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Abstract

Crosslinking mass spectrometry (Crosslinking MS) has developed into a robust technique that is
increasingly used to investigate the interactomes of organelles and cells. However, the incomplete and
noisy information in the spectra limits the numbers of protein-protein interactions (PPIs) that can be
confidently identified. Here, we successfully leveraged chromatographic retention time (RT)
information to aid the identification of crosslinked peptides from spectra. Our Siamese machine
learning model xiRT achieved highly accurate RT predictions of crosslinked peptides in a multi-
dimensional separation of crosslinked E. coli lysate. We combined strong cation exchange (SCX),
hydrophilic strong anion exchange (hSAX) and reversed-phase (RP) chromatography and reached R?
0.94 in RP and a margin of error of 1 fraction for hSAX in 94%, and SCX in 85% of the predictions.
Importantly, supplementing the search engine score with retention time features led to a 1.4-fold
increase in PPIs at a 1% false discovery rate. We also demonstrate the value of this approach for the
more routine analysis of a crosslinked multiprotein complexes. An increase of 1.7-fold in heteromeric
crosslinked residue-pairs was achieved at 1% residue-pair FDR for Fanconi anaemia monoubiquitin
ligase complex, solely using reversed-phase RT. Retention times are a powerful complement to mass

spectrometric information to increase the sensitivity of Crosslinking MS analyses.
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Introduction

Crosslinking mass spectrometry (Crosslinking MS) reveals the topology of proteins, protein complexes,
and protein-protein interactions.! Fueled by experimental and computational improvements, the field
is moving towards the analyses of interactomes of organelles and cells.)® The identification of
crosslinked peptides poses three major challenges. First, the low abundance of crosslinked peptides
compared to linear peptides decreases their chance for mass spectrometric observation. Second, the
unequal fragmentation of the two peptides leads to a biased total crosslinked peptide spectrum match
(CSM) score*>. Third, the combinatorial complexity from searching all the possible peptide pairs in a
sample increases the chance for random matches. These challenges increase from the analysis of

individual proteins to organelles and cells.

To address the challenge of low abundance, Crosslinking MS studies routinely rely on chromatographic
methods to enrich and fractionate crosslinked peptides?®, Essentially all analyses contain at least one
chromatographic step, by directly coupling reversed-phase (RP) chromatography separation to the
mass spectrometer (LC-MS). Additional separation is frequently employed when more complex
systems are being analysed. Strong cation exchange chromatography (SCX)”2 was used for the analysis
of Hela cell lysate® or murine mitochrondrial®. Size-exclusion chromatography (SEC)!! was used to
fractionate crosslinked Hela cell lysate!? and Drosophila melanogaster embryos extracts'®. Multi-
dimensional peptide pre-fractionation was used for the analysis of crosslinked human mitochondria
(SCX-SEC)* and M. pneumoniae (SCX-hSAX)®. Such multi-dimensional chromatography workflows can

yield in the order of 10,000 CSM at 1-5% false discovery rate (FDR).**’

The identification of crosslinked peptides from spectra is however still challenged by the uneven
fragmentation of the two peptides and the large search space that increase the odds of random
matches. This is especially the case for heteromeric crosslinks as the size of their search space exceeds
that of self-links, i.e. links falling within a protein or homomer?®. Typically, database search tools use

the precursor mass and fragmentation spectrum for the identification of peptides to compute a single
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final score for each CSM. For linear peptides, post-search methods such as Percolator'® have been
developed that train a machine learning predictor to discriminate correct from incorrect peptide
identification. Percolator uses additional spectral information (features) such as charge, length, and
other enzymatic descriptors of the peptide!® to compute a final support vector machine (SVM) score.
Similarly, the crosslink search engine Kojak?® supports the use of PeptideProphet?>?2 and XlinkX?
supports Percolator®®, while pLink2?* and ProteinProspector* have a built-in SVM classifier to re-rank
CSMis. Although RT data is readily available, none of these tools use the, often multi-dimensional, RT
information for improved identification in crosslinking studies. A prerequisite for this would be that

retention times could be predicted reliably.

For linear peptides, RT prediction has been implemented under various chromatographic conditions.?>~

31 In contrast, RTs of crosslinked peptides have not been predicted yet. A suitable machine learning
approach for this could be deep learning®. Deep neural networks have been successfully applied in
proteomics, for example for de novo sequencing® or for the prediction of retention times?*3* and
fragment ion intensities®®. Deep learning allows encoding peptide sequences very elegantly through,
for example, recurrent neural network (RNN) layers. These layers are especially suited for sequential
data and are common in natural language processing®2. RNNs use the order of amino acids in a peptide
to generate predictions without additional feature engineering. However, it is unclear how to encode

the two peptides of a crosslink.

Moreover, it is also unclear whether the knowledge of RTs could improve the identification of
crosslinked peptides. A common scenario for an identified crosslink is that one of its peptides was
matched with high sequence coverage, while the other was matched with poorer sequence coverage.*
Such CSMs unfortunately resemble matches where one peptide is correct and the other is false (i.e. a
target-decoy match or a true target and false target match). Another consequence of coverage gaps is
the misidentification of noncovalently associated peptides as crosslinks.3¢ The severity of this coverage
issue depends on the applied acquisition strategy®’, crosslinker chemistry®, and the details of the

implemented scoring in the search engine. Nevertheless, assuming RT predominantly depends on both

3
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peptides of a crosslink, it could complement mass spectrometric information and thus improve existing

scoring routines and lead to more crosslinks at the same confidence (i.e. constant FDR).

In this study, we prove that analytical separation behavior carries valuable information about both
crosslinked peptides and can improve the identification of crosslinks. For this we built a multi-
dimensional RT predictor for crosslinked peptides based on a proteome-wide crosslinking experiment
comprising 144 acquisitions on an Orbitrap mass spectrometer from extensively fractionated peptides
of the soluble high-molecular weight proteome of E. coli. We then investigated the benefits of
incorporating the derived RT predictions into the identification process. In addition, we demonstrate
the value of RT prediction for a purified multiprotein complex using the reversed-phase

chromatography dimension only.

