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Abstract

There is growing evidence for the importance of 3’ untranslated region (3’'UTR) dependent
regulatory processes. However, our current human 3'UTR catalogue is incomplete. Here, we
developed a machine learning-based framework, leveraging both genomic and tissue-specific
transcriptomic features to predict previously unannotated 3’'UTRs. We identify unannotated
3'UTRs associated with 1,513 genes across 39 human tissues, with the greatest abundance
found in brain. These unannotated 3’'UTRs were significantly enriched for RNA binding protein
(RBP) motifs and exhibited high human lineage-specificity. We found that brain-specific
unannotated 3’'UTRs were enriched for the binding motifs of important neuronal RBPs such as
TARDBP and RBFOX1, and their associated genes were involved in synaptic function and brain-
related disorders. Our data is shared through an online resource F3UTER
(https://astx.shinyapps.io/F3UTERY/). Overall, our data improves 3'UTR annotation and provides
novel insights into the mMRNA-RBP interactome in the human brain, with implications for our

understanding of neurological and neurodevelopmental diseases.
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Introduction

The 3’'UTRs of protein-coding messenger RNAs (MRNAS) play a crucial role in regulating gene
expression at the post-transcriptional level. They do so by providing binding sites for trans factors
such as RBPs and microRNAs, which affect mRNA fate by modulating subcellular localisation,
stability and translation [1, 2]. There is evidence to suggest that these RNA-based regulatory
processes may be particularly important in large, polarised cells such as neurons. Recent studies
have shown that transcripts which are highly expressed in neurons have both significantly longer
3'UTRs and higher 3'UTR diversity [3, 4]. Furthermore, it has been shown that thousands of
MRNA transcripts localise within subcellular compartments of neurons and undergo regulated
local translation, allowing neurons to rapidly react to local extracellular stimuli [4-7]. Thus, there
has been growing interest in the impact of 3'UTR usage on neuronal function in health and

disease.

However, despite on-going efforts to identify and characterise 3'UTRs in the human genome [8-
11], there is evidence to suggest that our current catalogue is incomplete [3, 12-14]. Large-scale
3’end RNA-sequencing (RNA-seq) has identified a large number of novel polyadenylation
(poly(A)) sites, many of which are located outside of annotated exons [12, 13]. These insights are
complemented by an increasing recognition of the functional importance of transcriptional activity
outside of known exons, particularly in human brain tissues [15-17]. This raises the possibility of
developing new approaches for 3’'UTR identification seeded from RNA-seq data analyses, an
area that has not been fully explored, in large part due to the limited availability of data and

appropriate tools.

In this study, we present a machine learning-based framework, named F3UTER, which leverages
both genomic and tissue-specific transcriptomic features. We apply FBUTER to RNA-seq data
from Genotype-Tissue Expression Consortium (GTEX) to predict hundreds of unannotated
3'UTRs across a wide range of human tissues, with the highest prevalence discovered in brain.
We provide evidence to suggest that these unannotated 3’'UTR sequences are functionally
significant and have higher human lineage specificity than expected by chance. More specifically,
we found brain-specific unannotated 3’'UTRs were enriched for genes involved in synaptic
function and interact with neuronal RBPs implicated in neurodegenerative and neuropsychiatric
disorders. We release our data in an online platform, F3UTER
(https://astx.shinyapps.io/F3UTER/), which can be queried to visualise unannotated 3'UTR

predictions and the omic features used to predict them.
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75 Results

76  Annotation-independent expression analysis suggests the existence of
77 unannotated 3'UTRs in the human brain

78  There is growing evidence to suggest that the annotation of the human brain transcriptome is
79 incomplete and disproportionately so when compared to other human tissues [15-17]. We
80 hypothesised that this difference may in part be attributed to an increased number of unannotated
81 3'UTRs in human brain. To investigate this possibility, we analysed unannotated expressed
82  regions of the genome (termed ERS) as previously reported by Zhang and colleagues [15]. These
83 ERs were identified through annotation-independent expression analysis of RNA-seq data
84  generated by GTEXx with ER calling performed separately for 39 human tissues, including 11 non-
85 redundant human brain regions. We focused on the subset of ERs most likely to be 3’'UTRs,
86  namely intergenic ERs which lie within 10 kb of a protein-coding gene (Methods). We found that
87  these intergenic ERs were significantly higher in number (p = 1.66 x 107°, Wilcoxon Rank Sum
88  Test) and total genomic space (p = 2.39 x 1077, Wilcoxon Rank Sum Test) in brain compared to
89  non-brain tissues (Figure 1a). Furthermore, we discovered that intergenic ERs were significantly
90 more likely to be located at 3'- rather than 5-ends of their related protein-coding genes (p =
91 2.08 x 10~*, Wilcoxon Rank Sum Test) (Figure 1b), suggesting that a proportion of ERs
92  detected in human brain could represent unannotated 3’'UTRs.

93

94 Differentiating 3'UTRs from other expressed genomic elements is
95 challenging

96
97  Given that existing studies indicate high levels of transcriptional noise and non-coding RNA

98 expression in intergenic regions [18-21], only some intergenic ERs are likely to be generated by

99 unannotated 3'UTRs. This prompted us to develop a method to distinguish 3’'UTRs from other
100 transcribed genomic elements (non-3’'UTRs) using short-read RNA-seq data. To achieve this aim,
101  we first constructed a training set of known 3’'UTRs (positive examples) and non-3’'UTRs (negative
102  examples) from Ensembl human genome annotation (v94). We obtained 17,719 3'UTRs and a
103 total of 162,249 non-3'UTRs, consisting of five genomic classes: 21,798 5’UTRs, 130,768 internal
104  coding exons (ICE), 3,718 long non-coding RNAs (IncRNAS), 3,819 non-coding RNAs (ncRNAS)

105 and 2,146 pseudogenes (Methods). For each of the positive and negative examples, we
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106  constructed a set of 41 informative omic features, which were broadly categorised as either
107  genomic or transcriptomic in nature. Features calculated from genomic data included poly(A)
108 signal (PAS) occurrence, DNA sequence conservation, mono-/di-nucleotide frequency,
109 transposon occurrence and DNA structural properties. Features calculated from transcriptomic
110 data included entropy efficiency of the mapped reads (EE) and percentage difference between
111 the reads mapped at the boundaries (PD) (Methods). To gain a better understanding of these
112 features, we performed a univariate analysis to individually inspect the relationship between each
113 feature and the genomic classes in our training dataset (i.e. 3UTRs and all types of non-3’'UTRSs).
114  Overall, while the genomic and transcriptomic features used had overlapping distributions
115 amongst some genomic classes, each feature was significantly different when compared across
116 all the genomic classes (p < 2.2x 10716, Kruskal-Wallis Test and proportion Z-Test,
117  Supplementary Figure S1). This suggested that the features selected could be used to
118  distinguish 3’'UTRs from other genomic elements.

