
1 

Leveraging omic features with F3UTER 1 

enables identification of unannotated 2 

3’UTRs for synaptic genes  3 

Siddharth Sethi1,2, David Zhang2,3,4, Sebastian Guelfi2,5, Zhongbo Chen2,3,4, Sonia 4 

Garcia-Ruiz2,3,4, Mina Ryten2,3,4*ᶲ, Harpreet Saini1*, Juan A. Botia2,6* 5 

 6 

1. Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, United Kingdom. 7 

2. Department of Neurodegenerative Disease, Institute of Neurology, University College 8 

London, London, UK. 9 

3. NIHR Great Ormond Street Hospital Biomedical Research Centre, University College 10 

London, London, UK. 11 

4. Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, 12 

University College London, London WC1E 6BT, UK. 13 

5. Verge Genomics, South San Francisco, CA 94080, USA 14 

6. Department of Information and Communications Engineering, University of Murcia, 15 

Spain. 16 

 17 

 18 

*These authors contributed equally to this manuscript. 19 

 Corresponding author: Professor Mina Ryten (mina.ryten@ucl.ac.uk) 20 

 21 

 22 

 23 

Words: 3,826 24 

Display items: 5  25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.434412doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434412
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

Abstract 26 

 27 

There is growing evidence for the importance of 3’ untranslated region (3’UTR) dependent 28 

regulatory processes. However, our current human 3’UTR catalogue is incomplete. Here, we 29 

developed a machine learning-based framework, leveraging both genomic and tissue-specific 30 

transcriptomic features to predict previously unannotated 3’UTRs. We identify unannotated 31 

3’UTRs associated with 1,513 genes across 39 human tissues, with the greatest abundance 32 

found in brain. These unannotated 3’UTRs were significantly enriched for RNA binding protein 33 

(RBP) motifs and exhibited high human lineage-specificity. We found that brain-specific 34 

unannotated 3’UTRs were enriched for the binding motifs of important neuronal RBPs such as 35 

TARDBP and RBFOX1, and their associated genes were involved in synaptic function and brain-36 

related disorders. Our data is shared through an online resource F3UTER 37 

(https://astx.shinyapps.io/F3UTER/). Overall, our data improves 3’UTR annotation and provides 38 

novel insights into the mRNA-RBP interactome in the human brain, with implications for our 39 

understanding of neurological and neurodevelopmental diseases. 40 
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Introduction 41 

The 3’UTRs of protein-coding messenger RNAs (mRNAs) play a crucial role in regulating gene 42 

expression at the post-transcriptional level. They do so by providing binding sites for trans factors 43 

such as RBPs and microRNAs, which affect mRNA fate by modulating subcellular localisation, 44 

stability and translation [1, 2]. There is evidence to suggest that these RNA-based regulatory 45 

processes may be particularly important in large, polarised cells such as neurons. Recent studies 46 

have shown that transcripts which are highly expressed in neurons have both significantly longer 47 

3’UTRs and higher 3’UTR diversity [3, 4]. Furthermore, it has been shown that thousands of 48 

mRNA transcripts localise within subcellular compartments of neurons and undergo regulated 49 

local translation, allowing neurons to rapidly react to local extracellular stimuli [4-7]. Thus, there 50 

has been growing interest in the impact of 3’UTR usage on neuronal function in health and 51 

disease. 52 

 53 

However, despite on-going efforts to identify and characterise 3’UTRs in the human genome [8-54 

11], there is evidence to suggest that our current catalogue is incomplete [3, 12-14]. Large-scale 55 

3’end RNA-sequencing (RNA-seq) has identified a large number of novel polyadenylation 56 

(poly(A)) sites, many of which are located outside of annotated exons [12, 13]. These insights are 57 

complemented by an increasing recognition of the functional importance of transcriptional activity 58 

outside of known exons, particularly in human brain tissues [15-17]. This raises the possibility of 59 

developing new approaches for 3’UTR identification seeded from RNA-seq data analyses, an 60 

area that has not been fully explored, in large part due to the limited availability of data and 61 

appropriate tools. 62 

 63 

In this study, we present a machine learning-based framework, named F3UTER, which leverages 64 

both genomic and tissue-specific transcriptomic features. We apply F3UTER to RNA-seq data 65 

from Genotype-Tissue Expression Consortium (GTEx) to predict hundreds of unannotated 66 

3’UTRs across a wide range of human tissues, with the highest prevalence discovered in brain. 67 

We provide evidence to suggest that these unannotated 3’UTR sequences are functionally 68 

significant and have higher human lineage specificity than expected by chance. More specifically, 69 

we found brain-specific unannotated 3’UTRs were enriched for genes involved in synaptic 70 

function and interact with neuronal RBPs implicated in neurodegenerative and neuropsychiatric 71 

disorders. We release our data in an online platform, F3UTER 72 

(https://astx.shinyapps.io/F3UTER/), which can be queried to visualise unannotated 3’UTR 73 

predictions and the omic features used to predict them. 74 
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Results 75 

Annotation-independent expression analysis suggests the existence of 76 

unannotated 3’UTRs in the human brain 77 

There is growing evidence to suggest that the annotation of the human brain transcriptome is 78 

incomplete and disproportionately so when compared to other human tissues [15-17]. We 79 

hypothesised that this difference may in part be attributed to an increased number of unannotated 80 

3’UTRs in human brain. To investigate this possibility, we analysed unannotated expressed 81 

regions of the genome (termed ERs) as previously reported by Zhang and colleagues [15]. These 82 

ERs were identified through annotation-independent expression analysis of RNA-seq data 83 

generated by GTEx with ER calling performed separately for 39 human tissues, including 11 non-84 

redundant human brain regions. We focused on the subset of ERs most likely to be 3’UTRs, 85 

namely intergenic ERs which lie within 10 kb of a protein-coding gene (Methods). We found that 86 

these intergenic ERs were significantly higher in number (𝑝 = 1.66 × 10−6, Wilcoxon Rank Sum 87 

Test) and total genomic space (𝑝 = 2.39 × 10−9, Wilcoxon Rank Sum Test) in brain compared to 88 

non-brain tissues (Figure 1a). Furthermore, we discovered that intergenic ERs were significantly 89 

more likely to be located at 3’- rather than 5’-ends of their related protein-coding genes (𝑝 =90 

2.08 × 10−14, Wilcoxon Rank Sum Test) (Figure 1b), suggesting that a proportion of ERs 91 

detected in human brain could represent unannotated 3’UTRs. 92 

 93 

Differentiating 3’UTRs from other expressed genomic elements is 94 

challenging 95 

 96 

Given that existing studies indicate high levels of transcriptional noise and non-coding RNA 97 

expression in intergenic regions [18-21], only some intergenic ERs are likely to be generated by 98 

unannotated 3’UTRs. This prompted us to develop a method to distinguish 3’UTRs from other 99 

transcribed genomic elements (non-3’UTRs) using short-read RNA-seq data. To achieve this aim, 100 

we first constructed a training set of known 3’UTRs (positive examples) and non-3’UTRs (negative 101 

examples) from Ensembl human genome annotation (v94). We obtained 17,719 3’UTRs and a 102 

total of 162,249 non-3’UTRs, consisting of five genomic classes: 21,798 5’UTRs, 130,768 internal 103 

coding exons (ICE), 3,718 long non-coding RNAs (lncRNAs), 3,819 non-coding RNAs (ncRNAs) 104 

and 2,146 pseudogenes (Methods). For each of the positive and negative examples, we 105 
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constructed a set of 41 informative omic features, which were broadly categorised as either 106 

genomic or transcriptomic in nature. Features calculated from genomic data included poly(A) 107 

signal (PAS) occurrence, DNA sequence conservation, mono-/di-nucleotide frequency, 108 

transposon occurrence and DNA structural properties. Features calculated from transcriptomic 109 

data included entropy efficiency of the mapped reads (EE) and percentage difference between 110 

the reads mapped at the boundaries (PD) (Methods). To gain a better understanding of these 111 

features, we performed a univariate analysis to individually inspect the relationship between each 112 

feature and the genomic classes in our training dataset (i.e. 3’UTRs and all types of non-3’UTRs). 113 

