
Segmentation of Tissues and Proliferating Cells in

Light-Sheet Microscopy Images using Convolutional

Neural Networks

Lucas D. Lo Vercioa, Rebecca M. Greena, Samuel Robertsona, Si Han Guoa,
Andreas Dautera, Marta Marchinia, Marta Vidal-Garćıaa, Xiang Zhaoa,
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aCumming School of Medicine, University of Calgary, 2500 University Drive NW,
Calgary, AB, Canada

bDepartment of Orthopaedic Surgery, University of California San Francisco, San
Francisco, CA, United States

Abstract

Background and Objective: A variety of genetic mutations are known
to affect cell proliferation and apoptosis during organism development, lead-
ing to structural birth defects such as facial clefting. Yet, the mechanisms
how these alterations influence the development of the face remain unclear.
Cell proliferation and its relation to shape variation can be studied in high
detail using Light-Sheet Microscopy (LSM) imaging across a range of devel-
opmental time points. However, the large number of LSM images captured
at cellular resolution precludes manual analysis. Thus, the aim of this work
was to develop and evaluate automatic methods to segment tissues and pro-
liferating cells in these images in an accurate and efficient way.

Methods: We developed, trained, and evaluated convolutional neural
networks (CNNs) for segmenting tissues, cells, and specifically proliferating
cells in LSM datasets. We compared the automatically extracted tissue and
cell annotations to corresponding manual segmentations for three specific
applications: (i) tissue segmentation (neural ectoderm and mesenchyme) in
nuclear-stained LSM images, (ii) cell segmentation in nuclear-stained LSM
images, and (iii) segmentation of proliferating cells in Phospho-Histone H3
(PHH3)-stained LSM images.
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Results: The automatic CNN-based tissue segmentation method achieved
a macro-average F-score of 0.84 compared to a macro-average F-score of 0.89
comparing corresponding manual segmentations from two observers. The au-
tomatic cell segmentation method in nuclear-stained LSM images achieved
an F-score of 0.57, while comparing the manual segmentations resulted in an
F-score of 0.39. Finally, the automatic segmentation method of proliferating
cells in the PHH3-stained LSM datasets achieved an F-score of 0.56 for the
automated method, while comparing the manual segmentations resulted in
an F-score of 0.45.

Conclusions: The proposed automatic CNN-based framework for tis-
sue and cell segmentation leads to results comparable to the inter-observer
agreement, accelerating the LSM image analysis. The trained CNN models
can also be applied for shape or morphological analysis of embryos, and more
generally in other areas of cell biology.

Keywords: Light-Sheet imaging, Image segmentation, Convolutional
Neural Networks, Developmental biology

1. Introduction

Structural birth defects and congenital anomalies are a major human
health issue, accounting for 300,000 worldwide deaths each year and a signif-
icant proportion of the global burden of disease [1]. Most congenital anoma-
lies have a genetic cause that results in a disease by perturbing cellular or
molecular processes during embryonic growth and development. Interven-
tions aiming at treating or preventing such diseases require a mechanistic
understanding of these disruptions. Many publications report small changes
in cell proliferation or apoptosis in response to a perturbation in a model
system. However, these changes are often measured by manual or semi-
automatic cell counting in a few stained tissue regions [2, 3, 4]. A major lim-
itation of this approach is that it is difficult to investigate changes across a
whole region of tissue or how these changes contribute to the overall anatom-
ical development.

During embryogenesis, tissue layers (ectoderm, mesoderm, neural crest
and endoderm) form all organs and structures of the body. Each tissue layer
has different properties and specific cell fates. In this work, we specially focus
on the growth and development of the face. During early development, the
neural crest is actively migrating and proliferating in response to cues from
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the ectoderm. The neural crest mixes with the mesoderm to form a tissue
type commonly known as mesenchyme, which continues to form the bones
and muscles of the face. Proliferation and migration of the mesenchyme are
thought to be the primary drivers of facial morphology [5, 6].

For the study of embryogenesis, fluorescence imaging allows the observa-
tion of certain biological processes by specifically displaying the molecules
and structures involved. Light-Sheet microscopy (LSM), a rather novel fluo-
rescence imaging technique, allows 3D imaging of whole biological samples,
even at early developmental stages, with a spatial resolution that can display
single cells [7]. Furthermore, LSM imaging can be acquired without physical
slicing of the samples, thus, preserving the shape of the sample. Techni-
cally, LSM illuminates a plane in the sample using a determined frequency,
whereas the fluorecence is imaged using an sCMOS camera perpendicular to
the plane. The 3D image is obtained by moving the illumination plane along
the sample [8]. LSM allows imaging of individual cell nuclei that have been
stained for various markers. In this work, we specifically focus on the DAPI
(4’,6-diamidino-2-phenylindole) marker that stains all nuclei, as well as PHH3
(phospho-Histone H3) that only stains actively dividing or proliferating cells.

