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17 Abstract

18 Background

19 SARS-CoV-2 human-to-animal transmission can lead to the establishment of novel reservoirs and

20  the evolution of new variants with the potential to start new outbreaks in humans.

21 Aim
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22 We tested Norway rats inhabiting the sewer system of Antwerp, Belgium, for the presence of
23 SARS-CoV-2 following a local COVID-19 epidemic peak. In addition, we discuss the use and

24 interpretation of SARS-CoV-2 serological tests on non-human samples.

25 Methods

26 Between November and December 2020, Norway rat oral swabs, feces and tissues from the sewer
27  system of Antwerp were collected to be tested by RT-gPCR for the presence of SARS-CoV-2. Serum
28  samples were screened for the presence of anti-SARS-CoV-2 IgG antibodies using a Luminex

29 microsphere immunoassay (MIA). Samples considered positive were then checked for neutralizing

30 antibodies using a conventional viral neutralization test (cVNT).

31 Results

32  The serum of 35 rats was tested by MIA showing 3 potentially positive sera that were later shown
33 to be negative by cVNT. All tissue samples of 39 rats analyzed tested negative for SARS-CoV-2
34  RNA.

35 Conclusion

36  This is the first study that evaluates SARS-CoV-2 infection in urban rats. We can conclude that the
37  sample of 39 rats had never been infected with SARS-CoV-2. We show that diagnostic serology
38  tests can give misleading results when applied on non-human samples. SARS-CoV-2 monitoring

39  activities should continue due to the emergence of new variants prone to infect Muridae rodents.
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40 Introduction

41 Emerging infectious diseases have been in the spotlight of scientific research in recent years. Most
42  studies have focused mainly on the role of domestic and wild animals as zoonotic virus reservoirs
43  and the phenomena that drive animal-to-human transmission in order to explain outbreak

44 processes and spillover dynamics (e.g. Karesh et al 2010, Han et al 2016, Wardeh et al 2020).

45 However, the possibility of human-to-animal viral transmission raised concern during the SARS-
46 CoV-2 pandemic in 2020, when an asymptomatic dog from Hong Kong, whose owner was a COVID-
47 19 patient, tested positive for the virus (Sit et al 2020). Since then, similar human-to-animal

48  transmission events have been reported worldwide in domestic dogs (Sit et al 2020), cats (Chen at
49 al 2020; Garligliani et al 2020), farmed minks (ECDC 2020, Oreshkova et al 2020, Hammer et al

50 2021, Oude Munnink et al 2021), and numerous zoo animals (McAloose et al 2020; OIE 2021).

51  These events stimulated the scientific and public health community to better understand the

52 implications and origins of this phenomenon.

53  The probability of human-borne SARS-CoV-2 emerging in animal populations differs between

54 animal species through genetic and ecological differences (Gryseels et al., 2020). Susceptibility

55  firstly depends on the ability of SARS-CoV-2 to enter host cells, which is determined by the affinity
56 between the SARS-CoV-2 Receptor-Binding Domain (RBD) in the spike (S) protein and its binding
57 receptor in host cells, Angiotensin-converting enzyme |l (ACE2) protein (Othman et al 2020; Qiu et
58  al 2020; Wu et al 2020). Whether the virus, after entering a host cell, can be transmitted

59 persistently depends on individual characteristics, infection dynamics and ecological

60  characteristics of the population. The longer the virus is shed from infected animals and / or the
61 higher the contact frequency between animals, the likelier it can initiate a successful transmission
62  chain. A good example of an optimal situation can be found in mink fur farms, which present a

63 highly susceptible species (American mink Neovison vison) housed indoors in extreme high
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64 densities; leading to SARS-CoV-2 outbreaks as reported worldwide (ECDC 2020; Hammer et al

65  2021; Oude Munnink et al 2021). In nature, some mammals may also live in such high-density

66  settings, particularly gregarious bats and fast-reproducing rodents. House mice (Mus musculus),
67 Norway or brown rat (Rattus norvegicus) and the black or roof rat (Rattus rattus) are among the
68 most ubiquitous rodents in the world (Feng & Himsworth 2014). They are considered true