Material and Methods

Sample Preparation

Crosslink samples were processed exactly as described in Lenz et al.’® with the exception that the
crosslinker DSS was used. Briefly, cells were lysed by sonication, cleared from debris and the high-
molecular weight proteome enriched by ultrafiltration. This sample was then fractionated by size-
exclusion chromatography to give 44 fractions. The proteins of each fraction were crosslinked at 0.75
mM DSS. The crosslinked samples were pooled and precipitated using acetone. Upon resuspending,
the samples were derivatized by incubating 30 minutes at room temperature with 10 mM
dithiothreitol followed by 20 mM iodoacetamide and proteolyzed using LysC and Trypsin. The digests
were fractionated, first, by strong cation exchange chromatography (9 fractions) and the obtained
fractions separated by hydrophilic strong anion exchange chromatography as the second separation
dimension (10 pools). Samples were cleaned up in between and at the end of the procedures

following the StageTip protocol®.
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99  Spectra & Peptide Spectrum Match Processing

100  All raw spectra were converted to Mascot generic format (MGF) using msConvert®. The database
101  search with Comet* (v. 2019010) was done with the following settings: peptide mass tolerance 3
102 ppm; isotope_error 3; fragment bin 0.02; fragment offset 0.0; decoy_search 1; fixed modification on
103 C (carbamidomethylation, +57.021 Da); variable modifications on M (oxidation, +15.99 Da). False
104  discovery rate (FDR) estimation was performed for each acquisition. First, the highest scoring PSM
105 for a modified peptide sequence was selected, then the FDR was computed based on Comet’s e-
106  value. Spectra were searched using xiSEARCH (v. 1.6.753)*?, after recalibration of precursor and

107  fragment m/z values, with the following settings: precursor tolerance, 3 ppm; fragment tolerance, 5
108 ppm; missed cleavages, 2; missed monoisotopic peaks*, 2; minimum peptide length, 7; variable
109 modifications: oxidation on M, mono-links for linear peptides on K,S,T,Y, fixed modifications:

110 carbamidomethylated C. The specificity of the crosslinker DSS was configured to link K, S, T, Y, and
111 the protein N-terminus with a mass of 138.06807 Da. The searches were run with the workflow

112 system snakemake®. The FDR on CSM-level was defined as FDR = TD - DD / TT*, where TD indicates
113  the number of target-decoy matches, DD the number of decoy-decoy matches and TT the number of
114  target-target matches. Crosslinked peptide spectrum matches (CSMs) with non-consecutive peptide
115  sequences were kept for processing®. PPl level FDR computation was done using xiFDR* (v. 2.1.3
116  and 2.1.5 for writing mzldentML) to an estimated PPI-FDR of 1%, disabling the boosting and filtering
117  options. CSM, peptide and residue-level FDR were fixed at 5%, protein group FDR was set to 100%.
118 FDR estimations for self and heteromeric links were done separately. In xiFDR a unique CSM is

119  defined as a combination of the two peptide sequences including modifications, link sites and

120  precursor charge state. For the assessment of identified CSMs an entrapment database (described in
121 the next section) as well as decoy identifications were used on both, CSM and PPI levels. PPI results
122 were also compared against the APID* and STRING*” databases (v11, minimal combined confidence

123 of0.15).
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124  Database Creation

125  The database of potentially true crosslinks was defined as Escherichia coli proteome (reviewed
126 entries from Uniprot release 2019-08). This database was filtered further to proteins identified with

127  atleast a single linear peptide at a g-value* threshold of 0.01, q(t) = m<1{1 FDR (s), with the
S<

128  threshold t and score s. This resulted in 2850 proteins. In addition to the FDR estimation through a
129  decoy database, we used an entrapment database. The proteins from the entrapment database

130 represent the search space of false positive CSMs independent of E. coli decoys and were sampled
131 from human proteins (UP000005640, retrieved 2019-05). E. coli decoys might fail in this task after
132 machine learning if overfitting should have taken place. So, entrapment targets allow control for

133 overfitting. For this, human target peptides were treated as targets and human decoy peptides as
134 decoys. To avoid complications through false spectrum matches due to homology, we used blastp®
135 (BLAST 2.9.0+, blastp-short mode, word size 2, e-value cutoff 100) and aligned all E. coli tryptic

136  peptides (1 missed cleavage, maximum length 100) to the human reference. All proteins that showed
137  peptide alignments with a sequence identity of 100% were removed from the human database. Only
138  the remaining 9990 sequences were used as candidates in the entrapment database. For each of the
139 2850 E. coli proteins a human protein was added to the database. To reduce search space biases

140  from protein length and thus different number of peptides for the two organisms, we followed a

141  special sampling strategy. The human proteins were selected by a greedy nearest neighbor approach
142 based on the K/R counts and the sequence length. The final number of proteins in the combined

143  database (E. coli & human) was 5700 (2850%*2).
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144  Fanconi anaemia monoubiquitin ligase complex data processing

145  The publicly available raw files from an analysis of the BS3-crosslinked Fanconi anemia

146 monoubiquitin ligase complex®® (FA-Complex) were downloaded from PRIDE together with the

147 original FASTA file (PXD014282). The raw files were processed as described for the E. coli data (m/z
148 recalibration and searched with xiSEARCH), followed by an initial 80% CSM-FDR filter for further

149 processing. Due to the much smaller FASTA database (8 proteins), the entrapment database was

150 constructed more conservative than for the proteome-wide E. coli experiment, i.e. for each of the
151  target proteins, the amino acid composition was used to retrieve the nearest neighbor in an E. coli
152  database. The FDR settings to evaluate the rescoring were set to 5% CSM- and peptide-pair level FDR,
153 1% residue-pair- and 100% PPI-FDR using xiFDR without boosting or additional filters. The resulting
154  links were visualized (circular view) and mapped to an available 3D structure (final refinement model
155  ‘sm.pdb’)*>% using xiVIEW®3, To ease the comparison of identified and random distances, a random
156 Euclidean distance distribution was derived in three steps: first, all possible crosslinkable residue-pair
157  distances in the 3D structure were computed. Second, 300 random ‘bootstrap’ samples with n

