

1 **SARS-CoV-2 surveillance in Norway rats (*Rattus norvegicus*) from Antwerp sewer system,**

2 **Belgium**

3 Valeria Carolina Colombo ^{1,2}, Vincent Sluydts¹, Joachim Mariën^{1,3}, Bram Vanden Broecke¹, Natalie

4 Van Houtte¹, Wannes Leirs¹, Lotte Jacobs⁴, Arne Iserbyt¹, Marine Hubert¹, Leo Heyndrickx³, Hanne

5 Goris¹, Peter Delputte⁴, Naomi De Roeck⁴, Joris Elst¹, Robbert Boudewijns⁵, Kevin K. Ariën³, Herwig

6 Leirs¹, Sophie Gryseels^{1,6}

7 1. Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium

8 2. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

9 3. Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp,

10 Belgium

11 4. Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp,

12 Belgium

13 5. Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery,

14 Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven,

15 Belgium

16 6. OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium

17 **Abstract**

18 **Background**

19 SARS-CoV-2 human-to-animal transmission can lead to the establishment of novel reservoirs and
20 the evolution of new variants with the potential to start new outbreaks in humans.

21 **Aim**

22 We tested Norway rats inhabiting the sewer system of Antwerp, Belgium, for the presence of
23 SARS-CoV-2 following a local COVID-19 epidemic peak. In addition, we discuss the use and
24 interpretation of SARS-CoV-2 serological tests on non-human samples.

25 Methods

26 Between November and December 2020, Norway rat oral swabs, feces and tissues from the sewer
27 system of Antwerp were collected to be tested by RT-qPCR for the presence of SARS-CoV-2. Serum
28 samples were screened for the presence of anti-SARS-CoV-2 IgG antibodies using a Luminex
29 microsphere immunoassay (MIA). Samples considered positive were then checked for neutralizing
30 antibodies using a conventional viral neutralization test (cVNT).

31 Results

32 The serum of 35 rats was tested by MIA showing 3 potentially positive sera that were later shown
33 to be negative by cVNT. All tissue samples of 39 rats analyzed tested negative for SARS-CoV-2
34 RNA.

35 Conclusion

36 This is the first study that evaluates SARS-CoV-2 infection in urban rats. We can conclude that the
37 sample of 39 rats had never been infected with SARS-CoV-2. We show that diagnostic serology
38 tests can give misleading results when applied on non-human samples. SARS-CoV-2 monitoring
39 activities should continue due to the emergence of new variants prone to infect Muridae rodents.

40 **Introduction**

41 Emerging infectious diseases have been in the spotlight of scientific research in recent years. Most
42 studies have focused mainly on the role of domestic and wild animals as zoonotic virus reservoirs
43 and the phenomena that drive animal-to-human transmission in order to explain outbreak
44 processes and spillover dynamics (e.g. Karesh et al 2010, Han et al 2016, Wardeh et al 2020).
45 However, the possibility of human-to-animal viral transmission raised concern during the SARS-
46 CoV-2 pandemic in 2020, when an asymptomatic dog from Hong Kong, whose owner was a COVID-
47 19 patient, tested positive for the virus (Sit et al 2020). Since then, similar human-to-animal
48 transmission events have been reported worldwide in domestic dogs (Sit et al 2020), cats (Chen et
49 al 2020; Garligiani et al 2020), farmed minks (ECDC 2020, Oreshkova et al 2020, Hammer et al
50 2021, Oude Munnink et al 2021), and numerous zoo animals (McAloose et al 2020; OIE 2021).
51 These events stimulated the scientific and public health community to better understand the
52 implications and origins of this phenomenon.

53 The probability of human-borne SARS-CoV-2 emerging in animal populations differs between
54 animal species through genetic and ecological differences (Gryseels et al., 2020). Susceptibility
55 firstly depends on the ability of SARS-CoV-2 to enter host cells, which is determined by the affinity
56 between the SARS-CoV-2 Receptor-Binding Domain (RBD) in the spike (S) protein and its binding
57 receptor in host cells, Angiotensin-converting enzyme II (ACE2) protein (Othman et al 2020; Qiu et
58 al 2020; Wu et al 2020). Whether the virus, after entering a host cell, can be transmitted
59 persistently depends on individual characteristics, infection dynamics and ecological
60 characteristics of the population. The longer the virus is shed from infected animals and / or the
61 higher the contact frequency between animals, the likelier it can initiate a successful transmission
62 chain. A good example of an optimal situation can be found in mink fur farms, which present a
63 highly susceptible species (American mink *Neovison vison*) housed indoors in extreme high

