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Abstract  34 

Artificial Intelligence (AI) has the power to improve our lives through a wide variety of 35 

applications, many of which fall into the healthcare space; however, a lack of diversity is 36 

contributing to flawed systems that perpetuate gender and racial biases, and limit how broadly 37 

AI can help people. The UCSF AI4ALL program was established in 2019 to address this issue 38 

by promoting diversity and inclusion in AI. The program targets high school students from 39 

underrepresented backgrounds in AI and gives them a chance to learn about AI with a focus on 40 

biomedicine. In 2020, the UCSF AI4ALL three-week program was held entirely online due to the 41 

COVID-19 pandemic. Thus students participated virtually to gain experience with AI, interact 42 

with diverse role models in AI, and learn about advancing health through AI. Specifically, they 43 

attended lectures in coding and AI, received an in-depth research experience through hands-on 44 

projects exploring COVID-19, and engaged in mentoring and personal development sessions 45 

with faculty, researchers, industry professionals, and undergraduate and graduate students, 46 

many of whom were women and from underrepresented racial and ethnic backgrounds. At the 47 

conclusion of the program, the students presented the results of their research projects at our 48 

final symposium. Comparison of pre- and post-program survey responses from students 49 

demonstrated that after the program, significantly more students were familiar with how to work 50 

with data and to evaluate and apply machine learning algorithms. There was also a nominally 51 

significant increase in the students’ knowing people in AI from historically underrepresented 52 
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groups, feeling confident in discussing AI, and being aware of careers in AI. We found that we 53 

were able to engage young students in AI via our online training program and nurture greater 54 

inclusion in AI.  55 

 56 

Introduction  57 

Artificial Intelligence (AI) has the power to improve our lives through a wide variety of 58 

applications. Just a few examples of how AI is being used to enrich our lives include search 59 

engines, autonomous vehicles, and facial-recognition, route-planning, and ride-hailing programs 60 

(1). The applications of AI to the biomedical, translational, and clinical realms are diverse 61 

ranging from discovering biomarkers and repurposing therapeutics, to improving disease 62 

diagnosis and automating surgery (2). Moreover, AI can help realize the promise of 63 

personalized medicine, a healthcare approach that aims to tailor medical decisions and 64 

treatments to individuals based on their intrinsic (e.g., genomic, age, sex) and extrinsic (e.g., 65 

diet, environmental exposures) factors (3).  66 

 67 

Yet a lack of diversity can adversely affect how broadly AI will help people (4). For instance, if 68 

machine learning (ML) algorithms to diagnose skin cancer lesions were trained on data that 69 

largely represent fair-skinned populations, then the algorithms, no matter how advanced, would 70 

not perform as well on images of lesions in skin of darker color (5). We need diversity not just in 71 

the data we use in AI but also in the people working and leading in the field of AI. Currently, AI 72 

professors are mostly male (>80%), and among AI researchers, only 15% at Facebook and 73 

10% at Google are female (6). Moreover, black workers represent 4% of the workforce at 74 

Facebook and Microsoft, and only 2.5% of Google’s entire workforce (6). 75 

 76 
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The UCSF AI4ALL program, established in 2019 and co-directed by Marina Sirota, PhD and 77 

Tomiko Oskotsky, MD, strives to promote greater diversity and inclusion in the field of AI in 78 

biomedicine, and to inspire tomorrow’s leaders to think about and know AI and to use AI 79 

ethically. UCSF AI4ALL recruits high school students from backgrounds underrepresented in AI, 80 

including females and students from minority racial and ethnic backgrounds, as well as students 81 

from low income families and those who are the first in their families to go to college. Through 82 

this tuition-free three-week summer training program, students gain experience with AI with a 83 

focus on applications to biomedicine, interact and work with a diverse set of role models in AI, 84 

including women and people of Black or African American background and Hispanic or Latino 85 

background, and learn about how AI can advance health. They receive broad exposure to AI 86 

topics through faculty lectures, and gain in-depth research experience through hands-on 87 

projects. Mentoring and career/personal development sessions with faculty, researchers, 88 

industry professionals and undergraduate and graduate students further enable personal growth 89 

and an opportunity to explore career interests at the intersection of Computer Science and 90 

Biomedicine. Due to the COVID-19 pandemic, the UCSF AI4ALL program held in 2020 shifted 91 

from an in-person, commuter program to a synchronized, online one with all the student 92 

research projects focusing on leveraging AI to advance our knowledge and understanding of 93 

