

1 Invasive Earthworms Alter Forest Soil Microbiomes and Nitrogen Cycling

2

3 Jeonghwan Jang^{1,2,a}, Xianyi Xiong¹, Chang Liu³, Kyungsoo Yoo³, Satoshi Ishii^{1,3,*}

4

5 ¹ BioTechnology Institute, University of Minnesota, St. Paul, MN

6 ² Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN

7 ³ Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN

8

9

10 * Corresponding author: Dr. Satoshi Ishii, BioTechnology Institute, University of
11 Minnesota, 1479 Gortner Ave., 140 Gortner Labs, St. Paul, MN. Phone: 1-612-624-
12 7902; E-mail: ishi0040@umn.edu

13

14 ^a Present address: Division of Biotechnology, Jeonbuk National University, Iksan, South
15 Korea

16

17

18 Keywords: earthworms, invasive species, microbiome, forest soil, nitrogen cycling

19

20 **Competing Interests**

21 The authors declare no competing interests.

22 **Abstract**

23 Northern hardwood forests in formerly glaciated areas had been free of
24 earthworms until exotic European earthworms were introduced by human activities. The
25 invasion of exotic earthworms is known to dramatically alter soil physical, geochemical,
26 and biological properties, but its impacts on soil microbiomes are still unclear. Here we
27 show that the invasive earthworms alter soil microbiomes and ecosystem functioning,
28 especially for nitrogen cycling. We collected soil samples at different depths from three
29 sites across an active earthworm invasion chronosequence in a hardwood forest in
30 Minnesota, USA. We analyzed the structures and the functional potentials of the soil
31 microbiomes by using amplicon sequencing, high-throughput nitrogen cycle gene
32 quantification (NiCE chip), and shotgun metagenomics. Both the levels of earthworm
33 invasion and soil depth influenced the microbiome structures. In the most recently and
34 minimally invaded soils, *Nitrososphaera* and *Nitrospira* as well as the genes related to
35 nitrification were more abundant than in the heavily invaded soils. By contrast, genes
36 related to denitrification and nitrogen fixation were more abundant in the heavily invaded
37 than the minimally invaded soils. Our results suggest that the N cycling in forest soils is
38 mostly nitrification driven before earthworm invasion, whereas it becomes denitrification
39 driven after earthworm invasion.

40

41 **Introduction**

42 Earthworms are well-known ecosystem engineers that shape soil structure and
43 drive nutrient dynamics in soil ecosystem [1]. They feed on litter and soil, burrow
44 horizontally and vertically through soils, and release fecal materials to mix nutrients in
45 soils, altering soil porosity, bulk density, water infiltration, gas emission, nutrient
46 mineralization, and plant productivity [2].

47 Although earthworms are widely considered ubiquitous across the forest,
48 grassland, agricultural, and garden ecosystems in the world, their global distribution is
49 only beginning to be synthesized [3]. Glaciers and peri-glacial environments cleared out
50 native earthworm populations from large areas in the northern USA and Canada as well
51 as other Arctic areas in Eurasia during the last Ice Age [4]. Since then, most of these
52 areas had remained earthworm-free until European earthworm species were introduced
53 by human activities [5].

54 The earthworm invasion is now widely regarded as a force that substantially
55 alters physical, geochemical, and biological properties of soils in northern hardwood
56 forests [6, 7], and its ecosystem effects are believed to harm plant diversity [8] and be
57 increasingly detrimental with ongoing changes in land uses and climates [9]. Invasive
58 earthworms are known to reduce the litter layer (O horizon) while mixing organic matter
59 with underlying minerals to create A horizon [10]. Presumably coupled with the loss of O
60 horizon, invasion of European earthworms results in increased leaching of nitrates in
61 the formerly glaciated deciduous forests [11]. Denitrification enzyme activity was also
62 higher in the forest soils with earthworms than in those without earthworms [12].

63 A limited number of studies suggest that the invasion of earthworms could alter
64 soil microbial communities. For example, Dempsey *et al.* [13] observed changes in soil
65 microbial community composition based on the phospholipid fatty acid (PLFA) in a
66 northern hardwood forest in New York, USA. Although PLFA analysis provides
67 quantitative information, it cannot provide community compositions at low taxonomic
68 (e.g., genus) levels. Hoeffner *et al.* [14] and de Menezes *et al.* [15] used terminal
69 restriction fragment length polymorphism (T-RFLP) and high-throughput 16S rRNA
70 gene amplicon sequencing, respectively, to analyze the effects of invasive earthworms
71 on soil bacterial communities. However, these studies analyzed short-term impacts (e.g.,
72 10-20 days [14] and 17 weeks [15]) by using soil mesocosms. Field investigation is
73 essential to analyze the longer-term impacts of earthworm invasion in natural soil
74 environments.

75 Previously, we studied the impacts of earthworm invasion on the soil
76 physicochemical properties in a northern hardwood forest in Minnesota, USA [10, 16,
77 17], which built on decades-long research on ecological processes and effects of
78 earthworm invasion [18-21]. At this site, a gradient of earthworm density was observed
79 within a 190-m distance, which most likely reflects the history of earthworm invasion [17].
80 The invasion of earthworms has drastically changed the cycling of carbon, nitrogen, and
81 other nutrients in soils [16, 17, 20]; however, it is unclear how it influenced soil microbial
82 communities. Since microbes play crucial roles in soil C and N cycling in forest
83 ecosystems [22], we hypothesize that the abundances of microbes important for C and
84 N cycling have changed by the invasion of earthworms.

85 Consequently, the objectives of this study were to (1) elucidate the impacts of
86 earthworm invasion on soil bacterial, archeal, and fungal communities at field conditions,
87 (2) clarify the relationships between the levels of earthworm invasion, microbial
88 communities, and soil physicochemical properties, and (3) analyze how earthworm
89 invasion influenced the abundance of microbes/genes important for C and N cycles. To
90 meet these objectives, we collected soil samples at different depths from three sites
91 across an active earthworm invasion chronosequence in a hardwood forest in
92 Minnesota. Our analyses, based on the amplicon sequencing, high-throughput nitrogen
93 cycle gene quantification, and shotgun metagenomics, suggest that the structures and
94 the functional potentials of the soil microbiomes altered by the invasion of earthworms.
95 Microbial N cycling was most notably influenced. Our results suggest that the N cycling
96 in forest soils is mostly nitrification driven before earthworm invasion, whereas it
97 becomes denitrification driven after earthworm invasion.

98

99 **MATERIALS AND METHODS**

100 Soil sample collection

101 Soil samples were collected from a formerly glaciated northern hardwood forest
102 in Minnesota, USA (Fig. S1). Earthworm biomass and species composition vary along a
103 transect of ~200 m, while other environmental variables including climate, vegetation,
104 geology, and topography are consistent within the transect as described in the
105 supplementary information. We selected three sites along the transect: heavily invaded
106 site (H), minimally invaded site (M), and the intermediate site (I). The minimally invaded
107 site had the smallest earthworm biomass, dominated by epigeic earthworms (Fig. S2),

108 which live and feed in a surface litter [23]. The heavily invaded site had the largest
109 earthworm biomass, dominated by anecic and endogeic species. While endogeic
110 earthworms burrow horizontally through soils and feed on decomposed matter and
111 mineral soils, anecic earthworms live in deep vertical burrows and feed at a soil surface
112 [23]. Although the total amount of earthworm biomass at the site I was similar to that at
113 the site H, the population of anecic earthworms was small. Each ecological group (i.e.,
114 epigeic, endogeic, and anecic earthworms) differently influences soil ecosystems based
115 on their feeding and moving behaviors [24].

116 After removing large undegraded leaves from the surface, three replicate soil
117 cores (0-20 cm) were taken at each site by using a surface-disinfected soil probe. The
118 soil core samples were divided into six segments (0-2 cm, 2-4 cm, 4-6 cm, 6-8 cm, 8-10
119 cm, and 10-20 cm by depth) and placed in Whirl-Pak bags. A total of 54 soil samples
120 were collected (three sites \times three soil cores \times six segments). Samples were kept on ice
121 immediately after collection, and frozen with dry ice within 2 h of collection. Soil
122 physicochemical properties (Soil pH, bulk densities, and carbon, ammonium, nitrate,
123 and nitrite contents) were measured in this study or obtained from previous literature as
124 described in the supplementary information.

125

126 DNA extraction, PCR, and amplicon sequencing

127 Total DNA was extracted from 0.25 g of each soil sample by using a DNeasy
128 PowerSoil Kit (Qiagen) and QIAcube (Qiagen) according to the manufacturer's
129 instructions. From these DNA samples, the V4 region of the 16S rRNA gene and the

130 fungal internal transcribes spacer 2 (ITS2) region between 5.8S and 23S rRNA gene
131 were amplified and sequenced as described in the supplementary information.