64 densities; leading to SARS-CoV-2 outbreaks as reported worldwide (ECDC 2020; Hammer et al
65 2021; Oude Munnink et al 2021). In nature, some mammals may also live in such high-density
66 settings, particularly gregarious bats and fast-reproducing rodents. House mice (*Mus musculus*),
67 Norway or brown rat (*Rattus norvegicus*) and the black or roof rat (*Rattus rattus*) are among the
68 most ubiquitous rodents in the world (Feng & Himsworth 2014). They are considered true
69 commensals, often living in close proximity to humans, increasing the risk of pathogen
70 transmission, as they are a source of a wide range of viral, bacterial and parasitic zoonoses
71 (Himsworth et al 2013). In Europe, Norway rats are well adapted to a synanthropic lifestyle and
72 thrive in urban environments, including city sewer systems, where they find food, water and
73 shelter (Mughini Gras et al 2012, Pascual et al 2020). Considering that many studies have detected
74 SARS-CoV-2 in wastewater from the sewage system globally (e.g. Medema et al 2020; Randazzo et
75 al 2020; Wu et al 2020), as well as in Antwerp, Belgium (Boogaerts et al 2021), these below-ground
76 rodent populations can be exposed to SARS-CoV-2.

77 To date, only non-zoonotic *Betacoronaviruses* were detected in Norway rats like Rat Coronavirus
78 (RCov), China Rattus coronavirus HKU24 (ChRCov HKU24) and Longquan R1 rat coronavirus (LRLV)
79 (Decaro & Lorusso 2020), though some human endemic coronaviruses (OC43 and NL63) may have
80 originated from a rodent reservoir (Corman et al 2018). SARS-CoV-2 has been shown to efficiently
81 infect and replicate in Cricetid rodent species like the golden Syrian hamster, *Mesocricetus auratus*
82 (Boudewijns et al 2020, Chan et al 2020, Sia et al 2020), the deer mouse (*Peromyscus maniculatus*)
83 and the bushy-tailed woodrat (*Neotoma cinerea*) (Bosco-Lauth et al 2021). However, rodent
84 species of the Muridae family, like house mice (*Mus musculus*) (Bosco-Lauth et al 2021) and
85 Norway rats (Cohen 2020), were found not susceptible to infection by the 'wild-type' Wuhan
86 SARS-CoV-2 strain. Their ACE2 receptor does not bind to this strain's spike RBD *in vitro*. However,
87 after serial passage in laboratory mice, SARS-CoV-2 evolves the ability to replicate efficiently in this

88 host, thanks to a single substitution in the RBD, i.e. N501Y (Gu et al 2020). Remarkably, N501Y
89 substitution has arisen repeatedly in SARS-CoV-2 lineages circulating in humans, most notable the
90 variants of concern like B. 1.1.7, B.1.351 and P.1 (Yao et al 2021). This suggests that 1) SARS-CoV-2
91 can evolve relatively easily to infect a previous resistant species, and 2) several SARS-CoV-2
92 variants currently circulating have the inherent ability to infect *M. musculus* and potentially other
93 species of the Muridae family.

94 For these reasons, in the present study we tested Norway rats inhabiting the sewer system of
95 Antwerp, Belgium, for the presence of SARS-CoV-2 in November and December 2020, following a
96 local COVID-19 epidemic peak by viruses mostly not carrying the N501Y substitution. In addition,
97 we discuss the use and interpretation of SARS-CoV-2 serological tests on non-human samples.

98 **Materials and methods**

99 *Study area*

100 The study was conducted in the sewage system of the city of Antwerp (the Ruien) (51°13'16.6"N
101 4°23'50.2"E), Belgium, for 2 weeks during November - December 2020. The Ruien is an old
102 network of small-scale waterways covered in 1882 that nowadays receives and directs the
103 wastewater and the rainwater of the city of Antwerp to a water treatment plant (Marine & De
104 Meulder 2016).

105 *Data collection*

106 To test for the presence of SARS-CoV-2 in the sewage water at the exact location where Norway
107 rats were trapped; eight water samples of 150 mL each were taken from flowing household
108 sewage water in open parts of the sewage pipes on two different days during the rat trapping
109 sessions. Samples were stored in individual tubes at 4°C and processed the next day.

