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Abstract

Hematopoietic stem cells (HSCs) must ensure adequate blood cell production following distinct
external stressors. A comprehensive understanding of in vivo heterogeneity and specificity of
HSC responses to external stimuli is currently lacking. We performed single-cell RNA
sequencing (scRNA-Seq) on functionally validated mouse HSCs and LSK (Lin-, c-Kit+, Scal+)
progenitors after in vivo perturbation of niche signals interferon, granulocyte-colony stimulating
factor (G-CSF), and prostaglandin. We identified six HSC states that are characterized by
enrichment but not exclusive expression of marker genes. Niche perturbations induce novel and
rapid transitions between these HSC states. Differential expression analysis within each state
revealed HSC- and LSK-specific molecular signatures for each perturbation. Chromatin analysis
of unperturbed HSCs and LSKs by scATAC-Seq revealed HSC-specific, cell intrinsic
predispositions to niche signals. We compiled a comprehensive resource of HSC- and
progenitor-specific chromatin and transcriptional features that represent important determinants

of regenerative potential during stress hematopoiesis.

Introduction

Stem cell therapy holds promises for numerous indications, including blood diseases,
autoimmune diseases, neurodegeneration and cancer (Blau and Daley, 2019). Despite being
used in the clinic for over 30 years, HSC transplants remain a highly risky procedure. To better
understand HSC regeneration, recent efforts have used scRNA-Seq to discover novel markers
to further enrich for functional HSCs (Chen et al., 2016, Cabezas-Wallscheid et al., 2017,
Wilson et al., 2015, Rodriguez-Fraticelli et al., 2020). Yet no consensus exists on the optimal
marker combination to obtain the most purified HSCs in part because extensive functional
heterogeneity within HSCs makes experimental evaluation challenging (Haas et al., 2018). Both
intrinsic and extrinsic factors have been implicated in regulating HSC function (Zon, 2008,
Morrison et al., 1996). The stem cell niche forms an important extrinsic regulator of HSCs as it
anchors stem cells and maintains the balance between self-renewal and differentiation
(Morrison and Spradling, 2008, Morrison and Scadden, 2014). Release of soluble signals from
the niche such as interferons, prostaglandins, and growth factors, including SCF and G-CSF,
have been shown to influence HSC function during homeostasis and upon injury (Pinho and
Frenette, 2019, Pietras et al., 2016, Zhao et al., 2014, Morales-Mantilla and King, 2018). While
known to be affected by a wide variety of extracellular signals, little is known about the

heterogeneity and specificity of HSC responses to these external stimuli, nor is it understood
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how differential responses relate to functional diversity of HSCs. HSCs are also regulated cell
intrinsically (Zon, 2008, Morrison et al., 1996). Chromatin state is a crucial determinant of cell
identity and behavior (Klemm et al., 2019). Hematopoietic differentiation is a prime example of
how cell fate changes associate with massive remodeling of the epigenetic landscape
(Avgustinova and Benitah, 2016). Despite the current knowledge on regulators of HSC fate, few
studies have assessed chromatin states in purified, in vivo derived HSC populations (Yu et al.,
2017, Lara-Astiaso et al., 2014) due to technical limitations such as cell numbers. Recent
advancements in single cell chromatin accessibility sequencing (SCATAC-Seq) provides a
methodological framework for studying the diversity and uniqueness of HSC chromatin features
at homeostasis and upon external stimulation (Buenrostro et al., 2018, Lareau et al., 2019).
Here, we performed comprehensive scRNA-Seq and scATAC-Seq profiling on functionally
validated mouse HSCs and examined in vivo transcriptional responses to extracellular
stimulation, mimicking signals from the stem cell niche. We found that unperturbed HSCs exist
in distinct transcriptional states. Niche signals can alter the cell distribution between HSC states
to varying degrees depending on the stimulant as well as induce specific changes within cell
states. Comparison of HSCs to multipotent LSK (Lin-, c-Kit+, Scal+) progenitors allowed us to
determine the specificity of transcriptional responses in HSCs. Finally, analysis of native HSC
chromatin states revealed cell intrinsic heterogeneity that may prime HSC subpopulations for
particular transcriptional responses following exposure to certain signals. The data is provided
as a resource to the broader research community via an easily accessible web interactive

application (https://mouse-hsc.cells.ucsc.edu). Overall, this work provides the first

comprehensive description of the single cell transcriptomic and epigenetic landscape of HSCs

and multipotent LSK progenitors in vivo.

Results

In vivo stimulation of functionally validated HSCs and multipotent progenitors (MPPs) for
transcriptomic and epigenetic profiling

To investigate transcriptional responses to external signals, we profiled HSCs after four distinct
in vivo niche perturbations (Fig 1A). Male and female mice were treated with one of three
activators, 16,16-dimethyl Prostaglandin E, (dmPGE_), Poly(l:C), or G-CSF for two hours or
administered the Cox1/2 inhibitor Indomethacin (here abbreviated to ‘Indo’) for one week to
deplete endogenous prostaglandins (see Methods). After the respective drug treatments, HSC

and MPP populations comprising the entire LSK compartment were isolated via FACS (Sup Fig
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92  1A). Through limit dilutions transplantation assay (LDTA) and ELDA analysis (Hu and Smyth,
93  2009), we determined HSC purity to be 1 in 8 (Sup Fig 1B-1D). This confirmed that our isolation
94  and purification procedure allows for the profiling of functional, highly purified HSCs. Cell cycle
95 analysis further verified that HSCs were mostly quiescent, in contrast to other MPP populations
96 (Sup Fig 1E)(Cabezas-Wallscheid et al., 2014). Phenotypic marker composition within LSK cells
97 remained largely consistent between different stimulations (Sup Fig 1F). An exception was the
98 reduction of cells within the HSC compartment following dmPGE: treatment, decreasing from
99  1.9% in control to 0.85% of LSK cells (p-value = 6.4*10*, by differential proportion analysis

100 (DPA)(Farbenhi et al., 2019)). To account for a potential phenotypic shift in HSC surface marker

101  expression due to CD34 externalization, which would move functional HSCs to the MPP1

102  population, we compared the contribution of the later by scRNA-Seq defined ‘stem cell state’ in

103 HSCs and MPP1s. We found no increase in the ‘stem cell’ population in dmMPGE: treated

104 MPP1s, compared to the control (Sup Fig 2G). After cell sorting, we subjected a total of 46,344

105 cells to scRNA-Seq using the 10x Genomics platform (see Methods). We obtained an average

106  of 37,121 (SD = 14,308) reads per cell and 2,994 (SD = 480) genes per cell (Sup Table 1),

107 indicative of a rich dataset that contained functionally validated HSCs.

108

109 Niche signals induce rapid transitions between transcriptional HSC states

110  To determine how niche stimulants affect HSCs, we analyzed a combination of control and

111 treated cells. We applied a standard scRNA-Seq pipeline to filter and normalize UMI reads (see
112  Methods). Separate analysis of male and female HSCs revealed little sexual dimorphism during
113 both steady state and following activation (Sup Fig 3, Sup Table 2 and 3). We therefore

114  regressed out any sex specific effects from further downstream analyses (see Methods). In the
115 aggregated dataset, we detected a total of six clusters (Fig 1B). To ensure optimal choice of
116  clustering hyper parameters, we used a data driven approach (Silhouette Coefficient and

117  Davies—Bouldin index) that was validated by comparison of two independent biological ScCRNA-
118  Seq replicates of control HSCs sorted from different mouse strains (see Methods, Sup Fig 2A-
119 2D, Sup Table 4). The absence of clear separation into highly distinct clusters in UMAP space
120  (Fig 1B), together with fact that most marker genes were not exclusively expressed but rather
121  enriched in a given cluster (Fig 1C), suggests that the HSC clusters represent transcriptional
122 states with continuous transitions as opposed to discrete subtypes of HSCs. Reactome pathway
123 enrichment analysis (Sup Fig 2E) in combination with manual curation of enriched genes

124  (FiglD, Sup Table 4) allowed for assignment of labels to each state/cluster. Three HSC

125  clusters equally made up 98% of control cells (Fig 1F) and two minor clusters comprised 2% of
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126  control HSCs. Consistent with the FACS results (Sup Fig 1E), the proportion of HSCs residing in
127  a ‘Cell cycle’ cluster marked by genes such as Ki67 was very low (1%, FiglC and 1F). A