132 The paired-end raw sequence reads were quality-filtered, trimmed, and
133 assembled using NINJA-SHI7 [25]. The assembled sequences were clustered into
134 operational taxonomic units (OTUs) at 97% sequence similarity by using NINJA-OPS
135 [26]. Taxonomic assignments of the archaeal/bacterial and fungal OTUs were done
136 using the Greengenes database version 97 [27] and UNITE [28] reference data sets,
137 respectively. The resulting OTU tables with taxonomic information were used for
138 statistical analyses (see below).

139 Based on the fungal OTU sequence data, fungal trophic modes and functional
140 guilds were predicted by using the FUNGuild software [29]. Only results with the
141 confidence scores of “Probable” and “Highly Probable” were used for statistical
142 analyses.

143

144 Nitrogen Cycle Evaluation (NiCE) chip

145 High-throughput microfluidic qPCR was used to quantify nitrogen cycle-
146 associated genes (Nitrogen Cycle Evaluation [NiCE] chip) [30]. Several assays were
147 newly added to the NiCE chip system to increase the target coverage. A total of 43
148 qPCR assays were included, targeting the genes associated with nitrification,
149 denitrification, dissimilatory nitrate reduction to ammonium (DNRA), anaerobic
150 ammonium oxidation (anammox), and nitrogen fixation (Table S1). Quantification was
151 done using the standard curve method [31] as described in more detail in the
152 supplementary information.

153

154 Shotgun metagenomic sequencing

155 DNA extracted from surface soils (0-2 cm depth) were also used for shotgun
156 metagenomics as described in the supplementary information. To identify N cycle-
157 related genes, we mapped the high-quality metagenomic sequence reads against the
158 NCycDB, a comprehensive nitrogen cycle protein sequence database [32], by using
159 DIAMOND [33] with a minimum sequence identity of 70%, a minimum query coverage
160 of 75%, and an E-value of $<10^{-5}$. To identify fungal denitrification-associated genes, we
161 used the reference sequences reported by Higgins et al. [34] for the read mapping.

162 Description of the top-hit sequence (i.e., aligned with the lowest E-value) was extracted
163 for each mapped read, grouped according to their potential functions, and used to
164 create a read count table. The number of reads mapped to each of the sequence
165 groups (i.e., gene functions) was normalized by the total number of high-quality
166 sequence reads for each sample and used for statistical analyses.

167 High-quality metagenomic sequence reads were also mapped against the
168 Greengenes and UNITE databases to identify bacterial/archaeal and fungal
169 communities, respectively, by using bowtie2 which is implemented in the NINJA-OPS
170 pipeline [26]. The resulting read count data were used for statistical analyses.

171

172

173 Statistical analyses

174 Statistical significances in the quantitative data obtained in this study were tested
175 with the Kruskal-Wallis rank-sum test by using R version 4.0.2 (<https://www.r->

176 [project.org/](https://www.r-project.org/)). Microbial community structures were analyzed by using R with *vegan* [35],
177 *phyloseq* [36], and *DESeq2* packages [37]. Principal coordinates analysis (PCoA) with
178 Bray-Curtis distance matrices were used to visualize the dissimilarities in microbial
179 communities among sites (i.e., the levels of earthworm invasion) and soil depth.
180 Differences in microbial community structures were tested using permutational
181 multivariate analysis of variance (PERMANOVA).

182 Canonical analysis of principal coordinates (CAP) was done using Bray-Curtis
183 distance matrices to identify environmental variables associated with the patterns in
184 microbial communities [38]. Environmental variables that were correlated with other
185 variables at the Spearman's ρ values of >0.80 were removed from the CAP analysis.
186 Multicollinearity among the environmental variables was also identified by calculating
187 variance inflation factors (VIF). Variables with a VIF of >10 were removed from the
188 model in the CAP analysis. Furthermore, variables that were not significant ($p >0.05$) by
189 PERMANOVA were removed from the model.

190 Taxa or genes that increased or decreased their relative abundance after
191 earthworm invasion were identified by Spearman's rank correlation analysis between
192 gene abundance and earthworm biomass, which was the largest in the heavily invaded
193 soil and the smallest in the minimally invaded soils (Fig. S2). In addition, differentially
194 abundant taxa across samples were identified using *DESeq2* with $\alpha = 0.01$.

195

196 Nucleotide sequence accession numbers

197 The 16S rRNA gene and fungal ITS2 amplicon sequences as well as the shotgun
198 metagenomics sequence reads were deposited to the GenBank database under the

199 BioProject number PRJNA504043. The SRA accession numbers are available in Table
200 S2 and S3.

201

202 **RESULTS**

203 Abundance of microbes in soils

204 The abundances of archaea/bacteria and fungi were estimated by qPCR
205 targeting the 16S rRNA gene (Fig. 1A) and the ITS2 region (Fig. 1B), respectively.
206 While abundances of archaea/bacteria and fungi were not significantly different by the
207 levels of earthworm invasion (i.e., sites), they were significantly different by depth (p
208 <0.01 by Kruskal-Wallis test). Both archaea/bacteria and fungi were most abundant in
209 near-surface soils. Soil depth was negatively correlated with the copy numbers of the
210 16S rRNA gene (Spearman's $\rho = -0.77$, $p <0.01$) and the ITS2 region (Spearman's $\rho =$
211 -0.60 , $p <0.05$). Although differences in the abundance of archaea/bacteria between the
212 surface soil (0-2 cm) and soils at 10-20 cm were similar by site, those between the
213 surface soil and soils at 8-10 cm depth was the larger in the minimally invaded soil (site
214 M) than heavily invaded soil (site H) ($p <0.05$ by Kruskal-Wallis test) (Table S4). The
215 same trend was also seen for the differences in the fungal abundances between the
216 surface soil (0-2 cm) and the soils at 8-10 cm (Table S4).

217

218 Alpha diversity measures

219 Soil archaeal/bacterial and fungal communities were analyzed by sequencing the
220 16S rRNA gene and ITS2 region, respectively. The number of sequences per sample
221 ranged from 28 079 to 284 434 and from 967 to 53 610 for the 16S rRNA gene and

222 ITS2 region, respectively (Table S2). Numbers of sequences were normalized at the
223 smallest number of sequences by random subsampling for the diversity analyses. The
224 subsampled sequences provided sufficient resolution of the microbial communities, as
225 indicated by Good's coverage ranging from 0.952 to 0.992.

226 Species richness was inferred by the numbers of observed OTUs for
227 archaea/bacteria (Fig. 1C) and fungi (Fig. 1D). The numbers of archaeal/bacterial and
228 fungal OTUs decreased by depth ($p < 0.01$ and < 0.05 , respectively, by Kruskal-Wallis
229 test), but not by the levels of earthworm invasion. Soil samples collected at 10-20 cm
230 had the smallest number of OTUs for both archaea/bacteria and fungi, and the values
231 were similar across sites. Differences in the numbers of observed OTUs for
232 archaea/bacteria between the surface soil (0-2 cm) and the soils at 8-10 cm depth was
233 larger in the site M than the sites H and I (Table S5).

234 Shannon diversity index values calculated based on the archaeal/bacterial 16S
235 rRNA gene sequences were also significantly different by soil depth ($p < 0.01$ by
236 Kruskal-Wallis test) (Fig. 1E), whereas those calculated based on the fungal ITS2
237 region were not (Fig. 1F). Shannon index values for archaea/bacteria were the smallest
238 in the soil samples collected at the 10-20 cm samples, and these values were similar
239 across sites. Shannon diversity index values were not significantly different by the levels
240 of earthworm invasion for both archaea/bacteria and fungi, although differences in the
241 Shannon index values for archaea/bacteria between the surface soil (0-2 cm) and soils
242 at 8-10 cm depth was greater in the site M than the sites H and I (Table S5).

243

244 Patterns in soil microbial communities

245 Principal coordinates analysis (PCoA) showed the grouping of soil
246 archaeal/bacterial communities by the levels of earthworm invasions (site M vs. site I
247 and H) and soil depth (Fig. 2A). Community dissimilarities among different levels of
248 earthworm invasions and soil depths were supported by PERMANOVA ($p < 0.01$). The
249 archaeal/bacterial communities in the near-surface soil (0-2 cm) and those in the
250 deepest soil (10-20 cm) were most distantly plotted to each other. Distances between
251 the archaeal/bacterial communities in the soils with minimum earthworm invasion (site
252 M) and those in the soils with intermediate and heavy invasions (site I and H,
253 respectively) were larger in the shallow soils (0-10 cm depths) than the deep soils (10-
254 20 cm). Archaeal/bacterial communities in the deep soils overlapped each other,
255 indicating that their community structures were similar to each other.

256 Fungal communities in the soils with different levels of earthworm invasion or
257 different soil depths overlapped each other on the PCoA plot (Fig. 2B). However, fungal
258 communities in the soils with minimum earthworm invasion were more closely related to
259 each other than those in the soils with intermediate and heavy invasions, resulting in
260 significant community dissimilarities by the levels of earthworm invasion ($p < 0.01$ by
261 PERMANOVA). In contrast, fungal communities were not different by soil depth ($p = 0.38$
262 by PERMANOVA).

