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Abstract

Artificial Intelligence (Al) has the power to improve our lives through a wide variety of
applications, many of which fall into the healthcare space; however, a lack of diversity is
contributing to flawed systems that perpetuate gender and racial biases, and limit how broadly
Al can help people. The UCSF AI4ALL program was established in 2019 to address this issue
by promoting diversity and inclusion in Al. The program targets high school students from
underrepresented backgrounds in Al and gives them a chance to learn about Al with a focus on
biomedicine. In 2020, the UCSF AI4ALL three-week program was held entirely online due to the
COVID-19 pandemic. Thus students participated virtually to gain experience with Al, interact
with diverse role models in Al, and learn about advancing health through Al. Specifically, they
attended lectures in coding and Al, received an in-depth research experience through hands-on
projects exploring COVID-19, and engaged in mentoring and personal development sessions
with faculty, researchers, industry professionals, and undergraduate and graduate students,
many of whom were women and from underrepresented racial and ethnic backgrounds. At the
conclusion of the program, the students presented the results of their research projects at our
final symposium. Comparison of pre- and post-program survey responses from students
demonstrated that after the program, significantly more students were familiar with how to work
with data and to evaluate and apply machine learning algorithms. There was also a nominally

significant increase in the students’ knowing people in Al from historically underrepresented
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53  groups, feeling confident in discussing Al, and being aware of careers in Al. We found that we
54  were able to engage young students in Al via our online training program and nurture greater

55 inclusion in Al.

56

57 Introduction

58 Artificial Intelligence (Al) has the power to improve our lives through a wide variety of

59  applications. Just a few examples of how Al is being used to enrich our lives include search

60 engines, autonomous vehicles, and facial-recognition, route-planning, and ride-hailing programs
61  (1). The applications of Al to the biomedical, translational, and clinical realms are diverse

62 ranging from discovering biomarkers and repurposing therapeutics, to improving disease

63  diagnosis and automating surgery (2). Moreover, Al can help realize the promise of

64  personalized medicine, a healthcare approach that aims to tailor medical decisions and

65 treatments to individuals based on their intrinsic (e.g., genomic, age, sex) and extrinsic (e.g.,
66 diet, environmental exposures) factors (3).

67

68  Yet a lack of diversity can adversely affect how broadly Al will help people (4). For instance, if
69  machine learning (ML) algorithms to diagnose skin cancer lesions were trained on data that

70 largely represent fair-skinned populations, then the algorithms, no matter how advanced, would
71 not perform as well on images of lesions in skin of darker color (5). We need diversity not just in
72  the data we use in Al but also in the people working and leading in the field of Al. Currently, Al
73  professors are mostly male (>80%), and among Al researchers, only 15% at Facebook and

74  10% at Google are female (6). Moreover, black workers represent 4% of the workforce at

75  Facebook and Microsoft, and only 2.5% of Google’s entire workforce (6).

76
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The UCSF AI4ALL program, established in 2019 and co-directed by Marina Sirota, PhD and
Tomiko Oskotsky, MD, strives to promote greater diversity and inclusion in the field of Al in
biomedicine, and to inspire tomorrow’s leaders to think about and know Al and to use Al
ethically. UCSF AI4ALL recruits high school students from backgrounds underrepresented in Al,
including females and students from minority racial and ethnic backgrounds, as well as students
from low income families and those who are the first in their families to go to college. Through
this tuition-free three-week summer training program, students gain experience with Al with a
focus on applications to biomedicine, interact and work with a diverse set of role models in Al,
including women and people of Black or African American background and Hispanic or Latino
background, and learn about how Al can advance health. They receive broad exposure to Al
topics through faculty lectures, and gain in-depth research experience through hands-on
projects. Mentoring and career/personal development sessions with faculty, researchers,
industry professionals and undergraduate and graduate students further enable personal growth
and an opportunity to explore career interests at the intersection of Computer Science and
Biomedicine. Due to the COVID-19 pandemic, the UCSF AI4ALL program held in 2020 shifted
from an in-person, commuter program to a synchronized, online one with all the student
research projects focusing on leveraging Al to advance our knowledge and understanding of
COVID-19. Here, we provide an overview of the 2020 UCSF AI4ALL virtual summer program,
share details about the research projects our students engaged in, and discuss the results of

our program.

Methods

We reviewed all 89 complete applications that were submitted to our program during the
application period in March 2020, and assessed each candidate holistically prior to offering

acceptances into our program.
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102  The program itself was a three week program, which was held virtually in 2020. The first week
103 focused on teaching the high school participants basic programming in python and introductory
104  topics in machine learning and the second and third weeks focused on research projects, which
105 in 2020 were all leveraging Al to COVID-19. Google CoLab notebooks were used as a simple
106  means to share code with students and run Python. Each morning began with time for students
107  to ask questions as well as participate in our ice-breaker activities. The program had daily guest
108 lectures by diverse faculty from UCSF focused on application of Al in biomedicine and covering
109 a wide range of topics from clinical data analysis, to diagnostic and therapeutic strategies

110  leveraging molecular measurements. There were also panels composed of UCSF Al4ALL

111 student alumni, undergraduate students, graduate students, and professionals from private

112  companies with backgrounds in Al within biomedicine and other disciplines. Our panelists, many
113  of whom were women and people from diverse racial and ethnic backgrounds, spoke with our
114  students and shared insights about their work and their journeys. Each week, our Alumni TAs
115  led Community Building Session engaging the class of students in fun, bonding exercises. We
116  also held a personal growth session to develop the students’ communications skills. The end of
117  the program symposium included student presentations on their research projects as well as a
118  Keynote talk on Al in Biomedicine. A copy of the 2020 program schedule is available

119 https://aid4all.ucsf.edu/assets/2020 UCSF AI4ALL Program Schedule.pdf

120

121 Students were asked to complete a survey at the beginning (Pre-) and at the conclusion (Post-)
122 of our program. Mann Whitney U (MWU) test with continuity correction was used to compare
123  Pre- to Post- survey responses (since surveys were anonymous, we could not compare these
124  using tests designed for paired data), and to compare 2019 to 2020 Pre- and Post- survey

125  responses. Bonferroni corrections were employed, and a significance threshold of 0.05 was
126  applied to the results.

