

Translational activation by an alternative sigma factor in *Bacillus subtilis*

2

3 Dylan M. McCormick^{1#}, Jean-Benoît Lalanne^{1,2,4#}, Tammy C. T. Lan³, Silvi Rouskin³, Gene-Wei
4 Li^{1*}

⁵ ¹Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

⁶Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

⁷Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA

⁴Current Address: Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA.

10 #These authors contributed equally

11 *Corresponding author: gwli@mit.edu

12

13 Running Head: Alternative sigma factor activates translation

14

15 Keywords: sigma factor, RNA structure, translation efficiency, *B. subtilis*, dual induction

16

17

18

19

20

21

22

23

24 **ABSTRACT**

25 Sigma factors are an important class of bacterial transcription factors that lend specificity to
26 RNA polymerases by binding to distinct promoter elements for genes in their regulons. Here we
27 show that activation of the general stress sigma factor, σ^B , in *Bacillus subtilis* paradoxically leads
28 to dramatic induction of translation for a subset of its regulon genes. These genes are
29 translationally repressed when transcribed by the housekeeping sigma factor, σ^A , owing to
30 extended RNA secondary structures as determined *in vivo* using DMS-MaPseq. Transcription
31 from σ^B -dependent promoters liberates the secondary structures and activates translation, leading
32 to dual induction. Translation efficiencies between σ^B - and σ^A -dependent RNA isoforms can
33 vary by up to 100-fold, which in multiple cases exceeds the magnitude of transcriptional
34 induction. These results highlight the role of long-range RNA folding in modulating translation
35 and demonstrate that a transcription factor can regulate protein synthesis beyond its effects on
36 transcript levels.

37

38 **INTRODUCTION**

39 Transcriptional regulation by sigma factors is a hallmark of bacterial gene expression. Sigma
40 factors bind to the core RNA polymerases, forming holoenzymes that can initiate transcription at
41 sites with well-defined sequences. In *B. subtilis*, most genes are transcribed by the housekeeping
42 sigma factor σ^A , and some are additionally or exclusively transcribed by alternative sigma
43 factors that control specific processes such as sporulation and motility (Haldenwang 1995;
44 Helmann 2019). The alternative sigma factor σ^B is involved in the general stress response
45 (Haldenwang and Losick 1979; Hecker et al. 2007; Price 2014; Haldenwang 1995) and initiates
46 transcription for over two hundred genes with well-defined promoter sequences (Nicolas et al.

47 2012; Petersohn et al. 1999; Zhu and Stölke 2018). Induction of transcription leads to
48 corresponding increases in RNA levels (Figure 1A).

49 Translational regulation is also widespread in *B. subtilis*, although it is not typically
50 thought to be controlled by transcription factors. Differential translation among genes in the
51 same operon is largely driven by differences in mRNA secondary structure (Burkhardt et al.
52 2017) and is important for stoichiometric production of proteins in the same complex or
53 metabolic pathway (Lalanne et al. 2018; Li et al. 2014). Translation can be additionally regulated
54 by RNA-binding proteins or riboswitches that modulate the accessibility of the ribosome binding
55 sites on the mRNA (Breaker 2018; Yakhnin et al. 2004, 2007). Operons are often controlled both
56 transcriptionally and translationally (Figure 1A), but seldomly by the same regulator (Bastet et
57 al. 2018; Chauvier et al. 2017; Hollands et al. 2012).

58 Here we show that the transcription factor σ^B not only activates transcription, but also
59 derepresses translation for a subset of its regulon genes. Using Rend-seq (end-enriched RNA-
60 seq) (Lalanne et al. 2018) and ribosome profiling, we identified 12 genes whose apparent
61 translation efficiency is increased substantially during σ^B activation. Most of them are
62 transcribed from a σ^B -dependent promoter as well as at least one σ^A -dependent promoter,
63 generating multiple transcript isoforms. By modulating σ^B activities, we found that each
64 transcript isoform is associated with a distinct translation efficiency, with strongly repressed
65 translation for σ^A -driven isoforms and elevated translation for σ^B -driven isoforms. These were
66 orthogonally confirmed using a fluorescent reporter in a subset of examples. Both computational
67 RNA folding and *in vivo* structural probing by DMS-MaPseq (Zubradt et al. 2016) indicate that
68 the repressed σ^A -driven isoforms possess extended RNA secondary structures that sequester the
69 ribosome binding sites. On the other hand, σ^B -driven isoforms have shorter 5' UTRs that only

70 include the regions corresponding to the second halves of the extended stem-loops in the longer
71 σ^A -driven isoforms. Therefore, σ^B can simultaneously activate both transcription and translation
72 by modulating isoform-specific secondary structures.

73

74 **RESULTS**

75 **σ^B activates translation for a subset of its regulon**

76 We first observed translational activation of σ^B regulon genes while profiling gene expression
77 for a *B. subtilis* strain with an elevated general stress response during steady-state growth due to
78 a genetic modification (Methods). Rend-seq and ribosome profiling data were generated to
79 quantify the mRNA levels and protein synthesis rates, respectively, for both the wild type (“ σ^B
80 inactive”) and the genetically modified strain (“ σ^B active”). The density of ribosome footprints
81 of a gene provides an estimate for the relative rate of protein synthesis, provided that most
82 ribosomes complete translation to yield full-length polypeptides and that the elongation time
83 averaged across the entire transcript is constant (Ingolia et al. 2009; Li 2015; Lalanne et al. 2018;
84 Li et al. 2014). Translation efficiency (TE), defined as the rate of protein production per mRNA
85 molecule, can then be estimated from Rend-seq and ribosome profiling data by calculating the
86 per-gene ribosome profiling coverage over Rend-seq coverage, i.e., the ribosome density along a
87 transcript (Li 2015; Li et al. 2014). Given σ^B ’s well-understood role in transcription initiation,
88 we expected its regulon members to change in mRNA levels and not TE.

89 Surprisingly, we found that several genes in the σ^B regulon showed far greater increases
90 in protein synthesis rate (ribosome profiling) than in mRNA levels (Rend-seq). Between the two
91 conditions, 25% of the annotated σ^B regulon genes (Zhu and Stülke 2018) had substantially
92 different expression levels (56/225 with >3.7-fold change, Figure 1B and 1C) . Although most

93 genes showed concordant changes in mRNA levels and protein synthesis rates, a notable
94 population (21%, 12/56) exhibited a considerably greater increase in protein synthesis rates than
95 mRNA levels (>2.7-fold), suggesting an increase in apparent translation efficiency (Figure 1D).
96 Among these translationally activated σ^B regulon genes, the magnitude of TE increases often
97 exceeded the rise in mRNA levels, as most genes (75%, 9/12) exhibited a fold change in
98 apparent TE accounting for >50% of the observed fold change in protein synthesis rate (Figure
99 1E). Hence, translational induction contributes to the majority of the increase in expression of a
100 subset of the σ^B regulon, suggesting a yet-unknown strategy for activating translation following
101 σ^B induction.

102

103 **σ^B -dependent alternative mRNA isoforms drive translational upregulation**

104 To identify the regulatory features that could drive translational upregulation, we examined the
105 transcript architecture of translationally activated σ^B regulon genes using Rend-seq. Through
106 sparse fragmentation of input RNAs, Rend-seq enriches for the 5' and 3' boundaries of
107 transcripts, enabling the detection and quantification of mRNA isoforms within operons (Lalanne
108 et al. 2018). We observed that the translationally activated σ^B regulon genes were found in two
109 or more different RNA isoforms (Figure 2, Figure S1, Figure S2). In particular, 8 of the 12 genes
110 shared a common operon architecture (Figure 2, Figure S1): They were each transcribed both as
111 a part of a polycistronic mRNA from a vegetative (σ^A -dependent) promoter, as well as from their
112 own σ^B -dependent promoter. As illustrated by the representative genes *ctc* and *yvrE*, in the
113 absence of stress, the primary isoform was the long, σ^A -dependent polycistronic mRNA (Figure
114 2). In these transcripts, the ribosome footprint density for *ctc* and *yvrE* was much lower
115 compared to their co-transcribed upstream genes. Under σ^B induction, additional 5' ends

116 appeared directly upstream of their coding sequences (Figure 2, red arrows), consistent with the
117 creation of alternative mRNA isoforms from σ^B -dependent transcription start sites (TSSs, Figure
118 2 inset). Furthermore, these additional 5' ends coincide with a sharp increase in ribosome
119 footprint density over the gene bodies.

120 We found that the short, σ^B -dependent isoforms of the translationally activated genes had
121 significantly elevated translation efficiency compared to the corresponding long, σ^A -dependent
122 isoforms. By estimating the relative prevalence of short and long isoforms across Rend-seq and
123 ribosome profiling datasets with different levels of σ^B induction, we could infer the individual
124 translation efficiency for each isoform (Figure 3A, Figure S3, Methods), hereafter referred to as
125 the isoform-specific translation efficiency. Compared to the σ^A -dependent isoforms, we found
126 that the TE for the σ^B isoform was 3- to 100-fold larger (median = 8.4, Figure 3C). The σ^A
127 isoform-specific TEs were all below the median TE across the transcriptome (5/8 in the bottom
128 quartile, Figure 3B), whereas the σ^B isoform-specific TEs were all above the median (7/8 in the
129 top quartile). These results indicate that these σ^A -dependent isoforms are translationally
130 repressed compared to most genes, whereas the σ^B -dependent isoforms are translationally
131 activated.