128  prominent HSC subpopulation contained cells that were defined by various immediate early

129  genes (IEGs including Nr4al, ler2 and Fos (Fig 1B — D). We therefore named this cluster

130 ‘Activated’. We eliminated the possibility that the ‘Activated’ cluster arose due to an unspecific
131  artifact of the cell isolation procedure since LSKs did not have an ‘Activated’ cluster and the

132 proportion of Nr4al expressing cells was much smaller (Fig 2D and Sup Fig 4B). HSCs have
133 been tightly linked to dormancy and quiescent states (Foudi et al., 2009, Wilson et al., 2008, Qiu
134 et al, 2014). The cluster adjacent to the ‘Activated’ state was termed ‘Quiescent’ because cells
135  within this population showed the highest expression levels of previously described HSC

136 markers (Cabezas-Wallscheid et al., 2017, Chen et al., 2016, Wilson et al., 2015, Acar et al.,
137 2015, Gazit et al., 2014, Balazs et al., 2006) (Sup Fig 2F). Furthermore, ‘Quiescent’ HSCs did
138  not express IEGs (Fig 1C) and were located most distal to the ‘Cell cycle’ cluster in UMAP

139  space (Fig 1B-D). The ‘Metabolism’ cluster was comprised of the most metabolically active

140 HSCs and showed enrichment of transcripts involved in translation initiation (Eif5a, Eif4al),

141  nucleotide metabolism (Nmel, Dctppl), ribosome assembly (Ncl, Nop56, Nop10, Npm1),

142  protein chaperones (Hsp90, Hsp60) and was located adjacent to the ‘Cell cycle’ cluster (Fig 1B-
143 D). We next evaluated whether treatment with niche stimulants shifts the distribution of cells
144  between clusters (Fig 1E). Interferons induced by poly(l:C) treatment increased the proportion of
145  HSCs within the ‘Interferon’ cluster from 1% to 42% (Fig 1F, p-value (DPA) < 10). The

146  ‘Interferon’ cluster was characterized by expression of interferon response genes such as ligp1,
147  Isgl5, Ifitl, and Oasl2 (Fig 1D). In vivo treatment with dmPGE-: gave rise to a novel cluster

148  named ‘Acute activation’ (Fig 1B) that contained 55% of dmMPGE;-treated HSCs (Fig 1F). The
149  cluster itself was entirely composed of dmPGE.-treated HSCs (Fig 1G) and marker genes

150 include known cAMP-response genes such as Fosl2 (Fig 1C and D) and the

151  phosphodiesterases Pdel0a, Pde4b and Pde4d (Fig 1D). G-CSF and indomethacin induced
152  slight shifts in cell distribution compared to control (Fig 1E) but did not significantly alter cell

153  proportions between clusters (Fig 1F, p-value (DPA) > 0.05 for all clusters). In conclusion, at
154  baseline HSCs were equally distributed between three main transcriptional states, here defined
155  as the ‘Quiescent’, ‘Activated’ and ‘Metabolism’ (Fig 1F) with few HSCs residing in ‘Interferon’
156  and ‘Cell cycle’ states. A two-hour in vivo pulse with poly(l:C) or dmPGE: significantly altered
157  distributions of HSCs between pre-existing transcriptional states and, in the case of dmPGE;,
158 allowed for a novel transcriptional state to surface.

159
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160 Evaluation of sScRNA-Seq phenotypes in entire LSK compartment to identify HSC specific
161  cell states

162  In order to evaluate specificity of transcriptional heterogeneity observed within HSCs and their
163  response to niche signals, we analyzed the transcriptome of the entire LSK compartment, which
164  encompasses both HSCs and MPPs (Sup Fig 1A, 1G and Sup Fig 2A). To assess

165 transcriptional response and cell states in phenotypically defined MPPs (Cabezas-Wallscheid et
166  al., 2014, Oguro et al., 2013, Pietras et al., 2015) (MPP, MPP1, MPP2, MPP3/4, Sup Fig 1A) a
167  Hashtag Oligonucleotide (HTO) labelling strategy was used that is part of the Cellular Indexing
168  of Transcriptomes and Epitopes by Sequencing (CITE-Seq) methodology (Sup Fig 4A, Fig 2B
169  and Methods (Stoeckius et al., 2018)). CITE-Seq enables tracking of cell surface phenotypes in
170  scRNA-Seq data through barcoding of cells with antibody conjugated DNA-oligos. SCRNA-Seq
171  gene expression of marker genes such as Cd34, Cd48 and Cd150 (Slamfl) matched the

172 surface phenotypes used for sorting of CITE-Seq barcoded MPPs, confirming that our workflow
173 was successful (Fig 2C, Sup Fig 4B). Similar to the approach used for HSCs, we analyzed

174  transcriptomic data from LSK cells as an aggregated set consisting of all four niche

175  perturbations and control. We discovered a total of eight cell states, which similarly to HSCs

176  displayed enrichment as opposed to exclusive expression of marker genes (Fig 2A). These

177  clusters were labeled through analysis of enriched genes (Fig 2D, Sup Table 4), their

178  composition of phenotypically defined cell populations tracked with CITE-Seq (Fig 2B and 2H)
179  and by comparison to the earlier defined HSC clusters (Sup Fig 4C). LSK clusters most similar
180 to the ‘Quiescent’ and ‘Activated’ HSC state were named ‘Progenitor’ and ‘Primed’, respectively.
181  The ‘Progenitor’ cluster encompassed the majority of phenotypic HSCs and was significantly
182  depleted of MPP3/4s compared to all other clusters (Fig 2H, DPA p-values < 0.02). Conversely,
183  phenotypic HSCs were almost exclusively composed of ‘Progenitor’ cluster cells (Fig 2F). The
184  location of HSCs at the edge of the UMAP plot could indicate the origin for differentiation (Fig
185 2B and Sup Fig 4F). LSK cells in the ‘Primed’ cluster represent a more committed state given
186 their expression of Cd34 and Flt3. Enrichment of Cd37 and Sox4 suggest priming towards a
187  lymphoid fate (Fig 2D (Sun et al., 2013, Zou et al., 2018)). The two LSK clusters ‘Cell cycle’ and
188  ‘Metabolism’ contained cells that are mitotically active or are on the verge of entering the cell
189  cycle, respectively. Comparison of the top 100 enriched genes between clusters indicated a

190  33% overlap between the LSK ‘Metabolism’ cluster and the HSC ‘Metabolism’ cluster and 41%
191 common enriched genes between the LSK ‘Metabolism’ cluster and the HSC ‘Cell-cycle’ cluster
192  (Sup Fig 4B - C and Fig 2D). The myeloid cluster is defined by expression of genes such as

193  Mpo, Ctsg, Fcerlg and Cebpa (Fig 2D). Consistent with previous reports (Pietras et al., 2015),
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194  MPP2s contained the highest proportion (7.6%) of myeloid cells and comprise 28% of the entire
195  ‘Myeloid’ cell cluster (Fig 2F and 2H). Control-treated LSKs were distributed amongst four main
196  clusters, those being ‘Primed’, ‘Progenitor’, ‘Metabolism’ and ‘Cell cycle’, that together

197 encompassed 99% of control LSK cells (Fig 2E). Similar to our observations in HSCs, only G-
198 CSF and indomethacin treatment did not alter cellular distributions between LSK clusters (Fig
199  2E, Sup Fig 4G). Conversely, dmPGE: and poly(l:C) gave rise to novel clusters that were

200 absent in control LSKs (Fig 2E and G). These treatment-induced states displayed transcriptional
201  profiles that were similar to the HSC equivalents (Sup Fig 4B and C, Fig 2D). Surprisingly, and
202  in contrast to HSCs, no ‘Interferon’ responsive cell state was present in LSKs at baseline (Fig
203  2E). Poly(l:C) treatment induced two interferon responsive clusters in LSKs, of which one

204  showed higher mitotic activity (‘Interferon cell cycle’, Fig 2D and Sup Fig 4C). In summary,

205 single-cell transcriptome analysis of a CITE-Seq validated LSK compartment revealed an

206  increased proportion of lineage-committed and mitotically active and an absence of steady-state
207  interferon responsive cells compared to HSCs. The changes in cell distribution between clusters
208  upon niche stimulation were highly similar between LSKs and HSCs. Therefore using this

209  analytic approach we did not uncover any HSC-specific cellular behaviors upon signaling from
210  the niche.