COVID-19. Here, we provide an overview of the 2020 UCSF AI4ALL virtual summer program, 94 

share details about the research projects our students engaged in, and discuss the results of 95 

our program. 96 

Methods 97 

We reviewed all 89 complete applications that were submitted to our program during the 98 

application period in March 2020, and assessed each candidate holistically prior to offering 99 

acceptances into our program.  100 

 101 
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The program itself was a three week program, which was held virtually in 2020. The first week 102 

focused on teaching the high school participants basic programming in python and introductory 103 

topics in machine learning and the second and third weeks focused on research projects, which 104 

in 2020 were all leveraging AI to COVID-19. Google CoLab notebooks were used as a simple 105 

means to share code with students and run Python. Each morning began with time for students 106 

to ask questions as well as participate in our ice-breaker activities. The program had daily guest 107 

lectures by diverse faculty from UCSF focused on application of AI in biomedicine and covering 108 

a wide range of topics from clinical data analysis, to diagnostic and therapeutic strategies 109 

leveraging molecular measurements. There were also panels composed of UCSF AI4ALL 110 

student alumni, undergraduate students, graduate students, and professionals from private 111 

companies with backgrounds in AI within biomedicine and other disciplines. Our panelists, many 112 

of whom were women and people from diverse racial and ethnic backgrounds, spoke with our 113 

students and shared insights about their work and their journeys. Each week, our Alumni TAs 114 

led Community Building Session engaging the class of students in fun, bonding exercises. We 115 

also held a personal growth session to develop the students’ communications skills. The end of 116 

the program symposium included student presentations on their research projects as well as a 117 

Keynote talk on AI in Biomedicine. A copy of the 2020 program schedule is available 118 

https://ai4all.ucsf.edu/assets/2020_UCSF_AI4ALL_Program_Schedule.pdf  119 

 120 

Students were asked to complete a survey at the beginning (Pre-) and at the conclusion (Post-) 121 

of our program. Mann Whitney U (MWU) test with continuity correction was used to compare 122 

Pre- to Post- survey responses (since surveys were anonymous, we could not compare these 123 

using tests designed for paired data), and to compare 2019 to 2020 Pre- and Post- survey 124 

responses. Bonferroni corrections were employed, and a significance threshold of 0.05 was 125 

applied to the results. 126 

 127 
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Results 128 

Of the 89 high school students who submitted applications to our program and the 38 applicants 129 

we accepted into the program, 29 enrolled in and completed the program.  130 

All 29 students were females who were rising sophomores (21%), juniors (45%) or seniors 131 

(34%) in high school. Most of the students were from California (79/%), although several were 132 

from other states. The racial backgrounds of the students included Asian inclusive of those from 133 

the Indian subcontinent and Philippines (79%), Native Hawaiian or Other Pacific 134 

Islander/Original Peoples (3%), and Hispanic or Latino (7%), and 14% declined to state. 135 

Twenty-one percent will be first generation college students. (Table 1). 136 

  137 
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 138 

Table 1. Demographic characteristics of accepted students in the 2020 
UCSF AI4ALL Summer program 

Characteristic # students (total accepted: 29) % students 

Gender 
She/Her   29 100% 
He/Him  0 0% 
They/Them 0 0% 

Race *more than one category may be checked 

Asian (including Indian 

subcontinent and Philippines) 
23 79% 

Black or African American 0 0% 

Native Hawaiian or Other Pacific 

Islander (Original Peoples) 
1 3% 

Hispanic or Latino (including 

Spain) 
2 7% 

White (including Middle Eastern) 0 0% 
Decline To State 4 14% 

Grade Level Next Year  
Senior / 12th grade student 10 34% 
Junior / 11th grade student 13 45% 
Sophomore / 10th grade student 6 21% 
Freshman / 9th grade student  0 0% 

Qualify for Free Lunch at School 

Yes 4 14% 
No 25 86% 

1st Gen College Student 
Yes 6 21% 
No 23 79% 

Home State 

California 23 79% 

Other 6 21% 
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1st week: Lessons in Python and Machine Learning 139 