132 We confirmed that TE was isoform-specific using fluorescent reporter constructs for *ctc*
133 and *yvrE* (Figure 3D). Specifically, we fused the fluorescent protein mNeonGreen to the C-
134 terminal end of each gene. For each fusion protein (*ctc-mNeon*, *yvrE-mNeon*), two distinct
135 isoform-specific 5' untranslated region (5' UTR) variants were placed under the control of an
136 ectopic promoter: 1) a short-isoform variant (S) that included each gene's native 5' UTR
137 corresponding to the σ^B -dependent isoform (as identified by Rend-seq), and 2) a long-isoform
138 variant (L) that included ~100 additional nucleotides in the upstream region, which covers a

139 portion of the coding sequence (CDS) of the upstream gene in the operon. Additionally, a start
140 codon and non-native ribosome binding site (RBS) were inserted directly upstream to enable
141 translation of the truncated upstream CDS in the long-isoform variant. We then quantified the
142 isoform-specific TE for each construct by normalizing relative protein expression (determined
143 from fluorescence, Methods) to relative mRNA levels (from RT-qPCR, Methods). We found that
144 these isoform-specific TEs qualitatively recapitulated our sequencing-based measurements
145 (Figure 3D). Specifically, the isoform-specific TE of the long-isoform constructs was roughly 4-
146 to 6-fold lower than that of the short-isoform constructs, although any further decreases were
147 difficult to quantify due to high background fluorescence. Nevertheless, inclusion of upstream
148 sequence elements was sufficient to produce a large reduction in TE in the absence of the general
149 stress response, which suggests that features in the σ^A -dependent isoforms can repress translation
150 of the downstream σ^B regulon gene. Given the many functions that RNA secondary structure
151 plays in shaping translation in bacteria (Bhattacharyya et al. 2018; Boël et al. 2016; Borujeni et
152 al. 2017; Cambray et al. 2018; Chiaruttini and Guillier 2020; Espah Borujeni and Salis 2016;
153 Goodman et al. 2013; Kudla et al. 2009; Lodish 1968; Li et al. 2014), we aimed to determine if
154 structures in the σ^A -dependent isoforms could explain the observed impact on translation.

155

156 **Extensive secondary structure is associated with translationally repressed, σ^A -dependent
157 isoforms**

158 To understand the possible role of mRNA secondary structures in setting isoform-specific
159 translation efficiency, we computationally folded for the σ^A -dependent isoforms of *ctc* and *yvrE*.
160 By mapping the putative Shine-Dalgarno (SD) sequences that recruit ribosome binding (Shine
161 and Dalgarno 1974), onto minimum free energy (MFE) structures (Methods), we found that the

162 majority of bases in the SD sequences were sequestered deep in stable, long-range structures
163 (Figure 4A). Strikingly, in both cases the σ^B -dependent 5' ends were located inside the loop of
164 the long RNA stems, such that the short, σ^B -generated isoforms have their 5' UTRs entirely
165 liberated from these extended secondary structures. The likelihood of SD sequestration was
166 further supported by calculating the base pairing probability for each position in the SD
167 sequences, which revealed that the majority of positions were predicted to be paired across the
168 full thermodynamic ensemble (base-pairing probability ≈ 1). Given that SD sequences facilitate
169 ribosome recruitment to mRNA to initiate translation, we expected that the presence of extensive
170 secondary structure at and around these elements in the σ^A -dependent isoforms could plausibly
171 repress translation of the downstream σ^B regulon gene. However, numerous factors in the
172 cellular microenvironment affect the folding dynamics of RNAs, yielding *in vivo* structures that
173 can differ substantially from their *in silico* counterparts (Mustoe et al. 2018; Rouskin et al. 2014;
174 Spitale et al. 2015; Burkhardt et al. 2017). Accordingly, we decided to experimentally validate
175 these computationally predicted structures for the σ^A -dependent isoforms of *ctc* and *yvrE*.

176 We employed the RNA structure probing method DMS-MaPseq to quantify mRNA
177 structures *in vivo*. This technique involves treating RNA with the methylating agent dimethyl
178 sulfate (DMS) to modify the base-pairing faces of accessible adenine and cytosine nucleobases.
179 These modifications are subsequently encoded as mutations during reverse transcription using a
180 specialized thermostable group II intron reverse transcriptase, generating a mutational signal that
181 is detectable using high-throughput sequencing and has been shown to correlate with base
182 accessibility (Tomezsko et al. 2020; Zubradt et al. 2016). We used a targeted version of DMS-
183 MaPseq to specifically reverse transcribe and amplify the predicted structural region in the σ^A -
184 dependent isoforms of *ctc* and *yvrE* following DMS treatment *in vivo* (Figure 4B). After

185 sequencing these amplicons, we examined the per-base mutational fractions against a control
186 without DMS treatment and confirmed that DMS induced a characteristic signal at amino bases
187 (Figure 4C).

188 We refolded the σ^A -dependent isoforms of *ctc* and *yvrE* using DMS signal as a constraint
189 (Methods) and found strong agreement with the earlier MFE structures (Figure 4D). In
190 particular, the regions containing the SD sequences were indeed highly structured *in vivo* and
191 thus less accessible to the translation machinery. Additionally, these structured regions were
192 robust to the folding window size (Methods). These extended structures that occlude the
193 ribosome binding sites are consistent with the repressed translation of the long, σ^A -dependent
194 isoforms.

195 After validating the computationally predicted secondary structures by DMS-MaPseq, we
196 extended our computational analysis to additional translationally activated σ^B regulon genes and
197 found a consistent pattern of characteristic structures in the σ^A -dependent isoforms that sequester
198 the sequence elements required for translation initiation (Figure 5). Similar to *ctc* and *yvrE*, the
199 remaining 6 genes for which we estimated isoform-specific TE all displayed MFE structures
200 with the SD sequences located in extended stem-loops, and base pairing probabilities indicated
201 that the SD sequences were predominantly paired. These results suggest that these other σ^A -
202 dependent long isoforms are also translationally repressed by extensive secondary structures, like
203 the orthogonally validated instances of *ctc* and *yvrE*.

204

205 **Internal σ^B promoters liberate mRNA secondary structure and activate translation**
206 In contrast to being repressed in the σ^A -dependent isoforms, genes in the short, σ^B -dependent
207 isoforms had above-normal levels of translation (Figure 3C). The single-nucleotide resolution

208 afforded by Rend-seq data revealed a common feature among this group of genes: the TSSs of
209 the σ^B -dependent isoforms were located within the extended secondary structure, often inside the
210 loop region or in the downstream stem (Figure 4A, Figure 5, magenta and arrow). Therefore, σ^B -
211 driven transcription generates isoforms with 5' UTRs that lack the upstream portion of the stem
212 sequestering the SD sequence in the long, σ^A -dependent isoforms, thereby freeing up the
213 ribosome binding site for efficient translation initiation.

214 The prevalence of this regulation suggests an alternative configuration for σ^B -dependent
215 gene expression that does not entirely rely on its canonical role as acting at the transcriptional
216 level. In this operonic architecture, σ^A -driven promoters produce long, polycistronic mRNAs
217 containing stable structures that impede translation initiation for σ^B regulon genes located at the
218 ends of these transcripts (Figure 6). When activated by stress, however, σ^B initiates transcription
219 from alternative promoters directly upstream of its regulon genes, bypassing the inhibitory
220 secondary structures and thereby promoting ribosome binding on these shorter mRNAs. The
221 resulting increase in protein expression predominantly arises from a greater ribosome flux on
222 these transcripts, demonstrating a novel function for σ^B in regulating gene expression in a
223 simultaneous transcriptional-translational induction.

224

225 **DISCUSSION**

226 Bacterial sigma factors have long been studied as quintessential examples of gene regulation.
227 Mechanistically, their direct effects on transcription initiation are well-understood (Paget 2015).
228 We expand this view by demonstrating that the alternative sigma factor σ^B in *B. subtilis* can also
229 influence translation initiation for several of its regulon genes. Translation activation is
230 accomplished by modulating isoform-specific RNA secondary structures that normally impede

231 translation initiation. This multifunctional control of transcription and translation by a single
232 trans-acting factor serves as a strategy to enable massive upregulation of gene expression under
233 specific cellular conditions.

234 The RNA secondary structures that impede translation in the long, σ^A -dependent
235 isoforms often include regions of the upstream open reading frames (ORFs), raising questions
236 about whether ribosomes translating the upstream ORFs may perturb the formation of the
237 inhibitory secondary structures. Ribosomes are known to unwind structured regions of RNA as
238 they elongate over coding sequences (Takyar et al. 2005; Wen et al. 2008). We observed that the
239 stop codon of the upstream gene in the operon was typically located within the large stem-loop
240 (Figure 4, Figure 5). This places ribosomes in proximity to the critical structural elements if the
241 upstream message is actively translated. However, the results from our fluorescent reporter assay
242 show that this configuration is not capable of fully restoring translation for either *ctc* or *yvrE*,
243 despite the upstream gene being driven by an exogenous ribosome binding site with the
244 consensus SD sequence. These data suggest that translation of the upstream gene is insufficient
245 to fully derepress downstream genes, presumably because the ribosome footprint does not extend
246 sufficiently downstream to disrupt RNA structure, or possibly due to rapid refolding of
247 secondary structures after ribosomes pass through.

248 What is the utility of this regulatory strategy? From an evolutionary perspective, it seems
249 counterintuitive for these genes to be found within larger operons despite being lowly translated.
250 We could instead imagine a transcription terminator evolving in the region between the upstream
251 genes in the operon and the σ^B -dependent TSS, which would ensure that the σ^B regulon gene is
252 only induced upon activation of the general stress response. One potential explanation for
253 multifunctional regulation is to allow fine-tuned expression of some σ^B regulon genes during

254 non-stress conditions. On the one hand, this transcript architecture enables these genes to be
255 transcribed during exponential growth. On the other hand, translation may have been selected
256 against in the same condition to avoid fitness defects from overexpression. In this case, the
257 observed basal expression from the σ^A -driven isoforms would be sufficient for their functions
258 during non-stress conditions.