211

212 Within cluster analysis detects subpopulation specific effects of niche perturbations
213 To assess niche-induced transcriptional changes in greater detail we used “Model-based

214 Analysis of Single-cell Transcriptomics” or MAST (see Methods, (Finak et al., 2015)). This

215  approach allowed us to perform differential expression analysis on stimulants compared to the
216  control within each cell state cluster. We compiled differentially expressed genes (DEGS) of the
217  four stimulant conditions at three levels of expression changes across all clusters, that is using a
218  1.5-fold change, 1.2-fold change, and no fold-change cutoff (FDR < 0.01 see Methods and Sup
219 Table 5). We then aggregated genes based on common (‘up/down overlap’) or unique

220  expression (‘up/down HSC/LSK only’) within HSCs or LSKs (Fig 3A-D). G-CSF treatment

221  perturbed gene expression more strongly within LSKs (green bars, Fig 3A) whereas interferon
222 stimulation by Poly(1:C) predominantly affected HSCs (purple bars, Fig 3B). Receptor

223 expression did not completely explain this difference since both the G-CSF receptor Csf3r and
224  the type | interferon receptors Ifnarl and Ifnar2 were expressed in a higher proportion of LSK
225  cells compared to HSCs (Fig 3E and F). Indomethacin was found to selectively affect HSCs but

226  overall very few genes were differentially expressed (Fig 3C). dmPGE: led to a balanced effect
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227  on HSCs and LSKs, with neither compartment dominating the DEGs (Fig 3D). We further

228 analyzed DEGs that were unique for specific clusters within either HSCs or LSKs. dmPGE;

229  stimulation decreased expression of genes that promote the cell cycle, such as Aurka, Plk1 and
230  Ki67, within the LSK ‘Cell cycle’ cluster (Fig 3I, 3G; in red, Sup Fig 6C). As a comparison and to
231  mimic a dataset that could be obtained by bulk RNA-Seq after sorting of MPPs, we analyzed
232 DEGs in MPP surface phenotypes that were not split into distinct transcriptional clusters. DEG
233 analysis within MPP surface phenotypes failed to recover the dmPGE>-mediated regulation of
234 cell cycle genes (Fig 3H, in red). The differentially expressed cell cycle genes were likely not be
235  detected in the pseudo-bulk MPP populations since only 6.4% (MPP) to 22% (MPP2, Fig 2F) of
236  cells belong to the ‘Cell cycle’ cluster. A similar ‘dilution’ of treatment-specific effects within the
237  ‘Cell cycle’ cluster also occurred following G-CSF treatment when comparing pseudo-bulk and
238  cluster separated LSK cells (Sup Fig 4D and E, in red). These results illustrated that within-

239  cluster-based differential expression analysis is highly sensitive in identifying genes specific to
240  particular transcriptional states within a cellular compartment. In contrast to between-cluster cell
241  distribution analysis, the within-cluster approach revealed specific transcriptional responses to
242  niche signals in HSCs and LSKs.

243

244  Endogenous cell states distinguish TLR- and IFN-specific responses of Poly(l:C)

245  treatment

246  To identify distinct patterns of regulation for different stimulations and hematopoietic stages, we
247  selected genes that were differentially expressed within at least one HSC or LSK cluster. We
248  then averaged expression of all cells within a cluster and grouped single cell clusters and genes
249 by hierarchical clustering for HSCs (Sup Fig 5, Sup Table 6) and LSKs (Sup Fig 6, Sup Table
250 7). Poly(I:C) binds to Toll-like receptor 3 (TLR3) (Alexopoulou et al., 2001) which leads to

251  expression of Type 1 interferons (IFNo and IFNB) that in turn signal via IFNa/p receptor 1

252  (Ifnarl) and 2 (Ifnar2) heterodimers, all of which are expressed in HSCs (Fig 3E). We identified
253  two expression patterns in poly(l:C)-treated HSCs that are consistent with toll-like receptor and
254  interferon receptor signaling. The first expression pattern is driven by induction of poly(I:C)

255  responsive genes across all cell states. In addition, these genes were also specifically enriched
256 in the ‘Interferon’ cluster already prior to poly(l:C) stimulation (Fig 3J; ‘Up Interferon’). Genes
257  within this group are either directly downstream of type 1 interferon receptors, such as Stat2 and
258  Irf9, or act as effector proteins involved in viral interferon response such as Apobec3 and

259  Eif2ak2 (Fig 3J, Sup Fig 4A). The high expression of several interferon-induced viral response
260 genes (e.g. Bst2, Ifitm3, Ube2l6, and Rnf213) in the control ‘Interferon’ cluster might point to a
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261  state of general surveillance for viral infection at baseline (Fig 3J, Sup Fig 5A). The second

262  expression pattern (‘Up Toll-Like Receptor’) results from genes that are induced by Poly(l:C)
263 treatment, especially in the poly(l:C) ‘Interferon’ cluster, but show low expression at baseline,
264  even in the control ‘Interferon’ cluster. (Fig 3J, Sup Fig 5A). Genes within this signature include
265  Nfkbia, Pelil, Map3k8, and Rps6ka3 and are part of TNFo and Toll-like signaling pathways.
266  This expression profile might therefore represent a more direct response of poly(l:C) interaction
267  with TIr3. Comparison of differential expression patterns across cell states allowed us to

268  distinguish between poly(l:C)-mediated TLR- and interferon-based signaling.

269

270  G-CSFtriggers changes within a metabolic transcriptional state without changing cell
271  distribution between HSC and LSK clusters

272  G-CSF has been identified as a potent enhancer of granulocyte and neutrophil differentiation
273  (Metcalf and Nicola, 1983). It is widely used as a mobilizing agent for hematopoietic stem cells
274  in a therapeutic setting (Bendall and Bradstock, 2014). In line with its clinical use, we found

275  niche adhesion receptors such as ckit and Cd9 (Leung et al., 2011) to be downregulated

276  following in vivo G-CSF treatment (Sup Fig 5B, purple arrows).

277  Overall G-CSF induced most DEGs within the HSC ‘Metabolism’ cluster. Hierarchical clustering
278  revealed that G-CSF treatment alters the expression profile of the HSC ‘Metabolism’ cluster in a
279  way that makes it more similar to ‘Cell cycle’ states (Sup Fig 5B). This resemblance is driven by
280 induction of genes related to transcription, such as RNA binding proteins (Hnrnpd, Hnrnpf,

281  Hnrnpa2bl), as well as splicing factors (Srsf7, Sf3b1, Srsf2) (‘Transcription’, Fig 3K). G-CSF
282  also increased expression of transcripts involved in translation, including genes involved in

283  ribosome biogenesis (Nop14, Nip7, Wdr43, Wdrl2) and translation initiation (Eif4al, Eif4ebpl).
284  These transcripts were not expressed in the ‘Cell cycle’ state at baseline (‘Translation’, Fig 3K)
285  and might be related to G-CSF-induced fate commitment towards differentiation. Overall, a two-
286  hour pulse of G-CSF pushed HSCs towards a more metabolically active state. Our sScRNA-Seq
287  data are consistent with the original description of G-CSF as a growth factor that regulates

288  myeloid differentiation and indicates early transcriptional responses leading to HSC

289  mobilization.

