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Abstract 9 

Crosslinking mass spectrometry (Crosslinking MS) has developed into a robust technique that is 10 

increasingly used to investigate the interactomes of organelles and cells. However, the incomplete and 11 

noisy information in the spectra limits the numbers of protein-protein interactions (PPIs) that can be 12 

confidently identified. Here, we successfully leveraged chromatographic retention time (RT) 13 

information to aid the identification of crosslinked peptides from spectra. Our Siamese machine 14 

learning model xiRT achieved highly accurate RT predictions of crosslinked peptides in a multi-15 

dimensional separation of crosslinked E. coli lysate. We combined strong cation exchange (SCX), 16 

hydrophilic strong anion exchange (hSAX) and reversed-phase (RP) chromatography and reached 𝑅2 17 

0.94 in RP and a margin of error of 1 fraction for hSAX in 94%, and SCX in 85% of the predictions. 18 

Importantly, supplementing the search engine score with retention time features led to a 1.4-fold 19 

increase in PPIs at a 1% false discovery rate. We also demonstrate the value of this approach for the 20 

more routine analysis of a crosslinked multiprotein complexes. An increase of 1.7-fold in heteromeric 21 

crosslinked residue-pairs was achieved at 1% residue-pair FDR for Fanconi anaemia monoubiquitin 22 

ligase complex, solely using reversed-phase RT. Retention times are a powerful complement to mass 23 

spectrometric information to increase the sensitivity of Crosslinking MS analyses. 24 
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Introduction 25 

Crosslinking mass spectrometry (Crosslinking MS) reveals the topology of proteins, protein complexes, 26 

and protein-protein interactions.1 Fueled by experimental and computational improvements, the field 27 

is moving towards the analyses of interactomes of organelles and cells.1–3 The identification of 28 

crosslinked peptides poses three major challenges. First, the low abundance of crosslinked peptides 29 

compared to linear peptides decreases their chance for mass spectrometric observation. Second, the 30 

unequal fragmentation of the two peptides leads to a biased total crosslinked peptide spectrum match 31 

(CSM) score4,5. Third, the combinatorial complexity from searching all the possible peptide pairs in a 32 

sample increases the chance for random matches. These challenges increase from the analysis of 33 

individual proteins to organelles and cells. 34 

To address  the challenge of low abundance, Crosslinking MS studies routinely rely on chromatographic 35 

methods to enrich and fractionate crosslinked peptides1,2,6. Essentially all analyses contain at least one 36 

chromatographic step, by directly coupling reversed-phase (RP) chromatography separation to the 37 

mass spectrometer (LC-MS). Additional separation is frequently employed when more complex 38 

systems are being analysed. Strong cation exchange chromatography (SCX)7,8 was used for the analysis 39 

of HeLa cell lysate9 or murine mitochrondria10. Size-exclusion chromatography (SEC)11 was used to 40 

fractionate crosslinked HeLa cell lysate12 and Drosophila melanogaster embryos extracts13. Multi-41 

dimensional peptide pre-fractionation was used for the analysis of crosslinked human mitochondria 42 

(SCX-SEC)14 and M. pneumoniae (SCX-hSAX)15. Such multi-dimensional chromatography workflows can 43 

yield in the order of 10,000 CSM at 1-5% false discovery rate (FDR).14–17 44 

The identification of crosslinked peptides from spectra is however still challenged by the uneven 45 

fragmentation of the two peptides and the large search space that increase the odds of random 46 

matches. This is especially the case for heteromeric crosslinks as the size of their search space exceeds 47 

that of self-links, i.e. links falling within a protein or homomer16. Typically, database search tools use 48 

the precursor mass and fragmentation spectrum for the identification of peptides to compute a single 49 
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final score for each CSM. For linear peptides, post-search methods such as Percolator18 have been 50 

developed that train a machine learning predictor to discriminate correct from incorrect peptide 51 

identification. Percolator uses additional spectral information (features) such as charge, length, and 52 

other enzymatic descriptors of the peptide19 to compute a final support vector machine (SVM) score. 53 

Similarly, the crosslink search engine Kojak20 supports the use of PeptideProphet21,22 and XlinkX23 54 

supports Percolator18, while pLink224 and ProteinProspector4 have a built-in SVM classifier to re-rank 55 

CSMs. Although RT data is readily available, none of these tools use the, often multi-dimensional, RT 56 

information for improved identification in crosslinking studies. A prerequisite for this would be that 57 

retention times could be predicted reliably. 58 

For linear peptides, RT prediction has been implemented under various chromatographic conditions.25–59 

31 In contrast, RTs of crosslinked peptides have not been predicted yet. A suitable machine learning 60 

approach for this could be deep learning32. Deep neural networks have been successfully applied in 61 

proteomics, for example for de novo sequencing33 or for the prediction of retention times29,34 and 62 

fragment ion intensities35. Deep learning allows encoding peptide sequences very elegantly through, 63 

for example, recurrent neural network (RNN) layers. These layers are especially suited for sequential 64 

data and are common in natural language processing32. RNNs use the order of amino acids in a peptide 65 

to generate predictions without additional feature engineering. However, it is unclear how to encode 66 

the two peptides of a crosslink. 67 

Moreover, it is also unclear whether the knowledge of RTs could improve the identification of 68 

crosslinked peptides. A common scenario for an identified crosslink is that one of its peptides was 69 

matched with high sequence coverage, while the other was matched with poorer sequence coverage.4 70 

Such CSMs unfortunately resemble matches where one peptide is correct and the other is false (i.e. a 71 

target-decoy match or a true target and false target match). Another consequence of coverage gaps is 72 

the misidentification of noncovalently associated peptides as crosslinks.36 The severity of this coverage 73 

issue depends on the applied acquisition strategy37, crosslinker chemistry38, and the details of the 74 

implemented scoring in the search engine. Nevertheless, assuming RT predominantly depends on both 75 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.08.432999doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.432999
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

peptides of a crosslink, it could complement mass spectrometric information and thus improve existing 76 

scoring routines and lead to more crosslinks at the same confidence (i.e. constant FDR). 77 