127
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128 Results

129  Of the 89 high school students who submitted applications to our program and the 38 applicants
130  we accepted into the program, 29 enrolled in and completed the program.

131 All 29 students were females who were rising sophomores (21%), juniors (45%) or seniors

132 (34%) in high school. Most of the students were from California (79/%), although several were
133  from other states. The racial backgrounds of the students included Asian inclusive of those from
134  the Indian subcontinent and Philippines (79%), Native Hawaiian or Other Pacific

135 Islander/Original Peoples (3%), and Hispanic or Latino (7%), and 14% declined to state.

136  Twenty-one percent will be first generation college students. (Table 1).

137
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138

Table 1. Demographic characteristics of accepted students in the 2020
UCSF AI4ALL Summer program

Characteristic # students (total accepted: 29) % students
Gender
She/Her 29 100%
He/Him 0 0%
They/Them 0 0%
Race *more than one category may be checked
Asian (including Indian
23 79%
subcontinent and Philippines)
Black or African American 0 0%
Native Hawaiian or Other Pacific 1 39
Islander (Original Peoples) °
Hispanic or Latino (includin
p ! ( g 5 79%
Spain)
White (including Middle Eastern) 0 0%
Decline To State 4 14%
Grade Level Next Year
Senior / 12th grade student 10 34%
Junior / 11th grade student 13 45%
Sophomore / 10th grade student 6 21%
Freshman / 9th grade student 0 0%
Qualify for Free Lunch at School
Yes 4 14%
No 25 86%
1st Gen College Student
Yes 6 21%
No 23 79%
Home State
California 23 79%
Other 6 21%
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139  1st week: Lessons in Python and Machine Learning

140 In the first week of the program, students spent the afternoons learning about machine learning
141  concepts and programming in Python. We had seven UCSF graduate student instructors and
142  teaching assistants (TA) to help with teaching during the first week. iPython notebooks with the
143  in-class exercises were shared the evening before the class, to give students an opportunity to
144  practice on their own before the solutions were reviewed in class.

145

146  Python Workshops

147  Students covered the basics of programming, data management, and data visualization in the
148 first two days to prepare to code in Python language and work with data within a Google ColLab
149  environment in preparation of their projects. Topics covered include programming basics (data
150 types, logic, loops, functions), data structures, common Python packages, plotting with

151 matplotlib, and using sklearn. During the lesson, students were placed in breakout rooms with
152  teaching assistants to review coding exercises and practice programming activities together.

153

154 Lessons on Machine Learning

155  Topics covered in ML include Data and Bias, Clustering, Classification, Naive Bayes,

156  Regression, and Neural Networks. To facilitate remote instruction, we employed a reverse

157  classroom paradigm, in which the instructors produced a 15-20 minute lecture video to be

158  watched before each classroom session. The general structure of live sessions include 15

159  minutes of topic review first, then the rest of the session covering either conceptual activities or
160 reviewing and practicing ML exercises on CoLab notebooks. For activities, students were

161 placed into breakout rooms with a teaching assistant. Since students come from various

162  backgrounds of ML and programming familiarity, collaboration within the breakout rooms were

163  encouraged.
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164
165  The instruction was carried out in an inverse classroom setting where the participants could ask

166  the instructors and TAs questions after having watched the lectures.

167 2nd and 3rd weeks: Research Projects and Presentations

168  Applying Al to COVID-19

169  The students were assigned to one of five groups based on their preference, each working on a
170  research project that applied Al to the characterization, classification, or prediction of COVID-19
171 leveraging different types of biomedical data - gene expression, proteomics, imaging and

172  clinical. Each project team was led by a UCSF graduate student, medical student, and/or

173  postdoctoral scholar and co-led by an alumni TA.

174

175  On the last day of the program, students shared findings from their group’s research project
176  during our Final Symposium. Each presentation was approximately 15 to 20 minutes in length,
177  with time for questions, and each student presented a portion of their group’s work. The event
178  was attended virtually by over 100 people, including faculty, graduate students and postdoctoral
179  scholars from UCSF and other institutions, program participants and their invited family

180 members. A videorecording of the Final Symposium, including our Keynote Speaker’s talk and

181 the students’ presentations is available, https://youtu.be/ulmjiHI7MDw.

182

183  Project 1: Al for Global Health - Al and COVID-19 Time Series
184 Diagnosis Data

185  Students learned how to develop machine learning algorithms with utility for lower middle

186  income country (LMIC) settings. Their objective was to develop an algorithm that can predict the
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187  number of cases in a given country. Students used publicly available daily time series data
188  describing confirmed COVID-19 infections and deaths per country and states across the world
189  (over 266 regions) aggregated from the Johns Hopkins Center for System Sciences

190 downloaded on July 1, 2020 (https://github.com/CSSEGISandData)(7). Each student then

191 manually pre-processed the dataset to a format in which they could conduct exploratory data
192  analysis. The educational approach was to allow students to have first-hand experience in

193  discovering the optimal way to plot and analyze various features of the data they were working
194  with by experimenting with different visualization libraries and troubleshooting together real-time
195  through video conferencing. Recognizing the diversity in time series trends between countries
196  during exploratory data analysis, students chose to narrow the scope of the problem to focus on
197  a specific country, selecting India due to its large number of cases and disparity in public health
198  services. Students then did a literature review to understand the public health issues in India
199  and how to design an algorithm that may actually provide utility to key stakeholders in the

200  region.

