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Abstract

The analysis of whole-genome sequencing studies is challenging due to the large number of rare variants
in noncoding regions and the lack of natural units for testing. We propose a statistical method to detect and
localize rare and common risk variants in whole-genome sequencing studies based on a recently developed
knockoff framework. It can (1) prioritize causal variants over associations due to linkage disequilibrium
thereby improving interpretability; (2) help distinguish the signal due to rare variants from shadow effects
of significant common variants nearby; (3) integrate multiple knockoffs for improved power, stability and
reproducibility; and (4) flexibly incorporate state-of-the-art and future association tests to achieve the
benefits proposed here. In applications to whole-genome sequencing data from the Alzheimer’s Disease
Sequencing Project (ADSP) and COPDGene samples from NHLBI Trans-Omics for Precision Medicine
(TOPMed) Program we show that our method compared with conventional association tests can lead to
substantially more discoveries.

Introduction

The rapid development of whole-genome sequencing technology allows for a comprehensive
characterization of the genetic variation in the human genome in both coding and noncoding regions. The
noncoding genome covers ~98% of the human genome, and includes regulatory elements that control when,
where, and to what degree genes will be expressed. Understanding the role of noncoding variation could
provide important insights into the molecular mechanisms underlying different traits.

Despite the increasing availability of whole-genome sequencing datasets including those from moderate to
large scale projects such as the Alzheimer’s Disease Sequencing Project (ADSP), the Trans-Omics for
Precision Medicine (TOPMed) program etc., our ability to analyze and extract useful information from
these datasets remains limited at this point and many studies still focus on the coding regions and regions
proximal to genes'?. The main challenges for analyzing the noncoding regions include the large number of
rare variants, the limited knowledge of their functional effects, and the lack of natural units for testing (such
as genes in the coding regions). To date, most studies have relied on association testing methods such as
single variant tests for common variants, gene-based tests for rare variants in coding regions, or a heuristic
sliding window strategy to apply gene-based tests to rare variants in the noncoding genome®*. Only few
methods have been developed to systematically analyze both common and rare variants across the genome,
owing to difficulties such as an increased burden of the multiple testing problem, more complex correlations
and increased computational cost. Moreover, a common feature of the existing association tests is that they
often identify proxy variants that are correlated with the causal ones, rather than the causal variants that
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directly affect the traits of interest. Identification of putative causal variants usually requires a separate fine-
mapping step. Fine-mapping methods such as CAVIAR® and SUSIE® were developed for single, common
variant analysis in GWAS studies, and are not directly applicable to window-based analysis of rare variants
in sequencing studies.

Methods that control the family-wise error rate (FWER) have been commonly used to correct for multiple
testing in genetic associations studies, e.g. a p-value threshold of 5 X 10~8 based on a Bonferroni correction
is commonly used for genome-wide significance in GWAS corresponding to a FWER at 0.05. The number
of genetic variants being considered in the analysis of whole-genome sequencing data increases
substantially to more than 400 million in TOPMed?, and FWER-controlling methods become highly
conservative’. As more individuals are being sequenced, the number of variants increases accordingly. The
false discovery rate (FDR), which quantifies the expected proportion of discoveries which are falsely
rejected, is an alternative metric to the FWER in multiple testing control, and can have greater power to
detect true positives while controlling FDR at a specified level. This metric has been popular in the
discovery of eQTLs and Bayesian association tests for rare variation in autism spectrum disorder studies®
', Given the limited power of conventional association tests for whole-genome sequencing data and the
potential for many true discoveries to be made in studies for highly polygenic traits, controlling FDR can
be a more appealing strategy. However, the conventional FDR-controlling methods, such as the Benjamini-
Hochberg procedure'?, often do not appropriately account for correlations among tests and therefore cannot
guarantee FDR control at the target level, which can limit the widespread application of FDR control to
whole-genome sequencing data.

The knockoff framework is a recent breakthrough in statistics to control the FDR under arbitrary correlation
structure and to improve power over methods controlling the FWER'*!*. The main idea behind it is to first
construct synthetic features, i.e. knockoff features, that resemble the true features in terms of the correlation
structure but are conditionally independent of the outcome given the true features. The knockoff features
serve as negative controls and help us select the truly important features, while controlling the FDR.
Compared to the well-known Benjamini-Hochberg procedure'?, which controls the FDR under
independence or a type of positive-dependence, the knockoff framework appropriately accounts for
arbitrary correlations between the original variables while guaranteeing control of the FDR. Moreover, it is
not limited to using calibrated p-values, and can be flexibly applied to feature importance scores computed
based on a variety of modern machine learning methods, with rigorous finite-sample statistical guarantees.
Several knockoff constructions have been proposed in the literature including the second-order knockoff
generator proposed by Candés et al.' and the knockoff generator for Hidden Markov Models (HMM:s)
proposed by Sesia et al.'>'S. The HMM construction has been applied to phased GWAS data in the UK
biobank. However, these constructions can fail for rare variants in whole-genome sequencing data whose
distribution is highly skewed and zero-inflated, leading to inflated FDR. Romano et al.'” proposed deep
generative models for arbitrary and unspecified data distributions, but such an approach is computationally
intensive, and therefore not scalable to whole-genome sequencing data.

Our contributions in this paper include a sequential knockoff generator, a powerful genome-wide screening
method, and a robust inference procedure integrating multiple knockoffs. The sequential knockoff generator
is more than 50 times faster than state-of-the-art knockoff generation methods, and additionally allows for
the efficient generation of multiple knockoffs. The genome-wide screening method builds upon our recently
proposed scan statistic framework, WGScan'®, to localize association signals at genome-wide scale. We
adopt the same screening strategy, but incorporate several recent advances for rare-variant analysis in
sequencing studies, including the aggregated Cauchy association test to combine single variant tests, burden
and dispersion (SKAT) tests, the saddlepoint approximation for unbalanced case-control data, the
functional score test that allows incorporation of functional annotations, and a modified variant threshold
test that accumulates extremely rare variants such as singletons and doubletons'?°. We compute statistics
measuring the importance of the original and knockoff features using an ensemble of these tests. Feature
statistics that contrast the original and knockoff statistics are computed for each feature, and can be used
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by the knockoff filter to select the important features, i.e. those significant at a fixed FDR threshold. The
integration of multiple knockoffs further helps improve the power, stability and reproducibility of the results
compared with state-of-the-art alternatives. Using simulations and applications to two whole-genome
sequencing studies, we show that the proposed method is powerful in detecting signals across the genome
with guaranteed FDR control.

Our knockoff method can be considered a synthetic alternative to knockout functional experiments designed
to identify functional variation implicated in a trait of interest. For each individual in the original cohort,
the proposed method generates a synthetic sequence where each genetic variant is being randomized,
making it silent and not directly affecting the trait of interest while preserving the sequence correlation
structure. Then the proposed method compares the original cohort where the variants are potentially
functional with the synthetic cohort where the variants are silenced. The randomization utilizes the knockoff
framework that ensures that the original sequence and the synthetic sequence are “exchangeable”. That is,
if one replaces any part of the original sequence by its synthetic, silenced sequence, the joint distribution of
genetic variants (the LD structure etc.) remains the same. This leads to an important feature of our proposed
screening procedure that is similar to real functional experiments, namely the ability to prioritize causal
variants over associations due to linkage disequilibrium and other unadjusted confounding effects (e.g.
shadow effects of nearby significant variants and unadjusted population stratification) as we show below.

In this paper, we present a statistical approach that addresses the challenges described above, and leads to
increased power to detect and localize common and rare risk variants at genome-wide scale. The framework
appropriately accounts for arbitrary correlations while guaranteeing FDR control at a desired level, and
therefore has higher power than existing association tests that control FWER. Furthermore, the proposed
method has additional important advantages over the standard approaches due to some intrinsic properties
of the underlying framework. Specifically, it allows for the prioritization of causal variants over
associations due to linkage disequilibrium. For analyses specifically focusing on rare variants, the method
naturally distinguishes the signal due to rare variants from shadow effects of nearby significant (common
or rare) variants. Additionally, it naturally reduces false positives due to unadjusted population stratification.

Results

Overview of the screening procedure with multiple knockoffs (KnockoffScreen). We describe here the
main ideas behind our method, KnockoffScreen. We assume a study population of n subjects, with Y; being
the quantitative/dichotomous outcome value; X; = (X;q, ..., X;4)T being the d covariates which can include
age, gender, principal components of genetic variation etc.; {Gi j}1<j . being the p genetic variants in the

<
genome. For each target window @y; = {j:k < j <[}, we are interested in determining whether @y,
contains any variants associated with the outcome of interest while adjusting for covariates.

The idea of the proposed method is to augment the original cohort with a synthetic cohort with genetic
variants, {Gi j} ___, referred to as knockoff features. {Gi j} .__are generated by a data driven algorithm
1<j<p 1<j<p

such that they are exchangeable with {Gi f}1<j<p’ yet they do not directly affect Y; (i.e. are “silenced”, and

therefore not causal). More precisely, {G;;} = is independent of ¥; conditional on {G;;} . . Note that
J)1< Jj<p p J)1< Jj<p

the knockoff generation procedure is different from the well-known permutation procedure which generates
control features by permuting the samples; for such a permutation procedure, the exchangeability property
between the original genetic variants and the synthetic ones does not hold and hence the FDR control cannot
be guaranteed'®'*,

The screening procedure examines every target window @y,; in the genome and performs hypothesis testing
in both the original cohort and the synthetic cohort, to test for association of Gg,, and G¢kl with Y
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respectively. As explained below, the knockoff procedure is amenable to any form of association test within
the window. Let pg,,, Po,, be the resulting p-values. We define a feature statistic as

Wo, = Tay, — T':I)kl’ (1)

where Te,, = —10g10 Po,, and ’T"q,kl = —logy Do, Essentially, the observed p-value for each window is
compared to its control counterpart in the synthetic cohort. A threshold 7 for Wy, , can be determined by
the knockofT filter so that the FDR is controlled at the nominal level. We select all windows with We,,, = 7.
We additionally derived the corresponding Q-value for a window, qg,,, that unifies the feature statistic
Wa,, and the threshold 7. More details are given in the Methods section.