In the first week of the program, students spent the afternoons learning about machine learning 140 

concepts and programming in Python. We had seven UCSF graduate student instructors and 141 

teaching assistants (TA) to help with teaching during the first week. iPython notebooks with the 142 

in-class exercises were shared the evening before the class, to give students an opportunity to 143 

practice on their own before the solutions were reviewed in class.  144 

 145 

Python Workshops 146 

Students covered the basics of programming, data management, and data visualization in the 147 

first two days to prepare to code in Python language and work with data within a Google CoLab 148 

environment in preparation of their projects. Topics covered include programming basics (data 149 

types, logic, loops, functions), data structures, common Python packages, plotting with 150 

matplotlib, and using sklearn. During the lesson, students were placed in breakout rooms with 151 

teaching assistants to review coding exercises and practice programming activities together.  152 

 153 

Lessons on Machine Learning  154 

Topics covered in ML include Data and Bias, Clustering, Classification, Naive Bayes, 155 

Regression, and Neural Networks. To facilitate remote instruction, we employed a reverse 156 

classroom paradigm, in which the instructors produced a 15-20 minute lecture video to be 157 

watched before each classroom session. The general structure of live sessions include 15 158 

minutes of topic review first, then the rest of the session covering either conceptual activities or 159 

reviewing and practicing ML exercises on CoLab notebooks. For activities, students were 160 

placed into breakout rooms with a teaching assistant. Since students come from various 161 

backgrounds of ML and programming familiarity, collaboration within the breakout rooms were 162 

encouraged. 163 
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 164 

The instruction was carried out in an inverse classroom setting where the participants could ask 165 

the instructors and TAs questions after having watched the lectures.  166 

2nd and 3rd weeks: Research Projects and Presentations 167 

Applying AI to COVID-19 168 

The students were assigned to one of five groups based on their preference, each working on a 169 

research project that applied AI to the characterization, classification, or prediction of COVID-19 170 

leveraging different types of biomedical data - gene expression, proteomics, imaging and 171 

clinical. Each project team was led by a UCSF graduate student, medical student, and/or 172 

postdoctoral scholar and co-led by an alumni TA.  173 

 174 

On the last day of the program, students shared findings from their group’s research project 175 

during our Final Symposium. Each presentation was approximately 15 to 20 minutes in length, 176 

with time for questions, and each student presented a portion of their group’s work. The event 177 

was attended virtually by over 100 people, including faculty, graduate students and postdoctoral 178 

scholars from UCSF and other institutions, program participants and their invited family 179 

members. A videorecording of the Final Symposium, including our Keynote Speaker’s talk and 180 

the students’ presentations is available, https://youtu.be/uImjiHl7MDw.   181 

 182 

Project 1: AI for Global Health - AI and COVID-19 Time Series 183 

Diagnosis Data  184 

Students learned how to develop machine learning algorithms with utility for lower middle 185 

income country (LMIC) settings. Their objective was to develop an algorithm that can predict the 186 
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number of cases in a given country. Students used publicly available daily time series data 187 

describing confirmed COVID-19 infections and deaths per country and states across the world 188 

(over 266 regions) aggregated from the Johns Hopkins Center for System Sciences 189 

downloaded on July 1, 2020 (https://github.com/CSSEGISandData)(7).  Each student then 190 

manually pre-processed the dataset to a format in which they could conduct exploratory data 191 

analysis. The educational approach was to allow students to have first-hand experience in 192 

discovering the optimal way to plot and analyze various features of the data they were working 193 

with by experimenting with different visualization libraries and troubleshooting together real-time 194 

through video conferencing. Recognizing the diversity in time series trends between countries 195 

during exploratory data analysis, students chose to narrow the scope of the problem to focus on 196 

a specific country, selecting India due to its large number of cases and disparity in public health 197 

services. Students then did a literature review to understand the public health issues in India 198 

and how to design an algorithm that may actually provide utility to key stakeholders in the 199 

region.  200 

 201 

Visualizing the trend of confirmed infections in India, they decided to develop a forecasting 202 

algorithm that can aid in identifying how many resources a given country or state will need. 203 

Students were then presented with high-level information on several ML techniques used for 204 

time series data analysis, such as autoregression (8), Holt-Winters (9) exponential smoothing, 205 

and neural networks (10). Following a group debrief, students were allowed to select modeling 206 

approaches that interested them. Afterwards, they trained, developed, and tested three different 207 

algorithms: autoregression, feed-forward neural network, and Long Short-Term Memory (LSTM) 208 

recurrent neural network (Fig 1a,b). 209 

 210 

Students first started with a simple ML technique for time series data, known as autoregression. 211 