158  distances were drawn (n=the number of identified residue-pairs at a given FDR) and third, the mean

159  per distance bin was computed across all 300 samples.
160  XiRT - 3D Retention Time Prediction

161  The machine learning workflow was implemented in python and is freely available from

162  https://github.com/Rappsilber-Laboratory/xiRT. xiRT is the successor of DePART?°, which was

163 developed for the retention time (RT) prediction of hSAX fractionated peptides based on pre-

164  computed features. xiRT makes use of modern neural network architectures and does not require
165  feature engineering. We used the popular python packages sklearn>* and TensorFlow® for processing
166  (section S1 for more details). xiRT consists of five components (Fig. 1d, Fig. S1, Section S1): (1) The
167  input for xiRT are amino acid sequences with arbitrary modifications in text format (e.g. Mox for

168 oxidized Methionine). xiRT uses a similar architecture for linear and crosslinked peptide RT

169 prediction. Before the sequences can be used as input for the network, the sequences are label

7
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170  encoded by replacing every amino acid by an integer and further 0-padded to guarantee that all

171 input sequences have the same length. Modified amino acids as well as crosslinked residues are

172  encoded differently than their unmodified counterparts. (2) The padded sequences were then

173  forwarded into an embedding layer that was trained to find a continuous vector representation for
174  theinput. (3) To account for the sequential structure of the input sequences, a recurrent layer was
175 used (either GRU or LSTM). Optionally, the GRU/LSTM layers were followed by batch normalization
176 layers. For crosslinked peptide input, the respective outputs from the recurrent layers were then
177  combined through an additive layer (default setting). (4) Task-wise subnetworks were added for

178 hSAX, SCX, and RP retention time prediction. All three subnetworks had the same architecture: three
179  fully connected layers, with dropout and batch normalization layers between them. The shape of the
180  subnetworks is pyramid-like, i.e. the size of the layers decreased with network depth. (5) Each

181 subnetwork had its own activation function. For the RP prediction, a linear activation function was
182 used and mean squared error (MSE) as loss function. For the prediction of SCX and hSAX fractions we
183  followed a different approach. The fraction variables were encoded for ordinal regression in neural
184  networks®®. For example, in a three-fraction setup, the fractions (f) were encoded as f; =

185 [0,0,0],f, =[1,0,0] and f5 = [1,1, 0]. Subsequently, we chose sigmoid activation functions for the
186  prediction layers and defined binary cross entropy (BC) as loss function. To convert predictions from
187  the neural network back to fractions, the index of the first entry with a predicted probability of less
188  than 0.5 was chosen as the predicted fraction. The overall loss was computed by a weighted sum of
189  the MSEgp, BCscx and BCys4x- The weight parameters are only necessary when xiRT is used to

190  predict multiple RT dimensions at the same time (multi-task). To predict a single dimension (single-
191 task, e.g. RP only), the weight can be set to 1. The number of neurons, dropout rate, intermediate
192 activation functions, the weights for the combined loss, number of epochs and other parameters in
193 xiRT were optimized on linear peptide identification data. Reasonable default values are provided
194  within the xiRT package. For optimal performance, further optimization might be necessary for a

195  given task.
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196  Cross-Validation and Prediction Strategy

197 Cross-validation (CV) is a technique to estimate the generalization ability of a machine learning

198 predictor®” and is often used for hyper-parameter optimization. We performed a 3-fold CV for the
199  hyper-parameter optimization on the linear peptide identification data from xiSEARCH, excluding all
200 identifications to the entrapment database (section S2 and Fig. S2 for details). We defined a coarse
201  grid of parameters (Tab. S1) and chose the best performing parameters based on the average total
202 (unweighted) loss, R3p and accuracy across the CV folds. Further, we define the relaxed accuracy
203 (racc) to measure how many predictions show a lower prediction error than |1]|. We then repeated
204  the process with an adapted set of parameters (Tab. S2). In addition to the standard CV strategy, we
205 used a small adjustment: per default, in k-fold cross-validation, the training split consists of k-1 parts
206  of the data (folds) and a single testing fold. However, we additionally used a fraction (10%) from the
207  training folds as extra validation set during training. The validation set was used to select the best
208  performing classifier over all epochs. The model assessment was strictly limited to the testing folds.
209  This separation into training, validation and testing was also used for the semi-supervised learning
210 and prediction of RTs, i.e. when xiRT was used to generate features to rescore CSMs previously

211 identified from mass spectrometric information. In this scenario, the CV strategy was employed to
212 avoid the training and prediction on the same set of CSMs. In xiRT, a unique CSM is defined as

213  combination of the two peptide sequences, ignoring link sites and precursor charge.

214  Supervised Peptide Spectrum Match Rescoring

215  To assess the benefits of RT predictions, we used a semi-supervised support vector (SVM) machine
216 model. The implementation is based on the python package scikit-learn®® in which optimal

217 parameters are determined via cross-validation. The input features were based on the initial search
218  score (for FA-complex only) and differences between predicted and observed RTs. For each

219  crosslinked peptide, three predictions were made per chromatographic dimension: for the

220  crosslinked peptide, for the alpha peptide and the beta peptide. Additional features were engineered

221  depending on the number of chromatographic dimensions and included the summed, absolute or

9
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222 squared values of the initial features (Tab. S3 for all features). For example, for three RT dimensions,
223  the total number of features was 43. The data for the training included all CSMs that passed the 1%
224 CSM-FDR cutoff (self / heteromeric, TT, TD, DDs) and TD/DD identifications that did not pass this
225  cutoff. TTs were labeled as positive training examples, TD and DDs (DXs) were labeled as negative

226  training examples.