69 commensals, often living in close proximity to humans, increasing the risk of pathogen

70  transmission, as they are a source of a wide range of viral, bacterial and parasitic zoonoses

71 (Himsworth et al 2013). In Europe, Norway rats are well adapted to a synanthropic lifestyle and

72  thrive in urban environments, including city sewer systems, where they find food, water and

73 shelter (Mughini Gras et al 2012, Pascual et al 2020). Considering that many studies have detected
74  SARS-CoV-2 in wastewater from the sewage system globally (e.g. Medema et al 2020; Randazzo et
75  al 2020; Wu et al 2020), as well as in Antwerp, Belgium (Boogaerts et al 2021), these below-ground

76 rodent populations can be exposed to SARS-CoV-2.

77  To date, only non-zoonotic Betacoronaviruses were detected in Norway rats like Rat Coronavirus
78 (RCov), China Rattus coronavirus HKU24 (ChRCoV HKU24) and Longquan Rl rat coronavirus (LRLV)
79 (Decaro & Lorusso 2020), though some human endemic coronaviruses (OC43 and NL63) may have
80 originated from a rodent reservoir (Corman et al 2018). SARS-CoV-2 has been shown to efficiently
81 infect and replicate in Cricetid rodent species like the golden Syrian hamster, Mesocricetus auratus
82 (Boudewijns et al 2020, Chan et al 2020, Sia et al 2020), the deer mouse (Peromyscus maniculatus)
83 and the bushy-tailed woodrat (Neotoma cinerea) (Bosco-Lauth et al 2021). However, rodent

84  species of the Muridae family, like house mice (Mus musculus) (Bosco-Lauth et al 2021) and

85 Norway rats (Cohen 2020), were found not susceptible to infection by the ‘wild-type’ Wuhan

86  SARS-CoV-2 strain. Their ACE2 receptor does not bind to this strain’s spike RBD in vitro. However,

87  after serial passage in laboratory mice, SARS-CoV-2 evolves the ability to replicate efficiently in this
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88 host, thanks to a single substitution in the RBD, i.e. N501Y (Gu et al 2020). Remarkably, N501Y

89 substitution has arisen repeatedly in SARS-CoV-2 lineages circulating in humans, most notable the
90  variants of concern like B. 1.1.7, B.1.351 and P.1 (Yao et al 2021). This suggests that 1) SARS-CoV-2
91 can evolve relatively easily to infect a previous resistant species, and 2) several SARS-CoV-2

92 variants currently circulating have the inherent ability to infect M. musculus and potentially other

93  species of the Muridae family.

94 For these reasons, in the present study we tested Norway rats inhabiting the sewer system of
95 Antwerp, Belgium, for the presence of SARS-CoV-2 in November and December 2020, following a
96 local COVID-19 epidemic peak by viruses mostly not carrying the N501Y substitution. In addition,

97  wediscuss the use and interpretation of SARS-CoV-2 serological tests on non-human samples.

98 Materials and methods

99  Studyarea

100  The study was conducted in the sewage system of the city of Antwerp (the Ruien) (51°13'16.6"N
101  4°23'50.2"E), Belgium, for 2 weeks during November - December 2020. The Ruien is an old

102 network of small-scale waterways covered in 1882 that nowadays receives and directs the

103 wastewater and the rainwater of the city of Antwerp to a water treatment plant (Marine & De

104 Meulder 2016).

105 Data collection

106  Totest for the presence of SARS-CoV-2 in the sewage water at the exact location where Norway
107 rats were trapped; eight water samples of 150 mL each were taken from flowing household
108  sewage water in open parts of the sewage pipes on two different days during the rat trapping

109  sessions. Samples were stored in individual tubes at 4°C and processed the next day.
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110 Up to 30 rat-live-traps baited with fish boilies (Decathlon — ‘taste’) were set out and checked every
111 morning during 2 weeks; trapped rats were transported to a BSL-2" laboratory at the Central