Afterwards, they decided to see whether it was possible to leverage data from other countries 212 

that may be useful in the same prediction. They developed a feedforward neural network 213 
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algorithm that leveraged data from 266 other countries/regions and predicted the most recent 5 214 

days of COVID-19 cases in India. Students discovered that this model performed worse than 215 

the simple ML technique (Mean Average Percentage Error: 82.35% for feedforward neural 216 

network vs. 8.23% from autoregression) (Fig 1c). The students became interested in trying 217 

LSTM recurrent neural networks, due to their unique ability to model time-series data better than 218 

feed-forward networks. They trained the model to predict the next 5 days of data from the most 219 

recent 15 data points, and found it performed slightly better than the feed-forward, but not as 220 

well as the simple ML technique (Mean Average Percent Error: 10.08% for LSTM) (Fig 1c).  221 

 222 

Fig 1. AI for Global Health. A. Schematic of major ML skills explored with packages/utilities 223 

used for instruction. B. Examples of data visualizations created by students. C. Model 224 

predictions compared to actual India COVID-19 data. Mean average percent error was 8.23%, 225 

10.08%, 82.35% for autoregression, LSTM, and feedforward neural networks respectively. 226 
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 227 

Project 2: AI and Proteomics - COVID-19 Protein-Protein Interactions 228 

(PPI) predictions  229 

Students learned to implement supervised learning techniques to predict host protein 230 

interactors, given primary amino acid sequences of various viral proteins, and to test if proteins 231 

of similar sequences would interact with the same host proteins. The dataset was curated from 232 

two publicly available sources - 1) a host-pathogen protein-protein interaction (PPI) data in 233 

HEK293T cells for HIV (11), HCV (12), HPV (13), Ebola (14), Dengue (15), and Zika (15), which 234 

contains sequence information on virus proteins with corresponding human protein information 235 

and their MiST scores, i.e. their interaction confidence scores (16) and 2) human proteome fasta 236 

files containing one protein sequence per gene (16). Mostly, project time was spent covering 237 

data processing, support vector machines (SVMs), and deep learning using Python. The group 238 

put these concepts in practice through hands-on work with their individual project; the six 239 

students chose one of six pathogens (HIV, HCV, HPV, Ebola, Dengue, and Zika) to work on 240 

individually. First, students built a dataframe containing their chosen virus-human interactions 241 

and split the data frame into a positive dataset with host-pathogen interactions with MiST score 242 

>= 0.75 and a negative dataset with proteins of their chosen virus and a randomized human 243 

proteins, resulting in 248 positive interactions and 496 negative interactions for Dengue, 89 244 

positive and 140 negative interactions for HCV, 704 positive and 1400 negative interactions for 245 

Zika, 93 positive and 186 negative interactions for HIV. The students then applied a global 246 

sequence alignment using a Biopython package (17) to check the pattern of the sequence 247 

alignments between positive and negative interactions. To predict their virus-human protein 248 

interactions, students combined the negative and positive datasets and created a SVM. The 249 

students coded separately on personal Jupyter notebooks but shared code through 250 

CoLaboratory notebooks and collaborated through project time discussion, screen-sharing, and 251 

Slack messaging. 252 
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 253 

In the first week, the group began by reading three papers on PPI predictive techniques and 254 

dissected the various merits of each paper’s methodology before deciding to pursue sequence 255 

alignment to demonstrate homology between their protein family and another potentially related 256 

member. Next, the students accessed the PPI dataset of host-pathogen PPI data containing 257 

virus bait protein, corresponding human prey protein and gene name from PubMed for their 258 

chosen pathogen. In their first dataset, they mainly organized the bait and prey sequences and 259 

corresponding MiST score in a comprehensive and cohesive format. Each student chose a 260 

different virus of six options. Together, they collaboratively processed the primary PPI dataset 261 

by isolating their virus’ bait and protein sequence to build their virus-protein dataframe. To close 262 

off the week, the instructors introduced the second training dataset consisting of each of the six 263 

pathogens’ protein ID and sequences. The students downloaded and utilized fasta files from 264 