263

264 Taxonomic composition

265 Major archaeal and bacterial phyla identified in this study include *Acidobacteria*,
266 *Actinobacteria*, *Bacteroidetes*, *Crenarchaeota*, *Nitrospirae*, *Planctomycetes*,
267 *Proteobacteria*, and *Verrucomicrobia* (Fig. 3A). Relative abundances of these phyla

268 were similar among the soils with different levels of earthworm invasions, except for
269 *Crenarchaeota* and *Nitrospirae*. Relative abundances of *Crenarchaeota* and *Nitrospirae*
270 were the largest in the soil with minimal invasion of earthworms (site M) ($p < 0.01$ by
271 Kruskal-Wallis test). Similar results were obtained by the 16S rRNA gene amplicon
272 sequencing and the shotgun metagenomics (Fig. S3).

273 *Ascomycota*, *Basidiomycota*, and *Zygomycota* were the major fungal phyla
274 identified in this study (Fig. 3B). Relative abundances of *Basidiomycota* were larger in
275 the soils with more earthworm invasions (site I and H) than those with minimal invasions
276 earthworm invasions ($p < 0.01$ by Kruskal-Wallis test).

277

278 Microbial taxa responsive to earthworm invasion

279 To further identify the taxa that increased or decreased their relative abundance
280 after the invasion of earthworms, Spearman's rank correlation analysis was used (Table
281 S6). Taxa that showed positive correlations with the levels of earthworm invasion
282 included the genus *Mycobacterium* ($\rho = 0.56$, $p < 0.01$) in the phylum *Actinobacteria*.
283 Taxa that showed negative correlations with the levels of earthworm invasion included
284 the genus *Nitrososphaera* ($\rho = -0.60$, $p < 0.01$) in the phylum *Crenarchaeota*, the genus
285 *Nitrospira* ($\rho = -0.50$, $p < 0.01$) in the phylum *Nitrospirae*, and the fungal order *Helotiales*
286 ($\rho = -0.57$, $p < 0.01$) in the phylum *Ascomycota*.

287

288 Quantities of the N cycle-associated genes

289 Some members of the genera *Nitrososphaera* and *Nitrospirae* play important
290 roles in the N cycle, namely ammonia oxidation and nitrite oxidation, respectively. The

291 decrease in their relative abundances in the earthworm-invaded soils could influence
292 the overall N cycling in the soils. To clarify this, we used a high-throughput N-cycle gene
293 quantification tool called the NiCE chip. With this tool, we could quantify almost all
294 genes associated with the N cycle, including archaeal *amoA* and *nxrB* of *Nitrospira*. Of
295 the 43 assays included in the NiCE chip, 18 assays showed quantitative results in >60%
296 of the samples. These 18 assays targeted genes for nitrification (*amoA* and *nxrB*),
297 denitrification (*napA*, *nirK*, *nirS*, *norB*, *nosZ*), and nitrogen fixation (*nifH*). In general,
298 denitrification-related genes were more abundant than nitrification-related genes (Fig.
299 4A). Many of the denitrification- and nitrogen fixation-related genes were also more
300 abundant in the soils with heavy earthworm invasions than the soils with minimal
301 invasions ($p < 0.05$ by Kruskal-Wallis test).

302 By contrast, the quantities of *nxrB* of *Nitrospira* (measured by the *nxrB*169
303 assay) were significantly greater in the soils with minimal invasion of earthworms than
304 those heavily invaded by earthworms ($p < 0.01$ by Kruskal-Wallis test) (Fig. 4B), in
305 agreement with the changes in the relative abundance of *Nitrospira* measured by 16S
306 amplicon sequencing. Interestingly, while quantities of *Nitrospira* *nxrB* decreased by
307 depth in the samples with minimal invasion of earthworms ($p < 0.01$ by Kruskal-Wallis
308 test), those in the samples with heavy/intermediate invasions increased by depth (p
309 < 0.01 by Kruskal-Wallis test).

310 Quantities of archaeal *amoA* were not significantly different among the samples
311 with different levels of earthworm invasion (Fig. 4C). In minimally invaded soils,
312 archaeal *amoA* levels were significantly greater in the surface 0-2 cm soils than the soils
313 collected at 10-20 cm depth ($p < 0.05$ by Kruskal-Wallis and Mann's *post hoc* test).

314

315 Environmental variables associated with the patterns in microbial communities

316 Canonical analysis of principal coordinates (CAP) was used to clarify the
317 relationship between environmental variables and the patterns in microbial communities.
318 To select environmental variables for the CAP analysis, we first did a correlation
319 analysis (Fig. S4). Most denitrification genes correlated with each other at Spearman's p
320 >0.8 . Assay nirK_FlaCu was selected as the representative assay for denitrification
321 because this assay produced quantitative values for all samples. Based on the
322 correlation analysis, 13 variables were selected and used for the CAP analysis. After
323 the VIF analysis and PERMANOVA, seven and five variables survived in the final CAP
324 models for archaeal/bacterial and fungal communities, respectively (Fig. 5). Earthworm
325 biomass, ammonium concentration, soil bulk density, and the quantities of denitrification
326 and nitrogen fixation genes (nirK_FlaCu and nifHF assays, respectively) were
327 commonly identified as the variables significantly associated with the patterns in both
328 archaeal/bacterial and fungal communities ($p < 0.05$ by PERMANOVA). For
329 archaeal/bacterial communities, additional two variables, quantities of nitrification genes
330 (Arch_amoA_for and nxrB169f) were also identified.

331

332 Functional potentials of the soil microbial communities

333 To further assess the functional potential of the soil microbial communities, we
334 used the shotgun metagenomics approach. Surface soils (0-2 cm) were used for the
335 metagenomic analysis because microbiomes in these soils were most significantly
336 different between sites H, I, and M. Similar to the NiCE chip results, the relative

337 abundances of the genes responsible for denitrification (*nar*, *nap*, *nor*, and *nos*) and
338 nitrogen fixation (*nif*) were positively correlated with the levels of earthworm invasion
339 (Spearman's $\rho > 0.75$, $p < 0.05$) (Fig. 6). The relative abundances of bacterial/archaeal
340 nitrite reductase genes (*nirK* and *nirS*) and fungal nitrite reductase gene (fungal *nirK*)
341 were also positively correlated with the levels of earthworm invasion (Spearman's $\rho =$
342 0.57 and 0.69, respectively), although they were not statistically significant ($p = 0.143$
343 and 0.057, respectively) (Table S7).

344 By contrast, the abundance of bacterial and archaeal ammonia monooxygenase
345 genes for nitrification was negatively associated with the earthworm invasion levels
346 (Spearman's $\rho < -0.80$, $p < 0.05$). The relative abundance of nitrite oxidoreductase gene
347 (*nxr*) was also negatively yet insignificantly correlated with the levels of earthworm
348 invasion (Spearman's $\rho = -0.57$, $p = 0.143$). The relative abundance of glutamate
349 dehydrogenase was positively correlated with the levels of earthworm invasion
350 (Spearman's $\rho = 0.76$, $p < 0.05$), although other genes for nitrogen assimilation, such as
351 glutamine synthetase or asparagine synthase were not (Table S7).

352 To assess the potential functions of the soil fungal communities, we used the
353 FUNGuild approach. The relative abundance of symbiotrophs (e.g., ectomycorrhizae)
354 was positively correlated with the levels of earthworm invasion (Spearman's $\rho > 0.46$, p
355 < 0.01); whereas those of saprotrophs and pathotrophs were negatively correlated with
356 the levels of earthworm invasion (Spearman's $\rho < -0.41$, $p < 0.01$) (Table S8).

357

358 **Discussion**

359 While the invasion of earthworms itself did not influence the abundances of
360 archaea/bacteria and fungi as well as the α diversity measures, soil depths had
361 significant impacts on the quantities and α diversities of soil microbiota. Effects of soil
362 depths on microbial communities have been well documented in temperate forest soils
363 [39, 40]. Impacts of soil depth were greater in the minimally invaded soil (site M) than
364 more earthworm-invaded soils (sites H and I), as we found larger differences in the
365 quantities and diversities of soil archaeal/bacterial populations between the surface (0-2
366 cm) and deep (8-10 cm) soils in minimally invaded soil than in heavily invaded soils.
367 This is likely due to the mixing effects by soil-dwelling earthworms such as endogeic
368 and anecic earthworms that were abundantly present in sites H and I. These
369 earthworms vertically mix organic materials with minerals to form A horizon [16, 17].
370 Interestingly, differences in the quantities and α diversities of soil microbiota between
371 the surface (0-2 cm) and the deepest (10-20 cm) soils were not significantly different by
372 the level of earthworm invasion, suggesting that the impacts of earthworm invasion on
373 soil microbial communities were minimal in the soils at 10-20 cm depth. This agrees
374 with our field observations that A horizons rarely exceed 10 cm depth [17].