259 Another possible explanation for this regulatory strategy could be that small amounts of
260 these proteins are necessary for coping with general stress during transitional periods where σ^B
261 has already been activated but synthesis of general stress proteins is still ongoing. A fitness
262 benefit would be challenging to identify except in specific conditions where the cell relies on one
263 of these particular σ^B regulon genes for survival. Indeed, extensive phenotyping of σ^B -regulon
264 member deletions under varied stresses has demonstrated the limited impact of individual
265 proteins on cell fitness (Höper et al. 2005). Identifying the exact stress conditions in which this
266 regulatory strategy confers a fitness advantage constitutes an interesting future direction.

267 Regardless of the function of σ^B -dependent translational activation, our discovery and
268 characterization of sigma factor-mediated dual induction (Figure 6) expands our view of the
269 regulatory roles of sigma factors and reveals an intriguing principle of bacterial genome
270 organization that could be further investigated in similar organisms.

271

272

273

274

275

276

277 **MATERIALS AND METHODS**

278 **Strains and strain construction**

279 Strains used to generate new data in this study are listed in Table 1. Strains pertaining to matched
280 Rend-seq and ribosome profiling datasets (from GEO accession GSE162169) are listed in Table
281 S1.

282 To construct the strains for the fluorescent reporter assay, the genes *ctc* and *yvrE* (with
283 variable upstream regions) were fused to the fluorescent protein mNeonGreen with a C-terminal
284 linker and cloned into pJBL044 under the constitutive promoter P_{veg} using Gibson assembly
285 (New England Biolabs). The original pJBL044 plasmid was constructed using isothermal
286 assembly from a fragment of pDR160 (Bose and Grossman 2011), a *kanR* cassette (Guérout-
287 Fleury et al. 1995), *levB* homology regions, the P_{veg} promoter, and the strong *efp* terminator.
288 The assembled plasmids were transformed into *Mix and Go!* *E. coli* DH5 Alpha Competent Cells
289 (Zymo Research) per the manufacturer's instructions and isolated using a QIAprep Spin
290 Miniprep Kit (QIAGEN). The fusion constructs were then integrated into BS168 at the *levB*
291 locus using standard cloning techniques (Harwood, C R and Cutting 1990), and successful
292 recombinants were verified by colony PCR. All plasmids and recombinants (see Table 1) were
293 further validated by Sanger sequencing (Quintara Biosciences).

294

295 **Growth conditions**

296 Unless indicated otherwise, all strains were grown at 37°C with shaking (250 rpm) in LB
297 supplemented with carbenicillin (100 µg/mL for *E. coli*) and/or kanamycin (50 µg/mL for *E. coli*,
298 5 µg/mL for *B. subtilis*) when appropriate. For overnight cultures, LB liquid media was
299 inoculated with single colonies from LB agar plates.

300 For matched Rend-seq/ribosome profiling datasets, strains were grown in LB or
301 conditioned MCC medium (Parker et al. 2020; Lalanne et al. 2020) with various inducer (xylose,
302 IPTG) concentrations (see Table S1). For these datasets, cells were grown in exponential phase
303 for at least 10 doublings before harvesting at $OD_{600} \approx 0.3$.

304

305 **Existing Rend-seq and ribosome profiling datasets**

306 Matched Rend-seq and ribosome profiling datasets used to identify genes with increased TE
307 (Figure 1) and to estimate the short isoform fraction and corresponding apparent TE (Figure 3,
308 Figure S3) were obtained from GEO accession GSE162169 (Lalanne et al. 2020). These datasets
309 display a range of σ^B activation due to a diverse set of genetic modifications and growth media.

310 In particular, we previously identified that tuning the expression of translation termination
311 factors RF2 and PrmC activate σ^B to varying degrees (Lalanne et al. 2020). For example, the σ^B
312 active data presented in Figures 1 and 2 correspond to a CRISPRi knockdown of RF2, while σ^B
313 inactive corresponds to wild-type. Importantly, although it is possible that different RF2 levels
314 could affect translation initiation (and therefore TE) of genes (Lalanne et al. 2020), none of the
315 genes that show a substantial increase in TE (Figure 1) have a UGA stop codon or are co-
316 transcribed with a gene ending with UGA stop (UGA being the stop codon cognate to RF2).

317 Hence, the molecular causes of σ^B activation are distinct and independent from the mechanisms
318 leading to translational activation characterized here.

319

320 **Quantification of mRNA level, ribosome footprint density, and translation efficiency**

321 From pile-up files (.wig format), the mRNA level corresponding to a gene was quantified as the
322 1% winsorized average read density for 3'-end mapped Rend-seq reads across the body of the

323 gene, excluding a 40 nt region the start and end of the gene (start+40 nt to end-40 nt for
324 averaging). Ribosome footprint read density was similarly calculated (1% winsorized density
325 from start+40 nt to end-40 nt). Read densities were then normalized to rpkm (reads per kilobase
326 per million reads mapped) using the total number of reads mapping to non-rRNA or tRNAs. For
327 all genes, bootstrap (randomly sampling from the distribution of read counts per position across
328 the body of the gene and calculating the corresponding resampled density and downstream
329 quantities) was used as a measure of technical and read count variability. Error bars in Figures
330 3A and S3 correspond to the standard deviation across bootstrap subsamplings. Large error bars
331 correspond to large counting noise (regions with few reads mapped). The translation efficiency
332 of each gene was calculated as the ribosome profiling rpkm divided by the Rend-seq rpkm. Only
333 genes with >50 reads mapped were considered to identify candidates with substantially elevated
334 TE (Figure 1).

335

336 **Determination of isoform-specific TE**

337 To estimate the isoform-specific TE for particular genes, we assume that each individual mRNA
338 isoform has a distinct TE, and that the total ribosome footprint density for a gene with multiple
339 mRNA isoforms is equal to the sum of the isoform-specific TEs weighted by the mRNA
340 abundance of each isoform.

341 Specifically, consider a two-gene operon with a long isoform that includes both gene 1
342 and gene 2 as well as a short isoform that contains gene 2 exclusively (schematically illustrated
343 in Figure S3A). Denote overall mRNA level for genes 1 and 2 by m_1 and m_2 , and overall
344 ribosome footprint density r_1 and r_2 for the two genes respectively. Further, let m_{short} , m_{long}
345 be the level of the short and long isoform respectively, and $TE^{2,short}$, $TE^{2,long}$ the

346 corresponding isoform-specific TE. Note that the overall mRNA level for genes 1 and 2 are
347 related to isoform mRNA levels by: $m_1 = m_{long}$ and $m_2 = m_{short} + m_{long}$. Hence, from the
348 total mRNA level for both genes, we can infer the isoform mRNA levels: $m_{long} = m_1$, and
349 $m_{short} = m_2 - m_1$.

350 By assumption, for the ribosome density on gene 2: $r_2 = m_{short}TE^{2,short} +$
351 $m_{long}TE^{2,long}$. For the apparent TE of gene 2, we thus have: $TE^{2,apparent} = \frac{r_2}{m_2} =$
352 $\frac{m_{short}TE^{2,short} + m_{long}TE^{2,long}}{m_2}$. Reorganizing the equation leads to: $TE^{2,apparent} =$
353 $f_{short}TE^{2,short} + (1 - f_{short})TE^{2,long}$, where we have defined the short isoform mRNA fraction
354 for gene 2 as $f_{short} = \frac{m_{short}}{m_2} = \frac{m_2 - m_1}{m_2}$. We note that for genes in conditions with little to no
355 short isoform expression, the estimated short isoform fraction may be negative as a result of the
356 technical variability in coverage.

357 Using RNA-seq data, f_{short} can be estimated from the mRNA levels on both genes as
358 shown above as $\frac{m_2 - m_1}{m_2}$. Using ribosome profiling data from a matched sample, the apparent TE
359 on gene 2, $TE^{2,apparent}$, can be estimated as $\frac{r_2}{m_2}$. If our assumption of isoform-specific TE
360 linearly contributing to overall ribosome density on gene 2 is valid, then a plot of $TE^{2,apparent}$
361 vs. f_{short} across samples with variable induction of the short isoform should display a linear
362 relationship, with a y-intercept at $f_{short} = 0$ of $TE^{2,long}$ and a y-intercept at $f_{short} = 1$ of
363 $TE^{2,short}$ as seen in Figures 3A and S3B.

364 To increase the precision of the determination of the short and long isoform mRNA
365 levels, genomic regions used to quantify mRNA levels were extended beyond gene bodies using
366 manually curated transcript boundaries determined by Rend-seq. mRNA levels and ribosome

367 footprint densities were calculated as the average read densities across these regions in Rend-seq
368 and ribosome profiling data, respectively.

369 To determine the uncertainty on estimated isoform-specific TEs, linear regressions were
370 performed on bootstrap resampling estimates for the short isoform fractions and apparent TEs.
371 Each bootstrap regression provided an estimated TE^{long} and TE^{short} . The error bars for these
372 quantities (Figure 3A, Figure 3C, Figure S3B) were taken as the standard deviations of these
373 bootstrap estimates.

374 For the genes that do not belong to the group with the characteristic long, σ^A -dependent
375 isoforms and short, σ^B -dependent isoforms (Figure S2), their alternative promoters are too close
376 to allow proper quantification of isoform-specific abundances. These were thus excluded from
377 the above analyses.

378

379 **Fluorescent reporter assay**

380 For the fluorescence reporter assay, the strains GLB115, GLB572, GLB573, GLB574, and
381 GLB575 were grown to $OD_{600} \approx 1-2$ and then back-diluted 200-fold into fresh media. Three
382 technical replicates per culture were grown at 37°C for 12 hr in a BioTek Synergy H1 microplate
383 reader, and absorbance (600 nm) and fluorescence intensity (EX 485/20 nm, EM 520/20 nm)
384 were measured every 5 min. Fluorescence was normalized by absorbance at each time point, and
385 any background signal from cellular/media autofluorescence was removed by subtracting the
386 mean normalized fluorescence values of the wild-type BS168 replicates. These quantities were
387 then converted to relative values by normalizing proportionally to the signal for the S variants.