UniProt that contained the protein ID and sequences for HIV, HCV, HPV Ebola, Dengue, Zika 265 

and spent the remainder of project work time understanding the relationship between prey and 266 

protein sequences.  267 

 268 

To start the second week, students learned about different sequence alignment algorithms. 269 

First, the students split each pair of interacting virus bait and human prey depending on the 270 

MiST score into positive (MiST >= 0.75) and negative (MiST < 0.75) datasets. After splitting the 271 

dataset, the instructors guided the students in constructing a data processing pipeline prior to 272 

building their predictive model. To add features of the data, the group utilized a global pairwise 273 

alignment algorithm from Biopython (17) to add the sequence alignment scores for each bait 274 

and prey pair to the positive and negative dataframes. Guided by their instructors, the group 275 

deliberated and decided on features that may serve as potent predictive variables including bait 276 

protein length, amino acid counts, and the atomic weight of the bait protein. Finally, the students 277 

visualized the distribution of alignment scores for the positive and negative data and evaluated 278 

the association.  279 
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 280 

In the final week, the group began creating and testing their machine learning models. The 281 

students combined the positive and negative dataframes and visualized their data through a 282 

scatter plot. Next, the group implemented SVMs and collaboratively built their classifier. 283 

Students selected an 80% and 20% split for their training and testing data, respectively. Each 284 

student first trained their model using their individual virus data. Then, they trained the model 285 

using all their virus data to predict the interaction between each SARS-CoV-2 protein and each 286 

human protein from the first PPI dataframe they built. The students finetuned the algorithmic 287 

parameters, to improve the model’s performance. To visualize the algorithm’s optimal 288 

performance, each student built a confusion matrix for the SVM predicting virus-human protein 289 

interaction (Fig 2a-e) and extracted feature importance in a bar plot (Fig 2f). Additionally, 290 

students were guided by their instructors to build a convolutional neural network (CNN) for their 291 

individual pathogen.  292 

 293 

Finally, the students spent the remainder of the last week investigating the implications of their 294 

research. The instructors presented ways that this type of data can be leveraged for drug 295 

discovery and repurposing whereupon the students discussed the implications of their 296 

experimental results on the COVID-19 pandemic.  297 

 298 

Code availability, data, slides, and figures can be found here.  299 

  300 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.06.434213doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.06.434213
http://creativecommons.org/licenses/by-nc-nd/4.0/


A 

 

B 

 

 
 

C 

 

D 

 

 

E 

 

F 

 

 

Fig 2. AI and Proteomics: COVID-19 Protein-Protein Interactions (PPI) Predictions. A-E: 301 

Confusion matrices visualizing the individual SVM models’ performances. Evaluated the 302 

true and predicted virus-human protein interactions for Dengue, Ebola, HCV, HIV, and Zika 303 

viruses respectively. F: Bar plot of feature importance extracted from Ebola virus trained 304 
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SVM on SARS-CoV-2 virus data. The prey proteins with a net positive or negative charge had 305 

the highest feature importance.  306 

 307 

Project 3: AI for Imaging Data - Computer Vision for COVID-19 Chest 308 

X-Ray Classification 309 

Students learned to implement machine learning models that can classify COVID-19 cases in 310 

chest x-ray images. The dataset was curated from publicly available chest x-ray images 311 

datasets (18,19) and contained 438 images from patients diagnosed with COVID-19 as well as 312 

438 images from patients without pathologic findings, labeled as ‘no finding’ (Fig 3a-b). The 313 

instructors introduced concepts in data processing, computer vision, and deep learning using 314 

Python. The students applied these concepts in a hands-on project where they first visualized 315 

and evaluated the dataset then trained a convolutional neural network (CNN) to identify COVID-316 

19 cases. The students coded separately on personal CoLab notebooks but collaborated and 317 

debugged together to the extent possible through online video discussions and screen-sharing. 318 

 319 

The group began by examining the dataset through exploratory data analysis. They 320 

experimented with different data visualization approaches and packages to plot the distribution 321 

of attributes in the dataset. Using the visualizations, the students discovered potential biases in 322 

the dataset such as skewed gender distribution and different x-ray views for the COVID-19 323 

images versus the ‘no finding’ images. The students also learned to use dataframe 324 

manipulations to survey subsets of the datasets. Together, they identified image features, such 325 

as lung region opacity and body outlines, that could be useful or potentially problematic for the 326 

classification task. 327 

 328 

Next, the students developed fully-connected and convolutional neural networks (CNN) using 329 
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PyTorch to perform binary classification. The instructors provided a starting code framework that 330 

guided the students in constructing a typical data processing and machine learning pipeline. 331 