375 Both soil depth and the level of earthworm invasion had significant impacts on β
376 diversity. The impact of earthworm invasion on β diversity of soil archaeal/bacterial
377 communities was greater in shallow soils (0-10 cm) than in deep soils (10-20 cm).
378 Indeed, archaeal/bacterial communities in the deep soils were similar to each other
379 regardless of the levels of earthworm invasion. Although some anecic earthworms are
380 known to dig deep burrows of up to 2 m [7], our results suggest that the invasion of
381 earthworms had limited influence on the archaeal/bacterial community structures in the

382 soils at 10-20 cm. This is also supported by the minimal presence of earthworm burrows
383 below 10 cm as seen in the previous soil excavations to the depth of 1.5 m along the
384 study transect including the site heavily infested with anecic *L. terrestris* [17]. The lack of
385 deep earthworm activities may be due to the dry sandy loess layer and the dense clay-
386 rich B horizon that underly the newly formed A horizon.

387 *Acidobacteria*, *Actinobacteria*, *Bacteroidetes*, *Planctomycetes*, *Proteobacteria*,
388 and *Verrucomicrobia* occupied relatively large proportions of the archaeal and bacterial
389 populations. Similar to this study, these phyla have been commonly detected in soils of
390 temperate deciduous forests [41, 42]. Relatively large proportions of *Crenarchaeota* and
391 *Nitrospirae* were also detected in this study, especially in the minimally invaded soils.
392 These phyla are not frequently detected in other forest soils (e.g., [41, 42]), most of
393 which presumably contained earthworms. *Nitrososphaera* spp. in the phylum
394 *Crenarchaeota* and *Nitrospira* spp. in the phylum *Nitrospirae* were more abundant in the
395 minimally invaded soils than the other soils. These microbes may play important roles in
396 nitrification [43-46]. Interestingly, the vertical distribution of *Nitrospira* was different
397 between the minimally invaded soils and more earthworm-invaded soils. *Nitrospira* spp.
398 were more abundant near the surface of minimally invaded soils, probably because
399 substrate for nitrification (ammonium and nitrite) were more available near the surface
400 (O horizon). By contrast, *Nitrospira* spp. were more abundant in deeper soils of
401 earthworm-invaded sites, probably because of the mixing soil microbes by earthworms
402 and/or the leaching of nitrite downward.

403 While the relative abundance of *Nitrososphaera* spp. and *Nitrospira* spp.
404 decreased by earthworm invasion, that of *Mycobacterium* (*Actinobacteria*) increased.

405 Specific bacteria can be enriched in the earthworm guts, in which C, N, and other
406 nutrients are more abundant than in soils [47, 48]. Indeed, *Mycobacterium* was
407 frequently isolated from the guts of anecic earthworms (*L. terrestris*) [49] and was also
408 identified as one of the bacterial taxa residing in earthworm gut walls of endogeic
409 earthworms (*Aporrectodea* spp.) [24]. In addition, *Mycobacterium* was present at a
410 significantly larger proportion in the guts of epi-endogeic earthworms (*L. rubellus*) than
411 in soils [50]. These results collectively suggest that earthworms likely enriched
412 *Mycobacterium* in their guts and contributed to the increased abundance of
413 *Mycobacterium* in earthworm-invaded soils.

414 Metagenomic analysis revealed that archaeal *amoA* was more abundant in the
415 minimally invaded soils than in the other soils, further supporting that archaea including
416 *Nitrososphaera* spp. play ammonia oxidation in the minimally invaded soils. The qPCR
417 analysis (i.e., NiCE chip), however, did not show a significant difference in the archaeal
418 *amoA* abundance among the soils. Similarly, a discrepancy was also observed for the
419 abundance of *nxrB* of *Nitrospira*: while NiCE chip results showed a significant difference
420 in the abundance of *nxrB* of *Nitrospira* among the soils, no difference was detected by
421 metagenomics. The discrepant results obtained by the two approaches may be due, in
422 part, to (1) the large variations seen in the qPCR results, which was likely caused by the
423 relatively low abundance of archaeal *amoA* and *Nitrospira nxrB* in the samples, (2)
424 biases caused by the PCR primers (i.e., not all target genes are necessarily amplified
425 by qPCR), or (3) the difference in the quantitative nature of the methods: while qPCR
426 can provide absolute quantification (copies/g soil), metagenomics approach can provide
427 only relative quantification (counts per million reads) in this study [51].

428 Both metagenomics and the NiCE chip analyses showed that many of the
429 denitrification-related genes were more abundant in the earthworm-invaded soils than in
430 the soils with minimal invasions. This may appear contradictory to the fact that the
431 concentration of denitrification substrate (i.e., nitrate) was higher in the minimally
432 invaded soil than the heavily invaded soils as seen in this study as well as Hale *et al.*
433 [20]. However, it is probable that nitrate may have been consumed by denitrifiers in the
434 earthworm-invaded soils, and therefore, became low compared to that in the minimally
435 invaded soils. Similar to this study, greater denitrification activities were observed in
436 earthworm-invaded forest soils than non-invaded soils [12, 52]. Higher denitrification
437 activity was also reported in earthworm excreta (i.e., casts) than in the surrounding soils
438 [53]. The larger abundance of denitrifying organisms in earthworm-invaded soils might
439 be due, in part, to the enrichment of denitrifiers in earthworm intestines and/or the
440 presence of more anoxic areas in soils. Earthworm intestines are known to promote
441 denitrification, most likely due to the presence of anoxic area and readily assimilable
442 carbon (i.e., mucus) [47, 48, 54, 55]. Earthworm-invaded soils could also have more
443 anoxic micro-sites than the minimally invaded soils. Along our earthworm invasion
444 chronosequence, both soil bulk density and the size and strength of soil aggregation are
445 positively related with the level of earthworm invasion [16, 20], which is likely to offer
446 more anoxic micro-sites that favor denitrification in the heavily invaded soils.

447 In addition to denitrification-related genes, the genes related to nitrogen fixation
448 (*nif*) were also enriched in the earthworm-invaded soils in this study. The impact of
449 earthworm invasion in nitrogen fixation is not well known; however, since total N content

450 can decrease by earthworm-associated activities [56], the soil environment may become
451 N-limited, which provides a selective advantage for N-fixing microbes.

452 Regarding the soil fungal communities, the relative abundance of *Basidiomycota*
453 increased by earthworm invasion. This might be related to the increased abundance of
454 symbiotrophs identified by the FUNGuild analysis because some fungi in *Basidiomycota*
455 are known as being ectomycorrhizae and symbiotically associate with trees [57].

456 Ectomycorrhizae receive C mostly from their host plants instead of degrading complex
457 organic matter in soils [57]. By contrast, the relative abundance of the order *Helotiales*
458 (*Ascomycota*) decreased by the invasion of earthworms, which may be related to the
459 decrease of the saprotrophs in the earthworm-rich soils. Most members of *Helotiales*
460 live as soil saprophytes and degrade dead woods or other organic matter [58]. Similar to
461 this study, Dempsey *et al.* [13] detected higher and lower levels of mycorrhizae and
462 saprophytic fungi, respectively, in the earthworm-invaded soils than in the earthworm-
463 free soils in a northern hardwood forest in New York, USA, by using the PLFA analysis.
464 Collectively, these results suggest that soil fungal communities would shift from
465 saprophytic to symbiotic communities by the invasion of earthworms, most likely
466 due to the observed decrease in the organic C contents after earthworm invasions.

467 In conclusion, this study clearly shows that the invasion of earthworms alters soil
468 microbial communities and ecosystem functioning. Earthworms mix soils, change soil
469 physical structures, decrease the levels of C, N, and other nutrients in soils, secrete
470 mucus, and enrich specific microbes in their guts, all of which can influence the
471 microbial activities in soils. The most notable changes that earthworm invasion causes
472 include the shift in the soil N cycling. Before the earthworm invasion, the N cycling in

473 forest soils is mostly nitrification driven, for which AOA and *Nitrospira* play key roles.

474 After earthworm invasion, the N cycling can become denitrification driven, which may

475 cause N-limited conditions and the increased importance of the N fixing populations.

476 The invasion of earthworms is ongoing. They are actively spreading in formerly

477 glaciated areas such as Alaska [59] and northern Scandinavia [60] in addition to

478 Minnesota. To better understand the impacts of “global worming” on the ecology of soil

479 systems, future research is necessary including the analysis of soil microbiomes at non-

480 invaded and recently invaded soils on a global scale.