110 Up to 30 rat-live-traps baited with fish boilies (Decathlon – ‘taste’) were set out and checked every
111 morning during 2 weeks; trapped rats were transported to a BSL-2⁺ laboratory at the Central
112 Animal Facility, Campus Drie Eiken, University of Antwerp. Rats were euthanized with an overdose
113 of isoflurane, and then weighed, measured and data of their species, sex and reproductive status
114 were registered. Blood samples were collected in tubes without anticoagulant; serum was
115 separated and stored at -20°C. Tissue samples of the kidney, lung, liver, and a 5 mm piece of colon
116 were stored at -80°C. Oral swabs in PBS and feces samples in RNA later were also collected and
117 stored at -80°C. All procedures were carried out under the approval of the University of Antwerp
118 Ethical Committee for Animal Experiments (ECD code 2020-21).

119 *SARS-CoV-2 RNA and antibody detection*

120 *Detection of SARS-CoV-2 RNA in wastewater*

121 Detection of SARS-CoV-2 RNA in the wastewater samples was done essentially as described in
122 Boogaerts et al. (2021). Wastewater was first centrifuged at 4625g for 30 minutes at 4 °C in an
123 Eppendorf 5910R Centrifuge (Aarschot, BE). The supernatant (40mL) was transferred to Macrosep
124 Advance Centrifugal devices with Omega Membrane (100 kDa; Pall, New York, US) for centrifugal
125 concentration according to the manufacturer’s instructions, and the concentrate was standardize
126 to 1,5 ml with UltraPureTM DEPC-Treated Water (ThermoFisher Scientific). RNA extraction was
127 done with the automated Maxwell PureFood GMO and Authentication RNA extraction kit. In brief,
128 200 µL of the concentrate was added to 200 µL cetyltrimethylammonium bromide buffer and 40 µL
129 proteinase K and the total volume was incubated for 10 minutes at 56 °C. This mixture was
130 transferred to the sample well together with 300 µL lysis buffer after which automated RNA
131 extraction was started in the Maxwell® RSC Instrument (Promega). The final elution volume was
132 50 µL. Amplifications with qPCR were performed in duplicate in 20 µL reaction mixtures using a 2x
133 SensiFAST™ Probe No-ROX One-Step kit following Boogaerts et al (2021). A six-point calibration

134 curve with a concentration between 10^5 and 10^0 copies/ μL was constructed in ultrapure DEPC-
135 treated water for quantification of the different genes of interest. The EURM-019 reference
136 standard for the construction of the calibration curve was obtained from the Joint Research Centre
137 (JRC, European Commission). The lower limit of quantification (LLOQ) was defined as the
138 concentration in the lowest point of the calibration curve and was 10^0 copies/ μL . The LLOQ of the
139 N1, N2 and E qPCR corresponded with Ct-levels of 36.1, 36.4 and 36.6, respectively.

140 *Serology*

141 To test SARS-CoV-2 exposure in sewer rats, serum samples were first screened for the presence of
142 binding anti-SARS-CoV-2 IgG antibodies, using an in-house Luminex microsphere immunoassay
143 (MIA) (Mariën et al 2021). The MIA is a high-throughput test that allows the simultaneous
144 detection of binding antibodies against different antigens of the same pathogen, increasing
145 significantly the specificity of the test. However, the prediction performance of this test depends
146 on the possibility to correctly estimating cut-off values of the negative controls. Since serum
147 samples from sewer rats captured before the SARS-CoV-2 outbreak were not available, we used as
148 negative controls serum from rats ($n=7$) trapped in forest and parks from Antwerp, outside the
149 sewer system, as we considered that they were less likely to be exposed to SARS-CoV-2. Also,
150 naïve laboratory mice ($n=8$) samples were used as negative controls. Positive control sera ($n=10$)
151 were obtained from laboratory ifnar^{-/-} mice inoculated with a recombinant live-attenuated yellow
152 fever virus that expressed the spike unit of SARS-CoV-2 (Sanchez-Felipe et al 2020). The MIA was
153 run with two different beads coated with the virus' nucleocapsid and spike antigens (Ayoub et al
154 2020). A biotin-labelled goat anti-mouse IgG Y-chain specific conjugate (Sigma, B7022, 1/300
155 dilution) was used for visualization of the primary antibodies. Samples were considered to be
156 positive if crude median fluorescence intensity values (MFI) were higher than 3x standard
157 deviation (SD) of the negative control samples for both antigen-coated bead sets. All samples that

158 were considered to be positive on the MIA ($n=7$) were checked for neutralizing antibodies using a
159 conventional viral neutralization test (cVNT) (Mariën et al 2021). We only considered a sample to
160 be seropositive if antibodies were detected on both the MIA and the cVNT.