The students completed the code by implementing missing core sections. They tracked model 332 

training speed as well as accuracy and loss curves to gain insight into the model training 333 

process (Fig 3c-d). The students also calculated metrics, such as F1 scores, and visualized 334 

latent space features to evaluate the model (Fig 3e). By discussing these analyses, the 335 

students identified areas where the model is performing poorly (e.g. incorrectly classifying 336 

COVID-19 images) and formulated hypotheses for potential reasons, such as the large 337 

variability in the COVID-19 images.    338 

 339 

In the final week, the students branched out to work on follow-up ideas. For this half of the 340 

project, the students were largely self-driven to explore ideas or questions that interested them. 341 

The instructors helped the students work through code issues and brainstormed solutions. The 342 

follow-up ideas included iteratively improving CNN models by tuning hyperparameters and 343 

training other types of classifiers (SVM, regression) using features extracted by a pre-trained 344 

DenseNet model. One particular challenge the students tackled was model robustness. Using 345 

gradient class activation maps to provide interpretation of model decisions, they had observed 346 

that the CNN models were detecting regions outside of the lung (Fig 3f). This became a focus 347 

for model improvement. During breaks, the instructors also briefly introduced interesting papers 348 

and recent results in AI vision research. The group discussed challenges of interpretable 349 

decision-making and model brittleness, which complemented the tasks they were working on. 350 
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 351 

 352 

Fig 3. AI for Imaging Data 353 

A. Subset of no finding images. Courtesy of Pranav Rajpurkar and Andrew Ng 354 

(CheXpert)(19). B. Subset of COVID-19 images. Credit: Lim et al (J Korean Med Sci, 355 

2020)(20) and Dr Domenico Nicoletti (Radiopaedia.org, rID: 74724)(21). C. Accuracy graph 356 

during model training. D. Loss graph during model training. E. TSNE visualization of 357 

model training over time. Blue represents no finding images while orange represents COVID-358 

19 images. F. Grad-CAM interpretation of CNN features. Red in the heatmap represents 359 

greater importance while blue represents the least. 360 

 361 
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Project 4: Latent Variable Modeling of COVID-19 Metagenome 362 

Transcriptomic Profiles 363 

Students applied dimensionality reduction techniques to investigate natural stratification of 364 

SARS-CoV2+ patient subgroups based on host transcriptomic response and viral coinfection 365 

status. Previous analyses of metagenomic sequencing data from upper airway samples of 238 366 

patients revealed a diminished innate immune response in patients positive for SARS-CoV2 367 

through differential expression analysis, gene set enrichment analysis, and in silico estimation of 368 

cell type proportions (22). We hypothesized decomposition of metagenomic next generation 369 

RNA sequencing (mNGS) to reveal separable clusters of patient subgroups. In our approach, 370 

we applied both supervised and unsupervised decomposition methods to analyze structural 371 

patterns inherent to the data.  372 

 373 

First, the students accessed this publicly available data and performed exploratory analysis on 374 

the study cohort of 94 patients who tested positive for SARS-CoV2 by gold standard clinical 375 

PCR. Mick et. al quantified the abundance of 15,900 host genes and 275 viruses by RNA 376 

sequencing and reference based alignment. Students applied principal component analysis 377 

(PCA) to each dataset and qualitatively inspected emergence of clusters based on covariates 378 

such as SARS-CoV2 viral load, gender, and age. In this unsupervised analysis the students 379 

experienced how sample outliers can skew variance and cause inflation of PCA components. In 380 

order to account for possible non-linear structure within the data, the students also trained and 381 

tested autoencoders on both the viral coinfection dataset and the gene expression dataset.  382 

 383 

Evaluation of viral coinfection embeddings led the students to hypothesize a correlation 384 

between binary coinfection status and SARS-CoV2 viral load. The students reasoned that 385 

patients with additional viral infection(s) may be generally more susceptible to SARS-CoV2 386 

replication due to alteration of immune response dynamics under coinfection conditions. 387 