In this study, we prove that analytical separation behavior carries valuable information about both 78 

crosslinked peptides and can improve the identification of crosslinks. For this we built a multi-79 

dimensional RT predictor for crosslinked peptides based on a proteome-wide crosslinking experiment 80 

comprising 144 acquisitions on an Orbitrap mass spectrometer from extensively fractionated peptides 81 

of the soluble high-molecular weight proteome of E. coli. We then investigated the benefits of 82 

incorporating the derived RT predictions into the identification process. In addition, we demonstrate 83 

the value of RT prediction for a purified multiprotein complex using the reversed-phase 84 

chromatography dimension only. 85 

Material and Methods 86 

Sample Preparation 87 

Crosslink samples were processed exactly as described in Lenz et al.16 with the exception that the 88 

crosslinker DSS was used. Briefly, cells were lysed by sonication, cleared from debris and the high-89 

molecular weight proteome enriched by ultrafiltration. This sample was then fractionated by size-90 

exclusion chromatography to give 44 fractions. The proteins of each fraction were crosslinked at 0.75 91 

mM DSS. The crosslinked samples were pooled and precipitated using acetone. Upon resuspending, 92 

the samples were derivatized by incubating 30 minutes at room temperature with 10 mM 93 

dithiothreitol followed by 20 mM iodoacetamide and proteolyzed using LysC and Trypsin. The digests 94 

were fractionated, first, by strong cation exchange chromatography (9 fractions) and the obtained 95 

fractions separated by hydrophilic strong anion exchange chromatography as the second separation 96 

dimension (10 pools). Samples were cleaned up in between and at the end of the procedures 97 

following the StageTip protocol39. 98 
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Spectra & Peptide Spectrum Match Processing 99 

All raw spectra were converted to Mascot generic format (MGF) using msConvert40. The database 100 

search with Comet41 (v. 2019010) was done with the following settings: peptide mass tolerance 3 101 

ppm; isotope_error 3; fragment bin 0.02; fragment offset 0.0; decoy_search 1; fixed modification on 102 

C (carbamidomethylation, +57.021 Da); variable modifications on M (oxidation, +15.99 Da). False 103 

discovery rate (FDR) estimation was performed for each acquisition. First, the highest scoring PSM 104 

for a modified peptide sequence was selected, then the FDR was computed based on Comet’s e-105 

value. Spectra were searched using xiSEARCH (v. 1.6.753)12, after recalibration of precursor and 106 

fragment m/z values, with the following settings: precursor tolerance, 3 ppm; fragment tolerance, 5 107 

ppm; missed cleavages, 2; missed monoisotopic peaks42, 2; minimum peptide length, 7; variable 108 

modifications: oxidation on M, mono-links for linear peptides on K,S,T,Y, fixed modifications: 109 

carbamidomethylated C. The specificity of the crosslinker DSS was configured to link K, S, T, Y, and 110 

the protein N-terminus with a mass of 138.06807 Da. The searches were run with the workflow 111 

system snakemake43. The FDR on CSM-level was defined as FDR = TD - DD / TT44, where TD indicates 112 

the number of target-decoy matches, DD the number of decoy-decoy matches and TT the number of 113 

target-target matches. Crosslinked peptide spectrum matches (CSMs) with non-consecutive peptide 114 

sequences were kept for processing45. PPI level FDR computation was done using xiFDR44 (v. 2.1.3 115 

and 2.1.5 for writing mzIdentML) to an estimated PPI-FDR of 1%, disabling the boosting and filtering 116 

options. CSM, peptide and residue-level FDR were fixed at 5%, protein group FDR was set to 100%. 117 

FDR estimations for self and heteromeric links were done separately. In xiFDR a unique CSM is 118 

defined as a combination of the two peptide sequences including modifications, link sites and 119 

precursor charge state. For the assessment of identified CSMs an entrapment database (described in 120 

the next section) as well as decoy identifications were used on both, CSM and PPI levels. PPI results 121 

were also compared against the APID46 and STRING47 databases (v11, minimal combined confidence 122 

of 0.15). 123 
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Database Creation 124 

The database of potentially true crosslinks was defined as Escherichia coli proteome (reviewed 125 

entries from Uniprot release 2019-08). This database was filtered further to proteins identified with 126 

at least a single linear peptide at a q-value48 threshold of 0.01, 𝑞(𝑡) = min
𝑠≤𝑡

𝐹𝐷𝑅 (𝑠), with the 127 

threshold t and score s. This resulted in 2850 proteins. In addition to the FDR estimation through a 128 

decoy database, we used an entrapment database. The proteins from the entrapment database 129 

represent the search space of false positive CSMs independent of E. coli decoys and were sampled 130 

from human proteins (UP000005640, retrieved 2019-05). E. coli decoys might fail in this task after 131 

machine learning if overfitting should have taken place. So, entrapment targets allow control for 132 

overfitting. For this, human target peptides were treated as targets and human decoy peptides as 133 

decoys. To avoid complications through false spectrum matches due to homology, we used blastp49 134 

(BLAST 2.9.0+, blastp-short mode, word size 2, e-value cutoff 100) and aligned all E. coli tryptic 135 

peptides (1 missed cleavage, maximum length 100) to the human reference. All proteins that showed 136 

peptide alignments with a sequence identity of 100% were removed from the human database. Only 137 

the remaining 9990 sequences were used as candidates in the entrapment database. For each of the 138 

2850 E. coli proteins a human protein was added to the database. To reduce search space biases 139 

from protein length and thus different number of peptides for the two organisms, we followed a 140 

special sampling strategy. The human proteins were selected by a greedy nearest neighbor approach 141 

based on the K/R counts and the sequence length. The final number of proteins in the combined 142 

database (E. coli & human) was 5700 (2850*2). 143 
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Fanconi anaemia monoubiquitin ligase complex data processing 144 

The publicly available raw files from an analysis of the BS3-crosslinked Fanconi anemia 145 

monoubiquitin ligase complex50 (FA-Complex) were downloaded from PRIDE together with the 146 

original FASTA file (PXD014282). The raw files were processed as described for the E. coli data (m/z 147 

recalibration and searched with xiSEARCH), followed by an initial 80% CSM-FDR filter for further 148 

processing. Due to the much smaller FASTA database (8 proteins), the entrapment database was 149 

constructed more conservative than for the proteome-wide E. coli experiment, i.e. for each of the 150 

target proteins, the amino acid composition was used to retrieve the nearest neighbor in an E. coli 151 

database. The FDR settings to evaluate the rescoring were set to 5% CSM- and peptide-pair level FDR, 152 

