bioRxiv preprint doi: https://doi.org/10.1101/2021.03.08.434446; this version posted March 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Latent representation of the human
pan-celltype epigenome through a deep
recurrent neural network
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Abstract—The availability of thousands of assays of epigenetic activity necessitates compressed representations of these data sets that
summarize the epigenetic landscape of the genome. Until recently, most such representations were celltype specific, applying to a single
tissue or cell state. Recently, neural networks have made it possible to summarize data across tissues to produce a pan-celltype
representation. In this work, we propose Epi-LSTM, a deep long short-term memory (LSTM) recurrent neural network autoencoder to
capture the long-term dependencies in the epigenomic data. The latent representations from Epi-LSTM capture a variety of genomic
phenomena, including gene-expression, promoter-enhancer interactions, replication timing, frequently interacting regions and
evolutionary conservation. These representations outperform existing methods in a majority of cell-types, while yielding smoother
representations along the genomic axis due to their sequential nature.

Index Terms—Epigenomics, Deep recurrent neural network, Genome annotation, Unsupervised learning

1 INTRODUCTION

EQUENCING-based assays such as ChIP-seq, ATAC-seq,
S and DNase-seq have recently been used to characterize
the epigenome of hundreds of human cell types. These
assays detailing a varied number of epigenomic functions
like methylation status, local chromatin accessibility, histone
modifications, factor binding and chromatin structure are
hosted by consortia such as Roadmap Epigenomics [1f
and ENCODE [2]]. These data sets necessitate integrative
methods that summarize them into a useful representation.
A popular existing type of method is segmentation and
genome annotation (SAGA) algorithms such as Segway [3],
ChromHMM [4] and others [5], [6], [7], [8], [9], [10], which
produce an annotation of the epigenome of a given cell type.

Existing SAGA annotations are celltype-specific; that is,
they annotate activity in a given cell type. This corresponds
poorly to most conceptualizations of genomic elements.
Other genome annotations, such as annotations of coding
genes, are pan-celltype, and it is common to say that a
locus “is an enhancer”. Moreover, connecting a genetic
locus to a phenotype or disease requires an understanding
of its function across different cell types. Existing SAGA
algorithms cannot be adapted for this task because they use
simple discrete or linear models that cannot capture the
complexity of the epigenome across all cell types.

We propose a method called Epi-LSTM that pro-
duces a pan-celltype low-dimensional representation of the
epigenome. This representation assigns a vector of features
to each genomic position that represents that position’s
activity across all tissues. This representation encapsulates all

e K. B. Dsouza and V.K. Bhargava are with the Department of Electrical and
Computer Engineering at the University of British Columbia.

e A. Y. Liis with the Department of Bioinformatics and Systems Biology at
the University of Amsterdam.

e M. W. Libbrecht is with the School of Computing Science at the Simon
Fraser University.

o VK. Bhargava and M. W. Libbrecht contributed equally (*).

information about epigenomic activity across all cell types.
Therefore, any consequence of epigenetic activity can be
extracted from the representation, including identifying reg-
ulatory elements or connecting disease-associated variants
to causal functional elements.

We do this using a deep long short-term memory (LSTM)
[11] recurrent neural network autoencoder to reduce all
existing epigenome data into a single low-dimensional
representation. Epi-LSTM uses an autoencoder architecture
in which aims to produce a representation that can be used
reconstruct the original data as accurately as possible.

There exists a feed-forward autoencoder model called
GSAE (gene superset autoencoder) [12], but GSAE was
designed with the goal of discriminating tumor sub-types
by interpreting gene expression data, taking inter-gene sets
association into consideration and doesn’t work with epige-
nomic data. One neural network representation learning
method for epigenomic data exists, called Avocado [13].
Like our method, Avocado produces a representation of
the epigenome that assigns a low-dimensional vector to
each genomic position. Avocado was initially developed for
imputation. It uses distinct embeddings for each cell type,
assay type and genomic position, and couples this with
a feed-forward neural network that imputes unperformed
assays. REFINED (REpresentation of Features as Images
with NEighborhood Dependencies) [14], is a method for
representing high-dimensional feature vectors as 2D images
that can be processed by Convolutional Neural Network
(CNN)-based pipelines. Although REFINED is not directly
comparable to Epi-LSTM, we use it as a preprocessing step
treating the cell-type axis as it’s primary input, the output
of which is fed to a CNN autoencoder [15]. We call this
REFINED+CNN.