Light-Sheet imaging has practical drawbacks for its analysis. The size of
a multi-channel image at 5x zoom can easily approach 300 GB and include
thousands of 2D images. These images are also prone to noise and loss of
signal due to sample preparation variability and imaging artifacts. Due to
the large number of images acquired by LSM, the large size of these images,
and the different artifacts that can be present, large-scale manual analysis of
LSM images is not feasible. The aim of this work was to develop and evaluate
an automatic framework for segmentation of the mice embryo morphology,
its tissues, cell nuclei, and proliferating cells to support developmental biol-
ogy research, particularly the analysis of cell proliferation and shape change
during embryo growth, and the effect of gene mutations on them.

1.1. Related work

In recent years, a variety of automatic methods have been applied to flu-
orescence microscopy, and particularly LSM, for quality improvement and
analysis. The high variability of intensities across and between samples in
fluorescence microscopy complicates the development of general methods for
automatic analysis. This variability is a result, for example, of sample prepa-
ration, such as excessive non-uniform tissue clearing and/or antibody pene-
tration, noise, loss of signal as the light-sheet travels through the specimen,
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and due to the non-specific fluorescent signal (background). To date, mul-
tiple mechanical and computational methods have been proposed to correct
for these problems. Generally, mechanical methods aim to improve the LSM
acquisition technique. For example, Turaga and Holy [9] proposed a method
to correct for defocus aberrations by tilting the angle of the light-sheet mi-
croscopy by a few degrees, whereas the remaining aberrations can be cor-
rected using adaptive optics. Bourgenot et al. [10] examined how aberrations
can occur in single plane illumination microscopy (SPIM) of zebrafish sam-
ples, and proposed a wavefront correction method for this artefact. Among
the computational methods for post-processing, Yang et al. [11] developed a
method based on Convolutional Neural Networks (CNNs) to automatically
assess the focus level quality in microscopy images. Yayon et al. [12] pro-
posed a semiautomatic method to normalize images, taking into account the
background intensity and signal elements while Weigert et al. [13] proposed
a normalization method based on percentiles to overcome the problem of
extreme signal values.

Once the image correction is done, the image quantification process (e.g.
tissue segmentation and cell counting) can be performed with improved accu-
racy. Particularly for cell segmentation in fluorescence images, Ilastik [14] is
a widely used software tool. It provides a trainable pixel segmentation tool,
where the user specifies the image features to be extracted and can configure
the hyperparameters of the random forest classifier used in the background.
Additionally, a variety of methods based on CNNs have been proposed in
recent years. For example, Ho et al. [15] proposed a 3D CNN model for
segmenting nuclei in rat kidneys labelled with Hoechst 33342. The authors
specifically emphasized on the large amount of annotated data required to
train CNNs. To overcome this problem, they trained the CNN with syn-
thetic data and tested it in real images. Falk et al. [16] segmented a variety
of microscopy images using a generic 2D CNN for segmentation, called U-
net. This CNN model was trained using datasets provided by the ISBI Cell
Tracking Challenge 2015 [17] and by applying data augmentation techniques
to overcome the problem of limited data for CNN training. However, to the
best of our knowledge, there is no comprehensive, publicly available software
solution so far that allows segmenting different tissue and cell types in LSM
datasets.
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1.2. Contribution of this Work

In recent years, U-nets have been successfully used for many medical
image segmentation tasks [18]. The original U-net architecture was proposed
to segment neuronal structures on 2D electron microscopy images [19]. Since
then, this CNN model has been extended to segment other types of structures
and data, such as the prostate [20] and ischemic strokes [21] in 3D MRI
volumes. In this work, optimized U-nets are used to solve the challenging
segmentation problems in 3D LSM datasets.

The segmentation of mesenchyme and neural ectoderm is a key first step
to properly analyze the shapes of these rapidly growing regions at different
developmental stages. Segmentation of both tissues also allows a more ro-
bust registration of images from different samples acquired at the same age
and across different ages. After registration, shape changes can be studied
using, for example, geometric morphometrics [22]. In this work, we train
and evaluate an U-net model using a unique database of DAPI-stained LSM
images with corresponding manual segmentations to automatically segment
the mesenchyme and neural ectoderm.