290

291 Endogenous Prostaglandins regulate immediate early genes within ‘Activated’ cell states
292  To investigate signaling from the niche in a more physiological setting, we orally treated mice for

293  one week with indomethacin to deplete endogenous prostaglandins. Differential expression
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294  analysis identified only 21 genes (1.2-fold change cutoff) to be differentially expressed

295 compared to the control (Fig 3A). Of the upregulated genes, 10 out of 12 can be classified as
296 |IEGs (e.g. Fos, Fosb, Jun, KlIf4 or KIf6) (Sup Fig 5D). While cell proportions did not change

297  between the HSC clusters (Fig 1F), distribution of cells shifted slightly towards the periphery
298  within the UMAP plot (Fig 1E). This change in distribution was seen with individual cluster

299  marker genes such as Fos and other IEGs (Fig 4A, 4B and Sup Fig7A, 7 B). To further

300 investigate the influence of endogenous prostaglandin depletion on cell distribution while taking
301 the entire transcriptional landscape into account, we computed diffusion pseudotime (DPT)

302 (Haghverdi et al., 2016) between the ‘Activated’ and ‘Quiescent’ cluster in HSCs. The cell with
303 the combined highest expression of the three top cluster markers for the ‘Activated’ state (Fig
304 4C, see Methods) was set as root cell and DPT was calculated originating from that root cell
305 (Fig 4D). Indomethacin-treated cells displayed a significant shift to the left in overall pseudotime
306  kernel density distribution (KDE), which is indicative of overall lower pseudotime (Fig 4E, p-

307 value = 5.8*10*? by Mann—Whitney U-test). No shift was observed when comparing the control
308 to G-CSF treated HSCs (Fig 4F, p-value = 0.18). Ranking cells for each treatment condition
309 according to pseudotime and averaging gene expression in 10 equally sized bins (quantile rank
310 1-10) further illustrated the change in expression of Fos and other IEG genes following

311 indomethacin, especially at lower pseudotimes (Fig 4G and Sup Fig 7C; indicated by asterisks).
312  Genes that were not part of the activated gene signature, such as Ly6a, did not follow the same
313  pattern (Fig 4H), nor was a similar trend observed in response to G-CSF treatment (Sup Fig
314  7D). The pseudotime analysis of the scRNA-Seq data indicated a specific shift in IEG

315 transcriptional state upon depletion of endogenous prostaglandins. To further confirm the effect
316  of endogenous prostaglandins on IEGs in an orthogonal assay, we measured single cell protein
317 levels by intracellular flow cytometry for FOS. Across two independent experiments, a seven
318 day in vivo indomethacin treatment led on average to a 34% (SD = 8.2%) reduction in FOS

319 mean fluorescent intensity (MFI) in HSCs (p-value = 6.2 * 103, t-test with Welch'’s correction)
320 and a mean 35% (SD = 8.6%) decrease in LSKs (p = 6.6 * 103, Fig4l and J). Overall,

321  endogenous prostaglandin levels impact both the transcriptional state and protein levels of FOS
322 and potentially other IEGs.

323

324  HSC-specific chromatin architecture is an intrinsic regulator of differential response to
325 niche signals
326  To better understand HSC intrinsic factors regulating the transcriptional ‘receptiveness’ to

327  signals, we assessed chromatin states using single cell ATAC-Seq (ScATAC-Seq, see Methods)
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328  of sorted HSCs and MPPs. We clustered cells based on chromatin accessibility in HSCs (Fig
329 5B) and LSK cells consisting of MPPs and HSCs (Fig 5E and F, Methods). To gain insight into
330 the nature of the differentially accessible chromatin regions, we computed a per-cell

331 transcription factor (TF) motif activity score using ChromVar (Schep et al., 2017) and evaluated
332  enrichment of these scores across clusters. The motif activities of transcription factors STATS3,
333  NF-kB, and CREBL1 that are immediately downstream of G-CSF, Poly(l:C), and Prostaglandins
334  (Fig 5A), respectively, were homogeneously distributed in both HSCs and LSKs (Sup Fig 8A,
335 8B, and Sup table 8). This result suggested that all cells have an equally responsive potential to
336 these niche signals based on their accessible chromatin states. We did detect differential

337  enrichment of motifs for transcription factors that are further downstream in the response to

338 niche signals. Specifically, we found differential enrichment of the interferon signaling response
339 element (ISRE) motif activity score in cluster 1 (Fig 5C) and AP-1 motif score in cluster O (Fig
340 5D). Interferon-regulatory factors (IRFs) that bind ISREs are induced by NF-«B signaling as well
341  as direct targets of Poly(l:C) intracellular binding ((Negishi et al., 2018), Fig 5A). In addition to
342 IRFs, HSC cluster 1 is characterized by motifs for transcriptional regulators that are important
343  for cellular metabolism, cell growth, and differentiation such as CTCF, YY1, and NRF1 (Fig 5G
344  and Sup Fig 8C). Enrichment of a similar set of motifs in LSK cell cluster 5 (Fig 5F and H in light
345 green, Sup Fig 8G) indicated that this motif combination is not unique for HSCs. The location of
346  cluster 5, being most distally from phenotypic HSCs on the UMAP plot (Fig 5E), further

347  suggested that cells in this chromatin state are committing to or undergoing differentiation.

348  The AP-1 motif which is specifically enriched in HSC cluster O can be bound by FOS and JUN,
349  both downstream effectors of the Prostaglandin/CREB1 signaling pathway ((Luan et al., 2015),
350 Fig 5A). We furthermore found motif activity enrichment in HSC cluster 0 for several key HSC
351 lineage-specific master transcription factors including RUNX, GATA, and PU.1 (SPI1) (Fig 5I
352 and Sup Fig 8D) as well as SMAD, another signal-responsive transcription factor (Sup Fig 8E
353 and F). In contrast to IRFs, LSK cells did not contain a corresponding cluster where the same
354  motifs cooccur as in HSC cluster 0 (Fig 5J and Sup Fig 8H). Therefore, the chromatin features
355  of cluster 0 may be specific for HSCs. We found no indication that differential responsiveness to
356 the niche stimulants is a result of distinct chromatin states of transcription factor motifs directly
357 downstream of these signals. Rather, our analysis implicated cell intrinsic heterogeneity of

358 further downstream effectors, such as AP-1 and IRFs. The specific motif co-occurrence of AP-1
359 and HSC-lineage specific master factors, combined with their absence in LSKs, indicates an
360 HSC-specific chromatin state.

361
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362 Discussion

363  Here, we provide the first transcriptional and epigenetic single cell analysis of a highly purified,
364  functionally validated HSC population. Our work reveals that highly purified HSCs exist in fluent
365 transcriptional and epigenetic states rather than distinctly separated cell types. Niche

366  perturbations rapidly shift HSC distribution between HSC states within hours of signaling,

367  providing evidence that the transcriptional states are highly dynamic and allow HSCs to quickly
368 transition between states in response to different stimuli. Our single cell chromatin studies

369 indicate cell intrinsic HSC heterogeneity that predisposes subpopulations for certain

370 transcriptional responses. We detected an HSC specific co-occurrence of signaling and lineage-
371  specific transcription factor motif activities that is consistent with our previous observation in
372  human hematopoietic progenitors (Trompouki et al., 2011, Choudhuri et al., 2020)). Absence of
373  similar chromatin features in LSK progenitors may implicate a link to some of the unique

374  functional capacities of HSCs, such as self-renewal. Overall, our data indicates that the single
375 cell landscape of in vivo derived, functional HSCs is made up of a unique chromatin architecture
376  with fluent transcriptional states, some of which can be rapidly influenced by signals from the
377  niche.

378

379  Our combined scRNA-Seq and CITE-Seq approach allowed us to gain insights into the

380 transcriptional landscape of HSCs and phenotypically defined MPP populations within the LSK
381 compartment at steady state and following niche perturbations. Our results enabled us to

382  connect the transcriptional profile on a single cell level to the previously described phenotypic
383  behaviors of these MPP populations (Oguro et al., 2013, Pietras et al., 2015, Cabezas-

384  Wallscheid et al., 2014). In addition, the CITE-Seq approach allowed us to cross-validate our
385 transcriptional cell state assignments. The HTO CITE-Seqg method provided a flexible tool to
386 evaluate and compare transcriptional profiles within phenotypically defined populations because
387 the technology used here is not dependent on the availability of specifically conjugated

388 antibodies against particular surface receptors. In addition, Xist expression was used to

389 deconvolute pooled male and female cells. While our analysis revealed only a weak sexual

390 dimorphism that is consistent with previous reports (Nakada et al., 2014, Gal-Oz et al., 2019),
391 the negligible additional investment to obtain data from both sexes may become the default

392  experimental design in mammalian sScRNA-Seq experiments. Our work presents evidence for
393  two value-adding pooling strategies that allow for further insights into cell populations analyzed
394 by scRNA-Seq.

