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Abstract 18 
The analysis of whole-genome sequencing studies is challenging due to the large number of rare variants 19 
in noncoding regions and the lack of natural units for testing. We propose a statistical method to detect and 20 
localize rare and common risk variants in whole-genome sequencing studies based on a recently developed 21 
knockoff framework. It can (1) prioritize causal variants over associations due to linkage disequilibrium 22 
thereby improving interpretability; (2) help distinguish the signal due to rare variants from shadow effects 23 
of significant common variants nearby; (3) integrate multiple knockoffs for improved power, stability and 24 
reproducibility; and (4) flexibly incorporate state-of-the-art and future association tests to achieve the 25 
benefits proposed here. In applications to whole-genome sequencing data from the Alzheimer’s Disease 26 
Sequencing Project (ADSP) and COPDGene samples from NHLBI Trans-Omics for Precision Medicine 27 
(TOPMed) Program we show that our method compared with conventional association tests can lead to 28 
substantially more discoveries. 29 
 30 
Introduction 31 
The rapid development of whole-genome sequencing technology allows for a comprehensive 32 
characterization of the genetic variation in the human genome in both coding and noncoding regions. The 33 
noncoding genome covers ~98% of the human genome, and includes regulatory elements that control when, 34 
where, and to what degree genes will be expressed. Understanding the role of noncoding variation could 35 
provide important insights into the molecular mechanisms underlying different traits.  36 
Despite the increasing availability of whole-genome sequencing datasets including those from moderate to 37 
large scale projects such as the Alzheimer’s Disease Sequencing Project (ADSP), the Trans-Omics for 38 
Precision Medicine (TOPMed) program etc., our ability to analyze and extract useful information from 39 
these datasets remains limited at this point and many studies still focus on the coding regions and regions 40 
proximal to genes1,2. The main challenges for analyzing the noncoding regions include the large number of 41 
rare variants, the limited knowledge of their functional effects, and the lack of natural units for testing (such 42 
as genes in the coding regions). To date, most studies have relied on association testing methods such as 43 
single variant tests for common variants, gene-based tests for rare variants in coding regions, or a heuristic 44 
sliding window strategy to apply gene-based tests to rare variants in the noncoding genome3,4. Only few 45 
methods have been developed to systematically analyze both common and rare variants across the genome, 46 
owing to difficulties such as an increased burden of the multiple testing problem, more complex correlations 47 
and increased computational cost. Moreover, a common feature of the existing association tests is that they 48 
often identify proxy variants that are correlated with the causal ones, rather than the causal variants that 49 
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directly affect the traits of interest. Identification of putative causal variants usually requires a separate fine-1 
mapping step. Fine-mapping methods such as CAVIAR5 and SUSIE6 were developed for single, common 2 
variant analysis in GWAS studies, and are not directly applicable to window-based analysis of rare variants 3 
in sequencing studies. 4 
Methods that control the family-wise error rate (FWER) have been commonly used to correct for multiple 5 
testing in genetic associations studies, e.g. a p-value threshold of 5 × 10!" based on a Bonferroni correction 6 
is commonly used for genome-wide significance in GWAS corresponding to a FWER at 0.05. The number 7 
of genetic variants being considered in the analysis of whole-genome sequencing data increases 8 
substantially to more than 400 million in TOPMed2, and FWER-controlling methods become highly 9 
conservative7. As more individuals are being sequenced, the number of variants increases accordingly. The 10 
false discovery rate (FDR), which quantifies the expected proportion of discoveries which are falsely 11 
rejected, is an alternative metric to the FWER in multiple testing control, and can have greater power to 12 
detect true positives while controlling FDR at a specified level. This metric has been popular in the 13 
discovery of eQTLs and Bayesian association tests for rare variation in autism spectrum disorder studies8-14 
11. Given the limited power of conventional association tests for whole-genome sequencing data and the 15 
potential for many true discoveries to be made in studies for highly polygenic traits, controlling FDR can 16 
be a more appealing strategy. However, the conventional FDR-controlling methods, such as the Benjamini-17 
Hochberg procedure12, often do not appropriately account for correlations among tests and therefore cannot 18 
guarantee FDR control at the target level, which can limit the widespread application of FDR control to 19 
whole-genome sequencing data. 20 
The knockoff framework is a recent breakthrough in statistics to control the FDR under arbitrary correlation 21 
structure and to improve power over methods controlling the FWER13,14. The main idea behind it is to first 22 
construct synthetic features, i.e. knockoff features, that resemble the true features in terms of the correlation 23 
structure but are conditionally independent of the outcome given the true features. The knockoff features 24 
serve as negative controls and help us select the truly important features, while controlling the FDR. 25 
Compared to the well-known Benjamini-Hochberg procedure12, which controls the FDR under 26 
independence or a type of positive-dependence, the knockoff framework appropriately accounts for 27 
arbitrary correlations between the original variables while guaranteeing control of the FDR. Moreover, it is 28 
not limited to using calibrated p-values, and can be flexibly applied to feature importance scores computed 29 
based on a variety of modern machine learning methods, with rigorous finite-sample statistical guarantees. 30 
Several knockoff constructions have been proposed in the literature including the second-order knockoff 31 
generator proposed by Candès et al.14 and the knockoff generator for Hidden Markov Models (HMMs) 32 
proposed by Sesia et al.15,16. The HMM construction has been applied to phased GWAS data in the UK 33 
biobank. However, these constructions can fail for rare variants in whole-genome sequencing data whose 34 
distribution is highly skewed and zero-inflated, leading to inflated FDR. Romano et al.17 proposed deep 35 
generative models for arbitrary and unspecified data distributions, but such an approach is computationally 36 
intensive, and therefore not scalable to whole-genome sequencing data. 37 
Our contributions in this paper include a sequential knockoff generator, a powerful genome-wide screening 38 
method, and a robust inference procedure integrating multiple knockoffs. The sequential knockoff generator 39 
is more than 50 times faster than state-of-the-art knockoff generation methods, and additionally allows for 40 
the efficient generation of multiple knockoffs. The genome-wide screening method builds upon our recently 41 
proposed scan statistic framework, WGScan18, to localize association signals at genome-wide scale. We 42 
adopt the same screening strategy, but incorporate several recent advances for rare-variant analysis in 43 
sequencing studies, including the aggregated Cauchy association test to combine single variant tests, burden 44 
and dispersion (SKAT) tests, the saddlepoint approximation for unbalanced case-control data, the 45 
functional score test that allows incorporation of functional annotations, and a modified variant threshold 46 
test that accumulates extremely rare variants such as singletons and doubletons19-26. We compute statistics 47 
measuring the importance of the original and knockoff features using an ensemble of these tests. Feature 48 
statistics that contrast the original and knockoff statistics are computed for each feature, and can be used 49 
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by the knockoff filter to select the important features, i.e. those significant at a fixed FDR threshold. The 1 
integration of multiple knockoffs further helps improve the power, stability and reproducibility of the results 2 
compared with state-of-the-art alternatives. Using simulations and applications to two whole-genome 3 
sequencing studies, we show that the proposed method is powerful in detecting signals across the genome 4 
with guaranteed FDR control. 5 
Our knockoff method can be considered a synthetic alternative to knockout functional experiments designed 6 
to identify functional variation implicated in a trait of interest. For each individual in the original cohort, 7 
the proposed method generates a synthetic sequence where each genetic variant is being randomized, 8 
making it silent and not directly affecting the trait of interest while preserving the sequence correlation 9 
structure. Then the proposed method compares the original cohort where the variants are potentially 10 
functional with the synthetic cohort where the variants are silenced. The randomization utilizes the knockoff 11 
framework that ensures that the original sequence and the synthetic sequence are “exchangeable”. That is, 12 
if one replaces any part of the original sequence by its synthetic, silenced sequence, the joint distribution of 13 
genetic variants (the LD structure etc.) remains the same. This leads to an important feature of our proposed 14 
screening procedure that is similar to real functional experiments, namely the ability to prioritize causal 15 
variants over associations due to linkage disequilibrium and other unadjusted confounding effects (e.g. 16 
shadow effects of nearby significant variants and unadjusted population stratification) as we show below. 17 
In this paper, we present a statistical approach that addresses the challenges described above, and leads to 18 
increased power to detect and localize common and rare risk variants at genome-wide scale. The framework 19 
appropriately accounts for arbitrary correlations while guaranteeing FDR control at a desired level, and 20 
therefore has higher power than existing association tests that control FWER. Furthermore, the proposed 21 
method has additional important advantages over the standard approaches due to some intrinsic properties 22 
of the underlying framework. Specifically, it allows for the prioritization of causal variants over 23 
associations due to linkage disequilibrium. For analyses specifically focusing on rare variants, the method 24 
naturally distinguishes the signal due to rare variants from shadow effects of nearby significant (common 25 
or rare) variants. Additionally, it naturally reduces false positives due to unadjusted population stratification. 26 
 27 
Results 28 
Overview of the screening procedure with multiple knockoffs (KnockoffScreen). We describe here the 29 
main ideas behind our method, KnockoffScreen. We assume a study population of 𝑛 subjects, with 𝑌# being 30 
the quantitative/dichotomous outcome value; 𝐗𝐢 = (𝑋#%, … , 𝑋#&)' being the 𝑑 covariates which can include 31 
age, gender, principal components of genetic variation etc.; /𝐺#(1%)()* being the 𝑝 genetic variants in the 32 
genome. For each target window 𝛷+, = {𝑗: 𝑘 ≤ 𝑗 ≤ 𝑙} , we are interested in determining whether 𝛷+, 33 
contains any variants associated with the outcome of interest while adjusting for covariates. 34 
The idea of the proposed method is to augment the original cohort with a synthetic cohort with genetic 35 
variants, /𝐺;#(1%)()*, referred to as knockoff features. /𝐺;#(1%)()* are generated by a data driven algorithm 36 
such that they are exchangeable with /𝐺#(1%)()*, yet they do not directly affect 𝑌# (i.e. are “silenced”, and 37 
therefore not causal). More precisely, /𝐺;#(1%)()* is independent of 𝑌# conditional on /𝐺#(1%)()*. Note that 38 
the knockoff generation procedure is different from the well-known permutation procedure which generates 39 
control features by permuting the samples; for such a permutation procedure, the exchangeability property 40 
between the original genetic variants and the synthetic ones does not hold and hence the FDR control cannot 41 
be guaranteed13,14. 42 
The screening procedure examines every target window 𝛷+, in the genome and performs hypothesis testing 43 
in both the original cohort and the synthetic cohort, to test for association of 𝐺-!"  and 𝐺;-!"  with 𝑌 44 
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respectively. As explained below, the knockoff procedure is amenable to any form of association test within 1 
the window. Let 𝑝-#$, 𝑝<-#$ be the resulting p-values. We define a feature statistic as  2 

𝑊-#$ = 𝑇-#$ − 𝑇;-#$ , (1) 3 

where 𝑇-#$ = − log%. 𝑝-!" and 𝑇;-#$ = − log%. 𝑝<-!". Essentially, the observed p-value for each window is 4 
compared to its control counterpart in the synthetic cohort. A threshold 𝜏 for 𝑊-#$ can be determined by 5 
the knockoff filter so that the FDR is controlled at the nominal level. We select all windows with 𝑊-#$ ≥ 𝜏. 6 
We additionally derived the corresponding Q-value for a window, 𝑞-#$, that unifies the feature statistic 7 
𝑊-#$ and the threshold 𝜏. More details are given in the Methods section.  8 

The knockoff construction ensures exchangeability of features, namely that /𝐺#(1%)()* and /𝐺;#(1%)()* are 9 
exchangeable. Hence if one swaps any subset of variants with their synthetic counterpart, the joint 10 
distribution remains the same. For instance, suppose that 𝐺#% and 𝐺#/ are two genetic variants, then the 11 
knockoff generator will generate their knockoff counterparts 𝐺;#%  and 𝐺;#/  such that 12 
F𝐺#%, 𝐺#/, 𝐺;#%, 𝐺;#/G~F𝐺#%, 𝐺;#/, 𝐺;#%, 𝐺#/G, where “~” denotes equality in distribution. More generally, for any 13 
subset 𝑆 ⊂ {1,… , 𝑝}, 14 