119 To further investigate this for all 41 features across all six genomic classes, we applied a uniform
120 manifold approximation and projection (UMAP) [22] for dimensionality reduction into a 2D
121  projection space. We found that while most 3’'UTRs clustered separately from other classes within
122  that space, some of them highly overlapped with other genomic classes such, as IncRNAs, ICEs
123 and 5'UTRs (Figure 2a, Supplementary Figure S2). These findings suggested that many
124  unannotated 3'UTRs would be difficult to identify, and thus, may require an advanced
125 classification approach based on machine learning to accurately distinguish them from other

126  genomic elements.

127

128 F3UTER accurately distinguishes 3'UTRs from other genomic elements

129  Next, we measured the predictive value of the omic features we had identified to distinguish
130 between unannotated 3'UTRs and other expressed elements if used collectively. We trained an
131 elastic net multinomial logistic regression model and evaluated its performance using 5-fold cross
132  validation repeated 20 times (Methods). Taking all classes into account, the multinomial logistic
133  regression model achieved an accuracy of 74% and a kappa of 0.52 in distinguishing between
134  the different genomic classes. Consistent with the UMAP visualisation, we found that known
135 3’UTRs were most likely to be misclassified as INcCRNAs (4.98%), followed by ICEs (2.46%) and
136 pseudogenes (0.88%) (Figure 2b). On the other hand, false-positive 3'UTR predictions, which
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137  totalled 44%, were predominantly composed of known ICEs (17.23%) and 5’UTRs (16.06%)
138 (Figure 2Db).

139  Since the high false-positive rate of our multinomial logistic regression model would be a
140  significant barrier to reliably predict unannotated 3’UTRs from intergenic ERs, we generated an
141  alternative machine-learning-based approach to address this problem. The resulting random
142  forest multinomial classifier was assessed for its performance using 5-fold cross validation
143  repeated 20 times (Methods). We found that the random forest multinomial classifier had a
144  significantly higher accuracy (76%; p < 2.2 X 10716, Wilcoxon Rank Sum Test) and kappa (0.56;
145 p < 2.2 x 10718, Wilcoxon Rank Sum Test) in comparison to the multinomial logistic regression
146  model (Supplementary Figure S3). While the false-negative rate was higher (random forest
147  classifier rate of 22%; logistic regression rate of 9%, Figure 2c), importantly the random forest-
148 based classifier reduced false-positive calling of 3UTRs to 10% (4.4% 5’UTR, 2.7% IncRNA,
149 1.5% ICE and 1.2% pseudogenes) compared to 44% using logistic regression. We also simplified
150 the classification problem to a binary one and generated a second random forest classifier, aiming
151  only to distinguish between 3’UTRs and non-3’'UTRs. This resulted in the development of our final
152  random forest classifier, Finding 3’ Un-translated Expressed Regions (FSUTER, Figure 2d).
153

154  To assess F3UTER’s performance, we performed 5-fold cross validation (repeated 20 times) and
155 calculated metrics such as accuracy, sensitivity, specificity, kappa, area under the ROC curve
156 (AUC-ROC) and area under the precision-recall curve (AUC-PR). F3UTER achieved a mean
157  accuracy of 0.96, sensitivity of 0.92, specificity of 0.96, kappa of 0.78, AUC-ROC of 0.98 (Figure
158 2e) and AUC-PR of 0.91 (Figure 2f) on the validation datasets (hold out). We found that F3UTER
159 performed similarly on both the training and validation datasets in the cross validation (Figure
160 2g). In addition, increasing the sample size of training data reduced the variability in model
161 predictions and hence, made it more stable. Taken together, these findings suggested that we
162  were not overfitting the classifier. Finally, we investigated the contributions of individual features
163  towards the accuracy and node homogeneity (Gini coefficient, Methods) of 3'UTR classification.
164 Interestingly, we found that features derived directly from sequence data (e.g. conservation and
165 PAS) as well as from the transcriptomic data, namely mean-PD and mean-EE (Supplementary
166  Figure S4), most significantly contributed to the accuracy of F3BUTER. This shows that F3UTER
167 leverages both genomic and transcriptomic features to classify 3UTRs, which would be expected

168 to enable the identification of tissue-specific unannotated 3’'UTRs.
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169  Evaluation of F3UTER using 3’-end sequencing data validates unannotated
170 3'UTR predictions

171
172  We evaluated the performance of F3UTER using an independent dataset consisting of both RNA-

173  seq data and paired 3’-seq in B cells [23]. The latter, a form of 3’-end sequencing, was performed
174  toidentify poly(A) sites experimentally. Since poly(A) sites are present at the very end of 3’UTRs,
175 unannotated 3'UTRs should overlap or be in the close vicinity of a poly(A) site. It should be noted
176 that unlike the GTEx RNA-seq dataset which we used for our previous analyses and which
177  consists of hundreds of samples for most tissues, this B cell dataset consisted of only two RNA-
178 seq samples. Since detecting unannotated ERSs relies on averaging RNA-seq coverage across
179  many samples to reduce the contribution of transcriptional noise to ER definition, calling ERs from
180 only two samples would likely result in inaccuracies at ER boundaries. Although this would be
181  expected to significantly reduce the confidence in the detection of unannotated ERs and
182  potentially underestimate the performance of F3UTER, the paired RNA-seq and 3’-seq nature of
183 this B cell dataset enabled us to confidently validate 3’'UTR predictions using gold standard
184  experimental data.

185

186  First, we identified 3’ unannotated intergenic ERs in B cells from the RNA-seq data following the
187  pipeline used by Zhang et al. [15]. Then we used F3UTER to predict unannotated 3'UTRs in this
188 B cell ER dataset, and compared these predictions to intergenic poly(A) clusters detected using
189  3’-seq (Figure 3a). We focused on confident 3'UTR predictions, defined as those with a prediction
190 probability of > 0.6. ERs predicted to be 3'UTRs which also overlapped with a poly(A) cluster were
191  considered to be validated, as exemplified by the intergenic ER predicted to be a novel 3’'UTR of
192  the gene CYTIP (Figure 3b). As a reference, we noted that 87.9% of known 3’'UTRs overlapped
193  with a poly(A) cluster in B cell. We found that on average, 38.5% of 3’'UTR predictions were
194  validated. This was 17.5-fold higher than that for randomly selected intergenic regions (2.2%, p <
195 0.0001, permutation test; Supplementary Figure S5) and 2.2-fold higher than the validation rate
196  of non-3’'UTR predictions (17.4%, Figure 3c). Overall, these observations demonstrate the
197  accuracy of FBUTER and show that it can effectively distinguish unannotated 3'UTRs from other
198 functional genomic elements in the genome.