201

202  Visualizing the trend of confirmed infections in India, they decided to develop a forecasting

203 algorithm that can aid in identifying how many resources a given country or state will need.

204  Students were then presented with high-level information on several ML techniques used for
205 time series data analysis, such as autoregression (8), Holt-Winters (9) exponential smoothing,
206  and neural networks (10). Following a group debrief, students were allowed to select modeling
207  approaches that interested them. Afterwards, they trained, developed, and tested three different
208  algorithms: autoregression, feed-forward neural network, and Long Short-Term Memory (LSTM)
209 recurrent neural network (Fig 1a,b).

210

211 Students first started with a simple ML technique for time series data, known as autoregression.
212  Afterwards, they decided to see whether it was possible to leverage data from other countries

213  that may be useful in the same prediction. They developed a feedforward neural network
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214  algorithm that leveraged data from 266 other countries/regions and predicted the most recent 5
215  days of COVID-19 cases in India. Students discovered that this model performed worse than
216  the simple ML technique (Mean Average Percentage Error: 82.35% for feedforward neural

217  network vs. 8.23% from autoregression) (Fig 1c). The students became interested in trying

218  LSTM recurrent neural networks, due to their unique ability to model time-series data better than
219 feed-forward networks. They trained the model to predict the next 5 days of data from the most
220 recent 15 data points, and found it performed slightly better than the feed-forward, but not as

221  well as the simple ML technique (Mean Average Percent Error: 10.08% for LSTM) (Fig 1c).

A
Data cleaning / visualization Feature engineering Modeling
-pandas -folium —_— -sklearn — -keras
-numpy -branca -custom functions -sklearn
-matplotlib -plotly -statsmodels
B C
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223  Fig 1. Al for Global Health. A. Schematic of major ML skills explored with packages/utilities
224  used for instruction. B. Examples of data visualizations created by students. C. Model
225  predictions compared to actual India COVID-19 data. Mean average percent error was 8.23%,

226  10.08%, 82.35% for autoregression, LSTM, and feedforward neural networks respectively.
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227

228 Project 2: Al and Proteomics - COVID-19 Protein-Protein Interactions
229 (PPI) predictions

230  Students learned to implement supervised learning techniques to predict host protein

231 interactors, given primary amino acid sequences of various viral proteins, and to test if proteins
232  of similar sequences would interact with the same host proteins. The dataset was curated from
233  two publicly available sources - 1) a host-pathogen protein-protein interaction (PPI) data in

234  HEK293T cells for HIV (11), HCV (12), HPV (13), Ebola (14), Dengue (15), and Zika (15), which
235  contains sequence information on virus proteins with corresponding human protein information
236  and their MiST scores, i.e. their interaction confidence scores (16) and 2) human proteome fasta
237 files containing one protein sequence per gene (16). Mostly, project time was spent covering
238  data processing, support vector machines (SVMs), and deep learning using Python. The group
239  put these concepts in practice through hands-on work with their individual project; the six

240  students chose one of six pathogens (HIV, HCV, HPV, Ebola, Dengue, and Zika) to work on
241 individually. First, students built a dataframe containing their chosen virus-human interactions
242  and split the data frame into a positive dataset with host-pathogen interactions with MiST score
243  >=0.75 and a negative dataset with proteins of their chosen virus and a randomized human
244  proteins, resulting in 248 positive interactions and 496 negative interactions for Dengue, 89
245  positive and 140 negative interactions for HCV, 704 positive and 1400 negative interactions for
246  Zika, 93 positive and 186 negative interactions for HIV. The students then applied a global

247  sequence alignment using a Biopython package (17) to check the pattern of the sequence

248  alignments between positive and negative interactions. To predict their virus-human protein
249 interactions, students combined the negative and positive datasets and created a SVM. The
250 students coded separately on personal Jupyter notebooks but shared code through

251  Colaboratory notebooks and collaborated through project time discussion, screen-sharing, and

252  Slack messaging.
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253

254 In the first week, the group began by reading three papers on PPI predictive techniques and
255  dissected the various merits of each paper's methodology before deciding to pursue sequence
256  alignment to demonstrate homology between their protein family and another potentially related
257 member. Next, the students accessed the PPI dataset of host-pathogen PPI data containing
258  virus bait protein, corresponding human prey protein and gene name from PubMed for their
259  chosen pathogen. In their first dataset, they mainly organized the bait and prey sequences and
260 corresponding MiST score in a comprehensive and cohesive format. Each student chose a

261  different virus of six options. Together, they collaboratively processed the primary PPI dataset
262 Dby isolating their virus’ bait and protein sequence to build their virus-protein dataframe. To close
263  off the week, the instructors introduced the second training dataset consisting of each of the six
264  pathogens’ protein ID and sequences. The students downloaded and utilized fasta files from
265  UniProt that contained the protein ID and sequences for HIV, HCV, HPV Ebola, Dengue, Zika
266  and spent the remainder of project work time understanding the relationship between prey and
267  protein sequences.