The second key aim is to quantify cell proliferation in the mesenchyme
to support basic science and clinical research investigating how mitosis and
migration drive morphological changes. For nuclei as well as segmentation
of proliferating cells, we re-trained the cell segmentation U-net CNN model
described by Falk et al. [16] using our own LSM datasets. More precisely,
we trained this CNN model using datasets of DAPI-stained images with
corresponding annotated cells for nuclei segmentation. For segmentation of
proliferating cells, the U-net was trained using PHH3-stained images with
corresponding manual segmentations. Finally, the three segmentations are
combined to create maps of relative proliferation in the mesenchyme. The
source code, software, and annotated datasets have been made publicly avail-
able at https://github.com/lucaslovercio/LSMprocessing.

2. Materials and Methods

2.1. Image acquisition

Five E9.5 and five E10.5 mice embryos were harvested and fixed overnight
in 4% paraformaldehyde. After fixation, they were processed for clearing
and staining. The clearing step followed the CUBIC protocol [23]. Briefly
described, embryos were incubated overnight in Cubic1/H20 at room tem-
perature followed by incubation in Cubic 1 at 37◦C degrees until clear (1-3
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days). Samples were blocked in 5% goat serum, 5% dimethyl sulfloxide, 0.1%
sodium azide, and phosphate buffered saline at 37◦C for 1.5 days. After
this, they were incubated in primary antibody (Abcam ab10543) (1:250) and
DAPI (1:4000) in 1% dimethyl sulfloxide, 1% goat serum 0.1% sodium azide,
and phosphate-buffered saline (PBS) for 7 days at 37◦C with shaking. We
performed several washes in PBS for 3 days at room temperature. Next, the
samples were incubated with secondary antibody (1:500) (Abcam ab150167)
for 5 days at 37◦C with gentle shaking. The samples were then washed for
several days in PBS at room temperature and were embedded in 1.5% low
melt agarose, incubated in 30% sucrose for 1 hour and then placed in Cubic
2 overnight before imaging. The samples were imaged using a Lightsheet Z1
scanner (Zeiss). Images were acquired using single side illumination at 5x
zoom using a minimum of 3 laser channels: 405- DAPI, 488- background,
and 647- PHH3.

2.2. Datasets

From the DAPI-stained scans of ten available mice embryos, random im-
ages were selected from these z-stacks for manual tissue segmentation. Partic-
ularly, 86 were used for CNN training, 36 for validation, and 54 for testing,
following the usual proportion of 50-20-30% for machine learning datasets
(DAPI-Tissue dataset, Table 1) [24]. These 176 images were cropped to
1024 × 1024 because the size of the images vary between the scans, depend-
ing on the size of the embryo (Fig. 1a). This patch size was determined to be
feasible for human annotation, as the observers required up to five minutes
segmenting each slice. Prior to further processing and manual annotation,
the images were intensity-normalized using percentile-based equalization [13].
Five expert observers manually segmented the mesenchyme and neural ecto-
derm tissues in disjoint subsets of the DAPI-Tissue set (Fig. 1b). Each slice
used for testing was independently segmented by two different observers to
assess the inter-observer variability.

For development of the cell segmentation model, a random sub-image
with a size of 131 × 131 was extracted for manual cell segmentation from
each image in the DAPI-Tissue set (Fig. 1a). Here, the observers segmented
single cells, while differentiating them according to the tissue (mesenchyme
or neural ectoderm) that they belong to (Fig. 1b). Heavily blurred patches,
where single cells could not be separated, were removed from the dataset,
resulting in a total of 168 images, whereas 96 were used for training, 17
for validation, and 55 for testing (DAPI-Cells dataset, Table 1). The latter
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Table 1: Distribution of the images for training (train), validation (val) and test, sizes and
annotated classes for the three proposed datasets.

Dataset Train Val Test Size Classes
DAPI-Tissue 86 36 54 1024× 1024 Mesenchyme - Neural ectoderm - Background
DAPI-Cells 96 17 55 131× 131 Mesenchyme cell - Neural ectoderm cell - No cell
PHH3-Cells 86 20 49 1024× 1024 Proliferating cell - No proliferating cell

subset was independently segmented by two different observers for variability
assessment. It is worth noting that due to not all patches containing both
types of cells, the proportion of images for training was increased in this case.