F𝐺# , 𝐺;#G0123(5)~F𝐺# , 𝐺;#G, (2) 15 

where F𝐺# , 𝐺;#G0123(5) is obtained from F𝐺# , 𝐺;#G by swapping the variants 𝐺#( and 𝐺;#( for each 𝑗 ∈ 𝑆. This 16 
feature exchangeability implies the exchangeability of the importance scores 𝑇-#$ and 𝑇;-#$ under the null 17 
hypothesis, i.e. F𝑇-#$ , 𝑇;-#$G~F𝑇;-#$ , 𝑇-#$G if Φ+, does not contain any causal variant. Thus 𝑇;-#$ can be used 18 
as the negative control, and we reject the null when 𝑊-#$ = 𝑇-#$ − 𝑇;-#$  is sufficiently large. This 19 
exchangeability property leads to several interesting properties of our proposed screening procedure relative 20 
to conventional association tests as mentioned in the Introduction, and which will be discussed in detail in 21 
later sections.  22 
Once the knockoff generation is completed, we apply a genome-wide screening procedure. Our screening 23 
procedure considers windows with different sizes (1bp, 1kb, 5kb, 10kb) across the genome, with half of 24 
each window overlapping with adjacent windows of the same size. To calculate the importance score for 25 
each window Φ78, we incorporate several recent advances for association tests for sequencing studies to 26 
compute 𝑝-!".  27 

• For each 1bp window (i.e. single variant): we only consider common (minor allele frequency 28 
(MAF)>0.05) and low frequency (0.01<MAF<0.05) variants and compute 𝑝-!"  from single variant 29 
score test. For binary traits, we implement the saddlepoint approximation for unbalanced case-control 30 
data. 31 

• For each 1kb/5kb/10kb window, we perform: 32 
a. Burden and dispersion tests for common and low frequency variants with Beta (MAF, 1, 25) 33 

weights, where Beta (.) is the probability density function of the beta distribution with shape 34 
parameters 1 and 2526. These tests aim to detect the combined effects of common and low frequency 35 
variants. 36 

b. Burden and dispersion tests for rare variants (MAF<0.01 & minor allele count (MAC)>=5) with 37 
Beta (MAF,1, 25) weights. These tests aim to detect the combined effects of rare variants.  38 

c. Burden and dispersion tests for rare variants, weighted by functional annotations23. Current 39 
implementation includes CADD27 and tissue/cell type specific GenoNet scores28. These tests aim 40 
to utilize functional annotations for improved power. 41 

d. Burden test for aggregation of ultra-rare variants (MAC<5). These tests aim to aggregate effects 42 
from extremely rare variants such as singletons, doubletons etc. 43 

e. Single variant score tests for common, low frequency and rare variants in the window.  44 
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f. The aggregated Cauchy association test29 to combine a-e to compute 𝑝-!".  1 

We also extend the single knockoff described above to the setting with multiple knockoffs to improve the 2 
power, stability and reproducibility of the findings. Let 𝑞 be the FDR threshold. The inference based on a 3 
single knockoff is limited by a detection threshold of 1/𝑞, defined as the minimum number of independent 4 
signals required for making any discovery. It has no power at the target FDR level 𝑞 if there are fewer than 5 
1/𝑞 discoveries to be made. The multiple knockoffs improve the detection threshold from 1/𝑞 to 1/(𝑀𝑞)	, 6 
where 𝑀 is the number of knockoffs30. For example, the detection threshold is 10 when the target FDR=0.1. 7 
In scenarios where the signal is sparse (<10 independent causal variants) in the target region or across the 8 
genome, inference based on a single knockoff can have very low power to detect any of the causal variants. 9 
In such a setting, KnockoffScreen with 𝑀 knockoffs reduces the detection threshold from 10 to 10/𝑀, 10 
which allows KnockoffScreen to detect sparse signals in a target region or across the genome. Furthermore, 11 
integrating multiple knockoffs leads to improvements in the stability and reproducibility of the knockoff 12 
procedure. Specifically, the results of the KnockoffScreen procedure depend to some extent on the sampling 13 
of knockoff features /𝐺;#(1%)()*, which is random. Therefore, running the analysis twice on the same dataset 14 
may lead to the selection of slightly different subsets of features. In particular, for weak causal effects, there 15 
is a chance that the causal variant is selected in only one of the analyses. We demonstrate in the Methods 16 
section that our choice of multiple knockoff statistics helps improve the stability of the results compared 17 
with state-of-the-art alternatives. 18 
In the Methods section, we describe in detail our computationally efficient method to generate the knockoff 19 
features, and our multiple knockoffs method. A flowchart of our approach is shown in Figure 1.  20 
Figure 1: Overview of KnockoffScreen. The left panel illustrates the knockoff generation based on the original genotype matrix. 21 
Each row in the matrix corresponds to an individual and each column corresponds to a genetic variant. Each cell presents the 22 
genotype value/dosage. The mid panel illustrates the calculation of the importance score for each 1bp, 1kb, 5kb or 10kb window. 23 
The right panel presents a typical example of genome-wide screening results using conventional association testing (top) and 24 
KnockoffScreen (bottom). 25 

 26 
KnockoffScreen improves power and guarantees FDR control in single-region simulation studies. We 27 
performed empirical power and FDR simulations to evaluate the performance of KnockoffScreen in a single 28 
region. We compared it with existing alternatives for sequence-based association testing, including the 29 
burden and dispersion (SKAT) tests with Beta(MAF;1,25) weights. For a fair and simplified comparison, 30 
we did not include additional functional annotations in our method for these simulations. Note that burden 31 
and SKAT are also applied within the knockoff framework, and therefore we still aim at controlling the 32 
FDR. We also compared with state-of-the-art methods for generating knockoff features, including the 33 
second-order knockoff generator proposed by Candès et al.14, referred to as SecondOrder, and the knockoff 34 
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generator for Hidden Markov Models (HMMs) proposed by Sesia et al.15,16 with number of states S=50. 1 
For simulating the sequence data, each replicate consists of 10,000 individuals with genetic data on 1,000 2 
genetic variants from a 200kb region, simulated using the haplotype dataset in the SKAT package. The 3 
SKAT haplotype dataset was generated using a coalescent model (COSI), mimicking the linkage 4 
disequilibrium structure of European ancestry samples. Simulation details are provided in the Methods 5 
section. We compared the methods in different scenarios for common and rare variants, quantitative traits 6 
and dichotomous traits. For each replicate, the empirical power is defined as the proportion of detected 7 
windows among all causal windows (windows that contain at least one causal variant); the empirical FDR 8 
is defined as the proportion of non-causal windows among all detected windows. We present the average 9 
power and FDR over 1,000 replicates in Figure 2. We additionally present the distribution of power and 10 
FDP (the false discovery proportion) at target FDR level 0.1 over 1,000 replicates in Figure S1.  11 
The comparisons of the different knockoff generators show that KnockoffScreen has significantly improved 12 
power with a better FDR control. For single knockoff generators, SecondOrder and HMMs have inflated 13 
FDR for rare variants. We also observed that the HMM based knockoff has inflated FDR for common 14 
variants for the window-based screening procedure considered in this paper. KnockoffScreen has well 15 
controlled FDR, and significantly higher power compared with single knockoff, especially when the target 16 
FDR 𝑞 is small. This is due to the high detection threshold (1/𝑞) needed for the single knockoff. Our 17 
multiple knockoff method KnockoffScreen incorporates five knockoffs, and as a consequence the detection 18 
threshold is reduced from 1/𝑞 to 1/(5𝑞)	, which helps improve power. We note that the power of methods 19 
with single knockoff and multiple knockoffs may be comparable in settings where the detection threshold 20 
is not a primary factor that limits the power, such as for higher target FDR values. Furthermore, we observed 21 
that the additional tests included in KnockoffScreen improve its power, compared to the burden and SKAT 22 
tests with the same number of knockoffs. In summary, the simulation results show that the screening 23 
procedure and multiple knockoffs help improve power while controlling FDR at the nominal level. 24 
Figure 2: Power and false discovery rate (FDR) simulation studies in a single region. The four panels show power and FDR 25 
base on 500 replicates for different types of traits (quantitative and dichotomous) and different types of variants (rare and common), 26 
with different target FDR varying from 0 to 0.2. The different colors indicate different knockoff generators. The different types of 27 
lines indicate different tests to define the importance score. 28 

 29 
 30 
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KnockoffScreen improves genome-wide locus discovery for polygenic traits. We conducted genome-1 
wide empirical FDR and power simulations using ADSP whole-genome sequencing data to evaluate the 2 
performance of KnockoffScreen in the presence of multiple causal loci. Specifically, we randomly choose 3 
10 causal loci and 500 noise loci across the whole genome, each of size 200kb. Each causal locus contains 4 
a 10kb causal window. For each replicate, we randomly set 10% variants in each 10kb causal window to 5 
be causal. In total, there are approximately 335 causal variants on average across the genome. Simulation 6 
details are provided in the Methods section. We compared the proposed KnockoffScreen method to 7 
conventional p-value based methods including Bonferroni correction for FWER control, and BH procedure 8 
for FDR control. For KnockoffScreen we also evaluated the effect of different numbers of knockoffs. We 9 
evaluated the empirical power and FDR at target FDR 0.10. For each replicate, the power is defined as 10 
proportion of the 200kb causal loci detected by each method; the empirical FDR is defined as the proportion 11 
of significant windows +/- 100/75/50kb away from the causal windows. We report the average power and 12 
FDR over 100 replicates in Figure 3. 13 
The simulation results show that KnockoffScreen exhibits substantially higher power than using Bonferroni 14 
correction. Additionally, using the conventional Benjamini-Hochberg FDR control may have higher power 15 
than KnockoffScreen, but fails to control FDR at higher resolution (e.g. +/-75kb). Statistically, the knockoff 16 
filter is expected to have similar or higher power for independent tests compared with the BH procedure13. 17 
For correlated genetic variants/windows, the higher empirical power of the BH procedure in our simulation 18 
studies is subject to false-positive inflation. Therefore, we do not recommend directly using the 19 
conventional BH FDR control in whole genome sequencing studies. In the presence of multiple causal loci 20 
and at a moderate target FDR, we observe that the power is similar for different number of knockoffs 21 
because the aforementioned detection threshold is no longer an issue. Thus, multiple knockoffs are 22 
particularly useful when the number of causal loci is small, and the target FDR is stringent. Regardless of 23 
the effect on power, an important advantage of using multiple knockoffs is that it can significantly improve 24 
the stability and reproducibility of knockoff-based inference. Since the knockoff sampling is random, each 25 
run of the knockoff procedure may lead to different selected sets of features. In practice, strong signals will 26 
always be selected but weak signals may be missed at random with a single knockoff. The proposed multiple 27 
knockoff procedure has significantly smaller variation in feature statistic in our simulation study based on 28 
real data from ADSP. We discuss the details in the Methods section (Figure 9).  29 
  30 
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Figure 3: Genome-wide power and false discovery rate (FDR) simulations studies in the presence of multiple causal loci. 1 
The two left panels show power for different types of traits (quantitative and dichotomous), defined as the average proportion of 2 
200kb causal loci being identified at target FDR 0.1. The two right panels show empirical FDR for different types of traits 3 
(quantitative and dichotomous) at different resolutions, defined as the proportion of significant windows (target FDR 0.1) +/- 4 
100/75/50kb away from the causal windows. The empirical power and FDR are averaged over 100 replicates. 5 