199


https://doi.org/10.1101/2021.03.08.434412
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.08.434412; this version posted March 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

200 Applying F3UTER across 39 GTEx tissues identifies hundreds of
201 unannotated 3'UTRs with evidence of functional significance

202
203  We applied F3UTER to 3’ unannotated intergenic ERs identified by Zhang and colleagues [15] in

204 39 tissues using RNA-seq data provided by GTEX. Similar to the B cell ER dataset, we focused
205 on confident 3'UTR predictions with a prediction probability of > 0.6 (Supplementary File 1).
206  Across all tissues, we found that on average 7.9% of analysed ERs were predicted as
207 unannotated 3’'UTRs, with 8.2% being called in brain (Supplementary Figure S6). This equated
208 to an average of 187 potentially unannotated 3’'UTRs per tissue (ranging from 96 in adipose-
209  subcutaneous to 348 in hypothalamus, Figure 4a), covering 58 to 265 kb of genomic space (mean
210 across tissues = 138 kb, Figure 4b). By assigning predicted 3’'UTRs to protein-coding genes
211  either through the existence of junction reads or by proximity, we estimated that 1,513 distinct
212  genes in total had unannotated 3'UTRs with an average of 167 genes per tissue (Figure 4c). As
213  expected, the number of predicted unannotated 3'UTRs was significantly higher in the brain
214  relative to non-brain tissues (median values of 295 and 142 in brain and non-brain tissues
215  respectively; p = 1.65 x 10~°, Wilcoxon Rank Sum Test). This was associated with a significantly
216  higher total genomic space (median values of 232 kb and 104 kb in brain and non-brain tissues
217  respectively; p = 1.43 x 1078, Wilcoxon Rank Sum Test) and higher number of implicated genes
218 (median values of 270 and 127 in brain and non-brain tissues respectively; p = 1.65 x 107°,
219  Wilcoxon Rank Sum Test). This data suggests that incomplete annotation of 3UTRs is present in
220  all human tissues but is most prevalent in the brain.

221

222  Next, we investigated the functional significance of unannotated 3'UTRs by analysing their
223  potential interaction with RBPs. This in silico analysis was performed because selective RBP
224 binding at 3'UTRs is thought to be key in explaining the selection of alternate PASs and its impact
225 on mRNA stability and localisation [24]. Using the catalogue of known RNA binding motifs from
226 the ATtRACT database [25], we examined the binding density of 84 RBPs across all unannotated
227 3'UTRs (Methods). Consistent with previous reports demonstrating higher RBP binding densities
228 in known 3'UTRs relative to other genomic regions [26], we found that 3'UTR predictions were
229  enriched for RBP binding motifs compared to non-3'UTR predictions (p < 2.2 x 10716, effect size
230 (es) = 0.17, Wilcoxon Rank Sum Test, Figure 4d). Surprisingly, we noted that unannotated
231  3'UTRs were also enriched for RBP binding motifs compared to known 3'UTRs (p < 2.2 X 10716,
232 es = 0.28, Wilcoxon Rank Sum Test, Figure 4d) suggesting that these regions may be of

233  particular functional significance. To investigate this further, we leveraged constrained, non-
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234  conserved (CNC) scores [27], a measure of human-lineage-specificity, to determine whether the
235 unannotated 3'UTRs identified were of specific importance in humans. CNC score, a metric
236  combining cross-species conservation and genetic constraint in humans, was used to identify and
237  score genomic regions which are amongst the 12.5% most constrained within humans but yet are
238 not conserved. We found that unannotated 3’'UTRs exhibited higher CNC scores compared to
239  known 3'UTRs (p = 0.012, es = 0.016, Wilcoxon Rank Sum Test, Figure 4e). Thus, together our
240 analyses suggested that unannotated 3’'UTRs are not only functionally important but may be
241  particularly crucial in human-specific biological processes.

242

243 F3UTER identifies unannotated 3'UTRs of genes associated with synaptic
244 function

245

246  Given the evidence for the functional importance of unannotated 3’'UTRs predicted by F3UTER,
247 we wanted to explore their biological relevance. To do this, we began by categorising all
248 unannotated 3’'UTRs into four sets based on their tissue-specificity: absolute tissue-specific,
249  highly brain-specific, shared and ambiguous (Methods and Supplementary Figure S7). Using
250 this non-redundant set of 3UTRs, we found that on average, we extended the current annotation
251  per gene by 681 bp in highly brain-specific (1.4x the known maximal 3’'UTR length), 633.6 bp in
252  tissue-specific (0.95x the known maximal 3'UTR length), and 496.63 bp in shared predictions
253  (0.88x the known maximal 3'UTR length) respectively. Next, we repeated the RBP and CNC
254  analysis for each category finding that all unannotated 3’'UTR sets showed significant enrichment
255 of RBP binding motifs when compared not only to non-3'UTR predictions (p < 2.5 x 1075,
256  Wilcoxon Rank Sum Test), but also to known 3'UTRs (p < 3.9 x 1077, Wilcoxon Rank Sum Test),
257  with the brain-specific set having the largest effect size (es = 0.17) (Figure 5a). Focussing on
258 CNC scores, we found that while none of the unannotated 3'UTR sets showed significant
259  differences in score compared to known 3’'UTRs (p = 0.121, Wilcoxon Rank Sum Test), brain-
260 specific unannotated 3'UTRs trended to significance with the largest effect size relative to other
261 sets (Figure 5a). Together, these observations lead us to conclude that highly brain-specific
262  3’UTR predictions were likely to be of most biological interest.

263

264  These observations raised the question of what types of genes are associated with highly brain-
265  specific 3UTR predictions. Interestingly, we found that while genes linked to brain-specific non-

266  3'UTR predictions had no GO term enrichments, those linked to an unannotated brain-specific
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267 3'UTR were significantly enriched for synaptic function (“synaptic signalling”, “synapse
268 organisation” and “protein localization to postsynaptic specialization membrane”; q =
269  4.97 x 1073) (Figure 5b, Supplementary File 2). Using SynGO (the synaptic GO database [28])
270 to obtain more granular information, we found that genes associated with unannotated 3’'UTRs
271  were more significantly enriched for terms relating to post-synaptic (“protein localisation in
272  postsynaptic density”,q = 2.87 X 10™%; postsynaptic function, g = 4.1 x 1073), as compared to
273  presynaptic structures (“localisation in presynapse”, g = 0.03; presynaptic function, g = 0.1)
274  (Figure 5c, Supplementary File 2). Furthermore, we found that genes linked to unannotated
275 brain-specific 3’UTRs were significantly enriched for those already associated with rare
276  neurogenetic disorders (p = 0.01, hypergeometric test) and more specifically adult-onset
277 neurodegenerative disorders (p = 0.03, hypergeometric test). For example, we detected an
278 unannotated 3’'UTR in the brain linked to the gene, APP, a membrane protein which when mutated
279  gives rise to autosomal dominant Alzheimer’s disease and encodes for amyloid precursor protein,
280 the main constituent of amyloid plaques [29]. We detected a 920 bp long brain-specific
281 unannotated 3'UTR located 1.8 kb downstream of APP (Figure 5d) and only 51 bp from an
282  intergenic poly(A) site on the same strand as APP gene as reported by the poly(A) atlas. Other
283  similar examples included the genes, C190rf12, RTN2, SCN2A and OPAl (Supplementary
284  Figures S8 & S9).

