

1 Leveraging omic features with F3UTER 2 enables identification of unannotated 3 3'UTRs for synaptic genes

4 Siddharth Sethi^{1,2}, David Zhang^{2,3,4}, Sebastian Guelfi^{2,5}, Zhongbo Chen^{2,3,4}, Sonia
5 Garcia-Ruiz^{2,3,4}, Mina Ryten^{2,3,4*†}, Harpreet Saini^{1*}, Juan A. Botia^{2,6*}

6

7 1. Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, United Kingdom.

8 2. Department of Neurodegenerative Disease, Institute of Neurology, University College
9 London, London, UK.

10 3. NIHR Great Ormond Street Hospital Biomedical Research Centre, University College
11 London, London, UK.

12 4. Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health,
13 University College London, London WC1E 6BT, UK.

14 5. Verge Genomics, South San Francisco, CA 94080, USA

15 6. Department of Information and Communications Engineering, University of Murcia,
16 Spain.

17

18

19 *These authors contributed equally to this manuscript.

20 † Corresponding author: Professor Mina Ryten (mina.ryten@ucl.ac.uk)

21

22

23

24 **Words:** 3,826

25 **Display items:** 5

26 Abstract

27
28 There is growing evidence for the importance of 3' untranslated region (3'UTR) dependent
29 regulatory processes. However, our current human 3'UTR catalogue is incomplete. Here, we
30 developed a machine learning-based framework, leveraging both genomic and tissue-specific
31 transcriptomic features to predict previously unannotated 3'UTRs. We identify unannotated
32 3'UTRs associated with 1,513 genes across 39 human tissues, with the greatest abundance
33 found in brain. These unannotated 3'UTRs were significantly enriched for RNA binding protein
34 (RBP) motifs and exhibited high human lineage-specificity. We found that brain-specific
35 unannotated 3'UTRs were enriched for the binding motifs of important neuronal RBPs such as
36 *TARDBP* and *RBFOX1*, and their associated genes were involved in synaptic function and brain-
37 related disorders. Our data is shared through an online resource F3UTER
38 (<https://astx.shinyapps.io/F3UTER/>). Overall, our data improves 3'UTR annotation and provides
39 novel insights into the mRNA-RBP interactome in the human brain, with implications for our
40 understanding of neurological and neurodevelopmental diseases.

41 Introduction

42 The 3'UTRs of protein-coding messenger RNAs (mRNAs) play a crucial role in regulating gene
43 expression at the post-transcriptional level. They do so by providing binding sites for *trans* factors
44 such as RBPs and microRNAs, which affect mRNA fate by modulating subcellular localisation,
45 stability and translation [1, 2]. There is evidence to suggest that these RNA-based regulatory
46 processes may be particularly important in large, polarised cells such as neurons. Recent studies
47 have shown that transcripts which are highly expressed in neurons have both significantly longer
48 3'UTRs and higher 3'UTR diversity [3, 4]. Furthermore, it has been shown that thousands of
49 mRNA transcripts localise within subcellular compartments of neurons and undergo regulated
50 local translation, allowing neurons to rapidly react to local extracellular stimuli [4-7]. Thus, there
51 has been growing interest in the impact of 3'UTR usage on neuronal function in health and
52 disease.

53

54 However, despite on-going efforts to identify and characterise 3'UTRs in the human genome [8-
55 11], there is evidence to suggest that our current catalogue is incomplete [3, 12-14]. Large-scale
56 3'end RNA-sequencing (RNA-seq) has identified a large number of novel polyadenylation
57 (poly(A)) sites, many of which are located outside of annotated exons [12, 13]. These insights are
58 complemented by an increasing recognition of the functional importance of transcriptional activity
59 outside of known exons, particularly in human brain tissues [15-17]. This raises the possibility of
60 developing new approaches for 3'UTR identification seeded from RNA-seq data analyses, an
61 area that has not been fully explored, in large part due to the limited availability of data and
62 appropriate tools.

63

64 In this study, we present a machine learning-based framework, named F3UTER, which leverages
65 both genomic and tissue-specific transcriptomic features. We apply F3UTER to RNA-seq data
66 from Genotype-Tissue Expression Consortium (GTEx) to predict hundreds of unannotated
67 3'UTRs across a wide range of human tissues, with the highest prevalence discovered in brain.
68 We provide evidence to suggest that these unannotated 3'UTR sequences are functionally
69 significant and have higher human lineage specificity than expected by chance. More specifically,
70 we found brain-specific unannotated 3'UTRs were enriched for genes involved in synaptic
71 function and interact with neuronal RBPs implicated in neurodegenerative and neuropsychiatric
72 disorders. We release our data in an online platform, F3UTER
73 (<https://astx.shinyapps.io/F3UTER/>), which can be queried to visualise unannotated 3'UTR
74 predictions and the omic features used to predict them.

75 Results

76 Annotation-independent expression analysis suggests the existence of
77 unannotated 3'UTRs in the human brain

78 There is growing evidence to suggest that the annotation of the human brain transcriptome is
79 incomplete and disproportionately so when compared to other human tissues [15-17]. We
80 hypothesised that this difference may in part be attributed to an increased number of unannotated
81 3'UTRs in human brain. To investigate this possibility, we analysed unannotated expressed
82 regions of the genome (termed ERs) as previously reported by Zhang and colleagues [15]. These
83 ERs were identified through annotation-independent expression analysis of RNA-seq data
84 generated by GTEx with ER calling performed separately for 39 human tissues, including 11 non-
85 redundant human brain regions. We focused on the subset of ERs most likely to be 3'UTRs,
86 namely intergenic ERs which lie within 10 kb of a protein-coding gene (**Methods**). We found that
87 these intergenic ERs were significantly higher in number ($p = 1.66 \times 10^{-6}$, Wilcoxon Rank Sum
88 Test) and total genomic space ($p = 2.39 \times 10^{-9}$, Wilcoxon Rank Sum Test) in brain compared to
89 non-brain tissues (**Figure 1a**). Furthermore, we discovered that intergenic ERs were significantly
90 more likely to be located at 3'- rather than 5'-ends of their related protein-coding genes ($p =$
91 2.08×10^{-14} , Wilcoxon Rank Sum Test) (**Figure 1b**), suggesting that a proportion of ERs
92 detected in human brain could represent unannotated 3'UTRs.

93

94 Differentiating 3'UTRs from other expressed genomic elements is
95 challenging

96

97 Given that existing studies indicate high levels of transcriptional noise and non-coding RNA
98 expression in intergenic regions [18-21], only some intergenic ERs are likely to be generated by
99 unannotated 3'UTRs. This prompted us to develop a method to distinguish 3'UTRs from other
100 transcribed genomic elements (non-3'UTRs) using short-read RNA-seq data. To achieve this aim,
101 we first constructed a training set of known 3'UTRs (positive examples) and non-3'UTRs (negative
102 examples) from Ensembl human genome annotation (v94). We obtained 17,719 3'UTRs and a
103 total of 162,249 non-3'UTRs, consisting of five genomic classes: 21,798 5'UTRs, 130,768 internal
104 coding exons (ICE), 3,718 long non-coding RNAs (lncRNAs), 3,819 non-coding RNAs (ncRNAs)
105 and 2,146 pseudogenes (**Methods**). For each of the positive and negative examples, we

106 constructed a set of 41 informative omic features, which were broadly categorised as either
107 genomic or transcriptomic in nature. Features calculated from genomic data included poly(A)
108 signal (PAS) occurrence, DNA sequence conservation, mono-/di-nucleotide frequency,
109 transposon occurrence and DNA structural properties. Features calculated from transcriptomic
110 data included entropy efficiency of the mapped reads (EE) and percentage difference between
111 the reads mapped at the boundaries (PD) (**Methods**). To gain a better understanding of these
112 features, we performed a univariate analysis to individually inspect the relationship between each
113 feature and the genomic classes in our training dataset (i.e. 3'UTRs and all types of non-3'UTRs).
114 Overall, while the genomic and transcriptomic features used had overlapping distributions
115 amongst some genomic classes, each feature was significantly different when compared across
116 all the genomic classes ($p < 2.2 \times 10^{-16}$, Kruskal-Wallis Test and proportion Z-Test,
117 **Supplementary Figure S1**). This suggested that the features selected could be used to
118 distinguish 3'UTRs from other genomic elements.

119 To further investigate this for all 41 features across all six genomic classes, we applied a uniform
120 manifold approximation and projection (UMAP) [22] for dimensionality reduction into a 2D
121 projection space. We found that while most 3'UTRs clustered separately from other classes within
122 that space, some of them highly overlapped with other genomic classes such, as lncRNAs, ICEs
123 and 5'UTRs (**Figure 2a, Supplementary Figure S2**). These findings suggested that many
124 unannotated 3'UTRs would be difficult to identify, and thus, may require an advanced
125 classification approach based on machine learning to accurately distinguish them from other
126 genomic elements.

127

128 F3UTER accurately distinguishes 3'UTRs from other genomic elements

129 Next, we measured the predictive value of the omic features we had identified to distinguish
130 between unannotated 3'UTRs and other expressed elements if used collectively. We trained an
131 elastic net multinomial logistic regression model and evaluated its performance using 5-fold cross
132 validation repeated 20 times (**Methods**). Taking all classes into account, the multinomial logistic
133 regression model achieved an accuracy of 74% and a kappa of 0.52 in distinguishing between
134 the different genomic classes. Consistent with the UMAP visualisation, we found that known
135 3'UTRs were most likely to be misclassified as lncRNAs (4.98%), followed by ICEs (2.46%) and
136 pseudogenes (0.88%) (**Figure 2b**). On the other hand, false-positive 3'UTR predictions, which

137 totalled 44%, were predominantly composed of known ICEs (17.23%) and 5'UTRs (16.06%)
138 (**Figure 2b**).

139 Since the high false-positive rate of our multinomial logistic regression model would be a
140 significant barrier to reliably predict unannotated 3'UTRs from intergenic ERs, we generated an
141 alternative machine-learning-based approach to address this problem. The resulting random
142 forest multinomial classifier was assessed for its performance using 5-fold cross validation
143 repeated 20 times (**Methods**). We found that the random forest multinomial classifier had a
144 significantly higher accuracy (76%; $p < 2.2 \times 10^{-16}$, Wilcoxon Rank Sum Test) and kappa (0.56;
145 $p < 2.2 \times 10^{-16}$, Wilcoxon Rank Sum Test) in comparison to the multinomial logistic regression
146 model (**Supplementary Figure S3**). While the false-negative rate was higher (random forest
147 classifier rate of 22%; logistic regression rate of 9%, **Figure 2c**), importantly the random forest-
148 based classifier reduced false-positive calling of 3'UTRs to 10% (4.4% 5'UTR, 2.7% lncRNA,
149 1.5% ICE and 1.2% pseudogenes) compared to 44% using logistic regression. We also simplified
150 the classification problem to a binary one and generated a second random forest classifier, aiming
151 only to distinguish between 3'UTRs and non-3'UTRs. This resulted in the development of our final
152 random forest classifier, **Finding 3' Un-translated Expressed Regions (F3UTER, Figure 2d)**.
153

154 To assess F3UTER's performance, we performed 5-fold cross validation (repeated 20 times) and
155 calculated metrics such as accuracy, sensitivity, specificity, kappa, area under the ROC curve
156 (AUC-ROC) and area under the precision-recall curve (AUC-PR). F3UTER achieved a mean
157 accuracy of 0.96, sensitivity of 0.92, specificity of 0.96, kappa of 0.78, AUC-ROC of 0.98 (**Figure**
158 **2e**) and AUC-PR of 0.91 (**Figure 2f**) on the validation datasets (hold out). We found that F3UTER
159 performed similarly on both the training and validation datasets in the cross validation (**Figure**
160 **2g**). In addition, increasing the sample size of training data reduced the variability in model
161 predictions and hence, made it more stable. Taken together, these findings suggested that we
162 were not overfitting the classifier. Finally, we investigated the contributions of individual features
163 towards the accuracy and node homogeneity (Gini coefficient, **Methods**) of 3'UTR classification.
164 Interestingly, we found that features derived directly from sequence data (e.g. conservation and
165 PAS) as well as from the transcriptomic data, namely mean-PD and mean-EE (**Supplementary**
166 **Figure S4**), most significantly contributed to the accuracy of F3UTER. This shows that F3UTER
167 leverages both genomic and transcriptomic features to classify 3'UTRs, which would be expected
168 to enable the identification of tissue-specific unannotated 3'UTRs.

169 Evaluation of F3UTER using 3'-end sequencing data validates unannotated
170 3'UTR predictions

171
172 We evaluated the performance of F3UTER using an independent dataset consisting of both RNA-
173 seq data and paired 3'-seq in B cells [23]. The latter, a form of 3'-end sequencing, was performed
174 to identify poly(A) sites experimentally. Since poly(A) sites are present at the very end of 3'UTRs,
175 unannotated 3'UTRs should overlap or be in the close vicinity of a poly(A) site. It should be noted
176 that unlike the GTEx RNA-seq dataset which we used for our previous analyses and which
177 consists of hundreds of samples for most tissues, this B cell dataset consisted of only two RNA-
178 seq samples. Since detecting unannotated ERs relies on averaging RNA-seq coverage across
179 many samples to reduce the contribution of transcriptional noise to ER definition, calling ERs from
180 only two samples would likely result in inaccuracies at ER boundaries. Although this would be
181 expected to significantly reduce the confidence in the detection of unannotated ERs and
182 potentially underestimate the performance of F3UTER, the paired RNA-seq and 3'-seq nature of
183 this B cell dataset enabled us to confidently validate 3'UTR predictions using gold standard
184 experimental data.

185
186 First, we identified 3' unannotated intergenic ERs in B cells from the RNA-seq data following the
187 pipeline used by Zhang et al. [15]. Then we used F3UTER to predict unannotated 3'UTRs in this
188 B cell ER dataset, and compared these predictions to intergenic poly(A) clusters detected using
189 3'-seq (**Figure 3a**). We focused on confident 3'UTR predictions, defined as those with a prediction
190 probability of > 0.6. ERs predicted to be 3'UTRs which also overlapped with a poly(A) cluster were
191 considered to be validated, as exemplified by the intergenic ER predicted to be a novel 3'UTR of
192 the gene *CYTIP* (**Figure 3b**). As a reference, we noted that 87.9% of known 3'UTRs overlapped
193 with a poly(A) cluster in B cell. We found that on average, 38.5% of 3'UTR predictions were
194 validated. This was 17.5-fold higher than that for randomly selected intergenic regions (2.2%, $p <$
195 0.0001, permutation test; **Supplementary Figure S5**) and 2.2-fold higher than the validation rate
196 of non-3'UTR predictions (17.4%, **Figure 3c**). Overall, these observations demonstrate the
197 accuracy of F3UTER and show that it can effectively distinguish unannotated 3'UTRs from other
198 functional genomic elements in the genome.