Overall, while the genomic and transcriptomic features used had overlapping distributions 114 

amongst some genomic classes, each feature was significantly different when compared across 115 

all the genomic classes (𝑝 < 2.2 × 10−16, Kruskal-Wallis Test and proportion Z-Test, 116 

Supplementary Figure S1). This suggested that the features selected could be used to 117 

distinguish 3’UTRs from other genomic elements. 118 

To further investigate this for all 41 features across all six genomic classes, we applied a uniform 119 

manifold approximation and projection (UMAP) [22] for dimensionality reduction into a 2D 120 

projection space. We found that while most 3’UTRs clustered separately from other classes within 121 

that space, some of them highly overlapped with other genomic classes such, as lncRNAs, ICEs 122 

and 5’UTRs (Figure 2a, Supplementary Figure S2). These findings suggested that many 123 

unannotated 3’UTRs would be difficult to identify, and thus, may require an advanced 124 

classification approach based on machine learning to accurately distinguish them from other 125 

genomic elements.  126 

 127 

F3UTER accurately distinguishes 3’UTRs from other genomic elements 128 

Next, we measured the predictive value of the omic features we had identified to distinguish 129 

between unannotated 3’UTRs and other expressed elements if used collectively. We trained an 130 

elastic net multinomial logistic regression model and evaluated its performance using 5-fold cross 131 

validation repeated 20 times (Methods). Taking all classes into account, the multinomial logistic 132 

regression model achieved an accuracy of 74% and a kappa of 0.52 in distinguishing between 133 

the different genomic classes. Consistent with the UMAP visualisation, we found that known 134 

3’UTRs were most likely to be misclassified as lncRNAs (4.98%), followed by ICEs (2.46%) and 135 

pseudogenes (0.88%) (Figure 2b). On the other hand, false-positive 3’UTR predictions, which 136 
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totalled 44%, were predominantly composed of known ICEs (17.23%) and 5’UTRs (16.06%) 137 

(Figure 2b).  138 

Since the high false-positive rate of our multinomial logistic regression model would be a 139 

significant barrier to reliably predict unannotated 3’UTRs from intergenic ERs, we generated an 140 

alternative machine-learning-based approach to address this problem. The resulting random 141 

forest multinomial classifier was assessed for its performance using 5-fold cross validation 142 

repeated 20 times (Methods). We found that the random forest multinomial classifier had a 143 

significantly higher accuracy (76%; 𝑝 < 2.2 × 10−16, Wilcoxon Rank Sum Test) and kappa (0.56; 144 

𝑝 < 2.2 × 10−16, Wilcoxon Rank Sum Test) in comparison to the multinomial logistic regression 145 

model (Supplementary Figure S3). While the false-negative rate was higher (random forest 146 

classifier rate of 22%; logistic regression rate of 9%, Figure 2c), importantly the random forest-147 

based classifier reduced false-positive calling of 3’UTRs to 10% (4.4% 5’UTR, 2.7% lncRNA, 148 

1.5% ICE and 1.2% pseudogenes) compared to 44% using logistic regression. We also simplified 149 

the classification problem to a binary one and generated a second random forest classifier, aiming 150 

only to distinguish between 3’UTRs and non-3’UTRs. This resulted in the development of our final 151 

random forest classifier, Finding 3’ Un-translated Expressed Regions (F3UTER, Figure 2d). 152 

 153 

To assess F3UTER’s performance, we performed 5-fold cross validation (repeated 20 times) and 154 

calculated metrics such as accuracy, sensitivity, specificity, kappa, area under the ROC curve 155 

(AUC-ROC) and area under the precision-recall curve (AUC-PR). F3UTER achieved a mean 156 

accuracy of 0.96, sensitivity of 0.92, specificity of 0.96, kappa of 0.78, AUC-ROC of 0.98 (Figure 157 

2e) and AUC-PR of 0.91 (Figure 2f) on the validation datasets (hold out). We found that F3UTER 158 

performed similarly on both the training and validation datasets in the cross validation (Figure 159 

2g). In addition, increasing the sample size of training data reduced the variability in model 160 

predictions and hence, made it more stable. Taken together, these findings suggested that we 161 

were not overfitting the classifier. Finally, we investigated the contributions of individual features 162 

towards the accuracy and node homogeneity (Gini coefficient, Methods) of 3’UTR classification. 163 

Interestingly, we found that features derived directly from sequence data (e.g. conservation and 164 

PAS) as well as from the transcriptomic data, namely mean-PD and mean-EE (Supplementary 165 

Figure S4), most significantly contributed to the accuracy of F3UTER. This shows that F3UTER 166 

leverages both genomic and transcriptomic features to classify 3’UTRs, which would be expected 167 

to enable the identification of tissue-specific unannotated 3’UTRs. 168 
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Evaluation of F3UTER using 3’-end sequencing data validates unannotated 169 

3’UTR predictions 170 

 171 

We evaluated the performance of F3UTER using an independent dataset consisting of both RNA-172 

seq data and paired 3’-seq in B cells [23]. The latter, a form of 3’-end sequencing, was performed 173 

to identify poly(A) sites experimentally. Since poly(A) sites are present at the very end of 3’UTRs, 174 

unannotated 3’UTRs should overlap or be in the close vicinity of a poly(A) site. It should be noted 175 

that unlike the GTEx RNA-seq dataset which we used for our previous analyses and which 176 

consists of hundreds of samples for most tissues, this B cell dataset consisted of only two RNA-177 

seq samples. Since detecting unannotated ERs relies on averaging RNA-seq coverage across 178 

many samples to reduce the contribution of transcriptional noise to ER definition, calling ERs from 179 

only two samples would likely result in inaccuracies at ER boundaries. Although this would be 180 

expected to significantly reduce the confidence in the detection of unannotated ERs and 181 

potentially underestimate the performance of F3UTER, the paired RNA-seq and 3’-seq nature of 182 

this B cell dataset enabled us to confidently validate 3’UTR predictions using gold standard 183 

experimental data. 184 

 185 

First, we identified 3’ unannotated intergenic ERs in B cells from the RNA-seq data following the 186 

pipeline used by Zhang et al. [15]. Then we used F3UTER to predict unannotated 3’UTRs in this 187 

B cell ER dataset, and compared these predictions to intergenic poly(A) clusters detected using 188 

3’-seq (Figure 3a). We focused on confident 3’UTR predictions, defined as those with a prediction 189 

probability of > 0.6. ERs predicted to be 3’UTRs which also overlapped with a poly(A) cluster were 190 

considered to be validated, as exemplified by the intergenic ER predicted to be a novel 3’UTR of 191 

the gene CYTIP (Figure 3b). As a reference, we noted that 87.9% of known 3’UTRs overlapped 192 

with a poly(A) cluster in B cell. We found that on average, 38.5% of 3’UTR predictions were 193 

validated. This was 17.5-fold higher than that for randomly selected intergenic regions (2.2%, 𝑝 <194 

