410.

793 Ammendola S, D'Amico Y, Chirullo B, Drumo R, Civardelli D, Pasquali P, Battistoni A. 2016. Zinc is
794 required to ensure the expression of flagella and the ability to form biofilms in *Salmonella enterica*
795 sv Typhimurium. *Metallomics* **8**: 1131–1140.

796 Ammendola S, Pasquali P, Pistoia C, Petrucci P, Petrarca P, Rotilio G, Battistoni A. 2007. High-Affinity
797 Zn²⁺ Uptake System ZnuABC Is Required for Bacterial Zinc Homeostasis in Intracellular
798 Environments and Contributes to the Virulence of *Salmonella enterica*. *Infection and Immunity* **75**:
799 5867–5876.

800 Bibikov SI, Barnes LA, Gitin Y, Parkinson JS. 2000. Domain organization and flavin adenine
801 dinucleotide-binding determinants in the aerotaxis signal transducer Aer of *Escherichia coli*. *Proc*
802 *Natl Acad Sci USA* **97**: 5830–5835.

803 Bibikov SI, Biran R, Rudd KE, Parkinson JS. 1997. A signal transducer for aerotaxis in *Escherichia coli*.
804 *Journal of Bacteriology* **179**: 4075–4079.

805 Bible AN, Stephens BB, Ortega DR, Xie Z, Alexandre G. 2008. Function of a Chemotaxis-Like Signal
806 Transduction Pathway in Modulating Motility, Cell Clumping, and Cell Length in the
807 Alphaproteobacterium *Azospirillum brasiliense*. *Journal of Bacteriology* **190**: 6365–6375.

808 Bobrov AG, Kirillina O, Fosso MY, Fetherston JD, Miller MC, VanCleave TT, Burlison JA, Arnold WK,
809 Lawrenz MB, Garneau-Tsodikova S, et al. 2017. Zinc transporters YbtX and ZnuABC are required
810 for the virulence of *Yersinia pestis* in bubonic and pneumonic plague in mice. *Metallomics* **9**: 757–
811 772.

812 Boin MA, Austin MJ, Häse CC. 2004. Chemotaxis in *Vibrio cholerae*. *FEMS Microbiology Letters* **239**:
813 1–8.

814 Boin MA, Häse CC. 2007. Characterization of *Vibrio cholerae* aerotaxis. *FEMS Microbiology Letters*
815 **276**: 193–201.

816 Broza M, Halpern M. 2001. Chironomid egg masses and *Vibrio cholerae*. *Nature* **412**: 40–40.

817 Butler SM, Camilli A. 2004. Both chemotaxis and net motility greatly influence the infectivity of *Vibrio*
818 *cholerae*. *Proc Natl Acad Sci USA* **101**: 5018–5023.

819 Butler SM, Camilli A. 2005. Going against the grain: chemotaxis and infection in *Vibrio cholerae*. *Nat*
820 *Rev Microbiol* **3**: 611–620.

821 Bütof L, Schmidt-Vogler C, Herzberg M, Große C, Nies DH, DiRita VJ. 2017. The Components of the
822 Unique Zur Regulon of *Cupriavidus metallidurans* Mediate Cytoplasmic Zinc Handling ed. V.J.
823 DiRita. *Journal of Bacteriology* **199**: 175.

824 Campoy S, Jara M, Busquets N, de Rozas AMP, Badiola I, Barbé J. 2002. Role of the High-Affinity Zinc
825 Uptake znuABC System in *Salmonella enterica* Serovar Typhimurium Virulence. *Infection and*
826 *Immunity* **70**: 4721–4725.

827 Chatterjee SN, Chaudhuri K. 2003. Lipopolysaccharides of *Vibrio cholerae*: I. Physical and chemical
828 characterization. *Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease* **1639**: 65–79.

829 Chiang SL, Rubin EJ. 2002. Construction of a mariner-based transposon for epitope-tagging and
830 genomic targeting. *Gene* **296**: 179–185.

831 Collins KD, Andermann TM, Draper J, Sanders L, Williams SM, Araghi C, Ottemann KM. 2016. The
832 *Helicobacter pylori* CZB Cytoplasmic Chemoreceptor TlpD Forms an Autonomous Polar
833 Chemotaxis Signaling Complex That Mediates a Tactic Response to Oxidative Stress. *Journal of*
834 *Bacteriology* **198**: 1563–1575.

835 Collins KD, Hu S, Grasberger H, Kao JY, Ottemann KM. 2018. Chemotaxis Allows Bacteria To
836 Overcome Host-Generated Reactive Oxygen Species That Constrain Gland Colonization. *Infection*
837 *and Immunity* **86**.

838 Corbett D, Wang J, Schuler S, Lopez-Castejon G, Glenn S, Brough D, Andrew PW, Cavet JS, Roberts
839 IS, Bäumler AJ. 2012. Two Zinc Uptake Systems Contribute to the Full Virulence of *Listeria*
840 *monocytogenes* during Growth *In Vitro* and *In Vivo* ed. A.J. Bäumler. *Infection and Immunity* **80**:
841 14–21.

842 Dalia AB, Lazinski DW, Camilli A. 2014. Identification of a membrane-bound transcriptional regulator
843 that links chitin and natural competence in *Vibrio cholerae*. *mBio* **5**: e01028–13.

844 Davies BW, Bogard RW, Young TS, Mekalanos JJ. 2012. Coordinated Regulation of Accessory
845 Genetic Elements Produces Cyclic Di-Nucleotides for *V. cholerae* Virulence. *Cell* **149**: 358–370.

846 Davis LM, Kakuda T, DiRita VJ. 2009. A *Campylobacter jejuni* znuA Orthologue Is Essential for Growth
847 in Low-Zinc Environments and Chick Colonization. *Journal of Bacteriology* **191**: 1631–1640.

848 de Magny GC, Mozumder PK, Grim CJ, Hasan NA, Naser MN, Alam M, Sack RB, Huq A, Colwell RR.
849 2011. Role of Zooplankton Diversity in *Vibrio cholerae* Population Dynamics and in the Incidence of
850 Cholera in the Bangladesh Sundarbans. *Appl Environ Microbiol* **77**: 6125–6132.

851 DePAOLA A. 1981. *Vibrio cholerae* in Marine Foods and Environmental Waters: A Literature Review.
852 *Journal of Food Science* **46**: 66–70.

853 DiRita VJ. 1992. Co-ordinate expression of virulence genes by ToxR in *Vibrio cholerae*. *Molecular*
854 *Microbiology* **6**: 451–458.

855 DiRita VJ, Parsot C, Jander G, Mekalanos JJ. 1991. Regulatory cascade controls virulence in *Vibrio*
856 *cholerae*. *Proc Natl Acad Sci USA* **88**: 5403–5407.

857 Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF, Mekalanos JJ. 2002. Comparative genomic
858 analysis of *Vibrio cholerae*: Genes that correlate with cholera endemic and pandemic disease. *Proc*
859 *Natl Acad Sci USA* **99**: 1556–1561.

860 Eckelt E, Jarek M, Frömkne C, Meens J, Goethe R. 2014. Identification of a lineage specific zinc
861 responsive genomic island in *Mycobacterium avium* ssp. *paratuberculosis*. *BMC Genomics* **15**: 1–
862 15.