The knockoff construction ensures exchangeability of features, namely that {Gi j}1<j<p and {Gi j}1<j<p are

exchangeable. Hence if one swaps any subset of variants with their synthetic counterpart, the joint
distribution remains the same. For instance, suppose that G;; and G;, are two genetic variants, then the
knockoff generator will generate their knockoff counterparts G;; and G;, such that
(Gi1, Giz, Giy, Giz)~(Giy, Giz, Gy, i), where “~” denotes equality in distribution. More generally, for any

subset S c {1, ..., p},
(606 yyapsy~(E0C). @

where (Gi, Gi)swap ) is obtained from (GL-, Gi) by swapping the variants G;; and G; j for each j € S. This

feature exchangeability implies the exchangeability of the importance scores T, , and chkl under the null
hypothesis, i.e. (Tq,kl, To kl)~(7"¢kl, Te kl) if dy; does not contain any causal variant. Thus Tcpkl can be used
as the negative control, and we reject the null when Wy, , = Te,, — Tq)kl is sufficiently large. This
exchangeability property leads to several interesting properties of our proposed screening procedure relative

to conventional association tests as mentioned in the Introduction, and which will be discussed in detail in
later sections.

Once the knockoff generation is completed, we apply a genome-wide screening procedure. Our screening
procedure considers windows with different sizes (1bp, 1kb, 5kb, 10kb) across the genome, with half of
each window overlapping with adjacent windows of the same size. To calculate the importance score for
each window @, we incorporate several recent advances for association tests for sequencing studies to
compute Py, -

e For each 1bp window (i.e. single variant): we only consider common (minor allele frequency
(MAF)>0.05) and low frequency (0.01<MAF<0.05) variants and compute pg,, from single variant
score test. For binary traits, we implement the saddlepoint approximation for unbalanced case-control
data.

e For each 1kb/5kb/10kb window, we perform:

a. Burden and dispersion tests for common and low frequency variants with Beta (MAF, 1, 25)
weights, where Beta (.) is the probability density function of the beta distribution with shape
parameters 1 and 25%. These tests aim to detect the combined effects of common and low frequency
variants.

b. Burden and dispersion tests for rare variants (MAF<0.01 & minor allele count (MAC)>=5) with
Beta (MAF,1, 25) weights. These tests aim to detect the combined effects of rare variants.

c. Burden and dispersion tests for rare variants, weighted by functional annotations®. Current
implementation includes CADD?’ and tissue/cell type specific GenoNet scores®®. These tests aim
to utilize functional annotations for improved power.

d. Burden test for aggregation of ultra-rare variants (MAC<5). These tests aim to aggregate effects
from extremely rare variants such as singletons, doubletons etc.

e. Single variant score tests for common, low frequency and rare variants in the window.
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f.  The aggregated Cauchy association test® to combine a-e to compute Doy,

We also extend the single knockoff described above to the setting with multiple knockoffs to improve the
power, stability and reproducibility of the findings. Let g be the FDR threshold. The inference based on a
single knockoff is limited by a detection threshold of 1/q, defined as the minimum number of independent
signals required for making any discovery. It has no power at the target FDR level q if there are fewer than
1/q discoveries to be made. The multiple knockoffs improve the detection threshold from 1/q to 1/(Mq) ,
where M is the number of knockoffs*’. For example, the detection threshold is 10 when the target FDR=0.1.
In scenarios where the signal is sparse (<10 independent causal variants) in the target region or across the
genome, inference based on a single knockoff can have very low power to detect any of the causal variants.
In such a setting, KnockoffScreen with M knockoffs reduces the detection threshold from 10 to 10/M,
which allows KnockoffScreen to detect sparse signals in a target region or across the genome. Furthermore,
integrating multiple knockoffs leads to improvements in the stability and reproducibility of the knockoff
procedure. Specifically, the results of the KnockoffScreen procedure depend to some extent on the sampling
of knockoff features {Gi f}1<j<p’ which is random. Therefore, running the analysis twice on the same dataset

may lead to the selection of slightly different subsets of features. In particular, for weak causal effects, there
is a chance that the causal variant is selected in only one of the analyses. We demonstrate in the Methods
section that our choice of multiple knockoff statistics helps improve the stability of the results compared
with state-of-the-art alternatives.

In the Methods section, we describe in detail our computationally efficient method to generate the knockoff
features, and our multiple knockoffs method. A flowchart of our approach is shown in Figure 1.

Figure 1: Overview of KnockoffScreen. The left panel illustrates the knockoff generation based on the original genotype matrix.
Each row in the matrix corresponds to an individual and each column corresponds to a genetic variant. Each cell presents the
genotype value/dosage. The mid panel illustrates the calculation of the importance score for each 1bp, 1kb, 5kb or 10kb window.
The right panel presents a typical example of genome-wide screening results using conventional association testing (top) and
KnockoffScreen (bottom).
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KnockoffScreen improves power and guarantees FDR control in single-region simulation studies. We
performed empirical power and FDR simulations to evaluate the performance of KnockoffScreen in a single
region. We compared it with existing alternatives for sequence-based association testing, including the
burden and dispersion (SKAT) tests with Beta(MAF;1,25) weights. For a fair and simplified comparison,
we did not include additional functional annotations in our method for these simulations. Note that burden
and SKAT are also applied within the knockoff framework, and therefore we still aim at controlling the
FDR. We also compared with state-of-the-art methods for generating knockoff features, including the
second-order knockoff generator proposed by Candés et al.', referred to as SecondOrder, and the knockoff
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generator for Hidden Markov Models (HMMs) proposed by Sesia et al.'>!® with number of states S=50.
For simulating the sequence data, each replicate consists of 10,000 individuals with genetic data on 1,000
genetic variants from a 200kb region, simulated using the haplotype dataset in the SKAT package. The
SKAT haplotype dataset was generated using a coalescent model (COSI), mimicking the linkage
disequilibrium structure of European ancestry samples. Simulation details are provided in the Methods
section. We compared the methods in different scenarios for common and rare variants, quantitative traits
and dichotomous traits. For each replicate, the empirical power is defined as the proportion of detected
windows among all causal windows (windows that contain at least one causal variant); the empirical FDR
is defined as the proportion of non-causal windows among all detected windows. We present the average
power and FDR over 1,000 replicates in Figure 2. We additionally present the distribution of power and
FDP (the false discovery proportion) at target FDR level 0.1 over 1,000 replicates in Figure S1.

The comparisons of the different knockoff generators show that KnockoffScreen has significantly improved
power with a better FDR control. For single knockoff generators, SecondOrder and HMMs have inflated
FDR for rare variants. We also observed that the HMM based knockoff has inflated FDR for common
variants for the window-based screening procedure considered in this paper. KnockoffScreen has well
controlled FDR, and significantly higher power compared with single knockoff, especially when the target
FDR q is small. This is due to the high detection threshold (1/q) needed for the single knockoff. Our
multiple knockoff method KnockoffScreen incorporates five knockoffs, and as a consequence the detection
threshold is reduced from 1/q to 1/(5q) , which helps improve power. We note that the power of methods
with single knockoff and multiple knockoffs may be comparable in settings where the detection threshold
is not a primary factor that limits the power, such as for higher target FDR values. Furthermore, we observed
that the additional tests included in KnockoffScreen improve its power, compared to the burden and SKAT
tests with the same number of knockoffs. In summary, the simulation results show that the screening
procedure and multiple knockoffs help improve power while controlling FDR at the nominal level.

Figure 2: Power and false discovery rate (FDR) simulation studies in a single region. The four panels show power and FDR
base on 500 replicates for different types of traits (quantitative and dichotomous) and different types of variants (rare and common),
with different target FDR varying from 0 to 0.2. The different colors indicate different knockoff generators. The different types of
lines indicate different tests to define the importance score.
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KnockoffScreen improves genome-wide locus discovery for polygenic traits. We conducted genome-
wide empirical FDR and power simulations using ADSP whole-genome sequencing data to evaluate the
performance of KnockoffScreen in the presence of multiple causal loci. Specifically, we randomly choose
10 causal loci and 500 noise loci across the whole genome, each of size 200kb. Each causal locus contains
a 10kb causal window. For each replicate, we randomly set 10% variants in each 10kb causal window to
be causal. In total, there are approximately 335 causal variants on average across the genome. Simulation
details are provided in the Methods section. We compared the proposed KnockoffScreen method to
conventional p-value based methods including Bonferroni correction for FWER control, and BH procedure
for FDR control. For KnockoffScreen we also evaluated the effect of different numbers of knockoffs. We
evaluated the empirical power and FDR at target FDR 0.10. For each replicate, the power is defined as
proportion of the 200kb causal loci detected by each method; the empirical FDR is defined as the proportion
of significant windows +/- 100/75/50kb away from the causal windows. We report the average power and
FDR over 100 replicates in Figure 3.

The simulation results show that KnockoffScreen exhibits substantially higher power than using Bonferroni
correction. Additionally, using the conventional Benjamini-Hochberg FDR control may have higher power
than KnockoffScreen, but fails to control FDR at higher resolution (e.g. +/-75kb). Statistically, the knockoff
filter is expected to have similar or higher power for independent tests compared with the BH procedure'*.
For correlated genetic variants/windows, the higher empirical power of the BH procedure in our simulation
studies is subject to false-positive inflation. Therefore, we do not recommend directly using the
conventional BH FDR control in whole genome sequencing studies. In the presence of multiple causal loci
and at a moderate target FDR, we observe that the power is similar for different number of knockoffs
because the aforementioned detection threshold is no longer an issue. Thus, multiple knockoffs are
particularly useful when the number of causal loci is small, and the target FDR is stringent. Regardless of
the effect on power, an important advantage of using multiple knockoffs is that it can significantly improve
the stability and reproducibility of knockoff-based inference. Since the knockoff sampling is random, each
run of the knockoff procedure may lead to different selected sets of features. In practice, strong signals will
always be selected but weak signals may be missed at random with a single knockoff. The proposed multiple
knockoff procedure has significantly smaller variation in feature statistic in our simulation study based on
real data from ADSP. We discuss the details in the Methods section (Figure 9).
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Figure 3: Genome-wide power and false discovery rate (FDR) simulations studies in the presence of multiple causal loci.
The two left panels show power for different types of traits (quantitative and dichotomous), defined as the average proportion of
200kb causal loci being identified at target FDR 0.1. The two right panels show empirical FDR for different types of traits
(quantitative and dichotomous) at different resolutions, defined as the proportion of significant windows (target FDR 0.1) +/-
100/75/50kb away from the causal windows. The empirical power and FDR are averaged over 100 replicates.
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KnockoffScreen prioritizes causal variants/loci over associations due to linkage disequilibrium. The
exchangeability properties for the features help the inference based on the feature statistic We,, = To,, —
T‘q,kl to prioritize causal variants/loci over associations due to LD. For example, suppose G;; is causal and
Gi; is a null variant correlated with Gy ; (Cil, G~i2) are exchangeable with (G;q,G;z) , therefore
cor(Gil, Giy ) ~ cor(Gjy, Gi3 ). Thus, the resulting p-values p,~p,, and hence W, = —logp, — (—logp,)
follows a distribution that is symmetric around 0. This way, by comparing the p-value of G;, (a null variant)
to that of its control counterpart, the method no longer identifies the proxy variant G;, as significant. On
the other hand, the knockoff generation minimizes the correlation between feature G;; and its knockoff
counterpart G;;, such that W; = —logp,; — (—logp,) takes positive value with higher probability and
therefore can identify the causal variant G;; as significant.