0.0001, permutation test; Supplementary Figure S5) and 2.2-fold higher than the validation rate 195 

of non-3’UTR predictions (17.4%, Figure 3c). Overall, these observations demonstrate the 196 

accuracy of F3UTER and show that it can effectively distinguish unannotated 3’UTRs from other 197 

functional genomic elements in the genome. 198 

  199 
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Applying F3UTER across 39 GTEx tissues identifies hundreds of 200 

unannotated 3’UTRs with evidence of functional significance 201 

 202 

We applied F3UTER to 3’ unannotated intergenic ERs identified by Zhang and colleagues [15] in 203 

39 tissues using RNA-seq data provided by GTEx. Similar to the B cell ER dataset, we focused 204 

on confident 3’UTR predictions with a prediction probability of > 0.6 (Supplementary File 1). 205 

Across all tissues, we found that on average 7.9% of analysed ERs were predicted as 206 

unannotated 3’UTRs, with 8.2% being called in brain (Supplementary Figure S6). This equated 207 

to an average of 187 potentially unannotated 3’UTRs per tissue (ranging from 96 in adipose-208 

subcutaneous to 348 in hypothalamus, Figure 4a), covering 58 to 265 kb of genomic space (mean 209 

across tissues = 138 kb, Figure 4b). By assigning predicted 3’UTRs to protein-coding genes 210 

either through the existence of junction reads or by proximity, we estimated that 1,513 distinct 211 

genes in total had unannotated 3’UTRs with an average of 167 genes per tissue (Figure 4c). As 212 

expected, the number of predicted unannotated 3’UTRs was significantly higher in the brain 213 

relative to non-brain tissues (median values of 295 and 142 in brain and non-brain tissues 214 

respectively; 𝑝 = 1.65 × 10−6, Wilcoxon Rank Sum Test). This was associated with a significantly 215 

higher total genomic space (median values of 232 kb and 104 kb in brain and non-brain tissues 216 

respectively; 𝑝 = 1.43 × 10−8, Wilcoxon Rank Sum Test) and higher number of implicated genes 217 

(median values of 270 and 127 in brain and non-brain tissues respectively; 𝑝 = 1.65 × 10−6, 218 

Wilcoxon Rank Sum Test). This data suggests that incomplete annotation of 3’UTRs is present in 219 

all human tissues but is most prevalent in the brain. 220 

 221 

Next, we investigated the functional significance of unannotated 3’UTRs by analysing their 222 

potential interaction with RBPs. This in silico analysis was performed because selective RBP 223 

binding at 3’UTRs is thought to be key in explaining the selection of alternate PASs and its impact 224 

on mRNA stability and localisation [24]. Using the catalogue of known RNA binding motifs from 225 

the ATtRACT database [25], we examined the binding density of 84 RBPs across all unannotated 226 

3’UTRs (Methods). Consistent with previous reports demonstrating higher RBP binding densities 227 

in known 3’UTRs relative to other genomic regions [26], we found that 3’UTR predictions were 228 

enriched for RBP binding motifs compared to non-3’UTR predictions (𝑝 < 2.2 × 10−16, effect size 229 

(es) = 0.17, Wilcoxon Rank Sum Test, Figure 4d). Surprisingly, we noted that unannotated 230 

3’UTRs were also enriched for RBP binding motifs compared to known 3’UTRs (𝑝 < 2.2 × 10−16, 231 

es = 0.28, Wilcoxon Rank Sum Test, Figure 4d) suggesting that these regions may be of 232 

particular functional significance. To investigate this further, we leveraged constrained, non-233 
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conserved (CNC) scores [27], a measure of human-lineage-specificity, to determine whether the 234 

unannotated 3’UTRs identified were of specific importance in humans. CNC score, a metric 235 

combining cross-species conservation and genetic constraint in humans, was used to identify and 236 

score genomic regions which are amongst the 12.5% most constrained within humans but yet are 237 

not conserved. We found that unannotated 3’UTRs exhibited higher CNC scores compared to 238 

known 3’UTRs (𝑝 = 0.012, es = 0.016, Wilcoxon Rank Sum Test, Figure 4e). Thus, together our 239 

analyses suggested that unannotated 3’UTRs are not only functionally important but may be 240 

particularly crucial in human-specific biological processes. 241 

 242 

F3UTER identifies unannotated 3’UTRs of genes associated with synaptic 243 

function 244 

 245 

Given the evidence for the functional importance of unannotated 3’UTRs predicted by F3UTER, 246 

we wanted to explore their biological relevance. To do this, we began by categorising all 247 

unannotated 3’UTRs into four sets based on their tissue-specificity: absolute tissue-specific, 248 

highly brain-specific, shared and ambiguous (Methods and Supplementary Figure S7). Using 249 

this non-redundant set of 3’UTRs, we found that on average, we extended the current annotation 250 

per gene by 681 bp in highly brain-specific (1.4x the known maximal 3’UTR length), 633.6 bp in 251 

tissue-specific (0.95x the known maximal 3’UTR length), and 496.63 bp in shared predictions 252 

(0.88x the known maximal 3’UTR length) respectively. Next, we repeated the RBP and CNC 253 

analysis for each category finding that all unannotated 3’UTR sets showed significant enrichment 254 

of RBP binding motifs when compared not only to non-3’UTR predictions (𝑝 ≤ 2.5 × 10−5, 255 

Wilcoxon Rank Sum Test), but also to known 3’UTRs (𝑝 ≤ 3.9 × 10−7, Wilcoxon Rank Sum Test), 256 

with the brain-specific set having the largest effect size (es ≥ 0.17) (Figure 5a). Focussing on 257 

CNC scores, we found that while none of the unannotated 3’UTR sets showed significant 258 

differences in score compared to known 3’UTRs (𝑝 ≥ 0.121, Wilcoxon Rank Sum Test), brain-259 

specific unannotated 3’UTRs trended to significance with the largest effect size relative to other 260 

sets (Figure 5a). Together, these observations lead us to conclude that highly brain-specific 261 

3’UTR predictions were likely to be of most biological interest. 262 

 263 

These observations raised the question of what types of genes are associated with highly brain-264 

specific 3’UTR predictions. Interestingly, we found that while genes linked to brain-specific non-265 

3’UTR predictions had no GO term enrichments, those linked to an unannotated brain-specific 266 
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3’UTR were significantly enriched for synaptic function (“synaptic signalling”, “synapse 267 

organisation” and “protein localization to postsynaptic specialization membrane”; 𝑞 =268 

4.97 × 10−3) (Figure 5b, Supplementary File 2). Using SynGO (the synaptic GO database [28]) 269 

to obtain more granular information, we found that genes associated with unannotated 3’UTRs 270 

were more significantly enriched for terms relating to post-synaptic (“protein localisation in 271 

postsynaptic density”, 𝑞 = 2.87 × 10−4; postsynaptic function, 𝑞 = 4.1 × 10−3), as compared to 272 

presynaptic structures (“localisation in presynapse”, 𝑞 = 0.03; presynaptic function, 𝑞 = 0.1) 273 