863 Fong JCN, Syed KA, Klose KE, Yildiz FH. 2010. Role of Vibrio polysaccharide (vps) genes in VPS
864 production, biofilm formation and *Vibrio cholerae* pathogenesis. *Microbiology* **156**: 2757–2769.

865 Gaballa A, Wang T, Ye RW, Helmann JD. 2002. Functional analysis of the *Bacillus subtilis* Zur regulon.
866 *Journal of Bacteriology* **184**: 6508–6514.

867 Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA III, Smith HO. 2009. Enzymatic assembly
868 of DNA molecules up to several hundred kilobases. *Nat Methods* **6**: 343–345.

869 Giedla LM, DiRita VJ. 2012. Zinc Competition among the Intestinal Microbiota. *mBio* **3**: e00171–12–
870 e00171–12.

871 Hankins JV, Madsen JA, Giles DK, Brodbelt JS, Trent MS. 2012. Amino acid addition to *Vibrio cholerae*
872 LPS establishes a link between surface remodeling in Gram-positive and Gram-negative bacteria.
873 *Proc Natl Acad Sci USA* **109**: 8722–8727.

874 Harris JB, LaRocque RC, Qadri F, Ryan ET, Calderwood SB. 2012. Cholera. *The Lancet* **379**: 2466–
875 2476.

876 Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK,
877 Peterson JD, Umayam L, et al. 2000. DNA sequence of both chromosomes of the cholera
878 pathogen *Vibrio cholerae*. *Nature* **406**: 477–483.

879 Henderson JC, Herrera CM, Trent MS. 2017. AlmG, responsible for polymyxin resistance in pandemic
880 *Vibrio cholerae*, is a glycolyltransferase distantly related to lipid A late acyltransferases. *J Biol Chem*
881 **292**: 21205–21215.

882 Hennigar SR, McClung JP. 2016. Nutritional Immunity: Starving Pathogens of Trace Minerals.
883 *American Journal of Lifestyle Medicine* **10**: 170–173.

884 Hensley MP, Gunasekera TS, Easton JA, Sigdel TK, Sugarbaker SA, Klingbeil L, Breece RM, Tierney
885 DL, Crowder MW. 2012. Characterization of Zn(II)-responsive ribosomal proteins YkgM and L31 in
886 *E. coli*. *Journal of Inorganic Biochemistry* **111**: 164–172.

887 Higgins DE, Nazareno E, DiRita VJ. 1992. The virulence gene activator ToxT from *Vibrio cholerae* is a
888 member of the AraC family of transcriptional activators. *Journal of Bacteriology* **174**: 6974–6980.

889 Hood MA, Ness GE, Rodrick GE. 1981. Isolation of *Vibrio cholerae* serotype O1 from the eastern
890 oyster, *Crassostrea virginica*. *Appl Environ Microbiol* **41**: 559–560.

891 Hood MI, Mortensen BL, Moore JL, Zhang Y, Kehl-Fie TE, Sugitani N, Chazin WJ, Caprioli RM, Skaar
892 EP. 2012. Identification of an *Acinetobacter baumannii* Zinc Acquisition System that Facilitates
893 Resistance to Calprotectin-mediated Zinc Sequestration. *PLoS Pathog* **8**: e1003068.

894 Hood MI, Skaar EP. 2012. Nutritional immunity: transition metals at the pathogen–host interface. *Nat*
895 *Rev Microbiol* **10**: 525–537.

896 Hu D, Liu B, Feng L, Ding P, Guo X, Wang M, Cao B, Reeves PR, Wang L. 2016. Origins of the current
897 seventh cholera pandemic. *Proc Natl Acad Sci USA* **113**: E7730–E7739.

898 Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR. 1983. Ecological relationships between
899 *Vibrio cholerae* and planktonic crustacean copepods. *Appl Environ Microbiol* **45**: 275–283.

900 Jemielita M, Wingreen NS, Bassler BL. 2018. Quorum sensing controls *Vibrio cholerae* multicellular
901 aggregate formation. *eLife* **7**: e1002210.

902 Joelsson A, Liu Z, Zhu J. 2006. Genetic and Phenotypic Diversity of Quorum-Sensing Systems in
903 Clinical and Environmental Isolates of *Vibrio cholerae*. *Infection and Immunity* **74**: 1141–1147.

904 Kallifidas D, Ben Pascoe, Owen GA, Strain-Damerell CM, Hong H-J, Paget MSB. 2010. The Zinc-
905 Responsive Regulator Zur Controls Expression of the Coelibactin Gene Cluster in *Streptomyces*
906 *coelicolor*. *Journal of Bacteriology* **192**: 608–611.

907 Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for deciphering the
908 genome. *Nucleic Acids Res* **32**: D277–D280.

909 Karimova G, Pidoux J, Ullmann A, Ladant D. 1998. A bacterial two-hybrid system based on a
910 reconstituted signal transduction pathway. *Proc Natl Acad Sci USA* **95**: 5752–5756.

911 Kaysner CA, Hill WE. 2014. *Toxigenic Vibrio cholerae O1 in Food and Water*. John Wiley & Sons, Ltd,
912 Washington, DC, USA.

913 Kehl-Fie TE, Skaar EP. 2010. Nutritional immunity beyond iron: a role for manganese and zinc. *Current*
914 *Opinion in Chemical Biology* **14**: 218–224.

915 Kirn TJ, Lafferty MJ, Sandoe CMP, Taylor RK. 2000. Delineation of pilin domains required for bacterial
916 association into microcolonies and intestinal colonization by *Vibrio cholerae*. *Molecular*
917 *Microbiology* **35**: 896–910.

918 Krebs SJ, Taylor RK. 2011. Protection and Attachment of *Vibrio cholerae* Mediated by the Toxin-
919 Coregulated Pilus in the Infant Mouse Model. *Journal of Bacteriology* **193**: 5260–5270.

920 Lai HC, Gygi D, Fraser GM, Hughes C. 1998. A swarming-defective mutant of *Proteus mirabilis* lacking
921 a putative cation-transporting membrane P-type ATPase. *Microbiology* **144**: 1957–1961.

922 Larkin MA, Blackshields G, Brown NP, Chenna R, McGgettigan PA, McWilliam H, Valentin F, Wallace
923 IM, Wilm A, Lopez R, et al. 2007. Clustal W and Clustal X version 2.0. *Bioinformatics* **23**: 2947–
924 2948.

925 Latorre M, Low M, Gárate E, Reyes-Jara A, Murray BE, Cambiazo V, González M. 2015. Interplay
926 between copper and zinc homeostasis through the transcriptional regulator Zur in *Enterococcus*
927 *faecalis*. *Metalomics* **7**: 1137–1145.

928 Li Y, Qiu Y, Gao H, Guo Z, Han Y, Song Y, Du Z, Wang X, Zhou D, Yang R. 2009. Characterization of
929 Zur-dependent genes and direct Zur targets in *Yersinia pestis*. *BMC Microbiol* **9**: 1–13.

930 Lim CK, Hassan KA, Penesyan A, Loper JE, Paulsen IT. 2013. The effect of zinc limitation on the
931 transcriptome of *Pseudomonas protegens* Pf-5. *Environmental Microbiology* **15**: 702–715.

932 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq
933 data with DESeq2. *Genome Biol* **15**: 1–21.