We compared KnockoffScreen with state-of-the-art methods which perform association tests in each
window and apply a hard threshold (e.g. Bonferroni correction) to control for family wise error rate (FWER).
For a fair comparison, for the conventional association testing we adopted the same combination of tests
(i.e. we combined the same single variant and region-based tests) implemented in KnockoffScreen to
calculate the p-value. As a proof of concept, we show first the results from an analysis of common and rare
variants within a 200kb region near the apolipoprotein E (4POE) gene for Alzheimer’s Disease (AD), using
data on 3,894 individuals from the Alzheimer’s Disease Sequencing Project (ADSP). More details on the
data analysis for ADSP are described in a later section. APOE is a major genetic determinant of AD risk,
containing AD risk/protective alleles. APOFE comes in three forms (APOE €2 /3 /e4). Among them, €2 is
the least common and confers reduced risk to AD, €4 is the most common and increases risk to AD, while
€3 appears neutral. We found that the conventional association test using a Bonferroni correction identifies
a large number of significant associations (p < 0.05/number of tested windows), but most of these windows
are presumably false positives due to LD since they are no longer significant after adjusting for the APOE
alleles (Figure 4A). In contrast, KnockoffScreen filtered out a considerable number of associations that are
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likely due to LD, and identified more refined windows that reside in APOE and APOC] at target FDR=0.1
(Figure 4B). A recent study identified AD risk variants and haplotypes in the APOCI region, and showed
that these signals are independent of the APOE-¢4 coding change, consistent with our findings®'.

We conducted additional simulation studies to further investigate this property. We randomly drew a subset
of variants (1,000 variants) from the 200kb region near APOE, set a Skb window (similar to the size of
APOE) as the causal window and then simulated disease phenotypes. More details on these simulations are
provided in the Methods section. With target FDR=0.1, we evaluated the proportion of selected windows
overlapping the true causal window, and the maximum distance between the selected windows and the
causal window. Figures 4C-D show the results over 500 replicates. We found that windows selected by
KnockoffScreen have a significantly better chance to overlap with the causal window relative to the
conventional association test. We also found that the maximum distance between the selected windows and
the causal window is significantly smaller for KnockoffScreen. Particularly, the distribution of the
maximum distance to the causal window is zero-inflated for KnockoffScreen; these are cases where all
windows detected by KnockoffScreen overlap/cover the causal window.

Overall, the real data example and these simulation results demonstrate that KnockoffScreen is able to
prioritize causal variants over associations due to linkage disequilibrium and produces more accurate results
in detecting disease risk variants/loci, thereby improving interpretation of the findings.

Figure 4: KnockoffScreen prioritizes causal variants/loci and distinguishes the signal due to rare variants from shadow
effects of significant common variants nearby. The top two panels present the results of the data analyses of the APOE+/-100kb
region from the ADSP data. Each dot represents a window. Windows selected by KnockoffScreen are highlighted in red. Windows
selected by conventional association testing but not by KnockoffScreen are shown in gray. The bottom three panels present
simulation results based on the APOE+/-100kb region, comparing the conventional association testing and KnockoffScreen methods
in terms of prioritizing causal regions, and distinguishing true signals from shadow effects of nearby variants. The target FDR is
0.1. The results are based on 500 replicates.

KnockoffScreen prioritizes causal variants/loci in APOE+-100kb region
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KnockoffScreen distinguishes the signal due to rare variants from shadow effects of significant
common variants nearby. Conventional sequence-based association tests focused on rare variants (MAF
below a certain threshold, e.g. 0.01) can lead to false positive findings by identifying rare variants that are
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not causal but instead correlated with a known causal common variant at the same locus; this is referred to
as the shadow effects™. For illustration, we conducted simulation studies based on the same 200kb region
near the APOF gene as described above. We adopted the same simulation setting but set the causal variants
to be common (MAF>0.01) and apply the methods to rare variants only (MAF<0.01). More details on these
simulations are provided in the Methods section. Since all causal variants are common, all detected
windows (focusing on rare variants) are false positives due to the shadow effect. We compared
KnockoffScreen with conventional association testing by counting the number of false positives and show
the distribution over 500 replicates in Figure 4E. For a fair comparison, for the conventional association
testing we adopted the same ensemble of tests implemented in KnockoffScreen to calculate the p-value. We
observed that the conventional tests tend to identify a large number of false positives due to the shadow
effect. In contrast, KnockoffScreen has a significantly reduced number of false positives, demonstrating that
it is able to distinguish the effect of rare variants from that of common variants nearby. This feature is
particularly appealing in detecting novel rare association signals in whole-genome sequencing studies. The
same argument also holds if instead rare variants were causal; by construction, KnockoffScreen applied to
common variants only can distinguish effects attributable to common causal variants from those due to rare
causal variants nearby.

Empirical evaluation of KnockoffScreen in the presence of population stratification. Population
structure is an important confounder in genetic association studies. Standard methods to adjust for
population stratification, including principal component analysis or mixed effect models, help control for
global ancestry in conventional sequencing association tests. We performed an empirical evaluation of
KnockoffScreen in the presence of population stratification using sequencing data from the ADSP project.
We also evaluated whether, by regressing out the top principal components when computing the association
statistics (p-values), KnockoffScreen is able to control FDR. Specifically, we randomly drew a subset of
variants (1,000 variants) from the 200kb region near the APOE region in the ADSP study. The ADSP
includes three ethnic groups: African American (AA), Non-Hispanic White (NHW) and Others (of which,
98% are Caribbean Hispanic) (see genome-wide PCA results in Figure 5A). We set the mean/prevalence
for the quantitative/dichotomous trait to be a function of the subpopulation, but not directly affected by any
genetic variants. More details on these simulations are provided in the Methods section. We compared
KnockoffScreen with the conventional association test with no adjustment for population stratification. We
also included a modified version of KnockoffScreen that adjusts for the top 10 global PCs when computing
the p-values used to compute the window feature statistic, referred to as KnockoffScreen+10PCs. For
comparison, we also included the conventional association test based on Bonferroni correction, which
defines significant associations by p-value<0.05/number of tests.

Since in these simulations none of the genetic variants are causal, all detected windows are false positives
due to the confounding effects of population structure. With a target FDR=0.1, we calculated the observed
FDR, defined as the proportion of replicates where any window is detected, and present the results in
Figures 5B-C. We observed that both PC-adjusted KnockoffScreen and the conventional PC-adjusted
association test are able to control FDR at the target level. This is further illustrated by our real data analysis
of ADSP where despite the combined analysis of three ethnicities there is no apparent inflation in false
positive signals. Interestingly, KnockoffScreen exhibits lower FDR than association test when they are both
unadjusted, indicating that the use of knockoffs naturally helps to prioritize causal variants over association
due to population stratifications. We additionally performed simulation studies to mimic population
stratification driven by rare variants and present the results in Table S1. As before, we found that both PC-
adjusted KnockoffScreen and association test are able to control FDR in the scenarios considered here, and
KnockoffScreen exhibits a lower FDR than the conventional association test for an unadjusted model. Since
the reduction of false positives for KnockoffScreen does not require observing/estimating the underlying
ancestry, the knockoff procedure can potentially complement existing tools for ancestry adjustment to better
reduce false positive findings due to population substructure. However, we clarify that KnockoffScreen
itself does not completely eliminate the confounding due to population stratification (Table S1) because the
current knockoff generator assumes the same LD structure across individuals and it only accounts for local
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LD structure. Therefore, it does not capture heterogeneous LD structure across populations and strong long-
range LD due to population stratification. Development of new knockoff generators that explicitly account
for population structure will be of interest™.

Figure 5: Empirical evaluation of KnockoffScreen in the presence of population stratification. The left panel presents the
principal component analysis of the ADSP data, which contains three ethnic groups: African American (AA), Non-Hispanic White
(NHW) and Others (of which, 98% are Caribbean Hispanic). Each dot represents an individual. The middle and right panels present
results from a simulation study that mimics the ADSP data, comparing KnockoffScreen with conventional association testing. Each
panel shows empirical FDR based on 500 replicates. KnockoffScreen 10PCs is a modified version of KnockoffScreen method that
includes adjustment for the top principal components while computing the association statistics (p-values). KnockoffScreen controls
FDR at 0.10; Association Testing is based on usual Bonferroni correction (0.05/number of tests), controlling FWER at 0.05.
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KnockoffScreen enables computationally efficient screening of whole-genome sequencing data. One
obstacle for the widespread application of knockoffs to genetic data, particularly whole-genome sequencing
data, is their computational cost. The knockoff generation can be computationally intensive when the
number of genetic variants p is large; depending on the method, it may require the calculation of the eigen
values of a p X p covariance matrix, or iteratively fitting a prediction model for every variant. The whole-
genome sequencing data from ADSP (~4000 individuals) contains ~85 million variants in total, much larger
than the number of variants in GWAS datasets. Similarly, in 53,581 TOPMed samples, more than 400
million single-nucleotide and insertion/deletion variants were detected’. As more individuals are being
sequenced, the number of variants will increase accordingly. We demonstrate that the proposed sequential
model to simultaneously generate multiple knockoffs is significantly more computationally efficient than
existing knockoff generation methods, making it scalable to whole-genome sequencing data. We compared
the computing time of our proposed knockoff generator with two existing alternatives: the second-order
knockoff generator proposed by Candés et al."*, referred to as SecondOrder; and knockoffs for Hidden
Markov Models (HMMs) proposed by Sesia et al.'*'¢ with varying number of states (S=12 and S=50). We
estimate the complexity of our proposed method as O (np), where n is the sample size and p is the number
of genetic variants. The details of this calculation are described in the Methods section. The complexity of
the HMM method is also O(np), as discussed in Sesia et al.'°. However, it is significantly less efficient
than the proposed method for unphased genotype data as we show below. We note that the computing time
of the SecondOrder method is of order O(np? + p3) because it requires calculating the eigen values of a
p X p covariance matrix. Therefore, it is not a feasible approach for whole-genome analysis with a large
number of variants.