268

269 To start the second week, students learned about different sequence alignment algorithms.

270  First, the students split each pair of interacting virus bait and human prey depending on the

271 MiST score into positive (MiST >= 0.75) and negative (MiST < 0.75) datasets. After splitting the
272  dataset, the instructors guided the students in constructing a data processing pipeline prior to
273  building their predictive model. To add features of the data, the group utilized a global pairwise
274  alignment algorithm from Biopython (17) to add the sequence alignment scores for each bait
275 and prey pair to the positive and negative dataframes. Guided by their instructors, the group
276  deliberated and decided on features that may serve as potent predictive variables including bait
277  protein length, amino acid counts, and the atomic weight of the bait protein. Finally, the students
278  visualized the distribution of alignment scores for the positive and negative data and evaluated

279  the association.
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In the final week, the group began creating and testing their machine learning models. The
students combined the positive and negative dataframes and visualized their data through a
scatter plot. Next, the group implemented SVMs and collaboratively built their classifier.
Students selected an 80% and 20% split for their training and testing data, respectively. Each
student first trained their model using their individual virus data. Then, they trained the model
using all their virus data to predict the interaction between each SARS-CoV-2 protein and each
human protein from the first PPI dataframe they built. The students finetuned the algorithmic
parameters, to improve the model’s performance. To visualize the algorithm’s optimal
performance, each student built a confusion matrix for the SVM predicting virus-human protein
interaction (Fig 2a-e) and extracted feature importance in a bar plot (Fig 2f). Additionally,
students were guided by their instructors to build a convolutional neural network (CNN) for their

individual pathogen.

Finally, the students spent the remainder of the last week investigating the implications of their
research. The instructors presented ways that this type of data can be leveraged for drug
discovery and repurposing whereupon the students discussed the implications of their

experimental results on the COVID-19 pandemic.

Code availability, data, slides, and figures can be found here.
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301  Fig 2. Al and Proteomics: COVID-19 Protein-Protein Interactions (PPI) Predictions. A-E:
302 Confusion matrices visualizing the individual SVM models’ performances. Evaluated the
303 true and predicted virus-human protein interactions for Dengue, Ebola, HCV, HIV, and Zika

304 viruses respectively. F: Bar plot of feature importance extracted from Ebola virus trained
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305 SVM on SARS-CoV-2 virus data. The prey proteins with a net positive or negative charge had
306 the highest feature importance.

307

308 Project 3: Al for Imaging Data - Computer Vision for COVID-19 Chest
309 X-Ray Classification

310  Students learned to implement machine learning models that can classify COVID-19 cases in
311 chest x-ray images. The dataset was curated from publicly available chest x-ray images

312  datasets (18,19) and contained 438 images from patients diagnosed with COVID-19 as well as
313 438 images from patients without pathologic findings, labeled as ‘no finding’ (Fig 3a-b). The
314  instructors introduced concepts in data processing, computer vision, and deep learning using
315  Python. The students applied these concepts in a hands-on project where they first visualized
316  and evaluated the dataset then trained a convolutional neural network (CNN) to identify COVID-
317 19 cases. The students coded separately on personal CoLab notebooks but collaborated and
318  debugged together to the extent possible through online video discussions and screen-sharing.
319

320 The group began by examining the dataset through exploratory data analysis. They

321 experimented with different data visualization approaches and packages to plot the distribution
322  of attributes in the dataset. Using the visualizations, the students discovered potential biases in
323 the dataset such as skewed gender distribution and different x-ray views for the COVID-19

324  images versus the ‘no finding’ images. The students also learned to use dataframe

325 manipulations to survey subsets of the datasets. Together, they identified image features, such
326  as lung region opacity and body outlines, that could be useful or potentially problematic for the
327  classification task.

328

329  Next, the students developed fully-connected and convolutional neural networks (CNN) using
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330 PyTorch to perform binary classification. The instructors provided a starting code framework that
331  guided the students in constructing a typical data processing and machine learning pipeline.
332  The students completed the code by implementing missing core sections. They tracked model
333  training speed as well as accuracy and loss curves to gain insight into the model training

334  process (Fig 3c-d). The students also calculated metrics, such as F1 scores, and visualized
335 latent space features to evaluate the model (Fig 3e). By discussing these analyses, the

336  students identified areas where the model is performing poorly (e.g. incorrectly classifying

337 COVID-19 images) and formulated hypotheses for potential reasons, such as the large

338  variability in the COVID-19 images.

339

340 In the final week, the students branched out to work on follow-up ideas. For this half of the

341 project, the students were largely self-driven to explore ideas or questions that interested them.
342  The instructors helped the students work through code issues and brainstormed solutions. The
343  follow-up ideas included iteratively improving CNN models by tuning hyperparameters and

344  training other types of classifiers (SVM, regression) using features extracted by a pre-trained
345 DenseNet model. One particular challenge the students tackled was model robustness. Using
346  gradient class activation maps to provide interpretation of model decisions, they had observed
347  that the CNN models were detecting regions outside of the lung (Fig 3f). This became a focus
348  for model improvement. During breaks, the instructors also briefly introduced interesting papers
349  and recent results in Al vision research. The group discussed challenges of interpretable

350 decision-making and model brittleness, which complemented the tasks they were working on.
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353  Fig 3. Al for Imaging Data

354  A. Subset of no finding images. Courtesy of Pranav Rajpurkar and Andrew Ng

355  (CheXpert)(19). B. Subset of COVID-19 images. Credit: Lim et al (J Korean Med Sci,

356  2020)(20) and Dr Domenico Nicoletti (Radiopaedia.org, rID: 74724)(21). C. Accuracy graph
357  during model training. D. Loss graph during model training. E. TSNE visualization of
358 model training over time. Blue represents no finding images while orange represents COVID-
359 19images. F. Grad-CAM interpretation of CNN features. Red in the heatmap represents
360 greater importance while blue represents the least.