227  To stratify the k-folds during CV, the CSMs were binned into k xiSCORE percentiles. Afterwards, they
228  were sampled such that each score range was equally represented across all CV folds. When the

229  positive class was limited to the TT identifications at 1% CSM-FDR, the number of negative classes
230  was usually larger than the number of positive classes. To circumvent this, for each CV split, a

231 synthetic minority over-sampling technique (SMOTE)>® was used to generate a balanced number of
232 positive and negative training samples (here only used for the FA-complex data). SMOTE was applied
233 within each CV fold to avoid information leakage. A 3-fold CV was performed for the rescoring. In
234 each iteration during the CV, two folds were used for the training of the classifier and the third fold
235  was used to compute an SVM score. During this CV step, a total of three classifiers were trained. The
236  scores for all TT-CSMs that did not pass the initial FDR cutoff were computed by averaging the score
237  predictions from the three predictors. For all CSMs passing the initial FDR cutoff, rescoring was

238  performed when the CSM occurred in the test set during the CV. The final score was defined as:

239 Xiyescored = Xiscore T Xiscorg X SVMgcore, Where SV M., Was the output from the SVM

240  classifier and xigcorg the initial search engine score.

241  Feature Analysis

242  The KernelExplainer from SHAP® (Shapley Additive exPlanations) was used to analyze the importance
243  of features derived from the SVM classifier. SHAP estimates the importance of a feature by setting its
244  value to “missing” for an observation in the testing set while monitoring the prediction outcome. We
245 used a background distribution of 200 samples (100 TT, 100 TD) from the training data to simulate
246  the “missing” status for a feature. SHAP values were then computed for 200 randomly selected TT

247  (predicted to be TT) that were not used during the SVM training. SHAP values allow to directly
10
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248  estimate the contributions of individual features towards a prediction, i.e. the expected value plus
249  the SHAP values for a single CSM sums to the predicted outcome. For a selected CSM, a positive
250  SHAP value contributes towards a true match prediction. For the interpretability analysis (SHAP) of

251  the learned features in xiRT, the DeepExplainer was used (section S3).

252 In addition, we performed dimensionality reduction using UMAP®! on the RT feature space for
253  visualization purposes (excluding the search engine score). UMAP was run with default parameters
254  (n_neighbors=15, min_dist=0.1) on the standardized feature values. The list of used features for the

255 multi-task learning setup is available in Tab. S3.

256  Statistical Analysis

257 Significance tests were computed using a two-sided independent t-test with Bonferroni correction.

258  The significance level a was set to 5%.

259 Data Availability

260  The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium

261 (http://proteomecentral.proteomexchange.org) via the jPOST partner repository®*with the dataset

262 identifier PXD020407 and DOI 10.6019/PXD020407. Raw data of the FA-Complex is available via the
263  previously published PRIDE identifier (PXD014282). Additional files and intermediate results are

264  available via Zenodo (10.5281/zenodo.4270324). Source data are provided with this manuscript.

265 Code Availability

266  The developed python package is available on the python package index and on GitHub

267  (https://github.com/Rappsilber-Laboratory/xiRT).

 Access: https://repository.jpostdb.org/preview/1564483676042143f9d3ae, key: 3194
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268  Results and Discussion

269  This section covers 1) a description of the experimental workflow and the motivation, 2) the

270  evaluation of the developed retention time predictor, 3) an interpretability analysis of the deep

271 neural network, 4) an analysis of the RT features and their importance for rescoring, 5) the

272 evaluation of the rescoring results from an E. coli lysate, and 6) the evaluation of the rescoring results

273 from a routine crosslinking MS experiment, i.e. the analysis of a multiprotein complex (FA-complex).

274 A Substantial Fraction of Crosslinks below the Confidence Threshold are Correct

275  Crosslinked peptides belonging to the high-molecular weight E. coli proteome were deep-

276  fractionated along three chromatographic dimensions (hSAX, SCX and RP). This 3D fractionation

277  approach led to 144 LC-MS runs as some of the 90 fractions contained enough material for repeated
278  analysis. The resulting data were searched with an entrapment database approach (Fig. 1a) leading
279  to 11196 CSMs (11072 TT, 87 TD, 37 DD, Fig. S3) at 1% CSM-FDR, separating self and heteromeric

280  CSMs!®%63 The human entrapment database allows to assess error, independently of the target-
281  decoy approach. This will play a critical role here as E. coli decoys will be used for the machine

282 learning-based rescoring (but not for the RT prediction). Judged by a set of peptide characteristic

283 metrics (e.g. peptide length, pl, GRAVY) the human entrapment database resembles the properties of

284  the E. coli target database (Fig. S4).

285 Before attempting RT prediction and subsequent complementation of search scores, we investigated
286  the extent of false negatives, approximated here by PPIs present in STRING*” or APID*® database. At
287 1% CSM-FDR, 110 such ‘validated’ (val) protein-protein interactions were identified. 10%, 30% and
288 50% CSM-FDR returned 226, 278 and 418 validated PPIs, respectively (Fig. 1b). When raising the

289 CSM-FDR from 1% to 50% we thus saw a nearly 4-fold increase in the detectable number of validated
290 PPIs. In contrast, using a pessimistic approach of semi-randomly drawing pairs of E. coli proteins from
291  the STRING/APID (first protein) and the search database (second protein) yielded purely by chance

292 10, 22, 44, and 91 overlapping PPIs with STRING or APID for 1%, 10%, 30% and 50% CSM-FDR cutoffs,
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293 respectively. While this shows that loosening the FDR threshold increases validated PPls also by
294  chance, the actually observed number is much higher (418 versus 91 at 50% CSM-FDR). This means

295 that there is a substantial number of valid PPIs with insufficient match confidence.

296  The underlying scoring challenge is essential to the identification of peptides in general. The plethora
297  of search engines for linear® and crosslinked peptides® use spectral characteristics differently for
298  their scoring. In xiSEARCH, the final score is a composite that incorporates spectral metrics such as
299  explained intensity and matched number of fragments. Empirically, we observe a fast decrease in the
300 search engine score (Fig. 1c) with increasing FDR. This indicates that at higher FDRs spectral matching
301 metrics might be suboptimal. Poor spectral quality, inefficient peptide fragmentation or random

302 fragment matching all influence the search engine score negatively. RT information could

303 complement MS information but this would require accurate RT prediction of crosslinked peptides.