388 For RT-qPCR, overnight cultures of the same strains were back-diluted to $OD_{600} \approx 2 \times 10^{-4}$
389 and regrown for roughly 10 generations. At $OD_{600} \approx 0.3$, 5 mL of cells were harvested and mixed

390 with 5 mL of chilled methanol, spun down at 4°C for 10 min, and frozen at -80°C after removing
391 the supernatant. Thawed cell pellets were treated with 100 µL of 10 mg/mL lysozyme in TE, and
392 total RNA was extracted using a RNeasy Mini Kit (QIAGEN). DNA was removed using
393 TURBO DNase (Thermo Fisher Scientific), and RNA was purified using isopropanol
394 precipitation. Reverse transcription was performed using Random Hexamer Primer (Thermo
395 Fisher Scientific) and M-MuLV Reverse Transcriptase (New England Biolabs) per the
396 manufacturer's instructions. RNA levels were measured on a Roche LightCycler 480 Real-Time
397 PCR system using two primer sets for *mNeon* and one primer set each for the loading controls
398 *gyrA* and *sigA* (*mNeon* F1, *mNeon* R1, *mNeon* F2, *mNeon* R2, *gyrA* F, *gyrA* R, *sigA* F, *sigA* R,
399 see Table 2). The fold change in *mNeon* RNA levels relative to the S strains was calculated by
400 taking the average of three technical replicates across each combination of primer sets
401 (*mNeon1*/*gyrA*, *mNeon1*/*sigA*, *mNeon2*/*gyrA*, *mNeon2*/*sigA*).

402 Isoform-specific TE was subsequently calculated by normalizing mean relative
403 fluorescence by mean fold change in *mNeon* RNA levels, and the standard deviation was
404 propagated from each measurement type.

405

406 **RNA secondary structure prediction**

407 Minimum free energy (MFE) structures were predicted using the RNAfold program of the
408 ViennaRNA Package (Lorenz et al. 2011) with default parameters. Base-pairing probabilities
409 were determined by constraining each position in a sequence individually as unpaired and then
410 calculating the partition function from the ensemble free energy computed by RNAfold. The
411 probability of each position being unpaired was calculated by dividing the partition function for
412 the constrained sequence by the partition function for an unconstrained sequence, and the base

413 pairing probabilities were simply the probabilities of the complements. Putative Shine-Dalgarno
414 (SD) sequences were identified as the region upstream of the start codon that forms the strongest
415 duplex with the anti-Shine-Dalgarno (aSD, 5'-TCACCTCCT-3') sequence in the 16S ribosomal
416 RNA. RNA secondary structures determined using RNAfold were visualized using VARNA
417 v3.93 (Visualization Applet for RNA) (Darty et al. 2009). The structures sequestering the
418 ribosome binding sites shown in Figures 4 and 5 were confirmed to be robust to the specific
419 regions computationally folded, both at the level of secondary structure and base-pairing
420 probabilities of the SD sequences.

421

422 **DMS-MaPseq**

423 *In vivo* DMS treatment was performed as previously described (Burkhardt et al. 2017; Zubradt et
424 al. 2016). Specifically, an overnight culture of BS168 was split two ways and back-diluted to
425 $OD_{600} \approx 2 \times 10^{-4}$. Following regrowth to $OD_{600} \approx 0.2$, 15 mL of each culture was incubated at 37°C
426 for 2 min with shaking (1000 rpm) after treating one with 750 μ L of dimethyl sulfate (DMS,
427 ~5% final concentration). The reaction was stopped by adding 30 mL of chilled stop solution
428 (30% β -mercaptoethanol, 25% isoamyl alcohol) to each sample, after which they were
429 immediately transferred to ice and spun down at 4°C for 8 min. The cell pellets were washed
430 with 8 mL of chilled wash solution (30% β -mercaptoethanol), resuspended in residual wash
431 solution, and frozen at -80°C. Thawed cell pellets were treated with 100 μ L of 10 mg/mL
432 lysozyme in TE, and total RNA lysis buffer (10 mM EDTA, 50 mM sodium acetate) was added
433 to 650 μ L. Total RNA was extracted using hot acid-phenol:chloroform and isopropanol
434 precipitation.

435 For library preparation, established protocols (Tomezsko et al. 2020; Zubradt et al. 2016)
436 were again followed. DNA was removed using TURBO DNase, and RNA >200 nt was purified
437 using an RNA Clean & Concentrator-5 Kit per the manufacturer's instructions (Zymo Research).
438 Ribosomal RNA was depleted using a MICROBExpress Bacterial mRNA Enrichment Kit
439 (Thermo Fisher Scientific), and RNA >200 nt was again purified using an RNA Clean &
440 Concentrator-5 Kit. Reverse transcription was performed at 64°C for 90 min using 70 ng of RNA
441 from each sample and TGIRT-III (Ingenx). The RT primers were specific to each gene (*ctc* R,
442 *yvrE* R, see Table 2). The RT reaction was treated with 1 µl RNase H (New England Biolabs)
443 and incubated at 37°C for 20 min to remove RNA. Roughly 1/10 of the resulting volume was
444 used as template for a two-step PCR amplification with Phusion High-Fidelity DNA Polymerase
445 (New England Biolabs) per the manufacturer's specifications, which was run for 15-25 cycles
446 with the RT primer serving as the reverse primer (*ctc* F, *yvrE* F, see Table 2). PCR products
447 (~240-290 bp) were purified by gel extraction on an 8% TBE polyacrylamide gel (Thermo Fisher
448 Scientific) and isopropanol precipitation. Samples with particularly low dsDNA concentrations
449 (as measured on an Invitrogen Qubit 4 Fluorometer) were reamplified for 7-20 additional cycles
450 and purified in the same manner. After adding adapters via PCR, the libraries were sequenced on
451 an Illumina MiSeq (2 x 250 nt reads).

452 To determine the DMS signal, FASTQ files were processed and analyzed using the
453 DREEM (Detection of RNA folding Ensembles using Expectation-Maximization clustering)
454 pipeline with the '--fastq' and '--struct' options (Tomezsko et al. 2020). In brief, paired-end
455 reads were filtered for quality and trimmed using FASTQC v.0.11.8 and TrimGalore 0.4.1,
456 respectively. Reads were aligned to target sequences in the reference genome NC_000964.3 from
457 the NCBI RefSeq database using Bowtie2 2.3.4.1 with the options '--local --no-unal --no-

458 discordant --no-mixed -X 1000 -L 12'. Mapped reads were represented as bit vectors and
459 clustered by their mutational signatures using the DREEM algorithm with standard parameters
460 (Tomezsko et al. 2020). Per-base mutational fractions were initially quantified using the
461 population-average fraction of mismatches and deletions. Following expectation-maximization
462 (EM) clustering, the DMS reactivity was taken as the mutation rates of the bases in the cluster
463 K=1. After normalizing to the median of the top 5% of positions (with the upper limit set to 1.0),
464 the DMS signal was used as a folding constraint for predicting RNA secondary structures with
465 the program RNAstructure v.6.0.1 (Reuter and Mathews 2010) Additionally, the folding
466 windows were expanded symmetrically by 50, 100, 150, and 200-nt in either direction to assess
467 the robustness of the predicted folds. RNA secondary structures were again visualized using
468 VARNA v3.93 (Darty et al. 2009). The sequencing datasets for DMS-MaPseq are available
469 online using the GEO accession GSE168393.

470

471 **SUPPLEMENTAL MATERIAL**

472 Supplemental material (Figures S1-S3, Table S1) is available for this article.

473

474 **ACKNOWLEDGEMENTS**

475 We thank members of the Li lab and the Rouskin lab for critical discussions. We thank S.
476 McKeithen-Mead for providing the *mNeon* template. This research was supported by NIH grant
477 R35GM124732, the NSF CAREER Award, the Smith Odyssey Award, the Pew Biomedical
478 Scholars Program, a Sloan Research Fellowship, the Searle Scholars Program, the Smith Family
479 Award for Excellence in Biomedical Research; NSERC doctoral Fellowship and HHMI
480 International Student Research Fellowship (to J.-B.L.).

481 **REFERENCES**

482 Bastet L, Turcotte P, Wade JT, Lafontaine DA. 2018. Maestro of regulation: Riboswitches
483 orchestrate gene expression at the levels of translation, transcription and mRNA decay. *RNA*
484 *Biol.*

485 Bhattacharyya S, Jacobs WM, Adkar B V., Yan J, Zhang W, Shakhnovich EI. 2018.
486 Accessibility of the Shine-Dalgarno Sequence Dictates N-Terminal Codon Bias in *E. coli*.
487 *Mol Cell* **70**.

488 Boël G, Letso R, Neely H, Price N, Wong K, Su M, Luff JD, Valecha M, Hunt JF, Everett JK, et
489 al. 2016. Codon influence on protein expression in *E. coli* correlates with mRNA levels.
490 *Nature*. <http://dx.doi.org/10.1038/nature16509>.

491 Borujeni AE, Cetnar D, Farasat I, Smith A, Lundgren N, Salis HM. 2017. Precise quantification
492 of translation inhibition by mRNA structures that overlap with the ribosomal footprint in N-
493 terminal coding sequences. *Nucleic Acids Res* **45**.

494 Bose B, Grossman AD. 2011. Regulation of horizontal gene transfer in *Bacillus subtilis* by
495 activation of a conserved site-specific protease. *J Bacteriol* **193**: 22–29.

496 Breaker RR. 2018. Riboswitches and translation control. *Cold Spring Harb Perspect Biol*.

497 Burkhardt DH, Rouskin S, Zhang Y, Li GW, Weissman JS, Gross CA. 2017. Operon mRNAs
498 are organized into ORF-centric structures that predict translation efficiency. *Elife*.