(Figure 5c, Supplementary File 2). Furthermore, we found that genes linked to unannotated 274 

brain-specific 3’UTRs were significantly enriched for those already associated with rare 275 

neurogenetic disorders (𝑝 = 0.01, hypergeometric test) and more specifically adult-onset 276 

neurodegenerative disorders (𝑝 =  0.03, hypergeometric test). For example, we detected an 277 

unannotated 3’UTR in the brain linked to the gene, APP, a membrane protein which when mutated 278 

gives rise to autosomal dominant Alzheimer’s disease and encodes for amyloid precursor protein, 279 

the main constituent of amyloid plaques [29]. We detected a 920 bp long brain-specific 280 

unannotated 3’UTR located 1.8 kb downstream of APP (Figure 5d) and only 51 bp from an 281 

intergenic poly(A) site on the same strand as APP gene as reported by the poly(A) atlas. Other 282 

similar examples included the genes, C19orf12, RTN2, SCN2A and OPA1 (Supplementary 283 

Figures S8 & S9).  284 

 285 

Brain-specific unannotated 3’UTRs interact with RBPs implicated in 286 

neurological disorders 287 

 288 

Next, we investigated the information content of brain-specific unannotated 3’UTRs by comparing 289 

RBP binding enrichments between brain-specific and shared 3’UTR predictions (Methods). By 290 

using shared 3’UTR predictions as the negative control, we removed RBPs associated with non-291 

brain tissues and so identified RBP binding of greatest relevance to human brain function. This 292 

analysis identified 22 RBPs with significantly enriched binding in the brain-specific unannotated 293 

3’UTRs (𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑝 < 10−5) (Supplementary Table 1). We found that nine of these RBPs were 294 

previously known to be associated with “mRNA 3’UTR binding” (𝑞 = 2.23 × 10−14, 295 

Supplementary File 3), including TARDBP, an RNA binding protein implicated in both 296 

frontotemporal dementia and amyotrophic lateral sclerosis [30]. Of the 75 gene targets that we 297 

identified for TARDBP through unannotated 3’UTRs, up to 50 were known to be TARDBP targets 298 
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based on computational scanning of existing 3’UTR annotations for TARDBP motif (47%, 𝑝 =299 

0.008, hypergeometric test) and iCLIP experiments (44%, 𝑝 = 1.47 × 10−6, hypergeometric test). 300 

However, this implied that 25 gene targets were not previously known to harbour TARDBP binding 301 

motifs based on current annotation. Another RBP which was identified to be significantly enriched 302 

in brain-specific unannotated 3’UTRs was RBFOX1 (𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑝 = 1.78 × 10−18), a neuronal 303 

splicing factor implicated in the regulation of synaptic transmission [31] and whose mRNA targets 304 

have been implicated in autism spectrum disorders [32]. We identified 89 gene targets with a 305 

predicted RBFOX1 binding motif within their associated unannotated 3’UTRs. Of these 89 genes, 306 

only 31 (35%) had a predicted RBFOX1 binding motif within their existing 3’UTRs, again implying 307 

that unannotated 3’UTRs provide valuable novel binding sites. Furthermore, GO and SynGO 308 

enrichment analyses (Supplementary File 3) demonstrated that the target genes of RBFOX1 309 

were significantly enriched for synaptic (“synaptic membrane adhesion”, 𝑞 = 1.58 × 10−2) and 310 

postsynaptic terms (“postsynapse”, 𝑞 = 0.01), consistent with the previously known functions of 311 

RBFOX1 [31]. These results show that the identification of brain-specific unannotated 3’UTRs can 312 

recognise new genes within known regulatory networks, which can provide novel, disease-313 

relevant insights. 314 

 315 

Discussion 316 

 317 

In this study we generate a machine learning-based classifier, F3UTER, which leverages 318 

transcriptomic as well as genomic data to predict unannotated 3’UTRs. F3UTER outperforms a 319 

state-of-the-art statistical learning approach, elastic net logistic regression, whilst retaining its 320 

interpretability capabilities. We apply F3UTER to transcriptomic data covering 39 human tissues 321 

studied within GTEx, enabling the identification of tissue-specific unannotated 3’UTRs. Using this 322 

large, public, short-read RNA-seq data set, we predict unannotated 3’UTRs for 1,513 genes, 323 

(equating to 5.4 Mb of genomic space in total across 39 tissues) and demonstrate that F3UTER 324 

can be successfully applied to human genomic regions from any tissue with existing bulk RNA-325 

seq data. In fact, even though intergenic ERs in B cells were generated using only two samples, 326 

we were able to validate 38.5% of the unannotated 3’UTR predictions using 3’-end sequencing 327 

data, showing that F3UTER can be a useful tool even for small RNA-seq datasets. Furthermore, 328 

it should be noted that F3UTER does not depend on ER datasets as input, but instead any set of 329 

interesting human genomic regions can be used. Given the continued popularity and high 330 
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availability of short-read RNA-seq data across tissues, cell types and disease states, we believe 331 

that (1) F3UTER could be applied more broadly to improve our understanding of 3’UTR diversity 332 

and usage, and (2) the set of omic features devised within this study could form the basis for other 333 

predictive models aimed at increasing the accuracy of human transcriptomic annotation. 334 

 335 

We focus on F3UTER-predicted 3’UTRs in human brain, which we find to be most prevalent when 336 

comparing predictions across all 39 human tissues. We believe that the higher frequency of 337 

incomplete 3’UTR annotation in human brain could be attributed to several factors including: (1) 338 

higher transcript diversity with many rare isoforms expressed in this tissue; (2) high cellular 339 

heterogeneity complicating detection of tissue- /cell-type specific transcripts; (3) historically lower 340 

availability of human brain samples; and (4) reliance on post-mortem tissues, which suffer from 341 

RNA degradation resulting in decreased accuracy of transcript identification.  342 

 343 

While we find that collectively the unannotated 3’UTRs predicted by F3UTER were significantly 344 

enriched for RBP binding and exhibited high human lineage-specificity, the latter was primarily 345 

driven by brain-specific 3’UTR predictions. Overall, these findings suggest that predicted 3’UTRs 346 

are likely to be functionally important in the human genome. Moreover, these findings provide 347 

some explanation for the difficulties of identifying 3’UTRs through cross-species analyses 348 

particularly when considering brain-specific transcripts. Interestingly, we find that brain-specific 349 

unannotated 3’UTRs were enriched for binding of RBPs already implicated in neurological 350 

disorders, such as TARDBP and RBFOX1. Furthermore, genes linked to unannotated brain-351 

specific 3’UTRs were significantly enriched for those already associated with rare neurogenetic 352 

and adult-onset neurodegenerative disorders, and for genes involved in synaptic function.  353 

 354 

Taken together, our results demonstrate that F3UTER not only improved 3’UTR annotation, but 355 

also identified unannotated 3’UTRs in the human brain which provided novel insights into the 356 

mRNA-RBP interactome with implications for our understanding of neurological and 357 

neurodevelopmental diseases. With this in mind, we note the growing interest in the role of 3’UTR-358 

based mechanisms in translational regulation within complex, large, polarised cell types such as 359 

neurons [4, 5, 33, 34]. Although increasing use of single-nuclei RNA-seq, together with long-read 360 

RNA-seq will provide further insights into alternative 3’UTR usage and will impact the field 361 

considerably, these technologies still have significant limitations for the identification of rare 362 

transcripts. Therefore, we believe that F3UTER, which can effectively utilise existing short-read 363 