934 Mandlik A, Livny J, Robins WP, Ritchie JM, Mekalanos JJ, Waldor MK. 2011. RNA-Seq-Based
935 Monitoring of Infection-Linked Changes in *Vibrio cholerae* Gene Expression. *Cell Host & Microbe*
936 **10**: 165–174.

937 Mastropasqua MC, D'Orazio M, Cerasi M, Pacello F, Gismondi A, Canini A, Canuti L, Consalvo A,
938 Ciavardelli D, Chirullo B, et al. 2017. Growth of *Pseudomonas aeruginosa* in zinc poor
939 environments is promoted by a nicotianamine-related metallophore. *Molecular Microbiology* **106**:
940 543–561.

941 Matilla MA, Krell T. 2017. The effect of bacterial chemotaxis on host infection and pathogenicity. *FEMS*
942 *Microbiol Rev* **42**.

943 Matthew D Coleman, Randal B Bass, Ryan S Mehan A, Falke JJ. 2005. Conserved Glycine Residues
944 in the Cytoplasmic Domain of the Aspartate Receptor Play Essential Roles in Kinase Coupling and
945 On–Off Switching. *Biochemistry* **44**: 7687–7695.

946 Mazzon RR, Braz VS, da Silva Neto JF, do Valle Marques M. 2014. Analysis of the *Caulobacter*
947 *crescentus* Zur regulon reveals novel insights in zinc acquisition by TonB-dependent outer
948 membrane proteins. *BMC Genomics* **15**: 1–14.

949 Meibom KL, Li XB, Nielsen AT, Wu C-Y, Roseman S, Schoolnik GK. 2004. The *Vibrio cholerae* chitin
950 utilization program. *Proc Natl Acad Sci USA* **101**: 2524–2529.

951 Merrell DS, Butler SM, Qadri F, Dolganov NA, Alam A, Cohen MB, Calderwood SB, Schoolnik GK,
952 Camilli A. 2002. Host-induced epidemic spread of the cholera bacterium. *Nature* **417**: 642–645.

953 Metzger LC, Blokesch M. 2016. Regulation of competence-mediated horizontal gene transfer in the
954 natural habitat of *Vibrio cholerae*. *Current Opinion in Microbiology* **30**: 1–7.

955 Miller J. 1972. *Experiments in molecular genetics*. Cold Spring Harbor Laboratory, Cold Spring Harbor,
956 NY.

957 Miller VL, DiRita VJ, Mekalanos JJ. 1989. Identification of *toxS*, a regulatory gene whose product
958 enhances *toxR*-mediated activation of the cholera toxin promoter. *Journal of Bacteriology* **171**:
959 1288–1293.

960 Moreau GB, Qin A, Mann BJ, Stock AM. 2018. Zinc Acquisition Mechanisms Differ between
961 Environmental and Virulent *Francisella* Species ed. A.M. Stock. *Journal of Bacteriology* **200**: R102.

962 Mortensen BL, Rathi S, Chazin WJ, Skaar EP. 2014. *Acinetobacter baumannii* Response to Host-
963 Mediated Zinc Limitation Requires the Transcriptional Regulator Zur. *Journal of Bacteriology* **196**:
964 2616–2626.

965 Mueller RS, McDougald D, Cusumano D, Sodhi N, Kjelleberg S, Azam F, Bartlett DH. 2007. *Vibrio*
966 *cholerae* strains possess multiple strategies for abiotic and biotic surface colonization. *Journal of*
967 *Bacteriology* **189**: 5348–5360.

968 Murphy RA, Boyd EF. 2008. Three Pathogenicity Islands of *Vibrio cholerae* Can Excise from the
969 Chromosome and Form Circular Intermediates. *Journal of Bacteriology* **190**: 636–647.

970 Murphy SG, Alvarez L, Adams MC, Liu S, Chappie JS, Cava F, Dörr T. 2019. Endopeptidase
971 Regulation as a Novel Function of the Zur-Dependent Zinc Starvation Response ed. N.R. Salama.
972 *mBio* **10**: e02620–18.

973 Nakao R, Ramstedt M, Wai SN, Uhlin BE. 2012. Enhanced Biofilm Formation by *Escherichia coli* LPS
974 Mutants Defective in Hep Biosynthesis ed. U. Dobrindt. *PLOS ONE* **7**: e51241.

975 Neupane DP, Jacquez B, Sundararajan A, Ramaraj T, Schilkey FD, Yukl ET. 2017. Zinc-Dependent
976 Transcriptional Regulation in *Paracoccus denitrificans*. *Front Microbiol* **8**: 123.

977 Nielubowicz GR, Smith SN, Mobley HLT. 2010. Zinc uptake contributes to motility and provides a
978 competitive advantage to *Proteus mirabilis* during experimental urinary tract infection. *Infection and*
979 *Immunity* **78**: 2823–2833. <https://IAI.asm.org/content/78/6/2823>.

980 Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, Kazanov MD, Riehl
981 W, Arkin AP, Dubchak I, et al. 2013. RegPrecise 3.0 – A resource for genome-scale exploration of
982 transcriptional regulation in bacteria. *BMC Genomics* **14**: 745.

983 O'Shea YA. 2004. The Vibrio seventh pandemic island-II is a 26.9 kb genomic island present in *Vibrio*
984 *cholerae* El Tor and O139 serogroup isolates that shows homology to a 43.4 kb genomic island in
985 *V. vulnificus*. *Microbiology* **150**: 4053–4063.

986 O'Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R. 1999. Genetic approaches to
987 study of biofilms. *Methods Enzymol* **310**: 91–109.

988 Owen GA, Pascoe B, Kallifidas D, Paget MSB. 2007. Zinc-responsive regulation of alternative
989 ribosomal protein genes in *Streptomyces coelicolor* involves *zur* and *sigmaR*. *Journal of*
990 *Bacteriology* **189**: 4078–4086. <https://JB.asm.org/content/189/11/4078>.

991 Palmer LD, Skaar EP. 2016. Transition Metals and Virulence in Bacteria.
992 <http://dx.doi.org/10.1146/annurev-genet-120215-035146> **50**: 67–91.

993 Panina EM, Mironov AA, Gelfand MS. 2011. Comparative genomics of bacterial zinc regulons:
994 Enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. *Proc Natl Acad*
995 *Sci USA* **100**: 9912–9917.

996 Pant A, Bag S, Saha B, Verma J, Kumar P, Banerjee S, Kumar B, Yashwant Kumar, Desigamani A,
997 Suhrid Maiti, et al. 2020. Molecular insights into the genome dynamics and interactions between
998 core and acquired genomes of *Vibrio cholerae*. *Proc Natl Acad Sci USA* **117**: 23762–23773.

999 Pawlik M-C, Hubert K, Joseph B, Claus H, Schoen C, Vogel U. 2012. The zinc-responsive regulon of
1000 *Neisseria meningitidis* comprises seventeen genes under control of a Zur element. *Journal of*
1001 *Bacteriology* **194**: 6594–6603.

1002 Pederick VG, Eijkamp BA, Begg SL, Ween MP, McAllister LJ, Paton JC, McDevitt CA. 2015. ZnuA
1003 and zinc homeostasis in *Pseudomonas aeruginosa*. **5**: 1–14.

1004 Perez-Soto N, Creese O, Fernandez-Trillo F, Krachler A-M. 2018. Aggregation of *Vibrio cholerae* by
1005 Cationic Polymers Enhances Quorum Sensing but Overrides Biofilm Dissipation in Response to
1006 Autoinduction. *ACS Chemical Biology* **13**: 3021–3029.