 6 
KnockoffScreen prioritizes causal variants/loci over associations due to linkage disequilibrium. The 7 
exchangeability properties for the features help the inference based on the feature statistic 𝑊-#$ = 𝑇-#$ −8 
𝑇;-#$ to prioritize causal variants/loci over associations due to LD. For example, suppose 𝐺#% is causal and 9 
𝐺#/  is a null variant correlated with 𝐺#% ; F𝐺;#%, 𝐺;#/G  are exchangeable with (𝐺#%, 𝐺#/) , therefore 10 
corF𝐺#%, 𝐺;#/	G ≈ cor(𝐺#%, 𝐺#/	). Thus, the resulting p-values 𝑝/~𝑝</, and hence	𝑊/ = − log 𝑝/ − (− log 𝑝</) 11 
follows a distribution that is symmetric around 0. This way, by comparing the p-value of 𝐺#/ (a null variant) 12 
to that of its control counterpart, the method no longer identifies the proxy variant 𝐺#/ as significant. On 13 
the other hand, the knockoff generation minimizes the correlation between feature 𝐺#% and its knockoff 14 
counterpart 𝐺;#% , such that 	𝑊% = − log 𝑝% − (− log 𝑝<%) takes positive value with higher probability and 15 
therefore can identify the causal variant 𝐺#% as significant. 16 
We compared KnockoffScreen with state-of-the-art methods which perform association tests in each 17 
window and apply a hard threshold (e.g. Bonferroni correction) to control for family wise error rate (FWER). 18 
For a fair comparison, for the conventional association testing we adopted the same combination of tests 19 
(i.e. we combined the same single variant and region-based tests) implemented in KnockoffScreen to 20 
calculate the p-value. As a proof of concept, we show first the results from an analysis of common and rare 21 
variants within a 200kb region near the apolipoprotein E (APOE) gene for Alzheimer’s Disease (AD), using 22 
data on 3,894 individuals from the Alzheimer’s Disease Sequencing Project (ADSP). More details on the 23 
data analysis for ADSP are described in a later section. APOE is a major genetic determinant of AD risk, 24 
containing AD risk/protective alleles. APOE comes in three forms (APOE 𝜀2/𝜀3/𝜀4). Among them, 𝜀2 is 25 
the least common and confers reduced risk to AD, 𝜀4 is the most common and increases risk to AD, while 26 
𝜀3 appears neutral. We found that the conventional association test using a Bonferroni correction identifies 27 
a large number of significant associations (𝑝 < 0.05/number of tested windows), but most of these windows 28 
are presumably false positives due to LD since they are no longer significant after adjusting for the APOE 29 
alleles (Figure 4A). In contrast, KnockoffScreen filtered out a considerable number of associations that are 30 
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likely due to LD, and identified more refined windows that reside in APOE and APOC1 at target FDR=0.1 1 
(Figure 4B). A recent study identified AD risk variants and haplotypes in the APOC1 region, and showed 2 
that these signals are independent of the APOE-ε4 coding change, consistent with our findings31.  3 
We conducted additional simulation studies to further investigate this property. We randomly drew a subset 4 
of variants (1,000 variants) from the 200kb region near APOE, set a 5kb window (similar to the size of 5 
APOE) as the causal window and then simulated disease phenotypes. More details on these simulations are 6 
provided in the Methods section. With target FDR=0.1, we evaluated the proportion of selected windows 7 
overlapping the true causal window, and the maximum distance between the selected windows and the 8 
causal window. Figures 4C-D show the results over 500 replicates. We found that windows selected by 9 
KnockoffScreen have a significantly better chance to overlap with the causal window relative to the 10 
conventional association test. We also found that the maximum distance between the selected windows and 11 
the causal window is significantly smaller for KnockoffScreen. Particularly, the distribution of the 12 
maximum distance to the causal window is zero-inflated for KnockoffScreen; these are cases where all 13 
windows detected by KnockoffScreen overlap/cover the causal window.  14 
Overall, the real data example and these simulation results demonstrate that KnockoffScreen is able to 15 
prioritize causal variants over associations due to linkage disequilibrium and produces more accurate results 16 
in detecting disease risk variants/loci, thereby improving interpretation of the findings. 17 
Figure 4: KnockoffScreen prioritizes causal variants/loci and distinguishes the signal due to rare variants from shadow 18 
effects of significant common variants nearby. The top two panels present the results of the data analyses of the APOE+/-100kb 19 
region from the ADSP data. Each dot represents a window. Windows selected by KnockoffScreen are highlighted in red. Windows 20 
selected by conventional association testing but not by KnockoffScreen are shown in gray. The bottom three panels present 21 
simulation results based on the APOE+/-100kb region, comparing the conventional association testing and KnockoffScreen methods 22 
in terms of prioritizing causal regions, and distinguishing true signals from shadow effects of nearby variants. The target FDR is 23 
0.1. The results are based on 500 replicates. 24 

 25 
KnockoffScreen distinguishes the signal due to rare variants from shadow effects of significant 26 
common variants nearby. Conventional sequence-based association tests focused on rare variants (MAF 27 
below a certain threshold, e.g. 0.01) can lead to false positive findings by identifying rare variants that are 28 
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not causal but instead correlated with a known causal common variant at the same locus; this is referred to 1 
as the shadow effects32. For illustration, we conducted simulation studies based on the same 200kb region 2 
near the APOE gene as described above. We adopted the same simulation setting but set the causal variants 3 
to be common (MAF>0.01) and apply the methods to rare variants only (MAF<0.01). More details on these 4 
simulations are provided in the Methods section. Since all causal variants are common, all detected 5 
windows (focusing on rare variants) are false positives due to the shadow effect. We compared 6 
KnockoffScreen with conventional association testing by counting the number of false positives and show 7 
the distribution over 500 replicates in Figure 4E. For a fair comparison, for the conventional association 8 
testing we adopted the same ensemble of tests implemented in KnockoffScreen to calculate the p-value. We 9 
observed that the conventional tests tend to identify a large number of false positives due to the shadow 10 
effect. In contrast, KnockoffScreen has a significantly reduced number of false positives, demonstrating that 11 
it is able to distinguish the effect of rare variants from that of common variants nearby. This feature is 12 
particularly appealing in detecting novel rare association signals in whole-genome sequencing studies. The 13 
same argument also holds if instead rare variants were causal; by construction, KnockoffScreen applied to 14 
common variants only can distinguish effects attributable to common causal variants from those due to rare 15 
causal variants nearby. 16 
Empirical evaluation of KnockoffScreen in the presence of population stratification. Population 17 
structure is an important confounder in genetic association studies. Standard methods to adjust for 18 
population stratification, including principal component analysis or mixed effect models, help control for 19 
global ancestry in conventional sequencing association tests. We performed an empirical evaluation of 20 
KnockoffScreen in the presence of population stratification using sequencing data from the ADSP project. 21 
We also evaluated whether, by regressing out the top principal components when computing the association 22 
statistics (p-values), KnockoffScreen is able to control FDR. Specifically, we randomly drew a subset of 23 
variants (1,000 variants) from the 200kb region near the APOE region in the ADSP study. The ADSP 24 
includes three ethnic groups: African American (AA), Non-Hispanic White (NHW) and Others (of which, 25 
98% are Caribbean Hispanic) (see genome-wide PCA results in Figure 5A). We set the mean/prevalence 26 
for the quantitative/dichotomous trait to be a function of the subpopulation, but not directly affected by any 27 
genetic variants. More details on these simulations are provided in the Methods section. We compared 28 
KnockoffScreen with the conventional association test with no adjustment for population stratification. We 29 
also included a modified version of KnockoffScreen that adjusts for the top 10 global PCs when computing 30 
the p-values used to compute the window feature statistic, referred to as KnockoffScreen+10PCs. For 31 
comparison, we also included the conventional association test based on Bonferroni correction, which 32 
defines significant associations by p-value<0.05/number of tests.  33 
Since in these simulations none of the genetic variants are causal, all detected windows are false positives 34 
due to the confounding effects of population structure. With a target FDR=0.1, we calculated the observed 35 
FDR, defined as the proportion of replicates where any window is detected, and present the results in 36 
Figures 5B-C. We observed that both PC-adjusted KnockoffScreen and the conventional PC-adjusted 37 
association test are able to control FDR at the target level.  This is further illustrated by our real data analysis 38 
of ADSP where despite the combined analysis of three ethnicities there is no apparent inflation in false 39 
positive signals. Interestingly, KnockoffScreen exhibits lower FDR than association test when they are both 40 
unadjusted, indicating that the use of knockoffs naturally helps to prioritize causal variants over association 41 
due to population stratifications. We additionally performed simulation studies to mimic population 42 
stratification driven by rare variants and present the results in Table S1. As before, we found that both PC-43 
adjusted KnockoffScreen and association test are able to control FDR in the scenarios considered here, and 44 
KnockoffScreen exhibits a lower FDR than the conventional association test for an unadjusted model. Since 45 
the reduction of false positives for KnockoffScreen does not require observing/estimating the underlying 46 
ancestry, the knockoff procedure can potentially complement existing tools for ancestry adjustment to better 47 
reduce false positive findings due to population substructure. However, we clarify that KnockoffScreen 48 
itself does not completely eliminate the confounding due to population stratification (Table S1) because the 49 
current knockoff generator assumes the same LD structure across individuals and it only accounts for local 50 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.434451doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434451
http://creativecommons.org/licenses/by-nd/4.0/


 11 

LD structure. Therefore, it does not capture heterogeneous LD structure across populations and strong long-1 
range LD due to population stratification. Development of new knockoff generators that explicitly account 2 
for population structure will be of interest33. 3 
 4 
Figure 5: Empirical evaluation of KnockoffScreen in the presence of population stratification. The left panel presents the 5 
principal component analysis of the ADSP data, which contains three ethnic groups: African American (AA), Non-Hispanic White 6 
(NHW) and Others (of which, 98% are Caribbean Hispanic). Each dot represents an individual. The middle and right panels present 7 
results from a simulation study that mimics the ADSP data, comparing KnockoffScreen with conventional association testing. Each 8 
panel shows empirical FDR based on 500 replicates. KnockoffScreen 10PCs is a modified version of KnockoffScreen method that 9 
includes adjustment for the top principal components while computing the association statistics (p-values). KnockoffScreen controls 10 
FDR at 0.10; Association Testing is based on usual Bonferroni correction (0.05/number of tests), controlling FWER at 0.05. 11 

 12 
KnockoffScreen enables computationally efficient screening of whole-genome sequencing data. One 13 
obstacle for the widespread application of knockoffs to genetic data, particularly whole-genome sequencing 14 
data, is their computational cost. The knockoff generation can be computationally intensive when the 15 
number of genetic variants 𝑝 is large; depending on the method, it may require the calculation of the eigen 16 
values of a 𝑝 × 𝑝 covariance matrix, or iteratively fitting a prediction model for every variant. The whole- 17 
genome sequencing data from ADSP (~4000 individuals) contains ~85 million variants in total, much larger 18 
than the number of variants in GWAS datasets. Similarly, in 53,581 TOPMed samples, more than 400 19 
million single-nucleotide and insertion/deletion variants were detected2. As more individuals are being 20 
sequenced, the number of variants will increase accordingly. We demonstrate that the proposed sequential 21 
model to simultaneously generate multiple knockoffs is significantly more computationally efficient than 22 
existing knockoff generation methods, making it scalable to whole-genome sequencing data. We compared 23 
the computing time of our proposed knockoff generator with two existing alternatives: the second-order 24 
knockoff generator proposed by Candès et al.14, referred to as SecondOrder; and knockoffs for Hidden 25 
Markov Models (HMMs) proposed by Sesia et al.15,16 with varying number of states (S=12 and S=50). We 26 
estimate the complexity of our proposed method as 𝑂(𝑛𝑝), where 𝑛 is the sample size and 𝑝 is the number 27 
of genetic variants. The details of this calculation are described in the Methods section. The complexity of 28 
the HMM method is also 𝑂(𝑛𝑝), as discussed in Sesia et al.16. However, it is significantly less efficient 29 
than the proposed method for unphased genotype data as we show below. We note that the computing time 30 
of the SecondOrder method is of order 𝑂(𝑛𝑝/ + 𝑝9) because it requires calculating the eigen values of a 31 
𝑝 × 𝑝 covariance matrix. Therefore, it is not a feasible approach for whole-genome analysis with a large 32 
number of variants.  33 
We performed simulations to empirically evaluate the computational time for the different methods. We 34 
note that the proposed method focuses on the analysis of whole-genome sequencing data, and thus the 35 
computational cost is reported on unphased genotype data, which is the usual format for sequencing data. 36 
Since the HMM model assumes the availability of phased data, we report the computing time separately 37 
for phasing with fastPhase and sampling with SNPknock as described in Sesia et al.15. We simulated genetic 38 
data using the SKAT package, with varying sample sizes and number of genetic variants (Table 1). The 39 
computing time was evaluated on a single CPU (Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz). For the 40 
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simulation scenario considered in the previous section with 10,000 individuals and 1,000 genetic variants, 1 
we observed that the proposed method takes 6.59 seconds to generate a single set of knockoff features, 2 
which is ~130 times faster than the HMM model with S=12 states (881.43 seconds). The application of the 3 
HMM model with the recommended S=50 states to unphased sequencing data (13681.53 seconds for 10,000 4 
individuals and 1,000 genetic variants) is currently not practical at genome-wide scale. As shown, a 5 
substantial fraction of the total computing time is taken by the phasing step, and therefore using more 6 
computationally efficient phasing algorithms can further improve the computational cost of the HMM-7 
based knockoff generation. 8 
Table 1: Computing time of different knockoff generators. Each cell shows the computing time in seconds to generate knockoffs 9 
based for unphased genotype data. The multiple sequential knockoffs approach generates five knockoffs. The computing time was 10 
measured on unphased genotype data using a single CPU (Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz). Since the HMM model 11 
was mainly proposed for phased data, we report the computing time separately for phasing with fastPhase, and sampling with 12 
SNPknock. 13 