1% residue-pair- and 100% PPI-FDR using xiFDR without boosting or additional filters. The resulting 153 

links were visualized (circular view) and mapped to an available 3D structure (final refinement model 154 

‘sm.pdb’)51,52 using xiVIEW53. To ease the comparison of identified and random distances, a random 155 

Euclidean distance distribution was derived in three steps: first, all possible crosslinkable residue-pair 156 

distances in the 3D structure were computed. Second, 300 random ‘bootstrap’ samples with n 157 

distances were drawn (n= the number of identified residue-pairs at a given FDR) and third, the mean 158 

per distance bin was computed across all 300 samples. 159 

xiRT - 3D Retention Time Prediction 160 

The machine learning workflow was implemented in python and is freely available from 161 

https://github.com/Rappsilber-Laboratory/xiRT. xiRT is the successor of DePART29, which was 162 

developed for the retention time (RT) prediction of hSAX fractionated peptides based on pre-163 

computed features. xiRT makes use of modern neural network architectures and does not require 164 

feature engineering. We used the popular python packages sklearn54 and TensorFlow55 for processing 165 

(section S1 for more details). xiRT consists of five components (Fig. 1d, Fig. S1, Section S1): (1) The 166 

input for xiRT are amino acid sequences with arbitrary modifications in text format (e.g. Mox for 167 

oxidized Methionine). xiRT uses a similar architecture for linear and crosslinked peptide RT 168 

prediction. Before the sequences can be used as input for the network, the sequences are label 169 
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encoded by replacing every amino acid by an integer and further 0-padded to guarantee that all 170 

input sequences have the same length. Modified amino acids as well as crosslinked residues are 171 

encoded differently than their unmodified counterparts. (2) The padded sequences were then 172 

forwarded into an embedding layer that was trained to find a continuous vector representation for 173 

the input. (3) To account for the sequential structure of the input sequences, a recurrent layer was 174 

used (either GRU or LSTM). Optionally, the GRU/LSTM layers were followed by batch normalization 175 

layers. For crosslinked peptide input, the respective outputs from the recurrent layers were then 176 

combined through an additive layer (default setting). (4) Task-wise subnetworks were added for 177 

hSAX, SCX, and RP retention time prediction. All three subnetworks had the same architecture: three 178 

fully connected layers, with dropout and batch normalization layers between them. The shape of the 179 

subnetworks is pyramid-like, i.e. the size of the layers decreased with network depth. (5) Each 180 

subnetwork had its own activation function. For the RP prediction, a linear activation function was 181 

used and mean squared error (MSE) as loss function. For the prediction of SCX and hSAX fractions we 182 

followed a different approach. The fraction variables were encoded for ordinal regression in neural 183 

networks56. For example, in a three-fraction setup, the fractions (𝑓) were encoded as 𝑓1 =184 

[0, 0, 0], 𝑓2 = [1, 0, 0] 𝑎𝑛𝑑 𝑓3 = [1, 1, 0]. Subsequently, we chose sigmoid activation functions for the 185 

prediction layers and defined binary cross entropy (BC) as loss function. To convert predictions from 186 

the neural network back to fractions, the index of the first entry with a predicted probability of less 187 

than 0.5 was chosen as the predicted fraction. The overall loss was computed by a weighted sum of 188 

the 𝑀𝑆𝐸𝑅𝑃, 𝐵𝐶𝑆𝐶𝑋 and 𝐵𝐶ℎ𝑆𝐴𝑋. The weight parameters are only necessary when xiRT is used to 189 

predict multiple RT dimensions at the same time (multi-task). To predict a single dimension (single-190 

task, e.g.  RP only), the weight can be set to 1. The number of neurons, dropout rate, intermediate 191 

activation functions, the weights for the combined loss, number of epochs and other parameters in 192 

xiRT were optimized on linear peptide identification data. Reasonable default values are provided 193 

within the xiRT package. For optimal performance, further optimization might be necessary for a 194 

given task.  195 
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Cross-Validation and Prediction Strategy 196 

Cross-validation (CV) is a technique to estimate the generalization ability of a machine learning 197 

predictor57 and is often used for hyper-parameter optimization. We performed a 3-fold CV for the 198 

hyper-parameter optimization on the linear peptide identification data from xiSEARCH, excluding all 199 

identifications to the entrapment database (section S2 and Fig. S2 for details). We defined a coarse 200 

grid of parameters (Tab. S1) and chose the best performing parameters based on the average total 201 

(unweighted) loss, 𝑅𝑅𝑃
2  and accuracy across the CV folds. Further, we define the relaxed accuracy 202 

(racc) to measure how many predictions show a lower prediction error than |1|. We then repeated 203 

the process with an adapted set of parameters (Tab. S2). In addition to the standard CV strategy, we 204 

used a small adjustment: per default, in k-fold cross-validation, the training split consists of k-1 parts 205 

of the data (folds) and a single testing fold. However, we additionally used a fraction (10%) from the 206 

training folds as extra validation set during training. The validation set was used to select the best 207 

performing classifier over all epochs. The model assessment was strictly limited to the testing folds. 208 

This separation into training, validation and testing was also used for the semi-supervised learning 209 

and prediction of RTs, i.e. when xiRT was used to generate features to rescore CSMs previously 210 

identified from mass spectrometric information. In this scenario, the CV strategy was employed to 211 

avoid the training and prediction on the same set of CSMs. In xiRT, a unique CSM is defined as 212 

combination of the two peptide sequences, ignoring link sites and precursor charge. 213 

Supervised Peptide Spectrum Match Rescoring 214 

To assess the benefits of RT predictions, we used a semi-supervised support vector (SVM) machine 215 

model. The implementation is based on the python package scikit-learn58 in which optimal 216 

parameters are determined via cross-validation. The input features were based on the initial search 217 

score (for FA-complex only) and differences between predicted and observed RTs. For each 218 

crosslinked peptide, three predictions were made per chromatographic dimension: for the 219 

crosslinked peptide, for the alpha peptide and the beta peptide. Additional features were engineered 220 

depending on the number of chromatographic dimensions and included the summed, absolute or 221 
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squared values of the initial features (Tab. S3 for all features). For example, for three RT dimensions, 222 

the total number of features was 43. The data for the training included all CSMs that passed the 1% 223 