Finally, for the development and evaluation of the CNN model for seg-
mentation of proliferating cells (PHH3-Cells), 155 images were randomly
selected from the PHH3 scans of the ten embryos, whereas 86 images were
used for training, 20 for validation, and 49 for testing. These images were
cropped to 1024 × 1024 and intensity normalized [13] (Fig. 1c). In this
case, the observers segmented proliferating cells (Fig. 1d). The patch size
used for this task was different from the images used for cell segmentation in
the DAPI-stained scans because the proliferating cells represent only a small
fraction of the total number of cells. Thus, a human observer can segment a
larger image in a similar time frame. Similarly to the previous two subsets,
these test images were independently segmented by two different observers
for variability assessment.

2.3. LSM segmentation workflow

Fig. 2 shows the proposed workflow to generate the map of proliferating
cells in the mesenchyme of an embryo. The two inputs are the channels
belonging to DAPI and PHH3 in light-sheet microscopy scans, and the two
main outputs are the segmented mesenchyme and neural ectoderm tissues
and the relative proliferating cell volume for mesenchyme. The methods used
for tissue segmentation, cell segmentation, and proliferating cell segmentation
are detailed in the following sections.
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(a) (b)

(c) (d)

Figure 1: Datasets used for model development and evaluation. (a) Cropped and nor-
malized DAPI-stained image for mesenchyme and neural ectoderm segmentation (DAPI-
Tissue). In blue, subimage used for cell segmentation (DAPI-Cells). (b) Manual segmenta-
tion of mesenchyme (red) and neural ectoderm (green) of (a). (c) Cropped and normalized
PHH3-stained image (PHH3-Cells). (d) Manual segmentation of proliferating cells marked
(yellow).
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Figure 2: Overview of the proposed light-sheet microscopy segmentation workflow.

2.4. Tissue segmentation

For the task of segmenting the mesenchyme and neural ectoderm in DAPI-
stained images, and distinguishing these tissues from the background, a sim-
ple U-net CNN model was developed (Fig. 3). Therefore, a large random
search was conducted over various settings of hyper-parameters using the
DAPI-Tissue training and validation sets. The hyper-parameters investi-
gated included the batch size, learning rate, number of filters, kernel size,
and optimizer method. The search began with a high-dimensional space
containing a wide range of hyper-parameters and a wide range of possible
settings for each hyper-parameter. At each stage, a large number of models
with randomly selected hyper-parameter configurations (within predefined
ranges) were trained, and the settings of the best models were recorded.
From a manual examination of the settings with the best results, the ranges
of possible hyper-parameters were refined after each stage. After the space
was reduced to a feasible size, a grid search was conducted over the remain-
ing possible hyper-parameter values. Finally, the best model was trained
and validated five times to ensure that its performance was not due to ran-
dom factors inherent in the training process such as the initialization of the
weights. Using this procedure, the best model configuration identified used a
batch size of 8, an equally weighted combined loss function of soft-Dice and
categorical cross-entropy, batch normalization, and ReLU activations in the
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Figure 3: Proposed U-net model architecture for mesenchyme and neural ectoderm seg-
mentation in DAPI-stained images.

hidden layers [25, 26] (Fig. 3). This model was trained using the RMSprop
optimizer with a learning rate of 1E-4 for 200 iterations. Training data aug-
mentation (flipping, blurring, affine deformations) was performed on the fly
[27] with two dropout layers at the end of the contracting path.

2.5. Cell segmentation

U-nets have been previously used for automatic cell segmentation in var-
ious imaging modalities [15, 16, 28]. However, one of the major drawbacks
identified in previous studies is the lack of annotated datasets to successfully
train U-nets for the different microscopy imaging techniques available. A
main contribution of this work is the establishment of two datasets (DAPI-
Cells and PHH3-Cells) that facilitate the training of CNN models to segment
cells in LSM images.

Owing to the limited availability of microscopy datasets, Falk et al. [16]
trained and evaluated a U-net model for segmenting cells by combining im-
ages acquired using different microscopy technologies. Based on this, they
developed an ImageJ-Fiji plugin that allows the re-training of this pre-trained
U-net. Although the plugin facilitates transfer learning, we found exper-
imentally that re-training of the pre-trained network had no performance
advantage for segmenting DAPI-Cells and PHH3-Cells when compared to
randomly initializing the model weights and training it from scratch with
our data.