1007 Purdy AE, Watnick PI. 2011. Spatially selective colonization of the arthropod intestine through
1008 activation of *Vibrio cholerae* biofilm formation. *Proc Natl Acad Sci USA* **108**: 19737–19742.

1009 Rebbapragada A, Johnson MS, Harding GP, Zuccarelli AJ, Fletcher HM, Zhulin IB, Taylor BL. 1997.
1010 The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels
1011 and transduce oxygen, redox, and energy signals for *Escherichia coli* behavior. *Proc Natl Acad Sci*
1012 *USA* **94**: 10541–10546.

1013 Reidl J, Klose KE. 2002. *Vibrio cholerae* and cholera: out of the water and into the host. *FEMS*
1014 *Microbiol Rev* **26**: 125–139.

1015 Ringgaard S, Yang W, Alvarado A, Schirner K, Briegel A, DiRita VJ. 2018. Chemotaxis Arrays in *Vibrio*
1016 Species and Their Intracellular Positioning by the ParC/ParP System ed. V.J. DiRita. *Journal of*
1017 *Bacteriology* **200**: 267–17.

1018 Rivera-Chávez F, Mekalanos JJ. 2019. Cholera toxin promotes pathogen acquisition of host-derived
1019 nutrients. *Nature* **572**: 244–248.

1020 Russell MH, Bible AN, Fang X, Gooding JR, Campagna SR, Gomelsky M, Alexandre G, Greenberg EP,
1021 Harwood CS. 2013. Integration of the Second Messenger c-di-GMP into the Chemotactic Signaling
1022 Pathway eds. E.P. Greenberg and C.S. Harwood. *mBio* **4**: 1024–13.

1023 Sabri M, Houle S, Dozois CM. 2009. Roles of the extraintestinal pathogenic *Escherichia coli* ZnuACB
1024 and ZupT zinc transporters during urinary tract infection. *Infection and Immunity* **77**: 1155–1164.

1025 Sakib SN, Reddi G, Almagro-Moreno S, DiRita VJ. 2018. Environmental Role of Pathogenic Traits in
1026 *Vibrio cholerae* ed. V.J. DiRita. *Journal of Bacteriology* **200**: 2123–17.

1027 Sanchez J, Holmgren J. 2008. Cholera toxin structure, gene regulation and pathophysiological and
1028 immunological aspects. *Cell Mol Life Sci* **65**: 1347–1360.

1029 Schröder J, Jochmann N, Rodionov DA, Tauch A. 2010. The Zur regulon of *Corynebacterium*
1030 *glutamicum* ATCC 13032. *BMC Genomics* **11**: 1–18.

1031 Sheng Y, Fan F, Jensen O, Zhong Z, Kan B, Wang H, Zhu J. 2015. Dual Zinc Transporter Systems in
1032 *Vibrio cholerae* Promote Competitive Advantages over Gut Microbiome. *Infection and Immunity* **83**:
1033 3902–3908.

1034 Sigdel TK, Easton JA, Crowder MW. 2006. Transcriptional response of *Escherichia coli* to TPEN.
1035 *Journal of Bacteriology* **188**: 6709–6713.

1036 Sochard MR, Wilson DF, Austin B, Colwell RR. 1979. Bacteria associated with the surface and gut of
1037 marine copepods. *Appl Environ Microbiol* **37**: 750–759.

1038 Solovyev V, Salamov A. 2011. Automatic annotation of microbial genomes and metagenomic
1039 sequences. In *Metagenomics and Its Application in Agriculture*.

1040 Son MS, Megli CJ, Kovacikova G, Qadri F, Taylor RK. 2011. Characterization of *Vibrio cholerae* O1 El
1041 Tor biotype variant clinical isolates from Bangladesh and Haiti, including a molecular genetic
1042 analysis of virulence genes. *J Clin Microbiol* **49**: 3739–3749.

1043 Struempler AW. 2002. Adsorption characteristics of silver, lead, cadmium, zinc, and nickel on
1044 borosilicate glass, polyethylene, and polypropylene container surfaces. *Anal Chem* **45**: 2251–2254.

1045 Stutzmann S, Blokesch M, D'Orazio SEF. 2016. Circulation of a Quorum-Sensing-Impaired Variant of
1046 *Vibrio cholerae* Strain C6706 Masks Important Phenotypes ed. S.E.F. D'Orazio. *mSphere* **1**:
1047 e00098–16.

1048 Sun D, Lafferty MJ, Peek JA, Taylor RK. 1997. Domains within the *Vibrio cholerae* toxin coregulated
1049 pilin subunit that mediate bacterial colonization. *Gene* **192**: 79–85.

1050 Tamplin ML, Gauzens AL, Huq A, Sack DA, Colwell RR. 1990. Attachment of *Vibrio cholerae* serogroup
1051 O1 to zooplankton and phytoplankton of Bangladesh waters. *Appl Environ Microbiol* **56**: 1977–
1052 1980.

1053 Taviani E, Grim CJ, Choi J, Chun J, Haley BJ, Hasan NA, Hug A, Colwell RR. 2010. Discovery of novel
1054 *Vibrio cholerae* VSP-II genomic islands using comparative genomic analysis. *308*: 130–137.

1055 Taylor BL. 2007. Aer on the inside looking out: paradigm for a PAS–HAMP role in sensing oxygen,
1056 redox and energy. *Molecular Microbiology* **65**: 1415–1424.

1057 Taylor RK, Miller VL, Furlong DB, Mekalanos JJ. 1987. Use of phoA gene fusions to identify a pilus
1058 colonization factor coordinately regulated with cholera toxin. *Proc Natl Acad Sci USA* **84**: 2833–
1059 2837.

1060 Thelin KH, Taylor RK. 1996. Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is
1061 required for colonization by *Vibrio cholerae* O1 El Tor biotype and O139 strains. *Infection and*
1062 *Immunity* **64**: 2853–2856.

1063 Trunk T, Khalil HS, Leo JC. 2018. Bacterial autoaggregation. *AIMS Microbiology* **4**: 140–164.

1064 Twedt RM, Madden JM, Hunt JM, Francis DW, Peeler JT, Duran AP, Hebert WO, McCay SG, Roderick
1065 CN, Spite GT, et al. 1981. Characterization of *Vibrio cholerae* isolated from oysters. *Appl Environ*
1066 *Microbiol* **41**: 1475–1478.

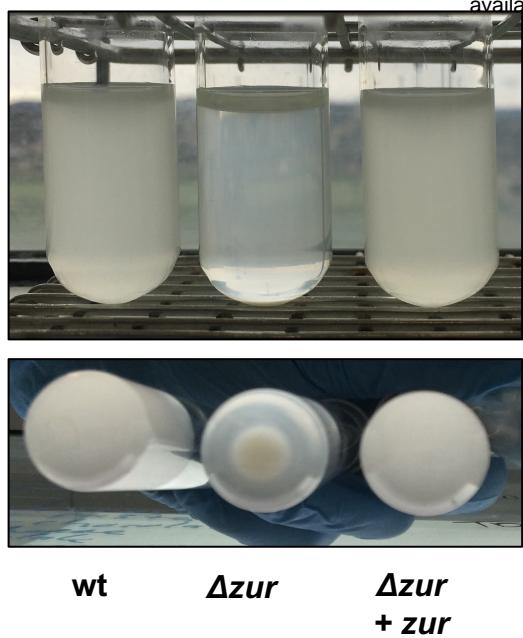
1067 Ud-Din AIMS, Roujeinikova A. 2017. Methyl-accepting chemotaxis proteins: a core sensing element in
1068 prokaryotes and archaea. *Cell Mol Life Sci* **74**: 3293–3303.