481

482 **Acknowledgements**

483 We thank Marshal Landrum and Hao Wang for technical assistance, and Adrian

484 Wackett for valuable comments. This research was supported by the MnDRIVE

485 Initiative (to SI) and the CFANS Bridge & Development Grant (to KY and SI) of the

486 University of Minnesota. This study was done, in part, by using the Minnesota

487 Supercomputing Institute's resources.

488

489 **References**

- 490 1. Crooks JA. Characterizing ecosystem-level consequences of biological invasions:
491 the role of ecosystem engineers. *Oikos*. 2002;97:153-166.
- 492 2. Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, *et al*. A review
493 of earthworm impact on soil function and ecosystem services. *Eur J Soil Sci*.
494 2013;64:161-182.
- 495 3. Phillips HRP, Guerra CA, Bartz MLC, Briones MJI, Brown G, Crowther TW, *et al*.
496 Global distribution of earthworm diversity. *Science*. 2019;366:480-485.
- 497 4. James SW, Hendrix PF. Invasion of exotic earthworms into north America and other
498 regions. In: Edwards CA (ed). *Earthworm Ecology*. (CRC Press, Boca Raton, Florida)
499 pp 75-88.
- 500 5. Hendrix PF, Callaham MA Jr, Drake JM, Huang C-Y, James SW, Snyder BA, *et al*.
501 Pandora's box contained bait: the global problem of introduced earthworms. *Annu
502 Rev Ecol Evol Syst*. 2008;39:593-613.
- 503 6. Ferlian O, Eisenhauer N, Aguirrebengoa M, Camara M, Ramirez-Rojas I, Santos F,
504 *et al*. Invasive earthworms erode soil biodiversity: a meta-analysis. *J Anim Ecol*.
505 2018;87:162-172.
- 506 7. Bohlen PJ, Scheu S, Hale CM, McLean MA, Migge S, Groffman PM, *et al*. Non-
507 native invasive earthworms as agents of change in northern temperate forests. *Front
508 Ecol Environ*. 2004;2:427-435.
- 509 8. Craven D, Thakur MP, Cameron EK, Frelich LE, Beauséjour R, Blair RB, *et al*. The
510 unseen invaders: introduced earthworms as drivers of change in plant communities
511 in North American forests (a meta-analysis). *Glob Change Biol*. 2017;23:1065-1074.

512 9. Frelich LE, Blossey B, Cameron EK, Dávalos A, Eisenhauer N, Fahey T, *et al.* Side-
513 swiped: ecological cascades emanating from earthworm invasions. *Front Ecol*
514 *Environ.* 2019;17:502-510.

515 10. Lyttle A, Yoo K, Hale C, Aufdenkampe A, Sebestyen S. Carbon–mineral interactions
516 along an earthworm invasion gradient at a sugar maple forest in northern Minnesota.
517 *Appl Geochem.* 2011;26:S85-S88.

518 11. Bohlen PJ, Pelletier DM, Groffman PM, Fahey TJ, Fisk MC. Influence of earthworm
519 invasion on redistribution and retention of soil carbon and nitrogen in northern
520 temperate forests. *Ecosystems.* 2004;7:13-27.

521 12. Burtelow AE, Bohlen PJ, Groffman PM. Influence of exotic earthworm invasion on
522 soil organic matter, microbial biomass and denitrification potential in forest soils of
523 the northeastern United States. *Appl Soil Ecol.* 1998;9:197-202.

524 13. Dempsey MA, Fisk MC, Fahey TJ. Earthworms increase the ratio of bacteria to fungi
525 in northern hardwood forest soils, primarily by eliminating the organic horizon. *Soil*
526 *Biol Biochem.* 2011;43:2135-2141.

527 14. Hoeffner K, Monard C, Santonja M, Cluzeau D. Feeding behaviour of epi-anecic
528 earthworm species and their impacts on soil microbial communities. *Soil Biol*
529 *Biochem.* 2018;125:1-9.

530 15. de Menezes AB, Prendergast-Miller MT, Macdonald LM, Toscas P, Baker G, Farrell
531 M, *et al.* Earthworm-induced shifts in microbial diversity in soils with rare versus
532 established invasive earthworm populations. *FEMS Microbiol Ecol.* 2018;94.

533 16. Lytle A, Yoo K, Hale C, Aufdenkampe A, Sebestyen SD, Resner K, *et al.* Impact of
534 exotic earthworms on organic carbon sorption on mineral surfaces and soil carbon
535 inventories in a northern hardwood forest. *Ecosystems.* 2015;18:16-29.

536 17. Resner K, Yoo K, Sebestyen SD, Aufdenkampe A, Hale C, Lytle A, *et al.* Invasive
537 earthworms deplete key soil inorganic nutrients (Ca, Mg, K, and P) in a northern
538 hardwood forest. *Ecosystems.* 2015;18:89-102.

539 18. Hale CM, Frelich LE, Reich PB. Changes in hardwood forest understory plant
540 communities in response to european earthworm invasions. *Ecology.* 2006;87:1637-
541 1649.

542 19. Hale CM, Frelich LE, Reich PB. Exotic european earthworm invasion dynamics in
543 northern hardwood forests of Minnesota, USA. *Ecol Appl.* 2005;15:848-860.

544 20. Hale CM, Frelich LE, Reich PB, Pastor J. Effects of European earthworm invasion
545 on soil characteristics in northern hardwood forests of Minnesota, USA. *Ecosystems.*
546 2005;8:911-927.

547 21. Larson ER, Kipfmüller KF, Hale CM, Frelich LE, Reich PB. Tree rings detect
548 earthworm invasions and their effects in northern Hardwood forests. *Biol Invasions.*
549 2010;12:1053-1066.

550 22. Lladó S, López-Mondéjar R, Baldrian P. Forest soil bacteria: diversity, involvement
551 in ecosystem processes, and response to global change. *Microbiol Mol Biol Rev.*
552 2017;81:e00063-00016.

553 23. Briones MJI, Garnett MH, Pearce TG. Earthworm ecological groupings based on
554 14C analysis. *Soil Biol Biochem.* 2005;37:2145-2149.

555 24. Thakuria D, Schmidt O, Finan D, Egan D, Doohan FM. Gut wall bacteria of
556 earthworms: a natural selection process. ISME J. 2010;4:357-366.

557 25. Al-Ghalith GA, Hillmann B, Ang K, Shields-Cutler R, Knights D. SHI7 is a self-
558 learning pipeline for multipurpose short-read DNA quality control. mSystems.
559 2018;3:e00202-00217.

560 26. Al-Ghalith GA, Montassier E, Ward HN, Knights D. NINJA-OPS: fast accurate
561 marker gene alignment using concatenated ribosomes. PLoS Comput Biol.
562 2016;12:e1004658.

563 27. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, *et al.* An
564 improved Greengenes taxonomy with explicit ranks for ecological and evolutionary
565 analyses of bacteria and archaea. ISME J. 2012;6:610-618.

566 28. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, *et al.*
567 Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol.
568 2013;22:5271-5277.

569 29. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, *et al.* FUNGuild: an
570 open annotation tool for parsing fungal community datasets by ecological guild.
571 Fungal Ecol. 2016;20:241-248.

572 30. Oshiki M, Segawa T, Ishii S. Nitrogen cycle evaluation (NiCE) chip for the
573 simultaneous analysis of multiple N-cycle associated genes. Appl Environ Microbiol.
574 2018;84:e02615-17.

575 31. Ishii S, Segawa T, Okabe S. Simultaneous quantification of multiple food- and
576 waterborne pathogens by use of microfluidic quantitative PCR. Appl Environ
577 Microbiol. 2013;79:2891-2898.

578 32. Tu Q, Lin L, Cheng L, Deng Y, He Z. NCycDB: a curated integrative database for
579 fast and accurate metagenomic profiling of nitrogen cycling genes. *Bioinformatics*.
580 2018;35:1040-1048.

581 33. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND.
582 *Nat Methods*. 2015;12:59-60.

583 34. Higgins SA, Schadt CW, Matheny PB, Löffler FE. Phylogenomics reveal the dynamic
584 evolution of fungal nitric oxide reductases and their relationship to secondary
585 metabolism. *Genome Biol Evol*. 2018;10:2474-2489.

586 35. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, *et al.* 2019.
587 *vegan: Community Ecology Package*, R package version 2.5-6. [https://CRAN.R-
588 project.org/package=vegan](https://CRAN.R-project.org/package=vegan).

589 36. McMurdie PJ, Holmes S. *phyloseq*: An R package for reproducible interactive
590 analysis and graphics of microbiome census data. *PLOS ONE*. 2013;8:e61217.

591 37. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion
592 for RNA-seq data with DESeq2. *Genome Biol*. 2014;15:550.

593 38. Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method
594 of constrained ordination for ecology. *Ecology*. 2003;84:511-525.

595 39. Eilers KG, Debenport S, Anderson S, Fierer N. Digging deeper to find unique
596 microbial communities: the strong effect of depth on the structure of bacterial and
597 archaeal communities in soil. *Soil Biol Biochem*. 2012;50:58-65.