285

286 Brain-specific unannotated 3'UTRs interact with RBPs implicated in
287 neurological disorders

288

289  Next, we investigated the information content of brain-specific unannotated 3’'UTRs by comparing
290 RBP binding enrichments between brain-specific and shared 3'UTR predictions (Methods). By
291 using shared 3’'UTR predictions as the negative control, we removed RBPs associated with non-
292  brain tissues and so identified RBP binding of greatest relevance to human brain function. This
293  analysis identified 22 RBPs with significantly enriched binding in the brain-specific unannotated
294  3'UTRs (adjusted p < 107°) (Supplementary Table 1). We found that nine of these RBPs were
295 previously known to be associated with “mRNA 3'UTR binding” (q = 2.23 x 10714,
296  Supplementary File 3), including TARDBP, an RNA binding protein implicated in both
297 frontotemporal dementia and amyotrophic lateral sclerosis [30]. Of the 75 gene targets that we
298 identified for TARDBP through unannotated 3’'UTRs, up to 50 were known to be TARDBP targets

10
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299 based on computational scanning of existing 3’'UTR annotations for TARDBP motif (47%, p =
300  0.008, hypergeometric test) and iCLIP experiments (44%, p = 1.47 x 10~°, hypergeometric test).
301 However, this implied that 25 gene targets were not previously known to harbour TARDBP binding
302 motifs based on current annotation. Another RBP which was identified to be significantly enriched
303 in brain-specific unannotated 3'UTRs was RBFOX1 (adjusted p = 1.78 x 10718), a neuronal
304  splicing factor implicated in the regulation of synaptic transmission [31] and whose mRNA targets
305 have been implicated in autism spectrum disorders [32]. We identified 89 gene targets with a
306 predicted RBFOX1 binding motif within their associated unannotated 3’'UTRs. Of these 89 genes,
307 only 31 (35%) had a predicted RBFOX1 binding motif within their existing 3'UTRs, again implying
308 that unannotated 3’'UTRs provide valuable novel binding sites. Furthermore, GO and SynGO
309 enrichment analyses (Supplementary File 3) demonstrated that the target genes of RBFOX1
310 were significantly enriched for synaptic (“synaptic membrane adhesion”, ¢ = 1.58 x 1072) and
311  postsynaptic terms (“postsynapse”, g = 0.01), consistent with the previously known functions of
312 RBFOX1 [31]. These results show that the identification of brain-specific unannotated 3'UTRs can
313 recognise new genes within known regulatory networks, which can provide novel, disease-
314  relevant insights.

315

316 Discussion

317

318 In this study we generate a machine learning-based classifier, F3BUTER, which leverages
319 transcriptomic as well as genomic data to predict unannotated 3’UTRs. FSUTER outperforms a
320 state-of-the-art statistical learning approach, elastic net logistic regression, whilst retaining its
321 interpretability capabilities. We apply F3UTER to transcriptomic data covering 39 human tissues
322  studied within GTEXx, enabling the identification of tissue-specific unannotated 3'UTRs. Using this
323 large, public, short-read RNA-seq data set, we predict unannotated 3’'UTRs for 1,513 genes,
324  (equating to 5.4 Mb of genomic space in total across 39 tissues) and demonstrate that FSUTER
325 can be successfully applied to human genomic regions from any tissue with existing bulk RNA-
326  seq data. In fact, even though intergenic ERs in B cells were generated using only two samples,
327  we were able to validate 38.5% of the unannotated 3'UTR predictions using 3’-end sequencing
328 data, showing that FBUTER can be a useful tool even for small RNA-seq datasets. Furthermore,
329 it should be noted that F3BUTER does not depend on ER datasets as input, but instead any set of

330 interesting human genomic regions can be used. Given the continued popularity and high
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331 availability of short-read RNA-seq data across tissues, cell types and disease states, we believe
332 that (1) FSUTER could be applied more broadly to improve our understanding of 3’'UTR diversity
333 and usage, and (2) the set of omic features devised within this study could form the basis for other
334  predictive models aimed at increasing the accuracy of human transcriptomic annotation.

335

336  We focus on F3UTER-predicted 3’'UTRs in human brain, which we find to be most prevalent when
337 comparing predictions across all 39 human tissues. We believe that the higher frequency of
338 incomplete 3’'UTR annotation in human brain could be attributed to several factors including: (1)
339 higher transcript diversity with many rare isoforms expressed in this tissue; (2) high cellular
340 heterogeneity complicating detection of tissue- /cell-type specific transcripts; (3) historically lower
341  availability of human brain samples; and (4) reliance on post-mortem tissues, which suffer from
342  RNA degradation resulting in decreased accuracy of transcript identification.

343

344  While we find that collectively the unannotated 3'UTRs predicted by F3UTER were significantly
345  enriched for RBP binding and exhibited high human lineage-specificity, the latter was primarily
346  driven by brain-specific 3UTR predictions. Overall, these findings suggest that predicted 3’UTRs
347 are likely to be functionally important in the human genome. Moreover, these findings provide
348 some explanation for the difficulties of identifying 3'UTRs through cross-species analyses
349 particularly when considering brain-specific transcripts. Interestingly, we find that brain-specific
350 unannotated 3’'UTRs were enriched for binding of RBPs already implicated in neurological
351 disorders, such as TARDBP and RBFOX1. Furthermore, genes linked to unannotated brain-
352  specific 3UTRs were significantly enriched for those already associated with rare neurogenetic
353 and adult-onset neurodegenerative disorders, and for genes involved in synaptic function.

354

355  Taken together, our results demonstrate that F3UTER not only improved 3'UTR annotation, but
356 also identified unannotated 3’'UTRs in the human brain which provided novel insights into the
357 mRNA-RBP interactome with implications for our understanding of neurological and
358 neurodevelopmental diseases. With this in mind, we note the growing interest in the role of 3’UTR-
359 based mechanisms in translational regulation within complex, large, polarised cell types such as
360 neurons [4, 5, 33, 34]. Although increasing use of single-nuclei RNA-seq, together with long-read
361 RNA-seq will provide further insights into alternative 3'UTR usage and will impact the field
362  considerably, these technologies still have significant limitations for the identification of rare
363 transcripts. Therefore, we believe that F3UTER, which can effectively utilise existing short-read

364 RNA-seq data sets, will be of interest to a wide range of researchers. Furthermore, we release
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365  our results through an online resource (F3UTER: https://astx.shinyapps.io/F3UTER/) which
366  allows users to both easily query unannotated 3'UTRs and inspect the omic features driving the

367 classifier's prediction for an ER of interest.