Epi-LSTM'’s use of a sequential model brings a number
of benefits relative to these methods. The model captures
the the spatial relationship of neighboring genomic positions
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Fig. 1: The overall idea behind the work. The epigenomic datasets from all cell types are fed into an LSTM autoencoder
(Epi-LSTM) framework. The latent representation resulting from the bottleneck of the autoencoder is then used for various

downstream tasks.

and bypasses the need for fixed input windows. This results
in smoother representations along the genomic axis when
compared to other methods (Results), which aid in use
and interpretation. As a result, the output representations
outperform those from other methods at classifying genomic
phenomena in a majority of cell-types (Results). In addition,
because the model uses an autoencoding backbone, it can be
applied to genomic positions that were not used in training
by inputting the relevant data into our encoder.

We demonstrate the utility of the Epi-LSTM represen-
tation through several analyses. First, we show that this
representation simultaneously captures cell type-specific
activity across many cell types, including gene expression,
replication timing and chromatin contacts. We do this by
demonstrating that all of the above phenomena are accurately
predictable using just the latent representation. Second, we
show that this latent representation distinguishes functional
and non-functional regions by showing that the represen-
tation accurately identifies conserved regions. Third, we
demonstrate how a sequential model leads to smoother and
more interpretable representations than existing methods,
which do not capture dependence among neighboring posi-
tions. A graphical abstract (Figure[T) explains the overall idea
behind the work. The genomic datasets which are stacked,
are fed into the LSTM Autoencoder framework, the latent
representation from which is used for varying downstream
genomic tasks. The framework is further elaborated in section

B2

2 RELATED WORK

Many methods have been proposed for genome annotation
on the basis of epigenomics data sets [3], [4], [5], [6], [7],

[8], [9], [10], [16]. As noted above, most existing methods
produce celltype-specific annotations of activity in a given
cell state. This includes a class joint annotation methods that
aim to improve epigenome annotations by simultaneously
annotating many cell types and sharing position-specific
information between the annotations [17], [[18], [19], [20], [21].
Such joint annotations can be more accurate, but still produce
a separate annotation for each cell type.

The most related methods to ours aim to take data from all
available cell types as input to produce a single pan-celltype
(as opposed to celltype-specific) annotation, a task sometimes
known as “stacked” annotation. Several methods have been
proposed to produce discrete [22], [23] and continuous [13]],
[24] cell-type-agnostic representations.

3 METHODS
3.1

The epigenomic data pertaining to histone modifications
and chromatin accessibility (ChIP-seq and DNase-seq) was
downloaded from the Roadmap Epigenomics Consortium
[1]. These experiments indicate the — log;, p-value of the
enrichment at a particular genomic position compared to a
reference track. Following Avocado and other frameworks
before it like PREDICTD [24] and Segway [3], we use the
arcsinh transformation on the signal to stabilize the
variance of these signals and lessen the effect of outliers.

sinh™ z = In(z + V1 + 22) 1)

We consider four downstream classification tasks, namely:
gene expression, promoter-enhancer interactions (PEISs), fre-
quently interacting regions (FIREs), and replication timing.

Datasets
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We also conduct a downstream analysis pertaining to evo-
lutionary conservation. Gene expression is characterized
by RNA-Seq, a next-generation sequencing technology that
measures the amount of RNA present in a biological sample.
PEIs are revealed by ChIA-PET (Chromatin Interaction
Analysis by Paired-End Tag Sequencing), a technique that
quantifies genome-wide chromatin interactions. FIREs are
located by Hi-C, a high-throughput sequencing technique
to find fragments of nucleotide sequences. The replication
of the genome is characterized by assays such as Repli-Seq
[25], that separate the loci into early and late replicating
segments. Evolutionary conservation at particular genomic
sites is given by phyloP scores.