598 40. Tang Y, Yu G, Zhang X, Wang Q, Ge J, Liu S. Changes in nitrogen-cycling microbial
599 communities with depth in temperate and subtropical forest soils. *Appl Soil Ecol*.
600 2018;124:218-228.

601 41. López-Mondéjar R, Voříšková J, Větrovský T, Baldrian P. The bacterial community
602 inhabiting temperate deciduous forests is vertically stratified and undergoes
603 seasonal dynamics. *Soil Biol Biochem*. 2015;87:43-50.

604 42. Isobe K, Oka H, Watanabe T, Tateno R, Urakawa R, Liang C, *et al.* High soil
605 microbial activity in the winter season enhances nitrogen cycling in a cool-temperate
606 deciduous forest. *Soil Biol Biochem*. 2018;124:90-100.

607 43. Tourna M, Stieglmeier M, Spang A, Könneke M, Schintlmeister A, Urich T, *et al.*
608 *Nitrososphaera viennensis*, an ammonia oxidizing archaeon from soil. *Proc Natl
609 Acad Sci*. 2011;108:8420-8425.

610 44. Li C, Hu H-W, Chen Q-L, Chen D, He J-Z. Niche differentiation of clade A
611 comammox *Nitrospira* and canonical ammonia oxidizers in selected forest soils. *Soil
612 Biol Biochem*. 2020;149:107925.

613 45. Wang Z, Cao Y, Zhu-Barker X, Nicol GW, Wright AL, Jia Z, *et al.* Comammox
614 *Nitrospira* clade B contributes to nitrification in soil. *Soil Biol Bioch*. 2019;135:392-
615 395.

616 46. Osburn ED, Barrett JE. Abundance and functional importance of complete ammonia-
617 oxidizing bacteria (comammox) versus canonical nitrifiers in temperate forest soils.
618 *Soil Biol Biochem*. 2020;145:107801.

619 47. Medina-Sauza RM, Álvarez-Jiménez M, Delhal A, Reverchon F, Blouin M, Guerrero-
620 Analco JA, *et al.* Earthworms building up soil microbiota, a review. *Front Environ Sci*.
621 2019;7.

622 48. Sun M, Chao H, Zheng X, Deng S, Ye M, Hu F. Ecological role of earthworm
623 intestinal bacteria in terrestrial environments: a review. *Sci Total Environ.*
624 2020;740:140008.

625 49. Fischer OA, Matlova L, Bartl J, Dvorska L, Svastova P, du Maine R, *et al.*
626 Earthworms (*Oligochaeta, Lumbricidae*) and mycobacteria. *Vet Microbiol.*
627 2003;91:325-338.

628 50. Pass DA, Morgan AJ, Read DS, Field D, Weightman AJ, Kille P. The effect of
629 anthropogenic arsenic contamination on the earthworm microbiome. *Environ
630 Microbiol.* 2015;17:1884-1896.

631 51. Ishii S. Quantification of antibiotic resistance genes for environmental monitoring:
632 current methods and future directions. *Curr Opin Environ Sci Health.* 2020;16:47-53.

633 52. Scheu S, Parkinson D. Effects of earthworms on nutrient dynamics, carbon turnover
634 and microorganisms in soils from cool temperate forests of the Canadian Rocky
635 Mountains — laboratory studies. *Appl Soil Ecol.* 1994;1:113-125.

636 53. Svensson BH, Boström U, Klemmedson L. Potential for higher rates of denitrification
637 in earthworm casts than in the surrounding soil. *Biol Fertil Soils.* 1986;2:147-149.

638 54. Karsten GR, Drake HL. Denitrifying bacteria in the earthworm gastrointestinal tract
639 and in vivo emission of nitrous oxide (N_2O) by earthworms. *Appl Environ Microbiol.*
640 1997;63:1878-1882.

641 55. Horn MA, Schramm A, Drake HL. The earthworm gut: an ideal habitat for ingested
642 N_2O -producing microorganisms. *Appl Environ Microbiol.* 2003;69:1662-1669.

643 56. Eisenhauer N, Partsch S, Parkinson D, Scheu S. Invasion of a deciduous forest by
644 earthworms: changes in soil chemistry, microflora, microarthropods and vegetation.
645 *Soil Biol Biochem.* 2007;39:1099-1110.

646 57. Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS. Unearthing the roots
647 of ectomycorrhizal symbioses. *Nat Rev Microbiol.* 2016;14:760-773.

648 58. Tedersoo L, Pärtel K, Jairus T, Gates G, Pöldmaa K, Tamm H. Ascomycetes
649 associated with ectomycorrhizas: molecular diversity and ecology with particular
650 reference to the Helotiales. *Environ Microbiol.* 2009;11:3166-3178.

651 59. Saltmarsh DM, Bowser ML, Morton JM, Lang S, Shain D, Dial R. Distribution and
652 abundance of exotic earthworms within a boreal forest system in southcentral Alaska.
653 *NeoBiota.* 2016;28.

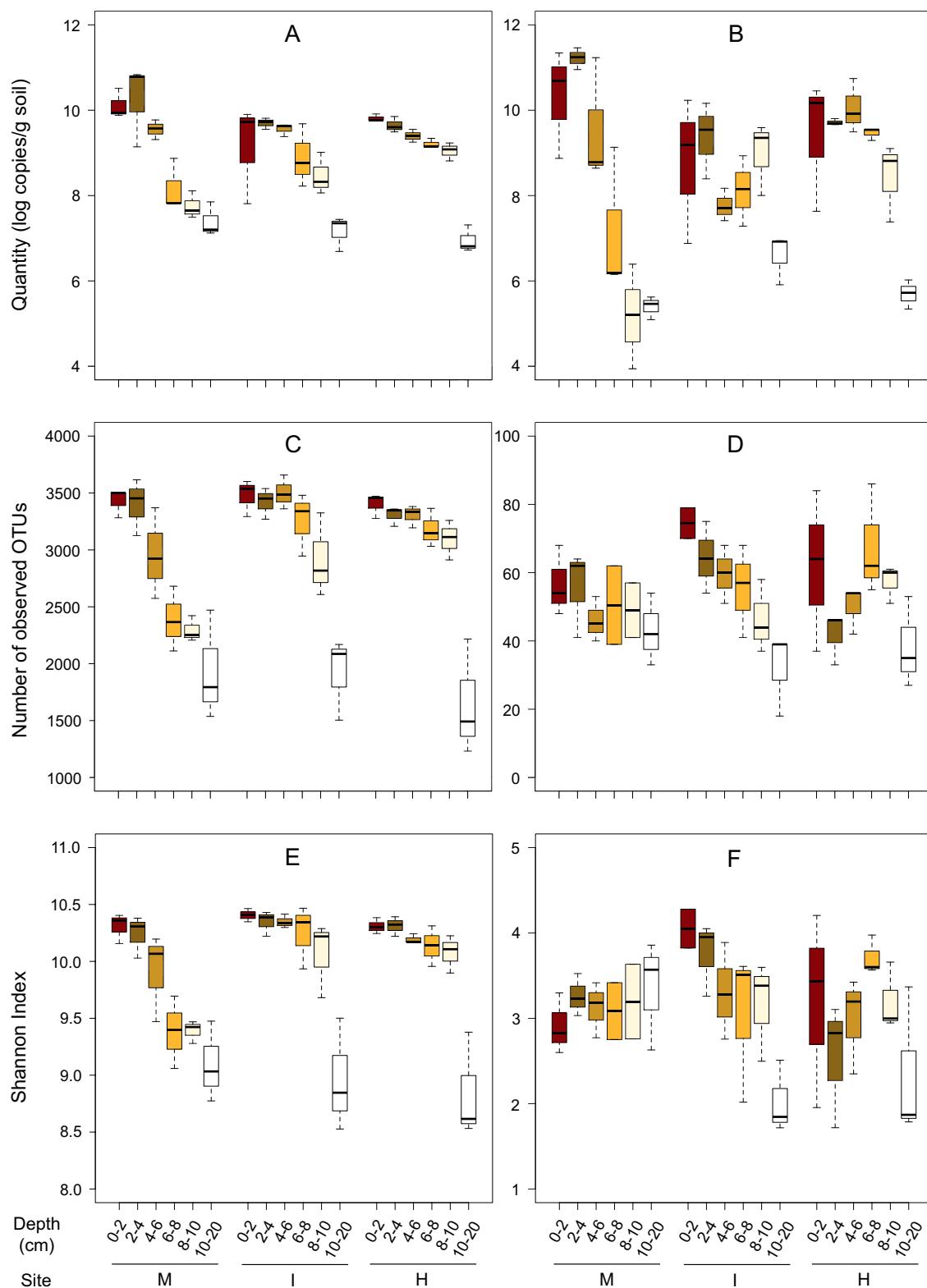
654 60. Wackett AA, Yoo K, Olofsson J, Klaminder J. Human-mediated introduction of
655 geoengineering earthworms in the Fennoscandian arctic. *Biol Invasions.* 2018;20:1377-
656 1386.