RNA-seq data sets, will be of interest to a wide range of researchers. Furthermore, we release 364 
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our results through an online resource (F3UTER: https://astx.shinyapps.io/F3UTER/) which 365 

allows users to both easily query unannotated 3’UTRs and inspect the omic features driving the 366 

classifier’s prediction for an ER of interest. 367 
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Figures 368 

 369 

 370 

 371 

 372 
 373 

Figure 1. 374 

Enrichment of intergenic ERs across 39 GTEx tissues. (a) Scatter plot showing the number 375 

of intergenic ERs and their total genomic space covered in 39 human tissues. (b) Enrichment of 376 

intergenic ERs grouped by location with respect to their associated protein-coding gene. Each 377 

data point in the box plot represents the proportion of total intergenic ERs in a tissue. p: p-value 378 

calculated using Wilcoxon Rank Sum Test. 379 
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380 

Figure 2.  381 

Classification of 3’UTRs from other transcribed elements in the genome. (a) UMAP 382 

representation of features, with elements labelled by genomic classes. (b) Classification of 383 

3’UTRs using an elastic net multinomial logistic regression. (c) Classification of 3’UTRs using a 384 

multinomial random forest classifier. (d) General framework of F3UTER: the core of the 385 

framework is a random forest classifier trained on omic features derived from known 3’UTRs and 386 

non-3’UTRs. The omic features are based on either genomic (DNA sequence) or transcriptomic 387 
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(RNA-seq from GTEx) properties. To make predictions, genomic coordinates of ERs are given as 388 

input, from which a feature matrix is constructed. The output of the framework is ERs categorised 389 

into potential 3’UTRs and non-3’UTRs with their associated prediction probability scores. (e, f) 390 

ROC and precision recall curves of F3UTER evaluated using 5-fold cross validation. (g) Bias-391 

variance trade-off plot demonstrating the performance of F3UTER on training and validation 392 

datasets grouped by the sample size of the training data. 393 

 394 

 395 

 396 

 397 

  398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 
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 432 

 433 

 434 

 435 
 436 

Figure 3.  437 

Evaluation of F3UTER predictions on an independent ER dataset. (a) Schematic describing 438 

the framework of the process implemented to evaluate the performance of F3UTER on ERs in B 439 

cells. (b) Genome browser view of the CYTIP locus, showing intergenic ERs detected 440 

downstream of CYTIP and poly(A) sites in B cells. (c) Bar plots showing the overlap between 441 

predictions made by F3UTER and intergenic poly(A) sites from 3‘-end sequencing in B cells. The 442 

bar for random predictions represents the mean overlap (from 10,000 permutations) between 443 

randomly selected intergenic ERs and intergenic poly(A) sites. 444 
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 445 

Figure 4.  446 

Unannotated 3’UTR predictions across 39 GTEx tissues. (a) Number of unannotated 3’UTRs 447 

predicted by F3UTER. (b) Total genomic space of unannotated 3’UTRs. (c) Number of genes 448 

associated with unannotated 3’UTRs. In each bar plot, tissues are sorted in descending order of 449 
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the values plotted on y-axis. The square boxes below the bars are color-coded to group the 450 

tissues according to their physiology. The predictions are grouped and color-coded based on their 451 

prediction probability scores from F3UTER. (d) Density distributions comparing the RBP binding 452 

density across known 3’UTRs, predicted 3’UTRs and predicted non-3’UTRs. p: p-value of 453 

comparison calculated using Wilcoxon Rank Sum Test; es: effect size; x: predicted 3’UTRs vs. 454 

known 3’UTRs; y: predicted 3’UTRs vs. predicted non-3’UTRs. (e) Density distributions 455 

comparing the “constrained non-conserved” (CNC) scores between known and predicted 3’UTRs. 456 

p: p-value of comparison calculated using Wilcoxon Rank Sum Test; es: effect size. 457 

 458 

 459 

 460 

 461 

 462 
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 463 

Figure 5.  464 

Functional significance of highly brain-specific unannotated 3’UTRs. (a) Density 465 

distributions comparing RBP binding and “constrained non-conserved” (CNC) scores between 466 

known, predicted 3’UTRs and predicted non-3’UTRs, categorised according to their tissue-467 

specificity. p: p-value of comparison calculated using Wilcoxon Rank Sum Test; es: effect size; x: 468 

predicted 3’UTRs vs. known 3’UTRs; y: predicted 3’UTRs vs. predicted non-3’UTRs. (b) GO terms 469 

enriched amongst the list of genes associated with highly brain-specific unannotated 3’UTRs. MF: 470 
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molecular function; CC: cellular component; BP: biological process. (c) Sunburst plot showing the 471 

cellular component SynGO terms over-represented in genes associated with highly brain-specific 472 

3’UTRs. The inner rings of the plot represent parent terms, while outer rings represent their more 473 

specific child terms. Rings are colour coded based on the enrichment q-value of the terms. (d) 474 

Genome browser view of the APP locus, showing intergenic ERs detected downstream of APP in 475 

the hypothalamus, and poly(A) sites from the poly(A) atlas data.  476 
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Methods 477 

ER data 478 

We collected the set of intergenic ERs identified by Zhang and colleagues [15] in 39 GTEx tissues, 479 

comprising of 11 non-redundant brain tissues and 28 non-brain tissues (total intergenic ERs = 480 

9,339,770). Each ER was associated to a protein-coding gene by extracting genes which 481 

connected to the ER via a junction read. In cases where no junction read was present, the nearest 482 

protein-coding gene was assigned to the ER. From this dataset, we selected intergenic ERs 483 

located within 10 kb of their associated gene, resulting in 237,540 ERs. In this dataset, 4% of the 484 

ERs were associated to a gene via a junction read. Based on the location of intergenic ERs with 485 

respect to their associated genes, i.e. whether upstream or downstream, we annotated their 486 

orientation as 5’ (92,148 ERs) or 3’ (145,392 ERs) respectively. The total genomic space of these 487 

intergenic ERs was calculated by adding the length of all ERs in each tissue. To further remove 488 

ERs which were unlikely to be 3’UTRs, we selected 3’ intergenic ERs with a length ≤ 2 kb – which 489 

is the third quartile limit of known 3’UTR exon lengths. We also removed small ERs with length ≤ 490 

40 nucleotides (nt) for which feature calculation can be problematic. This resulted in a set of 491 

93,934 ERs across all 39 tissues, and this set was used as input to F3UTER. 492 

Assembling positive and negative 3’UTR learning datasets 493 

For positive examples, we used known 3’UTRs, while for negative examples, we used regions in 494 

the genome which are known to be non-3’UTRs, namely 5’UTRs, internal coding exons (ICEs), 495 

lncRNAs, ncRNAs and pseudogenes. Ensembl human genome annotation (v94 GTF) was used 496 

to extract the genomic coordinates of these different genomic classes. For all classes in our 497 

training dataset, firstly, we selected high confidence annotations at the transcript level with 498 

transcript support level (TSL) = 1. Secondly, we collapsed and combined multiple transcripts 499 

associated with a single gene to make a consensus “meta-transcript” per gene. This merged all 500 

the overlapping regions emerging from the same gene. Finally, we extracted exons with width >= 501 

40 (nt) from these meta-transcripts to serve as learning examples.   502 

 503 

To capture regions of 3’UTR exons, 5’UTR exons and ICEs, transcripts from protein-coding genes 504 

were selected. For ICE examples, transcripts with at least three coding exons were further 505 

selected (as transcripts with less than three exons would not contain an internal exon) and their 506 
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first and last coding exons were removed to capture ICEs. To capture lncRNA, ncRNA and 507 

pseudogene exons, we selected annotations from the GTF file with the following gene biotypes: 508 