13


https://doi.org/10.1101/2021.03.08.434412
http://creativecommons.org/licenses/by-nc-nd/4.0/

368

369
370
371

372
373

374

375
376
377
378
379

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.08.434412; this version posted March 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a Cerebellar hcmisphcrco NUCICS accumbens b 80 4
3000 1 Anterior cingulate corlex E = 3-089‘14
(o] Putamen  Caudate
o) Frontal Geriex Hypothalamus~ HippocampusQy J
x g o
— Amygdala 2
© » 60 1 L e
© 2500 - o 0o
o s .
B Uuédﬂlld nigra LU
o . 2
o Pituitary GC_) 40 o
o 4
© 2000 - o 6
o Spinal cord 10_) §
» = oo
o S @
= Spleen =
o
g Stomach Kidney Thyroid B“ 20 1
c . \ /
D 1500 GastroeSophagea Ju,ﬁ,wuhmosma\lInle&tme
© Sigmoid \Liveiieysy” ol v Lo
e ahas
© \ 9 o Pa”uedhécwe fRhal Left ventricle
Art ronary,
© B o) E"E‘ZE'SE-A&ScnaI gland - Skalotal muscle
= 1000 Smn(suprapugg)og.'\mla OOSBiﬂUower leg) tissue_type 04
Adpgse - viscerd |. N " Artery - ibial— Whole blood O Brain : :
nal appencdags. 1 1
MuEa O P~ Minorsafvary gland O Non-brain 3_prime 5 _prime
Adipose - subcutaneous T t ni 7EF{
y T r T ntergenic ]
2500 5000 7500 10000 gel
per tissue

Number of intergenic ERs

Figure 1.

Enrichment of intergenic ERs across 39 GTEX tissues. (a) Scatter plot showing the number
of intergenic ERs and their total genomic space covered in 39 human tissues. (b) Enrichment of
intergenic ERs grouped by location with respect to their associated protein-coding gene. Each
data point in the box plot represents the proportion of total intergenic ERs in a tissue. p: p-value
calculated using Wilcoxon Rank Sum Test.
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(RNA-seq from GTEX) properties. To make predictions, genomic coordinates of ERs are given as
input, from which a feature matrix is constructed. The output of the framework is ERs categorised
into potential 3’'UTRs and non-3’'UTRs with their associated prediction probability scores. (e, f)
ROC and precision recall curves of FBUTER evaluated using 5-fold cross validation. (g) Bias-
variance trade-off plot demonstrating the performance of F3UTER on training and validation
datasets grouped by the sample size of the training data.
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437  Figure 3.

438 Evaluation of F3UTER predictions on an independent ER dataset. (a) Schematic describing
439  the framework of the process implemented to evaluate the performance of F3BUTER on ERs in B
440 cells. (b) Genome browser view of the CYTIP locus, showing intergenic ERs detected
441  downstream of CYTIP and poly(A) sites in B cells. (c) Bar plots showing the overlap between
442  predictions made by F3UTER and intergenic poly(A) sites from 3'-end sequencing in B cells. The
443  bar for random predictions represents the mean overlap (from 10,000 permutations) between
444  randomly selected intergenic ERs and intergenic poly(A) sites.
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Figure 4.

445
446

Unannotated 3’UTR predictions across 39 GTEXx tissues. (a) Number of unannotated 3’'UTRs

447
448
449

predicted by FBUTER. (b) Total genomic space of unannotated 3’'UTRs. (c) Number of genes

associated with unannotated 3’'UTRSs. In each bar plot, tissues are sorted in descending order of
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450 the values plotted on y-axis. The square boxes below the bars are color-coded to group the
451  tissues according to their physiology. The predictions are grouped and color-coded based on their
452  prediction probability scores from F3UTER. (d) Density distributions comparing the RBP binding
453  density across known 3’'UTRs, predicted 3’'UTRs and predicted non-3’'UTRs. p: p-value of
454  comparison calculated using Wilcoxon Rank Sum Test; es: effect size; x: predicted 3'UTRs vs.
455  known 3'UTRs; y: predicted 3’'UTRs vs. predicted non-3’'UTRs. (e) Density distributions
456  comparing the “constrained non-conserved” (CNC) scores between known and predicted 3’'UTRs.
457  p: p-value of comparison calculated using Wilcoxon Rank Sum Test; es: effect size.

458
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Figure 5.

Functional significance of highly brain-specific unannotated 3’UTRs. (a) Density
distributions comparing RBP binding and “constrained non-conserved” (CNC) scores between
known, predicted 3'UTRs and predicted non-3'UTRs, categorised according to their tissue-
specificity. p: p-value of comparison calculated using Wilcoxon Rank Sum Test; es: effect size; x:
predicted 3’'UTRs vs. known 3'UTRs; y: predicted 3’UTRs vs. predicted non-3’'UTRs. (b) GO terms
enriched amongst the list of genes associated with highly brain-specific unannotated 3'UTRs. MF:
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471  molecular function; CC: cellular component; BP: biological process. (c) Sunburst plot showing the
472  cellular component SynGO terms over-represented in genes associated with highly brain-specific
473  3'UTRs. The inner rings of the plot represent parent terms, while outer rings represent their more
474  specific child terms. Rings are colour coded based on the enrichment g-value of the terms. (d)
475  Genome browser view of the APP locus, showing intergenic ERs detected downstream of APP in
476  the hypothalamus, and poly(A) sites from the poly(A) atlas data.
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477  Methods

478 ER data

479  We collected the set of intergenic ERs identified by Zhang and colleagues [15] in 39 GTEX tissues,
480 comprising of 11 non-redundant brain tissues and 28 non-brain tissues (total intergenic ERs =
481  9,339,770). Each ER was associated to a protein-coding gene by extracting genes which
482  connected to the ER via a junction read. In cases where no junction read was present, the nearest
483  protein-coding gene was assigned to the ER. From this dataset, we selected intergenic ERs
484  located within 10 kb of their associated gene, resulting in 237,540 ERs. In this dataset, 4% of the
485 ERs were associated to a gene via a junction read. Based on the location of intergenic ERs with
486  respect to their associated genes, i.e. whether upstream or downstream, we annotated their
487  orientation as 5’ (92,148 ERs) or 3’ (145,392 ERSs) respectively. The total genomic space of these
488 intergenic ERs was calculated by adding the length of all ERs in each tissue. To further remove
489  ERs which were unlikely to be 3'UTRs, we selected 3’ intergenic ERs with a length < 2 kb — which
490 s the third quartile limit of known 3'UTR exon lengths. We also removed small ERs with length <
491 40 nucleotides (nt) for which feature calculation can be problematic. This resulted in a set of
492 93,934 ERs across all 39 tissues, and this set was used as input to F3BUTER.