1069 Weber GG, Klose KE. 2011. The complexity of ToxT-dependent transcription in *Vibrio cholerae*. *The*
1070 *Indian Journal of Medical Research* **133**: 201–206.

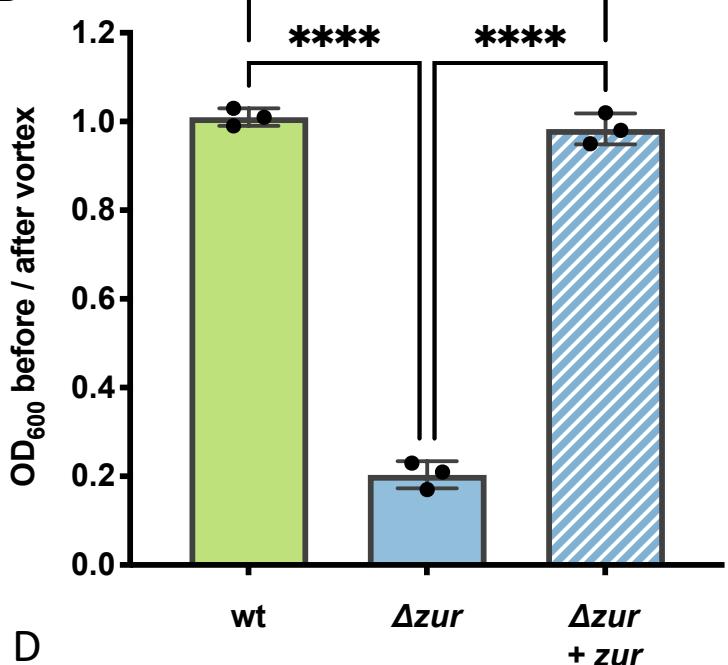
1071 Xie Z, Ulrich LE, Zhulin IB, Alexandre G. 2010. PAS domain containing chemoreceptor couples
1072 dynamic changes in metabolism with chemotaxis. *Proc Natl Acad Sci USA* **107**: 2235–2240.

1073 Yamamoto S, Mitobe J, Ishikawa T, Wai SN, Ohnishi M, Watanabe H, Izumiya H. 2014. Regulation of
1074 natural competence by the orphan two-component system sensor kinase ChiS involves a
1075 non-canonical transmembrane regulator in *Vibrio cholerae*. *Molecular Microbiology* **91**: 326–347.

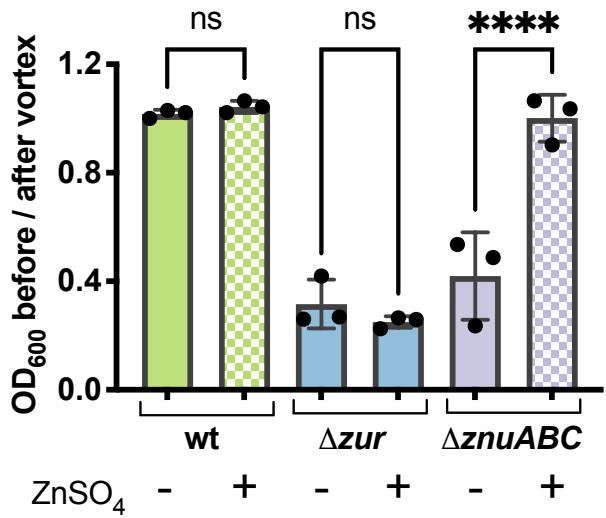
1076 Yeo J, Dippel AB, Wang XC, Hammond MC. 2017. *In Vivo* Biochemistry: Single-Cell Dynamics of
1077 Cyclic Di-GMP in *Escherichia coli* in Response to Zinc Overload. *Biochemistry* **57**: 108–116.


1078 Zhang X, Bremer H. 1995. Control of the *Escherichia coli* *rrnB* P1 promoter strength by ppGpp. *J Biol*
1079 *Chem* **270**: 11181–11189.