Thus, one U-net was trained from scratch using the DAPI-Cells dataset to
automatically segment mesenchyme cells in the sample, which are known to
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be drivers of the change in facial morphology. For this, only the mesenchyme
cell annotations were used as the positive class in the training process, and
the neural ectoderm cells and background were considered the negative class.
Manual hyper-parameter search was done using the ImageJ-Fiji plugin de-
scribed above, optimizing the learning rate and the number of iterations. The
best model was trained for 12,500 iterations with a learning rate of 1E-4, with
randomly initialized weights.

After this, a second U-net was trained from scratch based on the ImageJ-
Fiji plugin using the PHH3-Cells dataset, for segmenting proliferating cells in
PHH3 images. Based on a manual hyper-parameter search, the best model
was trained for 20,000 iterations with a learning rate of 1E-6, with randomly
initialized weights.

These U-net models were compared with the Ilastik segmentation method,
which is a reference tool and widely used for semiautomatic cell segmenta-
tion in biology [14]. In this tool, the user specifies the image features to
be extracted and the parameters of the machine learning method, and pro-
vides microscopy datasets with corresponding cell segmentations. Due to the
number of tunable variables, its effectiveness depends on the domain exper-
tise of the user. In case of LSM, it is challenging to optimize the tool so
that it generalizes and performs well on future scans due to the variability
between images and the large size of them. The best results in this study
were achieved using a random forest classifier integrating features based on
intensity, edge, and texture. These features were computed with sigmas of
3.5, 5, 10, and 15 pixels, independently for the DAPI-Cells and PHH3-Cells
sets. Pixels with a score greater than 0.3 were assigned to the positive class.

2.6. Full volume segmentation

Once the U-nets for segmentation of the tissues, cells, and proliferating
cells are trained, full embryos can be segmented.

For cell and tissue segmentation (Fig. 2) in a new unseen LSM dataset,
each image of the DAPI-stained z-stack has to be normalized and cropped
to 1024 × 1024 patches so that it can be processed by the developed CNN
models. Particularly for tissue segmentation, we found experimentally that
an overlap of neighbouring patches is necessary to avoid discontinuities of
the segmentations at the borders of the patches. Once the segmentation of
cells and tissues is completed and the patches are merged, the mesenchyme
segmentation is used to mask the cell segmentation so that only cells in
mesenchyme remain in the segmentation.
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For segmentation of proliferating cells, the images of the PHH3 volume
also have to be intensity-normalized and cropped to 1024 × 1024 patches.
These patches are segmented using the U-net trained with the PHH3-Cells
dataset. Then, the segmented patches are merged and masked using the mes-
enchyme segmentation, to obtain the proliferating cells in the mesenchyme
(Fig. 2).

Finally, the overall relative cell proliferation map is obtained by calcu-
lating the ratio of proliferation in a fixed 3D window centered around each
voxel. For this, the number of segmented voxels corresponding to proliferat-
ing cells in mesenchyme is counted in this window and divided by the number
of segmented voxels corresponding to cells in the same window.

2.7. Evaluation metrics

The automatic segmentations were quantitatively compared to the corre-
sponding manual segmentations in the three test sets using the accuracy and
F-score. Furthermore, a global measure for assessing the tissue segmentation
is required, since it is a multi-class problem (mesenchyme, neural ectoderm,
background). In this case, the macro-average F-score (FscoreM) was used,
which is the average of the same measures for all classes [29].

3. Results

3.1. Tissue segmentation

The hyper-parameter search to optimize the tissue segmentation U-net
CNN model was performed using Compute Canada, requesting an NVIDIA
V100 Volta (32G HBM2 memory). Using the identified optimal set of pa-
rameters for segmenting the validation set (FscoreM=0.8), a CNN model was
trained using the training and validation set for segmenting the DAPI-Tissue
test set using a PC with a AMD Ryzen 5 3600 3.6 GHz 6-core CPU, 32 GB
RAM, and an NVIDIA GeForce RTX 2070 Super GPU.

Table 2 shows the different metrics for the automatic segmentation of
mesenchyme and neural ectoderm for the validation and test sets. Each
metric (F-scores, Accuracy) was computed for each image in the test and
validations sets, and the global mean and standard deviation for was com-
puted for each set. Fig. 4 shows the box-plots for the metrics on the test
set.
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Table 2: Metrics for the segmentation of mesenchyme (Mes), neural ectoderm (NE) and
Background (B) in DAPI-Tissue images using the proposed U-net.