361
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362 Project 4: Latent Variable Modeling of COVID-19 Metagenome
363 Transcriptomic Profiles

364  Students applied dimensionality reduction techniques to investigate natural stratification of
365 SARS-CoV2+ patient subgroups based on host transcriptomic response and viral coinfection
366  status. Previous analyses of metagenomic sequencing data from upper airway samples of 238
367  patients revealed a diminished innate immune response in patients positive for SARS-CoV2
368 through differential expression analysis, gene set enrichment analysis, and in silico estimation of
369 cell type proportions (22). We hypothesized decomposition of metagenomic next generation
370 RNA sequencing (mNGS) to reveal separable clusters of patient subgroups. In our approach,
371  we applied both supervised and unsupervised decomposition methods to analyze structural
372  patterns inherent to the data.

373

374  First, the students accessed this publicly available data and performed exploratory analysis on
375  the study cohort of 94 patients who tested positive for SARS-CoV2 by gold standard clinical
376  PCR. Mick et. al quantified the abundance of 15,900 host genes and 275 viruses by RNA

377  sequencing and reference based alignment. Students applied principal component analysis
378 (PCA) to each dataset and qualitatively inspected emergence of clusters based on covariates
379  such as SARS-CoV?2 viral load, gender, and age. In this unsupervised analysis the students
380 experienced how sample outliers can skew variance and cause inflation of PCA components. In
381 order to account for possible non-linear structure within the data, the students also trained and
382 tested autoencoders on both the viral coinfection dataset and the gene expression dataset.
383

384  Evaluation of viral coinfection embeddings led the students to hypothesize a correlation

385  between binary coinfection status and SARS-CoV2 viral load. The students reasoned that

386  patients with additional viral infection(s) may be generally more susceptible to SARS-CoV2
387  replication due to alteration of immune response dynamics under coinfection conditions.

388  Patients were stratified into 2 groups: those with measurable alternative viral load, and those
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389  with sole viral metagenome alignment to SARS-CoV2. Welch’s t-test was applied to the average
390 reads-per-million (rPM) of SARS-CoV2 between the two groups, and a significant difference
391  below an error tolerance of 0.05 was found (p=1.947*10-4) (Fig 4a).

392

393  The students followed up this result with an analysis for confounding variables. In group

394  discussion, we posited that samples with a large SARS-CoV2 viral load cause a higher

395 frequency of alignment errors to evolutionarily similar genomes. To test this, the students
396 inspected correlation coefficients between SARS-CoV2 and alternative, coinfection viral read
397  abundance. The most correlated viruses were all coronaviruses, lending evidence to the

398 hypothesis that higher SARS-CoV2 viral load results in a higher proportion of reference

399 alignment errors to genomically similar viruses (Fig 4b). This experience underscored the
400 adage, “correlation does not imply causation,” lending a valuable lesson to the analysis of

401  SARS-CoV2+ patient subgroups.
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Fig 4. Latent Variable Modeling of COVID-19 Metagenome Transcriptomic Profiles.

A. Boxplot of SARS-CoV2 rPM by coinfection status. Reads-per-million of SARS-CoV2
stratified by patients with alternative (orange) and no (blue) detectable viruses.

B. Correlation coefficients between reads of SARS-CoV2 and coinfected viruses. Highly

correlated viruses are coronaviruses.

Project 5: PredictCOVID - Al and Electronic Medical Record (EMR)

data

Using real world data from (https://www.kaggle.com/einsteindata4u/covid19), students learned

how to apply Al to (A) predict whether a patient is COVID positive or negative and (B) predict
the severity of the COVID infection (i.e. admission into the general ward, semi-intensive care
unit, or intensive care unit). The dataset included 5,644 patients as well as COVID-19 test
results, patient age quantile, hospital admission ward, and various laboratory results from blood
tests, urine tests, and pathogen tests. Students were introduced to the benefits and drawbacks
of publicly available data, such as sources of bias and the need for intensive data preprocessing
before the data can be utilized. Students took different approaches to data cleaning and
imputation of missing values and evaluated the performance of machine learning models on
varied input data, including evaluating metrics of accuracy, area under the curve (AUC), and

distribution of false negatives and positives (Fig 5a).
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Additionally, students were asked to go above and beyond to apply their findings to translational
applications. For example, students were asked to critically evaluate the cost of false negatives
(spreading COVID-19, not receiving treatment on time, worse outcomes) and false positives
(waste of limited resources) in respect to patients and outcomes, and applying this evaluation to
the decision of a model. Students were also asked to perform covariate analyses to determine
feature importance and apply back to their understanding of clinical relevance and application

(Fig 5b,c). One finding that the group reported was that leukocytes were heavily negatively

correlated with COVID test results (Fig 5d). Lastly, the group summarized their findings and
recommendations for future plans to the entire group as well as the limitations and biases in the
data (i.e. single location, limited follow-up, missing data).
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Fig 5. PredictCOVID: Al for deriving insights from healthcare data. A. Area Under the
Curves (AUCs) of different machine learning classifiers for predicting COVID status from
patient data. AUC was one of the metrics used by the students to evaluate the performance of
their machine learning models.B. Decision tree classifier for COVID status. Features used in
decision making in each level of the tree are shown, with COVID status (positive/negative) at
the leaves of the tree. C. Heatmap of the correlation between clinical features and COVID

status or Care Level. Blue represents positive correlation while red represents negative
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450 correlation. D. Boxplot of normalized leukocyte laboratory values and COVID status.
451 Leukocyte laboratory values negatively correlated with COVID test results.