Patients were stratified into 2 groups: those with measurable alternative viral load, and those 388 
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with sole viral metagenome alignment to SARS-CoV2. Welch’s t-test was applied to the average 389 

reads-per-million (rPM) of SARS-CoV2 between the two groups, and a significant difference 390 

below an error tolerance of 0.05 was found (p=1.947*10-4) (Fig 4a). 391 

 392 

The students followed up this result with an analysis for confounding variables. In group 393 

discussion, we posited that samples with a large SARS-CoV2 viral load cause a higher 394 

frequency of alignment errors to evolutionarily similar genomes. To test this, the students 395 

inspected correlation coefficients between SARS-CoV2 and alternative, coinfection viral read 396 

abundance. The most correlated viruses were all coronaviruses, lending evidence to the 397 

hypothesis that higher SARS-CoV2 viral load results in a higher proportion of reference 398 

alignment errors to genomically similar viruses (Fig 4b). This experience underscored the 399 

adage, “correlation does not imply causation,” lending a valuable lesson to the analysis of 400 

SARS-CoV2+ patient subgroups. 401 

 402 

A 403 

 404 
 405 

 406 

 407 
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B 408 

 409 
Fig 4. Latent Variable Modeling of COVID-19 Metagenome Transcriptomic Profiles.  410 

A. Boxplot of SARS-CoV2 rPM  by coinfection status. Reads-per-million of SARS-CoV2 411 

stratified by patients with alternative (orange) and no (blue) detectable viruses. 412 

B. Correlation coefficients between reads of SARS-CoV2 and coinfected viruses. Highly 413 

correlated viruses are coronaviruses. 414 

 415 

Project 5: PredictCOVID - AI and Electronic Medical Record (EMR) 416 

data  417 

Using real world data from (https://www.kaggle.com/einsteindata4u/covid19), students learned 418 

how to apply AI to (A) predict whether a patient is COVID positive or negative and (B) predict 419 

the severity of the COVID infection (i.e. admission into the general ward, semi-intensive care 420 

unit, or intensive care unit). The dataset included 5,644 patients as well as COVID-19 test 421 

results, patient age quantile, hospital admission ward, and various laboratory results from blood 422 

tests, urine tests, and pathogen tests. Students were introduced to the benefits and drawbacks 423 

of publicly available data, such as sources of bias and the need for intensive data preprocessing 424 

before the data can be utilized. Students took different approaches to data cleaning and 425 

imputation of missing values and evaluated the performance of machine learning models on 426 

varied input data, including evaluating metrics of accuracy, area under the curve (AUC), and 427 

distribution of false negatives and positives (Fig 5a). 428 
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 429 

Additionally, students were asked to go above and beyond to apply their findings to translational 430 

applications. For example, students were asked to critically evaluate the cost of false negatives 431 

(spreading COVID-19, not receiving treatment on time, worse outcomes) and false positives 432 

(waste of limited resources) in respect to patients and outcomes, and applying this evaluation to 433 

the decision of a model. Students were also asked to perform covariate analyses to determine 434 

feature importance and apply back to their understanding of clinical relevance and application 435 

(Fig 5b,c). One finding that the group reported was that leukocytes were heavily negatively 436 

correlated with COVID test results (Fig 5d). Lastly, the group summarized their findings and 437 

recommendations for future plans to the entire group as well as the limitations and biases in the 438 

data (i.e. single location, limited follow-up, missing data).  439 

 440 
A 

 

B 
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C 

 
 441 

D 

 
 442 

Fig 5. PredictCOVID: AI for deriving insights from healthcare data. A. Area Under the 443 

Curves (AUCs) of different machine learning classifiers for predicting COVID status from 444 

patient data. AUC was one of the metrics used by the students to evaluate the performance of 445 

their machine learning models.B. Decision tree classifier for COVID status. Features used in 446 

decision making in each level of the tree are shown, with COVID status (positive/negative) at 447 

the leaves of the tree. C. Heatmap of the correlation between clinical features and COVID 448 

status or Care Level. Blue represents positive correlation while red represents negative 449 
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correlation. D. Boxplot of normalized leukocyte laboratory values and COVID status. 450 