1080


1081

1082


A

B

C

D

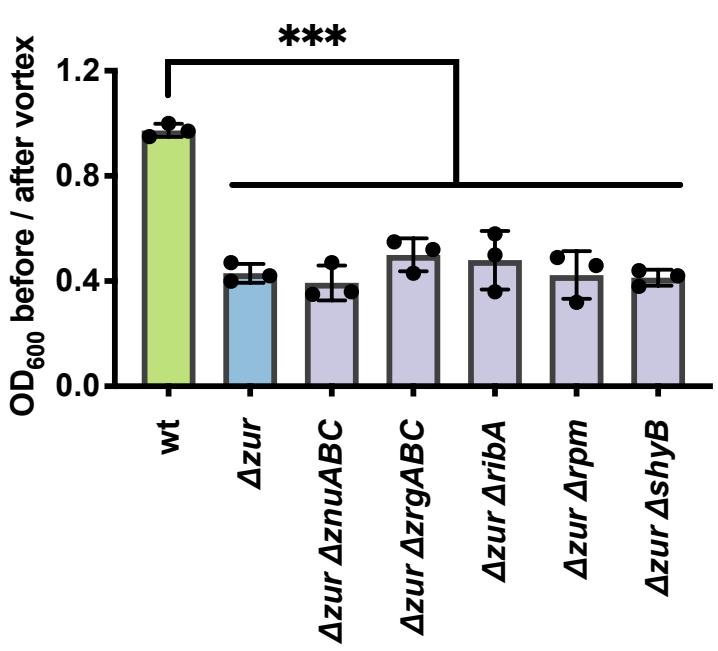
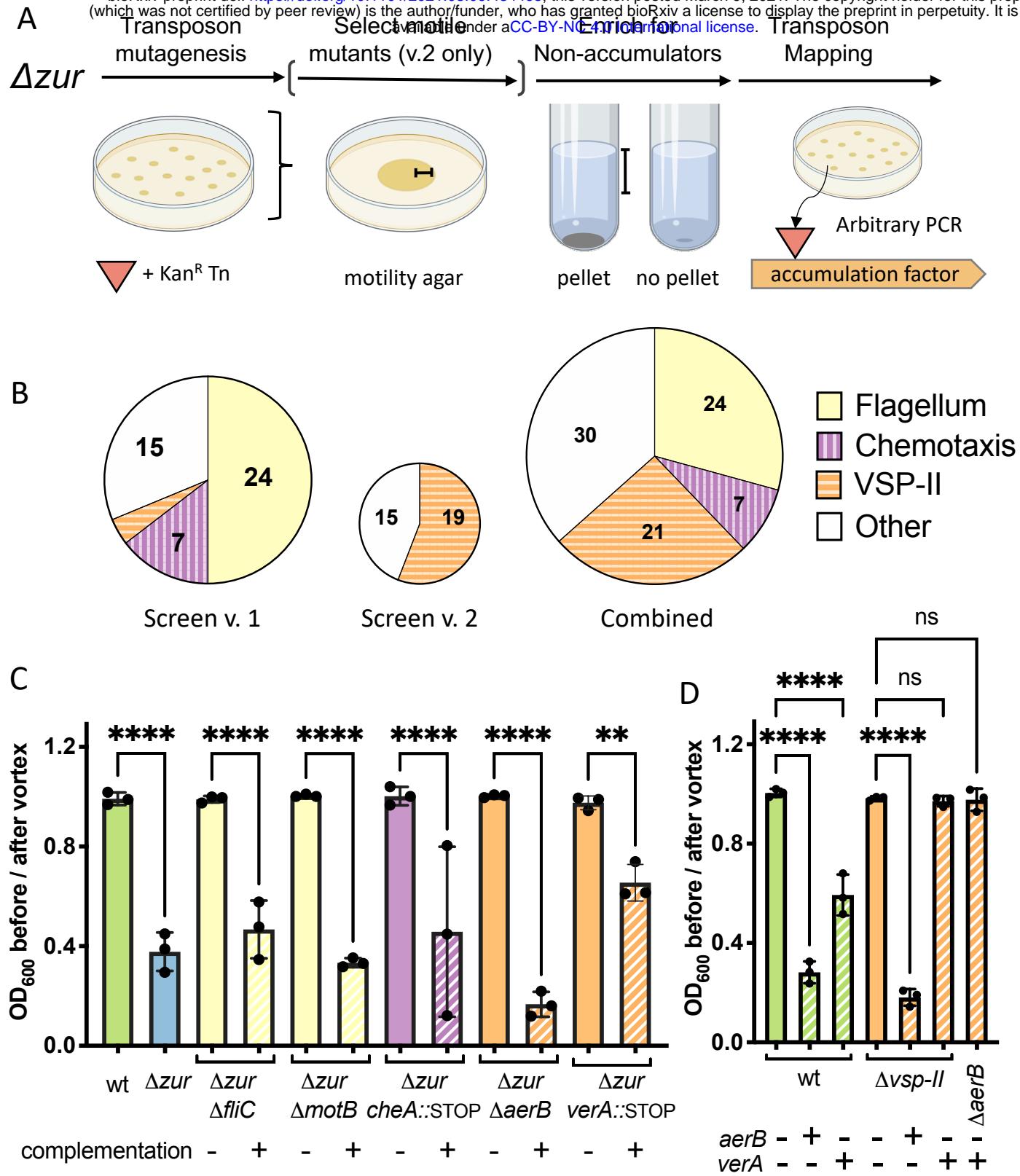
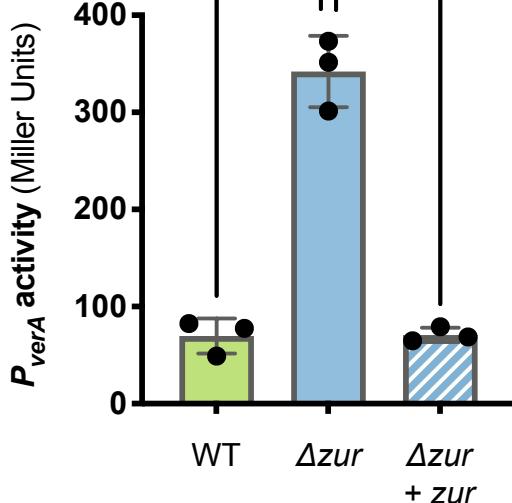
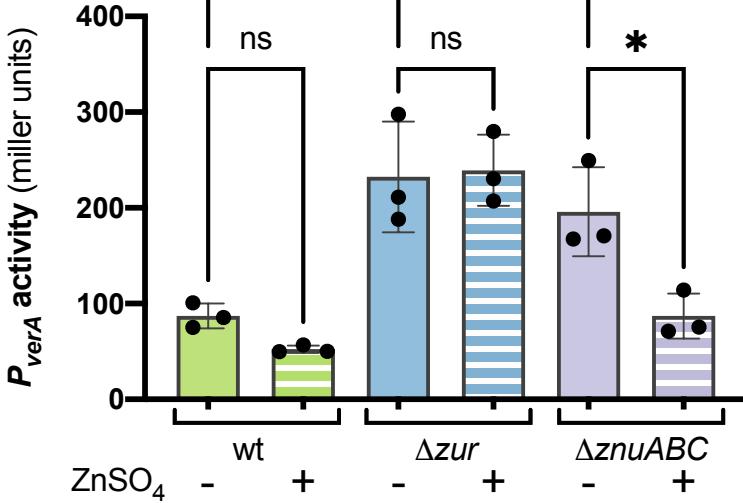


Fig 1



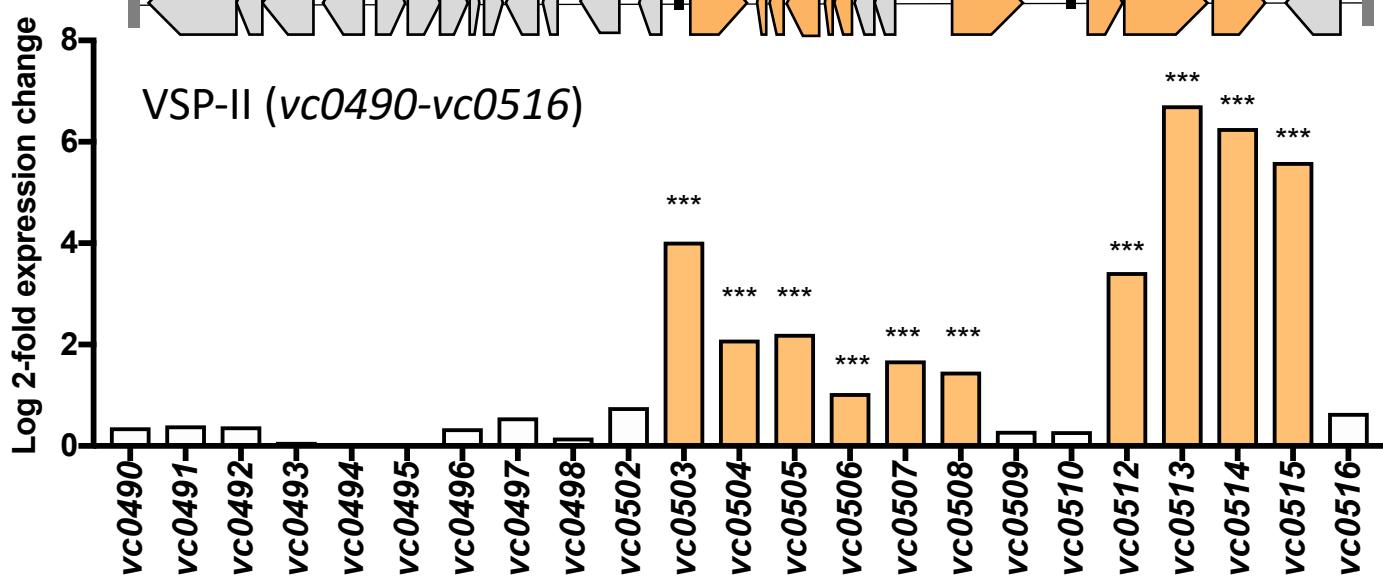

Fig 2.