304  Accurate Multi-dimensional Retention Time Prediction for Crosslinked Peptides

305 RT prediction for crosslinked peptides has not yet been achieved. One reason for this is the challenge
306 of encoding a crosslinked pair of peptides for machine learning. We overcame this here using a

307  Siamese neural network as part of a new machine learning application, xiRT (Fig. 1d), which allowed
308 theincorporation of RTs into a rescoring workflow (Fig. 1e). The Siamese part of the network

309 (embedding layer and recurrent layer) shares the same weights for both peptides. Practically, the
310 sharing of weights leads to consistent predictions, independent of the peptide order. After the

311 recurrent layer, the two outputs were combined and passed to three subnetworks consisting of

312  dense layers with individual prediction layers (details on the architecture are available in Fig. S1). In
313 this multi-task learning setup, the network simultaneously learned to predict the hSAX, SCX and RP
314 RT through a single training step. Multi-task learning can improve the overall performance of

315 predictors by forcing the network to learn a robust representation of the input data.®®

316  The training and evaluation of xiRT followed a CV strategy that avoided the simultaneous learning

317  and prediction on overlapping parts of the data (Methods, Fig. 2a). We used a 3-fold CV strategy
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318  where two folds were used for training (excluding 10% for the validation throughout the training
319  epochs) and one fold for testing/prediction. All CSMs with an FDR < 1% were used during CV. For the

320 remaining CSMs, the best predictor (with the lowest total loss) was used to predict the RTs.

321  To achieve the best possible prediction performance, hyper-parameters of the network were

322  optimized. Since extensive hyper-parameter optimization on a small data set can lead to overfitting,
323  we initially optimized a large part of hyper-parameters using 20,802 unique linear peptide

324  identifications at 1% FDR. The final parameters for the Siamese network architecture for crosslinks

325  were obtained by a small grid-search (6,453 unique peptide-pairs at 1% CSM-FDR; Fig. S5).

326 Using these parameters, we evaluated the learning behavior during the training time (epochs) across
327  the CV folds. The training behavior on the three CV folds was similar and reached a stable trajectory
328  after approximately 15 epochs (Fig. 2b). Based on very similar error trends on validation and training
329  sets, we concluded to have reached a state where neither overfitting nor underfitting occurred. The
330  overall performance across the prediction folds was comparable in terms of accuracy (hSAX: 61% =+
331 1.1, SCX: 47% + 1.7) and MSE (11.58 + 2.0)(Fig. 2c). Comparing single-task and multi-task

332  configurations of xiRT revealed no significant differences in the prediction accuracy but greatly

333 reduced run times (Fig. S6-7). Note that we estimated the theoretical boundaries given the

334  ambiguous elution behavior (i.e. peptide elution across multiple chromatographic fractions) for SCX
335  at 65% accuracy and for hSAX at 73% accuracy (Tab. S4, Fig. S8). Most of the predictions showed only
336  asmall error, and thus a high relaxed accuracy: for hSAX 94% + 0.0 and for SCX 87% + 1.15 of the
337  predictions were within a range of + 1 fraction (Fig. 2d-e). The R3p of 0.94 + 0.01 also showed a

338  predictable relationship for the RP dimension (Fig. 2f). The consistent accuracy and R? results across
339 CV folds demonstrates reproducible training and prediction behavior which reduces unwanted biases
340 from the different CV folds. In conclusion, RTs of crosslinked peptides can robustly be learned within

341 a data set, making them available as features in a CSM rescoring framework.
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342 It was difficult to compare our RT predictions to other studies which used SCX®” or hSAX® for multiple
343 reasons: 1) there is currently no other model that predicts the RT of crosslinked peptides, 2) the

344  recent SSRCalc®” study (SCX) for linear peptides used a much larger data set of 34,454 unique

345 peptides and the fractionation was much more fine-grained (30 - 50 fractions). Similarly, the hSAX?*
346  study on linear peptides used a much finer fractionation (30 fractions) and a different methodology
347  to encode the loss function during the machine learning. 3) Applied gradients and liquid

348 chromatography conditions can change the elution behavior quite drastically. In our study, the

349 number of observations was neither for hSAX nor for SCX equally distributed but varied between

350  ~200 and ~2000 CSMs per fraction (Fig. S3). Since we employed a partially exponential gradient

351 during the chromatographic fractionation, the degree of peptide separation varied for earlier and

352 later fractions.

353 Given that we had less data to train on than recent RT predictions of linear peptides, we evaluated
354  how the numbers of observations influenced the prediction accuracy (R3p + AcChsax + ACCscy, Fig.
355 2g). The learning curve showed two important characteristics: first, the prediction performance over
356  CV folds was very reproducible. This means that predictions were robust even with very moderate
357  data quantity. Second, the maximal performance was achieved with approximately 70%-100% of the
358  data points (100% corresponding to 6453 total CSMs, 3871 for training, 431 for validation, 2151 for
359  prediction). Given that a first plateau was reached with 30% of the data, it is unclear if the final

360  prediction accuracy constitutes another local optimum or the limit of the prediction accuracy. The
361  individual task metrics showed that the RP behavior seemed to be easier for the model to learn than
362 the ordinal regression tasks (SCX, hSAX, Fig. S9). The RP behavior could be accurately predicted from
363 approximately 60% of the data points, while the maximum accuracy for hSAX and SCX dimensions
364  was only achieved by using 80% - 100% of the data. In other words, while using even fewer CSMs
365 might be possible when predicting RP RTs, one would expect a reduced accuracy in the hSAX/SCX

366 dimensions.