The data for the downstream tasks was obtained from
resources pointed in and processed as mentioned in [13].
RNA-seq data for 57 cell types was obtained from [1]].
We consider genes to be active if the logarithmic mean
expression value across the gene is greater than 0.5 [26],
[27]. These genes are assigned the label of 1 while the rest
are assigned 0. The PEI’s used, are the ones that were used
to train TargetFinder [28], which concur with ChIA-PET
interactions. They were downloaded from the Repository
[29] of TargetFinder, which includes the interaction data for
four cell types namely, GM12878, HeLa-53, IMR90 and K562.
The data was preprocessed as given in [13]. FIRE score data
was taken from the additional material of [30] for seven cell
types, namely, TRO, H1, NPC, GM12878, MES, IMR90, and
MSC. FIRE scores are given at 40kbp resolution and these
are converted to binary indicators using a threshold of 0.5
[13]. Replication timing data was downloaded from [31] at
a resolution of 40kbp. The phyloP scores are taken from the
PHAST package [32] for multiple alignments of 99 vertebrate
genomes to the human genome.

3.2 LSTM model

Our model employs an architecture which is based on the
deep recurrent neural network (RNN) [33]. While regular
neural networks expect fixed-size inputs and outputs, RNNs
can handle inputs of arbitrary length, i.e. sequential, in
nature. What distinguishes RNNs from other types of neural
networks is that the output at any given step in the sequence
is not just dependent on the input at that step but also
on the entire history of inputs fed in the past. The RNN
is able to achieve this dependency on preceding steps in
the sequence by maintaining a hidden memory state that it
carries over to future steps. As epigenomic data is sequential
in nature, with short term interactions being highly prevalent,
a sequential model like the RNN would be good choice for
our embedding task.

RNNs rely on an extension of the Backpropagation
algorithm called as the Backpropagation Through Time
(BPTT), which links the derivatives between steps in the
sequence. Often, a truncated version of BPTT is used that
restricts the flow of gradients to specific steps in the past
to reduce cost per parameter update. Although the Vanilla
RNNS are quite powerful, they are subject to the problems
of vanishing and exploding gradients [34], which makes it
difficult for them to handle long-term dependencies. As an
extension of the RNN architecture, Long Short-Term Memory
(LSTM) is more effective at handling longer dependencies in
steps, including the problems associated with gradient flow.

3

LSTMs were proposed as a solution to the vanishing
gradient problem and consist of a cell which behaves as
memory and three gates that act in tandem, namely, input
gate, forget gate and output gate. The cell state of the LSTM
keeps track of how much the preceding steps effect the steps
to follow and the gates regulate this function. The input
gate controls the amount a new input at a step effects the
cell state, the forget gate regulates what portion of the cell
state remains unaffected and the output gate discerns how
much the cell state contributes to the output of the LSTM at
a particular step. The equations that govern the working of
the LSTM are given in (2).

fe=0gWpzy + Uphy 1 + bf)

iy = og(Wixy + Uihi—1 + b;)

or = 0g(Woxy + Ushi—1 + bo) ()
et = froci—1+ iy 0 oc(Wewy + Uchy—1 + be)

hi =040 Jh(Ct)

where the matrices W, and h, are the weights of the input
and recurrent connections. The subscript , can denote either
the input (;), forget (), output gate (,) or the cell state ().
While & denotes the hidden state, o denotes the output of the
LSTM. o refers to the sigmoid activation function and o is
the Hadamard product.

The LSTM maintains a representation of long term
dependencies and, because of this ability, it serves to be
a good candidate for modelling sequential data. Using these
internal representations of the LSTM, we can recreate the
original sequential input in a encoder-decoder framework
[35], which forms the backbone of advances in fields like
language modelling [36]], speech recognition [37], sequence-
to-sequence prediction [38] and neural machine translation
(NMT) [39].