199

200 Applying F3UTER across 39 GTEx tissues identifies hundreds of
201 unannotated 3'UTRs with evidence of functional significance

202
203 We applied F3UTER to 3' unannotated intergenic ERs identified by Zhang and colleagues [15] in
204 39 tissues using RNA-seq data provided by GTEx. Similar to the B cell ER dataset, we focused
205 on confident 3'UTR predictions with a prediction probability of > 0.6 (**Supplementary File 1**).
206 Across all tissues, we found that on average 7.9% of analysed ERs were predicted as
207 unannotated 3'UTRs, with 8.2% being called in brain (**Supplementary Figure S6**). This equated
208 to an average of 187 potentially unannotated 3'UTRs per tissue (ranging from 96 in adipose-
209 subcutaneous to 348 in hypothalamus, **Figure 4a**), covering 58 to 265 kb of genomic space (mean
210 across tissues = 138 kb, **Figure 4b**). By assigning predicted 3'UTRs to protein-coding genes
211 either through the existence of junction reads or by proximity, we estimated that 1,513 distinct
212 genes in total had unannotated 3'UTRs with an average of 167 genes per tissue (**Figure 4c**). As
213 expected, the number of predicted unannotated 3'UTRs was significantly higher in the brain
214 relative to non-brain tissues (median values of 295 and 142 in brain and non-brain tissues
215 respectively; $p = 1.65 \times 10^{-6}$, Wilcoxon Rank Sum Test). This was associated with a significantly
216 higher total genomic space (median values of 232 kb and 104 kb in brain and non-brain tissues
217 respectively; $p = 1.43 \times 10^{-8}$, Wilcoxon Rank Sum Test) and higher number of implicated genes
218 (median values of 270 and 127 in brain and non-brain tissues respectively; $p = 1.65 \times 10^{-6}$,
219 Wilcoxon Rank Sum Test). This data suggests that incomplete annotation of 3'UTRs is present in
220 all human tissues but is most prevalent in the brain.

221
222 Next, we investigated the functional significance of unannotated 3'UTRs by analysing their
223 potential interaction with RBPs. This in silico analysis was performed because selective RBP
224 binding at 3'UTRs is thought to be key in explaining the selection of alternate PAs and its impact
225 on mRNA stability and localisation [24]. Using the catalogue of known RNA binding motifs from
226 the ATtRACT database [25], we examined the binding density of 84 RBPs across all unannotated
227 3'UTRs (**Methods**). Consistent with previous reports demonstrating higher RBP binding densities
228 in known 3'UTRs relative to other genomic regions [26], we found that 3'UTR predictions were
229 enriched for RBP binding motifs compared to non-3'UTR predictions ($p < 2.2 \times 10^{-16}$, effect size
230 (es) = 0.17, Wilcoxon Rank Sum Test, **Figure 4d**). Surprisingly, we noted that unannotated
231 3'UTRs were also enriched for RBP binding motifs compared to known 3'UTRs ($p < 2.2 \times 10^{-16}$,
232 es = 0.28, Wilcoxon Rank Sum Test, **Figure 4d**) suggesting that these regions may be of
233 particular functional significance. To investigate this further, we leveraged constrained, non-

234 conserved (CNC) scores [27], a measure of human-lineage-specificity, to determine whether the
235 unannotated 3'UTRs identified were of specific importance in humans. CNC score, a metric
236 combining cross-species conservation and genetic constraint in humans, was used to identify and
237 score genomic regions which are amongst the 12.5% most constrained within humans but yet are
238 not conserved. We found that unannotated 3'UTRs exhibited higher CNC scores compared to
239 known 3'UTRs ($p = 0.012$, $es = 0.016$, Wilcoxon Rank Sum Test, **Figure 4e**). Thus, together our
240 analyses suggested that unannotated 3'UTRs are not only functionally important but may be
241 particularly crucial in human-specific biological processes.

242

243 F3UTER identifies unannotated 3'UTRs of genes associated with synaptic
244 function

245

246 Given the evidence for the functional importance of unannotated 3'UTRs predicted by F3UTER,
247 we wanted to explore their biological relevance. To do this, we began by categorising all
248 unannotated 3'UTRs into four sets based on their tissue-specificity: absolute tissue-specific,
249 highly brain-specific, shared and ambiguous (**Methods** and **Supplementary Figure S7**). Using
250 this non-redundant set of 3'UTRs, we found that on average, we extended the current annotation
251 per gene by 681 bp in highly brain-specific (1.4x the known maximal 3'UTR length), 633.6 bp in
252 tissue-specific (0.95x the known maximal 3'UTR length), and 496.63 bp in shared predictions
253 (0.88x the known maximal 3'UTR length) respectively. Next, we repeated the RBP and CNC
254 analysis for each category finding that all unannotated 3'UTR sets showed significant enrichment
255 of RBP binding motifs when compared not only to non-3'UTR predictions ($p \leq 2.5 \times 10^{-5}$,
256 Wilcoxon Rank Sum Test), but also to known 3'UTRs ($p \leq 3.9 \times 10^{-7}$, Wilcoxon Rank Sum Test),
257 with the brain-specific set having the largest effect size ($es \geq 0.17$) (**Figure 5a**). Focussing on
258 CNC scores, we found that while none of the unannotated 3'UTR sets showed significant
259 differences in score compared to known 3'UTRs ($p \geq 0.121$, Wilcoxon Rank Sum Test), brain-
260 specific unannotated 3'UTRs trended to significance with the largest effect size relative to other
261 sets (**Figure 5a**). Together, these observations lead us to conclude that highly brain-specific
262 3'UTR predictions were likely to be of most biological interest.

263

264 These observations raised the question of what types of genes are associated with highly brain-
265 specific 3'UTR predictions. Interestingly, we found that while genes linked to brain-specific non-
266 3'UTR predictions had no GO term enrichments, those linked to an unannotated brain-specific

267 3'UTR were significantly enriched for synaptic function (“synaptic signalling”, “synapse
268 organisation” and “protein localization to postsynaptic specialization membrane”; $q =$
269 4.97×10^{-3}) (**Figure 5b, Supplementary File 2**). Using SynGO (the synaptic GO database [28])
270 to obtain more granular information, we found that genes associated with unannotated 3'UTRs
271 were more significantly enriched for terms relating to post-synaptic (“protein localisation in
272 postsynaptic density”, $q = 2.87 \times 10^{-4}$; postsynaptic function, $q = 4.1 \times 10^{-3}$), as compared to
273 presynaptic structures (“localisation in presynapse”, $q = 0.03$; presynaptic function, $q = 0.1$)
274 (**Figure 5c, Supplementary File 2**). Furthermore, we found that genes linked to unannotated
275 brain-specific 3'UTRs were significantly enriched for those already associated with rare
276 neurogenetic disorders ($p = 0.01$, hypergeometric test) and more specifically adult-onset
277 neurodegenerative disorders ($p = 0.03$, hypergeometric test). For example, we detected an
278 unannotated 3'UTR in the brain linked to the gene, *APP*, a membrane protein which when mutated
279 gives rise to autosomal dominant Alzheimer's disease and encodes for amyloid precursor protein,
280 the main constituent of amyloid plaques [29]. We detected a 920 bp long brain-specific
281 unannotated 3'UTR located 1.8 kb downstream of *APP* (**Figure 5d**) and only 51 bp from an
282 intergenic poly(A) site on the same strand as *APP* gene as reported by the poly(A) atlas. Other
283 similar examples included the genes, *C19orf12*, *RTN2*, *SCN2A* and *OPA1* (**Supplementary**
284 **Figures S8 & S9**).
285

286 Brain-specific unannotated 3'UTRs interact with RBPs implicated in
287 neurological disorders
288

289 Next, we investigated the information content of brain-specific unannotated 3'UTRs by comparing
290 RBP binding enrichments between brain-specific and shared 3'UTR predictions (**Methods**). By
291 using shared 3'UTR predictions as the negative control, we removed RBPs associated with non-
292 brain tissues and so identified RBP binding of greatest relevance to human brain function. This
293 analysis identified 22 RBPs with significantly enriched binding in the brain-specific unannotated
294 3'UTRs (*adjusted p < 10⁻⁵*) (**Supplementary Table 1**). We found that nine of these RBPs were
295 previously known to be associated with “mRNA 3'UTR binding” ($q = 2.23 \times 10^{-14}$,
296 **Supplementary File 3**), including *TARDBP*, an RNA binding protein implicated in both
297 frontotemporal dementia and amyotrophic lateral sclerosis [30]. Of the 75 gene targets that we
298 identified for *TARDBP* through unannotated 3'UTRs, up to 50 were known to be *TARDBP* targets

299 based on computational scanning of existing 3'UTR annotations for *TARDBP* motif (47%, $p =$
300 0.008, hypergeometric test) and iCLIP experiments (44%, $p = 1.47 \times 10^{-6}$, hypergeometric test).
301 However, this implied that 25 gene targets were not previously known to harbour *TARDBP* binding
302 motifs based on current annotation. Another RBP which was identified to be significantly enriched
303 in brain-specific unannotated 3'UTRs was *RBFOX1* (*adjusted p* = 1.78×10^{-18}), a neuronal
304 splicing factor implicated in the regulation of synaptic transmission [31] and whose mRNA targets
305 have been implicated in autism spectrum disorders [32]. We identified 89 gene targets with a
306 predicted *RBFOX1* binding motif within their associated unannotated 3'UTRs. Of these 89 genes,
307 only 31 (35%) had a predicted *RBFOX1* binding motif within their existing 3'UTRs, again implying
308 that unannotated 3'UTRs provide valuable novel binding sites. Furthermore, GO and SynGO
309 enrichment analyses (**Supplementary File 3**) demonstrated that the target genes of *RBFOX1*
310 were significantly enriched for synaptic (“synaptic membrane adhesion”, $q = 1.58 \times 10^{-2}$) and
311 postsynaptic terms (“postsynapse”, $q = 0.01$), consistent with the previously known functions of
312 *RBFOX1* [31]. These results show that the identification of brain-specific unannotated 3'UTRs can
313 recognise new genes within known regulatory networks, which can provide novel, disease-
314 relevant insights.

315

316 Discussion

317

318 In this study we generate a machine learning-based classifier, F3UTER, which leverages
319 transcriptomic as well as genomic data to predict unannotated 3'UTRs. F3UTER outperforms a
320 state-of-the-art statistical learning approach, elastic net logistic regression, whilst retaining its
321 interpretability capabilities. We apply F3UTER to transcriptomic data covering 39 human tissues
322 studied within GTEx, enabling the identification of tissue-specific unannotated 3'UTRs. Using this
323 large, public, short-read RNA-seq data set, we predict unannotated 3'UTRs for 1,513 genes,
324 (equating to 5.4 Mb of genomic space in total across 39 tissues) and demonstrate that F3UTER
325 can be successfully applied to human genomic regions from any tissue with existing bulk RNA-
326 seq data. In fact, even though intergenic ERs in B cells were generated using only two samples,
327 we were able to validate 38.5% of the unannotated 3'UTR predictions using 3'-end sequencing
328 data, showing that F3UTER can be a useful tool even for small RNA-seq datasets. Furthermore,
329 it should be noted that F3UTER does not depend on ER datasets as input, but instead any set of
330 interesting human genomic regions can be used. Given the continued popularity and high

331 availability of short-read RNA-seq data across tissues, cell types and disease states, we believe
332 that (1) F3UTER could be applied more broadly to improve our understanding of 3'UTR diversity
333 and usage, and (2) the set of omic features devised within this study could form the basis for other
334 predictive models aimed at increasing the accuracy of human transcriptomic annotation.

335
336 We focus on F3UTER-predicted 3'UTRs in human brain, which we find to be most prevalent when
337 comparing predictions across all 39 human tissues. We believe that the higher frequency of
338 incomplete 3'UTR annotation in human brain could be attributed to several factors including: (1)
339 higher transcript diversity with many rare isoforms expressed in this tissue; (2) high cellular
340 heterogeneity complicating detection of tissue- /cell-type specific transcripts; (3) historically lower
341 availability of human brain samples; and (4) reliance on post-mortem tissues, which suffer from
342 RNA degradation resulting in decreased accuracy of transcript identification.

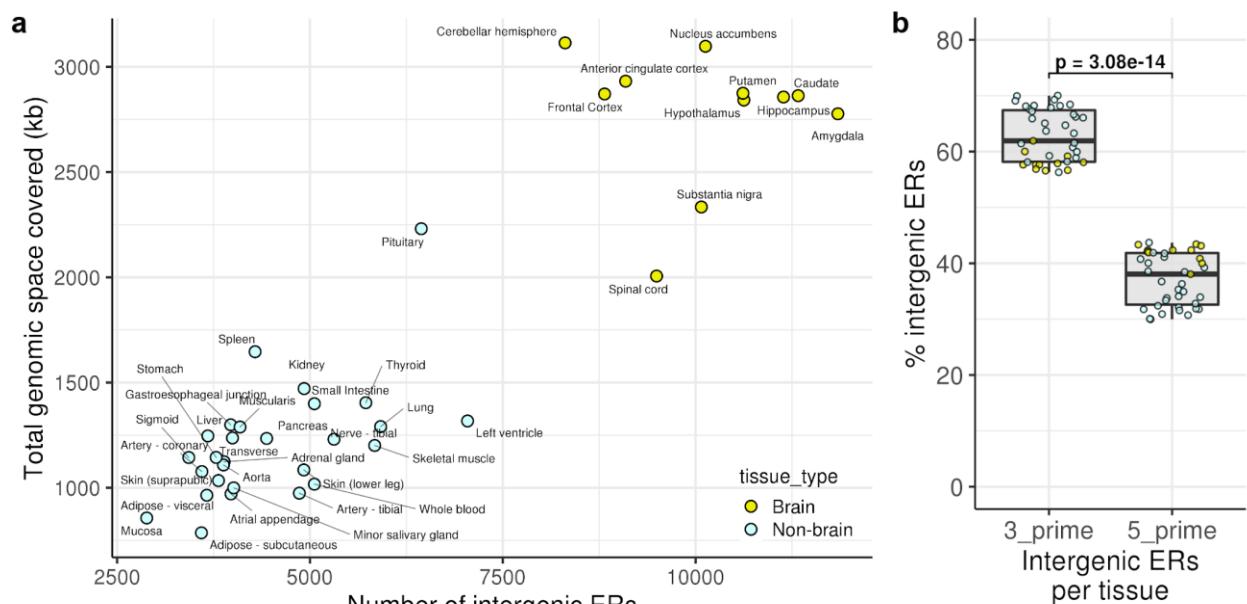
343
344 While we find that collectively the unannotated 3'UTRs predicted by F3UTER were significantly
345 enriched for RBP binding and exhibited high human lineage-specificity, the latter was primarily
346 driven by brain-specific 3'UTR predictions. Overall, these findings suggest that predicted 3'UTRs
347 are likely to be functionally important in the human genome. Moreover, these findings provide
348 some explanation for the difficulties of identifying 3'UTRs through cross-species analyses
349 particularly when considering brain-specific transcripts. Interestingly, we find that brain-specific
350 unannotated 3'UTRs were enriched for binding of RBPs already implicated in neurological
351 disorders, such as *TARDBP* and *RBFOX1*. Furthermore, genes linked to unannotated brain-
352 specific 3'UTRs were significantly enriched for those already associated with rare neurogenetic
353 and adult-onset neurodegenerative disorders, and for genes involved in synaptic function.