15


https://doi.org/10.1101/2021.03.08.432999
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.08.432999; this version posted March 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

367  Anapproach to reduce the number of required CSMs would be to leverage the abundantly available
368  data on linear peptides for transfer learning. Indeed, a recent study showed that transfer learning
369  across different peptide identification results works well for linear peptides*. However, in our hands,
370  pretraining a network from linear peptides and applying the same weights to the Siamese part of the
371 network neither improved the performance nor reduced the training time for crosslink RT predictions
372 (data not shown). In contrast, a robust and accurate RT prediction could be achieved on a

373 multiprotein complex crosslinking study (FA-complex, see below) when first training on the E. coli
374 CSMs (Fig. S10). Another possibility to increase the training data size and robustness during CV is to
375 increase the number of folds, e.g. 5- or 10-fold, at the cost of runtime. Increasing the expedience of
376  xiRT, we also implemented transfer learning for cases when the number of fractions differs between

377  theinitial model and the new prediction task.

378  Explainable Deep Learning Reveals Amino Acid Contributions

379 Using the SHAP package, we set out to explain predictions made by xiRT. For instance, when a

380 specific crosslinked peptide was analyzed, residue-specific contributions towards the predicted RT
381  could be computed (Fig. S11). The residues D, E, Y and F displayed high SHAP values indicating a

382  stronger retention during hSAX separation in a randomly chosen peptide. Looking at a specific

383  crosslinked peptide in SCX (Fig. S12), the SHAP values highlighted that K and R were the most

384  important residues contributing towards later peptide elution. As one might expect, crosslinked K
385 residues contributed much less towards later elution times than the stronger charged, unmodified K
386  residues. Investigating the SHAP values for a collection of CSMs revealed additional contributions
387 from W for hSAX and H for SCX while returning hydrophobic residues Y, F, W, |, L, V and M for RP (Fig.
388  S13), revealing residue contributions in crosslinked peptides as seen in the respective analyses of
389 linear peptides?>®”8 In summary, the SHAP values were good estimates for the individual RT

390 contributions of the amino acid residues.

391 Next, we investigated the network architecture and the learned feature representations more closely

392 (Section S4). As first analysis, the dimensionality reduced embedding space across the network was
16
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393  analyzed (Fig. S14). This revealed that the shared sequence-specific layer already captured the RP
394  properties quite well, while the hSAX and SCX properties were not as clearly captured. As expected,
395 the separation of CSMs according to RT increased the further the features propagated through the
396  network. In the last layer, the RP and hSAX sub-networks reached a very good separation, while in

397  the SCX subtask CSMs remained moderately separated in two dimensions.

398  RT Characteristics for Unsupervised Separation of True and False CSMs

399 Now that we established the RT prediction of crosslinked peptides, we computed a set of

400 chromatographic features to explore their ability to separate true from false CSMs (Tab. S3).

401 Dimensionality reduction was computed for RP only (13 chromatographic features) and for SCX-

402 hSAX-RP (43 chromatographic features) predictions (Fig. 3a-b). Both chromatographic feature sets
403 revealed good separation possibilities for confident TT (99% true, given 1% CSM-FDR) and TD (100%
404 false) identifications in two-dimensional space. For the RP analysis, the TD E. coli CSMs and TT Mix /
405  TD Mix CSMs were enriched in one area of the plot (the lower right part, Fig. 3a). In contrast, the

406  subset of confident TT E. coli CSMs were distributed outside this area. As one would expect for two
407  sets of random matches, the CSMs from the entrapment database (TT Mix, TD Mix) closely followed
408  the distribution of TD E. coli CSMs. The areas populated by the known false matches were also

409  populated by an equal number of presumably false TT matches. When the features of all three RT
410 dimensions were considered, the separation of true and false CSMs further improved (Fig. 3b). Again,
411  the distributions of TD E. coli CSMs and entrapment CSMs behaved similarly. Interestingly, few CSMs
412  that passed the 1% FDR threshold were located in regions dominated by false identifications. This
413 might identify them as part of the expectable fraction of 1% false positive identifications.

414 Importantly, the described separation was achieved unsupervised on RT features alone, i.e. without a

415  search engine score or target-decoy labels.

416  To test the transferability of our findings, we also ran xiRT with unfiltered pLink2 results (section S4
417  and Fig. S15). The prediction performance from Q-value filtered CSMs was similar to the results with

418  xiSEARCH (Fig. S15a-c). A two-sided t-test between hSAX, SCX and RP errors for TT and TDs revealed
17
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419  significant differences in the respective error distributions of the pLink2 predictions (Fig. S15d).

420 Importantly, the separation of true and false matches in two-dimensional space was also possible
421  with pLink2 identifications (Fig. S15e). In summary, xiRT can learn retention times irrespective of the
422 used search engine and the learned chromatographic features alone carry substantial information to

423  separate true from false matches.

424  To investigate the relevance of multi-dimensional RT predictions for the identification of crosslinked
425 peptides, we first supplemented each CSM with RT features. Then, we performed a semi-supervised
426  rescoring and evaluated the trained SVM model using the SHAP framework. We chose to analyze
427 SHAP values for the 15 most important features for TT observations (FDR > 1%) that were predicted
428  to bea correct TT identification (Fig. 3c). This analysis revealed a similar magnitude for all 15 SHAP
429  values implying that a single feature alone is insufficient to recognize false matches. Notably, the top
430 5 features contained features from RP, hSAX and SCX predictions which indicates that each

431  chromatographic dimension carried relevant information for the rescoring. Because 11 of the 15
432  features were predictions considering only one of the two peptides and not directly derived from
433 peptide-pairs, the predicted RTs displayed a larger error. This analysis suggests that an RT prediction
434  model for linear peptides can add valuable information for crosslink analysis. In general, the model
435 learned mostly that low errors in the RT dimensions indicate true positive identifications. Thus, the
436  model implicitly learned that the RT of a crosslinked peptide should differ from the RT of the

437  individual peptides. This might become useful especially for distinguishing consecutive® from

438  crosslinked peptides or when dealing with gas-phase associated peptides®.