452

453 Pre- and Post- Surveys

454  Analysis of the survey data revealed significant shifts in some of the students’ responses from
455  the Pre- to Post- survey. Specifically, at the end of the program, there were significantly more
456  students who reported that they know how to clean data before using it in machine learning

457  algorithms (MWU test, adjusted p-value <0.001), and know how to evaluate and apply machine
458 learning algorithms (MWU test, adjusted p-values <0.001) (Fig 6). More students also reported
459  knowing people in Al who are people of color (MWU test, unadjusted p-value = 0.014, adjusted
460 p-value = 0.285) and women (MWU test, unadjusted p-value = 0.044, adjusted p-value = 0.877),
461 feeling confident in questioning the media about Al (MWU test, unadjusted p-value = 0.015,

462  adjusted p-value = 0.297), and knowing about careers that use Al (MWU test, unadjusted p-
463  value = 0.037, adjusted p-value = 0.743); however, these increases were only of nominal

464  significance. Survey responses of students in the 2020 virtual program and those of students in
465 the 2019 commuter program for questions asked in both years were found not to differ

466  significantly (Mann Whitney U test, unadjusted and adjusted p-values > 0.05) (Supplementary
467  Table 1). Students of the 2020 virtual were also no less likely to recommend the AI4ALL

468  program to peers than the students who attended the 2019 in-person program (Mann Whitney U
469 test, unadjusted p-value = 0.044, adjusted p-value = 0.872) (Supplementary Figure 1).

470

471
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| know of people within the field of Al who
are female. (MWU test, unadjusted
p-value=0.044, adjusted p-value=0.877)

| feel confident | can hold an informed
conversation about Al. (MWU test, unadjusted
p-value=0.003, adjusted p-value=0.056)

100% median__median median
" . Pre- . i fra-
% 80% E Post- E 4 E Post-
(=%
¥ eo% . . ; H
“n - 1 - 1 L\
€ N | yd : | 4
% 40% 1 /: w4 : S : | _/'/: /|
- 7] i —
B A% S A S A | a4
2 vy ; 'y : | /
o s B V74 7o S R | R RV o s B
| know specific ways Al can benefit my | feel confident in my ability to question
community and the world. (MWU test, | know about careers people can have that use  media about Al when | see it, based on what |
unadjusted p-value=0.053, adjusted Al. (MWU test, unadjusted p-value=0.037, know about Al. (MWU test, unadjusted
p-value=0.999) adjusted p-value=0.743) p-value=0.015, adjusted p-value=0.297)
100% me.dian median medigldian
" . fre- . Pre-
b 80% - : 1 Fost- 1 . Post-
2 - .
2 i > | :
I 0% - ! 1 R . T
g : a74= 771 A
5 20% - A 1 SNV 1 a4
5 1 S A 7 /1 A
y v F7-'77 v',v' y / 1 ; / / /, /, ] / V4
o 7 A—— 4 /7T A L F7b—a L
| know how to clean data before using it in | know how to apply at least one machine | know how to evaluate machine leaming
machine learning algorithms. (MWU test, learning algorithm in Python. (MWU test, algorithms to see how effective they are.
unadjusted p-value=1.72e-05, adjusted unadjusted p-value=1.22e-05, adjusted (MWU test, unadjusted p-value=2.81e-06,
pvalue=3.45e-04%) pvalue=2.45e-04%) adjusted p-value=5.62e-05%)
100% median megdian median megdian
n : Pre- : re- .
2 80% - : 1 Post-  ° Post- |
- : : : :
g 6o% . 1 . | . |
P : : ' - ;
5 0% 7 1 1 - | / :
3 1 1 1
w i 7 y ! - 1
5 20% - / ' b / A4 / / !
# 1 [~ o | |
- i & NA 7" 1 NA A
2 3 4 1 2 3 4 5 1 2 3 4 5
Strongly Desagree) Neutral) Strongly Desagree) Neutral)  jAgree) Strongly {Strongly sagree) Neutral)  jAgree)  {Strongly
Disagree) Agree) Disagree) Agree)
472  Fig 6. Pre-post survey results. Histograms of students’ responses to pre-program and post-
473  program survey questions, with median values. Mann Whitney U tests were performed to
474  compare pre- and post-survey responses, with adjusted p-values below significance threshold
475  of 0.05 given an asterisk ().
476
477  Moreover, the graduate students, post-doctoral scholar and alumni TA’s who worked with our
478  students on their research projects shared their observations that the students:
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479 o Grew in their abilities to think critically, form hypotheses, and design executable

480 experiments

481 o Learned how to develop a variety of different ML models

482 o Fortified their collaborative skills and technical proficiency in Python

483 o Found exploratory data analysis to be valuable as it challenged the participants to view
484 scientific inquiry in an open-ended way that deviated from traditional classroom

485 experiences

486 o Learned how to analyze the results and how they relate to the original research questions
487 o Experienced the immediate relevancy of Al approaches to current problems in the

488 COVID-19 pandemic

489 o Demonstrated their understanding and interpretation of not only Al but also the

490 application of Al to medicine, public health, and clinical decision making

491 Discussion

492  Diverse representation is needed not just in the data for Artificial Intelligence (Al), but also in the
493  people working and leading in the field of Al. Since 2019, UCSF AI4ALL has engaged students
494  from backgrounds historically underrepresented in Al in order to promote greater diversity and
495 inclusion in this field. In 2020, through a variety of interactive virtual real-time sessions and

496  experiences held during a three-week period, our program allowed students to interact with a
497  diverse set of role models in Al and learn about how Al can be used to advance health.