657

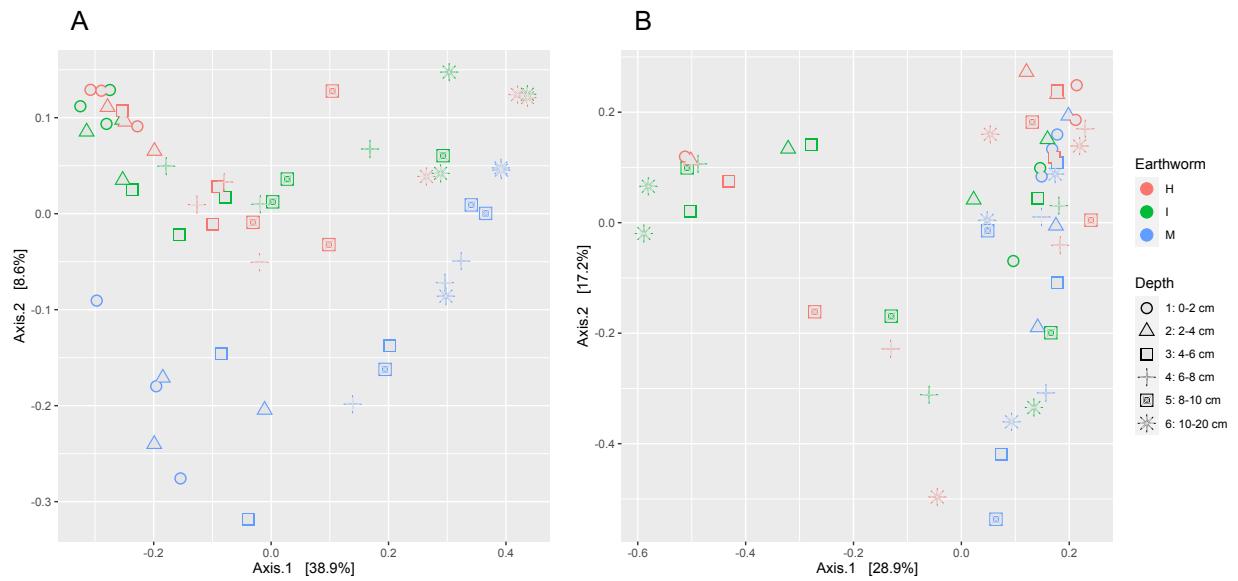
658 **Figure Legends**

659 **Figure 1.** Abundance and diversities of microbes in the soil samples. Quantities of (A)
660 16S rRNA gene and (B) fungal ITS2 region measured by qPCR. Numbers of
661 observed OTUs for (C) archaea/bacteria and (D) fungi. Shannon diversity
662 index values calculated based on (E) the archaeal/bacterial 16S rRNA gene
663 and (F) fungal ITS2 region sequences. Legend: M, the site with minimal
664 invasion of earthworms; I, the site with an intermediate invasion of earthworms;
665 and H, the site with a heavy invasion of earthworms.

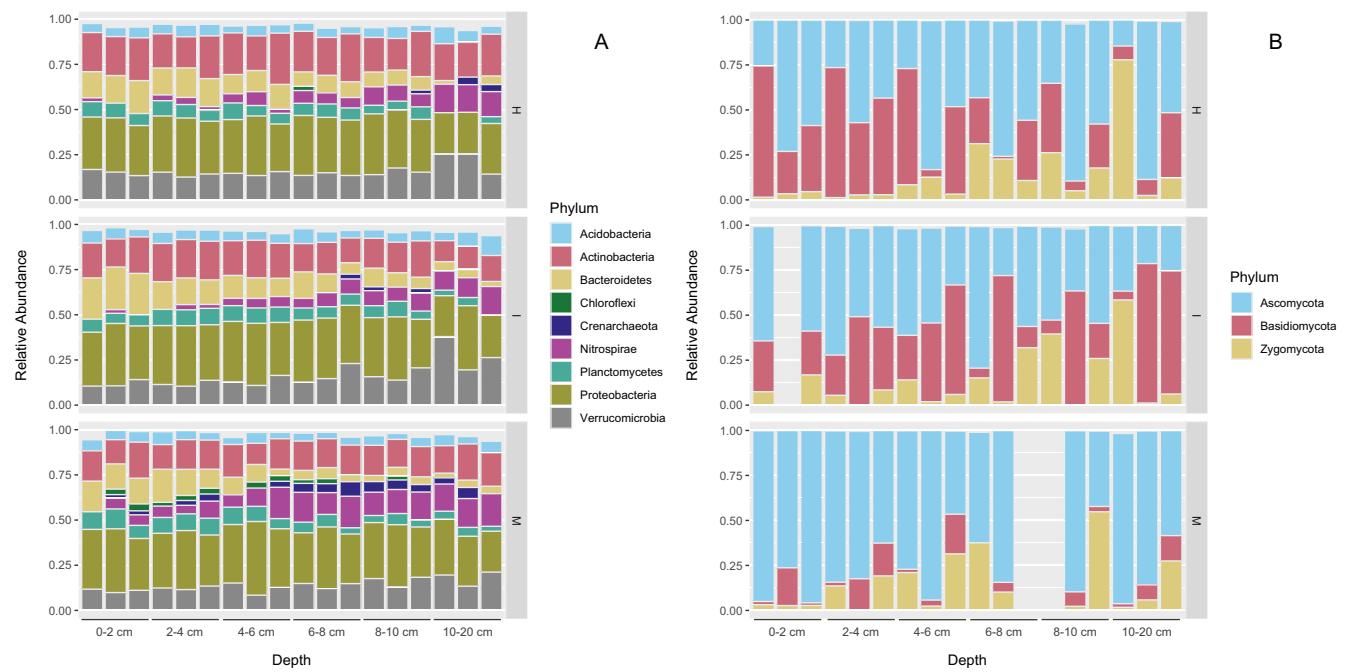
666 **Figure 2.** Principal coordinate analysis (PCoA) plots showing the Bray-Curtis
667 dissimilarities among (A) archaeal/bacterial communities and (B) fungal
668 communities. Each community is labeled with the site (M, the site with minimal
669 invasion of earthworms; I, the site with an intermediate invasion of earthworms;
670 and H, the site with a heavy invasion of earthworms) and soil depth (0-2, 2-4,
671 4-6, 6-8, 8-10, and 10-20 cm from the surface).

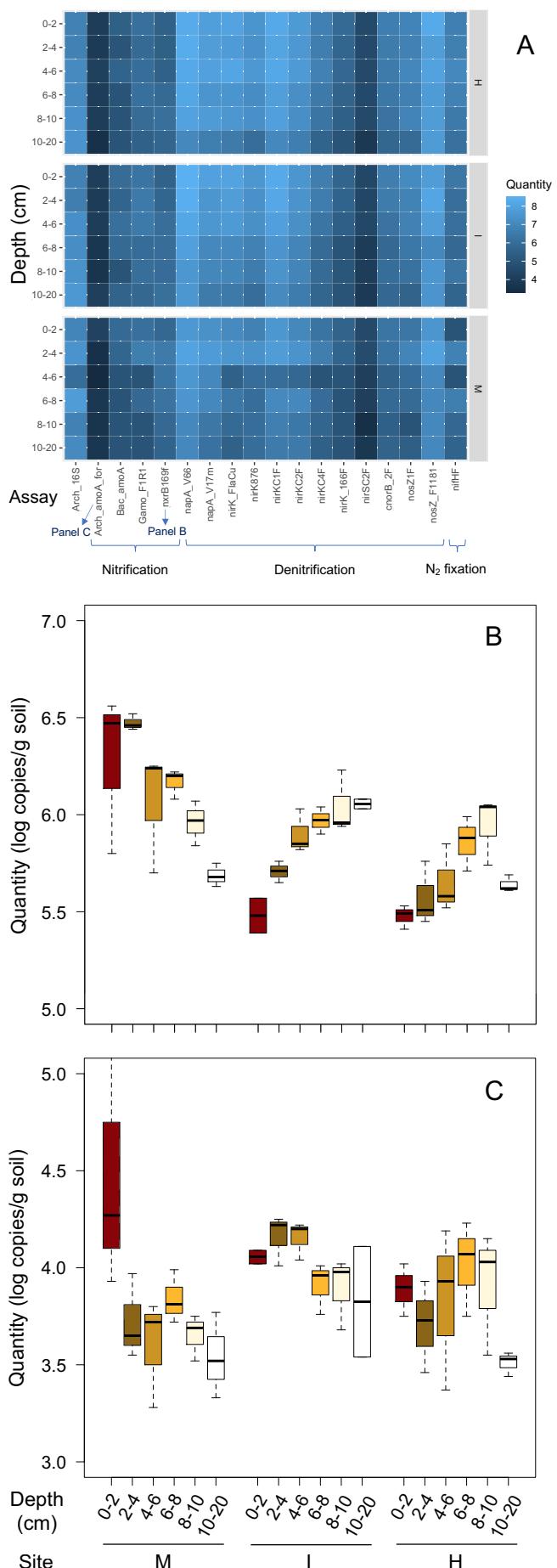

672 **Figure 3.** Relative abundance of (A) archaeal/bacterial phyla and (B) fungal phyla in the
673 soil samples as assessed by the 16S rRNA gene and ITS2 sequencing
674 analyses. Legend: M, the site with minimal invasion of earthworms; I, the site
675 with an intermediate invasion of earthworms; and H, the site with a heavy
676 invasion of earthworms.