3.2.1 Epi-LSTM Autoencoder Framework

The autoencoder forms the backbone of our proposed Epi-
LSTM framework. The high dimensional sequential input
assays are reconstructed via a low dimensional bottleneck
using LSTMs coupled with a loss function that forces the
output to be as close to the input as possible in euclidean
space (Figure [2). The first stage of the framework is a LSTM
that acts as an encoder. The encoder reads the input sequence
and creates a fixed length low dimensional vector represen-
tation in the form of an embedding. The low dimensional
representation at each position in the sequence is then treated
as an annotation for that position. This annotation can then
be used for various tasks related to the input sequence
like recreating the input sequence as in auto-encoding or
translation to a different sequence as in machine translation.
The decoder uses the fixed length vector embedding as it’s
initial hidden state and tries to recreate the original sequence.
Along with the initial hidden state seed, the decoder, at each
step, receives as input the output of the encoder and its cell
state. It then uses these states to output the original input at
each step. The Epi-LSTM is trained using the mean squared
error (MSE) loss function (3) which facilitates reconstruction
of the input. The errors are then back-propagated through
the encoder-decoder framework and through steps in the
sequence using BPTT.
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Fig. 2: Epi-LSTM Framework. The Encoder and the Decoder are single-layer layer norm LSTMs. The assays that are serving
as the input to the Encoder are arranged in a matrix of (Epigenomes*Assays) x Genome Length and fed in one Frame
Length at a time. The Frame length is chosen as 100 to fit the model into memory.

Lo, #) =+ 3 (47 ©

where x is the input vector at a particular step, £ is the vector
output of the decoder that step and N is the number of
sequence steps in a a particular chunk of data.

The epigenomic data is fed into the Epi-LSTM in frames
of 100 steps to fit the model into memory and to speed up
training. As the epigenomic data that we used [1] had a
resolution of 25, i.e., a data point for every 25 base pairs, Epi-
LSTM is capable of dealing with 2500 positions in a given
frame. At each step the epigenomic data vector can written as
EPf = [Cl,fAl,f, vy Cl’fAK’f, ey CQ}fAK,f, ey CJ,fAK“f],
with a total of K assays performed in J cell types. These
epigenomic vectors are then transposed and stacked hori-
zontally as I; = [(EP)T, (EPR)T, ..., (EPr)T], where F is
frame length, ¢t = 1,2,...,T and T is the number of frames.
For the Epi-LSTM, each column of I; is fed as input and the
hidden and cell state are carried on to the next column ().

O,H,C = Epi-LSTM(I, s, H,C) )

where O is the LSTM output, H is the hidden state and C'is
the cell state.

The hidden state of the encoder from the previous frame
was carried over to the hidden state of the encoder in the
next frame, whereas the cell state was reinitialized for each
frame. This aids the model to not only carry information
across frames but also maintain a fresh state particular to the
current frame. The hidden state of the encoder at the end
of a particular frame was fed into the decoder as its initial
hidden state, whereas the cell state of the decoder at each step
was the cell state of the encoder at that step and the input
of the decoder at each step was the output of the encoder
at that step (Figure [2). We arrived at these design choices
by choosing the model that minimized reconstruction error
following ablation experiments conducted with different
variations of the model (supplementary material).

3.3 Comparison Methods

We compare the Epi-LSTM with Avocado’s Deep Tensor
Factorization model [13], [40], REFINED+CNN and a ma-
jority baseline that always chooses the majority label in
the data. Avocado is implemented as given in [13]. We
applied REFINED [14] to the epigenomic data by treating
the cell-type axis as the primary input to REFINED, i.e,
we transposed the matrix I; as (It)T, where the columns
correspond to cell type-assay combinations which do not
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have explicit correlations and therefore can be treated
as predictors in need of reordering, and rows are epige-
nomic data vectors. The transposed matrix would look like
(I,)T = [C1A1,C1 As, ...,C1 Ak, ..., C; Ag], where each col-
umn corresponds to values of a cell type-assay combination
for an entire frame length. This transposed matrix is fed
as the input to REFINED, the output of which is reordered
predictors that minimize the cost function using iterative hill
climbing [14] . The cost function measures the absolute
difference in the predictor distances among the new predictor
locations to the estimated true distances [14].

(RI;)" = REFINED((I;)") ©)

where (RI;)T has the columns reordered by REFINED. We
further transpose this output to take it back to the original
form RI;, with the columns as reordered epigenomic data
vectors and feed it as the input to the CNN autoencoder.