354
355 Taken together, our results demonstrate that F3UTER not only improved 3'UTR annotation, but
356 also identified unannotated 3'UTRs in the human brain which provided novel insights into the
357 mRNA-RBP interactome with implications for our understanding of neurological and
358 neurodevelopmental diseases. With this in mind, we note the growing interest in the role of 3'UTR-
359 based mechanisms in translational regulation within complex, large, polarised cell types such as
360 neurons [4, 5, 33, 34]. Although increasing use of single-nuclei RNA-seq, together with long-read
361 RNA-seq will provide further insights into alternative 3'UTR usage and will impact the field
362 considerably, these technologies still have significant limitations for the identification of rare
363 transcripts. Therefore, we believe that F3UTER, which can effectively utilise existing short-read
364 RNA-seq data sets, will be of interest to a wide range of researchers. Furthermore, we release

365 our results through an online resource (F3UTER: <https://astx.shinyapps.io/F3UTER/>) which
366 allows users to both easily query unannotated 3'UTRs and inspect the omic features driving the
367 classifier's prediction for an ER of interest.

368 **Figures**

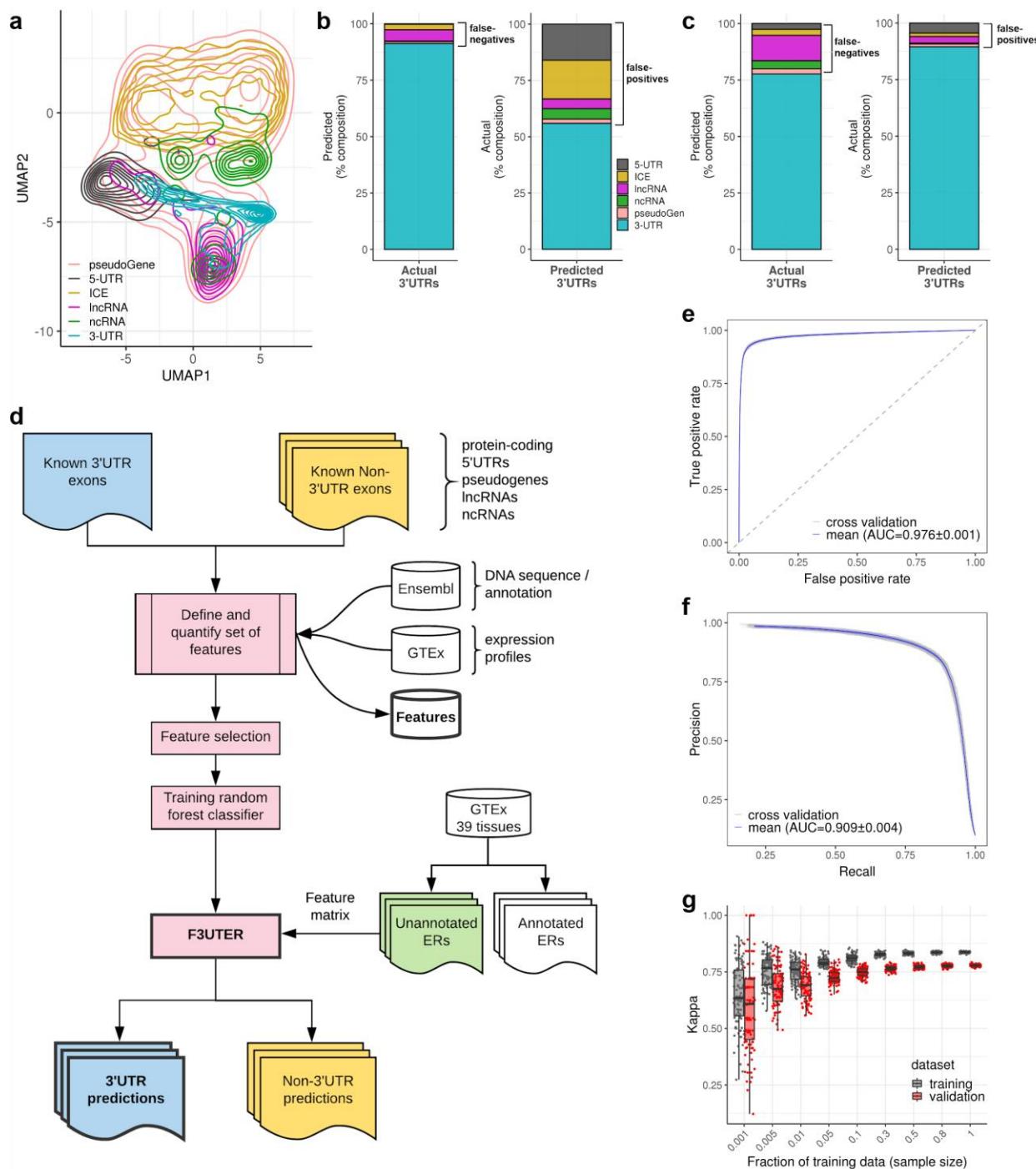
369
370
371



372
373

374 **Figure 1.**

375 **Enrichment of intergenic ERs across 39 GTEx tissues.** (a) Scatter plot showing the number
376 of intergenic ERs and their total genomic space covered in 39 human tissues. (b) Enrichment of
377 intergenic ERs grouped by location with respect to their associated protein-coding gene. Each
378 data point in the box plot represents the proportion of total intergenic ERs in a tissue. p: p-value
379 calculated using Wilcoxon Rank Sum Test.



380

381 Figure 2.

382 **Classification of 3'UTRs from other transcribed elements in the genome.** (a) UMAP
 383 representation of features, with elements labelled by genomic classes. (b) Classification of
 384 3'UTRs using an elastic net multinomial logistic regression. (c) Classification of 3'UTRs using a
 385 multinomial random forest classifier. (d) General framework of F3UTER: the core of the
 386 framework is a random forest classifier trained on omic features derived from known 3'UTRs and
 387 non-3'UTRs. The omic features are based on either genomic (DNA sequence) or transcriptomic

388 (RNA-seq from GTEx) properties. To make predictions, genomic coordinates of ERs are given as
389 input, from which a feature matrix is constructed. The output of the framework is ERs categorised
390 into potential 3'UTRs and non-3'UTRs with their associated prediction probability scores. **(e, f)**
391 ROC and precision recall curves of F3UTER evaluated using 5-fold cross validation. **(g)** Bias-
392 variance trade-off plot demonstrating the performance of F3UTER on training and validation
393 datasets grouped by the sample size of the training data.

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

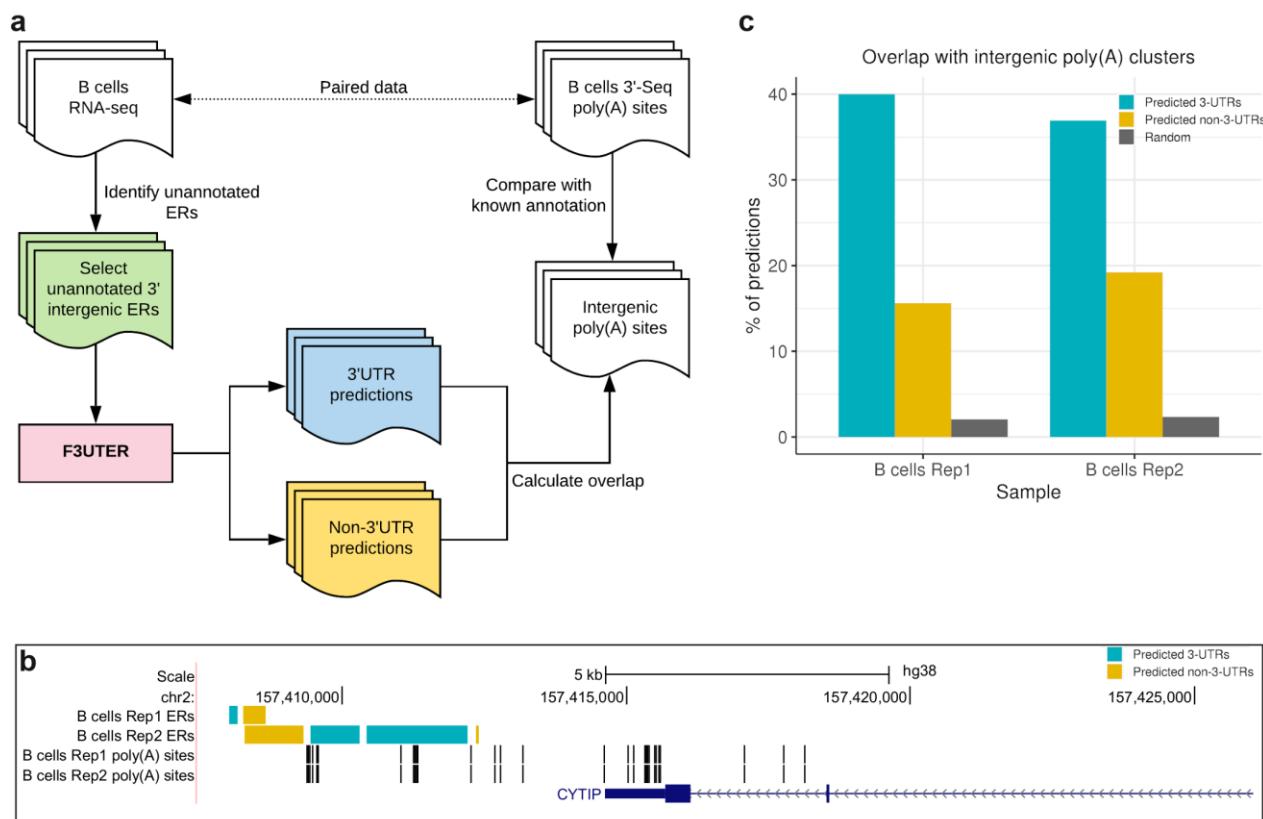
428

429

430

431

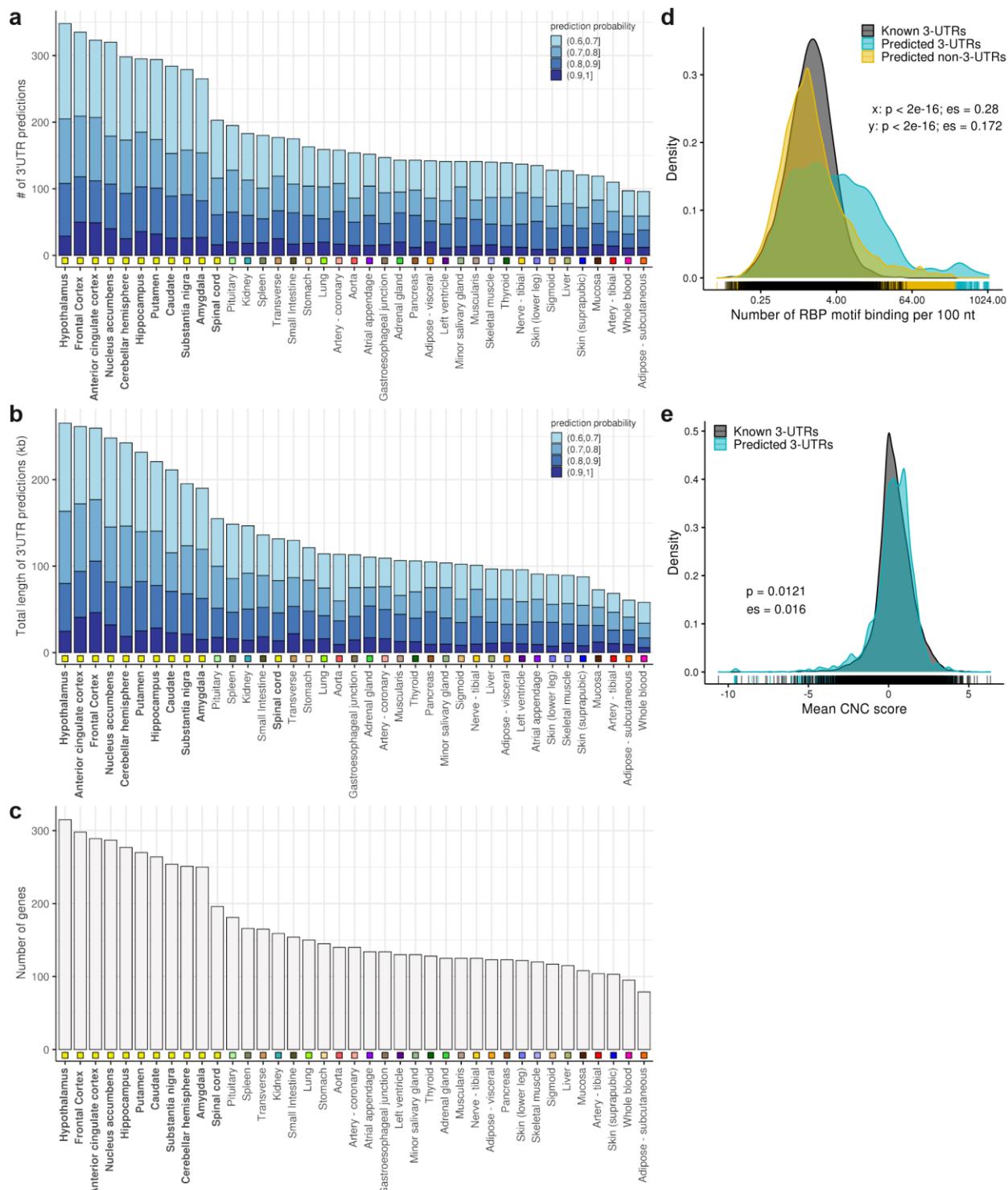
432
433
434



435
436

437 **Figure 3.**

438 **Evaluation of F3UTER predictions on an independent ER dataset.** (a) Schematic describing
439 the framework of the process implemented to evaluate the performance of F3UTER on ERs in B
440 cells. (b) Genome browser view of the CYTIP locus, showing intergenic ERs detected
441 downstream of CYTIP and poly(A) sites in B cells. (c) Bar plots showing the overlap between
442 predictions made by F3UTER and intergenic poly(A) sites from 3'-end sequencing in B cells. The
443 bar for random predictions represents the mean overlap (from 10,000 permutations) between
444 randomly selected intergenic ERs and intergenic poly(A) sites.