  MSK (5 knockoffs) SK SecondOrder HMM with S=12 HMM with S=50 

n p    Phasing Sampling Phasing Sampling 

1000 500 2.11 0.86 8.9 37.86 6.02 580.87 93.88 

1000 1000 3.99 1.92 57.01 76 12.01 1147.66 188.74 

1000 2000 8.89 4.06 491.19 161.94 24.76 2336.83 376.93 

5000 500 4.66 1.63 8.51 188.5 30.45 2878.43 485.34 

5000 1000 11.76 3.95 52.63 380.06 60.28 5914.19 996.11 

5000 2000 31.58 11.09 479.01 811.61 129.6 11734.66 1865.11 

10000 500 7.42 2.34 9.29 377.07 58.8 5784.24 957.49 

10000 1000 20.57 6.59 54.66 757.49 123.94 11744.68 1936.85 

10000 2000 52.86 16.92 445.05 1571.19 253.46 23584.8 3870.07 

 14 
KnockoffScreen detects more independent disease risk loci across the genome in two whole-genome 15 
sequencing studies. Here we show results from the application of KnockoffScreen to two whole-genome 16 
sequencing datasets from two different studies, namely the Alzheimer’s Disease Sequencing Project 17 
(ADSP), and the COPDGene study from the NHLBI Trans-Omics for Precision Medicine (TOPMed) 18 
Program. For each study, we considered windows with sizes (1bp, 1kb, 5kb, 10kb) across the genome as 19 
described before. In addition to the different weighting and thresholding strategies, we include several 20 
functional scores to improve the power of detecting rare functional variants. The functional scores include 21 
non-tissue specific CADD score and 10 tissue/cell type specific GenoNet scores. The GenoNet scores were 22 
trained using epigenetic annotations from the Roadmap Epigenomics Project across 127 tissues/cell types. 23 
We partition the tissues/cell types into 10 groups (including Stem Cells, Blood, Connective Tissue, Brain, 24 
Internal Organs, Fetal Brain, Muscle, Fetal Tissues, and Gastrointestinal; Table S2 has more details on 25 
these tissue groupings) and we use the maximum GenoNet score per group. 26 
We show results from conventional association tests (using the same combination of single variant and 27 
region-based tests as implemented in KnockoffScreen) and using Bonferroni correction (𝑝 < 0.05/number 28 
of tested windows) to control the family wise error rate. QQ-plots of all tests (Figure S5) show that the type 29 
I error rate is well controlled. We also report results from KnockoffScreen at an FDR threshold of 0.1. We 30 
assigned each significant window to its overlapping locus (gene or intergenic region). If the locus is a gene, 31 
we report the gene’s name; if the locus is intergenic, we report the upstream and downstream genes 32 
(enclosed within parentheses and separated by “-”). To assess the degree of overlap with previously 33 
described associations, we additionally searched if the loci have known associations with Alzheimer’s 34 
disease and lung related traits in the NHGRI-EBI GWAS Catalog34, acknowledging that some of the studies 35 
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in the GWAS catalog included ADSP and COPDGene data. The details on gene annotations are described 1 
in the Methods section.  2 
Application to ADSP. We first applied KnockoffScreen to the whole-genome sequencing data from the 3 
Alzheimer’s Disease Sequencing Project (ADSP) for a genome-wide scan. The data includes 3,085 whole 4 
genomes from the ADSP Discovery Extension Study and 809 whole genomes from the Alzheimer’s Disease 5 
Neuroimaging Initiative (ADNI), for a total of 3,894 whole genomes. More details on the ADSP data are 6 
provided in the Methods section. We adjusted for age, age^2, gender, ethnic group, sequencing center, and 7 
the leading 10 principal components of ancestry. We present the results in Figure 6.  8 
The conventional association test with Bonferroni correction identified a region (~50kb long) at the known 9 
APOE locus, containing a large number of significant associations (Figure 6), but, as discussed before, most 10 
of them are presumably due to LD with the known APOE risk variants since they are no longer significant 11 
after adjusting for the APOE alleles. Within the APOE region, KnockoffScreen identified fewer windows 12 
that overlap with known AD genes, namely APOE, APOC1, APOC1P1 and TOMM40 at FDR<0.1, while 13 
removing a considerable number of associations that are likely due to LD. Beyond the APOE locus, 14 
KnockoffScreen identified several other loci that potentially affect AD risk, including KAT8 and an 15 
intergenic region on chromosome 18q22 between DSEL and TMX3. KAT8 (lysine acetyltransferase 8) has 16 
been recently identified in two large scale GWAS focused on clinically diagnosed AD and AD-by-proxy 17 
individuals35,36. It is a promising candidate gene that affects multiple brain regions including the 18 
hippocampus and plays a putative role in neurodegeneration in both AD and Parkinson’s disease37. The 19 
intergenic region identified by KnockoffScreen resides in a known linkage region for AD and bipolar 20 
disorder on chromosome 18q22.138,39. DSEL (dermatan sulfate epimerase-like) is implicated in D-21 
glucuronic acid metabolism and tumor rejection. A recent study has shown that glucuronic acid levels 22 
increase with age and predict future healthspan-related outcomes40. Furthermore, DSEL is highly expressed 23 
in the brain and has been found associated with AD in an imaging-wide association study41. SNPs upstream 24 
of DSEL have also been associated with recurrent early-onset major depressive disorder42. Two other 25 
intergenic loci, ANKRD18A-FAM240B and TAFA5-BRD1 were reported in the GWAS catalog to have 26 
suggestive associations ( 5 × 10!" < 𝑝 < 1 × 10!: ) with late-onset Alzheimer’s disease43. We 27 
additionally present results when applying the Benjamini-Hochberg procedure for FDR control in Figure 28 
S6; we observed that the associations identified by KnockoffScreen are largely replicated in the GWAS 29 
catalog, while the new discoveries uniquely identified using the conventional BH FDR control do not 30 
overlap with previous GWAS findings, suggesting they may be false positives. 31 
Application to COPDGene study in TOPMed. The Genetic Epidemiology of COPD (COPDGene) study 32 
includes current and former cigarette smokers aged > 45. All subjects underwent spirometry to measure 33 
lung function. Cases were identified as those with moderate-to-severe chronic obstructive pulmonary 34 
disease (COPD), controls were those with normal lung function, and a third set were neither cases nor 35 
controls. These individuals have been whole-genome sequenced as part of the larger TOPMed project at an 36 
average ~30X coverage depth, with joint-sample variant calling and variant level quality control in 37 
TOPMed samples2,44. The COPDGene Freeze 5b dataset used for this analysis includes a total of 8,444 38 
individuals, of which 5,713 are Non Hispanic White and 2,731 are African American. We tested lung 39 
function measurements on all individuals: forced expiratory volume in one second (FEV1), forced vital 40 
capacity (FVC) and their ratio (FEV1/FVC), as well as for case-control COPD status on a subset (NHW: 41 
2366 cases/2084 controls, AA: 702 cases/1409 controls). 42 
We applied KnockoffScreen separately to the two ethnic groups, and four phenotypes, while adjusting for 43 
covariates as follows. In all analyses we adjusted for sequencing center, and the 10 leading principal 44 
components of ancestry. Additionally, for FEV1 and FEV1/FVC ratio, we adjusted for age, age2, gender, 45 
height, height2, pack-years of smoking, and current smoking. For FVC, we adjusted for age, age2, gender, 46 
height, height2, weight, pack-years of smoking, and current smoking. For COPD case/control status, we 47 
adjusted for age, gender, and pack-years of smoking. Results for the NHW group for FEV1 are shown in 48 
Figure 7 and those for FEV1/FVC are shown in Figure S4.   49 
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Note that for FEV1 and FEV1/FVC, KnockoffScreen has been able to identify many more significant 1 
associations compared with the application to Alzheimer’s disease, a reflection of the larger sample size 2 
but also the higher degree of polygenicity for lung function phenotypes relative to AD. Compared with the 3 
conventional association test with Bonferroni correction, KnockoffScreen detected several known signals 4 
for FEV1, including the PSMA4/CHRNA5/CHRNA3 locus on chromosome 15, the INTS12/GSTCD locus 5 
on chromosome 4, and the EEFSEC/RUVBL1 locus on chromosome 3. Overall, the majority of the single 6 
variant signals that were found significant at FDR 0.1 have been associated with COPD-related phenotypes 7 
in the GWAS catalog (81.8% for FEV1 and 69.2% for FEV1/FVC) (Figures 7 and S4) supporting the ability 8 
of KnockoffScreen to identify previously discovered loci in GWAS studies with sample sizes much larger 9 
than used here. KnockoffScreen additionally identified new loci by aggregating common/rare variants. 10 
Although the new loci identified by KnockoffScreen, particularly those identified by rare variant methods, 11 
will need to be validated in larger datasets, and the effector genes are not known, some of the genes in these 12 
regions may be of interest. For FVC and COPD, as well as all traits for the African-Americans, we did not 13 
identify any significant associations at FDR 0.1, likely a reflection of low power due to the smaller sample 14 
size and possibly non-genetic covariates that might be associated with risk in AA and unaccounted for in 15 
these analyses. 16 
It is interesting to note that the significant loci identified by KnockoffScreen are markedly enriched for 17 
windows (single bp or larger) overlapping protein coding genes despite an unbiased screen of the entire 18 
genome. In particular, 40%, 80% and 56.4% of the loci significant for AD, FEV1 and FEV1/FVC 19 
respectively overlap protein coding genes. Given the modest sample size of the datasets analyzed here, this 20 
is perhaps expected; KnockoffScreen is able to identify the stronger effects closer to genes (e.g. coding and 21 
promoter regions). As sample sizes for whole-genome sequencing studies continue to increase, we can 22 
expect additional loci in noncoding regions to be identified.  23 
In summary, these empirical results suggest that KnockoffScreen can identify additional signals that are 24 
missed by conventional Bonferroni correction, while filtering out proxy associations that are likely due to 25 
LD. Scatter plots comparing genome-wide W statistics vs. -log10(p-values) further illustrate this point 26 
(Figure 8).  27 
Figure 6: KnockoffScreen application to the Alzheimer’s Disease Sequencing Project (ADSP) data to identify variants 28 
associated with the Alzheimer’s Disease. The top-left panel presents the Manhattan plot of p-values (truncated at 10%&' for clear 29 
visualization) from the conventional association testing with Bonferroni adjustment (𝑝 < 0.05/number of tested windows) for 30 
FWER control. The bottom-left panel presents the Manhattan plot of KnockoffScreen with target FDR at 0.1. The right panel 31 
presents a heatmap that shows stratified p-values (truncated at 10%(' for clear visualization) of all loci passing the FDR=0.1 32 
threshold, and the corresponding Q-values that already incorporate correction for multiple testing. The loci are shown in descending 33 
order of the knockoff statistics. For each locus, the p-values of the top associated single variant and/or window are shown indicating 34 
whether the signal comes from a single variant, a combined effect of common variants or a combined effect of rare variants. The 35 
names of those genes previously implicated by GWAS studies are shown in bold (names were just used to label the region and may 36 
not represent causative gene in the region). 37 
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 1 
Figure 7: KnockoffScreen application to the COPDGene study in TOPMed to identify variants associated with FEV1 in Non 2 
Hispanic White (NHW). The top-left panel presents the Manhattan plot of p-values from the conventional association testing with 3 
Bonferroni adjustment (𝑝 < 0.05/number of tested windows) for FWER control. The bottom-left panel presents the Manhattan plot 4 
of KnockoffScreen with target FDR at 0.1. The right panel presents a heatmap that shows stratified p-values of all loci passing the 5 
FDR=0.1 threshold, and the corresponding Q-values that already incorporate correction for multiple testing. The loci are shown in 6 
descending order of the knockoff statistics. For each locus, the p-values of the top associated single variant and/or window are 7 
shown indicating whether the signal comes from a single variant, a combined effect of common variants or a combined effect of 8 
rare variants. The names of those genes previously implicated by GWAS studies are shown in bold (names were just used to label 9 
the region and may not represent causative gene in the region). 10 

 11 
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Figure 8: Scatter plot of genome-wide W statistic vs. -log10(p-value). Each dot represents one variant/window. The dashed lines 1 
show the significance thresholds defined by Bonferroni correction (for p-values) and by false discovery rate (FDR; for W statistic). 2 
The p-values are from the conventional association testing described in the main text. 3 