CSM-FDR cutoff (self / heteromeric, TT, TD, DDs) and TD/DD identifications that did not pass this 224 

cutoff. TTs were labeled as positive training examples, TD and DDs (DXs) were labeled as negative 225 

training examples.  226 

To stratify the k-folds during CV, the CSMs were binned into k xiSCORE percentiles. Afterwards, they 227 

were sampled such that each score range was equally represented across all CV folds. When the 228 

positive class was limited to the TT identifications at 1% CSM-FDR, the number of negative classes 229 

was usually larger than the number of positive classes. To circumvent this, for each CV split, a 230 

synthetic minority over-sampling technique (SMOTE)59 was used to generate a balanced number of 231 

positive and negative training samples (here only used for the FA-complex data). SMOTE was applied 232 

within each CV fold to avoid information leakage. A 3-fold CV was performed for the rescoring. In 233 

each iteration during the CV, two folds were used for the training of the classifier and the third fold 234 

was used to compute an SVM score. During this CV step, a total of three classifiers were trained. The 235 

scores for all TT-CSMs that did not pass the initial FDR cutoff were computed by averaging the score 236 

predictions from the three predictors. For all CSMs passing the initial FDR cutoff, rescoring was 237 

performed when the CSM occurred in the test set during the CV. The final score was defined as: 238 

𝑥𝑖𝑟𝑒𝑠𝑐𝑜𝑟𝑒𝑑 =  𝑥𝑖𝑆𝐶𝑂𝑅𝐸 +  𝑥𝑖𝑆𝐶𝑂𝑅𝐸 ×  𝑆𝑉𝑀𝑠𝑐𝑜𝑟𝑒, where 𝑆𝑉𝑀𝑠𝑐𝑜𝑟𝑒 was the output from the SVM 239 

classifier and 𝑥𝑖𝑆𝐶𝑂𝑅𝐸  the initial search engine score.  240 

Feature Analysis 241 

The KernelExplainer from SHAP60 (Shapley Additive exPlanations) was used to analyze the importance 242 

of features derived from the SVM classifier. SHAP estimates the importance of a feature by setting its 243 

value to “missing” for an observation in the testing set while monitoring the prediction outcome. We 244 

used a background distribution of 200 samples (100 TT, 100 TD) from the training data to simulate 245 

the “missing” status for a feature. SHAP values were then computed for 200 randomly selected TT 246 

(predicted to be TT) that were not used during the SVM training. SHAP values allow to directly 247 
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estimate the contributions of individual features towards a prediction, i.e. the expected value plus 248 

the SHAP values for a single CSM sums to the predicted outcome. For a selected CSM, a positive 249 

SHAP value contributes towards a true match prediction. For the interpretability analysis (SHAP) of 250 

the learned features in xiRT, the DeepExplainer was used (section S3). 251 

In addition, we performed dimensionality reduction using UMAP61 on the RT feature space for 252 

visualization purposes (excluding the search engine score). UMAP was run with default parameters 253 

(n_neighbors=15, min_dist=0.1) on the standardized feature values. The list of used features for the 254 

multi-task learning setup is available in Tab. S3. 255 

Statistical Analysis 256 

Significance tests were computed using a two-sided independent t-test with Bonferroni correction. 257 

The significance level α was set to 5%.  258 

Data Availability 259 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 260 

(http://proteomecentral.proteomexchange.org) via the jPOST partner repository62‡with the dataset 261 

identifier PXD020407 and DOI 10.6019/PXD020407. Raw data of the FA-Complex is available via the 262 

previously published PRIDE identifier (PXD014282). Additional files and intermediate results are 263 

available via Zenodo (10.5281/zenodo.4270324). Source data are provided with this manuscript. 264 

Code Availability 265 

The developed python package is available on the python package index and on GitHub 266 

(https://github.com/Rappsilber-Laboratory/xiRT). 267 

 
‡ Access: https://repository.jpostdb.org/preview/1564483676042143f9d3ae, key: 3194 
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Results and Discussion 268 

This section covers 1) a description of the experimental workflow and the motivation, 2) the 269 

evaluation of the developed retention time predictor, 3) an interpretability analysis of the deep 270 

neural network, 4) an analysis of the RT features and their importance for rescoring, 5) the 271 

evaluation of the rescoring results from an E. coli lysate, and 6) the evaluation of the rescoring results 272 

from a routine crosslinking MS experiment, i.e. the analysis of a multiprotein complex (FA-complex). 273 

A Substantial Fraction of Crosslinks below the Confidence Threshold are Correct 274 

Crosslinked peptides belonging to the high-molecular weight E. coli proteome were deep-275 

fractionated along three chromatographic dimensions (hSAX, SCX and RP). This 3D fractionation 276 

approach led to 144 LC-MS runs as some of the 90 fractions contained enough material for repeated 277 

analysis. The resulting data were searched with an entrapment database approach (Fig. 1a) leading 278 

to 11196 CSMs (11072 TT, 87 TD, 37 DD, Fig. S3) at 1% CSM-FDR, separating self and heteromeric 279 

CSMs16,44,63. The human entrapment database allows to assess error, independently of the target-280 

decoy approach. This will play a critical role here as E. coli decoys will be used for the machine 281 

learning-based rescoring (but not for the RT prediction). Judged by a set of peptide characteristic 282 

metrics (e.g. peptide length, pI, GRAVY) the human entrapment database resembles the properties of 283 

the E. coli target database (Fig. S4). 284 

Before attempting RT prediction and subsequent complementation of search scores, we investigated 285 

the extent of false negatives, approximated here by PPIs present in STRING47 or APID46 database. At 286 

1% CSM-FDR, 110 such ‘validated’ (val) protein-protein interactions were identified. 10%, 30% and 287 

50% CSM-FDR returned 226, 278 and 418 validated PPIs, respectively (Fig. 1b). When raising the 288 

CSM-FDR from 1% to 50% we thus saw a nearly 4-fold increase in the detectable number of validated 289 

PPIs. In contrast, using a pessimistic approach of semi-randomly drawing pairs of E. coli proteins from 290 

the STRING/APID (first protein) and the search database (second protein) yielded purely by chance 291 

10, 22, 44, and 91 overlapping PPIs with STRING or APID for 1%, 10%, 30% and 50% CSM-FDR cutoffs, 292 
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respectively. While this shows that loosening the FDR threshold increases validated PPIs also by 293 

chance, the actually observed number is much higher (418 versus 91 at 50% CSM-FDR). This means 294 

that there is a substantial number of valid PPIs with insufficient match confidence. 295 