3.4 Model Design Choices

We set the hidden size of our LSTMs to 110 (supplementary
material.). The LSTM model was chosen to be unidirectional
with one hidden layer in the presence of layer norm. By
normalizing from all of the summed inputs to the neurons in
a layer, layer normalization is shown to be very effective at
stabilizing the hidden state dynamics in recurrent networks
and can considerably reduce the training time [41]. It is there-
fore chosen as a default setting in our experiment. A variant,
the Bidirectional LSTM, can be trained by using inputs not
just up to the preset frame but by simultaneously feeding
data forward and backward [42]. In addition to this, the idea
of randomly dropping nodes and weights during training to
prevent nodes from over adapting is called dropout [43]. The
training phase forms an exponential number of “thinned”
networks whose predictions are averaged during test time,
which is known to help in regularization of the model and
superior test performance. In order to mitigate hidden state
saturation in the LSTM we used gradient clipping [44] and
used the softsign activation [45] instead of alternatives such
as tanh at all nodes. While Softsign has a similar range, it
approaches its extremes much slower when compared to
the hyperbolic tangent because it has quadratic rather than
exponential tails. The hyperparameter and design choices
were made after conducting ablation experiments which are
elaborated in the supplementary material.

3.5 Training Procedure

The Epi-LSTM was built using the Python-based deep
learning framework PyTorch [46] and trained on GeForce
GTX 1080 Ti GPUs. The ADAM optimizer [47] was used
for training due to its pervasive adoption in the machine
learning community and the autoencoder was trained using
the MSE loss function (3). Apart from the design choices
mentioned in section the other parameters were set to
their default values in PyTorch while training.

3.6 Downstream Classification

The representation used to reconstruct the epigenomic data
might be able to serve as a good basis for classification of
genomic properties, as many of these properties manifest
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themselves in the epigenomic signals. Therefore, we test
whether the position specific latent representation learned
via unsupervised learning is useful for genomic tasks that
the model was not trained to achieve such as classifying
important genomic phenomena like gene expression, PEIs,
replication timing and FIREs across cell types. For each task
and cell type, we trained a XGBoost classifier [48] following
[13], with a maximum of 5000 estimators and a maximum
depth of 6 (supplementary material) on the representations
obtained by training Epi-LSTM on the full set of ChIP-
seq and DNase-seq assays in the Roadmap compendium
[1]. XGBoost stands for eXtreme Gradient Boosting and
is an implementation of gradient boosted decision trees
designed for high performance with support for Stochastic
and Regularized Gradient Boosting. In gradient boosting,
new models that predict the residuals of previous models
are combined to make the final prediction, using gradient
descent to minimize the loss when combining models. We
use n-fold cross-validation to perform and evaluate our
training with n = 20 and an early stopping criterion to stop
the training if the validation performance did not improve
after 20 epochs. All other hyperparameters of XGBoost
were kept at their default values. We used the metric of
mean Average Precision (mAP), which is a standard metric
in machine learning classification tasks, to evaluate our
classification model. As the name suggests, mAP averages
the precision values obtained at different levels of recall. The
maximum precision value that can be achieved at a particular
recall cutoff is calculated, and is repeated for all predefined
recall levels. An average of these maximum values yields
the mAP. Other classification metrics like Area under the
Receiver Operating Characteristic (ROC)-curve (AuROC)
and Accuracy are included in the supplementary material.

3.7 N-fold Cross-Validation

There are two main approaches for validating genomic
classification models, cross-cell type and cross-chromosomal.
Our classification model adopts the cross-chromosomal
approach for validation by building a separate XGBoost
classifier for each cell-type and partitioning the genome into
N = 20 folds according to chromosomes (we pick 20 out
of 22 chromosomes randomly). We do this because we are
more interested in verifying the utility of the input Epi-LSTM
representations than building one classifier that works across
all cell-types. Note that this differs from a cross-cell type
validation approach, which would be required if our aim was
to use the model’s predictions on cell types without available
data. Instead, we are interested in verifying that Epi-LSTM’s
representations have the information required to recapitulate
the known phenomena in the input cell types. Therefore, our
validation approach is not prone to the overfitting pitfall
mentioned in [49]], which affects cross-cell type validation
approaches.