499 Cambray G, Guimaraes JC, Arkin AP. 2018. Evaluation of 244,000 synthetic sequences reveals
500 design principles to optimize translation in *escherichia coli*. *Nat Biotechnol* **36**: 1005.

501 Chauvier A, Picard-Jean F, Berger-Dancause JC, Bastet L, Naghdi MR, Dubé A, Turcotte P,
502 Perreault J, Lafontaine DA. 2017. Transcriptional pausing at the translation start site
503 operates as a critical checkpoint for riboswitch regulation. *Nat Commun*.

504 Chiaruttini C, Guillier M. 2020. On the role of mRNA secondary structure in bacterial
505 translation. *Wiley Interdiscip Rev RNA* **11**.

506 Darty K, Denise A, Ponty Y. 2009. VARNA: Interactive drawing and editing of the RNA
507 secondary structure. *Bioinformatics*.

508 Espah Borujeni A, Salis HM. 2016. Translation Initiation is Controlled by RNA Folding Kinetics
509 via a Ribosome Drafting Mechanism. *J Am Chem Soc* jacs.6b01453.
510 <http://pubs.acs.org/doi/abs/10.1021/jacs.6b01453>.

511 Goodman DB, Church GM, Kosuri S. 2013. Causes and effects of N-terminal codon bias in
512 bacterial genes. *Science (80-)* **342**.

513 Guérout-Fleury AM, Shazand K, Frandsen N, Stragier P. 1995. Antibiotic-resistance cassettes
514 for *Bacillus subtilis*. *Gene* **167**: 335–336.

515 Haldenwang WG. 1995. The sigma factors of *Bacillus subtilis*. *Microbiol Rev*.

516 Haldenwang WG, Losick R. 1979. A modified RNA polymerase transcribes a cloned gene under
517 sporulation control in *Bacillus subtilis*. *Nature* **282**.

518 Harwood, C R and Cutting SM. 1990. *Molecular Biological methods for Bacillus*. John Wiley.

519 Hecker M, Pané-Farré J, Uwe V. 2007. SigB-Dependent General Stress Response in *Bacillus*
520 *subtilis* and Related Gram-Positive Bacteria. *Annu Rev Microbiol* **61**: 215–236.
521 <http://www.annualreviews.org/doi/10.1146/annurev.micro.61.080706.093445>.

522 Helmann JD. 2019. Where to begin? Sigma factors and the selectivity of transcription initiation
523 in bacteria. *Mol Microbiol* **112**.

524 Hollands K, Proshkin S, Sklyarova S, Epshteyn V, Mironov A, Nudler E, Groisman EA. 2012.
525 Riboswitch control of Rho-dependent transcription termination. *Proc Natl Acad Sci U S A*.

526 Höper D, Völker U, Hecker M. 2005. Comprehensive characterization of the contribution of

527 individual SigB-dependent general stress genes to stress resistance of *Bacillus subtilis*. *J*
528 *Bacteriol* **187**: 2810–2826.

529 Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. 2009. Genome-wide analysis in
530 *vivo* of translation with nucleotide resolution using ribosome profiling. *Science* **324**: 218–
531 223. <http://www.sciencemag.org/content/324/5924/218.full.pdf>.

532 Kudla G, Murray AW, Tollervey D, Plotkin JB. 2009. Coding-sequence determinants of
533 expression in *escherichia coli*. *Science (80-)* **324**.

534 Lalanne J, Parker DJ, Li G. 2020. Spurious regulatory connections dictate the expression-fitness
535 landscape of translation termination factors. *bioRxiv* 1–25.

536 Lalanne JB, Taggart JC, Guo MS, Herzel L, Schieler A, Li GW. 2018. Evolutionary
537 Convergence of Pathway-Specific Enzyme Expression Stoichiometry. *Cell* 749–761.

538 Li GW. 2015. How do bacteria tune translation efficiency? *Curr Opin Microbiol* **24**.

539 Li GW, Burkhardt D, Gross C, Weissman JS. 2014. Quantifying absolute protein synthesis rates
540 reveals principles underlying allocation of cellular resources. *Cell* **157**: 624–635.
541 <http://dx.doi.org/10.1016/j.cell.2014.02.033>.

542 Lodish HF. 1968. Bacteriophage f2 RNA: Control of translation and gene order. *Nature* **220**.

543 Lorenz R, Tafer H, Höner zu Siederdissen C, Stadler PF, Bernhart SH, Hofacker IL, Flamm C.
544 2011. ViennaRNA Package 2.0. *Algorithms Mol Biol* **6**: 26.

545 Mustoe AM, Busan S, Rice GM, Hajdin CE, Peterson BK, Ruda VM, Kubica N, Nutiu R,
546 Baryza JL, Weeks KM. 2018. Pervasive Regulatory Functions of mRNA Structure
547 Revealed by High-Resolution SHAPE Probing. *Cell* **173**: 181-195.e18.
548 <http://dx.doi.org/10.1016/j.cell.2018.02.034>.

549 Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E,

550 Hoebke M, Aymerich S, et al. 2012. Condition-dependent transcriptome reveals high-level
551 regulatory architecture in *Bacillus subtilis*. *Science* **335**: 1103–6.
552 <http://classic.sciencemag.org/content/335/6072/1103.full>.

553 Paget MS. 2015. Bacterial sigma factors and anti-sigma factors: Structure, function and
554 distribution. *Biomolecules* **5**.

555 Parker DJ, Lalanne J-B, Kimura S, Johnson GE, Waldor MK, Li G-W. 2020. Growth-Optimized
556 Aminoacyl-tRNA Synthetase Levels Prevent Maximal tRNA Charging. *Cell Syst* 1–10.

557 Petersohn A, Bernhardt J, Gerth U, Höper D, Koburger T, Völker U, Hecker M. 1999.
558 Identification of σ (B)-dependent genes in *Bacillus subtilis* using a promoter consensus-
559 directed search and oligonucleotide hybridization. *J Bacteriol*.

560 Price CW. 2014. General Stress Response in *Bacillus subtilis* and Related Gram-Positive
561 Bacteria. In *Bacterial Stress Responses*, pp. 301–318, ASM Press, Washington, DC, USA.

562 Reuter JS, Mathews DH. 2010. RNAsstructure: Software for RNA secondary structure prediction
563 and analysis. *BMC Bioinformatics* **11**.

564 Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS. 2014. Genome-wide probing of
565 RNA structure reveals active unfolding of mRNA structures in vivo. *Nature* **505**: 701–5.
566 <http://www.ncbi.nlm.nih.gov/pubmed/24336214>.

567 Shine J, Dalgarno L. 1974. The 3' terminal sequence of *Escherichia coli* 16S ribosomal RNA:
568 complementarity to nonsense triplets and ribosome binding sites. *Proc Natl Acad Sci U S A*
569 **71**: 1342–1346.

570 Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B, Jung JW, Kuchelmeister HY, Batista PJ,
571 Torre EA, Kool ET, et al. 2015. Structural imprints in vivo decode RNA regulatory
572 mechanisms. *Nature* **519**.

573 Takyar S, Hickerson RP, Noller HF. 2005. mRNA helicase activity of the ribosome. *Cell* **120**.

574 Tomezsko PJ, Corbin VDA, Gupta P, Swaminathan H, Glasgow M, Persad S, Edwards MD,

575 McIntosh L, Papenfuss AT, Emery A, et al. 2020. Determination of RNA structural

576 diversity and its role in HIV-1 RNA splicing. *Nature*.

577 Wen J-D, Lancaster L, Hodges C, Zeri A-C, Yoshimura SH, Noller HF, Bustamante C, Tinoco I.

578 2008. Following translation by single ribosomes one codon at a time. *Nature* **452**: 598–603.

579 <http://www.nature.com/nature/journal/v452/n7187/pdf/nature06716.pdf>.

580 Yakhnin H, Pandit P, Petty TJ, Baker CS, Romeo T, Babitzke P. 2007. CsrA of *Bacillus subtilis*

581 regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking

582 ribosome binding. *Mol Microbiol*.

583 Yakhnin H, Zhang H, Yakhnin A V., Babitzke P. 2004. The trp RNA-Binding Attenuation

584 Protein of *Bacillus subtilis* Regulates Translation of the Tryptophan Transport Gene trpP

585 (yhaG) by Blocking Ribosome Binding. *J Bacteriol*.

586 Zhu B, Stölke J. 2018. SubtiWiki in 2018: From genes and proteins to functional network

587 annotation of the model organism *Bacillus subtilis*. *Nucleic Acids Res* **46**: D743–D748.

588 Zubradt M, Gupta P, Persad S, Lambowitz AM, Weissman JS, Rouskin S. 2016. DMS-MaPseq

589 for genome-wide or targeted RNA structure probing in vivo. *Nat Methods* **14**: 75–82.

590 <http://dx.doi.org/10.1038/nmeth.4057>.