The underlying scoring challenge is essential to the identification of peptides in general. The plethora 296 

of search engines for linear64 and crosslinked peptides65 use spectral characteristics differently for 297 

their scoring. In xiSEARCH, the final score is a composite that incorporates spectral metrics such as 298 

explained intensity and matched number of fragments. Empirically, we observe a fast decrease in the 299 

search engine score (Fig. 1c) with increasing FDR. This indicates that at higher FDRs spectral matching 300 

metrics might be suboptimal. Poor spectral quality, inefficient peptide fragmentation or random 301 

fragment matching all influence the search engine score negatively. RT information could 302 

complement MS information but this would require accurate RT prediction of crosslinked peptides.  303 

Accurate Multi-dimensional Retention Time Prediction for Crosslinked Peptides 304 

RT prediction for crosslinked peptides has not yet been achieved. One reason for this is the challenge 305 

of encoding a crosslinked pair of peptides for machine learning. We overcame this here using a 306 

Siamese neural network as part of a new machine learning application, xiRT (Fig. 1d), which allowed 307 

the incorporation of RTs into a rescoring workflow (Fig. 1e). The Siamese part of the network 308 

(embedding layer and recurrent layer) shares the same weights for both peptides. Practically, the 309 

sharing of weights leads to consistent predictions, independent of the peptide order. After the 310 

recurrent layer, the two outputs were combined and passed to three subnetworks consisting of 311 

dense layers with individual prediction layers (details on the architecture are available in Fig. S1). In 312 

this multi-task learning setup, the network simultaneously learned to predict the hSAX, SCX and RP 313 

RT through a single training step. Multi-task learning can improve the overall performance of 314 

predictors by forcing the network to learn a robust representation of the input data.66 315 

The training and evaluation of xiRT followed a CV strategy that avoided the simultaneous learning 316 

and prediction on overlapping parts of the data (Methods, Fig. 2a). We used a 3-fold CV strategy 317 
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where two folds were used for training (excluding 10% for the validation throughout the training 318 

epochs) and one fold for testing/prediction. All CSMs with an FDR < 1% were used during CV. For the 319 

remaining CSMs, the best predictor (with the lowest total loss) was used to predict the RTs.  320 

To achieve the best possible prediction performance, hyper-parameters of the network were 321 

optimized. Since extensive hyper-parameter optimization on a small data set can lead to overfitting, 322 

we initially optimized a large part of hyper-parameters using 20,802 unique linear peptide 323 

identifications at 1% FDR. The final parameters for the Siamese network architecture for crosslinks 324 

were obtained by a small grid-search (6,453 unique peptide-pairs at 1% CSM-FDR; Fig. S5). 325 

Using these parameters, we evaluated the learning behavior during the training time (epochs) across 326 

the CV folds. The training behavior on the three CV folds was similar and reached a stable trajectory 327 

after approximately 15 epochs (Fig. 2b). Based on very similar error trends on validation and training 328 

sets, we concluded to have reached a state where neither overfitting nor underfitting occurred. The 329 

overall performance across the prediction folds was comparable in terms of accuracy (hSAX: 61%  330 

1.1, SCX: 47%  1.7) and MSE (11.58  2.0)(Fig. 2c). Comparing single-task and multi-task 331 

configurations of xiRT revealed no significant differences in the prediction accuracy but greatly 332 

reduced run times (Fig. S6-7). Note that we estimated the theoretical boundaries given the 333 

ambiguous elution behavior (i.e. peptide elution across multiple chromatographic fractions) for SCX 334 

at 65% accuracy and for hSAX at 73% accuracy (Tab. S4, Fig. S8). Most of the predictions showed only 335 

a small error, and thus a high relaxed accuracy: for hSAX 94%  0.0 and for SCX 87%  1.15 of the 336 

predictions were within a range of  1 fraction (Fig. 2d-e). The 𝑅𝑅𝑃
2  of 0.94  0.01 also showed a 337 

predictable relationship for the RP dimension (Fig. 2f). The consistent accuracy and 𝑅2 results across 338 

CV folds demonstrates reproducible training and prediction behavior which reduces unwanted biases 339 

from the different CV folds. In conclusion, RTs of crosslinked peptides can robustly be learned within 340 

a data set, making them available as features in a CSM rescoring framework. 341 
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It was difficult to compare our RT predictions to other studies which used SCX67 or hSAX29 for multiple 342 

reasons: 1) there is currently no other model that predicts the RT of crosslinked peptides, 2) the 343 

recent SSRCalc67 study (SCX) for linear peptides used a much larger data set of 34,454 unique 344 

peptides and the fractionation was much more fine-grained (30 - 50 fractions). Similarly, the hSAX29 345 

study on linear peptides used a much finer fractionation (30 fractions) and a different methodology 346 

to encode the loss function during the machine learning. 3) Applied gradients and liquid 347 

chromatography conditions can change the elution behavior quite drastically. In our study, the 348 

number of observations was neither for hSAX nor for SCX equally distributed but varied between 349 

~200 and ~2000 CSMs per fraction (Fig. S3). Since we employed a partially exponential gradient 350 

during the chromatographic fractionation, the degree of peptide separation varied for earlier and 351 

later fractions.  352 

Given that we had less data to train on than recent RT predictions of linear peptides, we evaluated 353 

how the numbers of observations influenced the prediction accuracy (𝑅𝑅𝑃
2 + Acchsax + 𝐴𝑐𝑐𝑠𝑐𝑥 , Fig. 354 

2g). The learning curve showed two important characteristics: first, the prediction performance over 355 

CV folds was very reproducible. This means that predictions were robust even with very moderate 356 

data quantity. Second, the maximal performance was achieved with approximately 70%-100% of the 357 

data points (100% corresponding to 6453 total CSMs, 3871 for training, 431 for validation, 2151 for 358 

prediction). Given that a first plateau was reached with 30% of the data, it is unclear if the final 359 

prediction accuracy constitutes another local optimum or the limit of the prediction accuracy. The 360 

individual task metrics showed that the RP behavior seemed to be easier for the model to learn than 361 

the ordinal regression tasks (SCX, hSAX, Fig. S9). The RP behavior could be accurately predicted from 362 

approximately 60% of the data points, while the maximum accuracy for hSAX and SCX dimensions 363 

was only achieved by using 80% - 100% of the data. In other words, while using even fewer CSMs 364 

might be possible when predicting RP RTs, one would expect a reduced accuracy in the hSAX/SCX 365 

dimensions. 366 
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An approach to reduce the number of required CSMs would be to leverage the abundantly available 367 

data on linear peptides for transfer learning. Indeed, a recent study showed that transfer learning 368 

across different peptide identification results works well for linear peptides34. However, in our hands, 369 

pretraining a network from linear peptides and applying the same weights to the Siamese part of the 370 

network neither improved the performance nor reduced the training time for crosslink RT predictions 371 