445

446 Figure 4.

447 **Unannotated 3'UTR predictions across 39 GTEx tissues.** (a) Number of unannotated 3'UTRs
 448 predicted by F3UTER. (b) Total genomic space of unannotated 3'UTRs. (c) Number of genes
 449 associated with unannotated 3'UTRs. In each bar plot, tissues are sorted in descending order of

450 the values plotted on y-axis. The square boxes below the bars are color-coded to group the
451 tissues according to their physiology. The predictions are grouped and color-coded based on their
452 prediction probability scores from F3UTER. **(d)** Density distributions comparing the RBP binding
453 density across known 3'UTRs, predicted 3'UTRs and predicted non-3'UTRs. p: p-value of
454 comparison calculated using Wilcoxon Rank Sum Test; es: effect size; x: predicted 3'UTRs vs.
455 known 3'UTRs; y: predicted 3'UTRs vs. predicted non-3'UTRs. **(e)** Density distributions
456 comparing the “constrained non-conserved” (CNC) scores between known and predicted 3'UTRs.
457 p: p-value of comparison calculated using Wilcoxon Rank Sum Test; es: effect size.

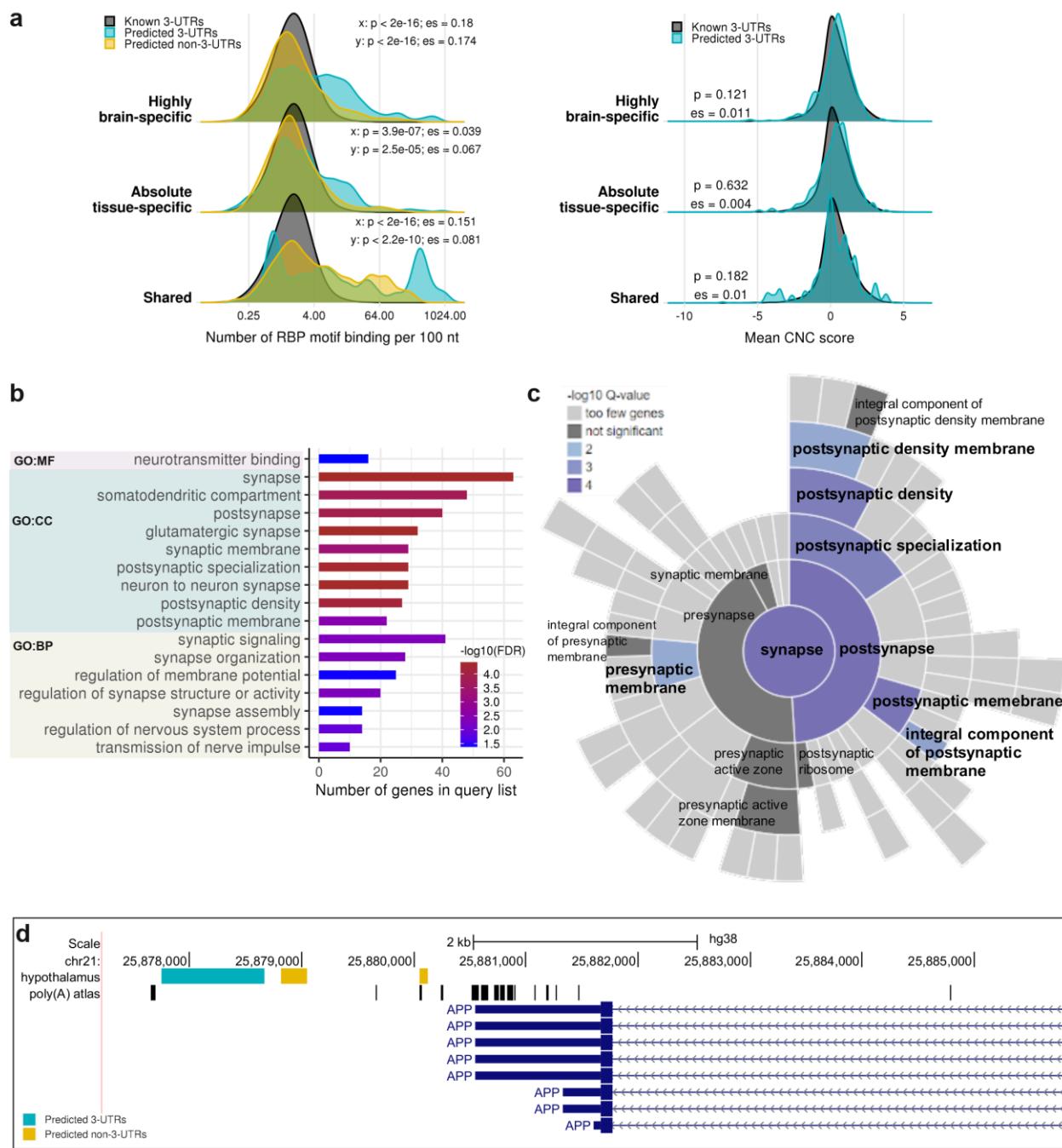
458

459

460

461

462



463

464 Figure 5.

465 **Functional significance of highly brain-specific unannotated 3'UTRs.** (a) Density
466 distributions comparing RBP binding and “constrained non-conserved” (CNC) scores between
467 known, predicted 3'UTRs and predicted non-3'UTRs, categorised according to their tissue-
468 specificity. p: p-value of comparison calculated using Wilcoxon Rank Sum Test; es: effect size; x:
469 predicted 3'UTRs vs. known 3'UTRs; y: predicted 3'UTRs vs. predicted non-3'UTRs. (b) GO terms
470 enriched amongst the list of genes associated with highly brain-specific unannotated 3'UTRs. MF:

471 molecular function; CC: cellular component; BP: biological process. **(c)** Sunburst plot showing the
472 cellular component SynGO terms over-represented in genes associated with highly brain-specific
473 3'UTRs. The inner rings of the plot represent parent terms, while outer rings represent their more
474 specific child terms. Rings are colour coded based on the enrichment q-value of the terms. **(d)**
475 Genome browser view of the APP locus, showing intergenic ERs detected downstream of APP in
476 the hypothalamus, and poly(A) sites from the poly(A) atlas data.

477 Methods

478 ER data

479 We collected the set of intergenic ERs identified by Zhang and colleagues [15] in 39 GTEx tissues,
480 comprising of 11 non-redundant brain tissues and 28 non-brain tissues (total intergenic ERs =
481 9,339,770). Each ER was associated to a protein-coding gene by extracting genes which
482 connected to the ER via a junction read. In cases where no junction read was present, the nearest
483 protein-coding gene was assigned to the ER. From this dataset, we selected intergenic ERs
484 located within 10 kb of their associated gene, resulting in 237,540 ERs. In this dataset, 4% of the
485 ERs were associated to a gene via a junction read. Based on the location of intergenic ERs with
486 respect to their associated genes, i.e. whether upstream or downstream, we annotated their
487 orientation as 5' (92,148 ERs) or 3' (145,392 ERs) respectively. The total genomic space of these
488 intergenic ERs was calculated by adding the length of all ERs in each tissue. To further remove
489 ERs which were unlikely to be 3'UTRs, we selected 3' intergenic ERs with a length \leq 2 kb – which
490 is the third quartile limit of known 3'UTR exon lengths. We also removed small ERs with length \leq
491 40 nucleotides (nt) for which feature calculation can be problematic. This resulted in a set of
492 93,934 ERs across all 39 tissues, and this set was used as input to F3UTER.

493 Assembling positive and negative 3'UTR learning datasets

494 For positive examples, we used known 3'UTRs, while for negative examples, we used regions in
495 the genome which are known to be non-3'UTRs, namely 5'UTRs, internal coding exons (ICEs),
496 lncRNAs, ncRNAs and pseudogenes. Ensembl human genome annotation (v94 GTF) was used
497 to extract the genomic coordinates of these different genomic classes. For all classes in our
498 training dataset, firstly, we selected high confidence annotations at the transcript level with
499 transcript support level (TSL) = 1. Secondly, we collapsed and combined multiple transcripts
500 associated with a single gene to make a consensus “meta-transcript” per gene. This merged all
501 the overlapping regions emerging from the same gene. Finally, we extracted exons with width \geq
502 40 (nt) from these meta-transcripts to serve as learning examples.

503

504 To capture regions of 3'UTR exons, 5'UTR exons and ICEs, transcripts from protein-coding genes
505 were selected. For ICE examples, transcripts with at least three coding exons were further
506 selected (as transcripts with less than three exons would not contain an internal exon) and their

507 first and last coding exons were removed to capture ICEs. To capture lncRNA, ncRNA and
508 pseudogene exons, we selected annotations from the GTF file with the following gene biotypes:

- **lncRNA:** "non_coding", "3prime_overlapping_ncRNA", "antisense", "lincRNA",
"sense_intronic", "sense_overlapping", "macro_lncRNA"
- **ncRNA:** "miRNA", "misc_RNA", "rRNA", "snRNA", "snoRNA", "vaultRNA"
- **pseudogene:** "pseudogene", "processed_pseudogene", "unprocessed_pseudogene",
"transcribed_processed_pseudogene", "transcribed_unitary_pseudogene",
"transcribed_unprocessed_pseudogene", "translated_processed_pseudogene",
"unitary_pseudogene", "unprocessed_pseudogene", "TR_V_pseudogene",
"TR_J_pseudogene", "rRNA_pseudogene", "polymorphic_pseudogene",
"IG_V_pseudogene", "IG_pseudogene", "IG_J_pseudogene", "IG_C_pseudogene"

518

519 Calculating omic features

520 For each region in the training dataset, we calculated several genomic and transcriptomic based
521 features. Transcriptomic features were used to account for tissue-specific properties of
522 transcribed elements in the genome.

523

524 Genomic (sequence) based features:

525

- **Poly(A) signals (number of features, n=1):** Previous studies have shown that 3'UTR
526 sequences of most mammalian genes contain the consensus AAUAAA motif (or a close
527 variant) 10-30 nt upstream of the poly(A) site [8]. These motif sites are recognised and
528 bound by the cleavage and polyadenylation specificity factor (CPSF), and are referred to
529 as polyadenylation signals (PASs). PASs are an important characteristic of 3'UTRs and
530 are involved in the regulation of the polyadenylation process [8]. We used 12 commonly
531 occurring PASs (AAUAAA, AUUAAA, AGUAAA, UAUAAA, AAUAAA, AAUACA,
532 CAUAAA, GAUAAA, ACUAAA, AAUAGA, AAUGAA, AAGAAA) [9, 12, 35, 36] to construct
533 a consensus position weight matrix (PWM). Each region was scanned for potential PWM
534 matches and a binary outcome was reported i.e. whether the region contains a potential
535 PAS or not. The "searchSeq" function (with min.score= "95%") from the R package
536 "TFBSTools" [37] was used to detect PWM matches.

538

539 ● **Mono- and di-nucleotide frequency (n=20):** The sequence composition in 3'UTRs,
540 especially near the poly(A) sites has been shown to be important for polyadenylation [8,
541 9, 35]. The frequency probability of each mono-nucleotide (i.e. A, T G, C; n=4) and di-
542 nucleotide pair (n=16; e.g. AA, AT, GC, GG) was calculated as the number of nucleotide
543 occurrences divided by the length of the region.

544

545 ● **DNA sequence conservation (n=1):** Sequences of non-protein coding transcripts and
546 un-translated regions are poorly conserved compared to protein-coding sequences [38,
547 39]. For every genomic position, we extracted the phastCons score of the human genome
548 (hg38) across 7 species pre-computed by the UCSC genome browser, and averaged it
549 across the region to calculate mean sequence conservation score for each region.

550

551 ● **Transposons (n=1):** Previous studies have revealed that transposons are highly enriched
552 within lncRNAs compared to protein-coding genes and other non-coding elements [40,
553 41]. These transposable elements are considered to be the functional domains of
554 lncRNAs. We calculated the total fraction of region covered with transposons – LINEs,
555 SINEs, LTRs, DNA and RC transposons. The hg38 genomic coordinates of the
556 transposable elements (Dfam v2.0) were downloaded from
557 <http://www.repeatmasker.org/species/hg.html>.

558

559 ● **DNA structural properties (n=16):** The underlying sequence composition of a DNA
560 molecule plays an important role in determining its structure. As a result, similar DNA
561 sequences have a tendency to have similar DNA structures [42]. We calculated 16
562 properties of DNA structures which can be predicted from a nucleotide sequence based
563 on previous experiments. To quantitatively measure a structural property from a nucleotide
564 sequence, we used pre-compiled conversion tables downloaded from
565 <http://bioinformatics.psb.ugent.be/webtools/ep3/?conversion> [43]. Depending on the
566 structural property, we extracted scores for each di-nucleotide or tri-nucleotide occurrence
567 in the sequence from the conversion tables, and averaged the scores across the region.

568

569 **Transcriptomic based features:**

570

571 ● **Entropy efficiency (n=1):** We measured the uniformity of read coverage across a region
572 using entropy efficiency, as described in Gruber et al. [44]. The entropy efficiency (EE) of

573 a region (x) was calculated as,
$$EE(x) = -\frac{\sum_{i=1}^n p(x_i) \times \log(p(x_i))}{\log(n)}; \quad p(x_i) = \frac{x_i}{\sum_{j=1}^n x_j},$$

574 where n represents the length of the region and $p(x_i)$ is the read count at position i divided
575 by the total read count of the region. For each region, we calculated EE in 39 GTEx tissues
576 and averaged it across all the tissues to obtain a baseline distribution of EE scores.

577

578 • **Percentage difference (n=1):** We calculated the percentage difference (PD) between the
579 read counts at the boundaries of a region. For read counts r_1 and r_2 measured at the
580 boundaries of a region x , PD was calculated as:
$$PD(x) = \frac{|r_1 - r_2|}{\text{mean}(r_1, r_2)} \times 100.$$
 For each
581 region, we calculated PD in 39 GTEx tissues and averaged it across all the tissues to
582 obtain a baseline distribution of PD scores.