439  Rescoring Crosslinked Peptides Enhances their Identification

440 Before computing a combined score, we compared the CSM scores based on mass spectrometric
441 information (xiSCORE) and RT features (SVM score, Fig. 4a). Both scores largely agreed. Heteromeric
442 CSMs passing 1% CSM-FDR yielded high SVM scores. Also, most target-decoy CSMs achieved a low
443  SVM score (Fig. 4a, right) and a low xiSCORE (Fig. 4a, top). The SVM score distribution of the TDs

444  matched closely the distribution of TTs in the low scoring area, which indicated that they still
18
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445 modeled random TT matches and that overfitting was avoided. Interestingly, the TTs were

446  overrepresented in the low scoring area for the xiSCORE but not for the SVM score, suggesting that
447  true TTs remained hidden among the random matches when using xiSCORE alone. The broad SVM
448  score distribution of TTs indicated that the rescoring process could be optimized. In conclusion,

449 neither of the mass spectrometric information (xiSCORE) nor the RT information (SVM score) seem to

450 reveal all true CSMs.

451  As a combination of both approaches should yield better results than either alone, we combined the
452  SVM score with the xiSCORE. We evaluated the impact of rescoring CSMs on the number and quality
453 of identified PPls, as PPls are typically the objective of large-scale crosslinking MS experiments.

454 Heteromeric CSMs increased by 1.7-fold and heteromeric PPls increased by 1.4-fold (Fig. 4b). Self-
455 links increased only marginally in agreement with their smaller search space and accordingly lower
456 random match frequency. Essentially, nearly all self-links were identified exhaustively based on mass
457  spectrometric data alone. In contrast, RT information substantially improved the identification of
458  heteromeric CSMs. Further gains might be possible by directly combining RT features with mass

459  spectrometric features (and possibly also other) for supervised scoring.

460 Likely, the benefits of RT predictions for the rescoring depend on the data set and applied

461  chromatographic separations. On the E. coli data, we therefore performed additional analyses where
462  we limited the rescoring to only use a subset of the chromatographic dimensions (Tab. S5). The

463 number of identified CSMs for heteromeric links increased from 724 in the reference to 902 (RP

464  only), 977 (SCX-RP), 1092 (hSAX-RP) and 1199 (SCX-hSAX-RP). Likewise, PPls increased from 109 to
465 135, 131, 157, 152, respectively (Tab. S5). As observed above, gains can be expected from each

466  chromatographic dimension. When having to choose one ion chromatography, the hSAX dimension
467  seemed more useful than the SCX dimension which could arise from the better prediction

468  performance or more complex separation mechanisms. Importantly, even using RP RT alone already

469 led to a marked gain in heteromeric PPIs (see also next section).
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470  To systematically evaluate the additionally identified PPIs from all three RT dimensions, we

471  compared them to the originally identified PPIs based exclusively on xiSCORE. In addition, the

472  STRING/APID databases and a larger set of PPIs from a larger study?® served as extra references for
473  validation. Almost all PPIs found in the original dataset by xiSCORE were also contained in the

474 rescored data set (91%). 85% of the newly identified PPIs were either found in the data set from Lenz
475 et al., in STRING/APID or both. Among the eight PPIs unique to the rescored data set, only one

476 involved a human protein from the entrapment database (Fig. 4c). The remaining seven PPls might
477 constitute genuine PPls. Note that the overall percentage of PPIs involving human proteins was

478 reduced by rescoring. Since all human target proteins were included in the positive training data, this
479 is an important indicator of a well-behaved model. Deepening trust further, almost all novel PPIs

480  were identified with multiple CSMs (Fig. 4d). Finally, we selected the subnetwork of the RNA

481 polymerase to investigate the additionally identified PPIs in a well-characterized interaction

482 landscape (Fig. 4e). Indeed, all interactions added by RT-based rescoring were already reported in
483  APID. In summary, all our evidence points at the successful complementation of MS information by
484 RT, at least for a proteome-wide crosslinking analysis. It remained to be seen, however, if this could

485  also be leveraged in more routine multiprotein complex analyses.

486  Multiprotein Complex Studies Also Benefit from the RT Prediction

487 Many crosslinking MS studies investigate multiprotein complexes and rely on only few

488  chromatographic dimensions. We therefore evaluated the benefit of predicted RTs for the analysis of
489  the FA-complex, an eight-membered multiprotein complex that was crosslinked using BS3. Here, the
490 search engine score was supplemented exclusively with RP RT predictions during the rescoring. By
491 using transfer learning, the small number of CSMs (692 unique CSMs, without considering charge
492  states) found in this multiprotein complex analysis were sufficient to achieve accurate RP predictions
493 (Fig. S10). The resulting crosslinks at 1% residue-pair FDR (lower levels set to 5%) showed an increase
494 of 36 (+10%) self- and 53 (+70%) heteromeric residue-pairs. Importantly, the rescored links showed

495 no indication of increased hits to the entrapment database (Fig. 5a) indicating that no overfitting
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496  occurred during the rescoring. At the same time, heteromeric PPIs already identified before rescoring
497  received additional support. For example, the number and sequence coverage of links increased

498  between FAAP100 (“100”) and FANCB (“B”), FANCA (“A”) and FANCB, and FANCA and FANCG (“G”).
499  Overall, the heteromeric links increased 1.7-fold with an even higher proportional increase in

500 ‘verified’ links, i.e. fitting the available structure, by 1.9-fold (Fig. 5b). The derived distance

501 distribution of newly identified links is dissimilar from a random distribution and shows no

502 indications of reduced quality (Fig. 5c). Applying this ‘structural validation’ on its own might be

503 optimistic®®, however, in summary our rigorous quality control ensures trustworthy results. It is

504  currently unclear in how far even smaller datasets could benefit from xiRT. Generally, to improve
505 prediction performance, pre-training on larger data sets will lead to better generalization abilities of
506 the predictor. Subsequently, also smaller data sets can be used for accurate RT prediction. To

507  additionally benefit from sample specific information, increasing the cross-validation splits will utilize
508 larger parts of the data during training. In any case, our successful analysis of a multiprotein complex

509  supplemented with only RP features highlights the broad applicability of xiRT.