591

592

593

594

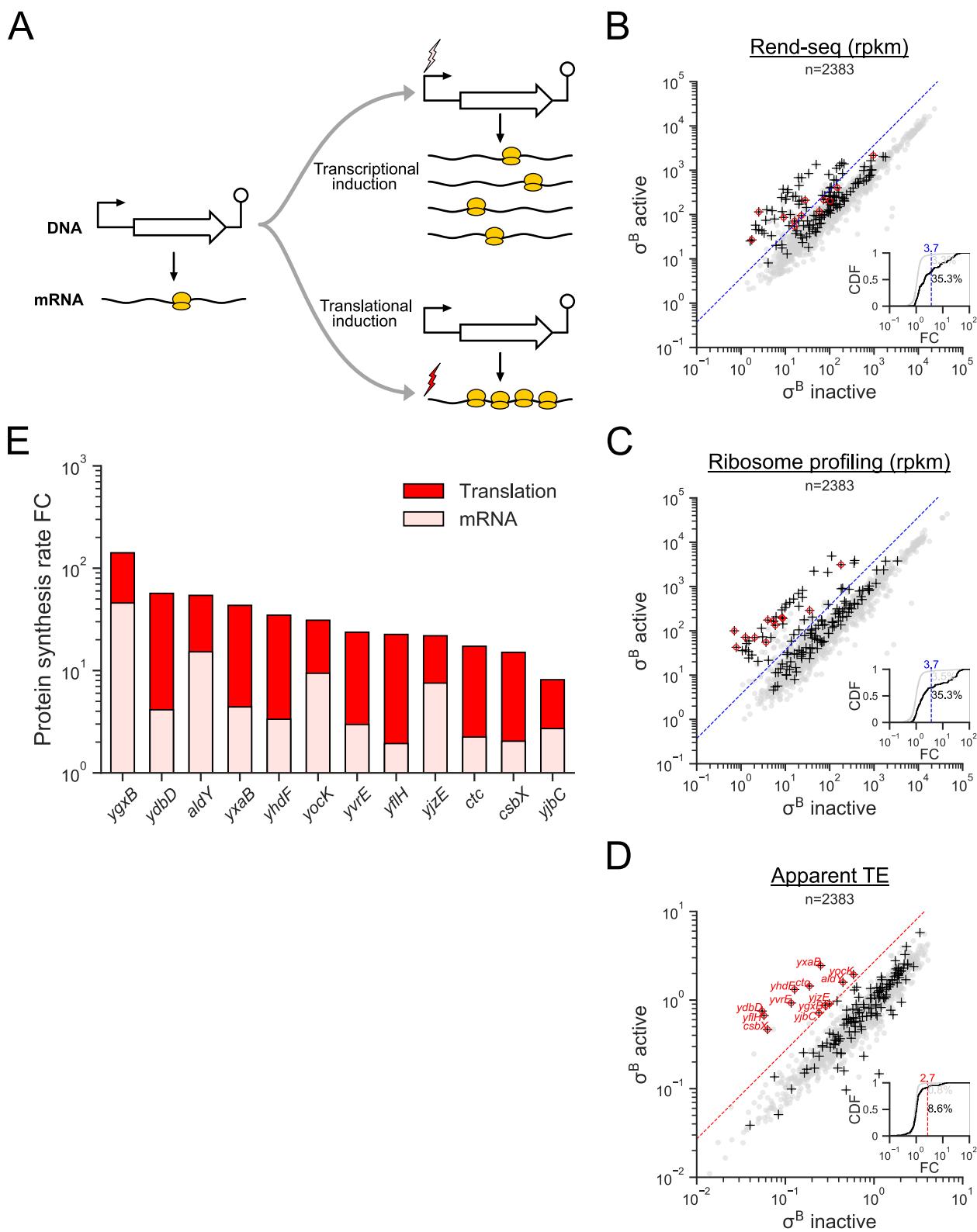
595

596 **TABLES**

TABLE 1. Strains and plasmids used in this study

Name	Genotype	Origin
GLB115	BS168, wild-type <i>Bacillus subtilis</i> subsp. 168	J. Wang
GLB572	BS168 <i>levB</i> ::P _{veg} - <i>ctc</i> -S- <i>mNeon kanR</i>	This study
GLB573	BS168 <i>levB</i> ::P _{veg} - <i>ctc</i> -L- <i>mNeon kanR</i>	This study
GLB574	BS168 <i>levB</i> ::P _{veg} - <i>yvrE</i> -S- <i>mNeon kanR</i>	This study
GLB575	BS168 <i>levB</i> ::P _{veg} - <i>yvrE</i> -L- <i>mNeon kanR</i>	This study
pDMM001	pJBL044 <i>ctc</i> -S- <i>mNeon</i>	This study
pDMM002	pJBL044 <i>ctc</i> -L- <i>mNeon</i>	This study
pDMM003	pJBL044 <i>yvrE</i> -S- <i>mNeon</i>	This study
pDMM004	pJBL044 <i>yvrE</i> -L- <i>mNeon</i>	This study

597


TABLE 2. Oligos used in this study

Name	Sequence (5'-3')
<i>mNeon</i> F1	CGACCCACGAAC TGCA TATT
<i>mNeon</i> R1	GCCC GTAG TATAGCTCCATTG
<i>mNeon</i> F2	GAAC CCTAACGATGGCTATGAG
<i>mNeon</i> R2	CTCCATTGAAAGGTCGAGATGA
<i>gyrA</i> F	CTCGATGCAGTTATCTCCCTTATC
<i>gyrA</i> R	TCGCTTGTGCTTGCTTCT
<i>sigA</i> F	AGATTGAAGAAGGTGACGAAGAAT
<i>sigA</i> R	TCAGATCAAGGAACAGCATAACC
<i>ctc</i> R	TGACACAGGTTGTTACCGTATCCTTCCC
<i>yvrE</i> R	AGGGTCAAAGATGTGGAGCTCGCTCC
<i>ctc</i> F	TATCAGGCCCTGCGGTTGAACGGAT
<i>yvrE</i> F	CCGCTACTACAGAGGGACGAACACAA

598

599

600 **FIGURES**

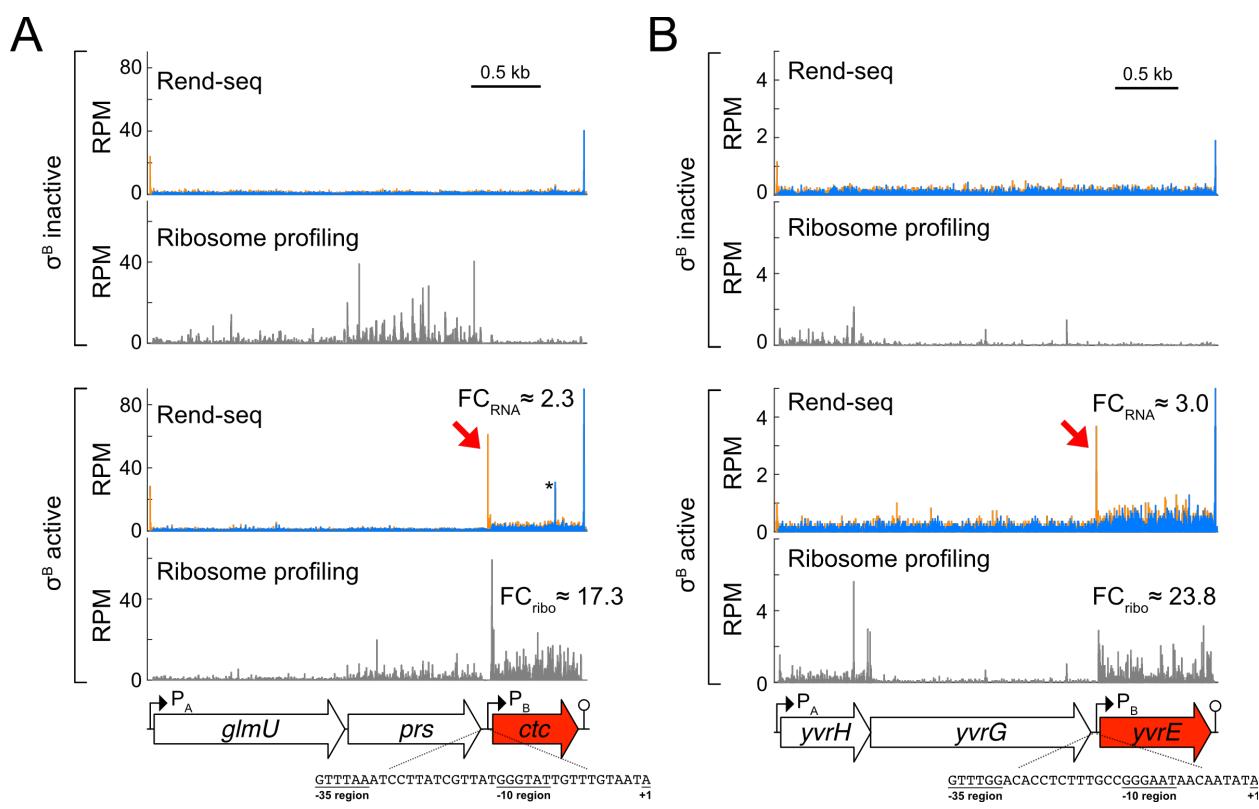
601

602

603 **Figure 1. σ^B activates both transcription and translation.**

604 (A) Models of transcriptional and translational induction for a transcriptional unit consisting of a
605 promoter, coding sequence, and terminator. Stimuli are indicated with lightning bolts and
606 ribosomes are colored in yellow. (B) RNA-seq, (C) ribosome profiling, and (D) apparent
607 translation efficiency measurements from σ^B active and inactive conditions. σ^B regulon genes are
608 indicated with black crosses (+), and a subset that are translationally activated are highlighted in
609 red. The dashed blue lines mark a 3.7-fold change in expression for visual reference. The dashed
610 red line is an approximate threshold (2.7-fold) separating the population of translationally
611 activated genes from those whose apparent TE does not markedly change. The insets show the
612 cumulative distribution function (CDF) of fold change (FC) across the two conditions in each
613 measurement, with separate CDFs for all genes (gray) and σ^B regulon genes (black). The
614 percentage of genes in each group exceeding the chosen thresholds are listed on the right. (E)
615 Contributions of mRNA levels and translation to changes in protein synthesis rate among
616 translationally activated σ^B regulon genes. The fold change in protein synthesis rate is indicated
617 by the height of the bars, with the light and dark red regions denoting the respective
618 contributions of mRNA levels and translation, i.e., fold-change in protein synthesis = (fold-
619 change in mRNA level) \times (fold-change in translation efficiency).