583

584 Univariate and multivariate analysis

585 For univariate analysis, we performed non-parametric Kruskal–Wallis test and proportion Z-test
586 for continuous and categorical variables, respectively, to identify features with significant
587 differences across all the genomic classes. We used UMAP [22] to visualise all the features in
588 two-dimensional space. The UMAP analysis was performed using the R package “umap” with
589 default parameters. The clusters were visualised as a 2D density and a scatter plot. Each data
590 point was labelled and coloured according to its genomic class.

591

592 To perform multivariate analysis, a feature matrix was generated where rows represented regions
593 from the training dataset ($n=179,968$), and columns represented the quantified features ($n=41$).
594 The features were scaled and centred in R using the preProcess function of R “Caret” package
595 [45]. The elastic net multinomial logistic regression model was trained using the “glmnet” R
596 package [46] with the following parameters: family = "multinomial", alpha=0.5, nlambda=25 and
597 maxit=10,000. The random forest multinomial classifier was trained within Caret using the
598 “randomForest” package [47] with default parameters (ntree = 500, nodesize = 1). We performed
599 a 5-fold cross validation (repeated 20 times) to evaluate the performance of these multinomial
600 classifiers, where the model was trained on 80% of the data (training dataset) and tested on 20%
601 of the remaining data (validation dataset). Downsampling of the data was employed to correct for
602 imbalance in the sample size of the classes. For each cross validation run, we produced a
603 confusion matrix for each prediction class using the Caret’s confusionMatrix function and
604 computed the false- positive and negative rates. Additionally, we calculated Cohen’s kappa, which

605 reports the accuracy of a model compared to the expected accuracy and is a much accurate
606 measure of performance for imbalanced datasets. These metrics were averaged across all the
607 cross validation runs for reporting purposes.

608 **F3UTER construction and evaluation**

609 We designed F3UTER as a binary classifier to categorise an ER into a 3'UTR (positive) or a non-
610 3'UTR (negative). This random forest classifier was implemented in R using Caret as the machine
611 learning framework and “randomForest” as the machine learning algorithm within Caret. The
612 random forest classifier was trained using the default parameters (ntree = 500, nodesize = 1). We
613 performed a 5-fold cross validation (repeated 20 times) to evaluate the performance of the
614 F3UTER. For each cross validation run, we calculated the performance metrics such as accuracy,
615 kappa, sensitivity, specificity, ROC curve and precision-recall curve, using the caret’s
616 confusionMatrix function. Variable importance was measured using mean decrease in accuracy
617 and Gini coefficient, as natively reported by random forest. The Gini coefficient measures the
618 contribution of variables towards homogeneity of nodes in the random forest tree. These metrics
619 were averaged across all the cross validation runs for reporting purposes. For bias-variance trade-
620 off analysis, we trained F3UTER on sequentially increasing sample size of training data (0.1%,
621 0.5%, 1%, 5%, 10%, 30%, 50%, 80% and 100%), hence sequentially increasing the complexity
622 of the model. For each sample size value, a fraction of the training data was randomly selected,
623 and a 5-fold cross validation was performed which captured all the performance metrics for both
624 the training and validation datasets. This process was repeated 20 times for each sample size.
625 To make 3'UTR predictions on ER datasets, the classifier with the highest kappa statistic was
626 selected from the cross validation process.

627

628 **Validation of 3'UTR predictions in B cells**

629 Previously published RNA-seq and its corresponding 3'-end seq data in B cells [23] (two replicates
630 each) was used for validating 3'UTR predictions (GEO repository: GSE111310; samples:
631 GSM3028281, GSM3028282, GSM3028302 and GSM3028304). We processed each RNA-seq
632 replicate individually and detected 3' intergenic ERs using the pipeline detailed in Zhang et al.
633 [15]. Analysed poly(A) site clusters associated with these RNA-seq samples were downloaded
634 from poly(A) atlas [13]. These poly(A) site clusters were compared to Ensembl human genome
635 annotation (v92) to identify sites which occur within the intergenic regions. F3UTER was applied

636 to 3' intergenic ERs in B cells and the resulting predictions (with prediction probability > 0.6) were
637 compared to intergenic poly(A) site clusters to calculate their overlap. Predictions with at least a
638 1 bp overlap with a poly(A) site were considered to be overlapping. A permutation test was
639 performed to inspect if the observed overlap between 3'UTR predictions and intergenic poly(A)
640 sites is more than what we would expect by random chance. Using BEDTOOLS [48], the locations
641 of 3'UTR predictions were shuffled in the intergenic genomic space on the same chromosome,
642 hence generating random intergenic ERs with length, size and chromosome distribution similar
643 to 3'UTR predictions in B cells. To shuffle the locations within the intergenic space, we excluded
644 the genomic space covered by genes (all Ensembl bio-types) and intergenic ERs in B cells (both
645 3' and 5'). The overlap between these randomly generated intergenic ERs and poly(A) sites was
646 then calculated, and this process was repeated 10,000 times to produce a distribution of expected
647 overlap. The p-value was calculated as $\frac{x}{N}$, where x is the number of expected overlap greater than
648 the observed overlap, and N is the total number of permutations. The z-score was calculated as
649 $\frac{O_{obs} - O_{perm}}{SD_{perm}}$, where O_{obs} represents the observed overlap, O_{perm} is the median of the permuted
650 overlap, and SD_{perm} is the standard deviation of the permuted distribution.
651

652 3'UTR predictions in 39 GTEx tissues

653 A feature matrix of 3' intergenic ERs was generated in each tissue. F3UTER was applied to each
654 matrix to categorise intergenic ERs into 3'UTR (*prediction probability* > 0.60) and non-3'UTR
655 (*prediction probability* ≤ 0.60) predictions. For each tissue, the lengths of the 3'UTR
656 predictions were added to calculate their total genomic space (in kb). To compare brain and non-
657 brain tissues, a two-sided Wilcoxon Rank Sum Test was applied to statistically compare the
658 associated numbers between the two groups. To explore the biological relevance of 3'UTR
659 predictions, they were categorised into four groups based on their tissue-specificity: absolute
660 tissue-specific, highly brain-specific, shared and ambiguous. To do such categorisation, the
661 genomic coordinates of ER predictions were compared across the 39 tissues. An ER which did
662 not overlap any other ER across the tissues was labelled as “absolute tissue-specific” or present
663 in only one tissue. On the other hand, for an ER which overlapped (≥ 1 bp) ERs from other tissues,
664 we calculated the proportion of brain tissues in which the ER was detected. If more than 75% of
665 the tissues were brain related, the ER was labelled as “highly brain-specific”. From the remaining
666 data, ERs detected in at least five tissues, with their start and end coordinates within a 10 bp

667 window, were labelled as “shared”. All the remaining ERs which did not fall in any of the above
668 categories were labelled as “ambiguous”.

669

670 RBP and CNCR analysis

671 The position weight matrices (PWMs) of RBP binding motifs in humans were collected from the
672 ATtRACT database [25]. Motifs with less than 7 nt in length and with a confidence score of less
673 than one, were removed to reduce false-positives in the motif matches. To remove redundancy
674 between multiple motifs of a RBP, we further selected the longest available motif. This resulted in
675 84 unique PWMs, which were then used for identifying potential RBP binding using tools from the
676 MEME suite [49]. We used FIMO [50] with a uniform background to scan query regions for
677 potential RBP motif matches. For each RBP motif and query sequence pair, we calculated
678 normalised counts as the number of motif matches (with $p < 10^{-4}$) per 100 nt of query sequence.
679 To summarise this analysis, we then calculated an overall RBP binding score for each query
680 sequence by adding the normalised counts across all the RBPs. We used AME [51] with default
681 parameters to compare binding enrichment of RBPs between highly brain-specific (query) and
682 shared 3'UTR predictions (control). RBP motifs with an enrichment *adjusted p – value* $< 10^{-5}$
683 were considered to be significantly over-represented in highly brain-specific 3'UTR predictions
684 compared to shared 3'UTR predictions. Previously reported gene targets of TARDBP identified
685 using iCLIP technology were extracted from the POSTAR2 database [52].

686

687 The CNC scores, as reported by Chen et al. [27], were used to quantify the occurrence of CNCRs
688 within unannotated 3'UTRs. We extracted the CNC score for each 10 bp window and averaged it
689 across the query region to calculate a mean CNC score for each query region.

690

691 Calculating gene enrichment

692 To investigate molecular functions and biological processes significantly associated with a gene
693 list, we performed GO enrichment analysis using the ToppFun tool in the ToppGene suite [53].
694 GO terms attaining an enrichment q-value (false-discovery rate computed using Benjamini-
695 Hochberg method) < 0.05 were considered significant. Similarly, SynGO [28] was used to identify
696 enriched GO terms (q-value < 0.05) associated with synaptic function. To calculate enrichment of
697 genes associated with rare neurogenetic disorders, OMIM [54] genes related to neurological

698 disorders were used (1,948 genes). The list of genes associated with adult-onset
699 neurodegenerative disorders was extracted from Genomic England Panel App (254 green
700 labelled genes) [55]. A hypergeometric test was used to calculate the enrichment using the total
701 number of protein-coding genes (22,686) as the 'gene universe'.
702

703 Data availability

704 Code used to perform analyses in this study is publicly available at <https://github.com/sid-sethi/F3UTER>. Accession numbers of all data used in this study are listed in methods.
705

706

707 Acknowledgements

708 We thank Matthew Davis, Greg O'Sullivan and Carla Bento for their thoughtful feedback on this
709 study. This work was funded by a postdoctoral fellowship awarded to S.S. under the "Sustaining
710 Innovation Postdoctoral Training Program" at Astex Pharmaceuticals (S.S., H.S.). D.Z., S.G-R.,
711 and M.R. were supported by the award of a Tenure Track Clinician Scientist Fellowship to M.R.
712 (MR/N008324/1). Z.C. was supported through the award of a Leonard Wolfson Doctoral Training
713 Fellowship in Neurodegeneration. S.G. was supported through the award of an Alzheimer's
714 Research UK PhD fellowship. J.A.B. was supported by the Science and Technology Agency,
715 Séneca Foundation, Comunidad Autónoma Región de Murcia, Spain, through the research
716 project 00007/COVI/20. We thank colleagues at the University College London, University of
717 Murcia and Astex Pharmaceuticals for helpful comments.
718

719 Author contributions

720 S.S., H.S., J.A.B., M.R. conceived and designed the study. S.S. conducted all the research and
721 data analysis. M.R., J.A.B., H.S. jointly supervised this study. D.Z., S.G. provided ER datasets in
722 GTEx tissues and helped with the analysis of ERs. S.S. developed the F3UTER online platform.
723 Z.C. provided help and data for the CNC analysis. S.S. wrote the manuscript with help from M.R.,
724 J.A.B., and H.S. All authors contributed, read and approved the manuscript.
725

726 Competing interests

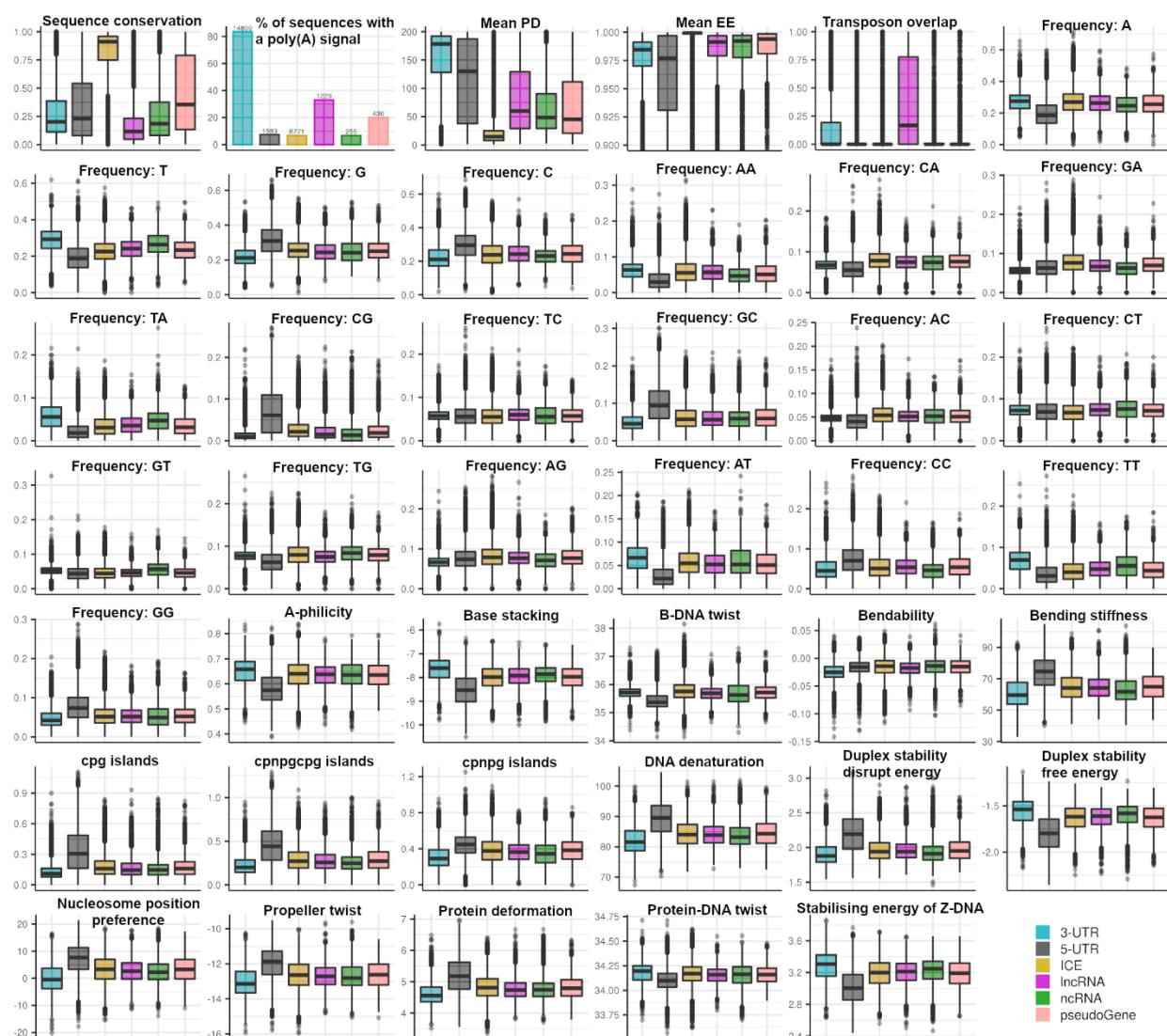
727 The authors declare no competing interests.