161 *PCR tissues*

162 Viral RNA was extracted from 140 μ L of oral swabs samples in PBS and from 1 cm^2 of feces using
163 the QIAamp Viral RNA mini kit (QIAGEN, Valencia, California, USA) and from 30 mg kidney, lung,
164 liver and colon samples using the NucleoSpin RNA mini kit (Macherey-Nagel, Düren, Germany)
165 according to the manufacturer's instructions. We tested for the presence of SARS-CoV-2 RNA via
166 the CDC 2019-nCoV Real-Time RT-PCR protocol targeted to two regions of the nucleocapsid
167 protein (N) gene, N1 and N2 (Lu et al 2020) performed on 5 μ L of RNA using the SARS-CoV-2 (2019-
168 nCoV) CDC RUO kit (IDT Cat. No. 10006713). The positive control used was a SARS-CoV-2 N
169 synthetic probe (IDT, USA) designed for the present study. To monitor RNA extraction, we ran
170 simultaneously a beta-actin (ACTB) assay as internal control (Borremans et al 2015) in a duplex
171 assay N1/ACTB designed following Vogels et al (2020). N1/ACTB and N2 PCRs were performed
172 separately for each sample with Luna Universal qPCR Master Mix (New England Biolabs) on an
173 Applied Biosystems StepOne Real-Time PCR Instrument (Thermo Fisher Scientific) under the
174 following thermal conditions: 52 °C for 10 min, 95 °C for 2 min, 44 cycles with 95 °C for 10 s and 55
175 °C for 30 s.

176 **Results**

177 Of the 8 water samples tested, 4 samples had detectable Ct values for Sars-CoV-2. Two samples
178 were positive below the LLOQ and two samples had Ct values that equaled with ± 7 gene copies
179 per ml of wastewater.

180 Serum samples of 35 sewer rats were analyzed by MIA. Three had MFI values higher than the cut-
181 off values of the negative controls for both nucleocapsid and spike IgG antibodies, but all
182 remained lower than the MFI values of the positive control samples (Fig. 1). The three potentially
183 positive sera and four other sera with high MFI values were subsequently checked for neutralizing
184 antibodies by cVNT. All samples were seronegative for neutralizing antibodies; suggesting that the
185 captured sewer rats had not experienced SARS-CoV-2 in their life.

186 Regarding the tissue samples analyzed, oral swabs, feces, colon, lung, liver and kidney samples of
187 39 sewer rats tested for the presence of SARS-CoV-2 by qRT-PCR were all considered negative.