We performed simulations to empirically evaluate the computational time for the different methods. We
note that the proposed method focuses on the analysis of whole-genome sequencing data, and thus the
computational cost is reported on unphased genotype data, which is the usual format for sequencing data.
Since the HMM model assumes the availability of phased data, we report the computing time separately
for phasing with fastPhase and sampling with SNPknock as described in Sesia et al.'>. We simulated genetic
data using the SKAT package, with varying sample sizes and number of genetic variants (Table 1). The
computing time was evaluated on a single CPU (Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz). For the
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simulation scenario considered in the previous section with 10,000 individuals and 1,000 genetic variants,
we observed that the proposed method takes 6.59 seconds to generate a single set of knockoff features,
which is ~130 times faster than the HMM model with S=12 states (881.43 seconds). The application of the
HMM model with the recommended S=50 states to unphased sequencing data (13681.53 seconds for 10,000
individuals and 1,000 genetic variants) is currently not practical at genome-wide scale. As shown, a
substantial fraction of the total computing time is taken by the phasing step, and therefore using more
computationally efficient phasing algorithms can further improve the computational cost of the HMM-
based knockoff generation.

Table 1: Computing time of different knockoff generators. Each cell shows the computing time in seconds to generate knockoffs
based for unphased genotype data. The multiple sequential knockoffs approach generates five knockoffs. The computing time was
measured on unphased genotype data using a single CPU (Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz). Since the HMM model
was mainly proposed for phased data, we report the computing time separately for phasing with fastPhase, and sampling with
SNPknock.

MSK (5 knockoffs) SK SecondOrder HMM with S=12 HMM with S=50
n p Phasing Sampling  Phasing  Sampling
1000 500 2.11 0.86 8.9 37.86 6.02 580.87 93.88
1000 1000 3.99 1.92 57.01 76 12.01 1147.66 188.74
1000 2000 8.89 4.06 491.19 161.94 24.76 2336.83 376.93
5000 500 4.66 1.63 8.51 188.5 30.45 2878.43 485.34
5000 1000 11.76 3.95 52.63 380.06 60.28 5914.19 996.11
5000 2000 31.58 11.09 479.01 811.61 129.6 11734.66  1865.11
10000 500 7.42 2.34 9.29 377.07 58.8 5784.24 957.49
10000 1000 20.57 6.59 54.66 757.49 123.94 11744.68  1936.85
10000 2000 52.86 16.92 445.05 1571.19 253.46 23584.8 3870.07

KnockoffScreen detects more independent disease risk loci across the genome in two whole-genome
sequencing studies. Here we show results from the application of KnockoffScreen to two whole-genome
sequencing datasets from two different studies, namely the Alzheimer’s Disease Sequencing Project
(ADSP), and the COPDGene study from the NHLBI Trans-Omics for Precision Medicine (TOPMed)
Program. For each study, we considered windows with sizes (1bp, 1kb, Skb, 10kb) across the genome as
described before. In addition to the different weighting and thresholding strategies, we include several
functional scores to improve the power of detecting rare functional variants. The functional scores include
non-tissue specific CADD score and 10 tissue/cell type specific GenoNet scores. The GenoNet scores were
trained using epigenetic annotations from the Roadmap Epigenomics Project across 127 tissues/cell types.
We partition the tissues/cell types into 10 groups (including Stem Cells, Blood, Connective Tissue, Brain,
Internal Organs, Fetal Brain, Muscle, Fetal Tissues, and Gastrointestinal; Table S2 has more details on
these tissue groupings) and we use the maximum GenoNet score per group.

We show results from conventional association tests (using the same combination of single variant and
region-based tests as implemented in KnockoffScreen) and using Bonferroni correction (p < 0.05/number
of tested windows) to control the family wise error rate. QQ-plots of all tests (Figure S5) show that the type
I error rate is well controlled. We also report results from KnockoffScreen at an FDR threshold of 0.1. We
assigned each significant window to its overlapping locus (gene or intergenic region). If the locus is a gene,
we report the gene’s name; if the locus is intergenic, we report the upstream and downstream genes
(enclosed within parentheses and separated by “-”). To assess the degree of overlap with previously
described associations, we additionally searched if the loci have known associations with Alzheimer’s

disease and lung related traits in the NHGRI-EBI GWAS Catalog*, acknowledging that some of the studies
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in the GWAS catalog included ADSP and COPDGene data. The details on gene annotations are described
in the Methods section.

Application to ADSP. We first applied KnockoffScreen to the whole-genome sequencing data from the
Alzheimer’s Disease Sequencing Project (ADSP) for a genome-wide scan. The data includes 3,085 whole
genomes from the ADSP Discovery Extension Study and 809 whole genomes from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), for a total of 3,894 whole genomes. More details on the ADSP data are
provided in the Methods section. We adjusted for age, age”2, gender, ethnic group, sequencing center, and
the leading 10 principal components of ancestry. We present the results in Figure 6.

The conventional association test with Bonferroni correction identified a region (~50kb long) at the known
APOE locus, containing a large number of significant associations (Figure 6), but, as discussed before, most
of them are presumably due to LD with the known APOE risk variants since they are no longer significant
after adjusting for the APOE alleles. Within the APOE region, KnockoffScreen identified fewer windows
that overlap with known AD genes, namely APOE, APOCI, APOCIPI and TOMM40 at FDR<0.1, while
removing a considerable number of associations that are likely due to LD. Beyond the APOFE locus,
KnockoffScreen identified several other loci that potentially affect AD risk, including K478 and an
intergenic region on chromosome 18q22 between DSEL and TMX3. KATS (lysine acetyltransferase 8) has
been recently identified in two large scale GWAS focused on clinically diagnosed AD and AD-by-proxy
individuals®=°. It is a promising candidate gene that affects multiple brain regions including the
hippocampus and plays a putative role in neurodegeneration in both AD and Parkinson’s disease’’. The
intergenic region identified by KnockoffScreen resides in a known linkage region for AD and bipolar
disorder on chromosome 18q22.1°**. DSEL (dermatan sulfate epimerase-like) is implicated in D-
glucuronic acid metabolism and tumor rejection. A recent study has shown that glucuronic acid levels
increase with age and predict future healthspan-related outcomes*’. Furthermore, DSEL is highly expressed
in the brain and has been found associated with AD in an imaging-wide association study*'. SNPs upstream
of DSEL have also been associated with recurrent early-onset major depressive disorder*”. Two other
intergenic loci, ANKRD18A-FAM240B and TAFA5-BRD1 were reported in the GWAS catalog to have
suggestive associations ( 5X 1078 <p <1x 107> ) with late-onset Alzheimer’s disease®. We
additionally present results when applying the Benjamini-Hochberg procedure for FDR control in Figure
S6; we observed that the associations identified by KnockoffScreen are largely replicated in the GWAS
catalog, while the new discoveries uniquely identified using the conventional BH FDR control do not
overlap with previous GWAS findings, suggesting they may be false positives.

Application to COPDGene study in TOPMed. The Genetic Epidemiology of COPD (COPDGene) study
includes current and former cigarette smokers aged > 45. All subjects underwent spirometry to measure
lung function. Cases were identified as those with moderate-to-severe chronic obstructive pulmonary
disease (COPD), controls were those with normal lung function, and a third set were neither cases nor
controls. These individuals have been whole-genome sequenced as part of the larger TOPMed project at an
average ~30X coverage depth, with joint-sample variant calling and variant level quality control in
TOPMed samples***. The COPDGene Freeze 5b dataset used for this analysis includes a total of 8,444
individuals, of which 5,713 are Non Hispanic White and 2,731 are African American. We tested lung
function measurements on all individuals: forced expiratory volume in one second (FEV,), forced vital
capacity (FVC) and their ratio (FEV/FVC), as well as for case-control COPD status on a subset (NHW:
2366 cases/2084 controls, AA: 702 cases/1409 controls).

We applied KnockoffScreen separately to the two ethnic groups, and four phenotypes, while adjusting for
covariates as follows. In all analyses we adjusted for sequencing center, and the 10 leading principal
components of ancestry. Additionally, for FEV, and FEV/FVC ratio, we adjusted for age, age?, gender,
height, height?, pack-years of smoking, and current smoking. For FVC, we adjusted for age, age®, gender,
height, height’, weight, pack-years of smoking, and current smoking. For COPD case/control status, we
adjusted for age, gender, and pack-years of smoking. Results for the NHW group for FEV, are shown in
Figure 7 and those for FEV/FVC are shown in Figure S4.
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Note that for FEV, and FEV/FVC, KnockoffScreen has been able to identify many more significant
associations compared with the application to Alzheimer’s disease, a reflection of the larger sample size
but also the higher degree of polygenicity for lung function phenotypes relative to AD. Compared with the
conventional association test with Bonferroni correction, KnockoffScreen detected several known signals
for FEVy, including the PSMA4/CHRNAS5/CHRNA3 locus on chromosome 15, the INTS12/GSTCD locus
on chromosome 4, and the EEFSEC/RUVBLI locus on chromosome 3. Overall, the majority of the single
variant signals that were found significant at FDR 0.1 have been associated with COPD-related phenotypes
in the GWAS catalog (81.8% for FEV, and 69.2% for FEV/FVC) (Figures 7 and S4) supporting the ability
of KnockoffScreen to identify previously discovered loci in GWAS studies with sample sizes much larger
than used here. KnockoffScreen additionally identified new loci by aggregating common/rare variants.
Although the new loci identified by KnockoffScreen, particularly those identified by rare variant methods,
will need to be validated in larger datasets, and the effector genes are not known, some of the genes in these
regions may be of interest. For FVC and COPD, as well as all traits for the African-Americans, we did not
identify any significant associations at FDR 0.1, likely a reflection of low power due to the smaller sample
size and possibly non-genetic covariates that might be associated with risk in AA and unaccounted for in
these analyses.

It is interesting to note that the significant loci identified by KnockoffScreen are markedly enriched for
windows (single bp or larger) overlapping protein coding genes despite an unbiased screen of the entire
genome. In particular, 40%, 80% and 56.4% of the loci significant for AD, FEV; and FEV/FVC
respectively overlap protein coding genes. Given the modest sample size of the datasets analyzed here, this
is perhaps expected; KnockoffScreen is able to identify the stronger effects closer to genes (e.g. coding and
promoter regions). As sample sizes for whole-genome sequencing studies continue to increase, we can
expect additional loci in noncoding regions to be identified.