728

729 Corresponding authors

730 Correspondence to Juan A. Botia, Harpreet Saini and Mina Ryten.

731 **Supplementary Figures**

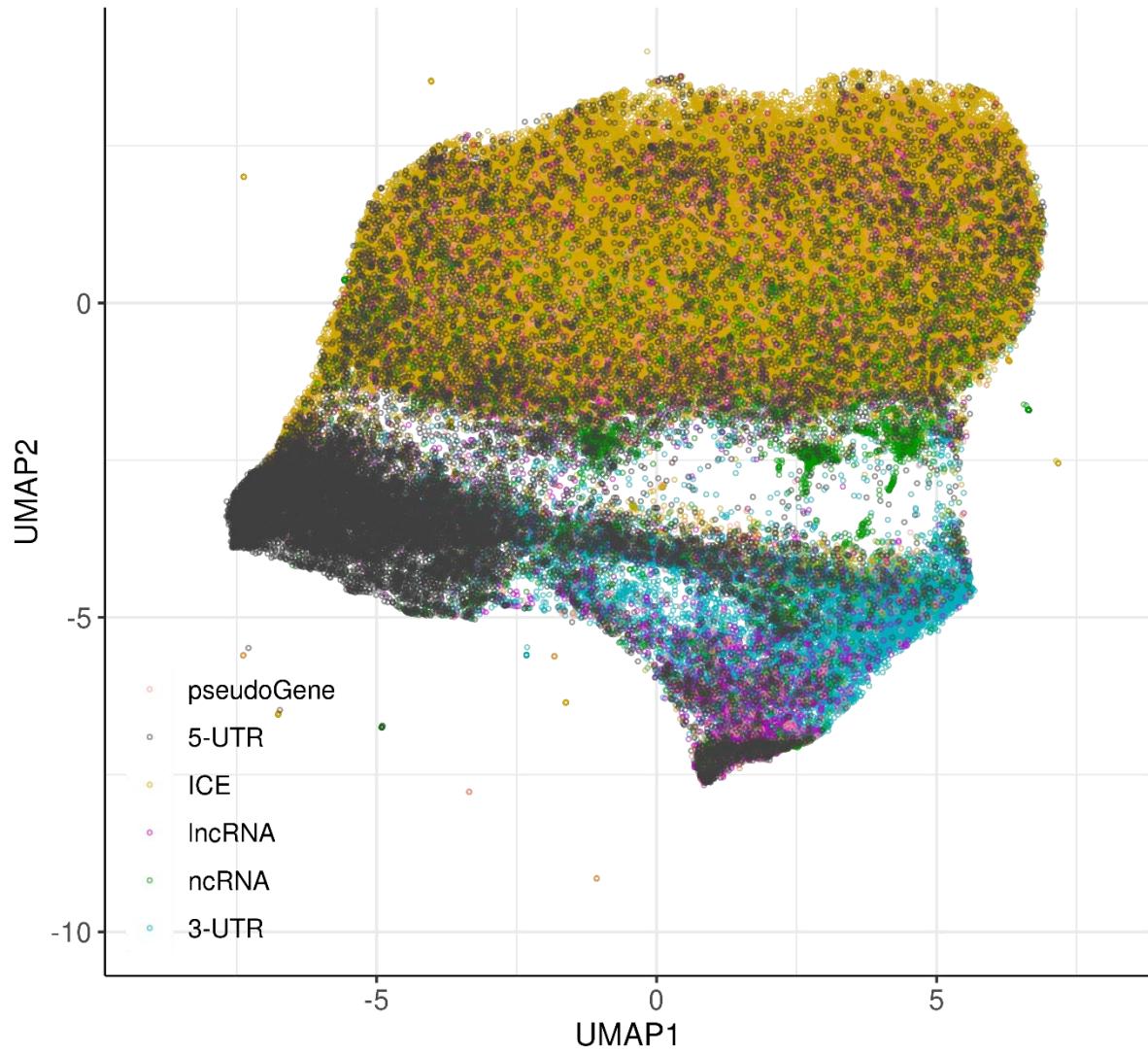


733 **Supplementary Figure S1.**

734 **Univariate comparisons of features and genomic classes.** Plots show the relationship
 735 between quantified features and genomic classes in the training dataset. A Kruskal-Wallis Test
 736 was used to compare continuous values of features across the classes, while a proportion Z-test
 737 was used for proportions. For each feature, the comparison across the classes was statistically
 738 significant with a $p - value < 2.2 \times 10^{-16}$.

739
 740
 741
 742
 743

744
745
746
747
748



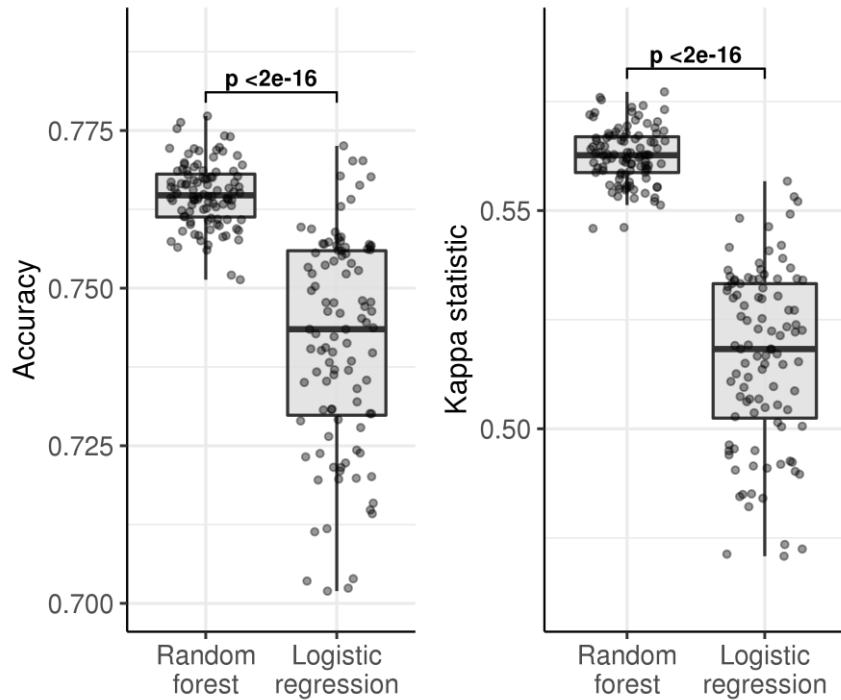
749

750 Supplementary Figure S2.

751 **UMAP visualisation of genomic features.** UMAP representation of all 41 omic features, with
752 elements labelled by genomic classes.

753
754
755
756
757
758

759
760
761
762
763
764
765

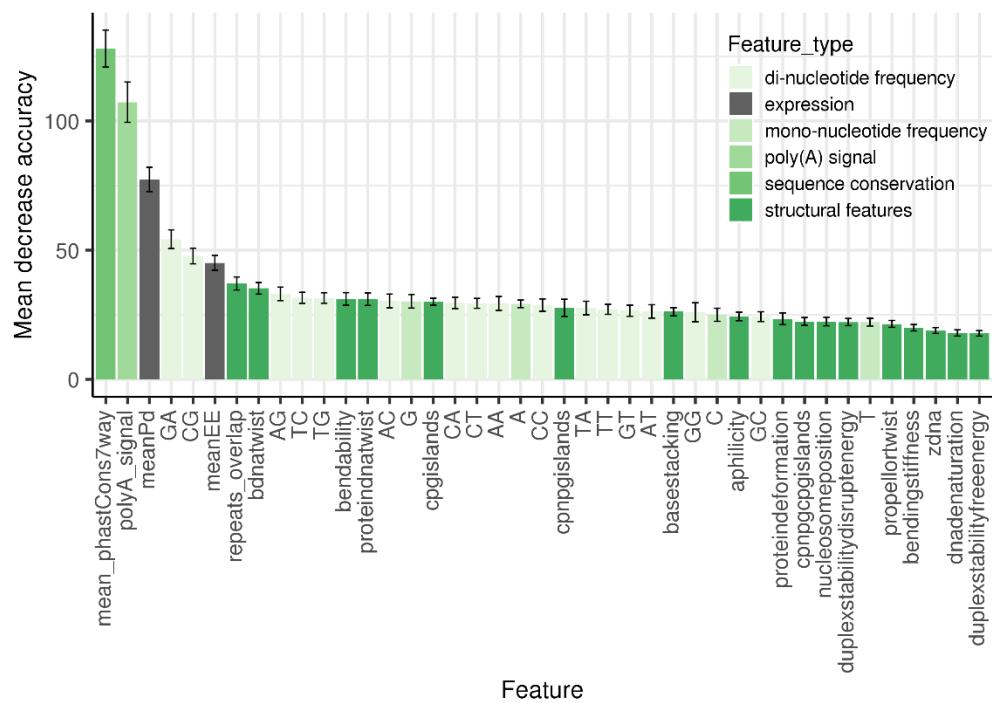


766
767
768

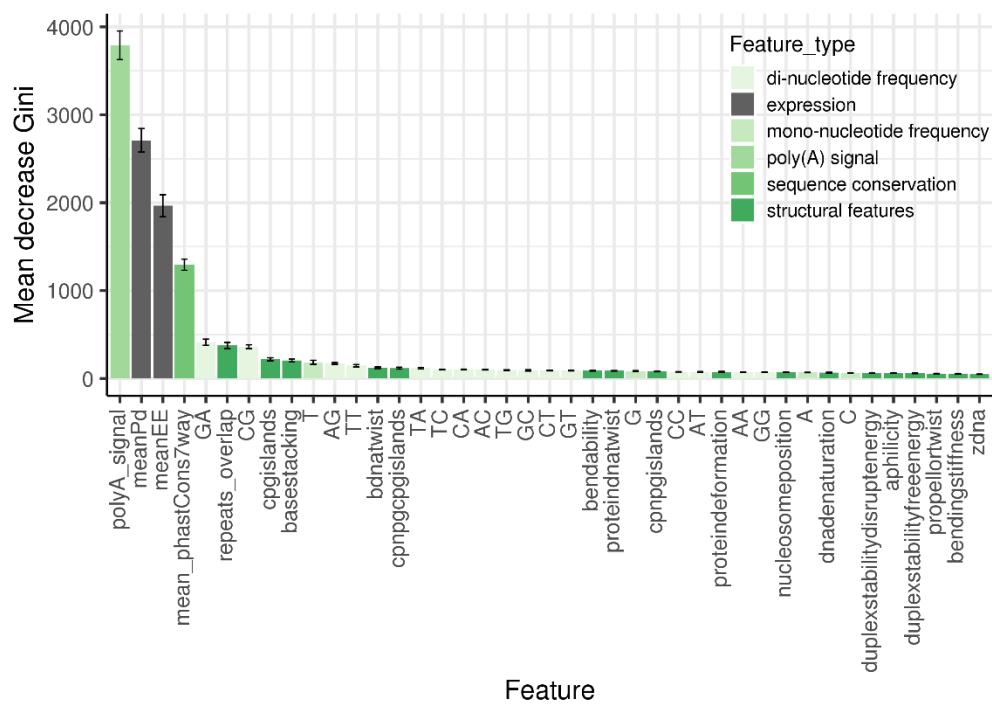
769 Supplementary Figure S3.

770 **Performance of multinomial classification models measured using 5-fold cross validation**
771 **repeated 20 times.** Boxplots comparing the accuracy and kappa of random forest multinomial
772 classifier and elastic net multinomial logistic regression model, to classify different genomic
773 classes. p: p-value calculated using Wilcoxon Rank Sum Test.

774
775
776



777

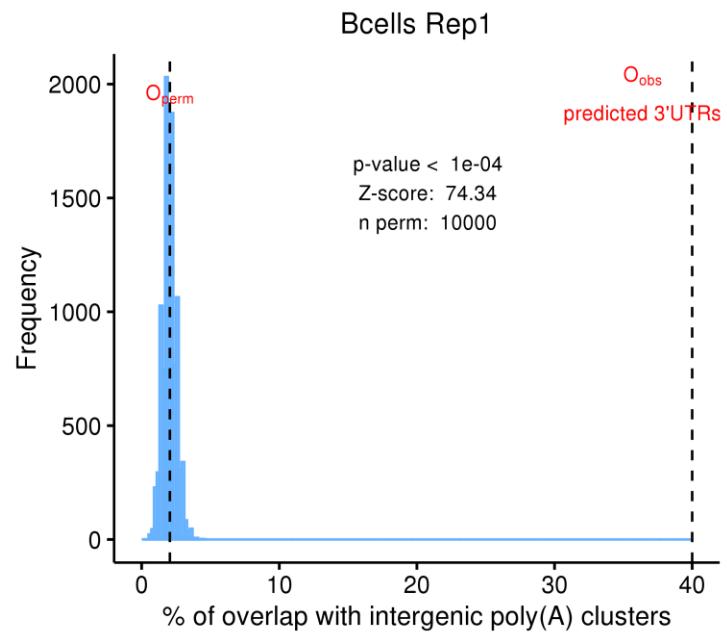


778

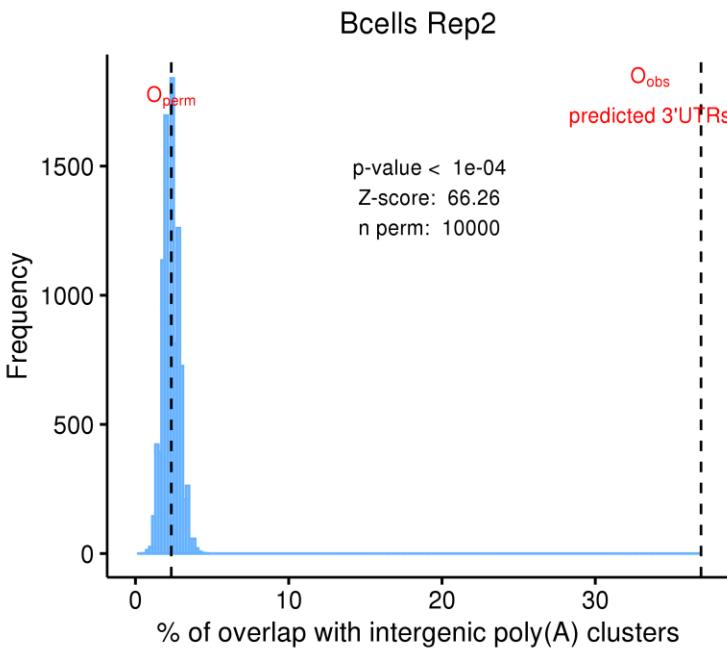
779 Supplementary Figure S4.

780 **Contribution of features towards 3'UTR classification.** Variable importance chart showing the
 781 importance of features in classifying 3'UTRs from other transcribed elements in the genome, as
 782 measured by mean decrease in accuracy and Gini. The features are ordered in decreasing order
 783 of their relative importance and grouped based on their type.