A


P_{verA} $ATGTTTCGT$

Zur box


B


C

D

E

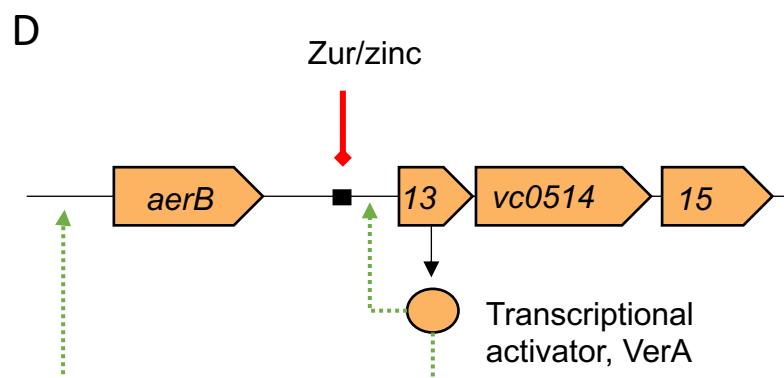
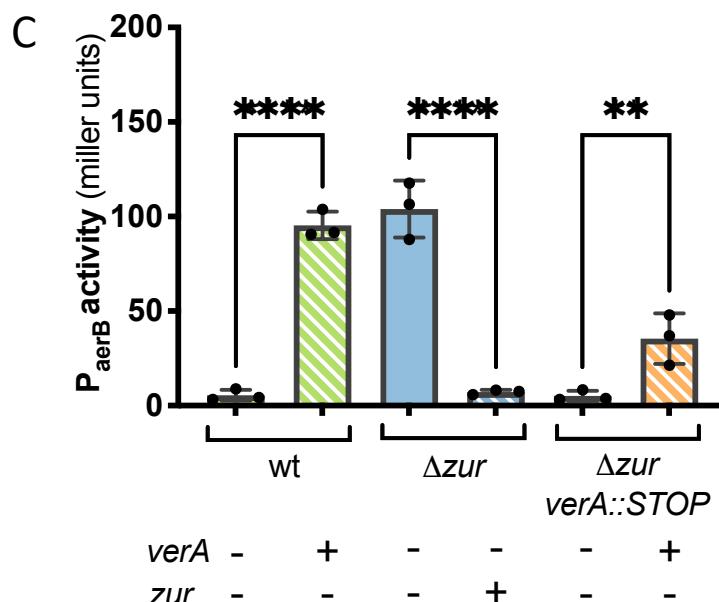
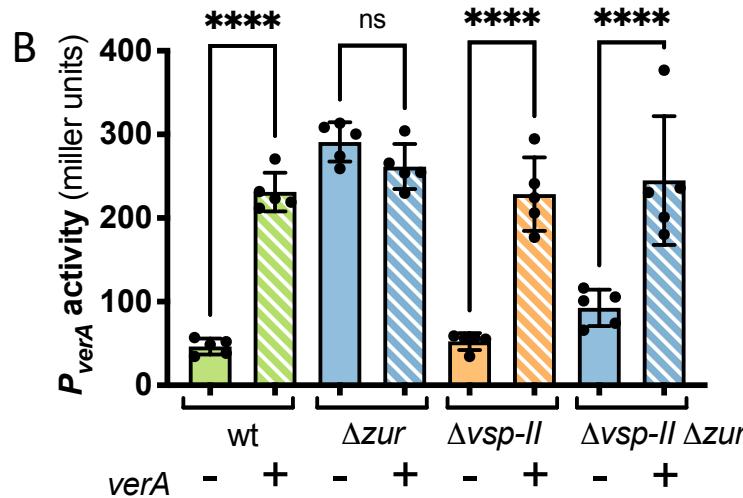
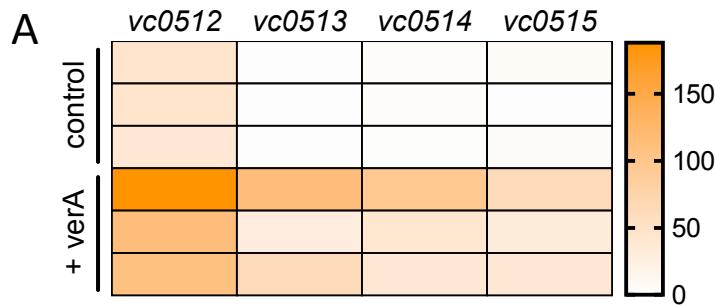