 4 
Discussion 5 
In summary, we propose a computationally efficient algorithm, KnockoffScreen, for the identification of 6 
putative causal loci in whole-genome sequencing studies based on the knockoff framework. This 7 
framework guarantees the FDR control at a desired level under general dependence structure, and has 8 
appealing properties relative to conventional association tests, including a reduction in LD-contaminated 9 
associations and false positive associations due to unadjusted population stratification. Through 10 
applications to two whole-genome sequencing studies for Alzheimer’s disease, COPD and lung function 11 
phenotypes we demonstrate the ability of the approach to identify more significant associations, many of 12 
which have been identified in previous GWAS studies, with sample sizes orders of magnitude larger than 13 
the ones considered here. As sample sizes for whole-genome sequencing studies continue to increase, 14 
KnockoffScreen can help discover more risk loci with even more stringent FDR thresholds.  15 
In KnockoffScreen, we choose to control FDR at the nominal level. Our analyses of data from ADSP and 16 
COPDGene show that our method compared with conventional association tests leads to significantly more 17 
discoveries. The majority of the single variant signals that were found significant at FDR 0.1 have been 18 
associated with AD or COPD-related phenotypes respectively in the GWAS catalog (87.5% for AD, 81.8% 19 
for FEV1 and 69.2% for FEV1/FVC), supporting our claim that the FDR control in KnockoffScreen is able 20 
to replicate previously discovered loci in GWAS studies with sample sizes much larger than those used 21 
here. Furthermore, KnockoffScreen identified a set of new discoveries driven by the combined effects of 22 
multiple common/rare variants. The results demonstrate that controlling FDR is an appealing strategy when 23 
there are potentially many discoveries to be made as in genetic association studies for highly polygenic 24 
traits, the dependence structure is local, and the investigators are willing to accept a rigorously defined 25 
small fraction of false positives in order to substantially increase the total number of true discoveries. We 26 
note that the choice of target FDR should be defined rigorously and interpreted appropriately. For example, 27 
loci identified at a liberal FDR threshold (e.g. 0.3 as in Iossifoy et al.9) can be useful for enrichment and 28 
pathway analyses; our analyses of data from ADSP and COPDGene used FDR=0.1 for identifying putative 29 
causal loci. As large-scale whole-genome sequencing data become increasingly available, one will be able 30 
to apply KnockoffScreen with a lower, more stringent FDR threshold (e.g. 0.01 or 0.05).  31 
The model-X knockoff framework underlying KnockoffScreen makes our approach robust to violations of 32 
model assumptions. Specifically, by imposing a model on genetic variants (𝐺#)  instead of on the conditional 33 
distribution of the outcome given the variants (distribution of 𝑌#|	𝐺#), the FDR control is guaranteed even 34 
when the model for  𝑌#|	𝐺# is mis-specified. We do however need to construct a valid synthetic cohort 𝐺;#’s 35 
such that the exchangeability conditions are satisfied, and define a test statistic with the sign-flip property 36 
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(i.e. the effect of swapping a variant with its knockoff is only a sign flip of the corresponding test statistic). 1 
This robustness feature is particularly useful for genetic studies of complex traits, as the underlying genetic 2 
model is unknown, and it is difficult to evaluate whether a model is appropriate for describing the 3 
relationship between the trait and the variants.   4 
There is some limited work on controlling the FWER within the knockoff framework using a single 5 
knockoff45. One obstacle for its application is that it only allows controlling for 𝑘-FWER at significance 6 
level 𝛼 (the probability of making at least 𝑘 false rejections) where 𝑘 or 𝛼 has to be relatively large in order 7 
to detect any association. Therefore, it cannot be directly applied to control the conventional FWER (𝑘 =8 
1, 𝛼 = 0.05) without further modifications. Although our proposed multiple knockoffs method has the 9 
potential to be extended to control the FWER, we estimated that about 20 knockoffs are necessary to achieve 10 
the conventional FWER control. This leads to additional computational burden that will need to be 11 
overcome in order to become scalable to the large-scale genetic data.  12 
In addition to controlling FDR, our approach contrasts to conventional association testing methods in that 13 
it naturally helps prioritize the underlying causal variants, a property that usually requires a second stage 14 
conditional analysis or statistical fine mapping46. It also helps separate causal effects from shadow effects 15 
of significant variants nearby. This property can help distinguish effects due to common causal variants or 16 
rare causal variants at the same locus due to LD, by applying KnockoffScreen to common/rare variants 17 
separately. Overall, KnockoffScreen serves as a powerful and efficient method that attempts to unify 18 
association testing and statistical fine mapping. However, similar to statistical fine-mapping methods that 19 
only leverage LD to fine-map a complex trait, it remains challenging to fully distinguish highly correlated 20 
variants. As we discussed in the Methods section, KnockoffScreen currently detects clusters of tightly linked 21 
variants, without removing any variants that are potentially causal. In the future, we may consider using 22 
functional genomics data to further improve the ability of KnockoffScreen to identify causal variants among 23 
highly correlated ones.  24 
Unlike existing knockoff methods for genetic data that define coefficients in a LASSO regression as the 25 
importance score15,16, KnockoffScreen directly uses transformed p-values as importance score. This leads 26 
to another appealing property of KnockoffScreen, namely it can serve as a wrapper method that can flexibly 27 
utilize p-values from any existing or future association testing methods to achieve the benefits proposed 28 
here. For example, the current implementation of KnockoffScreen calculates importance score using an 29 
ACAT type test to aggregate several recent advances for rare-variant analysis. To extend its application to 30 
studies with large unbalanced case-control ratios or sample relatedness, one can apply methods like 31 
SAIGE47 to calculate p-values for the original cohort and the synthetic cohort generated by KnockoffScreen, 32 
and then apply the same knockoff filter for variable selection. Moreover, recent studies have demonstrated 33 
that multivariate models have many advantages over marginal association testing, including improved 34 
power by reducing the residual variation and better control of population stratification15. KnockoffScreen is 35 
able to integrate tests from multivariate models (e.g. BOLT-LMM and its extension to window-based 36 
analysis of sequencing data). 37 
Meta-analyses are important in allowing the integration of results from multiple whole-genome sequencing 38 
studies without sharing individual level data. Several methods have been proposed for meta-analysis of 39 
single variant tests for common variants or “set” based (e.g. window based) tests for rare variants48-50. Those 40 
methods integrate summary statistics from each individual cohort, such as p-values or score statistics, and 41 
then compute a combined p-value for each genetic variant or each window for a meta-analysis. As we 42 
discussed, KnockoffScreen can also directly utilize p-values from existing methods for meta-analysis. We 43 
have discussed the detailed procedure in the Methods section. 44 
Variable selection based on knockoff procedure depends on the random sampling of knockoff features 45 
/𝐺;#(1%)()*. Although FDR control is guaranteed, the randomness may lead to slightly different feature 46 
statistics and selection of slightly different subsets of variants. We propose a stable inference procedure 47 
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integrating multiple knockoffs that significantly improves the stability and reproducibility of the results 1 
compared with state-of-the-art knockoff methods as discussed in the Method section.  2 
We have demonstrated that the proposed sequential knockoff generator is significantly faster than existing 3 
alternatives. Besides the generation of knockoff features, another source of computational burden is the 4 
calculation of the importance score (p-value for a window). The total CPU time is 7,616 hours for the ADSP 5 
data analysis (15.2 hours with 500 cores) and 14,274 hours for the COPDGene data analysis (28.5 hours 6 
with 500 cores). The calculation of p-values in the current analysis is time consuming because of the 7 
comprehensive inclusion of many different functional annotations. Specifically, for each window, there are 8 
in total 29 tests being implemented for the original genetic variants and each of their five knockoffs, leading 9 
to a total of 29*6=174 p-value calculations per window. If computational resources are limited, using a 10 
limited number of functional annotations can substantially reduce the computing time. In addition, several 11 
methods have been proposed in recent years to use state-of-the-art optimization strategies for scalable 12 
association testing for large scale datasets with thousands of phenotypes in large biobanks.51-53 By directly 13 
utilizing p-values from those association testing methods, KnockoffScreen can scale up to biobank sized 14 
datasets at a comparable computational efficiency. 15 
Despite the aforementioned advantages, KnockoffScreen has some limitations related to underlying 16 
modeling assumptions needed to improve the computational efficiency of the multiple knockoff generation 17 
and calculation of the feature importance scores. In particular, the implemented feature importance scores 18 
rely on computing p-values from a marginal model (e.g. single variant score test, burden test or SKAT) or 19 
a partly multivariate model (BOLT-LMM and its extension to window-based analysis of sequencing data). 20 
We made this choice of feature importance score due to its flexibility to integrate state-of-the-art tests for 21 
sequencing studies, but we recognize that a fully multivariate model as implemented in Sesia et al.15 can be 22 
more powerful. In addition, the knockoff generator used in KnockoffScreen assumes a linear approximation 23 
model based on unphased genotype dosage data. This model is well motivated based on the sequential 24 
model to generate knockoff features, and the approximate multivariate normal model for the genotype data 25 
commonly used in the genetic literature. Additionally, it is computationally efficient relative to existing 26 
knockoff generation methods. We acknowledge that relative to a generative model like HMM it is less 27 
interpretable. More complex models for discrete genotype values that can also account for non-linear effects 28 
among genetic variants could be of interest in future work. 29 
  30 
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Methods 1 
Sequential model to generate model-X knockoff features. We propose a computationally efficient 2 
sequential model to generate knockoff features 𝑮̂ that leverages local linkage disequilibrium structure. Our 3 
method is an extension of the general sequential conditional independent pairs (SCIP) approach in Candès 4 
et al. (2018)14.  5 

Algorithm 1 Sequential Conditional Independent Pairs (Single Knockoff) 
𝑗 = 1	       
while 𝑗 ≤ 𝑝 do  
      Sample 𝐺;( independently from  ℒF𝐺(|𝑮!𝒋, 𝑮̂𝟏:(𝒋!𝟏)G 
       𝑗 = 𝑗 + 1  
end 

where 𝑮!𝒋 denotes all genetic variants except for the 𝑗-th variant; ℒF𝐺(|𝑮!𝒋, 𝑮̂𝟏:(𝒋!𝟏)G is the conditional 6 
distribution of 𝐺( given 𝑮!𝒋 and 𝑮̂𝟏:(𝒋!𝟏). Candès et al. showed that knockoffs generated by this algorithm 7 
satisfy the exchangeability condition, and they lead to a guaranteed FDR control14. Intuitively, the 8 
exchangeability condition can be described as follows: if one swaps any subset of variants and their 9 
synthetic counterpart, the joint distribution (LD structure etc.) does not change. They also noted that the 10 
ordering in which knockoffs are created does not affect the exchangeability property and equally valid 11 
constructions may be obtained by looping through an arbitrary ordering of the variants. Although the SCIP 12 
method represents a general knockoff generator, the conditional distribution at each iteration depends on 13 
all genetic variants in the study, which can be very difficult or impossible to compute in practice. We draw 14 
inspiration from Markov models for sequence data to consider the genetic sequence as a Markov chain with 15 
memory, such that 16 

ℒF𝐺(|𝑮!𝒋G = ℒ `𝐺(|𝑮𝒌∈𝑩𝒋a , (3) 17 

where the index set 𝐵( defines a subset of genetic variants “near” the 𝑗-th variant, which we will define later. 18 
Furthermore, by noting that the correlation among genetic variables approximately exhibits a block 19 
diagonal structure54, under certain model assumptions which will be specified in the Appendix, we have  20 

ℒF𝐺(|𝑮!𝒋, 𝑮̂𝟏:𝒋!𝟏G = ℒ `𝐺(|𝑮𝒌∈𝑩𝒋 , 𝑮̂𝟏)𝒌)𝒋!𝟏,𝒌∈𝑩𝒋a.		(4) 21 

To generate knockoff features from ℒ `𝐺(|𝑮𝒌∈𝑩𝒋 , 𝑮̂𝟏)𝒌)𝒋!𝟏,𝒌∈𝑩𝒋a, we assume a semiparametric model 22 

𝐺( = 𝑔`𝑮𝒌∈𝑩𝒋 , 𝑮̂𝟏)𝒌)𝒋!𝟏,𝒌∈𝑩𝒋a + 𝜀( , (5) 23 

where 𝜀( is a random error term, 𝐸 `𝜀(e𝑮𝒌∈𝑩𝒋 , 𝑮̂𝟏)𝒌)𝒋!𝟏,𝒌∈𝑩𝒋a = 0. We consider 𝑔(∙) to be parametric as 24 
follows, 25 