In summary, these empirical results suggest that KnockoffScreen can identify additional signals that are
missed by conventional Bonferroni correction, while filtering out proxy associations that are likely due to
LD. Scatter plots comparing genome-wide W statistics vs. -log10(p-values) further illustrate this point
(Figure 8).

Figure 6: KnockoffScreen application to the Alzheimer’s Disease Sequencing Project (ADSP) data to identify variants
associated with the Alzheimer’s Disease. The top-left panel presents the Manhattan plot of p-values (truncated at 1072° for clear
visualization) from the conventional association testing with Bonferroni adjustment (p < 0.05/number of tested windows) for
FWER control. The bottom-left panel presents the Manhattan plot of KnockoffScreen with target FDR at 0.1. The right panel
presents a heatmap that shows stratified p-values (truncated at 1071° for clear visualization) of all loci passing the FDR=0.1
threshold, and the corresponding Q-values that already incorporate correction for multiple testing. The loci are shown in descending
order of the knockoff statistics. For each locus, the p-values of the top associated single variant and/or window are shown indicating
whether the signal comes from a single variant, a combined effect of common variants or a combined effect of rare variants. The
names of those genes previously implicated by GWAS studies are shown in bold (names were just used to label the region and may
not represent causative gene in the region).
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Figure 7: KnockoffScreen application to the COPDGene study in TOPMed to identify variants associated with FEV; in Non
Hispanic White (NHW). The top-left panel presents the Manhattan plot of p-values from the conventional association testing with
Bonferroni adjustment (p < 0.05/number of tested windows) for FWER control. The bottom-left panel presents the Manhattan plot
of KnockoffScreen with target FDR at 0.1. The right panel presents a heatmap that shows stratified p-values of all loci passing the
FDR=0.1 threshold, and the corresponding Q-values that already incorporate correction for multiple testing. The loci are shown in
descending order of the knockoff statistics. For each locus, the p-values of the top associated single variant and/or window are
shown indicating whether the signal comes from a single variant, a combined effect of common variants or a combined effect of
rare variants. The names of those genes previously implicated by GWAS studies are shown in bold (names were just used to label
the region and may not represent causative gene in the region).
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Figure 8: Scatter plot of genome-wide W statistic vs. -log10(p-value). Each dot represents one variant/window. The dashed lines
show the significance thresholds defined by Bonferroni correction (for p-values) and by false discovery rate (FDR; for W statistic).
The p-values are from the conventional association testing described in the main text.
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Discussion

In summary, we propose a computationally efficient algorithm, KnockoffScreen, for the identification of
putative causal loci in whole-genome sequencing studies based on the knockoff framework. This
framework guarantees the FDR control at a desired level under general dependence structure, and has
appealing properties relative to conventional association tests, including a reduction in LD-contaminated
associations and false positive associations due to unadjusted population stratification. Through
applications to two whole-genome sequencing studies for Alzheimer’s disease, COPD and lung function
phenotypes we demonstrate the ability of the approach to identify more significant associations, many of
which have been identified in previous GWAS studies, with sample sizes orders of magnitude larger than
the ones considered here. As sample sizes for whole-genome sequencing studies continue to increase,
KnockoffScreen can help discover more risk loci with even more stringent FDR thresholds.

In KnockoffScreen, we choose to control FDR at the nominal level. Our analyses of data from ADSP and
COPDGene show that our method compared with conventional association tests leads to significantly more
discoveries. The majority of the single variant signals that were found significant at FDR 0.1 have been
associated with AD or COPD-related phenotypes respectively in the GWAS catalog (87.5% for AD, 81.8%
for FEV| and 69.2% for FEV/FVC), supporting our claim that the FDR control in KnockoffScreen is able
to replicate previously discovered loci in GWAS studies with sample sizes much larger than those used
here. Furthermore, KnockoffScreen identified a set of new discoveries driven by the combined effects of
multiple common/rare variants. The results demonstrate that controlling FDR is an appealing strategy when
there are potentially many discoveries to be made as in genetic association studies for highly polygenic
traits, the dependence structure is local, and the investigators are willing to accept a rigorously defined
small fraction of false positives in order to substantially increase the total number of true discoveries. We
note that the choice of target FDR should be defined rigorously and interpreted appropriately. For example,
loci identified at a liberal FDR threshold (e.g. 0.3 as in Iossifoy et al.’) can be useful for enrichment and
pathway analyses; our analyses of data from ADSP and COPDGene used FDR=0.1 for identifying putative
causal loci. As large-scale whole-genome sequencing data become increasingly available, one will be able
to apply KnockoffScreen with a lower, more stringent FDR threshold (e.g. 0.01 or 0.05).

The model-X knockoff framework underlying KnockoffScreen makes our approach robust to violations of
model assumptions. Specifically, by imposing a model on genetic variants (G;) instead of on the conditional
distribution of the outcome given the variants (distribution of Y;| G;), the FDR control is guaranteed even
when the model for Y;| G; is mis-specified. We do however need to construct a valid synthetic cohort G;’s
such that the exchangeability conditions are satisfied, and define a test statistic with the sign-flip property
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(i.e. the effect of swapping a variant with its knockoff is only a sign flip of the corresponding test statistic).
This robustness feature is particularly useful for genetic studies of complex traits, as the underlying genetic
model is unknown, and it is difficult to evaluate whether a model is appropriate for describing the
relationship between the trait and the variants.

There is some limited work on controlling the FWER within the knockoff framework using a single
knockoff*. One obstacle for its application is that it only allows controlling for k-FWER at significance
level a (the probability of making at least k false rejections) where k or a has to be relatively large in order
to detect any association. Therefore, it cannot be directly applied to control the conventional FWER (k =
1, a = 0.05) without further modifications. Although our proposed multiple knockoffs method has the
potential to be extended to control the FWER, we estimated that about 20 knockoffs are necessary to achieve
the conventional FWER control. This leads to additional computational burden that will need to be
overcome in order to become scalable to the large-scale genetic data.

In addition to controlling FDR, our approach contrasts to conventional association testing methods in that
it naturally helps prioritize the underlying causal variants, a property that usually requires a second stage
conditional analysis or statistical fine mapping. It also helps separate causal effects from shadow effects
of significant variants nearby. This property can help distinguish effects due to common causal variants or
rare causal variants at the same locus due to LD, by applying KnockoffScreen to common/rare variants
separately. Overall, KnockoffScreen serves as a powerful and efficient method that attempts to unify
association testing and statistical fine mapping. However, similar to statistical fine-mapping methods that
only leverage LD to fine-map a complex trait, it remains challenging to fully distinguish highly correlated
variants. As we discussed in the Methods section, KnockoffScreen currently detects clusters of tightly linked
variants, without removing any variants that are potentially causal. In the future, we may consider using
functional genomics data to further improve the ability of KnockoffScreen to identify causal variants among
highly correlated ones.

Unlike existing knockoff methods for genetic data that define coefficients in a LASSO regression as the
importance score'>'®, KnockoffScreen directly uses transformed p-values as importance score. This leads
to another appealing property of KnockoffScreen, namely it can serve as a wrapper method that can flexibly
utilize p-values from any existing or future association testing methods to achieve the benefits proposed
here. For example, the current implementation of KnockoffScreen calculates importance score using an
ACAT type test to aggregate several recent advances for rare-variant analysis. To extend its application to
studies with large unbalanced case-control ratios or sample relatedness, one can apply methods like
SAIGE" to calculate p-values for the original cohort and the synthetic cohort generated by KnockoffScreen,
and then apply the same knockoff filter for variable selection. Moreover, recent studies have demonstrated
that multivariate models have many advantages over marginal association testing, including improved
power by reducing the residual variation and better control of population stratification'®. KnockoffScreen is
able to integrate tests from multivariate models (e.g. BOLT-LMM and its extension to window-based
analysis of sequencing data).

Meta-analyses are important in allowing the integration of results from multiple whole-genome sequencing
studies without sharing individual level data. Several methods have been proposed for meta-analysis of
single variant tests for common variants or “set” based (e.g. window based) tests for rare variants***>". Those
methods integrate summary statistics from each individual cohort, such as p-values or score statistics, and
then compute a combined p-value for each genetic variant or each window for a meta-analysis. As we
discussed, KnockoffScreen can also directly utilize p-values from existing methods for meta-analysis. We
have discussed the detailed procedure in the Methods section.

Variable selection based on knockoff procedure depends on the random sampling of knockoff features
{Gi f}1<j<p' Although FDR control is guaranteed, the randomness may lead to slightly different feature

statistics and selection of slightly different subsets of variants. We propose a stable inference procedure
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integrating multiple knockoffs that significantly improves the stability and reproducibility of the results
compared with state-of-the-art knockoff methods as discussed in the Method section.

We have demonstrated that the proposed sequential knockoff generator is significantly faster than existing
alternatives. Besides the generation of knockoff features, another source of computational burden is the
calculation of the importance score (p-value for a window). The total CPU time is 7,616 hours for the ADSP
data analysis (15.2 hours with 500 cores) and 14,274 hours for the COPDGene data analysis (28.5 hours
with 500 cores). The calculation of p-values in the current analysis is time consuming because of the
comprehensive inclusion of many different functional annotations. Specifically, for each window, there are
in total 29 tests being implemented for the original genetic variants and each of their five knockoffs, leading
to a total of 29*6=174 p-value calculations per window. If computational resources are limited, using a
limited number of functional annotations can substantially reduce the computing time. In addition, several
methods have been proposed in recent years to use state-of-the-art optimization strategies for scalable
association testing for large scale datasets with thousands of phenotypes in large biobanks.”'** By directly
utilizing p-values from those association testing methods, KnockoffScreen can scale up to biobank sized
datasets at a comparable computational efficiency.

Despite the aforementioned advantages, KnockoffScreen has some limitations related to underlying
modeling assumptions needed to improve the computational efficiency of the multiple knockoff generation
and calculation of the feature importance scores. In particular, the implemented feature importance scores
rely on computing p-values from a marginal model (e.g. single variant score test, burden test or SKAT) or
a partly multivariate model (BOLT-LMM and its extension to window-based analysis of sequencing data).
We made this choice of feature importance score due to its flexibility to integrate state-of-the-art tests for
sequencing studies, but we recognize that a fully multivariate model as implemented in Sesia et al.'® can be
more powerful. In addition, the knockoff generator used in KnockoffScreen assumes a linear approximation
model based on unphased genotype dosage data. This model is well motivated based on the sequential
model to generate knockoff features, and the approximate multivariate normal model for the genotype data
commonly used in the genetic literature. Additionally, it is computationally efficient relative to existing
knockoff generation methods. We acknowledge that relative to a generative model like HMM it is less
interpretable. More complex models for discrete genotype values that can also account for non-linear effects
among genetic variants could be of interest in future work.
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Methods

Sequential model to generate model-X knockoff features. We propose a computationally efficient
sequential model to generate knockoff features G that leverages local linkage disequilibrium structure. Our
method is an extension of the general sequential conditional independent pairs (SCIP) approach in Candes
et al. (2018)".