Fig 4

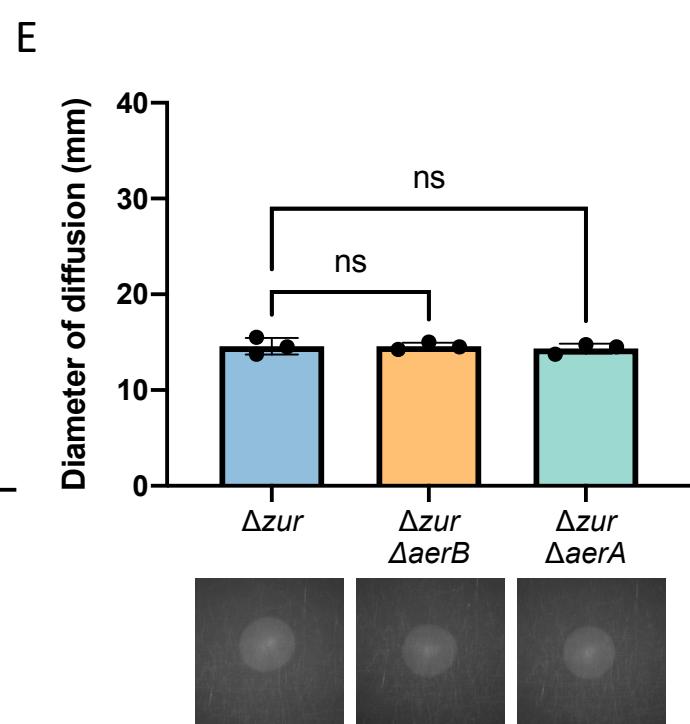
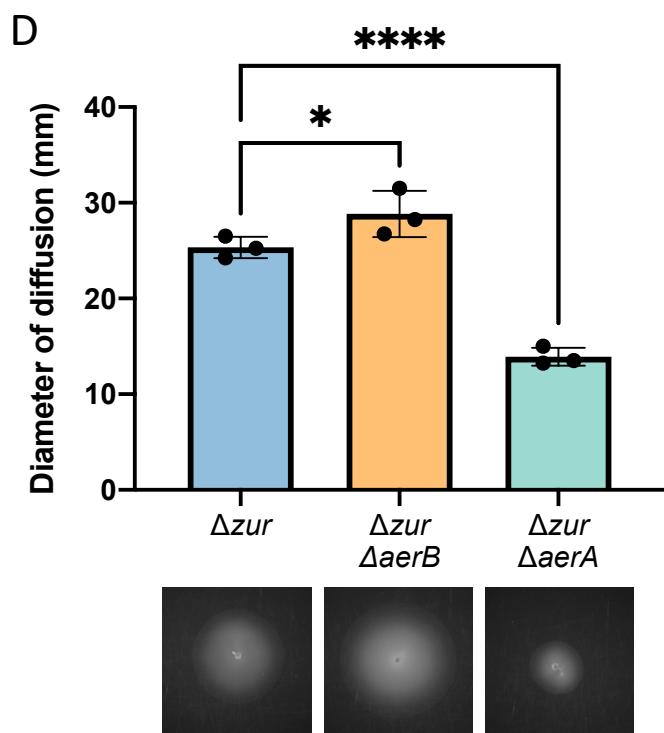
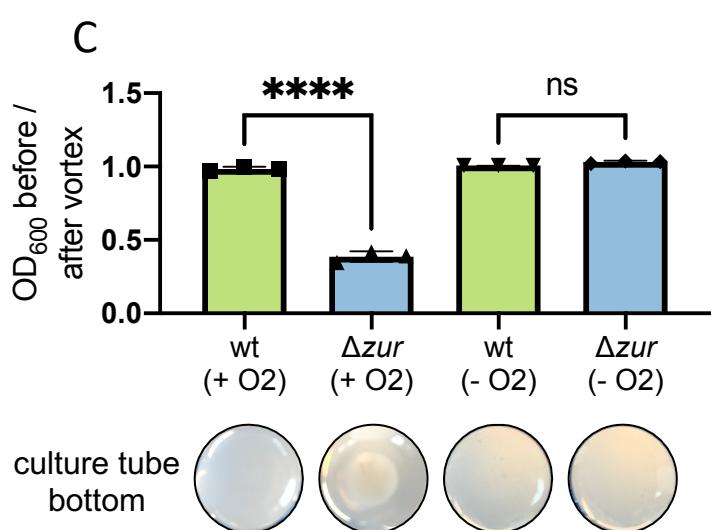
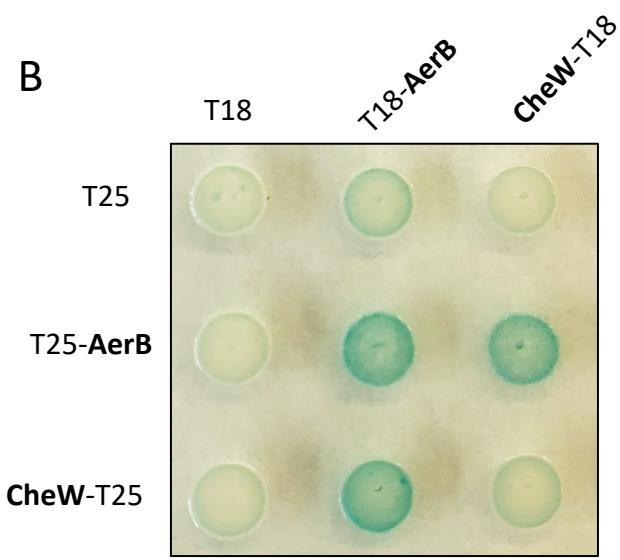
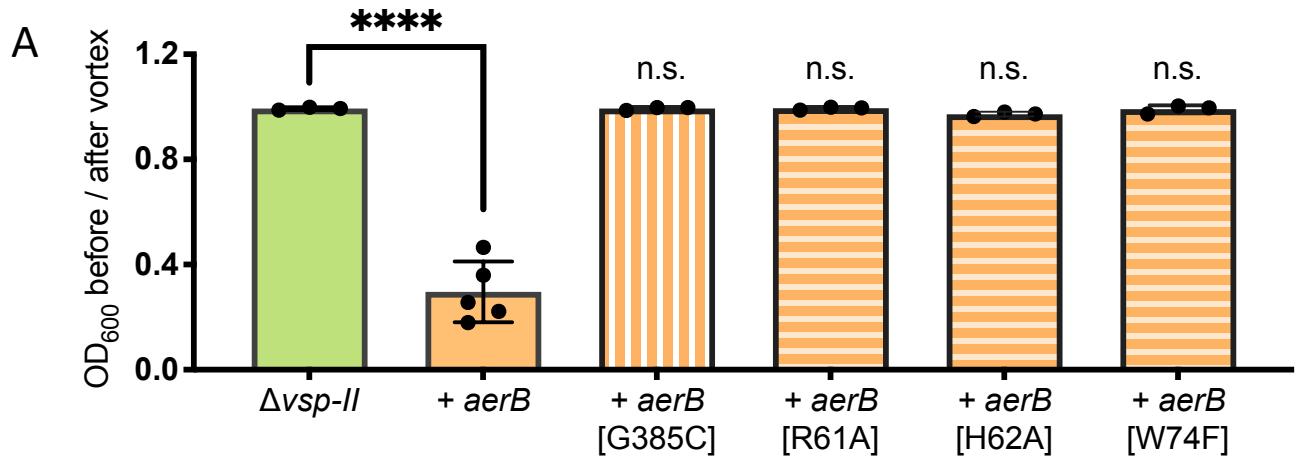






Fig 5

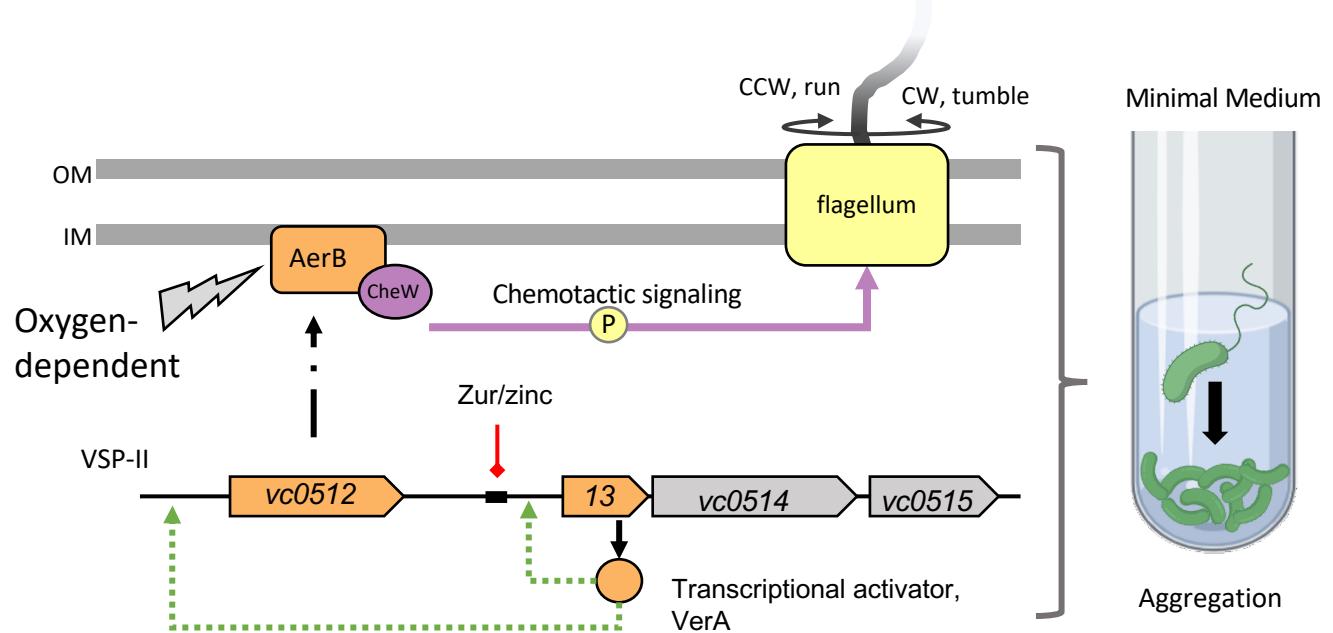


Fig 6