𝑔 `𝐺#(|𝑮𝒌∈𝑩𝒋 , 𝑮̂𝟏)𝒌)𝒋!𝟏,𝒌∈𝑩𝒋a = 𝛼 + g 𝛽+𝐺#+
+B(,+∈C*

+ g 𝛾+𝐺;#+ ,
+)(!%,+∈C*

		(6) 26 

and will explain in detail when such a linear form is an appropriate model in the Appendix. We estimate 27 
(𝛼, 𝜷, 𝜸) by minimizing the mean squared loss. Let 𝑮m𝒋 = 𝛼n + ∑ 𝛽p+𝑮𝒌+B(,+∈C* + ∑ 𝛾n+𝑮̂𝒌+)(!%,+∈C* . We 28 
calculate the residual 𝜺n𝒋 = 𝑮𝒋 − 𝑮m𝒋 and its permutation 𝜺n𝒋∗, and then define the knockoff feature for 𝑮𝒋 to 29 
be 𝑮̂𝒋 = 𝑮m𝒋 + 𝜺n𝒋∗. This permutation-based algorithm is particularly designed to generate knockoff features 30 
for rare genetic variants in sequencing studies, whose distribution is highly skewed and zero-inflated. We 31 
note that the algorithm does not generate categorical variables in {0,1,2}. Instead, it generates continuous 32 
variables to mimic genotype dosage value, making it more robust for rare variants. In addition, we evaluated 33 
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a multinomial logistic regression model for generating categorical knockoffs. We found that the conditional 1 
mean of a rare variant can be extremely small, and it is very likely to generate knockoffs with all 0 values 2 
where statistical inference cannot be applied. We show in simulation studies that existing knockoff 3 
generators, such as the second-order model-X knockoffs proposed by Candès et al.14 and knockoffs for 4 
HMM proposed by Sesia et al.15,16, do not control FDR for rare variant analysis based on the feature score 5 
considered in this paper (Figure 2). In Figures S7 and S8, we present an additional comparison between the 6 
proposed method and HMM-based knockoff generators (S=12 and S=50), stratified by allele frequency. As 7 
shown, the proposed method generates knockoff versions for rare variants with better exchangeability with 8 
the original variants compared with the HMM model. That is, the correlation coefficients are closer to those 9 
for the original variants for KnockoffScreen compared to HMM (bottom panel, the dots are mostly above 10 
the diagonal line). One plausible explanation is that the application of HMM to whole genome sequencing 11 
data requires accurate phased data for rare variants, which itself is a challenging task and also an active 12 
research area.  13 
We discuss now in detail how we define 𝐵(  while taking into account the linkage disequilibrium (LD) 14 
structure in the neighborhood of 𝑗. Let 𝑟(+ be the sample correlation coefficient between variants 𝑗 and 𝑘. 15 
We define 𝐵( to include “𝐾-nearest” genetic variants within a 200kb window (+/-100kb from the target 16 
variant)55 using t𝑟(+t as a similarity measure. The choice of the window size aims to balance accurate 17 
modeling of local LD structure and computational efficiency. The choice of 𝐾  is to ensure that 18 
𝑃 `𝐺(|𝑮𝒌∈𝑩𝒋 , 𝑮̂𝟏)𝒌)𝒋!𝟏,𝒌∈𝑩𝒋a  accurately mimics the joint distribution 𝑃F𝐺(|𝑮!𝒋, 𝑮̂𝟏:𝒋!𝟏G  and to avoid 19 
overfitting. We adopt the theoretical result for regression analysis with diverging number of covariates and 20 
choose to include top 𝐾  variants with t𝑟(+t > 0.05 up to 𝐾 = 𝑛%/9 , which ensures that the coefficient 21 
estimations achieve asymptotic normality56.  22 
We note that the sequential model is flexible enough and we could consider other supervised learning 23 
techniques like Lasso, support vector regression and artificial neural networks. However, since the auto-24 
regressive model is fitted iteratively for every variant in the genome, these methods require cross-validation 25 
at each variant level which is computationally not applicable at genome-wide scale. 26 
Multiple sequential knockoffs to improve power and stability. Inference based on single knockoff is 27 
limited by the detection threshold [%

F
], which is the minimum number of independent rejections needed in 28 

order to detect any association. For example, in scenarios where the signal is sparse (<10 independent true 29 
associations) in the target region or across the genome, inference based on a single knockoff has very low 30 
power to detect any association with target FDR 0.1. Another limitation of the single knockoff is its 31 
instability. Since the knockoff sample is random, running the knockoff procedure multiple times may lead 32 
to different selected sets of features. The idea of constructing multiple knockoffs was first discussed by 33 
Barber and Candès13 and Candès et. al.14, and further studied in detail by Gimenez and Zou30. However, 34 
current methods are not applicable to rare variants and not scalable to whole genome sequencing data. 35 
We extend the above SCIP based knockoff generator procedure to multiple knockoffs (𝑀 is the total number 36 
of knockoffs), as follows.  37 

Algorithm 2 Sequential Conditional Independent Tuples (Multiple Knockoffs) 
𝑗 = 1	       
while 𝑗 ≤ 𝑝 do  
      Sample 𝐺;(%, ⋯ , 𝐺;(G	 independently from  ℒF𝐺(|𝑮!𝒋, 𝑮̂𝟏:𝒋!𝟏𝟏 , ⋯ , 𝑮̂𝟏:𝒋!𝟏𝑴 	G 
       𝑗 = 𝑗 + 1  
End 

Gimenez and Zou30 proposed this general algorithm and proved that the knockoffs generated by this 38 
algorithm satisfy the extended exchangeability condition (see Appendix for precise definition and proof). 39 
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Based on this general algorithm, we extend our previous sequential model to this setting to estimate 𝑮m𝒋 =1 
𝛼n + ∑ 𝛽p+𝑮𝒌+B(,+∈C* +∑ ∑ 𝛾n+I𝑮̂𝒌𝒎+)(!%,+∈C*%)I)G . We calculate the residual 𝜺n𝒋 = 𝑮𝒋 − 𝑮m𝒋  and its 𝑀 2 
permutations 𝜺n𝒋∗𝟏, … , 𝜺n𝒋∗𝑴, and then define the knockoff feature for 𝑮𝒋 to be 𝑮̂𝒋𝒎 = 𝑮m𝒋 + 𝜺n𝒋∗𝒎.  3 

Knockoff filter to define the threshold 𝝉 for FDR control. For single knockoff, we follow the result 4 
derived by Candès et al.14 to define the feature statistic as 𝑊-#$ = 𝑇-#$ − 𝑇;-#$ where 𝑇-#$ = − log%. 𝑝-!" 5 
and 𝑇;-#$ = − log%. 𝑝<-!" and 6 

𝜏 = min ~𝑡 > 0:	
1 + #/Φ+,:𝑊-#$ ≤ −𝑡1
#{Φ+,:𝑊-#$ ≥ 𝑡}

≤ 𝑞� , (7) 7 

where “#” denote the number of elements in the set; 𝑞 is the target FDR level. We select all windows with 8 
𝑊-#$ > 𝜏. For multiple knockoffs, we modify the result in Gimenez and Zou30 and define 9 

𝑊-#$ = `𝑇-#$ −median%)I)G
𝑇-#$
I a 𝐼'+#$K L2M

,-.-/
'+#$
. , (8) 10 

and 11 

𝜏 = min �𝑡 > 0:	
1
𝑀 + 1

𝑀#/Φ+,: 𝜅-#$ ≥ 1, 𝜏-#$ ≥ 𝑡1
#{Φ+,: 𝜅-#$ = 0, 𝜏-#$ ≥ 𝑡}

≤ 𝑞� , (9) 12 

where 𝑇-#$
I = − log 𝑝N#$

I ; 𝐼∙  is an indicator function, 𝐼'+#$K L2M
,-.-/

'+#$
. = 1  if 𝑇-#$ ≥ max

%)I)G
𝑇-#$
I  and 0 13 

otherwise; 𝜅-#$ = arg	max
.)I)G

𝑇-#$
I  denote the index of the original (denoted as 0) or knockoff feature that has 14 

the largest importance score; 𝜏-#$ = 𝑇-#$

(.) −median
%)I)G

𝑇-#$
(I)  denote the difference between the largest 15 

importance score and the median of the remaining importance scores. It reduces to the knockoff filter for 16 
single knockoff when 𝑀 = 1. Essentially, 𝑊-#$ > 𝜏 selects windows where the original feature has higher 17 
importance score than any of the 𝑀 knockoffs (i.e. 𝜅-#$ = 0), and the gap with the median of knockoff 18 
importance score is above some threshold.  19 
We note that this definition of feature statistic and knockoff filter is a modified version of that proposed by 20 
Gimenez and Zou30, where they considered the maximum instead of the median of the knockoff importance 21 
scores, i.e.  𝜅-#$ = arg	max

.)I)G
𝑇-#$
I , 𝜏-#$ = 𝑇-#$

(.) − max
%)I)G

𝑇-#$
(I)  and 𝑊-#$ = `𝑇-#$ −22 

max
%)I)G

𝑇-#$
I a 𝐼'+#$K L2M

,-.-/
'+#$
. . To improve stability and reproducibility of knockoff based inference, we 23 

change 𝜏-#$  from 𝑇-#$

(.) − max
%)I)G

𝑇-#$
(I)  to 𝑇-#$

(.) −median
%)I)G

𝑇-#$
(I) . The modified method reduces the 24 

randomness coming from sampling knockoff features given the fact that sample median has much smaller 25 
variation than each individual sample or the sample maximum.  26 
Knockoff Q-value. The Q-value in statistics is similar to the well-known p-value, except that it measures  27 
significance in terms of the FDR57 rather than the FWER and already incorporates correction for multiple 28 
testing. For multiple hypothesis testing, a general mathematical definition of the Q-value for a null 29 
hypothesis is the minimum FDR that can be attained when all tests showing evidence against the null 30 
hypothesis at least as strong as the current one are declared as significant58. For example, the Q-value for 31 
usual FDR control based on ordered p-values can be estimated by, 32 

𝑞 = min
PK*

FDR�(𝑡) , (10) 33 

where 𝑝 is the p-value of the hypothesis under consideration and FDR�(𝑡) is the estimated FDR if we are to 34 
reject all tests with p-values less than 𝑡. In order to introduce a more informative and interpretable measure 35 
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of significance for the top signals, we extend the Q-value framework for the usual FDR control to the 1 
knockoffs based case. The proposed Q-value combines the information from both feature importance 2 
statistics 𝑊-#$  and the threshold 𝜏. It also makes results comparable even we choose different feature 3 
importance statistics across multiple runs. By definition, we shall see that selecting windows with 𝑞- < 𝑞, 4 
where 𝑞 is the target FDR, is equivalent to the aforementioned knockoff filter which selects those with 5 
𝑊- > 𝜏. 6 
For single knockoff, we define the Q-value for window Φ with feature statistic 𝑊- > 0 as,  7 

𝑞- = min
P)Q+

1 + #/Φ+,:𝑊-#$ ≤ −𝑡1
#{Φ+,:𝑊-#$ ≥ 𝑡}

, (11) 8 

where 
%R#T-#$:Q+#$)!PU

#{-#$:Q+#$KP}
 is an estimate of the proportion of false discoveries if we are to select all windows 9 

with feature statistic greater than 𝑡 > 0, referred to as the knockoff estimate of FDR13. For window Φ with 10 
feature statistic 𝑊- ≤ 0, we define 𝑞- =1 and the window will never be selected. For multiple knockoffs, 11 
we define the Q-value for window Φ with statistics 𝜅- = 0 and 𝜏- as 12 