(data not shown). In contrast, a robust and accurate RT prediction could be achieved on a 372 

multiprotein complex crosslinking study (FA-complex, see below) when first training on the E. coli 373 

CSMs (Fig. S10). Another possibility to increase the training data size and robustness during CV is to 374 

increase the number of folds, e.g. 5- or 10-fold, at the cost of runtime. Increasing the expedience of 375 

xiRT, we also implemented transfer learning for cases when the number of fractions differs between 376 

the initial model and the new prediction task. 377 

Explainable Deep Learning Reveals Amino Acid Contributions 378 

Using the SHAP package, we set out to explain predictions made by xiRT. For instance, when a 379 

specific crosslinked peptide was analyzed, residue-specific contributions towards the predicted RT 380 

could be computed (Fig. S11). The residues D, E, Y and F displayed high SHAP values indicating a 381 

stronger retention during hSAX separation in a randomly chosen peptide. Looking at a specific 382 

crosslinked peptide in SCX (Fig. S12), the SHAP values highlighted that K and R were the most 383 

important residues contributing towards later peptide elution. As one might expect, crosslinked K 384 

residues contributed much less towards later elution times than the stronger charged, unmodified K 385 

residues. Investigating the SHAP values for a collection of CSMs revealed additional contributions 386 

from W for hSAX and H for SCX while returning hydrophobic residues Y, F, W, I, L, V and M for RP (Fig. 387 

S13), revealing residue contributions in crosslinked peptides as seen in the respective analyses of 388 

linear peptides29,67,68. In summary, the SHAP values were good estimates for the individual RT 389 

contributions of the amino acid residues.  390 

Next, we investigated the network architecture and the learned feature representations more closely 391 

(Section S4). As first analysis, the dimensionality reduced embedding space across the network was 392 
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analyzed (Fig. S14). This revealed that the shared sequence-specific layer already captured the RP 393 

properties quite well, while the hSAX and SCX properties were not as clearly captured. As expected, 394 

the separation of CSMs according to RT increased the further the features propagated through the 395 

network. In the last layer, the RP and hSAX sub-networks reached a very good separation, while in 396 

the SCX subtask CSMs remained moderately separated in two dimensions. 397 

RT Characteristics for Unsupervised Separation of True and False CSMs  398 

Now that we established the RT prediction of crosslinked peptides, we computed a set of 399 

chromatographic features to explore their ability to separate true from false CSMs (Tab. S3). 400 

Dimensionality reduction was computed for RP only (13 chromatographic features) and for SCX-401 

hSAX-RP (43 chromatographic features) predictions (Fig. 3a-b). Both chromatographic feature sets 402 

revealed good separation possibilities for confident TT (99% true, given 1% CSM-FDR) and TD (100% 403 

false) identifications in two-dimensional space. For the RP analysis, the TD E. coli CSMs and TT Mix / 404 

TD Mix CSMs were enriched in one area of the plot (the lower right part, Fig. 3a). In contrast, the 405 

subset of confident TT E. coli CSMs were distributed outside this area. As one would expect for two 406 

sets of random matches, the CSMs from the entrapment database (TT Mix, TD Mix) closely followed 407 

the distribution of TD E. coli CSMs. The areas populated by the known false matches were also 408 

populated by an equal number of presumably false TT matches. When the features of all three RT 409 

dimensions were considered, the separation of true and false CSMs further improved (Fig. 3b). Again, 410 

the distributions of TD E. coli CSMs and entrapment CSMs behaved similarly. Interestingly, few CSMs 411 

that passed the 1% FDR threshold were located in regions dominated by false identifications. This 412 

might identify them as part of the expectable fraction of 1% false positive identifications. 413 

Importantly, the described separation was achieved unsupervised on RT features alone, i.e. without a 414 

search engine score or target-decoy labels.  415 

To test the transferability of our findings, we also ran xiRT with unfiltered pLink2 results (section S4 416 

and Fig. S15). The prediction performance from Q-value filtered CSMs was similar to the results with 417 

xiSEARCH (Fig. S15a-c). A two-sided t-test between hSAX, SCX and RP errors for TT and TDs revealed 418 
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significant differences in the respective error distributions of the pLink2 predictions (Fig. S15d). 419 

Importantly, the separation of true and false matches in two-dimensional space was also possible 420 

with pLink2 identifications (Fig. S15e). In summary, xiRT can learn retention times irrespective of the 421 

used search engine and the learned chromatographic features alone carry substantial information to 422 

separate true from false matches. 423 

To investigate the relevance of multi-dimensional RT predictions for the identification of crosslinked 424 

peptides, we first supplemented each CSM with RT features. Then, we performed a semi-supervised 425 

rescoring and evaluated the trained SVM model using the SHAP framework. We chose to analyze 426 

SHAP values for the 15 most important features for TT observations (FDR > 1%) that were predicted 427 

to be a correct TT identification (Fig. 3c). This analysis revealed a similar magnitude for all 15 SHAP 428 

values implying that a single feature alone is insufficient to recognize false matches. Notably, the top 429 

5 features contained features from RP, hSAX and SCX predictions which indicates that each 430 

chromatographic dimension carried relevant information for the rescoring. Because 11 of the 15 431 

features were predictions considering only one of the two peptides and not directly derived from 432 

peptide-pairs, the predicted RTs displayed a larger error. This analysis suggests that an RT prediction 433 

model for linear peptides can add valuable information for crosslink analysis. In general, the model 434 

learned mostly that low errors in the RT dimensions indicate true positive identifications. Thus, the 435 

model implicitly learned that the RT of a crosslinked peptide should differ from the RT of the 436 

individual peptides. This might become useful especially for distinguishing consecutive45 from 437 

crosslinked peptides or when dealing with gas-phase associated peptides36.  438 

Rescoring Crosslinked Peptides Enhances their Identification 439 

Before computing a combined score, we compared the CSM scores based on mass spectrometric 440 

information (xiSCORE) and RT features (SVM score, Fig. 4a). Both scores largely agreed. Heteromeric 441 