498  Furthermore, students gained experience in coding, working with data, and Al by participating in
499  one of our meaningful hands-on research projects that applied Al to understanding, classifying,
500 or predicting COVID-19.

501

502  Students’ survey responses demonstrated their feeling significantly more familiar with working

503 with data and evaluating and applying machine learning algorithms at the end of our 2020 virtual
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504  program. There was also a nominally significant increase in the students’ knowing people in Al
505 who are from historically underrepresented groups, their confidence in discussing Al, and their
506 awareness of careers in Al. While the format of the 2020 program differed from 2019, with the
507 2020 program taking place online instead of in-person due to the pandemic, students’ survey
508 responses from both years were comparable.

509

510 Despite the success of our virtual training program, there were some limitations to having a
511 program take place entirely online, including the lack of in person interactions and the need for
512  reliable internet connection. Nevertheless, the ability to engage young students in Al and the
513  opportunity to contribute to diverse representation in this field make holding our program in any
514  format worthwhile.

515

516  We have learned that it is possible to deliver virtually an Al curriculum to young high school
517  students that provides them with an engaging and impactful experience. Through our virtual
518  program, we were able to connect with students from around the country and involve teaching
519  assistants and faculty from outside the Bay Area and from other institutions. We were also able
520 to give students who are located far from Al training programs a chance to become involved
521 bringing the goal of increasing diversity in Al a little closer to reality.

522

523  Author Contributions

524  TO and MS designed and co-directed the program, performed analysis of program survey data,
525  outlined and wrote the manuscript. JW, IK, and JB led and described Project 1. ZN and IK led
526  and described Project 2. IC, TG, and JY led and described Project 3. WC, RB, and CS led and

527  described Project 4. AT and BV led and described Project 5. JB, TC, WC, SE, TG, KL, AT, and


https://doi.org/10.1101/2021.03.06.434213
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.06.434213; this version posted March 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

528 DMT developed curriculum materials and led instructional sessions. All authors discussed

529  results, provided critical feedback and contributed to the final manuscript.

530

531  AI4ALL Student Cohort 2020

532  Arhana Aatresh'®, Githika Annapureddy'®, Ami Baid'®, Qixin Dai'®, Esha Gonhil'®, Yomn

533 Hammad', Ishika Hazra'®, Vienna Huang'®, Valerie Kwek'®, Marissa Lee'®, Angela Liu'®, Neha
534  Naveen'®, Ava Paikeday'®, Sonica Prakash'®, Srihita Ramini'®, Yamuna Rao'®, Neeharika

535 Ravi'® Mihika Rayan'®, Brenda Samano'®, Jessica Sanchez'®, Anooshkha Shetty'®, Arely Sun'®,
536  Riya Tadi'®, Monica Trinh'®, Gianna Yan'®, Joyce Yang'8, Caroline Yoon'®, Fiona Zhang'®, and
537  Hannah Zhuang'®.

538  Corresponding author: Correspondence to Marina Sirota (marina.sirota@ucsf.edu)

539

s40 Acknowledgements

541 The authors would like to acknowledge everyone in the Al4ALL organization, including Tess
542  Posner, Olga Russakovsky, Fei Fei Li, Valerie Allen, Beth McBride, Jonathan Garcia, and

543  Thalea Torres, and our colleagues in the Bakar Computational Health Sciences Institute,

544  including Angela Jackson and Sharat Israni, for their encouragement and support. We would
545  also like to acknowledge Aeshah Al-Nagdawi, Gaia Andreoletti, Matthew Hancock, Andrew Jan,
546  Chakrapani Kalyanaraman, Idit Kosti, Brian Le, Hunter Mills, Boris Oskotsky, Ben Rubin, Wren
547  Saylor, Gundolf Schenk, Victoria Turner, Rohit Vashisht, and Katharine Yu for their work to

548  support our Program; Sourav Bandyopadhyay, Sergio Baranzini, Atul Butte, Gabriela

549  Fragiadakis, Julian Hong, Michael Keiser, Sara Murray, Matthew Spitzer, and Ida Sim for

550 participating as our Faculty Guest Speakers; Marilyn Ritchie for her Keynote presentation; Maya
551  Gonzalez, Nishant Jain, Anooshree Sengupta, and Carolyn Wang for participating in our

552  Undergraduate Students Panel; Stella Belonwu, Emmalyn Chen, and Caroline Warly-Solsberg


https://doi.org/10.1101/2021.03.06.434213
http://creativecommons.org/licenses/by-nc-nd/4.0/

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.06.434213; this version posted March 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

for participating in our Graduate Students Panel; Sarah Aerni, Tiffany Chen, Sam Gross, Katie
Planey, and Alex Morgan for participating in our Bio in Al Industry Panel; Arohee Bhoja, Tia
Jain, Christine Li, and Sachi Parikh for participating in our UCSF AI4ALL Alumni Panel; Bill
Lindstaedt for leading our students in a Personal Growth Session; the Altschuler and Wu Lab,
the Giacomini Lab, the Keiser Lab, the Kroetz Lab, the Krogan Lab, and the Witte Lab at UCSF
for their support of our program; Pranav Rajpurkar and Andrew Ng for granting us permission to

include images from CheXpert; and Edna Rodas and Amber Nolan for Administrative Support.