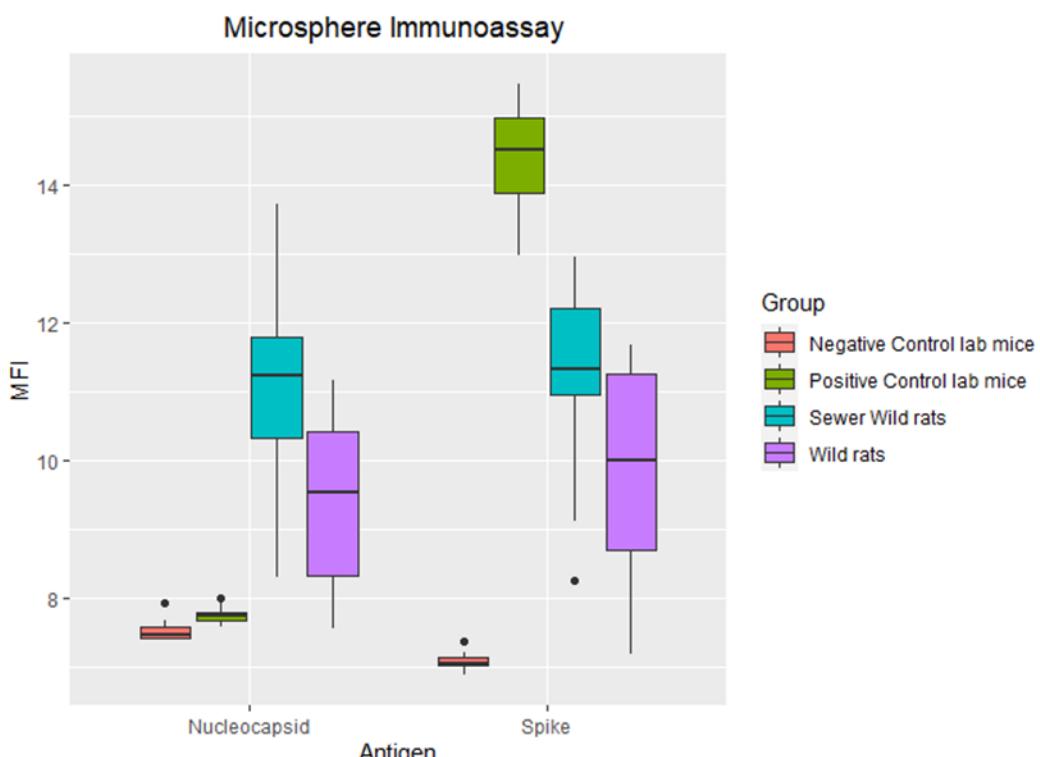
188 **Discussion**

189 To our knowledge, this is the first study that evaluates SARS-CoV-2 infection in urban Norway rats
190 exposed to an environment contaminated with the virus, the sewer wastewater. According to the
191 negative results obtained in both serology and PCR tests, we can conclude that the rodents
192 studied had never been infected with SARS-CoV-2 despite continuous detection of viral RNA in the
193 Antwerp sewer water (Boogaerts et al 2021), including sewer water collected at the exact location
194 where the rats were captured.

195 Regarding the observed discrepancy between the results of the MIA and the VNT, we think it is
196 worth mentioning that the interpretation of SARS-CoV-2 binding antibody tests (MIA or Elisa)
197 should be made with care when used on different types of samples than what the assays were
198 validated for. Indeed, although our MIA was clearly able to differentiate negative from positive
199 control cases in laboratory mice (Fig. 1), it falsely categorized three wild type rats as positive when
200 we estimated cut-off values based on serum from wild rats that were trapped outside of the
201 sewers. The misclassification is explained by the fact that sewer rats had overall higher MFI values
202 than rats trapped outside of the sewers (Fig. 1). This difference is likely caused by the higher

203 exposure rate to many other pathogens in the sewer systems (dirtier conditions and higher
204 population densities), which stimulates the adaptive immune system and results in overall higher
205 binding antibody levels. Therefore, to confirm exposure to SARS-CoV-2 in a particular wildlife
206 population based on serological data, VNTs are a better alternative (Tan et al 2020).

207 Studies to elucidate the animal species susceptible to SARS-CoV-2 have demonstrated the ability
208 of the virus to spillover to several distantly related mammalian species (e.g. Chen et al 2020,
209 McAloose et al 2020, Sit et al 2020, Hammer et al 2021), with the potential to stimulate the
210 evolution of new variants with different antigenic properties (van Dorp et al 2020). This
211 phenomenon can lead to various consequences, such as putting species conservation actions at
212 risk if the virus affects endangered species, the establishment of novel reservoirs with the
213 potential to start new outbreaks in humans, and the evolution of novel variants that may evade
214 antibodies generated in humans, forcing the development of new antiviral therapies (Gryseels et
215 al 2020, Mercatelli & Giorgi 2020, Hammer et al 2021, Oude Munnink et al 2021).


216 The absence of SARS-CoV-2 in our sample of Norway rats could possibly be explained by the
217 dominance of SARS-CoV-2 lineages without the spike N501Y substitution in humans prior and at
218 the time of sampling the rats. Since the beginning of the SARS-CoV-2 pandemic, many new
219 variants have been involved in humans and in non-human animal hosts (van Dorp et al 2020;
220 Hodcroft 2021; Leung et al 2021; Mercatelli & Giorgi 2020). Some of the currently most
221 widespread variants, like B.1.1.7/501Y.V1, B.1.351/501Y.V2 and P.1/501Y.V3 that emerged from
222 the UK, South Africa and Brazil, are potentially able to infect previous resistant species, such as
223 Muridae rodents, thanks to the N501Y substitution in the RBD (Gu et al 2020, Yao et al 2021). This
224 scenario, in conjunction with the synanthropic habits of several Muridae rodents and their ability
225 to develop high-density populations, creates the ideal conditions for the spread of new epidemics.
226 As such, despite the negative results found in Norway rats in the present study, we emphasize the

227 need to carry out regular monitoring activities for the presence of SARS-CoV-2 in Muridae rodents,
228 as well as other mammals exposed to humans, in order to detect human-to-animal transmission
229 events and prevent future outbreaks emerging from new animal reservoirs.