4 RESULTS

4.1 Representations capture many types of genomic
activity

A good latent representation of the epigenome should con-
tain all of the information about the regulatory state of each
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genomic locus. Therefore, to evaluate our representation, we
asked whether known genomic phenomena are predictable
from only the representation.

4.1.1 Gene Expression

The expression of a gene as measured by techniques such as
RNA-seq is influenced and therefore could be predicted by
histone modifications as measured by ChlIP-seq. Although
it might be hard to interpret the exact relationship between
the representations and the expression of a gene, it would
be promising if they encode a complex genomic phenomena
which is a result of varied interacting entities.

Classification: The mRNA abundance of a gene can
either be expressed to several decimal places or only as
binary, as to whether the gene is expressed or not. There
have been many works that show the efficacy of using
binary gene expression levels for classification [50], [51,
[52], 53], [54], [55]. Following Avocado [13], [26], and [27]],
we set a threshold value of 0.5 on logarithmic scale of
expressions. There are also other known ways of quantizing
gene expression data like fitting a Gaussian mixture model to
log expression levels as in [55] or discretization using sudden
changes in sorted gene expressions as in [54].

Following [13], we predict gene expression by using
representations from the promoter region. We find that
the models built using the Epi-LSTM representations don’t
perform as well as the Avocado representations in cell types
where both perform very well, however, the Epi-LSTM
representations perform better than Avocado in cell types
where both perform poorly (Figure Bp). Both models perform
significantly better than REFINED+CNN and the baseline
(Figure Bp).

Hard-to-predict Cell Types: We found that Epi-LSTM
achieves good performance even in hard-to-predict cell types.
While Avocado outperforms the Epi-LSTM at predicting gene
expression in many cell types, it does so in cell-types in
which both the methods do extremely well in (> 0.95 mAP)
and the difference in performance is marginal. In cell types
that are harder to predict gene expression in (Aorta, Fetal
Lung Fibroblasts, Blastocysts, Foreskin Fibroblasts, Neuronal
Progenitor, Small Intestine), the Epi-LSTM outperforms
Avocado (0.1 mAP higher on average). The performance
of the majority baseline deteriorates considerably in these
cell types as well, leading us to believe that it is easier to
categorize gene expression in certain cell types compared to
others. While Avocado does really well at predicting gene
expression in many cell types, the Epi-LSTM performs more
consistently across cell types, doing particularly well in the
hard-to-predict cell types (Figure [Bh).

4.1.2 Promoter-Enhancer Interactions

Gene expression is also modulated by the promoter and
enhancer elements interacting over relatively long distances.
Promoter—enhancer interactions (PEIs) represent a subset
of interactions of the chromatin which are key to the
understanding of transcriptional regulation [56]. PEIs are
vital for transcriptional regulation of an enhancer’s target
gene, so much so that the target gene expression is observed
to be affected by addition of PEI-disrupting insulators, lack
of PEl-associated proteins, and gain of competing promoters
[57]. Chromatin interactions are also known to be highly
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associated to gene co-expression rates [58]]. Although these
interactions can be captured by methods such as Hi-C
[59], because these methods are expensive, it would be
favourable to divine these from existing data that is much
more easier to acquire. There have been methods that explore
machine learning techniques for this purpose, like the one
that uses representations derived from both the promoter and
enhancer regions [28]]. In our case we use representations
derived from the window between the promoter and the
enhancer elements and find that the models trained on
the Epi-LSTM representations perform better than other
methods on average across cell types, doing worse in
some, while doing better in some others (Figure ). All
methods have very low mAP, revealing the difficulty of this
task. However, Epi-LSTM outperforms the other methods,
indicating that Epi-LSTM representation contain the most
information related to PE-interactions (Figure ).