493 Assembling positive and negative 3’'UTR learning datasets

494  For positive examples, we used known 3’'UTRs, while for negative examples, we used regions in
495  the genome which are known to be non-3’'UTRs, namely 5’'UTRs, internal coding exons (ICEs),
496 IncRNAs, ncRNAs and pseudogenes. Ensembl human genome annotation (v94 GTF) was used
497 to extract the genomic coordinates of these different genomic classes. For all classes in our
498 training dataset, firstly, we selected high confidence annotations at the transcript level with
499 transcript support level (TSL) = 1. Secondly, we collapsed and combined multiple transcripts
500 associated with a single gene to make a consensus “meta-transcript” per gene. This merged all
501 the overlapping regions emerging from the same gene. Finally, we extracted exons with width >=
502 40 (nt) from these meta-transcripts to serve as learning examples.

503

504  To capture regions of 3'UTR exons, 5’UTR exons and ICEs, transcripts from protein-coding genes
505 were selected. For ICE examples, transcripts with at least three coding exons were further

506 selected (as transcripts with less than three exons would not contain an internal exon) and their
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first and last coding exons were removed to capture ICEs. To capture IncRNA, ncRNA and

pseudogene exons, we selected annotations from the GTF file with the following gene biotypes:

IncRNA: "non_coding", "3prime_overlapping_ncRNA", "antisense", "lincRNA",

non non

"sense_intronic", "sense_overlapping", "macro_IncRNA"
NcRNA: "miRNA", "misc_RNA", "rRNA", "snRNA", "snoRNA", "vaultRNA"

pseudogene: "pseudogene", "processed_pseudogene”, "unprocessed_pseudogene”,

"o

"transcribed_processed_pseudogene”, "transcribed_unitary _pseudogene”,

"transcribed_unprocessed_pseudogene”, "translated_processed_pseudogene”,

"unitary_pseudogene”, "unprocessed_pseudogene”, "TR_V_pseudogene",

"TR_J_pseudogene", "rRNA_pseudogene”, "polymorphic_pseudogene”,

"IG_V_pseudogene", "IG_pseudogene", "IG_J_pseudogene", "IG_C_pseudogene"

Calculating omic features

For each region in the training dataset, we calculated several genomic and transcriptomic based

features. Transcriptomic features were used to account for tissue-specific properties of

transcribed elements in the genome.

Genomic (sequence) based features:

Poly(A) signals (number of features, n=1): Previous studies have shown that 3UTR
sequences of most mammalian genes contain the consensus AAUAAA motif (or a close
variant) 10-30 nt upstream of the poly(A) site [8]. These motif sites are recognised and
bound by the cleavage and polyadenylation specificity factor (CPSF), and are referred to
as polyadenylation signals (PASs). PASs are an important characteristic of 3UTRs and
are involved in the regulation of the polyadenylation process [8]. We used 12 commonly
occurring PASs (AAUAAA, AUUAAA, AGUAAA, UAUAAA, AAUAUA, AAUACA,
CAUAAA, GAUAAA, ACUAAA, AAUAGA, AAUGAA, AAGAAA) [9, 12, 35, 36] to construct
a consensus position weight matrix (PWM). Each region was scanned for potential PWM
matches and a binary outcome was reported i.e. whether the region contains a potential
PAS or not. The “searchSeq" function (with min.score= “95%”) from the R package
“TFBSTools” [37] was used to detect PWM matches.
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539 e Mono- and di-nucleotide frequency (n=20): The sequence composition in 3’'UTRs,
540 especially near the poly(A) sites has been shown to be important for polyadenylation [8,
541 9, 35]. The frequency probability of each mono-nucleotide (i.e. A, T G, C; n=4) and di-
542 nucleotide pair (n=16; e.g. AA, AT, GC, GG) was calculated as the number of nucleotide
543 occurrences divided by the length of the region.

544

545 e DNA sequence conservation (n=1): Sequences of non-protein coding transcripts and
546 un-translated regions are poorly conserved compared to protein-coding sequences [38,
547 39]. For every genomic position, we extracted the phastCons score of the human genome
548 (hg38) across 7 species pre-computed by the UCSC genome browser, and averaged it
549 across the region to calculate mean sequence conservation score for each region.

550

551 e Transposons (n=1): Previous studies have revealed that transposons are highly enriched
552 within IncRNAs compared to protein-coding genes and other non-coding elements [40,
553 41]. These transposable elements are considered to be the functional domains of
554 IncRNAs. We calculated the total fraction of region covered with transposons — LINEs,
555 SINEs, LTRs, DNA and RC transposons. The hg38 genomic coordinates of the
556 transposable elements (Dfam v2.0) were downloaded from
557 http://www.repeatmasker.org/species/hg.html.

558

559 e DNA structural properties (n=16): The underlying sequence composition of a DNA
560 molecule plays an important role in determining its structure. As a result, similar DNA
561 sequences have a tendency to have similar DNA structures [42]. We calculated 16
562 properties of DNA structures which can be predicted from a nucleotide sequence based
563 on previous experiments. To quantitatively measure a structural property from a nucleotide
564 sequence, we used pre-compiled conversion tables downloaded from
565 http://bioinformatics.psb.ugent.be/webtools/ep3/?conversion [43]. Depending on the
566 structural property, we extracted scores for each di-nucleotide or tri-nucleotide occurrence
567 in the sequence from the conversion tables, and averaged the scores across the region.
568

569 Transcriptomic based features:

570

571 e Entropy efficiency (n=1): We measured the uniformity of read coverage across a region
572 using entropy efficiency, as described in Gruber et al. [44]. The entropy efficiency (EE) of

24


http://www.repeatmasker.org/species/hg.html
http://bioinformatics.psb.ugent.be/webtools/ep3/?conversion
https://doi.org/10.1101/2021.03.08.434412
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.08.434412; this version posted March 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

_ Ziz1 p(xp)xlog (p(x1). xi

573 a region (x) was calculated as, EE(x) = 1090 pop(x) = m ,
574 where n represents the length of the region and p(x;) is the read count at position i divided
575 by the total read count of the region. For each region, we calculated EE in 39 GTEx tissues
576 and averaged it across all the tissues to obtain a baseline distribution of EE scores.

577

578 e Percentage difference (h=1): We calculated the percentage difference (PD) between the
579 read counts at the boundaries of a region. For read counts r; and r, measured at the
580 boundaries of a region x, PD was calculated as: PD(x) = #&x 100. For each
581 region, we calculated PD in 39 GTEXx tissues and averaged it across all the tissues to
582 obtain a baseline distribution of PD scores.

583

584 Univariate and multivariate analysis

585  For univariate analysis, we performed non-parametric Kruskal-Wallis test and proportion Z-test
586 for continuous and categorical variables, respectively, to identify features with significant
587  differences across all the genomic classes. We used UMAP [22] to visualise all the features in
588 two-dimensional space. The UMAP analysis was performed using the R package “umap” with
589 default parameters. The clusters were visualised as a 2D density and a scatter plot. Each data
590 point was labelled and coloured according to its genomic class.