230 **Acknowledgements:**

231 This work was funded through the 2018-2019 BiodivERsA joint call for research proposals, under
232 the BiodivERsA3 ERA-Net COFUND programme (HL); FED-tWIN OMEgA (SG,HL); Research
233 Foundation Flanders (FWO) (G0G4220N and G054820N to KKA) and the Research Council (BOF) of
234 the University of Antwerp (to PD, project number: FFB200184). HL is member of the University of
235 Antwerp Center of Excellence VAX-IDEA.

236 We are very grateful to Flinn De Vleeschauwer, water-link (in particular Werner Van Den Bogaert)
237 and the Ruien operator Werkmmaat (in particular Willem Storms and Rasool Rezai) for enabling
238 access to the trapping sites and their tremendous help during the trapping work.

239

240 Figure 1: Boxplot showing the variation in log(MFI) values (Median Fluorescent intensities) for the
241 different categories of mice/rats analysed in the microsphere immunoassay using the SARS-CoV-2
242 nucleocapsid and spike antigens.

243 **References**

244 Ayoub, A., Thaurignac, G., Morquin, D., Tuillon, E., Raulino, R., Nkuba, A., et al. (2020). Multiplex
245 detection and dynamics of IgG antibodies to SARS-CoV2 and the highly pathogenic human
246 coronaviruses SARS-CoV and MERS-CoV. *Journal of Clinical Virology*, 129, 104521.

247 Boogaerts, T., L. Jacobs, N. De Roeck, S. Van den Bogaert, B. Aertgeerts, L. Lahousse, et al (2021).
248 An alternative approach for bioanalytical assay development for wastewater-based epidemiology
249 of SARS-CoV-2. *medRxiv*: 2021.2002.2012.21251626. doi:
250 <https://doi.org/10.1101/2021.02.12.21251626>

251 Borremans, B., Vossen, R., Becker-Ziaja, B., Gryseels, S., Hughes, N., Van Gestel, M., et al (2015).
252 Sheding dynamics of Morogoro virus, an African arenavirus closely related to Lassa virus, in its
253 natural reservoir host *Mastomys natalensis*. *Scientific reports*, 5(1), 1-8.

254 Bosco-Lauth, A., Root, J. J., Porter, S., Walker, A., Guilbert, L., Hawvermale, D., et al (2021). Survey
255 of peridomestic mammal susceptibility to SARS-CoV-2 infection. bioRxiv.

256 Boudewijns, R., Thibaut, H.J., Kaptein, S.J.F. et al. (2020) STAT2 signaling restricts viral
257 dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nature
258 Communications 11, 5838. <https://doi.org/10.1038/s41467-020-19684-y>

259 Chan, J. F. W., Zhang, A. J., Yuan, S., Poon, V. K. M., Chan, C. C. S., Lee, A. C. Y., et al (2020).
260 Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19)
261 in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility.
262 Clinical Infectious Diseases, 71(9), 2428-2446.

263 Chen, J., Huang, C., Zhang, Y., Zhang, S., & Jin, M. (2020). Severe acute respiratory syndrome
264 coronavirus 2-specific antibodies in pets in Wuhan, China. The Journal of Infection, 81(3), e68.

265 Cohen J. From mice to monkeys, animals studied for coronavirus answers. Science. 2020 441 Apr
266 17;368 (6488):221–2.

267 Corman, V. M., D. Muth, D. Niemeyer and C. Drosten (2018). Hosts and sources of endemic human
268 coronaviruses. Advances in Virus Research. 100: 163-188.

269 Decaro, N., & Lorusso, A. (2020). Novel human coronavirus (SARS-CoV-2): A lesson from animal
270 coronaviruses. Veterinary Microbiology, 108693.

271 European Centre for Disease Prevention and Control, “Rapid Risk Assessment: Detection of New
272 SARS-CoV-2 Variants Related to Mink” (2020);
273 www.ecdc.europa.eu/sites/default/files/documents/RRA-SARS-CoV-2-in-mink-12-nov-2020.pdf.