395
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396 We used a two-pronged strategy to assess the specificity of niche perturbations in HSCs or
397 LSKs. First, we determined changes of cell proportions between cell states. Second, we

398  evaluated differential expression within particular cell states following stimulation. The strength
399  of transcriptional perturbation could not solely be estimated based on the distribution of cells
400  within clusters alone. G-CSF did not change the cell proportions between clusters but rather
401 elicited strong transcriptional responses within a given cell state. Furthermore, analysis of DEGs
402  within clusters helped tease apart interferon- versus toll-like receptor response genes induced
403 by Poly(l:C) treatment. We also uncovered a specific effect of dmPGE: that only occurs within
404  the LSK ‘Cell cycle’ cluster. A recent study corroborates our finding that dmPGE; affects cell
405  cycle states in the bone marrow (Patterson et al., 2020). Our results show that this within-cluster
406  differential gene expression analysis was most sensitive to reveal HSC or LSK specific

407  responses to niche perturbations.

408

409  There is a tradeoff between the strength of a perturbation required for experimental robustness
410  versus studying signals that are more physiologically relevant but lead to more subtle changes
411  within and between cells. Here, we evaluated response of HSCs to three different activators
412  mimicking niche signals that were dosed 2-4 orders of magnitude higher than what an animal
413  would ever encounter during actual injury or infection (Eyles et al., 2008, Porter et al., 2013,
414  Hoggatt et al., 2013, Sheehan et al., 2015). To assess niche-derived signals in a more

415  physiological setting, we administered the Cox1/2 inhibitor indomethacin orally for one week to
416  deplete endogenous prostaglandins. As expected, the changes in gene expression with

417  indomethacin were much weaker than those observed after acute injection with dmMPGE;, G-
418 CSF, and poly(l:C). ScCRNA-Seq analysis offers unique tools to evaluate gene expression

419  changes in response to weak perturbations. Pseudotime analysis showed that depletion of

420 endogenous prostaglandins using indomethacin leads to a small but significant shift in the

421  transcriptional state of HSCs. The effect of indomethacin on IEGs such as Fos was further

422  validated in independent FACS experiments which showed that the transcriptional programs
423  implicated through pseudotime were also found to be perturbed using this orthogonal assay.
424  How exactly the increase in RNA levels of Fos observed in scRNA-Seq can be reconciled with
425  decreased FOS protein levels determined by FACS analysis will need to be addressed in future
426  experiments. Another important implication and potential caveat highlighted by our findings is
427  that RNA and protein levels may not always positively correlate, even on a single cell level.
428 Regardless, scRNA-Seq technologies provides sensitive tools to interrogate subtle changes in

429 cellular states.
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In summary, we showed that single cell approaches provide a rich and sensitive tool to analyze
transcriptional and epigenetic states of HSCs during homeostasis and upon niche perturbation.
We found that HSCs exist in dynamic cell states and niche signals can induce rapid transitions
between, as well as changes within, these HSC states. While our work does not reveal whether
these transcriptional states are associated with specific niches in vivo, novel spatial
transcriptomic approaches provide exciting new opportunities to address such questions
(Rodriques et al., 2019). Additionally, recently developed barcoding strategies enable
assessment of niche-induced transcriptional changes and functional potential of single cells
within the same experiment (Rodriguez-Fraticelli et al., 2020). Understanding endogenous
levels of niche-derived factors and the associated transcriptional and epigenetic responses will
advance our basic understanding of stem cells and their potential applications in the clinic.

14


https://doi.org/10.1101/2021.03.09.430613
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.430613; this version posted March 9, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

443

444

445

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

available under aCC-BY 4.0 International license.

Materials and Methods

WET LAB METHODS

Mice and niche stimulant treatment

For the HSC Replicate 1 experiment we used the following mouse strain (#016617) that was
obtained from Jackson labs but bred in house. For niche stimulant treatments male and female
mice (8—10 weeks) were ordered from Jackson labs (strain CD 45.2 (Ly5.2), #00664). Mice
were kept for at least 1 week in the animal facility before initiating experiments and allocated at
random (by cage) into experimental groups. Indomethacin (Sigma, 6mg/l) was administered for
7 days in acidified drinking water to maintain stability (Curry et al., 1982, Pratico et al., 2001).
Indomethacin supplemented drinking water was changed every other day. Mice were injected
with the following drugs and euthanized after 2 hours: Poly(I:C) HMW (Invivogen), IP injection
10mg/kg (Pietras et al., 2014). G-CSF Recombinant Human Protein (Thermo fisher), IP
injection, 0.25mg/kg (Morrison et al., 1997). DmPGE2 (Cayman), SC injection, 2mg/kg(Hoggatt
et al., 2013). Mice were weighed before injection and injection volume was adjusted to ensure
equal dose between individual mice. The ‘control’ condition from the niche stimulant treatments
was also used as the second independent biological replicate of unperturbed HSCs (HSC
Replicate 2). All animal procedures were approved by the Harvard University Institutional
Animal Care and Use Committee.

Bone marrow preparation and Fluorescence activated cell sorting (FACS)

Whole Bone marrow was isolated from femur, tibia, hip and vertebrae via gentle crushing using
a mortar and pestle. Stem and progenitor cells were enriched via lineage depletions (Miltenyi
Biotech, 130-090-858). Antibodies, dilutions and vendors are listed in Sup Table 9. Cells were
stained for 1.5 hours based on published best practice protocols for assessing CD34 labelling
(Ema et al., 2006). HSCs (LSK, CD48-, CD150+, CD34-), MPP1s (LSK, CD48-, CD150+,
CD34+), MPPs (LSK, CD48-, CD150-), MPP2s (LSK, CD48+, CD150+), and MPP3/4s (LSK,
CDA48+, CD150-) were sorted on a FACSAria (Becton Dickinson) and representative sorting
scheme is shown in Supplemental Fig 1A. Purity of > 80% was ensured by reanalyzing each

sorted population.
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476  Sample size estimation and sample batching

477  To determine appropriate sample sizes of mice and HSCs we performed an initial experiment
478  on fresh HSCs (HSC Replicatel) which yielded estimated number of 2382 cells (after filtering),
479  and which resolved biologically meaningful clusters. In subsequent experiments we therefore
480 targeted obtaining a similar or higher cell number. For niche stimulant treatment we based our
481  sample size of 5 male and 5 female mice on this initial experiment. Because of sample

482  processing times a maximum of two conditions could be performed on the same day, resulting
483  in three separate days of experiments. To mitigate batch effects resulting from different

484  experimental days the following precautions were taken. (1) All mice included in the niche

485  stimulant treatment were ordered from the same batch from JAX. (2) Control mice were

486  administered acidified water injected with DMSO to control for both unspecific perturbations that
487  might result from the niche stimulant treatments. (3) All experiments were performed within less
488  than one week and single cell libraries were prepared together for all samples after the initial
489  droplet reaction was frozen. (4) FACS gates were set up initially but left constant for each

490 experiment. Single color controls as well as Fluorescence minus one (FMO) controls ensured
491 that there was minimal day-to-day technical drift on the FACS instrument.

492

493  Intracellular staining for FACS

494  BM extraction, lineage depletion and surface marker staining were performed as described

495  above. Cells were fixed and permeabilized for intracellular staining according to manufacturer’s
496 instructions (BD biosciences, 554714). Intracellular staining was performed for 30 minutes on
497 ice. Samples were analyzed on an LSRII FACS analyzer.