CSMs passing 1% CSM-FDR yielded high SVM scores. Also, most target-decoy CSMs achieved a low 442 

SVM score (Fig. 4a, right) and a low xiSCORE (Fig. 4a, top). The SVM score distribution of the TDs 443 

matched closely the distribution of TTs in the low scoring area, which indicated that they still 444 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.08.432999doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.432999
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

modeled random TT matches and that overfitting was avoided. Interestingly, the TTs were 445 

overrepresented in the low scoring area for the xiSCORE but not for the SVM score, suggesting that 446 

true TTs remained hidden among the random matches when using xiSCORE alone. The broad SVM 447 

score distribution of TTs indicated that the rescoring process could be optimized. In conclusion, 448 

neither of the mass spectrometric information (xiSCORE) nor the RT information (SVM score) seem to 449 

reveal all true CSMs.  450 

As a combination of both approaches should yield better results than either alone, we combined the 451 

SVM score with the xiSCORE. We evaluated the impact of rescoring CSMs on the number and quality 452 

of identified PPIs, as PPIs are typically the objective of large-scale crosslinking MS experiments. 453 

Heteromeric CSMs increased by 1.7-fold and heteromeric PPIs increased by 1.4-fold (Fig. 4b). Self-454 

links increased only marginally in agreement with their smaller search space and accordingly lower 455 

random match frequency. Essentially, nearly all self-links were identified exhaustively based on mass 456 

spectrometric data alone. In contrast, RT information substantially improved the identification of 457 

heteromeric CSMs. Further gains might be possible by directly combining RT features with mass 458 

spectrometric features (and possibly also other) for supervised scoring.  459 

Likely, the benefits of RT predictions for the rescoring depend on the data set and applied 460 

chromatographic separations. On the E. coli data, we therefore performed additional analyses where 461 

we limited the rescoring to only use a subset of the chromatographic dimensions (Tab. S5). The 462 

number of identified CSMs for heteromeric links increased from 724 in the reference to 902 (RP 463 

only), 977 (SCX-RP), 1092 (hSAX-RP) and 1199 (SCX-hSAX-RP). Likewise, PPIs increased from 109 to 464 

135, 131, 157, 152, respectively (Tab. S5). As observed above, gains can be expected from each 465 

chromatographic dimension. When having to choose one ion chromatography, the hSAX dimension 466 

seemed more useful than the SCX dimension which could arise from the better prediction 467 

performance or more complex separation mechanisms. Importantly, even using RP RT alone already 468 

led to a marked gain in heteromeric PPIs (see also next section). 469 
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To systematically evaluate the additionally identified PPIs from all three RT dimensions, we 470 

compared them to the originally identified PPIs based exclusively on xiSCORE. In addition, the 471 

STRING/APID databases and a larger set of PPIs from a larger study16 served as extra references for 472 

validation. Almost all PPIs found in the original dataset by xiSCORE were also contained in the 473 

rescored data set (91%). 85% of the newly identified PPIs were either found in the data set from Lenz 474 

et al., in STRING/APID or both. Among the eight PPIs unique to the rescored data set, only one 475 

involved a human protein from the entrapment database (Fig. 4c). The remaining seven PPIs might 476 

constitute genuine PPIs. Note that the overall percentage of PPIs involving human proteins was 477 

reduced by rescoring. Since all human target proteins were included in the positive training data, this 478 

is an important indicator of a well-behaved model. Deepening trust further, almost all novel PPIs 479 

were identified with multiple CSMs (Fig. 4d). Finally, we selected the subnetwork of the RNA 480 

polymerase to investigate the additionally identified PPIs in a well-characterized interaction 481 

landscape (Fig. 4e). Indeed, all interactions added by RT-based rescoring were already reported in 482 

APID. In summary, all our evidence points at the successful complementation of MS information by 483 

RT, at least for a proteome-wide crosslinking analysis. It remained to be seen, however, if this could 484 

also be leveraged in more routine multiprotein complex analyses. 485 

Multiprotein Complex Studies Also Benefit from the RT Prediction 486 

Many crosslinking MS studies investigate multiprotein complexes and rely on only few 487 

chromatographic dimensions. We therefore evaluated the benefit of predicted RTs for the analysis of 488 

the FA-complex, an eight-membered multiprotein complex that was crosslinked using BS3. Here, the 489 

search engine score was supplemented exclusively with RP RT predictions during the rescoring. By 490 

using transfer learning, the small number of CSMs (692 unique CSMs, without considering charge 491 

states) found in this multiprotein complex analysis were sufficient to achieve accurate RP predictions 492 

(Fig. S10). The resulting crosslinks at 1% residue-pair FDR (lower levels set to 5%) showed an increase 493 

of 36 (+10%) self- and 53 (+70%) heteromeric residue-pairs. Importantly, the rescored links showed 494 

no indication of increased hits to the entrapment database (Fig. 5a) indicating that no overfitting 495 
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occurred during the rescoring. At the same time, heteromeric PPIs already identified before rescoring 496 

received additional support. For example, the number and sequence coverage of links increased 497 

between FAAP100 (“100”) and FANCB (“B”), FANCA (“A”) and FANCB, and FANCA and FANCG (“G”). 498 

Overall, the heteromeric links increased 1.7-fold with an even higher proportional increase in 499 

‘verified’ links, i.e. fitting the available structure, by 1.9-fold (Fig. 5b).  The derived distance 500 

distribution of newly identified links is dissimilar from a random distribution and shows no 501 

indications of reduced quality (Fig. 5c). Applying this ‘structural validation’ on its own might be 502 

optimistic69, however, in summary our rigorous quality control ensures trustworthy results.  It is 503 

currently unclear in how far even smaller datasets could benefit from xiRT. Generally, to improve 504 

prediction performance, pre-training on larger data sets will lead to better generalization abilities of 505 

the predictor. Subsequently, also smaller data sets can be used for accurate RT prediction. To 506 

additionally benefit from sample specific information, increasing the cross-validation splits will utilize 507 

larger parts of the data during training. In any case, our successful analysis of a multiprotein complex 508 

supplemented with only RP features highlights the broad applicability of xiRT.  509 