s10 Conclusion

511 Using a Siamese network architecture, we succeeded in bringing RT prediction into the Crosslinking
512 MS field, independent of separation setup and search software. Our open source application xiRT
513 introduces the concept of multi-task learning to achieve multi-dimensional chromatographic

514  retention time prediction, and may use any peptide sequence-dependent measure including for
515  example collision cross section or isoelectric point. The black-box character of the neural network
516  was reduced by means of interpretable machine learning that revealed individual amino acid

517 contributions towards the separation behavior. The RT predictions — even when using only the RP
518 dimension — complement mass spectrometric information to enhance the identification of

519 heteromeric crosslinks in multiprotein complex and proteome-wide studies. Overfitting does not

520  account for this gain as known false target matches from an entrapment database did not increase.
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521 Leveraging additional information sources may help to address the mass-spectrometric identification

522  challenge of heteromeric crosslinks.
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710 Figure 1: Workflow overview. a) Experimental and data analysis workflow. The soluble high-

711 molecular weight proteome of E. coli lysate was crosslinked with disuccinimidyl suberate (DSS) and
712  the digest sequentially fractionated by SCX (9 fractions collected), hSAX (10 pools collected) and

713  finally by RP coupled to the MS. The protein database for the crosslink search was created by a linear
714  peptide search with Comet and a sequence-based filter using BLAST. For each E. coli protein in the
715  final database a human protein was added as a control. b) Potential for false negative PPI

716 identifications. Verified PPIs are estimated from matches to the STRING/APID databases. PPIs are

717  computed based on CSM-level FDR. Estimated random hits correspond to the average number of
718 semi-randomly drawn pairs (first protein was randomly selected from the STRING/APID DB and

719  second protein was drawn from the FASTA file). Gained PPIs accentuate the additional information
720  thatis available in the data at higher FDR. c) Decrease of CSM scores based on spectral evidence with
721 increased FDRs. Boxenplot shows the median and 50% of the data in the central box. d) xiRT network
722  architecture to predict multi-dimensional retention times. A crosslinked peptide is represented as
723  two individual inputs to xiRT. xiRT uses a Siamese network architecture that shares the weights of the
724  embedding and recurrent layers. Individual layers for the prediction tasks are added with custom

725  activation functions (sigmoid / linear functions for fractionation / regression tasks, respectively). e)

726 Rescoring workflow. The predictions from xiRT are combined with xiSCORE’s output to rescore CSMs

727  using a linear SVM, consequently leading to more matches at constant confidence.
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Figure 2: Cross-validation of retention time prediction. a) Applied cross-validation strategy in xiRT. To

predict the RTs of CSMs excluded from training, the best CV classifier is used. b) xiRT performance

over training epochs. Shaded areas show the estimated 95% confidence interval. c) xiRT performance

across different metrics (error bars show standard deviation). Prediction for the ‘unvalidated’ data

was only performed once. d-f) Prediction results from a representative CV iteration for SCX, hSAX and

RP at 1% CSM-FDR. g) Learning curve with increasing number of CSMs, e.g. 10% (645 total CSMs, 387

for training, 43 for validation, 215 for prediction), 50% (3226, 1935, 216, 1075), 100% (6453, 3871,

431, 2151); bars indicate standard deviation.
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738  Figure 3: Visualization of RT features. a) xiRT-based features from RP dimension only (13 features)
739 after dimensionality reduction with UMAP. b) xiRT-based feature from SCX-hSAX-RP dimensions (43
740  features) after dimensionality reduction with UMAP. Input data for a) and b) were CSMs of

741 heteromeric links in the proteome-wide crosslinking dataset (Ec = E. coli, Mix = match between E.
742 Coli and human peptides), filtered to 50% CSM-FDR. Identifications passing 1% CSM-FDR are

743 highlighted. DD identifications are not shown. c) SHAP analysis of RT feature importance for CSM-
744  rescoring (using a linear SVM) including SCX, hSAX and RP features (Tab. S4). Each dot represents a
745 previously identified CSM from 200 randomly chosen TTs that were excluded from training (i.e. CSM-
746 FDR > 1%). The background data set consists of 100 TT and TD CSMs each. Dashed line indicates the

747  base value for a prediction based on the background data alone (0.44).

748
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750  Figure 4: Incorporation of RT prediction to CSM-scoring increases crosslink identification. a) Score
751  distributions of heteromeric CSMs based on mass spectrometric information (xiSCORE) and RT

752  features (SVM score). The dashed line indicates the xiSCORE-based CSM-FDR threshold of 1%. b)

753  Increase in identification of TT-CSMs and PPIs at constant FDR. Numbers in brackets indicate

754  identifications involving a human protein. c) Overlap of observed PPIs (at 1% heteromeric PPI-FDR) to
755  external references. Numbers in the Venn diagram represent the identified PPls among E. coli

756  proteins or PPIs involving human proteins (in brackets). Black numbers highlight the added benefit
757  from combining xiSCORE with xiRT’s SVM score for PPl identification. d) Distribution of CSMs per PPI
758  before (grey) and after CSM-rescoring (green). e) Selected subnetwork of the RNA polymerase with
759 PPIs only identified after the rescoring connected in green. Data in b-e corresponds to a 1% PPI-FDR

760  (prefiltered at a 5% CSM-FDR).
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Figure 5: Benefit of RT prediction for multiprotein complex crosslink analysis. a) Crosslink network

from the Fanconi anemia complex analysis, shown in circular view. Unique residue pairs from

xiSCORE, after rescoring and shared between these analyses are depicted (1% residue-pair FDR).

Proteins associated to the Fanconi anemia core complex are indicated with their gene name suffix.

The E. coli protein YehQ represents a match from the entrapment database. b) Quantitative

assessment of residue-pairs with and without rescoring, and including calculated distances in the

model. ¢) Distribution of crosslink distances from identified residue-pairs (n=105) following rescoring,

shared between rescoring and xiSCORE (since no crosslinks unique to xiSCORE), and theoretically

possible residue-pairs that could be mapped to the model.
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