4.1.3 Chromatin Architecture

The three-dimensional folding of the chromatin orders the
genome into compartments and creates spatial proximity
between distant functional elements. The strength of inter-
actions between pairs of loci in the genome can be obtained
in a high throughput manner by techniques such as Hi-
C [59], which is an extension of 3C, that is capable of
locating genome-wide long range interactions. The genome
is known to be partitioned into functional segments called
topologically associated domains (TADs), where there is high
interaction between the loci. TADs are a central feature of
genome folding and were discovered in one of the first
chromatin folding maps. It is believed that most of the
mammalian genome is folded into globular domains of
chromatin connected by boundaries which are linear [60].
Frequently interacting regions (FIREs) have been identified
recently [30], which are regions generally present within
TADs. FIREs are regions that live in between the anchor
points of chromatin loops and are found to be tissue specific
with higher enrichment near enhancers and super-enhancers.
The task of predicting FIREs is posed as a classification task
for each genomic locus and we find that models trained using
the Epi-LSTM representations perform better on average
across cell types compared to the other methods and the
baseline (Figure ).

4.1.4 Replication Timing

The genome replication within eukaryotic genomes is known
to correlate with genome evolution, chromatin structure,
and gene expression. It's known that there exists a no-
ticeable correlation between replication timing and the
three-dimensional conformation of the chromatin and it is
substantially stronger when compared to binding proteins
and histone modifications [61]. The temporal and spatial
characterization coupled with markedly altered epigenetic
states of early-replicating when compared to late-replicating
loci dictate the nature of chromosomal rearrangement in cells
[62]. Although this suggests that replication timing might
be controlled at the domain level, it is known to facilitate
the organization of the epigenome as well [62]] and therefore
is a useful property to predict from a model that is trained
on epigenomic data. The replication of the genome follows
certain profiles as elaborated in [63]], [[64] which is useful for
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Fig. 3: The average precision with which each method predicts gene expression, promoter-enhancer interactions, frequently
interacting regions and replication timing as given by mAP is shown in Figures 3, b, ¢ and d respectively. The y-axis shows
the mAP and the x-ticks refer to the cell types in all plots. The colour scheme is as follows: Epi-LSTM is shown in red,
Avocado is shown in blue, REFINED+CNN is shown in brown and the Baseline is shown in green.
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its characterization. We find that the model trained using the
Epi-LSTM representations perform better than other methods
in a majority of cell types (Figure Bd). Both Epi-LSTM and
Avocado perform very well at this task, achieving >0.92
mAP on average (Figure Bd).

4.1.5 Discussion

Epi-LSTM outperforms the other methods in a majority
of cell-types on the tasks of PE-interactions, frequently
interacting regions and replication timing. Particularly for
PE-interactions, the mAP is quite low for all methods,
showing the difficulty of predicting them from epigenomic
representations. However, Epi-LSTM performs best of the
methods, indicating that it includes the most information
related to PE-interactions. While Avocado outperforms the
Epi-LSTM at predicting gene expression in majority of cell
types, the Epi-LSTM performs more consistently and does
better in the hard-to-predict cell types.

4.2 Epi-LSTM captures evolutionarily conserved activ-
ity

To explore our representations further we performed vi-
sualizations related to salient information pertaining to
genomic sites, that demonstrate that the model is indeed
capturing interesting genomic properties. We find that our
representation accurately identifies evolutionarily conserved
regions in the genome. Genomic sequences of an evolutionary
lineage can change due to random mutations and deletions
in time over many generations. Sometimes chromosomal
rearrangements may also promote them to recombine [65],
[66]. Sequences in the genome that propagate despite such
above mentioned forces, and therefore have lower mutation
rates compared to the rest of the genome are said to
be conserved [67]. Conservation manifests at coding and
non-coding bases. Although highly conserved regions are
known to have some functional importance, many highly
conserved non-coding regions are poorly studied. Various
parameters like genetic drift, population size, robustness
of a sequence to mutation, and selection pressure affect
the extent to which a sequence is conserved. PhyloP scores

measure evolutionary conservation at particular genomic
sites. Negative scores indicate evolutionary acceleration,
which is faster than neutral drift and positive scores indicate
evolutionary conservation, which is slower than neutral drift.
These p-scores help us understand the nature of selection
at chosen genomic positions. The absolute values of these
scores stand for the -log p-values under a null hypothesis
of neutral evolution. The 2D histogram of the phyloP scores
with the feature values demonstrates that certain chosen
representations are indicative of evolutionary conservation
and acceleration (Figure E[)