591

592  To perform multivariate analysis, a feature matrix was generated where rows represented regions
593 from the training dataset (n=179,968), and columns represented the quantified features (n=41).
594  The features were scaled and centred in R using the preProcess function of R “Caret” package
595 [45]. The elastic net multinomial logistic regression model was trained using the “gimnet” R
596 package [46] with the following parameters: family = "multinomial”, alpha=0.5, nlambda=25 and
597  maxit=10,000. The random forest multinomial classifier was trained within Caret using the
598 “randomForest” package [47] with default parameters (ntree = 500, nodesize = 1). We performed
599 a 5-fold cross validation (repeated 20 times) to evaluate the performance of these multinomial
600 classifiers, where the model was trained on 80% of the data (training dataset) and tested on 20%
601 of the remaining data (validation dataset). Downsampling of the data was employed to correct for
602 imbalance in the sample size of the classes. For each cross validation run, we produced a
603  confusion matrix for each prediction class using the Caret's confusionMatrix function and

604  computed the false- positive and negative rates. Additionally, we calculated Cohen’s kappa, which
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605 reports the accuracy of a model compared to the expected accuracy and is a much accurate
606 measure of performance for imbalanced datasets. These metrics were averaged across all the
607  cross validation runs for reporting purposes.

608 F3UTER construction and evaluation

609 We designed F3UTER as a binary classifier to categorise an ER into a 3’'UTR (positive) or a non-
610 3’UTR (negative). This random forest classifier was implemented in R using Caret as the machine
611 learning framework and “randomForest” as the machine learning algorithm within Caret. The
612 random forest classifier was trained using the default parameters (ntree = 500, nodesize = 1). We
613 performed a 5-fold cross validation (repeated 20 times) to evaluate the performance of the
614 F3UTER. For each cross validation run, we calculated the performance metrics such as accuracy,
615 kappa, sensitivity, specificity, ROC curve and precision-recall curve, using the caret's
616  confusionMatrix function. Variable importance was measured using mean decrease in accuracy
617 and Gini coefficient, as natively reported by random forest. The Gini coefficient measures the
618  contribution of variables towards homogeneity of nodes in the random forest tree. These metrics
619 were averaged across all the cross validation runs for reporting purposes. For bias-variance trade-
620 off analysis, we trained FSUTER on sequentially increasing sample size of training data (0.1%,
621  0.5%, 1%, 5%, 10%, 30%, 50%, 80% and 100%), hence sequentially increasing the complexity
622  of the model. For each sample size value, a fraction of the training data was randomly selected,
623 and a 5-fold cross validation was performed which captured all the performance metrics for both
624  the training and validation datasets. This process was repeated 20 times for each sample size.
625 To make 3’'UTR predictions on ER datasets, the classifier with the highest kappa statistic was
626  selected from the cross validation process.

627

628 Validation of 3’'UTR predictions in B cells

629  Previously published RNA-seq and its corresponding 3’-end seq data in B cells [23] (two replicates
630 each) was used for validating 3'UTR predictions (GEO repository: GSE111310; samples:
631 GSM3028281, GSM3028282, GSM3028302 and GSM3028304). We processed each RNA-seq
632 replicate individually and detected 3’ intergenic ERs using the pipeline detailed in Zhang et al.
633  [15]. Analysed poly(A) site clusters associated with these RNA-seq samples were downloaded
634  from poly(A) atlas [13]. These poly(A) site clusters were compared to Ensembl human genome

635 annotation (v92) to identify sites which occur within the intergenic regions. F3UTER was applied
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636 to 3’ intergenic ERs in B cells and the resulting predictions (with prediction probability > 0.6) were
637 compared to intergenic poly(A) site clusters to calculate their overlap. Predictions with at least a
638 1 bp overlap with a poly(A) site were considered to be overlapping. A permutation test was
639 performed to inspect if the observed overlap between 3'UTR predictions and intergenic poly(A)
640  sites is more than what we would expect by random chance. Using BEDTOOLS [48], the locations
641 of 3UTR predictions were shuffled in the intergenic genomic space on the same chromosome,
642  hence generating random intergenic ERs with length, size and chromosome distribution similar
643 to 3'UTR predictions in B cells. To shuffle the locations within the intergenic space, we excluded
644  the genomic space covered by genes (all Ensembl bio-types) and intergenic ERs in B cells (both
645 3’ and 5’). The overlap between these randomly generated intergenic ERs and poly(A) sites was

646 then calculated, and this process was repeated 10,000 times to produce a distribution of expected

647  overlap. The p-value was calculated as % where x is the number of expected overlap greater than
648 the observed overlap, and N is the total number of permutations. The z-score was calculated as

649 %, where 0,,srepresents the observed overlap, O,.,niS the median of the permuted

650 overlap, and SD,.,nis the standard deviation of the permuted distribution.

651

652 3’UTR predictions in 39 GTEXx tissues

653 A feature matrix of 3’ intergenic ERs was generated in each tissue. F3UTER was applied to each
654  matrix to categorise intergenic ERs into 3UTR (prediction probability > 0.60) and non-3'UTR
655 (prediction probability < 0.60) predictions. For each tissue, the lengths of the 3'UTR
656  predictions were added to calculate their total genomic space (in kb). To compare brain and non-
657  Dbrain tissues, a two-sided Wilcoxon Rank Sum Test was applied to statistically compare the
658 associated numbers between the two groups. To explore the biological relevance of 3’'UTR
659 predictions, they were categorised into four groups based on their tissue-specificity: absolute
660 tissue-specific, highly brain-specific, shared and ambiguous. To do such categorisation, the
661 genomic coordinates of ER predictions were compared across the 39 tissues. An ER which did
662  not overlap any other ER across the tissues was labelled as “absolute tissue-specific” or present
663 in only one tissue. On the other hand, for an ER which overlapped (= 1 bp) ERs from other tissues,
664  we calculated the proportion of brain tissues in which the ER was detected. If more than 75% of
665 the tissues were brain related, the ER was labelled as “highly brain-specific’. From the remaining

666 data, ERs detected in at least five tissues, with their start and end coordinates within a 10 bp
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667  window, were labelled as “shared”. All the remaining ERs which did not fall in any of the above
668  categories were labelled as “ambiguous”.
669

670 RBP and CNCR analysis

671  The position weight matrices (PWMs) of RBP binding motifs in humans were collected from the
672  ATtRACT database [25]. Motifs with less than 7 nt in length and with a confidence score of less
673 than one, were removed to reduce false-positives in the motif matches. To remove redundancy
674  between multiple motifs of a RBP, we further selected the longest available motif. This resulted in
675 84 uniqgue PWMs, which were then used for identifying potential RBP binding using tools from the
676 MEME suite [49]. We used FIMO [50] with a uniform background to scan query regions for
677 potential RBP motif matches. For each RBP motif and query sequence pair, we calculated
678 normalised counts as the number of motif matches (with p < 10™%) per 100 nt of query sequence.
679 To summarise this analysis, we then calculated an overall RBP binding score for each query
680 sequence by adding the normalised counts across all the RBPs. We used AME [51] with default
681  parameters to compare binding enrichment of RBPs between highly brain-specific (query) and
682 shared 3’'UTR predictions (control). RBP motifs with an enrichment adjuested p — value < 107>
683  were considered to be significantly over-represented in highly brain-specific 3’UTR predictions
684 compared to shared 3’'UTR predictions. Previously reported gene targets of TARDBP identified
685 using iCLIP technology were extracted from the POSTAR2 database [52].