620

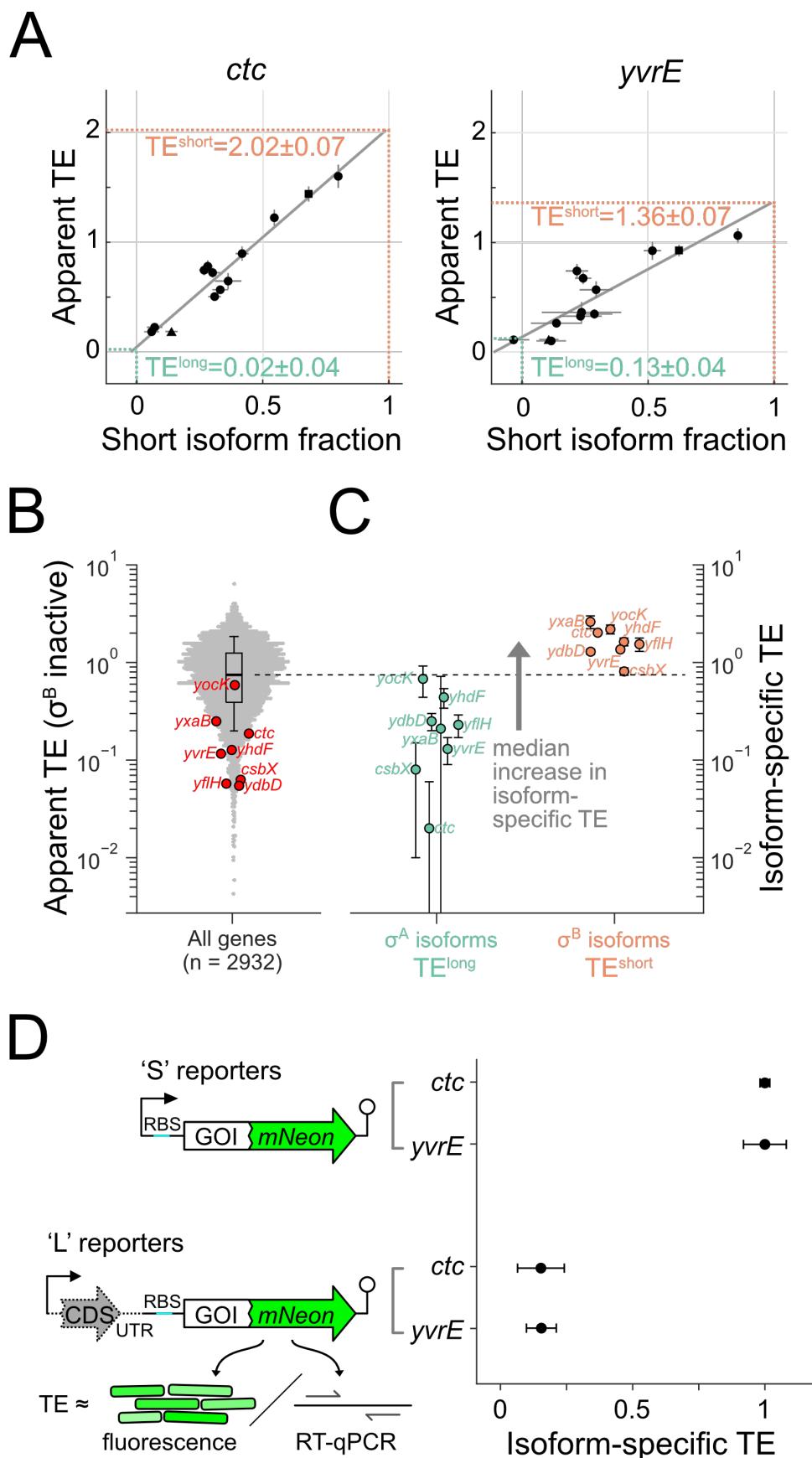

621

622

623

624

625



626

627

628 **Figure 2. Translationally activated σ^B regulon genes display alternative mRNA isoforms.**

629 Rend-seq and ribosome profiling data from conditions with inactive/active σ^B for the operons
630 containing (A) *ctc* and (B) *yvre* (σ^B regulon genes are highlighted in red). Orange and blue bars
631 represent 5'- and 3'-mapped read counts, respectively, and the black scale bars correspond to 0.5
632 kb. Fold changes (FC) between σ^B active and σ^B inactive conditions are shown. Rend-seq 5'
633 ends corresponding to the σ^B transcription start sites are marked by red arrows. Putative σ^B -
634 dependent promoter sequences are listed for each gene (+1 corresponds to the 5' end of the σ^B -
635 dependent isoform mapped by Rend-seq). The consensus sequences for the -10 and -35 regions
636 of σ^B -dependent promoters are GTTTaa and GGG(A/T)A(A/T) (Petersohn et al., 1999). For *ctc*
637 specifically, the additional 5'/3' peak pair (*) in the σ^B active condition corresponds to a
638 spurious RNase A cleavage site that likely occurred post-lysis. See also Figures S1 and S2.

640 **Figure 3. σ^B -dependent mRNA isoforms have elevated TE.**

641 (A) Estimation of the isoform-specific TE for the short, σ^B -dependent and long, σ^A -dependent

642 isoforms of *ctc* and *yvrE*. Each point is an experimental condition which has a different short

643 isoform fraction and correspondingly different apparent TE (conditions shown in Figure 2 are

644 distinctly marked by a triangle and a square for σ^B inactive and active, respectively). Error bars

645 correspond to standard deviations from subsampling bootstraps. The gray lines are linear

646 regressions, whereas the dashed lines indicate estimates of isoform-specific TE calculated from

647 the fits (Methods). Estimated isoform-specific TEs and errors (standard deviations) from a

648 bootstrapped linear fit (Methods) are shown. (B) Distribution (beeswarm and boxplot, whiskers

649 corresponding to 10th and 90th percentile) of apparent TE in σ^B inactive conditions.

650 Translationally activated σ^B -regulon genes (subset from Figure 1 for which isoform-specific TE

651 could be estimated, Methods) are marked (red). (C) Isoform-specific TE values inferred, with

652 error bars as in (A). (D) Fluorescent reporter assay for validating differential TE between

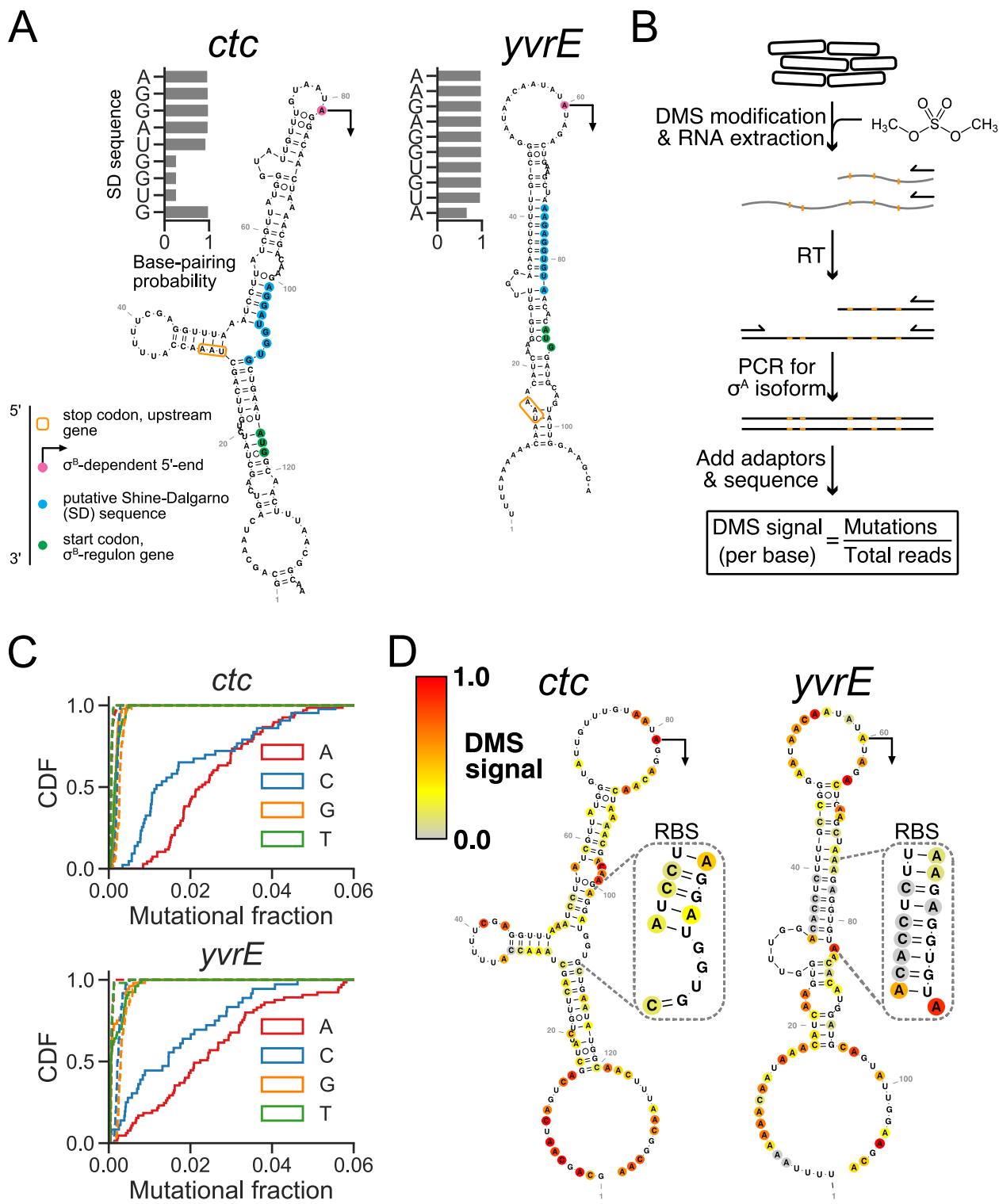
653 isoforms. Protein expression (from fluorescence) and mRNA levels (from reverse-transcription

654 qPCR) were measured for synthetic constructs (left) representing σ^A -dependent (L) and σ^B -

655 dependent isoforms (S). Relative isoform-specific TE (right) was calculated by dividing relative

656 protein expression by relative mRNA levels. Errors bars represent the standard deviation for

657 technical replicates (n=3 for fluorescence, n=4 for RT-qPCR). See also Figure S3.