Leukocyte laboratory values negatively correlated with COVID test results. 451 

 452 

Pre- and Post- Surveys 453 

Analysis of the survey data revealed significant shifts in some of the students’ responses from 454 

the Pre- to Post- survey. Specifically, at the end of the program, there were significantly more 455 

students who reported that they know how to clean data before using it in machine learning 456 

algorithms (MWU test, adjusted p-value <0.001), and know how to evaluate and apply machine 457 

learning algorithms (MWU test, adjusted p-values  <0.001) (Fig 6). More students also reported 458 

knowing people in AI who are people of color (MWU test, unadjusted p-value = 0.014, adjusted 459 

p-value = 0.285) and women (MWU test, unadjusted p-value = 0.044, adjusted p-value = 0.877), 460 

feeling confident in questioning the media about AI (MWU test, unadjusted p-value = 0.015, 461 

adjusted p-value = 0.297), and knowing about careers that use AI (MWU test, unadjusted p-462 

value = 0.037, adjusted p-value = 0.743); however, these increases were only of nominal 463 

significance. Survey responses of students in the 2020 virtual program and those of students in 464 

the 2019 commuter program for questions asked in both years were found not to differ 465 

significantly (Mann Whitney U test, unadjusted and adjusted p-values > 0.05) (Supplementary 466 

Table 1).  Students of the 2020 virtual were also no less likely to recommend the AI4ALL 467 

program to peers than the students who attended the 2019 in-person program (Mann Whitney U 468 

test, unadjusted p-value = 0.044, adjusted p-value = 0.872) (Supplementary Figure 1). 469 

 470 

 471 
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Fig 6. Pre-post survey results. Histograms of students’ responses to pre-program and post-472 

program survey questions, with median values. Mann Whitney U tests were performed to 473 

compare pre- and post-survey responses, with adjusted p-values below significance threshold 474 

of 0.05 given an asterisk (*). 475 

 476 

Moreover, the graduate students, post-doctoral scholar and alumni TA’s who worked with our 477 

students on their research projects shared their observations that the students: 478 
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○ Grew in their abilities to think critically, form hypotheses, and design executable 479 

experiments 480 

○ Learned how to develop a variety of different ML models 481 

○ Fortified their collaborative skills and technical proficiency in Python 482 

○ Found exploratory data analysis to be valuable as it challenged the participants to view 483 

scientific inquiry in an open-ended way that deviated from traditional classroom 484 

experiences 485 

○ Learned how to analyze the results and how they relate to the original research questions 486 

○ Experienced the immediate relevancy of AI approaches to current problems in the 487 

COVID-19 pandemic 488 

○ Demonstrated their understanding and interpretation of not only AI but also the 489 

application of AI to medicine, public health, and clinical decision making 490 

Discussion 491 

Diverse representation is needed not just in the data for Artificial Intelligence (AI), but also in the 492 

people working and leading in the field of AI. Since 2019, UCSF AI4ALL has engaged students 493 

from backgrounds historically underrepresented in AI in order to promote greater diversity and 494 

inclusion in this field. In 2020, through a variety of interactive virtual real-time sessions and 495 

experiences held during a three-week period, our program allowed students to interact with a 496 

diverse set of role models in AI and learn about how AI can be used to advance health. 497 

Furthermore, students gained experience in coding, working with data, and AI by participating in 498 

one of our meaningful hands-on research projects that applied AI to understanding, classifying, 499 

or predicting COVID-19. 500 

 501 

Students’ survey responses demonstrated their feeling significantly more familiar with working 502 

with data and evaluating and applying machine learning algorithms at the end of our 2020 virtual 503 
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program.  There was also a nominally significant increase in the students’ knowing people in AI 504 

who are from historically underrepresented groups, their confidence in discussing AI, and their 505 

awareness of careers in AI. While the format of the 2020 program differed from 2019, with the 506 

2020 program taking place online instead of in-person due to the pandemic, students’ survey 507 

responses from both years were comparable. 508 

 509 

Despite the success of our virtual training program, there were some limitations to having a 510 

program take place entirely online, including the lack of in person interactions and the need for 511 

reliable internet connection. Nevertheless, the ability to engage young students in AI and the 512 

opportunity to contribute to diverse representation in this field make holding our program in any 513 

format worthwhile. 514 

 515 

We have learned that it is possible to deliver virtually an AI curriculum to young high school 516 

students that provides them with an engaging and impactful experience.  Through our virtual 517 

program, we were able to connect with students from around the country and involve teaching 518 

assistants and faculty from outside the Bay Area and from other institutions. We were also able 519 

to give students who are located far from AI training programs a chance to become involved 520 

bringing the goal of increasing diversity in AI a little closer to reality. 521 

 522 
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