𝑞- = min
P)X+

1
𝑀 + 1

𝑀#/Φ+,: 𝜅-#$ ≥ 1, 𝜏-#$ ≥ 𝑡1
#{Φ+,: 𝜅-#$ = 0, 𝜏-#$ ≥ 𝑡}

, (12) 13 

where 
,
/R

,
/#T-#$:Y+#$K%,X+#$KPU

#{-#$:Y+#$Z.,X+#$KP}
 is an estimate of the proportion of false discoveries if we are to select all 14 

windows with feature statistic 𝜅-#$ = 0, 𝜏-#$ ≥ 𝑡, which is our extension of the knockoff estimate of FDR 15 
to multiple knockoffs. For window Φ with 𝜅- ≠ 0, we again define 𝑞- =1 and the window will never be 16 
selected.  17 
Choice of windows for genome-wide screening. KnockoffScreen considers windows with different sizes 18 
(1bp, 1kb, 5kb, 10kb) across the genome, with half of each window overlapping with adjacent windows at 19 
the same window size. This choice of windows is similar to the scan statistic framework, WGScan, for 20 
whole-genome sequencing data18. It is also similar to that in KnockoffZoom proposed by Sesia et al.15 for 21 
GWAS data where they also consider windows of different sizes; for each fixed window size the windows 22 
are non-overlapping but smaller windows are fully nested within larger windows. We theoretically prove 23 
the FDR control using the proposed statistic in the Appendix for nonoverlapping windows; however, the 24 
theoretical justification for the more general setting of overlapping windows remains an open question. For 25 
the proposed choice of overlapping windows, we demonstrate via empirical simulation studies that the FDR 26 
is well controlled (Figure 2) as window overlapping is a local phenomenon.  27 
KnockoffScreen improves stability and reproducibility of knockoff-based inference. We conducted 28 
simulation studies to compare KnockoffScreen with single knockoff approach, and the multiple knockoffs 29 
approach proposed by Gimenez and Zou, referred to as MK-Maximum30.  30 
We designed these simulations to mimic the real data analysis of ADSP. For each replicate, we randomly 31 
drew 1,000 variants, including both common and rare variants, from the 200kb region near gene APOE 32 
(chr19: 44905796-44909393). We set 1.25% variants to be causal, all within a 5kb signal window (similar 33 
to the size of APOE) and then simulated a dichotomous trait as follows 34 

𝑔(𝜇#) = 𝛽. + 𝑋#% + 𝛽%𝑔% +⋯+ 𝛽[𝑔[, 35 

where 𝑔(𝑥) = log( \
%!\

)		and 𝜇# is the conditional mean of 𝑌#; 𝛽. is chosen such that the prevalence is 10%. 36 
We set the effect 𝛽( = 0.7tlog%.𝑚(t, where 𝑚( is the MAF for the 𝑗-th variant. Given the same genotype 37 
and phenotype data, we first generated 100 knockoffs. Then we repeatedly drew five knockoffs randomly 38 
among them for 100 replicates. For each replicate, we scanned the regions with candidate window sizes 39 
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(1bp, 1kb, 5kb, 1kb) using KnockoffScreen, the multiple knockoffs feature statistic based on sample 1 
maximum by Gimenez and Zou30, and the single knockoff method. For a fair comparison, we adopted the 2 
same tests implemented in KnockoffScreen to calculate the p-value for all comparison methods. We 3 
calculated the variation of feature statistic 𝑊-#$ for each window (stability) and the frequency with which 4 
each causal window is selected (reproducibility) over 100 replicates. We present the results in Figure 9. 5 
In the left panel, we observed that KnockoffScreen has significantly smaller variation in feature statistic 6 
𝑊-#$ than the other two comparison methods. We note that the method based on sample maximum, MK-7 
Maximum, exhibits comparable and sometimes even larger variation than the method based on single 8 
knockoff. In the mid panel, we observed that KnockoffScreen has a higher chance (~0.94) to replicate 9 
findings across different knockoff replicates compared to MK-Maximum (~0.74-0.83) and single knockoff 10 
(~0.43). This improvement is further demonstrated in the right panel, where we show that KnockoffScreen 11 
exhibits smaller variation in feature statistics for the causal windows, resulting in higher reproducibility. 12 
The significantly lower reproducibility rate for single knockoffs relative to MK-Maximum is presumably 13 
due to its higher detection threshold because it exhibits similar level of variation as MK-Maximum for the 14 
causal windows. 15 
Figure 9: Simulation studies to evaluate the stability and reproducibility of different knockoff procedures. Different colors 16 
indicate different knockoff procedures: KnockoffScreen, single knockoff and MK – Maximum (the multiple knockoff method based 17 
on the maximum statistic proposed by Gimenez and Zou30). All three methods are based on the same knockoff generator proposed 18 
in this paper for a fair comparison. The stability is quantified as the variation of 𝜏0!" across 100 replicates due to randomly sampling 19 
knockoffs for a given data (left and right panels). The reproducibility is quantified as the frequency of a causal window being 20 
selected across 100 replicates. 21 

 22 
Practical strategy for tightly linked variants. Variants residing in short genetic regions can be in 23 
moderate to high LD. Although the knockoff method helps to prioritize causal variants over associations 24 
due to low/moderate LD, strong correlations can make it difficult or impossible to distinguish the causal 25 
genetic variants from their highly correlated variants (see also Sesia et al.16). In fact, the knockoff method 26 
will rank all those highly correlated variants lower, which diminishes the power if causal variants exist (see 27 
below for a concrete example). We are primarily interested in the identification of relevant clusters of tightly 28 
linked variants, rather than individual variants. To address this issue, we propose a practical solution by 29 
slightly modifying 𝐵( . The resulting algorithm improves the power to detect clusters of tightly linked 30 
variants, without removing any variants that are potentially causal.  31 
Specifically, we create a hierarchical clustering dendrogram using t𝑟(+t as a similarity measure and define 32 
clusters by t𝑟(+t > 0.75, such that variants from two different clusters do not have a correlation greater than 33 
0.75. To generate the knockoff feature for the 𝑗-th variant, we exclude variants from 𝐵( that are in the same 34 
cluster. For example, let 𝐺%, 𝐺/ and 𝐺9 be three genetic variants; 𝐺% and 𝐺/ are tightly linked with |𝑟%/| >35 
0.75 . The standard knockoff procedure will generate 𝐺;%  based on 𝑃(𝐺%|𝐺/, 𝐺9) , 𝐺;/  based on 36 
𝑃(𝐺/|𝐺%, 𝐺9, 𝐺;%). Since 𝐺% and 𝐺/ are highly correlated, 𝐺;% ≈ 𝐺%, 𝐺;/ ≈ 𝐺/ and there will be no power to 37 
detect 𝐺% or 𝐺/ even if one of them is causal. To improve the power, our modified algorithm simultaneously 38 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.434451doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434451
http://creativecommons.org/licenses/by-nd/4.0/


 24 

generates 𝐺;% and 𝐺;/ based on a joint distribution 𝑃(𝐺%, 𝐺/|𝐺9) by first estimating the conditional means 1 
and then permuting the residuals jointly. This avoids the situation of 𝐺;% and 𝐺;/ being identical to 𝐺% and 2 
𝐺/ because 𝐺%	(𝐺/) is excluded from the generation of 𝐺;/(𝐺;%) . Thus both 𝐺% and 𝐺/ can be detected as a 3 
cluster. The idea is similar to that of group-wise exchangeable knockoffs proposed by Sesia et al.15. We 4 
further discuss limitations and some alternative approaches in the Discussion section.  5 
Computational efficiency of the knockoff generator. We estimate the computational complexity of our 6 
proposed method for each variant 𝑗  as 𝑂(𝑛𝐿) + 𝑂(𝐿𝑙𝑜𝑔𝐿) + 𝑂(𝑛(𝐾 +𝑀𝐾)/ + (𝐾 +𝑀𝐾)9) = 𝑂(𝑛) , 7 
where 𝑛 is the sample size; 𝐿 is a predefined constant for the length of the nearby region; 𝐾 is the number 8 
of variants in the defined set 𝐵(, which is bounded by the predefined constant 𝐿; 𝑀 is a predetermined 9 
constant for the number of knockoffs. 𝑂(𝑛𝐿)  is for calculating the correlation between variant 𝑗  and 10 
variants in the nearby region; 𝑂(𝐿𝑙𝑜𝑔𝐿) is for the hierarchical clustering; 𝑂(𝑛(𝐾 +𝑀𝐾)/ + (𝐾 +𝑀𝐾)9) 11 
is for fitting the conditional auto-regressive model. Since we iteratively generate the knockoff for every 12 
variant, we estimate the complexity of our proposed method for all variants as 𝑂(𝑛𝑝), where 𝑝 is the 13 
number of genetic variants. We note that the genotype matrix 𝐺 is sparse for rare variants. Therefore, the 14 
cost for calculation of correlation and hierarchical clustering can be drastically reduced. In addition, the 15 
approach that we proposed to define 𝐵(  ensures that 𝐾  is relatively small and this further reduces the 16 
computational cost. 17 
KnockoffScreen allows meta-analysis of multiple cohorts. Meta-analysis is a powerful approach that 18 
enables integration of multiple cohorts for a larger sample size without sharing individual level data. Several 19 
methods have been proposed for meta-analysis of single variant tests for common variants or set-based (e.g. 20 
window based) tests for rare variants 48-50. Those methods integrate summary statistics from each individual 21 
cohort, such as p-values or score statistics, and then compute a combined p-value for each genetic variant 22 
or each window for a meta-analysis. Since KnockoffScreen directly uses p-value as importance score, it can 23 
flexibly incorporate the aforementioned methods for a meta-analysis. The meta-analysis procedure is 24 
described as follows: 25 
1. Generate knockoff features for each individual cohort. 26 
2. Calculate summary statistics within each individual cohort for original data and knockoff data. 27 
3. Apply existing meta-analysis methods to aggregate summary statistics to compute combined p-values 28 

𝑝-!",]^I_#`a& and 𝑝<-!",]^I_#`a&, for original data and knockoff data respectively. 29 
4. Define 𝑊-#$ = 𝑇-#$ − 𝑇;-#$  where 𝑇-#$ = − log%. 𝑝-!",]^I_#`a&  and 𝑇;-#$ = − log%. 𝑝<-!",]^I_#`a& , 30 

and apply KnockoffScreen to select putative causal variants. It naturally extends to multiple knockoffs 31 
as described above. 32 

Single-region empirical power and FDR simulations. We conducted empirical FDR and power 33 
simulations. Each replicate consists of 10,000 individuals with genetic data on 1,000 genetic variants from 34 
a 200kb region, simulated using the SKAT package. The SKAT haplotype dataset was generated using a 35 
coalescent model (COSI), mimicking the linkage disequilibrium structure of European ancestry samples. 36 
The simulations focus on both rare and common variants with minor allele frequency (MAF) <0.01 37 
and >0.01 respectively. It has been discussed in Sesia et al.16 that the false discovery proportion is difficult 38 
to define if the method identifies a variant that is tightly linked with the causal variant. The analysis of 39 
sequencing data targets different test units (set-based vs. single variant-based), further complicating the 40 
FDR comparisons. We note that the simulations here focus on method comparison for locus discovery to 41 
identify relevant clusters of tightly linked variants. Therefore, we simplify the simulation design in this 42 
particular section to avoid difficulties in defining the FDR in the presence of strong correlations by keeping 43 
one representative variant from each tightly linked cluster. Specifically, we applied hierarchical clustering 44 
such that no two clusters have cross-correlations above a threshold value of 0.75 and then randomly choose 45 
one representative variant from each cluster to be included in the simulation study. 46 
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We set 0.5% variants in the 200kb region to be causal, all within a 10kb signal window. Then we generated 1 
the quantitative/dichotomous trait as follows: 2 

Quantitative trait: 𝑌# = 𝑋#% + 𝛽%𝑔% +⋯+ 𝛽[𝑔[ + 𝜀#, 3 

Dichotomous trait: 𝑔(𝜇#) = 𝛽. + 𝑋#% + 𝛽%𝑔% +⋯+ 𝛽[𝑔[, 4 
where 𝑋#%~𝑁(0,1), 𝜀#~𝑁(0,3) and they are all independent; (𝑔%, … , 𝑔[) are selected risk variants; 𝑔(𝑥) =5 
log( \