Accuracy FscoreM F-score Mes F-score NE F-score B
Inter-observer
(Test)

0.971(0.031) 0.885(0.122) 0.849(0.196) 0.777(0.261) 0.916(0.146)

U-net (Val) 0.900(0.08) 0.804(0.133) 0.783(0.209) 0.515(0.323) 0.974(0.015)
U-net (Test) 0.889(0.093) 0.837(0.137) 0.799(0.203) 0.705(0.337) 0.931(0.141)

The results show that the tissue segmentation using the proposed CNN
model is similar to the manual segmentations. More precisely, a high accu-
racy of 0.889 is reached for the test set, showing great agreement with the ob-
servers. Considering the FscoreM , a metric more appropriate for imbalanced
problems [29], the value slightly decreases to 0.837. However, compared
to the FscoreM of 0.885 for the inter-observer agreement and investigating
the corresponding box-plots reveals that the results of the CNN model are
generally in the range of the inter-observer variability. The binary F-scores
for the mesenchyme and neural ectoderm segmentations (0.799 and 0.705,
respectively) demonstrate high agreement with the observers, but slightly
lower than the inter-observer variability (0.849 and 0.777, respectively). The
analysis of the F-score for the background classification complements the
understanding of the automatic segmentation performance. In this case, a
mean value of 0.931 is achieved, which is similar to the mean inter-observer
agreement (0.916).

Fig. 5 shows the Bland-Altman plots for the percentual error of the
segmented areas, as the segmented areas vary between datasets. The hori-
zontal distribution around 0% suggests that the error is equally distributed
indicating that no tissue is over- or under-estimated.

Fig. 6 shows three images from the DAPI-Tissue test set with their man-
ual segmentations and their correspondent automatic segmentation. The
qualitative results are well in line with the quantitative results, showing
good agreement of the automatic segmentations with the manual annota-
tions. There are some misclassifications of mesenchyme and neural ectoderm,
but the sample is properly differentiated from the background, correctly pre-
serving the concavities of the embryo.

3.2. Cell segmentation

The fine-tuning of the CNN models for cell segmentation was performed
on the same PC described in Section 3.1. The segmentation using Ilastik was
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Figure 4: Box-plots of the overall FscoreM and F-scores for neural ectoderm (NE) and
mesenchyme (Mes) segmentation with the corresponding inter-observer agreement results
for reference.

(a) (b)

Figure 5: Bland-Altman plots for tissue segmentation. Areas are expressed in pixels. (a)
Mesenchyme (Mes) segmentation. (b) Neural ectoderm (NE) segmentation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Segmentation of tissues in DAPI-stained images. (a) (d) (g) Original images,
from the DAPI-Tissue test set. (b) (e) (h) Ground truth, where the mesenchyme is
coloured in aquamarine and the neural ectoderm in yellow. (c) (f) (i) Segmentation result
using the proposed U-net for tissue segmentation.
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Table 3: Metrics for mesenchyme cell segmentation in DAPI-stained images (DAPI-Cells,
test set), and proliferating cells in PHH3 images (PHH3-Cells, test set).

DAPI-Cells PHH3-Cells
Accuracy F-score Accuracy F-score

Inter-observer
(Test)

0.811(0.096) 0.385(0.279) 0.987(0.006) 0.452(0.133)

Ilastik (Test) 0.797(0.097) 0.399(0.209) 0.989(0.005) 0.537(0.134)
U-net (Test) 0.812(0.081) 0.569(0.156) 0.994(0.004) 0.560(0.172)

executed on a PC with an Intel i7-8700K 3.7GHz 6-core CPU, 64 GB RAM,
and a NVIDIA GeForce GTX 1080 Ti graphic card.

Table 3 shows the evaluation metrics for the automatic segmentation of
mesenchyme cells in DAPI-stained images (DAPI-Cells) and proliferating
cells in PHH3-stained images (PHH3-Cells) calculated for the corresponding
independent test sets, including only images where the observer annotated
at least one cell.

For the mesenchyme cell segmentation in DAPI images, Fig. 7 presents
the boxplots for the F-scores when segmenting the test set of DAPI-Cells,
and the corresponding Bland-Altman plot for the percentual error of the
segmented areas. Table 3 and Fig. 7a show that the CNN model achives an
F-score of 0.569, which surpasses the Ilastik results (0.399). Fig. 7b shows
that the segmentation error is equally distributed around 0%, indicating
no systematic bias. Qualitatively, Fig. 8 shows segmentation examples in
mesenchyme regions. Here, it can be seen that the cells have blurry edges
in the DAPI images. Comparing the CNN-based segmentation results with
the segmentation results computed using Ilastik, it can be observed that the
proposed CNN-based model produces sharper segmentations than Ilastik,
which look more similar to the ground truth.