658

659

660

661

662

663

664

665

666

667 **Figure 4. σ^A -dependent mRNA isoforms have extended secondary structures *in vivo*.**

668 (A) Minimum free energy (MFE) structures of the σ^A -dependent isoforms of *ctc* and *yvrE* near
669 the ribosome binding site. The transcription start sites of σ^B -dependent isoforms (indicated with
670 arrows), putative Shine-Dalgarno (SD) sequences, and start codons are highlighted in magenta,
671 blue, and green, respectively. The stop codon of the upstream gene in the operon is indicated
672 with an orange box. Computationally-determined base-pairing probabilities for individual bases
673 in the SD sequences are shown beside each structure. (B) DMS-MaPseq workflow for *in vivo*
674 RNA structure determination of σ^A -dependent isoforms. (C) Cumulative distributions of the per-
675 base mutational fractions for the σ^A -dependent isoforms of *ctc* and *yvrE*. Solid and dashed lines
676 indicate conditions with and without DMS treatment. (D) DMS-constrained MFE structures of
677 representative transcripts for σ^A -dependent isoforms of *ctc* and *yvrE* colored by normalized
678 DMS-MaPseq mutation rate (DMS signal), where values correspond to increased base
679 accessibility. Structured regions containing putative SD sequences are magnified.

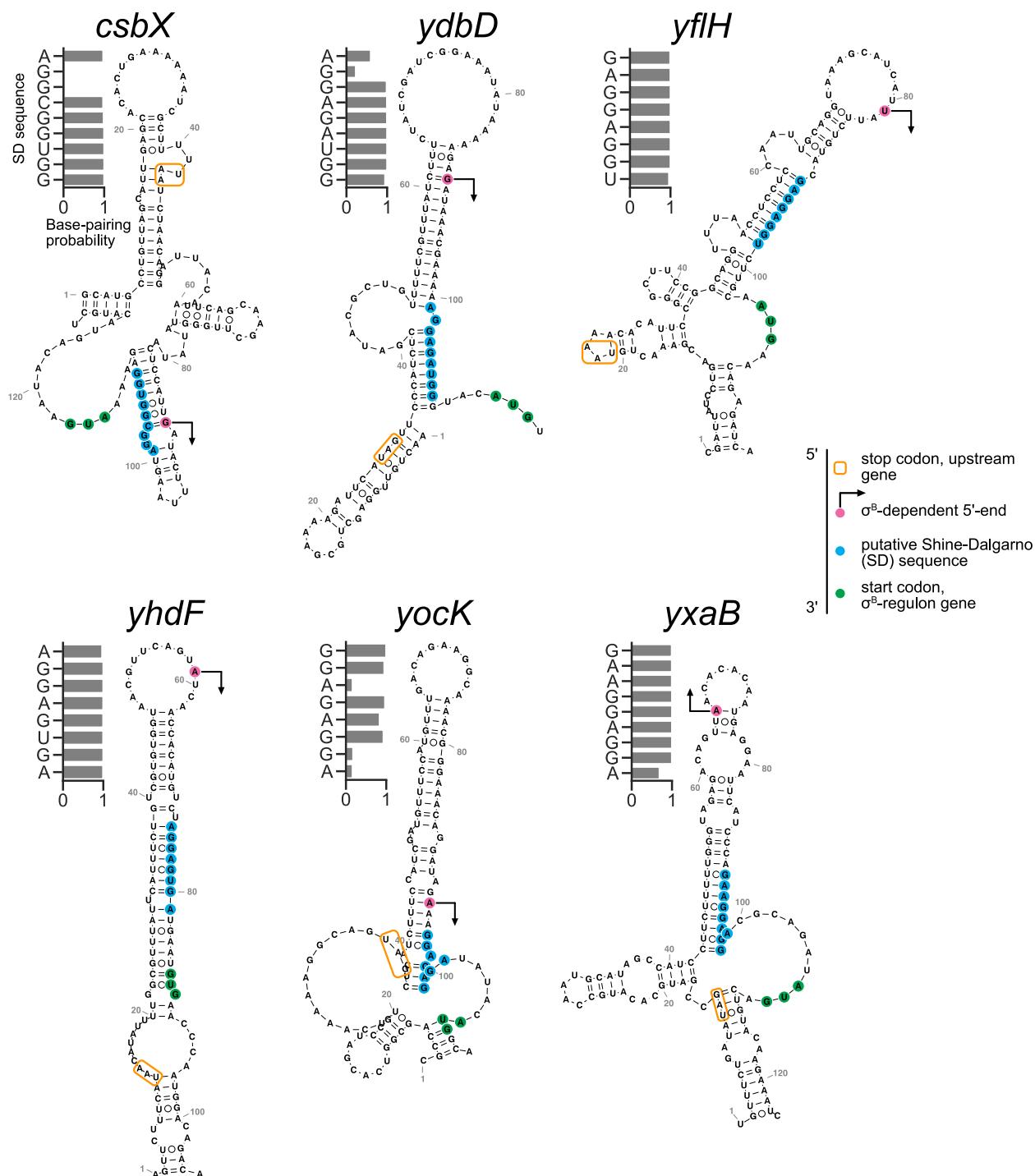
680

681

682

683

684


685

686

687

688

689

690

691

692

693

694 **Figure 5. Long-range mRNA secondary structures in σ^A -dependent isoforms sequester**
695 **sequence elements necessary for translation.**

696 MFE structures of transcripts for σ^A -dependent isoforms of other translationally activated σ^B
697 regulon genes. The transcription start sites of σ^B -dependent isoforms (indicated with arrows),
698 putative Shine-Dalgarno (SD) sequences, and start codons are highlighted in magenta, blue, and
699 green, respectively. The stop codon of the upstream gene in the operon is indicated with an
700 orange box. Computationally-determined base-pairing probabilities for individual bases in the
701 SD sequences are shown beside each structure.

702

703

704

705

706

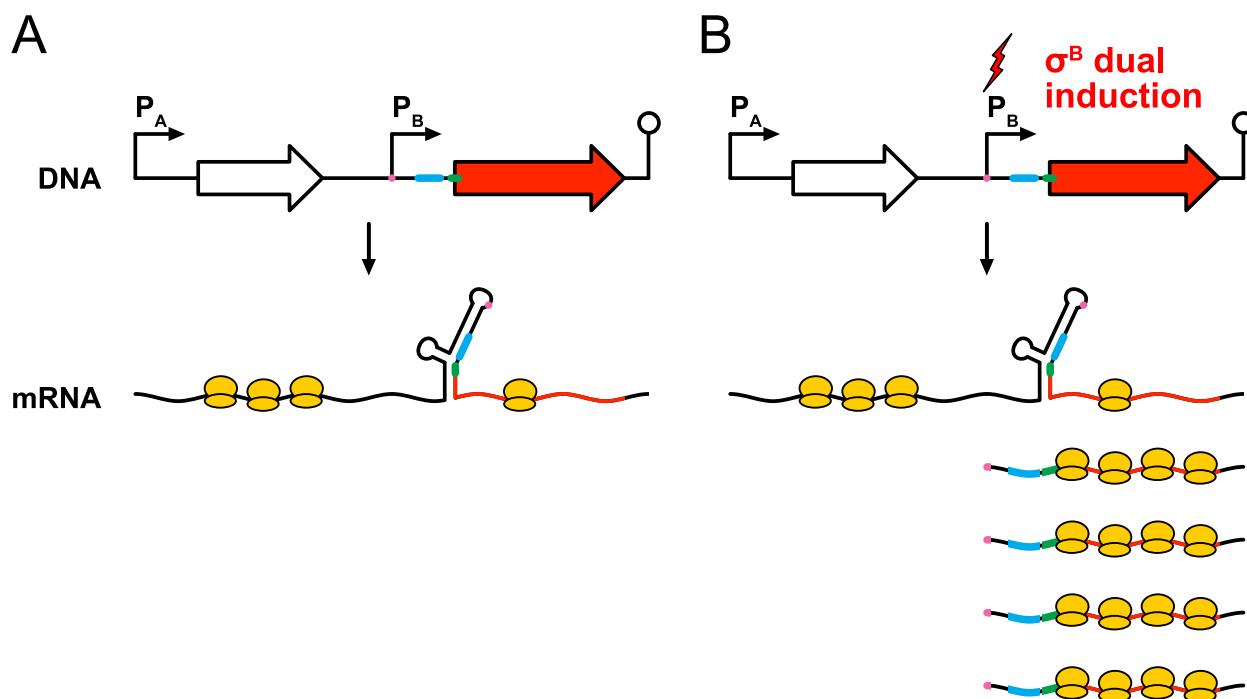
707

708

709

710

711


712

713

714

715

716

717

718

719 **Figure 6. Model for σ^B -dependent translational activation.**

720 Schematic of a polycistronic operon containing a σ^A -dependent promoter (P_A), σ^B -dependent
721 promoter (P_B), coding sequences, and a terminator. **(A)** In the absence of σ^B , transcription from
722 P_A produces a polycistronic mRNA molecule containing secondary structures that translationally
723 repress the σ^B -dependent open reading frame (red) by sequestering its Shine-Dalgarno sequence
724 (blue) and start codon (green). **(B)** P_B becomes transcriptionally active upon σ^B induction,
725 generating an mRNA isoform with an alternative transcription start site (magenta). Without the
726 sequences necessary to form stable secondary structures, these transcripts can recruit ribosomes
727 more efficiently to facilitate greater protein expression.