498

499  Limit dilution Transplantation assay

500 Recipient CD45.2 (Jax #00664) mice were gamma-irradiated (Cs-137 source) with a split dose
501 of 5.5 Gy each one day before transplantation. HSCs were isolated from CD45.1 (Jax #002014)
502  donors and transplanted with 200 000 whole bone marrow cells (CD45.2) via retro-orbital

503 injection. Donor cell engraftment was monitored monthly for 16 weeks using a LSRII FACS

504  analyzer (Becton Dickinson). Flow cytometry data were analyzed with FlowJo (Tree Star). HSC
505 frequency was calculated using the following website http://bioinf.wehi.edu.au/software/elda/.
506

507 Single-cell RNA and ATAC sequencing library preparation and sequencing
508 Male and female cells were sorted separately but pooled in equal ratios before further

509 downstream processing. For CITE-Seq HTO labelling of MPP populations, 0.25ug of TruStain
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510 FcX™ Blocking reagent (Biolegend) was added for 10 minutes on ice. Each MPP populations
511  was labelled with 1ug of TotalSeq™ antibody cocktail (Biolegend, see Sup Table 9) and

512 incubated for 30 minutes on ice. After washing, cells were resuspended in small amounts,

513  counted and pooled in equal ratios. Each drug treatment condition resulted in one pooled MPP
514  and one HSC sample that were processed separately for scRNA-Seq according to

515  manufacturer’'s recommendations (10X Genomics, 3’ V2 for HSC Replicatel experiment and V3
516  for niche stimulant treatments). Briefly, for pooled MPPs, no more than 10 000 cells were

517 loaded. For HSCs, all sorted cells (between 2222 sorted events for dmMPGE2 and 12017 sorted
518 events for control) were loaded on the 3’ library chip. For preparation of HTO — surface libraries
519  manufacturer's recommendations (Biolegend) were followed. For ATAC-seq HSCs and MPPs
520 (pooled MPP, MPP1, MPP2 and MPP3/4) were sorted as described above from 5 male and 5
521  female mice (strain CD 45.2 (Ly5.2), JAX strain #00664). Nuclei were isolated and libraries were
522  prepared using manufacturers recommendations (10x Chromium Single Cell ATAC). Libraries
523  were sequenced on a Next-seq 500, 75 cycle kit (‘Replicate 1’, scRNA-Seq) and NOVAseq

524 6000, 100 cycle kit (‘Replicate 2’ and niche stimulant treatments, SCRNA-Seq, sc-ATAC-seq).
525

526 COMPUTATIONAL AND STATISTICAL ANALYSES

527  All code and a detailed description of the analysis is available in the following Github repository

528  https://qgithub.com/evafast/scrnaseq paper). To ensure reproducibility the entire analysis

529  (except cellranger and Cite-seq count) was entirely performed in Docker containers. Containers
530 used for the analysis are indicated in the Jupyter notebooks and corresponding images are

531 available on dockerhub (repository: evafastl). Interactive cell browser web app is available

532  here: (https://mouse-hsc.cells.ucsc.edu). Raw data are available with GEO accession code

533 GSE165844.

534

535 Demultiplexing and generation of count matrices

536  Cellranger (v3.0.1) command ‘mkfastq’ was used to demutliplex raw base call (BCL) files into
537 individual samples and separate mMRNA FASTQ files and HTO surface fastq files. The cellranger
538  ‘count’ command was used with default options to generate gene by cell matrices from mRNA
539 FASTQ files. CITE-Seq count (version 1.4.3) was used to generate surface count by cell

540 matrices from the HTO surface FASTQ libraries. For the fresh HSC Replicatel experiment

541  cellranger (v2.1.0) was used for demultiplexing and count matrix generation. The mm10

542  reference genome was used for all alignments. For scATAC-seq cellranger-atac mkfastq and

543  count (1.2.0) was used for demultiplexing and alignment and generation of the fragment file. To
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544  generate the count matrix MACS2 was run with default parameters (keeping duplicates) on the
545  aligned reads. Resulting peak summits were extended to 300 bp and counts were extracted
546  from Fragment file using a custom script (see Github repository) to generate a count matrix.
547

548  Quality control and Filtering and dimensionality reduction of scRNA-Seq data

549  The main parts of the bioinformatic analysis of SCRNA-Seq data was performed using the

550 python package scanpy (Wolf et al., 2018). For filtering and quality control best practice

551  examples were followed (Luecken and Theis, 2019). Count matrices were filtered on a gene and
552  cell level. Cells were excluded with either less than 3,000 UMIs, less than 1,500 (LT) or 2,000
553  (MPPs) genes or more than 20,000 (LT) or 30,000 (MPPs) counts. A cutoff of no more than
554  10% UMIs aligned to mitochondrial genes per cell was applied. Genes expressed in less than
555 20 cells were excluded from the analysis. Counts were normalized to 10,000 per cell and log
556  transformed. Features (genes) were scaled to unit variance and zero mean before

557 dimensionality reduction. To reveal the structure in the data we built a neighborhood graph and
558 used the leiden community detection algorithm (Traag et al., 2019) to identify communities or
559  clusters of related cells (see also below). The UMAP algorithm was used to embed the high
560 dimensional dataset in a low dimensional space (Becht et al., 2018). Differential proportion

561 analysis (DPA) was used for comparing cell proportions between clusters as previously

562  described (Farbehi et al., 2019). Interactive visualization app of sScRNA-Seq data was prepared
563  using UCSC Cell Browser package (Speir et al., 2020).

564

565 Demultiplexing of CITE-Seq hashtag data

566  We used the DemuxEM (Gaublomme et al., 2019) implementation in pegasuspy

567  (https://github.com/klarman-cell-observatory/pegasus/tree/0.17.1) to assign MPP surface

568 identities and demultiplex to the pooled MPP sample. First background probabilities

569  (‘pg.estimate_background_probs’) were estimated using default settings and ‘pg.demultiplex’
570  was run adjusting the alpha and the alpha_noise parameter to maximize cell retrieval by singlet
571 classification. Assignments were validated by plotting count matrix in UMAP space and

572  observing four distinct clusters indicative for the four HTO labels that were pooled. The

573  proportion of demultiplexed cells matched the original pooling ratio. Analysis of coexpression of
574  sex specific genes allowed for further validation of the doublet rate. Proportion of cells classified
575 by DemuxEM as doublets exceeded doublet rate estimated by co-expression of sex specific
576  genes.

577
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578 Batch correction

579  Because of timing required for sort and sample prep it was impossible to sort HSCs from all
580 conditions on one day (see also ‘Sample size estimation and sample batching’ above). To

581  correct for potential batch effects we used ComBat (Johnson et al., 2007) with default settings
582  on the log2 expression matrix, allowing cells to be clustered by cell type or cell state. Batch
583  correction results were similar when we used Scanorama (Hie et al., 2019). To correct for

584  potential sex specific differences Xist counts were regressed out. Raw data was used for all
585 differential expression analysis and plotting of single cell gene expression values. Batch

586  corrected counts were used for clustering and diffusion pseudotime analysis.

587

588  Optimal cluster parameter selection

589  Since HSCs and MPPs are highly purified cell populations we did not observe any clearly

590 separated clusters in UMAP space. To aid the optimal choice of hyperparameters for leiden
591 clustering we used a combination of Silhouette Coefficient and Davies—Bouldin index. We first
592  validated this approach using the PBMC3K (from 10x genomics, scanpy.datasets.pbmc3k())
593  silver standard dataset. We iterated through a range of KNN nearest neighbors and Leiden
594  resolution combinations measuring average Silhouette coefficient and Davies-Bouldin index in
595  PCA space for each combination. Plotting the optimal value for Silhouette score and Davies-
596  Bouldin index versus increasing numbers of clusters allowed for the determination of

597  appropriate cluster number for the dataset. For the PBMC dataset there was a clear drop-off in
598  optimal value after 8 clusters, which is corroborated by most single cell tutorials that also report
599 8 clusters for this dataset. After validation of this approach on PBMCs we used assessed

600  Silhouette Coefficient and Davies—Bouldin index for different clustering results of our own HSC
601 and MPP datasets. This allowed us to select the optimal hyper-parameters for each cluster
602  number. The approach was validated by using data driven parameters to compare two

603  independent biological replicates of control HSCs (‘Repl_1’" and ‘Repl_2).

604

605 Differential expression using MAST

606  Differential expression analysis was performed using MAST (“Model-based Analysis of

607  Singlecell Transcriptomics, (Finak et al., 2015). This method is based on a Hurdle model that
608  takes into account both the proportion of cells expressing a given transcript as well as transcript
609 levels themselves while being able to control for covariates. Based on previous reports

610  differential expression cutoff was set at 1.2 fold (Smillie et al., 2019) and a more stringent cutoff

611  of 1.5 fold was also included. Only genes that were expressed in at least 5% of the cells were
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612  considered for differential expression analysis. FDR (Benjamini & Hochberg) cutoff was set at
613  1%. For drug treatments differential expression between treatment and control was assessed
614  within the entire MPP or LT dataset and within each cluster controlling for number of genes per
615 cell and sex. For differential expression analysis between male and female cells at baseline,
616  control datasets were analyzed with clusters and number of genes as a co-variates. For sex
617  specific effects of drug treatments samples were split by sex and analyzed separately. Resulting
618  differential expression coefficients were compared between male and female cells. To identify
619  gene signatures with common patterns, for each treatment average expression of differentially
620  expressed genes was extracted per cluster, scaled (z-score) and grouped together by similarity
621  using hierarchical clustering (seaborn.clustermap, Euclidian distance, single linkage).