4.3 Epi-LSTM representations correlate with phyloP
score and GC content

To visualize the relationship between Epi-LSTM representa-
tions and conservation, we plot the correlation of the phyloP
scores with our feature set and observe a positive correlation
(Figure [Bp). The GC-content refers to the percentage of
nitrogenous bases in the DNA molecule that correspond
to Guanine or Cytosine. There exists evidence that the GC
content is higher for genes with longer coding regions i.e.
the coding sequence length is proportional to GC content
[68]. Genomic fragments with high GC content are also
shown to have enhanced malleability, aiding nucleosome
binding. Adding to this, compared to the noncoding regions
of the genome, GC rich exons contain higher levels of
DNA methylation [69]. Owing to the intimate relationship
between coding regions, DNA methylation and GC content,
we explore whether some sort of information about the
GC content is captured in our representations. We plot the
correlation between the GC-content and our feature vectors
(Figure E]:)) and observe a similar trend as with the p-score
i.e. the GC-content shows an increasing correlation with our
feature vectors (Figure Bp).

4.4 Epi-LSTM provides a smooth representation along
the genomic axis

Smoothness of the representations across positions in the
genome gives us an indication of how well the model is
able to take into account the similarity of nearby positions
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and how the representations change as one moves further
away along the genomic axis. Smooth representations match
our biological expectation that contiguous genomic elements
have a common function. In contrast, rapid fluctuations
in representation space indicate biologically implausible
fluctuations in activity. This knowledge can then be used
to interpret any observed departure from smoothness either
due to functional variability or experimental artifacts. Setting
a standard for how smooth the representations need to be
on average across the genome allows us to not only ensure
closeness of nearby positions in representation space but
also characterize genomic properties that depart from this
standard. Similar to the standard definition of smoothness
that is characterized by the continuity of the surface made
up of the points in a higher dimension, we measure the
smoothness of the points in euclidean space by calculating a

surrogate R-squared value which gives the proportion of the
variance of the representations at position x + k explained by
the representations at position x, averaged across the genome
for different values of x and tabulated for varying values of k.
Owing to the sequential nature of Epi-LSTM, we expect the
representations obtained to be smoother across the genome
when compared to other methods and we do in fact observe
the same. To demonstrate this, we plot the aforementioned
R-squared metric between pairs of positions for different
distances and average it across the genome (Figure[6) and it
can be seen that the Epi-LSTM representations are smoother
than representations from Avocado and REFINED+CNN
over a large portion of the genome.
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5 CONCLUSION

In this work we have proposed a deep LSTM autoencoder
called Epi-LSTM that uses epigenomic data from all cell
types to form latent representations that can be used as
pan-celltype position specific annotations. We demonstrate
that these annotations are able to classify a variety of
genomic phenomena while at the same time capturing
information about important genome wide properties such
as evolutionary conservation and GC content. Exploring
relative feature importance and other powerful sequential
models like Transformers [70] are interesting avenues for
extension and remain as part of future work.

The primary contribution of this work is the application
of a recurrent LSTM neural network structure to this problem.
This sequential structure is a natural fit to genomics data
sets because of the sequential nature of the genome. For that
reason, sequential models such as hidden Markov models
are widely used in genomics. We found that, likely due to
the sequential nature of the model, its latent representation is
smoother along the genomic dimension that a model relying
purely on embeddings. The code repository for this project,
including training, evaluation and data handling can be
found at [71].

This work produces a pan-celltype representation to the
epigenome, in contrast to related SAGA methods. SAGA
methods are cell type-specific; they produce a separate
annotation for each cell type. A pan-celltype representation
is greatly needed because it makes it easy to understand
the function and evolution of a genomic locus. Given that
most other widely-used genome annotations (such of genes)
are pan-celltype, we expect that pan-celltype epigenome
annotations will soon become widely used in genomic
analysis.

APPENDIX A
SUPPLEMENTARY METERIAL

The supplementary material (attached as a separate file)
contains: additional experiments, ablation results, hyper-
paramter search plots, additional classification metrics and
training and testing time plots.
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