- lncRNA: "non_coding", "3prime_overlapping_ncRNA", "antisense", "lincRNA", 509 

"sense_intronic", "sense_overlapping", "macro_lncRNA" 510 

- ncRNA: "miRNA", "misc_RNA", "rRNA", "snRNA", "snoRNA", "vaultRNA" 511 

- pseudogene: "pseudogene", "processed_pseudogene", "unprocessed_pseudogene", 512 

"transcribed_processed_pseudogene", "transcribed_unitary_pseudogene", 513 

"transcribed_unprocessed_pseudogene", "translated_processed_pseudogene", 514 

"unitary_pseudogene", "unprocessed_pseudogene", "TR_V_pseudogene", 515 

"TR_J_pseudogene", "rRNA_pseudogene", "polymorphic_pseudogene", 516 

"IG_V_pseudogene", "IG_pseudogene", "IG_J_pseudogene", "IG_C_pseudogene" 517 

 518 

Calculating omic features 519 

For each region in the training dataset, we calculated several genomic and transcriptomic based 520 

features. Transcriptomic features were used to account for tissue-specific properties of 521 

transcribed elements in the genome. 522 

 523 

Genomic (sequence) based features:  524 

 525 

● Poly(A) signals (number of features, n=1): Previous studies have shown that 3’UTR 526 

sequences of most mammalian genes contain the consensus AAUAAA motif (or a close 527 

variant) 10-30 nt upstream of the poly(A) site [8]. These motif sites are recognised and 528 

bound by the cleavage and polyadenylation specificity factor (CPSF), and are referred to 529 

as polyadenylation signals (PASs). PASs are an important characteristic of 3’UTRs and 530 

are involved in the regulation of the polyadenylation process [8]. We used 12 commonly 531 

occurring PASs (AAUAAA, AUUAAA, AGUAAA, UAUAAA, AAUAUA, AAUACA, 532 

CAUAAA, GAUAAA, ACUAAA, AAUAGA, AAUGAA, AAGAAA) [9, 12, 35, 36] to construct 533 

a consensus position weight matrix (PWM). Each region was scanned for potential PWM 534 

matches and a binary outcome was reported i.e. whether the region contains a potential 535 

PAS or not. The “searchSeq'' function (with min.score= “95%”) from the R package 536 

“TFBSTools” [37] was used to detect PWM matches. 537 

 538 
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● Mono- and di-nucleotide frequency (n=20): The sequence composition in 3’UTRs, 539 

especially near the poly(A) sites has been shown to be important for polyadenylation [8, 540 

9, 35]. The frequency probability of each mono-nucleotide (i.e. A, T G, C; n=4) and di-541 

nucleotide pair (n=16; e.g. AA, AT, GC, GG) was calculated as the number of nucleotide 542 

occurrences divided by the length of the region. 543 

 544 

● DNA sequence conservation (n=1): Sequences of non-protein coding transcripts and 545 

un-translated regions are poorly conserved compared to protein-coding sequences [38, 546 

39]. For every genomic position, we extracted the phastCons score of the human genome 547 

(hg38) across 7 species pre-computed by the UCSC genome browser, and averaged it 548 

across the region to calculate mean sequence conservation score for each region. 549 

 550 

● Transposons (n=1): Previous studies have revealed that transposons are highly enriched 551 

within lncRNAs compared to protein-coding genes and other non-coding elements [40, 552 

41]. These transposable elements are considered to be the functional domains of 553 

lncRNAs. We calculated the total fraction of region covered with transposons – LINEs, 554 

SINEs, LTRs, DNA and RC transposons. The hg38 genomic coordinates of the 555 

transposable elements (Dfam v2.0) were downloaded from 556 

http://www.repeatmasker.org/species/hg.html. 557 

 558 

● DNA structural properties (n=16): The underlying sequence composition of a DNA 559 

molecule plays an important role in determining its structure. As a result, similar DNA 560 

sequences have a tendency to have similar DNA structures [42]. We calculated 16 561 

properties of DNA structures which can be predicted from a nucleotide sequence based 562 

on previous experiments. To quantitatively measure a structural property from a nucleotide 563 

sequence, we used pre-compiled conversion tables downloaded from 564 

http://bioinformatics.psb.ugent.be/webtools/ep3/?conversion [43]. Depending on the 565 

structural property, we extracted scores for each di-nucleotide or tri-nucleotide occurrence 566 

in the sequence from the conversion tables, and averaged the scores across the region. 567 

 568 

Transcriptomic based features: 569 

 570 

● Entropy efficiency (n=1): We measured the uniformity of read coverage across a region 571 

using entropy efficiency, as described in Gruber et al. [44]. The entropy efficiency (EE) of 572 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.434412doi: bioRxiv preprint 

http://www.repeatmasker.org/species/hg.html
http://bioinformatics.psb.ugent.be/webtools/ep3/?conversion
https://doi.org/10.1101/2021.03.08.434412
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

a region (x) was calculated as, 𝐸𝐸(𝑥)  =  − 
∑ 𝑝(𝑥𝑖)×log (𝑝(𝑥𝑖

𝑛
𝑖=1 ))

𝑙𝑜𝑔(𝑛)
; 𝑝(𝑥𝑖)  =  

𝑥𝑖

∑ 𝑥𝑗
𝑛
𝑗=1

 , 573 

where 𝑛 represents the length of the region and 𝑝(𝑥𝑖) is the read count at position 𝑖 divided 574 

by the total read count of the region. For each region, we calculated EE in 39 GTEx tissues 575 

and averaged it across all the tissues to obtain a baseline distribution of EE scores. 576 

 577 

● Percentage difference (n=1): We calculated the percentage difference (PD) between the 578 

read counts at the boundaries of a region. For read counts 𝑟1 and 𝑟2 measured at the 579 

boundaries of a region 𝑥, PD was calculated as: 𝑃𝐷(𝑥)  =  
|𝑟1− 𝑟2|

𝑚𝑒𝑎𝑛(𝑟1,𝑟2)
× 100. For each 580 

region, we calculated PD in 39 GTEx tissues and averaged it across all the tissues to 581 

obtain a baseline distribution of PD scores. 582 

 583 

Univariate and multivariate analysis 584 

For univariate analysis, we performed non-parametric Kruskal–Wallis test and proportion Z-test 585 

for continuous and categorical variables, respectively, to identify features with significant 586 

differences across all the genomic classes. We used UMAP [22] to visualise all the features in 587 

two-dimensional space. The UMAP analysis was performed using the R package “umap” with 588 

default parameters. The clusters were visualised as a 2D density and a scatter plot. Each data 589 

point was labelled and coloured according to its genomic class. 590 

 591 

To perform multivariate analysis, a feature matrix was generated where rows represented regions 592 

from the training dataset (n=179,968), and columns represented the quantified features (n=41). 593 

The features were scaled and centred in R using the preProcess function of R “Caret” package 594 

[45]. The elastic net multinomial logistic regression model was trained using the “glmnet” R 595 

package [46] with the following parameters: family = "multinomial", alpha=0.5, nlambda=25 and 596 

maxit=10,000. The random forest multinomial classifier was trained within Caret using the 597 