Conclusion 510 

Using a Siamese network architecture, we succeeded in bringing RT prediction into the Crosslinking 511 

MS field, independent of separation setup and search software. Our open source application xiRT 512 

introduces the concept of multi-task learning to achieve multi-dimensional chromatographic 513 

retention time prediction, and may use any peptide sequence-dependent measure including for 514 

example collision cross section or isoelectric point. The black-box character of the neural network 515 

was reduced by means of interpretable machine learning that revealed individual amino acid 516 

contributions towards the separation behavior. The RT predictions – even when using only the RP 517 

dimension – complement mass spectrometric information to enhance the identification of 518 

heteromeric crosslinks in multiprotein complex and proteome-wide studies. Overfitting does not 519 

account for this gain as known false target matches from an entrapment database did not increase. 520 
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Leveraging additional information sources may help to address the mass-spectrometric identification 521 

challenge of heteromeric crosslinks. 522 
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 709 

Figure 1: Workflow overview. a) Experimental and data analysis workflow. The soluble high-710 

molecular weight proteome of E. coli lysate was crosslinked with disuccinimidyl suberate (DSS) and 711 

the digest sequentially fractionated by SCX (9 fractions collected), hSAX (10 pools collected) and 712 

finally by RP coupled to the MS. The protein database for the crosslink search was created by a linear 713 

peptide search with Comet and a sequence-based filter using BLAST. For each E. coli protein in the 714 

final database a human protein was added as a control. b) Potential for false negative PPI 715 

identifications. Verified PPIs are estimated from matches to the STRING/APID databases. PPIs are 716 

computed based on CSM-level FDR. Estimated random hits correspond to the average number of 717 

semi-randomly drawn pairs (first protein was randomly selected from the STRING/APID DB and 718 

second protein was drawn from the FASTA file). Gained PPIs accentuate the additional information 719 

that is available in the data at higher FDR. c) Decrease of CSM scores based on spectral evidence with 720 

increased FDRs. Boxenplot shows the median and 50% of the data in the central box. d) xiRT network 721 

architecture to predict multi-dimensional retention times. A crosslinked peptide is represented as 722 

two individual inputs to xiRT. xiRT uses a Siamese network architecture that shares the weights of the 723 

embedding and recurrent layers. Individual layers for the prediction tasks are added with custom 724 

activation functions (sigmoid / linear functions for fractionation / regression tasks, respectively). e) 725 

Rescoring workflow. The predictions from xiRT are combined with xiSCORE’s output to rescore CSMs 726 

using a linear SVM, consequently leading to more matches at constant confidence.  727 
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 728 

Figure 2: Cross-validation of retention time prediction. a) Applied cross-validation strategy in xiRT. To 729 

predict the RTs of CSMs excluded from training, the best CV classifier is used. b) xiRT performance 730 

over training epochs. Shaded areas show the estimated 95% confidence interval. c) xiRT performance 731 

across different metrics (error bars show standard deviation). Prediction for the ‘unvalidated’ data 732 

was only performed once. d-f) Prediction results from a representative CV iteration for SCX, hSAX and 733 

RP at 1% CSM-FDR. g) Learning curve with increasing number of CSMs, e.g. 10% (645 total CSMs, 387 734 

for training, 43 for validation, 215 for prediction), 50% (3226, 1935, 216, 1075), 100% (6453, 3871, 735 

431, 2151); bars indicate standard deviation.  736 
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 737 

Figure 3: Visualization of RT features. a) xiRT-based features from RP dimension only (13 features) 738 

after dimensionality reduction with UMAP. b) xiRT-based feature from SCX-hSAX-RP dimensions (43 739 

features) after dimensionality reduction with UMAP. Input data for a) and b) were CSMs of 740 

heteromeric links in the proteome-wide crosslinking dataset (Ec = E. coli, Mix = match between E. 741 

Coli and human peptides), filtered to 50% CSM-FDR. Identifications passing 1% CSM-FDR are 742 

highlighted. DD identifications are not shown. c) SHAP analysis of RT feature importance for CSM-743 

rescoring (using a linear SVM) including SCX, hSAX and RP features (Tab. S4). Each dot represents a 744 

previously identified CSM from 200 randomly chosen TTs that were excluded from training (i.e. CSM-745 

FDR > 1%). The background data set consists of 100 TT and TD CSMs each. Dashed line indicates the 746 

base value for a prediction based on the background data alone (0.44). 747 

  748 
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 749 

Figure 4: Incorporation of RT prediction to CSM-scoring increases crosslink identification. a) Score 750 

distributions of heteromeric CSMs based on mass spectrometric information (xiSCORE) and RT 751 

features (SVM score). The dashed line indicates the xiSCORE-based CSM-FDR threshold of 1%. b) 752 

Increase in identification of TT-CSMs and PPIs at constant FDR. Numbers in brackets indicate 753 

identifications involving a human protein. c) Overlap of observed PPIs (at 1% heteromeric PPI-FDR) to 754 

external references. Numbers in the Venn diagram represent the identified PPIs among E. coli 755 

proteins or PPIs involving human proteins (in brackets). Black numbers highlight the added benefit 756 

from combining xiSCORE with xiRT’s SVM score for PPI identification. d) Distribution of CSMs per PPI 757 

before (grey) and after CSM-rescoring (green). e) Selected subnetwork of the RNA polymerase with 758 

PPIs only identified after the rescoring connected in green. Data in b-e corresponds to a 1% PPI-FDR 759 

(prefiltered at a 5% CSM-FDR). 760 

761 
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 762 

Figure 5: Benefit of RT prediction for multiprotein complex crosslink analysis. a) Crosslink network 763 

from the Fanconi anemia complex analysis, shown in circular view. Unique residue pairs from 764 

xiSCORE, after rescoring and shared between these analyses are depicted (1% residue-pair FDR). 765 

Proteins associated to the Fanconi anemia core complex are indicated with their gene name suffix. 766 

The E. coli protein YehQ represents a match from the entrapment database. b) Quantitative 767 

assessment of residue-pairs with and without rescoring, and including calculated distances in the 768 

model. c) Distribution of crosslink distances from identified residue-pairs (n=105) following rescoring, 769 

shared between rescoring and xiSCORE (since no crosslinks unique to xiSCORE), and theoretically 770 

possible residue-pairs that could be mapped to the model. 771 
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