274 Feng, A.Y.T., Himsworth, C.G (2014). The secret life of the city rat: a review of the ecology of urban
275 Norway and black rats (*Rattus norvegicus* and *Rattus rattus*). Urban Ecosyst 17, 149–162.
276 <https://doi.org/10.1007/s11252-013-0305-4>

277 Ilya R. Fischhoff, Adrian A. Castellanos, João P.G.L.M. Rodrigues, Arvind Varsani, Barbara A. Han
278 (2021) Predicting the zoonotic capacity of mammal species for SARS-CoV-2, bioRxiv
279 2021.02.18.431844; doi: <https://doi.org/10.1101/2021.02.18.431844>

280 Garigliany, M., Van Laere, A. S., Clercx, C., Giet, D., Escriou, N., Huon, C., et al. (2020). SARS-CoV-2
281 natural transmission from human to cat, Belgium, March 2020. Emerging Infectious Diseases,
282 26(12), 3069.

283 Gu, H., Chen, Q., Yang, G., He, L., Fan, H., Deng, Y. Q., et al (2020). Adaptation of SARS-CoV-2 in
284 BALB/c mice for testing vaccine efficacy. Science, 369(6511), 1603-1607.

285 Gryseels, S., De Bruyn, L., Gyselings, R., Calvignac-Spencer, S., Leendertz, F. H., & Leirs, H. (2020).
286 Risk of human-to-wildlife transmission of SARS-CoV-2. Mammal Review.
287 <https://doi.org/10.1111/mam.12225>

288 Hammer AS, Quaade ML, Rasmussen TB, Fonager J, Rasmussen M, Mundbjerg K, et al. SARS-CoV-2
289 transmission between mink (*Neovison vison*) and humans, Denmark (2021). Emerging Infectious
290 Diseases. 27(2):547-551 <https://doi.org/10.3201/eid2702.203794>

291 Han, B. A., Kramer, A. M., & Drake, J. M. (2016). Global patterns of zoonotic disease in mammals.
292 Trends in parasitology, 32(7), 565-577.

293 Himsworth, C. G., Parsons, K. L., Jardine, C., & Patrick, D. M. (2013). Rats, cities, people, and
294 pathogens: a systematic review and narrative synthesis of literature regarding the ecology of rat-
295 associated zoonoses in urban centers. Vector-Borne and Zoonotic Diseases, 13(6), 349-359.

296 Hodcroft EB. (2021). "CoVariants: SARS-CoV-2 Mutations and Variants of Interest."
297 <https://covariants.org/>

298 Mariën, J., Ceulemans, A., Michiels, J., Heyndrickx, L., Kerkhof, K., Foque, N., et al. (2021)
299 Evaluating SARS-CoV-2 spike and nucleocapsid proteins as targets for antibody detection in severe
300 and mild COVID-19 cases using a Luminex bead-based assay. Journal of Virological Methods 288.

301 Marin, J., & De Meulder, B. (2016). Antwerp City Wastescapes. Historic interplays between waste
302 & urban development. International Planning History Society Proceedings, 17(3), 179-190.

303 McAloose, D., Laverack, M., Wang, L., Killian, M. L., Caserta, L. C., Yuan, F., et al (2020). From
304 people to Panthera: Natural SARS-CoV-2 infection in tigers and lions at the Bronx Zoo. Mbio, 11(5).

305 Medema, G., Heijnen, L., Elsinga, G., Italiaander, R. & Brouwer, A. (2020) Presence of
306 SARSCoronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the

307 Early Stage of the Epidemic in The Netherlands. Environmental Science & Technology Letters
308 doi:10.1021/acs.estlett.0c00357.

309 Mercatelli, D., & Giorgi, F. M. (2020). Geographic and genomic distribution of SARS-CoV-2
310 mutations. *Frontiers in Microbiology*, 11, 1800.

311 Mughini-Gras L, Paterniani M, Farina M (2012) Poison-based commensal rodent control strategies
312 in urban ecosystems: some evidence against sewer-baiting. *EcoHealth* 9(1):75–79

313 Leung, K., Shum, M. H., Leung, G. M., Lam, T. T., & Wu, J. T. (2021). Early transmissibility
314 assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to
315 November 2020. *Eurosurveillance*, 26(1), 2002106.

316 Lu, X., Wang, L., Sakthivel, S. K., Whitaker, B., Murray, J., Kamili, S., et al. (2020). US CDC real-time
317 reverse transcription PCR panel for detection of severe acute respiratory syndrome coronavirus 2.
318 *Emerging Infectious Diseases*, 26(8), 1654.