622

623  Diffusion pseudotime analysis

624  For diffusion pseudotime analysis (Haghverdi et al., 2016) cells from the ‘Quiescent’ and

625  ‘Activated’ cluster were selected for the following treatments: control, indomethacin and G-CSF.
626  We recalculated PCA and UMAP embeddings in this reduced dataset. Re-clustering using the
627 Leiden algorithm was used to exclude outlier cells and assess top enriched genes within the
628  new ‘Activated’ cluster. Raw expression of the three top enriched genes (Nr4al, Nrda2, Hesl)
629  was summed to robustly select the most highly ‘activated’ cell as a root cell. Diffusion

630 pseudotime was calculated with the following function in scanpy (‘sc.tl.dpt’) using default

631  settings. Cells were ranked according to pseudotime and kernel density distribution was plotted
632  using a bandwidth of 0.02. The Mann-Whitney U test was used to assess if cells from different
633 samples are drawn from the same pseudotime distribution. To analyze gene expression across
634  pseudotime, for each sample cells were split into ten equally sized bins according to ascending
635  pseudotime. Bin 1 contained the first 10% of cells with the lowest pseudotime and bin 10

636  contained the 10% of cells with the highest pseudotime. Average gene expression for

637  representative genes were plotted for each bin and sample.

638

639  Single cell ATAC-seq

640 The R package Signac (https://github.com/timoast/signac, version 0.2.5), an extension of Seurat

641  (Stuart et al., 2019), was used for quality control, filtering of ATAC-seq peaks counts and

642  plotting. Quality of SCATAC dataset was ensured by presence of nucleosomal banding pattern
643  and enrichment of reads around transcription start sites (TSSs). Cells were removed with a less
644  than 1 000 or more than 20 000 fragments in peaks. Male and female cells were classified

645  according to absence or presence of Y-chromosome reads. Since distribution of male and
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646 female cells appeared uniform across all analyses no downstream correction was taken for sex.
647  Term frequency-inverse document frequency (TF-IDF) was used for normalization and

648  dimensionality reduction was performed by singular value decomposition (SVD). Cells were

649  clustered using the Louvain community finding algorithm after a neighborhood graph was built
650  with k = 20 (HSCs) or k = 30 (LSK) nearest neighbors. To calculate TF motif scores, ChromVAR
651  (Schep et al., 2017) was run with default parameters using the JASPAR 2018 motif database.
652
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653 Supplemental Tables
654

655 Supplemental Table 1: Sequencing metrics

656  Sequencing metric output from cellranger.

657  Supplemental Table 2: Overlap of differentially regulated genes in male and female HSCs
658 and LSKs

659  Table summarizing number of differentially regulated genes within male and female HSCs and
660 LSKs. Over-representation analysis odds ratio and p-value were calculated using a Fisher’'s
661 exact test.

662  Supplemental Table 3: Differential expression result (MAST) by sex

663  Each tab contains a treatment vs. control comparison (dmPGE;, Indo, Poly(l:C), G-CSF). Each
664  cluster was compared to its respective control cluster separated by sex. Log fold change and
665  adjusted p-value from the Hurdle model are listed for genes with p-values < 0.01.

666  Supplemental Table 4: Marker gene enrichments in scRNA-Seq clusters

667  Marker gene enrichment was calculated using a Wilcoxon-Rank-Sum test. Score (suffix ‘_s’)
668 indicates the z-score of each gene on which p-value computation is based. Other fields are

669 logfold change = suffix ‘_I' and False discovery adjusted p-value — suffix ‘*_p’.

670 Supplemental Table 5: Differential gene expression result (MAST)

671  Each tab contains a treatment vs. control comparison (dmPGE, Indo, Poly(l:C), G-CSF). Each
672  cluster was compared to its respective control cluster. Log fold change and adjusted p-value
673  from the Hurdle model are listed for genes with p-values < 0.01.

674  Supplemental Table 6: Average expression per cluster of differentially regulated genes in
675 HSCs

676  Count normalized and log transformed UMI counts from were averaged across HSC clusters for
677  differentially regulated genes from MAST

678 Supplemental Table 7: Average expression per cluster of differentially regulated genes in
679 LSKs

680  Count normalized and log transformed UMI counts from were averaged across LSK clusters
681  differentially for regulated genes from MAST.

682  Supplemental Table 8: ChromVar TF motif activity score enrichment in LSK and HSC

683  SCATAC clusters

684  ChromVar motif activity score enrichment for HSC and LSK scATAC clusters.

685  Supplemental Table 9: List of antibodies used
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917 Figure legends
918

919 Figure 1: HSCs are transcriptionally heterogeneous and niche perturbations rapidly shift
920 cells into different states

921  (A) Schematic of stimulant treatment before HSC and MPP isolation. (B) UMAP plot of HSC
922  clusters (n = 15 355 cells) (C) UMAP plot with expression of representative genes for each

923  cluster. (D) Dot plot of enriched genes for each HSC cluster (scaled expression across

924  columns). (E) UMAP density graphs of HSC distribution upon each niche stimulant (F)

925  Proportion of HSCs within clusters for each niche perturbation. (G) Proportion of HSCs from
926  each niche perturbation within a cluster normalized for total cell number per treatment.

927

928  Figure 2: MPP surface marker validated LSK clusters respond similarly to drug

929 treatments like HSCs

930 (A) UMAP plot of LSK clustering (n = 8191 cells). (B) UMAP plot of surface receptor phenotypes
931 in LSK cells. (C) Stacked violin plots of gene expression for surface markers within MPPs and
932 HSCs. (D) Dot plot of enriched genes for each LSK cluster (scaled expression across columns).
933  (E) Proportion of LSK cells within clusters for each niche perturbation. (F) Proportion of LSK
934  cells belonging to different clusters for each surface phenotype. (G) Proportion of LSK cells from
935 each niche perturbation within a cluster normalized for total cell number per treatment. (H)

936  Proportion of surface phenotypes within each LSK cluster.

937

938 Figure 3: LSK and HSC cluster-specific differential gene expression analysis reveals

939 novel, specific effects on HSC and LSK subpopulations

940 (A-D) Stacked bar graphs with proportion of differentially expressed genes that are unique for
941  HSCs (purple) MPPs (green) or overlapping (grey) for G-CSF (A), Poly(Il:C) (B), Indo (C) and
942 dmPGE; (D) treatment. Below each bar graph the total number of differentially expressed genes
943  (‘Genes #) for each fold-change (‘Cutoff’) is listed. (E-F) Violinplots of receptor expression in
944  control HSCs (E) and LSKs (F) split by cluster. (G) Upsetplot visualizing differentially expressed
945  genes between dmPGE; and control for each cluster (horizontal bars) and intersection of gene
946  sets between clusters (vertical bars) indicated by dots. Red bar and dot indicate specific genes
947 in the Cell cycle cluster. (H) Upsetplot visualizing differentially expressed genes between

948 dmPGE; and control for each MPP surface phenotype. Red bar indicates genes that are absent
949  from any of the conditions (MPP, MPP1, MPP 2, MPP3/4). (1) Dot plot of representative cell

950 cycle genes and expression in LSK clusters in control and dmPGE.. (J) Dot plot of
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951  representative genes from Poly(l:C) treated and control HSC clusters (scaled expression across
952  columns). (K) Dot plot of representative genes from the G-CSF treated and control HSC clusters
953  (scaled expression across columns).