References

1. 8 Helpful Everyday Examples of Artificial Intelligence [Internet]. IoT For All. 2020 [cited 2021
Feb 2]. Available from: https://www.iotforall.com/8-helpful-everyday-examples-of-artificial-
intelligence

2. YuK-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018
Oct;2(10):719-31.

3. Frohlich H, Balling R, Beerenwinkel N, Kohlbacher O, Kumar S, Lengauer T, et al. From
hype to reality: data science enabling personalized medicine. BMC Med. 2018 Aug
27;16(1):150.

4. Noor P. Can we trust Al not to further embed racial bias and prejudice? BMJ. 2020 Feb
12;368:m363.

5. Adamson AS, Smith A. Machine Learning and Health Care Disparities in Dermatology.
JAMA Dermatol. 2018 Nov 1;154(11):1247.

6. West SM, Whittaker M, Crawford K. Discriminating Systems: Gender, Race, and Power in
Al [Internet]. Al Now Institute; 2019 Apr [cited 2021 Jan 5] p. 33. Available from: m
https://ainowinstitute.org/ discriminatingsystems.html

7. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real

time. Lancet Infect Dis. 2020 May 1;20(5):533—4.


https://doi.org/10.1101/2021.03.06.434213
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.06.434213; this version posted March 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

578 8. Akaike H. Fitting autoregressive models for prediction. Ann Inst Stat Math. 1969;21:243-7.
579 9. Chatfield C. The Holt-Winters Forecasting Procedure. J R Stat Soc Ser C Appl Stat.

580 1978;27(3):264-79.

581 10. Krdse B, Krose B, Smagt P van der, Smagt P. An introduction to Neural Networks. 1993.
582  11. Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, et al. Global
583 landscape of HIV-human protein complexes. Nature. 2011 Dec 21;481(7381):365-70.

584 12. Ramage HR, Kumar GR, Verschueren E, Johnson JR, Von Dollen J, Johnson T, et al. A
585 Combined Proteomics/Genomics Approach Links Hepatitis C Virus Infection with Nonsense-
586 Mediated mRNA Decay. Mol Cell. 2015 Jan 22;57(2):329-40.

587  13. Eckhardt M, Zhang W, Gross AM, Von Dollen J, Johnson JR, Franks-Skiba KE, et al.

588 Multiple Routes to Oncogenesis Are Promoted by the Human Papillomavirus-Host Protein
589 Network. Cancer Discov. 2018 Nov;8(11):1474-89.

590 14. Batra J, Hultquist JF, Liu D, Shtanko O, Von Dollen J, Satkamp L, et al. Protein Interaction
591 Mapping Identifies RBBP6 as a Negative Regulator of Ebola Virus Replication. Cell. 2018
592 Dec 13;175(7):1917-1930.e13.

593 15. Shah PS, Link N, Jang GM, Sharp PP, Zhu T, Swaney DL, et al. Comparative Flavivirus-
594 Host Protein Interaction Mapping Reveals Mechanisms of Dengue and Zika Virus

595 Pathogenesis. Cell. 2018 Dec 13;175(7):1931-1945.e18.

596  16. Breuza L, Poux S, Estreicher A, Famiglietti ML, Magrane M, Tognolli M, et al. The

597 UniProtKB guide to the human proteome. Database J Biol Databases Curation [Internet].
598 2016 Feb 19 [cited 2021 Feb 16];2016. Available from:
599 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761109/

600 17. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely

601 available Python tools for computational molecular biology and bioinformatics.

602 Bioinformatics. 2009 Jun 1;25(11):1422-3.

603  18. Cohen JP, Morrison P, Dao L. COVID-19 Image Data Collection. ArXiv200311597 Cs Eess

604 Q-Bio [Internet]. 2020 Mar 25 [cited 2021 Feb 3]; Available from:


https://doi.org/10.1101/2021.03.06.434213
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.06.434213; this version posted March 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

605 http://arxiv.org/abs/2003.11597

606  19. Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-licus S, Chute C, et al. CheXpert: A Large Chest
607 Radiograph Dataset with Uncertainty Labels and Expert Comparison. Proc AAAI Conf Artif
608 Intell. 2019 Jul 17;33(01):590-7.

609  20. Lim J, Jeon S, Shin H-Y, Kim MJ, Seong YM, Lee WJ, et al. Case of the Index Patient Who

610 Caused Tertiary Transmission of Coronavirus Disease 2019 in Korea: the Application of
611 Lopinavir/Ritonavir for the Treatment of COVID-19 Pneumonia Monitored by Quantitative
612 RT-PCR. J Korean Med Sci [Internet]. 2020 Jan 8 [cited 2021 Feb 25];35(6). Available from:
613 https://doi.org/10.3346/jkms.2020.35.e79

614  21. COVID-19 pneumonia | Radiology Case | Radiopaedia.org [Internet]. [cited 2021 Feb 25].
615 Available from: https://radiopaedia.org/cases/covid-19-pneumonia-7

616  22. Mick E, Kamm J, Pisco AO, Ratnasiri K, Babik JM, Calfee CS, et al. Upper airway gene
617 expression differentiates COVID-19 from other acute respiratory ilinesses and reveals
618 suppression of innate immune responses by SARS-CoV-2. medRxiv. 2020 May

619 22;2020.05.18.20105171.


https://doi.org/10.1101/2021.03.06.434213
http://creativecommons.org/licenses/by-nc-nd/4.0/