319 OIE (World Organization of Animal Health) (2021) <https://www.oie.int/en/scientific-expertise/specific-information-and-recommendations/questions-and-answers-on-2019novel-coronavirus/events-in-animals/>

320 Oude Munnink, B. B., Sikkema, R. S., Nieuwenhuijse, D. F., Molenaar, R. J., Munger, E.,
321 Molenkamp, R., et al (2021). Transmission of SARS-CoV-2 on mink farms between humans and
322 mink and back to humans. *Science*, 371(6525), 172-177.

323 Pascual, J., Franco, S., Bueno-Marí, R., Peracho, V., & Montalvo, T. (2020). Demography and
324 ecology of Norway rats, *Rattus norvegicus*, in the sewer system of Barcelona (Catalonia, Spain).
325 *Journal of Pest Science*, 93(2), 711-722.

326 Qiu, Y., Zhao, Y. B., Wang, Q., Li, J. Y., Zhou, Z. J. Et al (2020). Predicting the angiotensin converting
327 enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2. *Microbes and Infection*.

328 Randazzo, W., Truchado, P., Cuevas-Ferrando, E., Simón, P., Allende, A., & Sánchez, G. SARS-CoV-2
329 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. *Water Research*
330 181, 115942 (2020).

331 Ray W. Izquierdo Lara, Goffe Elsinga, Leo Heijnen, Bas B. Oude Munnink, Claudia M. E.
332 Schapendonk, et al. Monitoring SARS-CoV-2 circulation and diversity through community

335 wastewater sequencing. medRxiv 2020.09.21.20198838; doi:
336 <https://doi.org/10.1101/2020.09.21.20198838>

337 Sanchez-Felipe, L. Sanchez-Felipe, L., Vercruyse, T., Sharma, S., Ma, J., Lemmens, V., Van
338 Looveren, D., et al. A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate.
339 Nature (2020). doi:10.1038/s41586-020-3035-9

340 Sia, S. F., Yan, L., Chin, A. W., Fung, K., Poon, L. L., & Nicholls, J. M. Pathogenesis and transmission
341 of SARS-CoV-2 virus in golden Syrian hamsters. Nat. Res. Rev.

342 Sit, T. H., Brackman, C. J., Ip, S. M., Tam, K. W., Law, P. Y., To, E. M., et al. (2020). Infection of dogs
343 with SARS-CoV-2. Nature, 1-6.

344 Tan, C. W., Chia, W. N., Qin, X., Liu, P., Chen, M. I. C., Tiu, C, et al. A SARS-CoV-2 surrogate virus
345 neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein
346 interaction. Nature Biotechnology 38, 1073–1078 (2020).

347 van Dorp, L., Tan, C. C., Lam, S. D., Richard, D., Owen, C., Berchtold, D., et al (2020). Recurrent
348 mutations in SARS-CoV-2 genomes isolated from mink point to rapid host-adaptation.
349 bioRxiv 2020.11.16.384743; doi: <https://doi.org/10.1101/2020.11.16.384743>

350 Vogels, C. B. F., A. E. Watkins, C. A. Harden, D. E. Brackney, J. Shafer, J. Wang, C., et al (2020).
351 "SalivaDirect: A Simplified and Flexible Platform to Enhance SARS-CoV-2 Testing Capacity." Med
352 (NY).

353 Wardeh, M., Sharkey, K. J., & Baylis, M. (2020). Integration of shared-pathogen networks and
354 machine learning reveals the key aspects of zoonoses and predicts mammalian reservoirs.
355 Proceedings of the Royal Society B, 287(1920), 20192882.

356 Wu, L., Chen, Q., Liu, K., Wang, J., Han, P., Zhang, Y., et al. (2020). Broad host range of SARS-CoV-2
357 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell discovery, 6(1), 1-12.

358 Wu, F., Xiao, A., Zhang, J., Moniz, K., Endo, N., Armas, F., et al. (2020). SARS-CoV-2 titers in
359 wastewater foreshadow dynamics and clinical presentation of new COVID-19 cases. medRxiv.

360 Yao, W., Wang, Y., Ma, D., Tang, X., Wang, H., Li, C., et al. (2021). Circulating SARS-CoV-2 variants
361 B. 1.1. 7, 501Y, V2, and P. 1 have gained ability to utilize rat and mouse Ace2 and altered *in vitro*

362 sensitivity to neutralizing antibodies and ACE2-Ig.

363 bioRxiv 2021.01.27.428353; doi: <https://doi.org/10.1101/2021.01.27.428353>