784



785



786

787 Supplementary Figure S5.

788 **Overlap between randomly selected intergenic ERs and poly(A) sites.** Distribution of overlap
789 between randomly selected intergenic ERs and poly(A) sites from 10,000 permutations. O_{perm} :
790 mean overlap of the permuted distribution; O_{obs} : observed overlap of 3'UTR predictions.

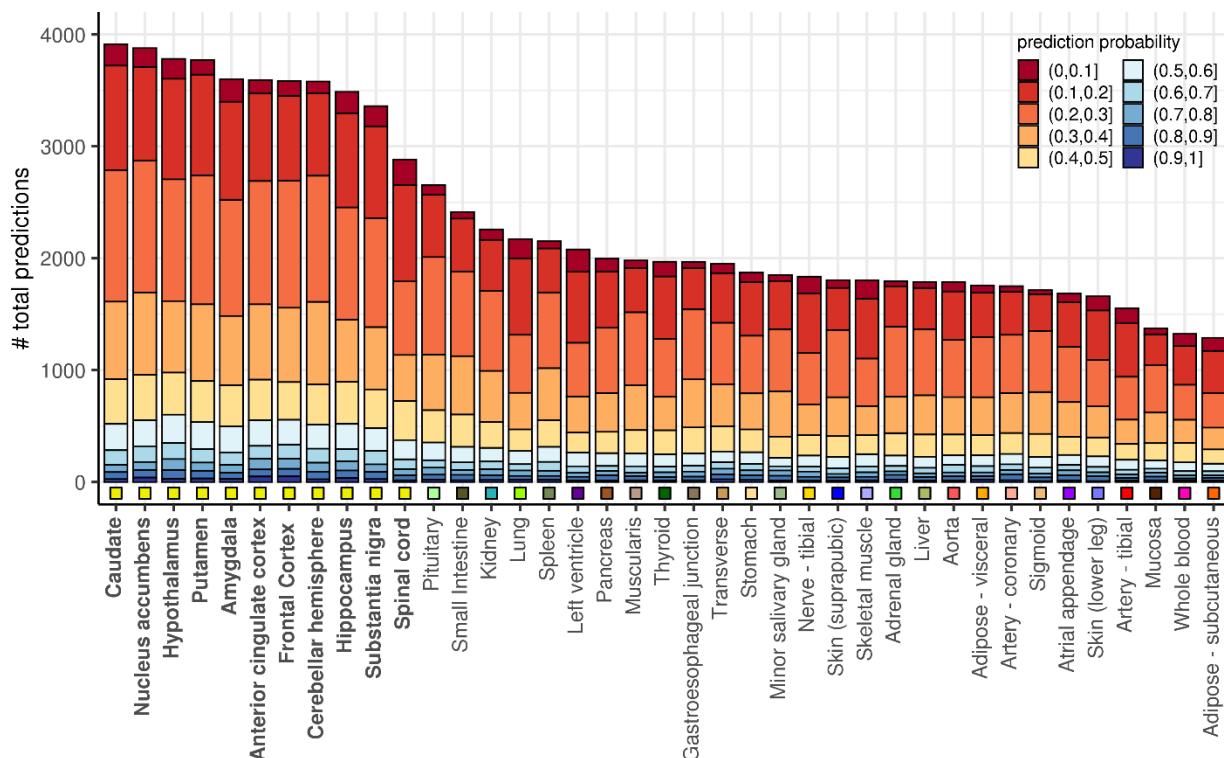
791

792

793

794

795
796
797
798
799
800



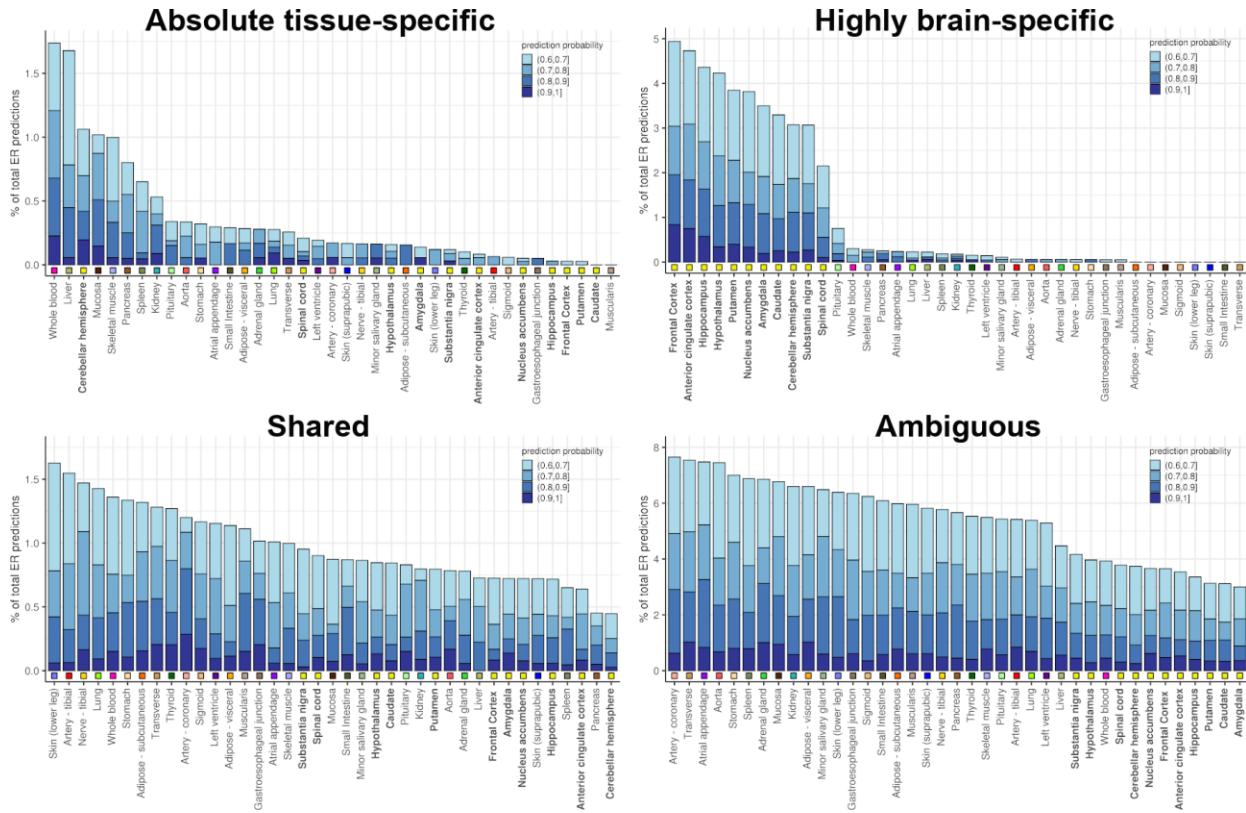
801
802

803 **Supplementary Figure S6.**

804 **F3UTER predictions across 39 GTEx tissues.** Bar plot showing the number of predictions in
805 each tissue, grouped and color-coded according to their prediction probability scores. Tissues are
806 sorted in descending order of the total number of predictions in each tissue. The square boxes
807 below the bars are color-coded to group the tissues according to their physiology.

808
809
810
811
812
813
814
815
816
817

818
819
820
821
822
823
824



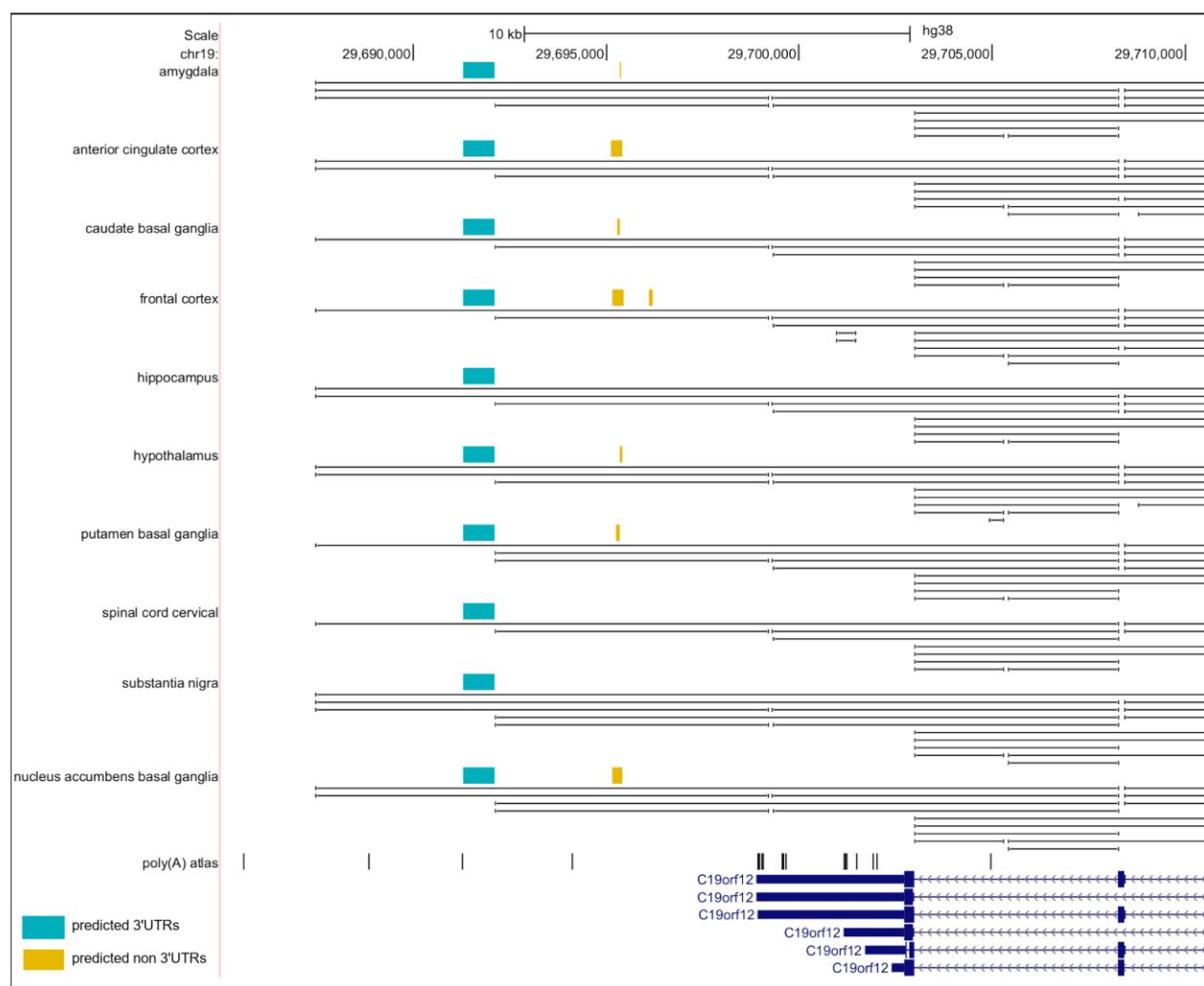
825

827 Supplementary Figure S7.

828 **Categorisation of F3UTER predictions based on tissue-specificity.** Bar plots showing the
829 number of predictions grouped according to their tissue specificity across 39 tissues. Tissues are
830 sorted in descending order of the number of predictions. The square boxes below the bars are
831 color-coded to group the tissues according to their physiology.

832
833
834
835
836
837
838
839
840

841



842

843

844 Supplementary Figure S8.

845 **Unannotated 3'UTR associated with C19orf12 in brain.** Genomic view of the C19orf12 locus
846 displaying intergenic ERs and poly(A) sites from poly(A) atlas in the region. Two tracks are
847 displayed for each tissue - the top track shows coloured boxes which represent the intergenic
848 ERs, while the bottom track shows black lines which represent RNA-seq junction reads.

849

850

851

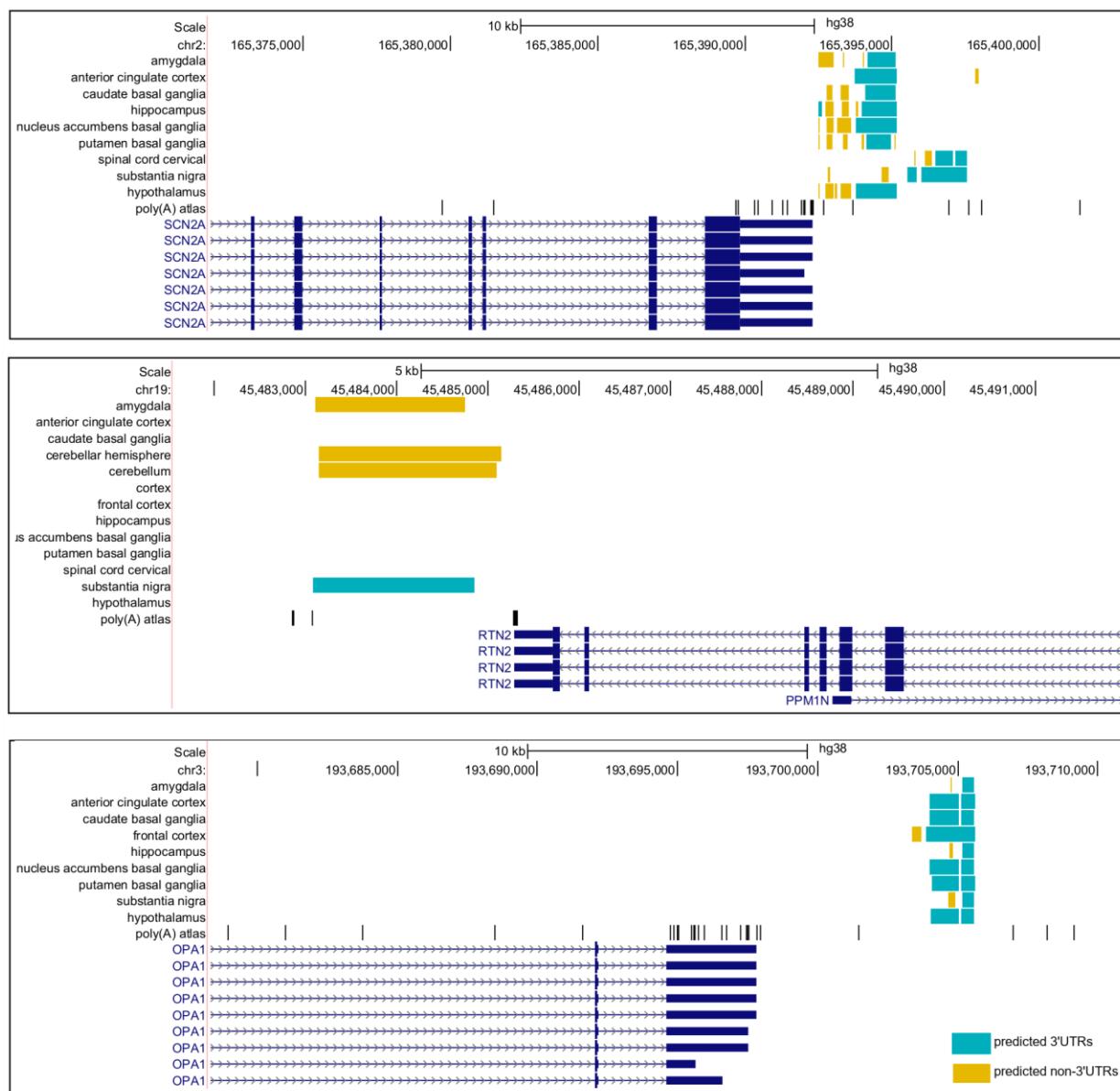
852

853

854

855

856



857

858 **Supplementary Figure S9.**

859 **Examples of highly brain-specific unannotated 3'UTRs.** Genomic view of genes (top: SCN2A;
 860 middle: *RTN2*; bottom: *OPA1*) associated with an unannotated 3'UTR in brain, displaying
 861 intergenic ERs and poly(A) sites from poly(A) atlas in the region.