Algorithm 1 Sequential Conditional Independent Pairs (Single Knockoft)
j=1
while j < p do
Sample Cj independently from L‘(Gj|G_]-, 61:(1'—1))
j=j+1
end

where G_; denotes all genetic variants except for the j-th variant; L(Gj|G 51:(,-_1)) is the conditional

—j
distribution of G; given G_; and 61:(,-_1). Candgs et al. showed that knockoffs generated by this algorithm

satisfy the exchangeability condition, and they lead to a guaranteed FDR control'®. Intuitively, the
exchangeability condition can be described as follows: if one swaps any subset of variants and their
synthetic counterpart, the joint distribution (LD structure etc.) does not change. They also noted that the
ordering in which knockoffs are created does not affect the exchangeability property and equally valid
constructions may be obtained by looping through an arbitrary ordering of the variants. Although the SCIP
method represents a general knockoff generator, the conditional distribution at each iteration depends on
all genetic variants in the study, which can be very difficult or impossible to compute in practice. We draw
inspiration from Markov models for sequence data to consider the genetic sequence as a Markov chain with
memory, such that

£(G16-)) = £(G)lGres,),  (3)

where the index set B; defines a subset of genetic variants “near” the j-th variant, which we will define later.
Furthermore, by noting that the correlation among genetic variables approximately exhibits a block
diagonal structure®®, under certain model assumptions which will be specified in the Appendix, we have

L(G16_j,G1jo1) =L (Gj |Gres; Elsksj—l,kEB]-)- €))

To generate knockoff features from £ (Gj |erB,-» Gi<i< ]-_LkEB].), we assume a semiparametric model

Gi=g (erB]-: Elsksj—l,kij) + &), (5)

where ¢; is a random error term, E (£j|erBjr Glsksj_l’kegi) = 0. We consider g(-) to be parametric as

follows,

g (GijIerB]-: Elsksj—l,keB}-) =a+t Z BiGix + Z ViGir, (6)
k#j,kEB; k<j-1keB;
and will explain in detail when such a linear form is an appropriate model in the Appendix. We estimate
(a, B,y) by minimizing the mean squared loss. Let E,- =a+ Zkij,kEBi LGy + stj—l,kEBj 71kGr. We
calculate the residual &; = G — ?;,- and its permutation &;, and then define the knockoff feature for G; to
be Gj = Gj + ;. This permutation-based algorithm is particularly designed to generate knockoff features

for rare genetic variants in sequencing studies, whose distribution is highly skewed and zero-inflated. We
note that the algorithm does not generate categorical variables in {0,1,2}. Instead, it generates continuous
variables to mimic genotype dosage value, making it more robust for rare variants. In addition, we evaluated
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a multinomial logistic regression model for generating categorical knockoffs. We found that the conditional
mean of a rare variant can be extremely small, and it is very likely to generate knockoffs with all 0 values
where statistical inference cannot be applied. We show in simulation studies that existing knockoff
generators, such as the second-order model-X knockoffs proposed by Candés et al.'* and knockoffs for
HMM proposed by Sesia et al.'>'®, do not control FDR for rare variant analysis based on the feature score
considered in this paper (Figure 2). In Figures S7 and S8, we present an additional comparison between the
proposed method and HMM-based knockoff generators (S=12 and S=50), stratified by allele frequency. As
shown, the proposed method generates knockoff versions for rare variants with better exchangeability with
the original variants compared with the HMM model. That is, the correlation coefficients are closer to those
for the original variants for KnockoffScreen compared to HMM (bottom panel, the dots are mostly above
the diagonal line). One plausible explanation is that the application of HMM to whole genome sequencing
data requires accurate phased data for rare variants, which itself is a challenging task and also an active
research area.

We discuss now in detail how we define B; while taking into account the linkage disequilibrium (LD)
structure in the neighborhood of j. Let rj; be the sample correlation coefficient between variants j and k.
We define Bj to include “K-nearest” genetic variants within a 200kb window (+/-100kb from the target
variant)’® using |rjk| as a similarity measure. The choice of the window size aims to balance accurate
modeling of local LD structure and computational efficiency. The choice of K is to ensure that
P(Gj|GkEB]., Elsksj—l,kij) accurately mimics the joint distribution P(Gj|G_j,&1:j_1) and to avoid
overfitting. We adopt the theoretical result for regression analysis with diverging number of covariates and
choose to include top K variants with |rjk| > 0.05 up to K = n'/3, which ensures that the coefficient
estimations achieve asymptotic normality™.

We note that the sequential model is flexible enough and we could consider other supervised learning
techniques like Lasso, support vector regression and artificial neural networks. However, since the auto-
regressive model is fitted iteratively for every variant in the genome, these methods require cross-validation
at each variant level which is computationally not applicable at genome-wide scale.

Multiple sequential knockoffs to improve power and stability. Inference based on single knockoff is
limited by the detection threshold [%], which is the minimum number of independent rejections needed in

order to detect any association. For example, in scenarios where the signal is sparse (<10 independent true
associations) in the target region or across the genome, inference based on a single knockoff has very low
power to detect any association with target FDR 0.1. Another limitation of the single knockoff is its
instability. Since the knockoff sample is random, running the knockoff procedure multiple times may lead
to different selected sets of features. The idea of constructing multiple knockoffs was first discussed by
Barber and Candés" and Candgs et. al.", and further studied in detail by Gimenez and Zou*’. However,
current methods are not applicable to rare variants and not scalable to whole genome sequencing data.

We extend the above SCIP based knockoff generator procedure to multiple knockoffs (M is the total number
of knockoffs), as follows.

Algorithm 2 Sequential Conditional Independent Tuples (Multiple Knockoffs)
j=1
while j < p do
Sample G}, -+, G]M independently from L(Gj|G_j, Eij_l, I 511":]-_1 )
j=j+1
End

Gimenez and Zou®® proposed this general algorithm and proved that the knockoffs generated by this
algorithm satisfy the extended exchangeability condition (see Appendix for precise definition and proof).
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Based on this general algorithm, we extend our previous sequential model to this setting to estimate E]- =
a+ Zk;tj‘kegj BrGr + Y1cmem stj_llkij PmG™ . We calculate the residual & =G;— E]- and its M

ermutations &1, ..., &M and then define the knockoff feature for G; to be G™ = G; + &™.
p j j j j J

Knockoff filter to define the threshold 7 for FDR control. For single knockoff, we follow the result

derived by Candés et al.'* to define the feature statistic as Wo,, = To,, — Tq)kl where Top,, = — 10810 Doy,
and Tp,, = —10g1 P, and
1+ #{ Dy Wy, < —t}
T =minjt > 0: L <qq, (7N
{ #{cbkl: Wq)kl 2 t}

where “#” denote the number of elements in the set; q is the target FDR level. We select all windows with
We,, > . For multiple knockoffs, we modify the result in Gimenez and Zou* and define

_ _ B m
Wou = (Tcpkl I'Iligrgg/]n Tq)kl) ITCDkzZlénn?sXMTgkz' @)
and
1 1
_+_#{cbkl:KCD > 1,Tq> 2 t}
r=minit>0 M M M i <qy, 9
#{q)kl: Kq)kl = 0, T(Dkl > t}
m o_ m o - . L. m
where Tg,, = —logpg,,; I is an indicator function, ITq’klzlénnf‘SXMTgkz =1if Tg,, = max Ty, and 0
otherwise; kg, = arg max T, | denote the index of the original (denoted as 0) or knockoff feature that has
0osmsM
: . — 7 _ : (m) ~
the largest importance score; Tg,, = T, I Sergéeﬂl/ln Ty, denote the difference between the largest

importance score and the median of the remaining importance scores. It reduces to the knockoff filter for
single knockoff when M = 1. Essentially, W, , > 7 selects windows where the original feature has higher
importance score than any of the M knockoffs (i.e. kg,, = 0), and the gap with the median of knockoff
importance score is above some threshold.

We note that this definition of feature statistic and knockoff filter is a modified version of that proposed by

Gimenez and Zou’, where they considered the maximum instead of the median of the knockoff importance
. _ m _ 7 _ (m) = ( -

scores,  1.e. Ko, = aé‘sgmnslﬁx Te,, » Toy= T<I>kz max T<I>kz and  We,, = (To,,

max Tg' )I To > max T7 - L0 improve stability and reproducibility of knockoff based inference, we
1smsM KL T ®p= gt Pk

change 74,, from TCI()(I)C)Z max Tg,:ll) to Tq(,?l - 1edian Td(,Tl). The modified method reduces the

1smsM <m<M
randomness coming from sampling knockoff features given the fact that sample median has much smaller
variation than each individual sample or the sample maximum.

Knockoff Q-value. The Q-value in statistics is similar to the well-known p-value, except that it measures
significance in terms of the FDR”’ rather than the FWER and already incorporates correction for multiple
testing. For multiple hypothesis testing, a general mathematical definition of the Q-value for a null
hypothesis is the minimum FDR that can be attained when all tests showing evidence against the null
hypothesis at least as strong as the current one are declared as significant®. For example, the Q-value for
usual FDR control based on ordered p-values can be estimated by,

q= I;nin FDR(t), (10)
2p

where p is the p-value of the hypothesis under consideration and FDR(t) is the estimated FDR if we are to
reject all tests with p-values less than t. In order to introduce a more informative and interpretable measure
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of significance for the top signals, we extend the Q-value framework for the usual FDR control to the
knockoffs based case. The proposed Q-value combines the information from both feature importance
statistics Wy, , and the threshold 7. It also makes results comparable even we choose different feature

importance statistics across multiple runs. By definition, we shall see that selecting windows with q4 < g,
where q is the target FDR, is equivalent to the aforementioned knockoff filter which selects those with
Wq) > 1.