Fig. 9 shows the boxplots for the F-scores obtained for the PHH3-Cells
test set and the associated Bland-Altman plot. The automatic CNN-based
method achieved an F-score of 0.56 compared to the lower mean inter-
observer agreement F-score of 0.45. Fig. 9b indicates a tendency towards
over-estimation of the automatic CNN-based method. Fig. 10 shows exam-
ples of the segmentation of proliferating cells. Fig. 10a and 10e show that
the PHH3 data presents high levels of noise and varying levels of intensities
in the cells of interest. Comparing the CNN-based with Ilastik segmentations
for the images, the CNN-based segmentations are affected less by noise com-
pared to Ilastik, and are thus quantitatively slightly more accurate (F-score
of 0.56 vs. 0.54).
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(a) (b)

Figure 7: F-score for cell segmentation in mesenchyme regions in DAPI-stained images
using the DAPI-Cells test set. (a) F-scores for Ilastik and U-net, compared with the
inter-observer agreement. (b) Bland-Altman plot. Areas are expressed in pixels.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Segmentation of cells in DAPI-stained images. (a) (e) Original images from the
DAPI-Cells test set. (b) (f) Ground truth in which only mesenchyme cells are segmented.
(c) (g) Segmentation result using Ilastik. (d) (h) Segmentation result using U-net.
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(a) (b)

Figure 9: F-score for proliferating cell segmentation in PHH3 images. (a) F-scores for
Ilastik and U-net compared to the inter-observer agreement. (b) Bland-Altman plot.
Areas are expressed in pixels.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: PHH3-stained image segmentation. (a) (e) Original images from the PHH3-
Cells test set. (b) (f) Ground truth. (c) (g) Segmentation result using Ilastik. (d) (h)
Segmentation result using U-net.
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3.3. Workflow integration

Once the U-nets for segmentation of the tissues, cells, and proliferating
cells were trained, a full E9.5 embryo head was segmented (Fig. 11) using
these models. Particularly, an overlap of the patches of 100 pixels on each
side was used for tissue segmentation. The resulting segmentations (tissues,
cells, and proliferating cells) were downsampled to generate isotropic volumes
of 297 × 297 × 407. Then, a window of 40 × 40 × 40 was used for computing
the relative cell proliferation map.

Qualitatively, the volume of the segmented neural ectoderm (Fig. 11b)
has the expected shape for the embryonic age, and it fits inside the segmented
mesenchyme (Fig. 11a), as it should. The total number of segmented cells
in the scan (Fig. 11c) is higher than the total number of proliferating cells,
which can be clearly seen in Fig. 11d. Using these numbers, the relative pro-
liferation map is computed (Fig. 11e). 11f shows the relative proliferation in
the mesenchyme and an empty space corresponding to the neural ectoderm.

4. Discussion

4.1. Tissue segmentation

The results suggest that the proposed CNN-based framework is able to
segment the background as well as a human observer but it can can lead to
some misclassifications of mesenchyme and neural ectoderm. Considering the
design of the proposed CNN model, the similar validation and test results
(Table 2) show that it has a good generalization capability, not over- or
under-fitting the training data.

In Fig. 6, it can be seen that the embryo is well separated from the
background, but the tissues are partly mislabeled. For example, in Fig. 6f,
mislabelling occurs in blurry regions of the image (bottom left) and where
the signal varies significantly (top right). In this case, these artifacts in the
image are a result of the staining process and LSM acquisition artefacts.
However, the proposed CNN-based segmentation method still leads to good
results in some of these regions with less severe artefacts.