“randomForest” package [47] with default parameters (ntree = 500, nodesize = 1). We performed 598 

a 5-fold cross validation (repeated 20 times) to evaluate the performance of these multinomial 599 

classifiers, where the model was trained on 80% of the data (training dataset) and tested on 20% 600 

of the remaining data (validation dataset). Downsampling of the data was employed to correct for 601 

imbalance in the sample size of the classes. For each cross validation run, we produced a 602 

confusion matrix for each prediction class using the Caret’s confusionMatrix function and 603 

computed the false- positive and negative rates. Additionally, we calculated Cohen’s kappa, which 604 
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reports the accuracy of a model compared to the expected accuracy and is a much accurate 605 

measure of performance for imbalanced datasets. These metrics were averaged across all the 606 

cross validation runs for reporting purposes.  607 

F3UTER construction and evaluation 608 

We designed F3UTER as a binary classifier to categorise an ER into a 3’UTR (positive) or a non-609 

3’UTR (negative). This random forest classifier was implemented in R using Caret as the machine 610 

learning framework and “randomForest” as the machine learning algorithm within Caret. The 611 

random forest classifier was trained using the default parameters (ntree = 500, nodesize = 1). We 612 

performed a 5-fold cross validation (repeated 20 times) to evaluate the performance of the 613 

F3UTER. For each cross validation run, we calculated the performance metrics such as accuracy, 614 

kappa, sensitivity, specificity, ROC curve and precision-recall curve, using the caret’s 615 

confusionMatrix function. Variable importance was measured using mean decrease in accuracy 616 

and Gini coefficient, as natively reported by random forest. The Gini coefficient measures the 617 

contribution of variables towards homogeneity of nodes in the random forest tree. These metrics 618 

were averaged across all the cross validation runs for reporting purposes. For bias-variance trade-619 

off analysis, we trained F3UTER on sequentially increasing sample size of training data (0.1%, 620 

0.5%, 1%, 5%, 10%, 30%, 50%, 80% and 100%), hence sequentially increasing the complexity 621 

of the model. For each sample size value, a fraction of the training data was randomly selected, 622 

and a 5-fold cross validation was performed which captured all the performance metrics for both 623 

the training and validation datasets. This process was repeated 20 times for each sample size. 624 

To make 3’UTR predictions on ER datasets, the classifier with the highest kappa statistic was 625 

selected from the cross validation process. 626 

 627 

Validation of 3’UTR predictions in B cells 628 

Previously published RNA-seq and its corresponding 3’-end seq data in B cells [23] (two replicates 629 

each) was used for validating 3’UTR predictions (GEO repository: GSE111310; samples: 630 

GSM3028281, GSM3028282, GSM3028302 and GSM3028304). We processed each RNA-seq 631 

replicate individually and detected 3’ intergenic ERs using the pipeline detailed in Zhang et al. 632 

[15]. Analysed poly(A) site clusters associated with these RNA-seq samples were downloaded 633 

from poly(A) atlas [13]. These poly(A) site clusters were compared to Ensembl human genome 634 

annotation (v92) to identify sites which occur within the intergenic regions. F3UTER was applied 635 
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to 3’ intergenic ERs in B cells and the resulting predictions (with prediction probability > 0.6) were 636 

compared to intergenic poly(A) site clusters to calculate their overlap. Predictions with at least a 637 

1 bp overlap with a poly(A) site were considered to be overlapping. A permutation test was 638 

performed to inspect if the observed overlap between 3’UTR predictions and intergenic poly(A) 639 

sites is more than what we would expect by random chance. Using BEDTOOLS [48], the locations 640 

of 3’UTR predictions were shuffled in the intergenic genomic space on the same chromosome, 641 

hence generating random intergenic ERs with length, size and chromosome distribution similar 642 

to 3’UTR predictions in B cells. To shuffle the locations within the intergenic space, we excluded 643 

the genomic space covered by genes (all Ensembl bio-types) and intergenic ERs in B cells (both 644 

3’ and 5’). The overlap between these randomly generated intergenic ERs and poly(A) sites was 645 

then calculated, and this process was repeated 10,000 times to produce a distribution of expected 646 

overlap. The p-value was calculated as 
𝑥

𝑁
, where 𝑥 is the number of expected overlap greater than 647 

the observed overlap, and 𝑁 is the total number of permutations. The z-score was calculated as 648 

𝑂𝑜𝑏𝑠 − 𝑂𝑝𝑒𝑟𝑚

𝑆𝐷𝑝𝑒𝑟𝑚
, where 𝑂𝑜𝑏𝑠represents the observed overlap, 𝑂𝑝𝑒𝑟𝑚is the median of the permuted 649 

overlap, and 𝑆𝐷𝑝𝑒𝑟𝑚is the standard deviation of the permuted distribution. 650 

 651 

3’UTR predictions in 39 GTEx tissues 652 

A feature matrix of 3’ intergenic ERs was generated in each tissue. F3UTER was applied to each 653 

matrix to categorise intergenic ERs into 3’UTR (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 >  0.60) and non-3’UTR 654 

(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≤  0.60) predictions. For each tissue, the lengths of the 3’UTR 655 

predictions were added to calculate their total genomic space (in kb). To compare brain and non-656 

brain tissues, a two-sided Wilcoxon Rank Sum Test was applied to statistically compare the 657 

associated numbers between the two groups. To explore the biological relevance of 3’UTR 658 

predictions, they were categorised into four groups based on their tissue-specificity: absolute 659 

tissue-specific, highly brain-specific, shared and ambiguous. To do such categorisation, the 660 

genomic coordinates of ER predictions were compared across the 39 tissues. An ER which did 661 

not overlap any other ER across the tissues was labelled as “absolute tissue-specific” or present 662 

in only one tissue. On the other hand, for an ER which overlapped (≥ 1 bp) ERs from other tissues, 663 

we calculated the proportion of brain tissues in which the ER was detected. If more than 75% of 664 

the tissues were brain related, the ER was labelled as “highly brain-specific”. From the remaining 665 

data, ERs detected in at least five tissues, with their start and end coordinates within a 10 bp 666 
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window, were labelled as “shared”. All the remaining ERs which did not fall in any of the above 667 

categories were labelled as “ambiguous”.  668 

 669 

RBP and CNCR analysis 670 

The position weight matrices (PWMs) of RBP binding motifs in humans were collected from the 671 

ATtRACT database [25]. Motifs with less than 7 nt in length and with a confidence score of less 672 

than one, were removed to reduce false-positives in the motif matches. To remove redundancy 673 

between multiple motifs of a RBP, we further selected the longest available motif. This resulted in 674 

84 unique PWMs, which were then used for identifying potential RBP binding using tools from the 675 

MEME suite [49]. We used FIMO [50] with a uniform background to scan query regions for 676 

potential RBP motif matches. For each RBP motif and query sequence pair, we calculated 677 

normalised counts as the number of motif matches (with 𝑝 < 10−4) per 100 nt of query sequence. 678 