For single knockoff, we define the Q-value for window @ with feature statistic Wg > 0 as,

1+ #{Dy Wy, < —t}
do = mMin ,
t<Wop #{(Dkl: W':I)kl 2 t}

(11)

1+#{¢‘kl:w(bkls_t} . . . . . . .
where HOuWae. on  isan estimate of the proportion of false discoveries if we are to select all windows
kLW, =

with feature statistic greater than t > 0, referred to as the knockoff estimate of FDR". For window ® with
feature statistic Wy < 0, we define q¢ =1 and the window will never be selected. For multiple knockoffs,

we define the Q-value for window @ with statistics kg = 0 and 74, as
1 1
Pk Key, 2 1,Te,, 2t

o = min

t<Top #{(Dkl: K(Dkl = 0, Td’kl > t}

, (12)

1 1
M+M#{Cl)kl:}cq>k121,‘[q>kl2t}
#{d)kl:chkl:O,Tcpkth}
windows with feature statistic ke,, = 0,7e,, = t, which is our extension of the knockoff estimate of FDR

to multiple knockoffs. For window @ with k4 # 0, we again define qq, =1 and the window will never be
selected.

where is an estimate of the proportion of false discoveries if we are to select all

Choice of windows for genome-wide screening. KnockoffScreen considers windows with different sizes
(1bp, 1kb, 5kb, 10kb) across the genome, with half of each window overlapping with adjacent windows at
the same window size. This choice of windows is similar to the scan statistic framework, WGScan, for
whole-genome sequencing data'®. It is also similar to that in KnockoffZoom proposed by Sesia et al.'> for
GWAS data where they also consider windows of different sizes; for each fixed window size the windows
are non-overlapping but smaller windows are fully nested within larger windows. We theoretically prove
the FDR control using the proposed statistic in the Appendix for nonoverlapping windows; however, the
theoretical justification for the more general setting of overlapping windows remains an open question. For
the proposed choice of overlapping windows, we demonstrate via empirical simulation studies that the FDR
is well controlled (Figure 2) as window overlapping is a local phenomenon.

KnockoffScreen improves stability and reproducibility of knockoff-based inference. We conducted
simulation studies to compare KnockoffScreen with single knockoff approach, and the multiple knockoffs
approach proposed by Gimenez and Zou, referred to as MK-Maximum®.

We designed these simulations to mimic the real data analysis of ADSP. For each replicate, we randomly
drew 1,000 variants, including both common and rare variants, from the 200kb region near gene APOE
(chr19: 44905796-44909393). We set 1.25% variants to be causal, all within a 5kb signal window (similar
to the size of APOEF) and then simulated a dichotomous trait as follows

9(u) = Bo + Xix + P1g1 + - + Bs s,
where g(x) = 1og(ﬁ) and y; is the conditional mean of Y;; 8, is chosen such that the prevalence is 10%.

We set the effect §; = 0.7|10g10 m; |, where m; is the MAF for the j-th variant. Given the same genotype

and phenotype data, we first generated 100 knockoffs. Then we repeatedly drew five knockoffs randomly
among them for 100 replicates. For each replicate, we scanned the regions with candidate window sizes
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(1bp, 1kb, 5kb, 1kb) using KnockoffScreen, the multiple knockoffs feature statistic based on sample
maximum by Gimenez and Zou®, and the single knockoff method. For a fair comparison, we adopted the
same tests implemented in KnockoffScreen to calculate the p-value for all comparison methods. We
calculated the variation of feature statistic Wy, , for each window (stability) and the frequency with which

each causal window is selected (reproducibility) over 100 replicates. We present the results in Figure 9.

In the left panel, we observed that KnockoffScreen has significantly smaller variation in feature statistic
We,, than the other two comparison methods. We note that the method based on sample maximum, MK-
Maximum, exhibits comparable and sometimes even larger variation than the method based on single
knockoff. In the mid panel, we observed that KnockoffScreen has a higher chance (~0.94) to replicate
findings across different knockoff replicates compared to MK-Maximum (~0.74-0.83) and single knockoff
(~0.43). This improvement is further demonstrated in the right panel, where we show that KnockoffScreen
exhibits smaller variation in feature statistics for the causal windows, resulting in higher reproducibility.
The significantly lower reproducibility rate for single knockoffs relative to MK-Maximum is presumably
due to its higher detection threshold because it exhibits similar level of variation as MK-Maximum for the
causal windows.

Figure 9: Simulation studies to evaluate the stability and reproducibility of different knockoff procedures. Different colors
indicate different knockoff procedures: KnockoffScreen, single knockoff and MK —Maximum (the multiple knockoff method based
on the maximum statistic proposed by Gimenez and Zou’). All three methods are based on the same knockoff generator proposed
in this paper for a fair comparison. The stability is quantified as the variation of 74, across 100 replicates due to randomly sampling
knockoffs for a given data (left and right panels). The reproducibility is quantified as the frequency of a causal window being
selected across 100 replicates.
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Practical strategy for tightly linked variants. Variants residing in short genetic regions can be in
moderate to high LD. Although the knockoff method helps to prioritize causal variants over associations
due to low/moderate LD, strong correlations can make it difficult or impossible to distinguish the causal
genetic variants from their highly correlated variants (see also Sesia et al.'®). In fact, the knockoff method
will rank all those highly correlated variants lower, which diminishes the power if causal variants exist (see
below for a concrete example). We are primarily interested in the identification of relevant clusters of tightly
linked variants, rather than individual variants. To address this issue, we propose a practical solution by
slightly modifying B;. The resulting algorithm improves the power to detect clusters of tightly linked
variants, without removing any variants that are potentially causal.

Specifically, we create a hierarchical clustering dendrogram using |rj k| as a similarity measure and define
clusters by |rj k| > (.75, such that variants from two different clusters do not have a correlation greater than
0.75. To generate the knockoff feature for the j-th variant, we exclude variants from B; that are in the same
cluster. For example, let G;, G, and G5 be three genetic variants; G; and G, are tightly linked with |ry,| >
0.75. The standard knockoff procedure will generate G; based on P(G;|G,,G3), G, based on
P(G,|Gy, G3, G;). Since G, and G, are highly correlated, G; = G;, G, = G, and there will be no power to
detect G, or G, even if one of them is causal. To improve the power, our modified algorithm simultaneously
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generates G, and G, based on a joint distribution P(Gy, G,|G3) by first estimating the conditional means
and then permuting the residuals jointly. This avoids the situation of G; and G being identical to G; and
G, because G; (G,) is excluded from the generation of G,(G,) . Thus both G; and G, can be detected as a
cluster. The idea is similar to that of group-wise exchangeable knockoffs proposed by Sesia et al.">. We
further discuss limitations and some alternative approaches in the Discussion section.

Computational efficiency of the knockoff generator. We estimate the computational complexity of our
proposed method for each variant j as O(nL) + O(LlogL) + O0(n(K + MK)? + (K + MK)3) = 0(n),
where n is the sample size; L is a predefined constant for the length of the nearby region; K is the number
of variants in the defined set B, which is bounded by the predefined constant L; M is a predetermined
constant for the number of knockoffs. O(nL) is for calculating the correlation between variant j and
variants in the nearby region; O(LlogL) is for the hierarchical clustering; 0 (n(K + MK)? + (K + MK)3)
is for fitting the conditional auto-regressive model. Since we iteratively generate the knockoff for every
variant, we estimate the complexity of our proposed method for all variants as O(np), where p is the
number of genetic variants. We note that the genotype matrix G is sparse for rare variants. Therefore, the
cost for calculation of correlation and hierarchical clustering can be drastically reduced. In addition, the
approach that we proposed to define B; ensures that K is relatively small and this further reduces the

computational cost.

KnockoffScreen allows meta-analysis of multiple cohorts. Meta-analysis is a powerful approach that
enables integration of multiple cohorts for a larger sample size without sharing individual level data. Several
methods have been proposed for meta-analysis of single variant tests for common variants or set-based (e.g.
window based) tests for rare variants ***°. Those methods integrate summary statistics from each individual
cohort, such as p-values or score statistics, and then compute a combined p-value for each genetic variant
or each window for a meta-analysis. Since KnockoffScreen directly uses p-value as importance score, it can
flexibly incorporate the aforementioned methods for a meta-analysis. The meta-analysis procedure is
described as follows:

1. Generate knockoff features for each individual cohort.

2. Calculate summary statistics within each individual cohort for original data and knockoff data.

3. Apply existing meta-analysis methods to aggregate summary statistics to compute combined p-values
P,y combined a0d Do, combined, for original data and knockofT data respectively.

4. Define WCI)kl = TCI)kl - T‘(Dkl where T<I>kl = - 10g10 pd)kl,combined and T(Dkl = - loglo ﬁcl)kl,combined B
and apply KnockoffScreen to select putative causal variants. It naturally extends to multiple knockoffs
as described above.

Single-region empirical power and FDR simulations. We conducted empirical FDR and power
simulations. Each replicate consists of 10,000 individuals with genetic data on 1,000 genetic variants from
a 200kb region, simulated using the SKAT package. The SKAT haplotype dataset was generated using a
coalescent model (COSI), mimicking the linkage disequilibrium structure of European ancestry samples.
The simulations focus on both rare and common variants with minor allele frequency (MAF) <0.01
and >0.01 respectively. It has been discussed in Sesia et al.'® that the false discovery proportion is difficult
to define if the method identifies a variant that is tightly linked with the causal variant. The analysis of
sequencing data targets different test units (set-based vs. single variant-based), further complicating the
FDR comparisons. We note that the simulations here focus on method comparison for locus discovery to
identify relevant clusters of tightly linked variants. Therefore, we simplify the simulation design in this
particular section to avoid difficulties in defining the FDR in the presence of strong correlations by keeping
one representative variant from each tightly linked cluster. Specifically, we applied hierarchical clustering
such that no two clusters have cross-correlations above a threshold value of 0.75 and then randomly choose
one representative variant from each cluster to be included in the simulation study.
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We set 0.5% variants in the 200kb region to be causal, all within a 10kb signal window. Then we generated
the quantitative/dichotomous trait as follows:

Quantitative trait: ¥; = X;; + f191 + -+ Bsgs + &
Dichotomous trait: g(u;) = o + Xi1 + f191 + -+ + Bs9s,

where X;;~N(0,1), £;~N(0,3) and they are all independent; (g, ..., gs) are selected risk variants; g(x) =
log(i) and ; is the conditional mean of Y; ; for dichotomous trait, 3, is chosen such that the prevalence

is 10%. We set the effect f; =

a

that the variance due to the risk variants, fZvar(g,) + -+ + B2var(gs), is 0.05 for the simulations focusing
on common variants and 0.1 for the simulations focusing on rare variants. We scan the regions with
candidate window sizes (1bp, 1kb, 5kb, 10kb), and we consider several tests including the burden test,
dispersion test, and Cauchy combination test to aggregate burden, dispersion, and individual variant test
results (as discussed in the main text). This combined test is the method implemented in the KnockoffScreen
method. A window is considered causal if it contains at least one causal variant. For each replicate, the
empirical power is defined as the proportion of detected windows among all causal windows; the empirical
FDR is defined as the proportion of non-causal windows among all detected windows. We simulated 500
replicates and calculated the average empirical power and FDR.