Overall, the good performance of the automatic tissue segmentation en-
ables the use of subsequent geometric morphometrics analysis, which is a
standard for developmental biology research.
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(a) (b) (c)

(d) (e) (f)

Figure 11: Automatically segmented E9.5 embryo. Voxels are displayed slightly trans-
parent for visualization purposes. (a) Mesenchyme tissue segmented from DAPI images.
(b) Neural ectoderm tissue segmented from DAPI images. (c) Cells in mesenchyme seg-
mented from DAPI-stained images. (d) Proliferating cells segmented in PHH3-stained
images, only in mesenchyme, masked using the tissue segmentation result. (e) Heat map
of the proliferating cells, relative to all cells in the region. (f) Axial plane located in the
head of the embryo, showing the relative proliferation in mesenchyme.
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4.2. Cell segmentation

With respect to the cell segmentation, the results show a rather low
inter-observer agreement with an F-score of 0.39 for cell segmentation in
DAPI-stained images and 0.45 for cell segmentation in PHH3-stained images.
This low agreement has also been reported for other fluorescence microscopy
datasets, and is likely related to the smaller surface area to volume ratio
of cell structures compared to tissues [30] as well as blurry cell edges even
where the focus is optimal. In order to assess the extent to which the qual-
ity of the scans affects the human and automatic segmentation, the image
focus assessment method proposed by Yang et al. [11] was used. In DAPI-
Cells test images with low defocus scores (between 1 and 5), the F-score
comparing the manual segmentations was 0.49±0.22, while comparing the
automatic segmentation results with the manual segmentation results led to
an F-score of 0.63±0.1. For images with high defocus scores (between 6 and
11), the inter-observer F-score is 0.26±0.27, while the corresponding value for
the automatic segmentation is 0.47±0.17. Thus, the loss of focus affects the
manual segmentation much more than the automatic segmentation. Overall,
it can be concluded that the low effectiveness of the automatic segmentation
is strongly related to the quality of the training data, which includes the
image quality but also the manual segmentations used.

For PHH3 segmentation, the CNN-based segmentation method achieved
an F-score of 0.56, whereas the F-score of the corresponding mean inter-
observer agreement was 0.45. Taking into account the overestimation of 50%
observed in Fig. 9b, it can be argued that the automatic segmentation does
not perform optimal due to non-specific fluorescent signals. These artifacts in
the image resemble proliferating cells, which lead to falsely segmented voxels
in the manual as well as automatic segmentations.

However, it needs to be highlighted that the evaluation metrics of the
proposed CNN-based method for segmentation of cells are better than the
corresponding metrics for the Ilastik segmentation. Qualitatively, the pro-
posed CNN-based segmentation method produces better defined cells. The
improved sensitivity of the CNN-based method compared with the Ilastik
results is likely a consequence of taking high level textural features into ac-
count, which are computed in deeper CNN layers. These features are not
available or computed in the Ilastik method, even when it is configured by
users trained in image processing.
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4.3. Workflow integration

Fig. 11 shows each segmentation result as generated by the proposed
workflow in a full E9.5 embryo head. All segmentations fulfill the expected
properties. However, some unexpected sagittal asymmetries are present.
They can be seen in the resulting mesenchyme shape and in the distribu-
tion of proliferating cells in Fig. 11f. These asymmetries could be the re-
sult of variance in the staining of the embryo, in both DAPI and PHH3,
its pose during the scanning, the laser penetration, and errors in the auto-
matic segmentation methods. Asymmetries could affect further shape and
morphological analysis. As a sagittal symmetry of their morphology and pro-
liferation can be assumed in wild-type mice, this assymetry can be corrected
in the segmentations using standard post-processing methods such as affine
deformations based on an embryo atlas or predefined landmarks.

Generally, the overall results show that the CNN models can segment the
structures of interest accurately and in the range of human observers. Thus,
this automatic segmentation workflow can be efficiently used for quantitative
analysis of LSM images, oriented to developmental biology studies. However,
the inter-observer metrics show that there is room for improvement with
respect to the quality of the image acquisition.

5. Conclusion

The aim of the present work was to implement and evaluate an auto-
matic framework for tissue and cell segmentation in LSM images. Proper
tissue and cell segmentation is important for the quantification and model-
ing of how perturbations to cellular dynamics result in congenital anoma-
lies. Such analyses are based on data that rely heavily on extraction of
variables such as cell number, size, or density from noisy volumetric image
data. Thus, a database of LSM images was established with correspond-
ing manual segmentation of proliferating cells, tissues, and total cells. One
CNN model was trained for each segmentation problem, and the quantita-
tive evaluation suggests that all three models lead to segmentation results
within the range of the inter-observer agreement. The source code, soft-
ware, and annotated datasets are publicly available at https://github.

com/lucaslovercio/LSMprocessing. The methods developed in this work
are integral to the larger goal of improving the understanding of development
and morphogenesis and how perturbations to development result in diseases.
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