To summarise this analysis, we then calculated an overall RBP binding score for each query 679 

sequence by adding the normalised counts across all the RBPs. We used AME [51] with default 680 

parameters to compare binding enrichment of RBPs between highly brain-specific (query) and 681 

shared 3’UTR predictions (control). RBP motifs with an enrichment 𝑎𝑑𝑗𝑢𝑒𝑠𝑡𝑒𝑑 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 10−5 682 

were considered to be significantly over-represented in highly brain-specific 3’UTR predictions 683 

compared to shared 3’UTR predictions. Previously reported gene targets of TARDBP identified 684 

using iCLIP technology were extracted from the POSTAR2 database [52]. 685 

 686 

The CNC scores, as reported by Chen et al. [27], were used to quantify the occurrence of CNCRs 687 

within unannotated 3’UTRs. We extracted the CNC score for each 10 bp window and averaged it 688 

across the query region to calculate a mean CNC score for each query region. 689 

 690 

Calculating gene enrichment 691 

To investigate molecular functions and biological processes significantly associated with a gene 692 

list, we performed GO enrichment analysis using the ToppFun tool in the ToppGene suite [53]. 693 

GO terms attaining an enrichment q-value (false-discovery rate computed using Benjamini-694 

Hochberg method) < 0.05 were considered significant. Similarly, SynGO [28] was used to identify 695 

enriched GO terms (q-value < 0.05) associated with synaptic function. To calculate enrichment of 696 

genes associated with rare neurogenetic disorders, OMIM [54] genes related to neurological 697 
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disorders were used (1,948 genes). The list of genes associated with adult-onset 698 

neurodegenerative disorders was extracted from Genomic England Panel App (254 green 699 

labelled genes) [55]. A hypergeometric test was used to calculate the enrichment using the total 700 

number of protein-coding genes (22,686) as the ‘gene universe’. 701 

 702 

Data availability 703 

Code used to perform analyses in this study is publicly available at https://github.com/sid-704 

sethi/F3UTER. Accession numbers of all data used in this study are listed in methods. 705 
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Supplementary Figures 731 

 732 

Supplementary Figure S1.  733 

Univariate comparisons of features and genomic classes. Plots show the relationship 734 

between quantified features and genomic classes in the training dataset. A Kruskal-Wallis Test 735 

was used to compare continuous values of features across the classes, while a proportion Z-test 736 

was used for proportions. For each feature, the comparison across the classes was statistically 737 

significant with a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 2.2 × 10−16. 738 

 739 

 740 

 741 

 742 

 743 
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 744 

 745 

 746 

 747 

 748 

 749 

Supplementary Figure S2.  750 

UMAP visualisation of genomic features. UMAP representation of all 41 omic features, with 751 

elements labelled by genomic classes. 752 

 753 

 754 

 755 

 756 

 757 

 758 
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 759 

 760 

 761 

 762 

 763 

 764 

 765 

 766 
 767 

 768 

Supplementary Figure S3.  769 

Performance of multinomial classification models measured using 5-fold cross validation 770 

repeated 20 times. Boxplots comparing the accuracy and kappa of random forest multinomial 771 

classifier and elastic net multinomial logistic regression model, to classify different genomic 772 

classes. p: p-value calculated using Wilcoxon Rank Sum Test. 773 

 774 

 775 

 776 
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777 

 778 

Supplementary Figure S4.  779 

Contribution of features towards 3’UTR classification. Variable importance chart showing the 780 

importance of features in classifying 3’UTRs from other transcribed elements in the genome, as 781 

measured by mean decrease in accuracy and Gini. The features are ordered in decreasing order 782 

of their relative importance and grouped based on their type. 783 
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 784 

 785 

 786 

Supplementary Figure S5.  787 

Overlap between randomly selected intergenic ERs and poly(A) sites. Distribution of overlap 788 

between randomly selected intergenic ERs and poly(A) sites from 10,000 permutations. Operm: 789 

mean overlap of the permuted distribution; Oobs: observed overlap of 3’UTR predictions. 790 

 791 

 792 

 793 

 794 
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 795 

 796 

 797 

 798 

 799 

 800 

 801 
 802 

Supplementary Figure S6.  803 

F3UTER predictions across 39 GTEx tissues. Bar plot showing the number of predictions in 804 

each tissue, grouped and color-coded according to their prediction probability scores. Tissues are 805 

sorted in descending order of the total number of predictions in each tissue. The square boxes 806 

below the bars are color-coded to group the tissues according to their physiology. 807 

 808 

 809 

 810 
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 813 
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 816 
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 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 
 826 

Supplementary Figure S7.  827 

Categorisation of F3UTER predictions based on tissue-specificity. Bar plots showing the 828 

number of predictions grouped according to their tissue specificity across 39 tissues. Tissues are 829 

sorted in descending order of the number of predictions. The square boxes below the bars are 830 

color-coded to group the tissues according to their physiology. 831 
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 841 

 842 
 843 

Supplementary Figure S8.  844 

Unannotated 3’UTR associated with C19orf12 in brain. Genomic view of the C19orf12 locus 845 

displaying intergenic ERs and poly(A) sites from poly(A) atlas in the region. Two tracks are 846 

displayed for each tissue - the top track shows coloured boxes which represent the intergenic 847 

ERs, while the bottom track shows black lines which represent RNA-seq junction reads. 848 
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 857 

Supplementary Figure S9.  858 

Examples of highly brain-specific unannotated 3’UTRs. Genomic view of genes (top: SCN2A; 859 

middle: RTN2; bottom: OPA1) associated with an unannotated 3’UTR in brain, displaying 860 

intergenic ERs and poly(A) sites from poly(A) atlas in the region. 861 
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 869 

 870 

 871 

 872 

Supplementary Table 1.  873 

List of RBPs with significantly enriched binding in the brain-specific unannotated 3’UTRs 874 

compared to shared unannotated 3’UTRs (𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑝 < 10−5). The enrichment p-value of the 875 

motifs were adjusted for multiple tests using a Bonferroni correction. 876 

 877 

 878 

Rank RBP Name RBP Ensembl id p-value Adjusted p- 
value 

1 RBFOX1 ENSG00000078328 5.83E-21 1.78E-18 

2 KHSRP ENSG00000088247 4.12E-17 8.21E-15 

3 ERI1 ENSG00000104626 1.07E-15 3.85E-13 

4 TIAL1 ENSG00000151923 5.24E-15 2.41E-12 

5 ELAVL3 ENSG00000196361 6.95E-15 3.60E-12 

6 CELF1 ENSG00000149187 1.18E-12 1.16E-10 

7 SSB ENSG00000138385 3.96E-13 1.77E-10 

8 TARDBP ENSG00000120948 2.72E-12 5.09E-10 

9 PUM2 ENSG00000055917 1.55E-11 3.49E-09 

10 ZFP36L2 ENSG00000152518 7.52E-12 4.30E-09 

11 ZFP36 ENSG00000128016 7.52E-12 4.30E-09 

12 HNRNPDL ENSG00000152795 7.37E-11 9.14E-09 

13 AGO2 ENSG00000123908 6.50E-10 1.11E-07 

14 SRSF10 ENSG00000188529 6.02E-10 1.58E-07 

15 HNRNPAB ENSG00000197451 6.02E-10 1.58E-07 

16 RBM5 ENSG00000003756 3.52E-10 1.60E-07 

17 HNRNPA2B1 ENSG00000122566 4.09E-09 3.68E-07 

18 ZRANB2 ENSG00000132485 2.72E-09 5.80E-07 

19 SRSF3 ENSG00000112081 8.68E-09 1.49E-06 

20 TRA2B ENSG00000136527 8.68E-09 1.75E-06 

21 HNRNPD ENSG00000138668 8.12E-08 3.51E-05 

22 AKAP1 ENSG00000121057 5.94E-07 9.51E-05 

 879 

 880 

 881 

 882 

 883 

 884 
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