, where m; is the MAF for the j-th variant. We define a such

Genome-wide empirical power and FDR simulations in the presence of multiple causal loci. We
conducted empirical FDR and power simulations using ADSP whole genome sequencing data, and
compared the proposed method with state-of-the-art tests for sequencing data analysis adjusted by
Bonferroni correction and Benjamini-Hochberg procedure for FDR control. We randomly choose 10 causal
loci and 500 noise loci across the genome, each spanning 200kb. Each causal locus contains a 10kb causal
window. For each replicate, we randomly set 10% variants in each 10kb causal window to be causal. In
total, there are approximately 335 causal variants on average across the genome. We generated the
quantitative/dichotomous trait as follows:

Quantitative trait: ¥; = X;; + Zigl(ﬁklgkl + o+ ﬁk,ksgk,ks) + &

Dichotomous trait: g(u;) = fo + Xj; + Zig1(ﬁk1gk1 +- ﬁk,ksgk,ks) + &,

where X;;~N(0,1), &;~N(0,3) and they are all independent; (g4, ..., gs) are selected risk variants; g(x) =
log(ﬁ) and y; is the conditional mean of ¥;; for dichotomous trait, 3, is chosen such that the prevalence
. ag

is 10%. We set the effect Sy = —ka]_ e
k. We define a;, such that the phenotypic variance due to the risk variants for each causal locus, Sy19k1 +
o+ Bk Gr kg 18 1. We scan the regions with candidate window sizes (1bp, 1kb, Skb, 10kb), and we
consider several tests including the burden test, dispersion test, and Cauchy combination test to aggregate
burden, dispersion, and individual variant test results (as discussed in the main text). This combined test is
the method implemented in the KnockoffScreen method. For each replicate, the empirical power is defined
as the proportion of causal loci (the 200kb regions) being identified; the empirical FDR is defined as the
proportion of detected windows not overlapping with the causal window +/- 50kb/75kb/100kb, which
evaluates FDR at different resolutions. The empirical power and FDR are averaged over 100 replicates.

, where my ; is the MAF for the j-th variant in causal window

Simulations for investigating various properties of the KnockoffScreen method (the prioritization of
causal variants, the influence of shadow effects from common variants, and robustness to population
stratification). We design these simulations to mimic the real data analysis of ADSP. For each replicate,
we randomly drew 1,000 variants, including both common and rare variants, from the 200kb region near
gene APOE (chr19: 44905796-44909393). We scanned the regions with candidate window sizes (1bp, 1kb,
Skb, 1kb) using the conventional association test and KnockoffScreen. For a fair comparison, we adopted

25


https://doi.org/10.1101/2021.03.08.434451
http://creativecommons.org/licenses/by-nd/4.0/

OO0 3 &N N KW N~

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.08.434451; this version posted March 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

the same tests implemented in KnockoffScreen to calculate the p-value for the conventional association
testing method.

Prioritization of causal variants. We set 0.25% variants to be causal, all within a 5kb signal window (similar
to the size of APOE), and then simulated a dichotomous trait by

gi) = Po + Xi1 + B1g1 + -+ BsFs,

where g(x) = 1og(ﬁ) and y; is the conditional mean of Y;; for dichotomous trait, 8, is chosen such that

the prevalence is 10%. We set the effect §; = a|log10 m;|, where m; is the MAF for the j-th variant. We
defined a = 1.4 such that the risk variant has a similar odds ratio as APOE-€4 (~3.1) given a similar MAF
(~0.137)*%°_ For each replicate, we compared the two methods in terms of (1) the proportion of selected
windows that overlaps with the causal window; and (2) the maximum distance between selected windows
and the causal window.

Shadow effect. We adopted the same simulation setting but set the causal variants to be common
(MAF>0.01) and apply the methods to rare variants only (MAF<0.01). Since all causal variants are common,
all detected windows are false positives due to the shadow effect. We counted the number of false positives
and show the distribution over 500 replicates.

Population stratification. The ADSP includes three ethnic groups: African American (AA), Non Hispanic
White (NHW) and Others (98% of which are Caribbean Hispanic). Let Z; denote the ethnic group (Z; = 0:
AA; Z; = 1: NHW; Z; = 2: Others). We simulated quantitative and dichotomous traits by

Quantitative trait: ¥; = X;; + Z; + ¢;
Dichotomous trait: g(u;) = o + Xi1 + Z;

where X;;~N(0,1), £;~N(0,3) and they are all independent; g(x) = log(ﬁ) and y; is the conditional

mean of Y; ; for dichotomous trait, S, is chosen such that the prevalence is 10%. This way, the
mean/prevalence for the quantitative/dichotomous trait is a function of the subpopulation, but not directly
affected by the genetic variants. We counted the number of false positives and show the distribution over
500 replicates. We also calculated an estimate of the FDR, defined as the proportion of replicates where
any window is detected.

Population stratification driven by rare variants. We carried out additional simulation studies to simulate
population stratification driven by rare variants using the ADSP data. Specifically, we randomly choose
100 regions across the whole genome but outside chromosome 19 with each region of size 200kb. Each
region contains a 10kb causal window. We randomly set 10% rare variants (MAF<0.01; MAC>10) in each
causal window to exhibit small effects on the trait of interest, Thus the allele frequency differences across
ethnic groups will lead to different disease prevalence, reflecting a population stratification driven by rare
variants. Then we evaluate the FDR for the selected 200kb region near gene APOE (chr19: 44905796-
44909393). Since the causal variants are independent of the target region, the confounding effect will be
due to population stratification. Specifically, we generated the quantitative/dichotomous trait as follows:

Quantitative trait: ¥; = X;; + yz,lcgol(ﬁklgkl + -+ ﬁk‘ksgk,ks) + &

Dichotomous trait: g(u;) = Bo + Xi1 + YZig%(ﬁmgm + ot ﬁk,ksgk,ks) + g,

where X;;~N(0,1), &;~N(0,3) and they are all independent; (g4, ..., gs) are selected risk variants; g(x) =
log(ﬁ) and y; is the conditional mean of Y;; for dichotomous trait, 3, is chosen such that the prevalence

is 10%. We set the effect Sy ; = \/#
kj (=M

k. We define a; such that the variance due to the risk variants for each causal locus, Br19k1 + - +
Bk G kg» 18 0.01; we set y = 0,0.25, 0.5, 0.75 which quantifies the magnitude of population stratification.

, where my; is the MAF for the j-th variant in causal window
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The Alzheimer’s Disease Sequencing Project. We first applied KnockoffScreen to whole-genome
sequencing (WGS) data from the Alzheimer’s Disease Sequencing Project (ADSP)'. The data include
3,085 whole genomes from the ADSP Discovery Extension Study including 1,096 Non-Hispanic White
(NHW), 977 African American (AA) descent and 1,012 Caribbean Hispanic (CH). Sequencing for these
samples was conducted through three National Human Genome Research Institute (NHGRI) funded Large
Scale Sequencing and Analysis Centers (LSACs): Baylor College of Medicine Human Genome Sequencing
Center, the Broad Institute, the McDonnell Genome Institute at Washington University. The samples were
sequenced on the [llumina HiSeq X Ten platform with 150bp paired-end reads. Additionally, the dataset
includes 809 whole genomes from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with 756
NHW, 28 AA and 25 others. The samples were sequenced on the [llumina HiSeq 2000 platform with 100bp
paired-end reads. Whole-genome sequence data on 809 ADNI subjects (cases, mild cognitive impairment,
and controls) have been harmonized using the ADSP pipeline for joint analysis. The ADSP Quality Control
Work Group performs QC and concordance checks into an overall ADSP VCF file.

COPDGene from the TOPMed Project. Eligible subjects in COPDGene Study (NCTO00608764,
www.copdgene.org) were of non-Hispanic white (NHW) or African-American (AA) ancestry, aged 45-80
years old, with at least 10 pack-years of smoking and no diagnosed lung disease other than COPD or
asthma®. IRB approval was obtained at all study centers, and all study participants provided written
informed consent. All subjects underwent a baseline survey, including demographics, smoking history, and
symptoms; pre- and post-bronchodilator lung function testing; and chest CT scans. Samples from
COPDGene were sequenced at the Broad Institute and at the Northwest Genomics Center at the University
of Washington. Variants for all TOPMed samples were jointly called by the Informatics Research Center
at the University of Michigan. For details on sequencing and variant calling methods,
see https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2. QC
included comparison of annotated and genetic sex and comparison of genotypes from prior SNP array data
with genotypes called from sequencing. Samples with questionable identity from either of these checks
were excluded from analysis.

Gene annotation of the identified windows. The windows (single bp or larger) identified as significant at
a target FDR threshold are mapped to genes or intergenic regions using the human genome
assembly GRCh38.p13 from the Ensembl Release 99%. We assign each significant window to its
overlapping locus (gene or intergenic region). If the locus is a gene, we report the gene’s name; if the locus
is intergenic, we report the upstream and downstream genes (enclosed within parentheses and separated by
“-”). We also check if the assigned locus has known associations with Alzheimer’s disease and lung related
traits in the NHGRI-EBI GWAS Catalog®. Specifically, we look up associations with the following seven
traits for the ADSP: Alzheimer's disease, late-onset Alzheimer's disease, family history of Alzheimer's
disease, t-tau measurement, p-tau measurement, amyloid-beta measurement, and beta-amyloid 1-42
measurement; and associations with the following 20 traits for the COPDGene: FEV1/FEC ratio, FEV1,
FVC, PEF (peak expiratory flow), COPD, response to bronchodilator, asthma, chronic bronchitis, lung
carcinoma, lung adenocarcinoma, pulmonary artery enlargement, FEV change measurement, pulmonary
function measurement, carbon monoxide exhalation measurement, airway responsiveness measurement,
serum IgE measurement, smoking behaviour measurement, smoking status measurement, smoking
behaviour, and smoking initiation. These annotations are shown in Supplemental Tables.
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Data Availability

The manuscript used data from existing studies from COPDGene (TopMED, dbGaP phs000951.v4.p4)
and the Alzheimer's Disease Sequencing Project (dbGaP phs000572.v8.p4).

Code Availability

We have implemented KnockoffScreen in a computationally efficient R package that can be applied
generally to the analysis of other whole-genome sequencing studies. The package can be accessed at:
https://cran.r-project.org/web/packages/KnockoffScreen/index.html.
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