%!\
)		and 𝜇# is the conditional mean of 𝑌# 	; for dichotomous trait, 𝛽. is chosen such that the prevalence 6 

is 10%. We set the effect 𝛽( =
b

c/I*	(%!I*)
, where 𝑚( is the MAF for the 𝑗-th variant. We define 𝑎 such 7 

that the variance due to the risk variants, 𝛽%/𝑣𝑎𝑟(𝑔%) + ⋯+ 𝛽[/𝑣𝑎𝑟(𝑔[), is 0.05 for the simulations focusing 8 
on common variants and 0.1 for the simulations focusing on rare variants. We scan the regions with 9 
candidate window sizes (1bp, 1kb, 5kb, 10kb), and we consider several tests including the burden test, 10 
dispersion test, and Cauchy combination test to aggregate burden, dispersion, and individual variant test 11 
results (as discussed in the main text). This combined test is the method implemented in the KnockoffScreen 12 
method. A window is considered causal if it contains at least one causal variant. For each replicate, the 13 
empirical power is defined as the proportion of detected windows among all causal windows; the empirical 14 
FDR is defined as the proportion of non-causal windows among all detected windows. We simulated 500 15 
replicates and calculated the average empirical power and FDR.  16 
Genome-wide empirical power and FDR simulations in the presence of multiple causal loci. We 17 
conducted empirical FDR and power simulations using ADSP whole genome sequencing data, and 18 
compared the proposed method with state-of-the-art tests for sequencing data analysis adjusted by 19 
Bonferroni correction and Benjamini-Hochberg procedure for FDR control. We randomly choose 10 causal 20 
loci and 500 noise loci across the genome, each spanning 200kb. Each causal locus contains a 10kb causal 21 
window. For each replicate, we randomly set 10% variants in each 10kb causal window to be causal. In 22 
total, there are approximately 335 causal variants on average across the genome. We generated the 23 
quantitative/dichotomous trait as follows: 24 

Quantitative trait: 𝑌# = 𝑋#% + ∑ F𝛽+%𝑔+% +⋯+ 𝛽+,+1𝑔+,+1G
%.
+Z% + 𝜀#, 25 

Dichotomous trait: 𝑔(𝜇#) = 𝛽. + 𝑋#% + ∑ F𝛽+%𝑔+% +⋯+ 𝛽+,+1𝑔+,+1G
%.
+Z% + 𝜀#, 26 

where 𝑋#%~𝑁(0,1), 𝜀#~𝑁(0,3) and they are all independent; (𝑔%, … , 𝑔[) are selected risk variants; 𝑔(𝑥) =27 
log( \

%!\
)		and 𝜇# is the conditional mean of 𝑌#; for dichotomous trait, 𝛽. is chosen such that the prevalence 28 

is 10%. We set the effect 𝛽+( =
b#

c/I#*	(%!I#*)
, where 𝑚+( is the MAF for the 𝑗-th variant in causal window 29 

𝑘. We define 𝑎+ such that the phenotypic variance due to the risk variants for each causal locus, 𝛽+%𝑔+% +30 
⋯+ 𝛽+,+1𝑔+,+1 , is 1. We scan the regions with candidate window sizes (1bp, 1kb, 5kb, 10kb), and we 31 
consider several tests including the burden test, dispersion test, and Cauchy combination test to aggregate 32 
burden, dispersion, and individual variant test results (as discussed in the main text). This combined test is 33 
the method implemented in the KnockoffScreen method. For each replicate, the empirical power is defined 34 
as the proportion of causal loci (the 200kb regions) being identified; the empirical FDR is defined as the 35 
proportion of detected windows not overlapping with the causal window +/- 50kb/75kb/100kb, which 36 
evaluates FDR at different resolutions. The empirical power and FDR are averaged over 100 replicates. 37 
Simulations for investigating various properties of the KnockoffScreen method (the prioritization of 38 
causal variants, the influence of shadow effects from common variants, and robustness to population 39 
stratification). We design these simulations to mimic the real data analysis of ADSP. For each replicate, 40 
we randomly drew 1,000 variants, including both common and rare variants, from the 200kb region near 41 
gene APOE (chr19: 44905796-44909393). We scanned the regions with candidate window sizes (1bp, 1kb, 42 
5kb, 1kb) using the conventional association test and KnockoffScreen. For a fair comparison, we adopted 43 
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the same tests implemented in KnockoffScreen to calculate the p-value for the conventional association 1 
testing method. 2 
Prioritization of causal variants. We set 0.25% variants to be causal, all within a 5kb signal window (similar 3 
to the size of APOE), and then simulated a dichotomous trait by 4 

𝑔(𝜇#) = 𝛽. + 𝑋#% + 𝛽%𝑔% +⋯+ 𝛽[𝑔[, 5 

where 𝑔(𝑥) = log( \
%!\

)		and 𝜇# is the conditional mean of 𝑌#; for dichotomous trait, 𝛽. is chosen such that 6 
the prevalence is 10%. We set the effect 𝛽( = 𝑎tlog%.𝑚(t, where 𝑚( is the MAF for the 𝑗-th variant. We 7 
defined 𝑎 = 1.4 such that the risk variant has a similar odds ratio as APOE-𝜀4 (~3.1) given a similar MAF 8 
(~0.137)59,60. For each replicate, we compared the two methods in terms of (1) the proportion of selected 9 
windows that overlaps with the causal window; and (2) the maximum distance between selected windows 10 
and the causal window. 11 
Shadow effect. We adopted the same simulation setting but set the causal variants to be common 12 
(MAF>0.01) and apply the methods to rare variants only (MAF<0.01). Since all causal variants are common, 13 
all detected windows are false positives due to the shadow effect. We counted the number of false positives 14 
and show the distribution over 500 replicates. 15 
Population stratification. The ADSP includes three ethnic groups: African American (AA), Non Hispanic 16 
White (NHW) and Others (98% of which are Caribbean Hispanic). Let 𝑍# denote the ethnic group (𝑍# = 0: 17 
AA; 𝑍# = 1: NHW; 𝑍# = 2: Others). We simulated quantitative and dichotomous traits by  18 

Quantitative trait: 𝑌# = 𝑋#% + 𝑍# + 𝜀# 19 
Dichotomous trait: 𝑔(𝜇#) = 𝛽. + 𝑋#% + 𝑍# 20 

where 𝑋#%~𝑁(0,1), 𝜀#~𝑁(0,3) and they are all independent; 𝑔(𝑥) = log( \
%!\

)		and 𝜇#  is the conditional 21 
mean of 𝑌# 	 ; for dichotomous trait, 𝛽.  is chosen such that the prevalence is 10%. This way, the 22 
mean/prevalence for the quantitative/dichotomous trait is a function of the subpopulation, but not directly 23 
affected by the genetic variants. We counted the number of false positives and show the distribution over 24 
500 replicates. We also calculated an estimate of the FDR, defined as the proportion of replicates where 25 
any window is detected. 26 
Population stratification driven by rare variants. We carried out additional simulation studies to simulate 27 
population stratification driven by rare variants using the ADSP data. Specifically, we randomly choose 28 
100 regions across the whole genome but outside chromosome 19 with each region of size 200kb. Each 29 
region contains a 10kb causal window. We randomly set 10% rare variants (MAF<0.01; MAC>10) in each 30 
causal window to exhibit small effects on the trait of interest, Thus the allele frequency differences across 31 
ethnic groups will lead to different disease prevalence, reflecting a population stratification driven by rare 32 
variants. Then we evaluate the FDR for the selected 200kb region near gene APOE (chr19: 44905796-33 
44909393). Since the causal variants are independent of the target region, the confounding effect will be 34 
due to population stratification. Specifically, we generated the quantitative/dichotomous trait as follows: 35 

Quantitative trait: 𝑌# = 𝑋#% + γ∑ F𝛽+%𝑔+% +⋯+ 𝛽+,+1𝑔+,+1G
%..
+Z% + 𝜀#, 36 

Dichotomous trait: 𝑔(𝜇#) = 𝛽. + 𝑋#% + γ∑ F𝛽+%𝑔+% +⋯+ 𝛽+,+1𝑔+,+1G
%..
+Z% + 𝜀#, 37 

where 𝑋#%~𝑁(0,1), 𝜀#~𝑁(0,3) and they are all independent; (𝑔%, … , 𝑔[) are selected risk variants; 	𝑔(𝑥) =38 
log( \

%!\
)		and 𝜇# is the conditional mean of 𝑌#; for dichotomous trait, 𝛽. is chosen such that the prevalence 39 

is 10%. We set the effect 𝛽+( =
b#

c/I#*	(%!I#*)
, where 𝑚+( is the MAF for the 𝑗-th variant in causal window 40 

𝑘 . We define 𝑎+  such that the variance due to the risk variants for each causal locus, 𝛽+%𝑔+% +⋯+41 
𝛽+,+1𝑔+,+1, is 0.01; we set 𝛾 = 0, 0.25, 0.5, 0.75 which quantifies the magnitude of population stratification.  42 
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The Alzheimer’s Disease Sequencing Project. We first applied KnockoffScreen to whole-genome 1 
sequencing (WGS) data from the Alzheimer’s Disease Sequencing Project (ADSP)61. The data include 2 
3,085 whole genomes from the ADSP Discovery Extension Study including 1,096 Non-Hispanic White 3 
(NHW), 977 African American (AA) descent and 1,012 Caribbean Hispanic (CH). Sequencing for these 4 
samples was conducted through three National Human Genome Research Institute (NHGRI) funded Large 5 
Scale Sequencing and Analysis Centers (LSACs): Baylor College of Medicine Human Genome Sequencing 6 
Center, the Broad Institute, the McDonnell Genome Institute at Washington University. The samples were 7 
sequenced on the Illumina HiSeq X Ten platform with 150bp paired-end reads. Additionally, the dataset 8 
includes 809 whole genomes from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with 756 9 
NHW, 28 AA and 25 others. The samples were sequenced on the Illumina HiSeq 2000 platform with 100bp 10 
paired-end reads. Whole-genome sequence data on 809 ADNI subjects (cases, mild cognitive impairment, 11 
and controls) have been harmonized using the ADSP pipeline for joint analysis. The ADSP Quality Control 12 
Work Group performs QC and concordance checks into an overall ADSP VCF file.  13 
COPDGene from the TOPMed Project. Eligible subjects in COPDGene Study (NCT00608764, 14 
www.copdgene.org) were of non-Hispanic white (NHW) or African-American (AA) ancestry, aged 45-80 15 
years old, with at least 10 pack-years of smoking and no diagnosed lung disease other than COPD or 16 
asthma62. IRB approval was obtained at all study centers, and all study participants provided written 17 
informed consent. All subjects underwent a baseline survey, including demographics, smoking history, and 18 
symptoms; pre- and post-bronchodilator lung function testing; and chest CT scans. Samples from 19 
COPDGene were sequenced at the Broad Institute and at the Northwest Genomics Center at the University 20 
of Washington. Variants for all TOPMed samples were jointly called by the Informatics Research Center 21 
at the University of Michigan. For details on sequencing and variant calling methods, 22 
see https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2. QC 23 
included comparison of annotated and genetic sex and comparison of genotypes from prior SNP array data 24 
with genotypes called from sequencing. Samples with questionable identity from either of these checks 25 
were excluded from analysis. 26 
Gene annotation of the identified windows. The windows (single bp or larger) identified as significant at 27 
a target FDR threshold are mapped to genes or intergenic regions using the human genome 28 
assembly GRCh38.p13 from the Ensembl Release 9963. We assign each significant window to its 29 
overlapping locus (gene or intergenic region). If the locus is a gene, we report the gene’s name; if the locus 30 
is intergenic, we report the upstream and downstream genes (enclosed within parentheses and separated by 31 
“-”). We also check if the assigned locus has known associations with Alzheimer’s disease and lung related 32 
traits in the NHGRI-EBI GWAS Catalog34. Specifically, we look up associations with the following seven 33 
traits for the ADSP: Alzheimer's disease, late-onset Alzheimer's disease, family history of Alzheimer's 34 
disease, t-tau measurement, p-tau measurement, amyloid-beta measurement, and beta-amyloid 1-42 35 
measurement; and associations with the following 20 traits for the COPDGene: FEV1/FEC ratio, FEV1, 36 
FVC, PEF (peak expiratory flow), COPD, response to bronchodilator, asthma, chronic bronchitis, lung 37 
carcinoma, lung adenocarcinoma, pulmonary artery enlargement, FEV change measurement, pulmonary 38 
function measurement, carbon monoxide exhalation measurement, airway responsiveness measurement, 39 
serum IgE measurement, smoking behaviour measurement, smoking status measurement, smoking 40 
behaviour, and smoking initiation. These annotations are shown in Supplemental Tables. 41 
  42 
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Data Availability 1 
The manuscript used data from existing studies from COPDGene (TopMED, dbGaP phs000951.v4.p4) 2 
and the Alzheimer's Disease Sequencing Project (dbGaP phs000572.v8.p4). 3 
 4 
Code Availability 5 
We have implemented KnockoffScreen in a computationally efficient R package that can be applied 6 
generally to the analysis of other whole-genome sequencing studies. The package can be accessed at: 7 
https://cran.r-project.org/web/packages/KnockoffScreen/index.html. 8 
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