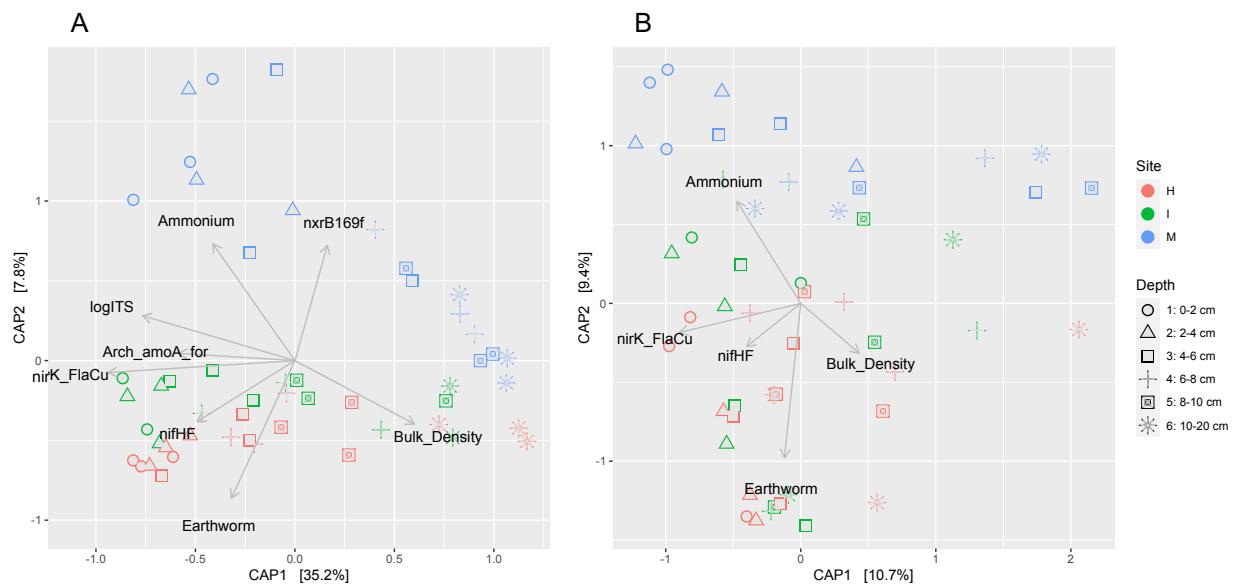
677 **Figure 4.** Quantities of N cycle-related genes in the soil samples. (A) Pseudo-heatmap
678 showing the Nitrogen Cycle Evaluation (NiCE) chip results. Assays producing
679 positives in >60% of samples are shown. (B) Quantities of nxrB of Nitrospira,
680 based on the nxrB169f assay. (C) Quantities of archaeal amoA based on the


681 Arch_amoA_for assay. Legend: M, the site with minimal invasion of
682 earthworms; I, the site with an intermediate invasion of earthworms; and H, the
683 site with a heavy invasion of earthworms.

684 **Figure 5.** Canonical analysis of principal coordinates (CAP) plots showing the
685 associations between environmental variables and the patterns in (A)
686 archaeal/bacterial communities and (B) fungal communities. Microbial
687 communities were analyzed using Bray-Curtis distance matrices. All
688 environmental variables shown in the plots had significant effects ($p < 0.05$) on
689 the microbial community patterns based on PERMANOVA. Each community is
690 labeled with the site (M, the site with minimal invasion of earthworms; I, the
691 site with an intermediate invasion of earthworms; and H, the site with a heavy
692 invasion of earthworms) and soil depth (0-2, 2-4, 4-6, 6-8, 8-10, and 10-20 cm
693 from the surface).


694 **Figure 6.** Nitrogen cycling in the forest soil influenced by earthworm invasion. Red and
695 blue arrows indicate the genes that increased and decreased their relative
696 abundances by earthworm invasion, respectively, based on Spearman's
697 correlation analysis of the shotgun metagenomics reads ($p < 0.05$). Black solid
698 arrows indicate the genes that did not change their abundance by earthworm
699 invasion. Black dashed arrows indicate the genes that were not detected.


Figure 1. Abundance and diversities of microbes in the soil samples. Quantities of (A) 16S rRNA gene and (B) fungal ITS2 region measured by qPCR. Numbers of observed OTUs for (C) archaea/bacteria and (D) fungi. Shannon diversity index values calculated based on (E) the archaeal/bacterial 16S rRNA gene and (F) fungal ITS2 region sequences. Legend: M, the site with minimal invasion of earthworms; I, the site with an intermediate invasion of earthworms; and H, the site with a heavy invasion of earthworms.


Figure 2. Principal coordinate analysis (PCoA) plots showing the Bray-Curtis dissimilarities among (A) archaeal/bacterial communities and (B) fungal communities. Each community is labeled with the site (M, the site with minimal invasion of earthworms; I, the site with an intermediate invasion of earthworms; and H, the site with a heavy invasion of earthworms) and soil depth (0-2, 2-4, 4-6, 6-8, 8-10, and 10-20 cm from the surface).

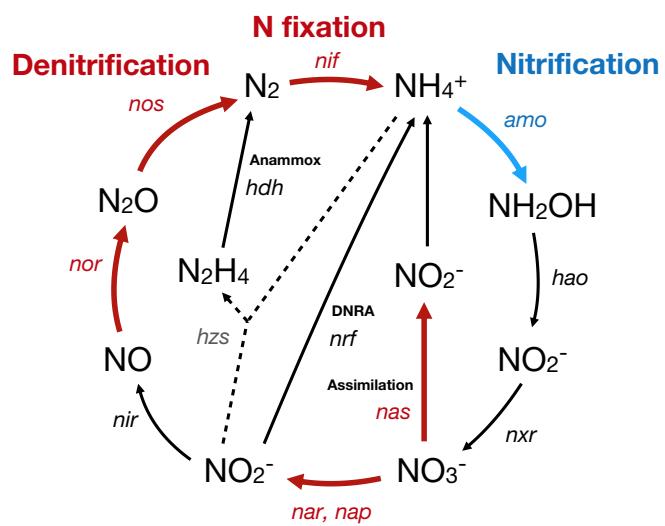

Figure 3. Relative abundance of (A) archaeal/bacterial phyla and (B) fungal phyla in the soil samples as assessed by the 16S rRNA gene and ITS2 sequencing analyses. Legend: M, the site with minimal invasion of earthworms; I, the site with an intermediate invasion of earthworms; and H, the site with a heavy invasion of earthworms.

Figure 4. Quantities of N cycle-related genes in the soil samples. (A) Pseudo-heatmap showing the Nitrogen Cycle Evaluation (NiCE) chip results. Assays producing positives in >60% of samples are shown. (B) Quantities of *nxrB* of *Nitrospira*, based on the *nxrB169f* assay. (C) Quantities of archeal *amoA* based on the *Arch_amoA_for* assay. Legend: M, the site with minimal invasion of earthworms; I, the site with an intermediate invasion of earthworms; and H, the site with a heavy invasion of earthworms.

Figure 5. Canonical analysis of principal coordinates (CAP) plots showing the associations between environmental variables and the patterns in (A) archaeal/bacterial communities and (B) fungal communities. Microbial communities were analyzed using Bray-Curtis distance matrices. All environmental variables shown in the plots had significant effects ($p < 0.05$) on the microbial community patterns based on PERMANOVA. Each community is labeled with the site (M, the site with minimal invasion of earthworms; I, the site with an intermediate invasion of earthworms; and H, the site with a heavy invasion of earthworms) and soil depth (0-2, 2-4, 4-6, 6-8, 8-10, and 10-20 cm from the surface).

Figure 6. Nitrogen cycling in the forest soil influenced by earthworm invasion. Red and blue arrows indicate the genes that increased and decreased their relative abundances by earthworm invasion, respectively, based on Spearman's correlation analysis of the shotgun metagenomics reads ($p < 0.05$). Black solid arrows indicate the genes that did not change their abundance by earthworm invasion. Black dashed arrows indicate the genes that were not detected.