862

863

864

865

866

867

868

869
870
871
872

873 **Supplementary Table 1.**

874 List of RBPs with significantly enriched binding in the brain-specific unannotated 3'UTRs
875 compared to shared unannotated 3'UTRs (*adjusted p* < 10⁻⁵). The enrichment p-value of the
876 motifs were adjusted for multiple tests using a Bonferroni correction.

877
878

Rank	RBP Name	RBP Ensembl id	p-value	Adjusted p-value
1	<i>RBFOX1</i>	ENSG00000078328	5.83E-21	1.78E-18
2	<i>KHSRP</i>	ENSG00000088247	4.12E-17	8.21E-15
3	<i>ERI1</i>	ENSG00000104626	1.07E-15	3.85E-13
4	<i>TIAL1</i>	ENSG00000151923	5.24E-15	2.41E-12
5	<i>ELAVL3</i>	ENSG00000196361	6.95E-15	3.60E-12
6	<i>CELF1</i>	ENSG00000149187	1.18E-12	1.16E-10
7	<i>SSB</i>	ENSG00000138385	3.96E-13	1.77E-10
8	<i>TARDBP</i>	ENSG00000120948	2.72E-12	5.09E-10
9	<i>PUM2</i>	ENSG00000055917	1.55E-11	3.49E-09
10	<i>ZFP36L2</i>	ENSG00000152518	7.52E-12	4.30E-09
11	<i>ZFP36</i>	ENSG00000128016	7.52E-12	4.30E-09
12	<i>HNRNPDL</i>	ENSG00000152795	7.37E-11	9.14E-09
13	<i>AGO2</i>	ENSG00000123908	6.50E-10	1.11E-07
14	<i>SRSF10</i>	ENSG00000188529	6.02E-10	1.58E-07
15	<i>HNRNPAB</i>	ENSG00000197451	6.02E-10	1.58E-07
16	<i>RBM5</i>	ENSG00000003756	3.52E-10	1.60E-07
17	<i>HNRNPA2B1</i>	ENSG00000122566	4.09E-09	3.68E-07
18	<i>ZRANB2</i>	ENSG00000132485	2.72E-09	5.80E-07
19	<i>SRSF3</i>	ENSG00000112081	8.68E-09	1.49E-06
20	<i>TRA2B</i>	ENSG00000136527	8.68E-09	1.75E-06
21	<i>HNRNPD</i>	ENSG00000138668	8.12E-08	3.51E-05
22	<i>AKAP1</i>	ENSG00000121057	5.94E-07	9.51E-05

879
880
881
882

883
884
885

886 References

887

888

889 1. Glisovic, T., et al., *RNA-binding proteins and post-transcriptional gene regulation*. FEBS

890 Lett, 2008. **582**(14): p. 1977-86.

891 2. Mayr, C., *What Are 3' UTRs Doing?* Cold Spring Harb Perspect Biol, 2019. **11**(10).

892 3. Miura, P., et al., *Widespread and extensive lengthening of 3' UTRs in the mammalian*

893 *brain*. Genome Res, 2013. **23**(5): p. 812-25.

894 4. Tushev, G., et al., *Alternative 3' UTRs Modify the Localization, Regulatory Potential,*

895 *Stability, and Plasticity of mRNAs in Neuronal Compartments*. Neuron, 2018. **98**(3): p.

896 495-511.e6.

897 5. Glock, C., M. Heumüller, and E.M. Schuman, *mRNA transport & local translation in*

898 *neurons*. Curr Opin Neurobiol, 2017. **45**: p. 169-177.

899 6. Cajigas, I.J., et al., *The local transcriptome in the synaptic neuropil revealed by deep*

900 *sequencing and high-resolution imaging*. Neuron, 2012. **74**(3): p. 453-66.

901 7. Gumi, L.F., et al., *Transcriptome analysis of embryonic and adult sensory axons reveals*

902 *changes in mRNA repertoire localization*. Rna, 2011. **17**(1): p. 85-98.

903 8. Tian, B., et al., *A large-scale analysis of mRNA polyadenylation of human and mouse*

904 *genes*. Nucleic Acids Res, 2005. **33**(1): p. 201-12.

905 9. Derti, A., et al., *A quantitative atlas of polyadenylation in five mammals*. Genome Res,

906 2012. **22**(6): p. 1173-83.

907 10. Xiang, Y., et al., *Comprehensive Characterization of Alternative Polyadenylation in*

908 *Human Cancer*. J Natl Cancer Inst, 2018. **110**(4): p. 379-389.

909 11. Marini, F., D. Scherzinger, and S. Danckwardt, *TREND-DB-a transcriptome-wide atlas of*

910 *the dynamic landscape of alternative polyadenylation*. Nucleic Acids Res, 2020.

911 12. Gruber, A.J., et al., *A comprehensive analysis of 3' end sequencing data sets reveals*

912 *novel polyadenylation signals and the repressive role of heterogeneous*

913 *ribonucleoprotein C on cleavage and polyadenylation*. Genome Res, 2016. **26**(8): p.

914 1145-59.

915 13. Herrmann, C.J., et al., *PolyASite 2.0: a consolidated atlas of polyadenylation sites from*

916 *3' end sequencing*. Nucleic Acids Res, 2020. **48**(D1): p. D174-d179.

917 14. Je, G., et al., *A novel extended form of alpha-synuclein 3'UTR in the human brain*. Mol

918 Brain, 2018. **11**(1): p. 29.

919 15. Zhang, D., et al., *Incomplete annotation has a disproportionate impact on our*
920 *understanding of Mendelian and complex neurogenetic disorders*. *Sci Adv*, 2020. **6**(24).

921 16. Zhang, Y.E., et al., *New genes expressed in human brains: implications for annotating*
922 *evolving genomes*. *Bioessays*, 2012. **34**(11): p. 982-91.

923 17. Jaffe, A.E., et al., *Developmental regulation of human cortex transcription and its clinical*
924 *relevance at single base resolution*. *Nat Neurosci*, 2015. **18**(1): p. 154-161.

925 18. Khalil, A.M., et al., *Many human large intergenic noncoding RNAs associate with*
926 *chromatin-modifying complexes and affect gene expression*. *Proc Natl Acad Sci U S A*,
927 2009. **106**(28): p. 11667-72.

928 19. Guttman, M., et al., *Chromatin signature reveals over a thousand highly conserved large*
929 *non-coding RNAs in mammals*. *Nature*, 2009. **458**(7235): p. 223-7.

930 20. Pertea, M., et al., *CHESS: a new human gene catalog curated from thousands of large-*
931 *scale RNA sequencing experiments reveals extensive transcriptional noise*. *Genome*
932 *Biol*, 2018. **19**(1): p. 208.

933 21. Palazzo, A.F. and E.S. Lee, *Non-coding RNA: what is functional and what is junk?* *Front*
934 *Genet*, 2015. **6**: p. 2.

935 22. McInnes, L., et al., *UMAP: Uniform Manifold Approximation and Projection*. *Journal of*
936 *Open Source Software*, 2018. **3**(29): p. 861.

937 23. Singh, I., et al., *Widespread intronic polyadenylation diversifies immune cell*
938 *transcriptomes*. *Nat Commun*, 2018. **9**(1): p. 1716.

939 24. Erson-Bensan, A.E., *Alternative polyadenylation and RNA-binding proteins*. *J Mol*
940 *Endocrinol*, 2016. **57**(2): p. F29-34.

941 25. Giudice, G., et al., *ATtRACT-a database of RNA-binding proteins and associated motifs*.
942 *Database (Oxford)*, 2016. **2016**.

943 26. Plass, M., S.H. Rasmussen, and A. Krogh, *Highly accessible AU-rich regions in 3'*
944 *untranslated regions are hotspots for binding of regulatory factors*. *PLoS Comput Biol*,
945 2017. **13**(4): p. e1005460.

946 27. Chen, Z., et al., *Human-lineage-specific genomic elements: relevance to*
947 *neurodegenerative disease and APOE transcript usage*. *bioRxiv*, 2020: p.
948 2020.04.17.046441.

949 28. Koopmans, F., et al., *SynGO: An Evidence-Based, Expert-Curated Knowledge Base for*
950 *the Synapse*. *Neuron*, 2019. **103**(2): p. 217-234.e4.

951 29. Tcw, J. and A.M. Goate, *Genetics of β-Amyloid Precursor Protein in Alzheimer's*
952 *Disease*. *Cold Spring Harb Perspect Med*, 2017. **7**(6).

953 30. Liscic, R.M., et al., *ALS and FTLD: two faces of TDP-43 proteinopathy*. Eur J Neurol,
954 2008. **15**(8): p. 772-80.

955 31. Vuong, C.K., et al., *Rbfox1 Regulates Synaptic Transmission through the Inhibitory*
956 *Neuron-Specific vSNARE Vamp1*. Neuron, 2018. **98**(1): p. 127-141.e7.

957 32. Lee, J.A., et al., *Cytoplasmic Rbfox1 Regulates the Expression of Synaptic and Autism-*
958 *Related Genes*. Neuron, 2016. **89**(1): p. 113-28.

959 33. Bae, B. and P. Miura, *Emerging Roles for 3' UTRs in Neurons*. Int J Mol Sci, 2020.
960 **21**(10).

961 34. Holt, C.E. and E.M. Schuman, *The central dogma decentralized: new perspectives on*
962 *RNA function and local translation in neurons*. Neuron, 2013. **80**(3): p. 648-57.

963 35. Wang, L., R.D. Dowell, and R. Yi, *Genome-wide maps of polyadenylation reveal*
964 *dynamic mRNA 3'-end formation in mammalian cell lineages*. Rna, 2013. **19**(3): p. 413-
965 25.

966 36. Beaudoin, E., et al., *Patterns of variant polyadenylation signal usage in human genes*.
967 Genome Res, 2000. **10**(7): p. 1001-10.

968 37. Tan, G. and B. Lenhard, *TFBSTools: an R/bioconductor package for transcription factor*
969 *binding site analysis*. Bioinformatics, 2016. **32**(10): p. 1555-6.

970 38. Pang, K.C., M.C. Frith, and J.S. Mattick, *Rapid evolution of noncoding RNAs: lack of*
971 *conservation does not mean lack of function*. Trends Genet, 2006. **22**(1): p. 1-5.

972 39. Wang, J., et al., *Mouse transcriptome: neutral evolution of 'non-coding' complementary*
973 *DNA*. Nature, 2004. **431**(7010): p. 1 p following 757; discussion following 757.

974 40. Kelley, D. and J. Rinn, *Transposable elements reveal a stem cell-specific class of long*
975 *noncoding RNAs*. Genome Biol, 2012. **13**(11): p. R107.

976 41. Kannan, S., et al., *Transposable Element Insertions in Long Intergenic Non-Coding RNA*
977 *Genes*. Front Bioeng Biotechnol, 2015. **3**: p. 71.

978 42. Meysman, P., K. Marchal, and K. Engelen, *DNA structural properties in the classification*
979 *of genomic transcription regulation elements*. Bioinform Biol Insights, 2012. **6**: p. 155-68.

980 43. Abeel, T., et al., *Generic eukaryotic core promoter prediction using structural features of*
981 *DNA*. Genome Res, 2008. **18**(2): p. 310-23.

982 44. Gruber, A.J., et al., *Terminal exon characterization with TECtool reveals an abundance*
983 *of cell-specific isoforms*. Nat Methods, 2018. **15**(10): p. 832-836.

984 45. Kuhn, M., *Building Predictive Models in R Using the caret Package*. 2008, 2008. **28**(5):
985 p. 26.

986 46. Friedman, J., T. Hastie, and R. Tibshirani, *Regularization Paths for Generalized Linear*
987 *Models via Coordinate Descent*. J Stat Softw, 2010. **33**(1): p. 1-22.

988 47. Breiman, L., *Random Forests*. Machine Learning, 2001. **45**(1): p. 5-32.

989 48. Quinlan, A.R. and I.M. Hall, *BEDTools: a flexible suite of utilities for comparing genomic*
990 *features*. Bioinformatics, 2010. **26**(6): p. 841-2.

991 49. Bailey, T.L., et al., *MEME SUITE: tools for motif discovery and searching*. Nucleic Acids
992 Res, 2009. **37**(Web Server issue): p. W202-8.

993 50. Grant, C.E., T.L. Bailey, and W.S. Noble, *FIMO: scanning for occurrences of a given*
994 *motif*. Bioinformatics, 2011. **27**(7): p. 1017-8.

995 51. McLeay, R.C. and T.L. Bailey, *Motif Enrichment Analysis: a unified framework and an*
996 *evaluation on ChIP data*. BMC Bioinformatics, 2010. **11**: p. 165.

997 52. Zhu, Y., et al., *POSTAR2: deciphering the post-transcriptional regulatory logics*. Nucleic
998 Acids Res, 2019. **47**(D1): p. D203-d211.

999 53. Chen, J., et al., *ToppGene Suite for gene list enrichment analysis and candidate gene*
1000 *prioritization*. Nucleic Acids Res, 2009. **37**(Web Server issue): p. W305-11.

1001 54. Amberger, J.S., et al., *OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an*
1002 *online catalog of human genes and genetic disorders*. Nucleic Acids Res, 2015.
1003 **43**(Database issue): p. D789-98.

1004 55. Martin, A.R., et al., *PanelApp crowdsources expert knowledge to establish consensus*
1005 *diagnostic gene panels*. Nat Genet, 2019. **51**(11): p. 1560-1565.

1006