686

687 The CNC scores, as reported by Chen et al. [27], were used to quantify the occurrence of CNCRs
688  within unannotated 3'UTRs. We extracted the CNC score for each 10 bp window and averaged it
689  across the query region to calculate a mean CNC score for each query region.

690

691 Calculating gene enrichment

692  To investigate molecular functions and biological processes significantly associated with a gene
693 list, we performed GO enrichment analysis using the ToppFun tool in the ToppGene suite [53].
694 GO terms attaining an enrichment g-value (false-discovery rate computed using Benjamini-
695 Hochberg method) < 0.05 were considered significant. Similarly, SynGO [28] was used to identify
696 enriched GO terms (g-value < 0.05) associated with synaptic function. To calculate enrichment of

697 genes associated with rare neurogenetic disorders, OMIM [54] genes related to neurological
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698 disorders were used (1,948 genes). The list of genes associated with adult-onset
699 neurodegenerative disorders was extracted from Genomic England Panel App (254 green
700 labelled genes) [55]. A hypergeometric test was used to calculate the enrichment using the total
701  number of protein-coding genes (22,686) as the ‘gene universe’.

702

703 Data availability

704  Code used to perform analyses in this study is publicly available at https://github.com/sid-

705  sethi/FSUTER. Accession numbers of all data used in this study are listed in methods.
706
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Supplementary Figure S1.

Univariate comparisons of features and genomic classes. Plots show the relationship
between quantified features and genomic classes in the training dataset. A Kruskal-Wallis Test
was used to compare continuous values of features across the classes, while a proportion Z-test
was used for proportions. For each feature, the comparison across the classes was statistically
significant with a p — value < 2.2 x 10716,
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750 Supplementary Figure S2.

751 UMAP visualisation of genomic features. UMAP representation of all 41 omic features, with
752  elements labelled by genomic classes.
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769  Supplementary Figure S3.

770 Performance of multinomial classification models measured using 5-fold cross validation
771 repeated 20 times. Boxplots comparing the accuracy and kappa of random forest multinomial
772  classifier and elastic net multinomial logistic regression model, to classify different genomic
773  classes. p: p-value calculated using Wilcoxon Rank Sum Test.
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Supplementary Figure S4.

Contribution of features towards 3’UTR classification. Variable importance chart showing the
importance of features in classifying 3'UTRs from other transcribed elements in the genome, as
measured by mean decrease in accuracy and Gini. The features are ordered in decreasing order
of their relative importance and grouped based on their type.
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787  Supplementary Figure S5.

788 Overlap between randomly selected intergenic ERs and poly(A) sites. Distribution of overlap
789  between randomly selected intergenic ERs and poly(A) sites from 10,000 permutations. Operm:
790 mean overlap of the permuted distribution; Oqps: Observed overlap of 3'UTR predictions.
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803 Supplementary Figure S6.

804 F3UTER predictions across 39 GTEXx tissues. Bar plot showing the number of predictions in
805 eachtissue, grouped and color-coded according to their prediction probability scores. Tissues are
806  sorted in descending order of the total number of predictions in each tissue. The square boxes
807  below the bars are color-coded to group the tissues according to their physiology.
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827 Supplementary Figure S7.

828 Categorisation of FBUTER predictions based on tissue-specificity. Bar plots showing the
829  number of predictions grouped according to their tissue specificity across 39 tissues. Tissues are
830 sorted in descending order of the number of predictions. The square boxes below the bars are
831 color-coded to group the tissues according to their physiology.
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844 Supplementary Figure S8.

845 Unannotated 3’UTR associated with C190rf12 in brain. Genomic view of the C190rf12 locus
846  displaying intergenic ERs and poly(A) sites from poly(A) atlas in the region. Two tracks are
847  displayed for each tissue - the top track shows coloured boxes which represent the intergenic
848 ERs, while the bottom track shows black lines which represent RNA-seq junction reads.
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858 Supplementary Figure S9.

859 Examples of highly brain-specific unannotated 3’'UTRs. Genomic view of genes (top: SCN2A;
860 middle: RTN2; bottom: OPA1) associated with an unannotated 3'UTR in brain, displaying
861 intergenic ERs and poly(A) sites from poly(A) atlas in the region.
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Supplementary Table 1.

List of RBPs with significantly enriched binding in the brain-specific unannotated 3'UTRs

compared to shared unannotated 3'UTRs (adjusted p < 107%). The enrichment p-value of the
motifs were adjusted for multiple tests using a Bonferroni correction.
Rank RBP Name RBP Ensembl id p-value Adjusted p-
value
1 RBFOX1 ENSG00000078328 5.83E-21 1.78E-18
2 KHSRP ENSG00000088247 4.12E-17 8.21E-15
3 ERI1 ENSG00000104626 1.07E-15 | 3.85E-13
4 TIALL ENSG00000151923 5.24E-15 2.41E-12
5 ELAVL3 ENSG00000196361 | 6.95E-15 | 3.60E-12
6 CELF1 ENSG00000149187 1.18E-12 1.16E-10
7 SSB ENSG00000138385 | 3.96E-13 | 1.77E-10
8 TARDBP ENSG00000120948 2.72E-12 | 5.09E-10
9 PUM2 ENSG00000055917 1.55E-11 | 3.49E-09
10 ZFP36L2 ENSG00000152518 7.52E-12 | 4.30E-09
11 ZFP36 ENSG00000128016 7.52E-12 | 4.30E-09
12 HNRNPDL ENSG00000152795 7.37E-11 9.14E-09
13 AGO2 ENSG00000123908 | 6.50E-10 | 1.11E-07
14 SRSF10 ENSG00000188529 | 6.02E-10 | 1.58E-07
15 HNRNPAB ENSG00000197451 6.02E-10 1.58E-07
16 RBM5 ENSG00000003756 | 3.52E-10 | 1.60E-07
17 HNRNPA2B1 | ENSG00000122566 4.09E-09 | 3.68E-07
18 ZRANB2 ENSG00000132485 2.72E-09 | 5.80E-07
19 SRSF3 ENSG00000112081 | 8.68E-09 | 1.49E-06
20 TRA2B ENSG00000136527 8.68E-09 1.75E-06
21 HNRNPD ENSG00000138668 8.12E-08 | 3.51E-05
22 AKAP1 ENSG00000121057 5.94E-07 | 9.51E-05
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