954

955  Figure 4: Indomethacin treatment induces change in IEG transcriptional state in HSCs
956  (A-H) Diffusion pseudotime analysis. UMAP plot of Fos expression in control (A) and upon

957 indomethacin (B) treatment. Diffusion map embedding with combined expression of activated
958 genes to select root cell (C) and cells colored by pseudotime (D). Kernel density of cell

959  pseudotime distribution comparing indomethacin and control (E) and G-CSF and control (F).
960 Average expression of Fos (G) and Ly6a (H) across cells ranked by pseudotime (cells split into
961 10 bins to decrease noise), change in transcript levels indicated by asterisk in G. (I) Histogram
962  of FOS levels via intracellular FACS of HSCs, ‘no stain’ is FACS negative control, ‘control’ is
963  FOS in untreated mice. (J) Normalized mean fluorescence intensity (MFI) for FOS in control and
964 indomethacin treated HSCs (p = 6.2 * 103, Welch corrected t-test) and LSK cells (p = 6.6 * 103,
965  Welch corrected t-test) across two independent biological replicate experiments. n (mice) = 20.
966

967  Figure 5: Specific transcription factor binding motif cooccurrences in HSCs

968 (A) Schematic of downstream transcriptional signaling pathways for niche stimulants. (B-D)

969 UMAP plot of HSC scATAC-Seq clusters (n = 730 cells) (B) and ISRE (C) or AP-1 (D) TF motif
970  scores. (E-F) UMAP plot of LSKs (n = 10750 cells) colored by surface phenotype (E) and

971  scATAC-Seq clusters (F). (G-H) Violin plots of TF motif scores enriched in HSC cluster 1 in

972 HSCs (G) and LSKs (H). (I-J) Violin plots of TF motif scores enriched in HSC cluster 0 in HSCs
973 () and LSKs (J).

974
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975 Supplemental Figure legends
976

977  Supplemental Figure 1: Functional characterization of HSC populations confirms high

978 regenerative capacity

979  (A) Sorting scheme of MPPs and HSCs. Cells were lineage depleted prior to sort. (B) Schematic

980  of limit dilution transplant experiment. (C) Chimerism per mouse and lineage distribution 4

981 months post-transplant. (D) Limit dilution analysis for transplant experiment. (E) Cell cycle

982 FACS in MPP and HSC populations. (F) Percentage of MPPs and HSCs within LSK cells at

983  baseline and after niche stimulation. (G) Proportion of each surface phenotype within all five

984  experimental conditions after computational reassembly of the LSK compartment.

985

986  Supplementary Figure 2: Validation of single cell RNA-Seq clustering with independent

987 replicates, pathway enrichment and candidate genes

988 (A-D) Comparison of clustering of control HSCs in two biological replicates. UMAP plots for

989  replicate 1 (A, n = 2382 cells) and 2 (B, n = 5334 cells) and summarized cell proportions in each

990 cluster (C). (D) Pairwise comparison of the proportion of overlap of the top 100 enriched genes

991  for each cluster. (E) Reactome pathway analysis with enriched genes for each HSC cluster. (F)

992  UMAP plots with expression of previously described HSC markers. (G) Proportion of dmPGE2

993  and control cells within clusters split by surface phenotype for HSCs and MPP1s.

994

995 Supplementary Figure 3: Little sexual dimorphism in HSCs in steady state and upon

996  stimulation

997  (A) Xist expression, classification of male and female cells and male and female cells plotted

998  separately. (B) Stacked Violin plots of all consistent sexual dimorphic genes (red; female, blue;

999  male) for two independent biological replicates. (C-D) Proportions of male and female HSCs (C)
1000 and LSK cells (D) within clusters for each drug treatment (p(DPA) > 0.05 for all male vs. female
1001  comparisons). (E) Heat map of average expression for ‘opposite directionality’ genes in HSCs
1002  for indomethacin (‘Indo’) and control. (F) Scatter plot of differential expression coefficient
1003  (converted to log. scale) induced by stimulants in HSCs (F) and LSKs (G) between male (y-axis)
1004 and female (x-axis). Solid red line indicates equal expression coefficients (coef female = coef
1005 male) and dashed line indicates a two-fold deviation (2*coef female = coef male or vice versa).
1006  Green arrowhead indicates ‘opposite directionality’ genes in indomethacin (shown also in E).
1007
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1008  Supplemental Figure 4: Gene expression in LSKs enables evaluation of specificity of
1009 niche stimulation in different cell populations

1010 (A) Schematic of LSK pooling and CITE-Seq surface hashtag (HTO) methodology. (B) UMAP
1011  plots with expression of selected genes in LSK cells. (C) Heat map of proportion of overlap
1012  between the 100 top enriched genes for LSK (rows) and HSC (columns) clusters. (D) Upsetplot
1013  visualizing differentially expressed genes between G-CSF and control for each cluster

1014  (horizontal bars) and intersection of gene sets (vertical bars) between clusters indicated by dots.
1015 Red bar and dot indicate specific genes in the Cell cycle cluster. (E) Upsetplot visualizing

1016  differentially expressed genes between G-CSF and control for each MPP surface phenotype.
1017 Red bar indicates genes that are absent from any of the conditions (MPP, MPP1, MPP 2,

1018  MPP3/4). (F-G) UMAP density graphs visualizing the distribution of cells by surface phenotype
1019  (F) or by niche stimulation (G).

1020

1021  Supplemental Figure 5: Clustered heat maps of differentially expressed genes in HSCs
1022  enables identification of genes and single cell clusters with similar expression patterns
1023  (A-D) Heat map of differentially expressed genes between niche stimulants and control in

1024  HSCs. Single cell expression is averaged within a single cell cluster, scaled to z-scores and
1025 similar genes (rows) and clusters (columns) are aggregated by hierarchical clustering. Black row
1026 label indicates HSC specific genes, grey label marks genes differentially expressed in both
1027 HSCs and LSKs. (A) poly (I:C) at 1.5-fold cutoff. (B) G-CSF at 1.2-fold cutoff, (C) dmPGE; at
1028  1.5-fold cutoff, (D) Indomethacin at 1.2-fold cutoff.

1029

1030 Supplementary Figure 6: Clustered heat maps of differentially expressed genes in LSKs
1031 enables identification of genes and single cell clusters with similar expression patterns
1032  (A-D) Heat map of differentially expressed genes between niche stimulants and control in LSKs.
1033  Single cell expression is averaged within a single cell cluster, scaled to z-scores and similar
1034 genes (rows) and clusters (columns) are aggregated by hierarchical clustering. Black row label
1035 indicates LSK specific genes, grey label marks genes differentially expressed in both HSCs and
1036  LSKs. (A) poly (I:C) at 1.5-fold cutoff. (B) G-CSF at 1.5-fold cutoff, (C) dmPGE: at 1.5-fold

1037  cutoff.

1038

1039  Supplemental Figure 7: Indomethacin affects transcriptional state of IEGs

1040  (A) UMAP plot with expression of selected ‘activated’ genes in control (A) and indomethacin (B).

1041  Average expression of the same genes across cells ranked by pseudotime (cells split into 10
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bins to decrease noise) comparing indomethacin and control (C, difference indicated by
asterisk) or G-CSF and control (D).

Supplementary Figure 8: Uniform distribution of motif activity immediately downstream
of niche stimulants and differential enrichment for secondary signals in HSCs and LSKs.
(A-B) UMAP plots (A) and violin plots (B) of TF motif scores immediately downstream of
Prostaglandin, Poly(l:C) and G-CSF signaling. (C-D) HSC UMAP plots of TF motif scores
enriched in HSC cluster 1 (C) and in HSC cluster 0 (D). (E-F) UMAP plot (E) and violin plot (F)
of SMAD TF motif score in HSCs. (G-H) LSK UMAP plots of TF motif scores enriched in HSC
cluster 1 (G) and in HSC cluster 0 (H). Overlapping motif activities in LSK cluster 5 are indicated
with a green arrowhead in G.
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Figure 1: HSCs are transcriptionally heterogeneous and niche perturbations rapidly shift cells into different states
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Figure 2: MPP surface marker validated LSK clusters respond similarly to drug treatments like HSCs
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Figure 3: LSK and HSC cluster specific differential gene expression analysis reveals novel, specific effects on HSC and LSK subpopulations
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Figure 4: Indomethacin treatment induces change in IEG transcriptional state in HSCs
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Supplementary Figure 1
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Supplementary Figure 2: Validation of single cell RNA-Seq clustering with independent replicates, pathway enrichment and candidate genes
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Supplementary Figure 3: Little sexual dimorphism in HSCs in steady state and upon stimulation
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Supplemental Figure 4: Gene expression in LSKs enables evaluation of specificity of niche stimulation in different cell populations
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Supplemental Figure 7: Indomethacin affects transcriptional state of IEGs
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Supplementary Figure 8: Uniform distribution of motif activity immediately downstream of niche stimulants and
differential enrichment for secondary signals in HSCs and LSKs.
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