112 Animal Facility, Campus Drie Eiken, University of Antwerp. Rats were euthanized with an overdose
113 ofisoflurane, and then weighed, measured and data of their species, sex and reproductive status
114  were registered. Blood samples were collected in tubes without anticoagulant; serum was

115 separated and stored at -20°C. Tissue samples of the kidney, lung, liver, and a 5 mm piece of colon
116  were stored at -80°C. Oral swabs in PBS and feces samples in RNA later were also collected and
117  stored at -80°C. All procedures were carried out under the approval of the University of Antwerp

118 Ethical Committee for Animal Experiments (ECD code 2020-21).

119  SARS-CoV-2 RNA and antibody detection

120 Detection of SARS-CoV-2 RNA in wastewater

121 Detection of SARS-CoV-2 RNA in the wastewater samples was done essentially as described in

122 Boogaerts et al. (2021). Wastewater was first centrifuged at 4625g for 30 minutes at 4 °Cin an
123 Eppendorf 5910R Centrifuge (Aarschot, BE). The supernatant (40mL) was transferred to Macrosep
124 Advance Centrifugal devices with Omega Membrane (100 kDa; Pall, New York, US) for centrifugal
125 concentration according to the manufacturer’s instructions, and the concentrate was standardize
126 to 1,5 ml with UltraPureTM DEPC-Treated Water (ThermoFisher Scientific). RNA extraction was
127  done with the automated Maxwell PureFood GMO and Authentication RNA extraction kit. In brief,
128 200 pL of the concentrate was added to 200 pL cetylrimethylammonium bromide buffer and 40 uL
129 proteinase K and the total volume was incubated for 10 minutes at 56 °C. This mixture was

130  transferred to the sample well together with 300 uL lysis buffer after which automated RNA

131 extraction was started in the Maxwell® RSC Instrument (Promega). The final elution volume was
132 50 pL. Amplifications with qPCR were performed in duplicate in 20 pL reaction mixtures using a 2x

133  SensiFAST™ Probe No-ROX One-Step kit following Boogaerts et al (2021). A six-point calibration
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134 curve with a concentration between 10° and 10° copies/ulL was constructed in ultrapure DEPC-
135  treated water for quantification of the different genes of interest. The EURM-019 reference

136  standard for the construction of the calibration curve was obtained from the Joint Research Centre
137 (JRC, European Commission). The lower limit of quantification (LLOQ) was defined as the

138 concentration in the lowest point of the calibration curve and was 10° copies/uL. The LLOQ of the

139 N1, N2 and E gPCR corresponded with Ct-levels of 36.1, 36.4 and 36.6, respectively.

140  Serology

141  To test SARS-CoV-2 exposure in sewer rats, serum samples were first screened for the presence of
142 binding anti-SARS-CoV-2 IgG antibodies, using an in-house Luminex microsphere immunoassay
143 (MIA) (Marién et al 2021). The MIA is a high-throughput test that allows the simultaneous

144  detection of binding antibodies against different antigens of the same pathogen, increasing

145  significantly the specificity of the test. However, the prediction performance of this test depends
146 on the possibility to correctly estimating cut-off values of the negative controls. Since serum

147  samples from sewer rats captured before the SARS-CoV-2 outbreak were not available, we used as
148 negative controls serum from rats (n=7) trapped in forest and parks from Antwerp, outside the
149 sewer system, as we considered that they were less likely to be exposed to SARS-CoV-2. Also,

150 naive laboratory mice (n=8) samples were used as negative controls. Positive control sera (n=10)
151 were obtained from laboratory ifnar’ mice inoculated with a recombinant live-attenuated yellow
152  fever virus that expressed the spike unit of SARS-CoV-2 (Sanchez-Felipe et al 2020). The MIA was
153 run with two different beads coated with the virus’ nucleocapsid and spike antigens (Ayouba et al
154  2020). A biotin-labelled goat anti-mouse 1gG Y-chain specific conjugate (Sigma, B7022, 1/300

155  dilution) was used for visualization of the primary antibodies. Samples were considered to be

156 positive if crude median fluorescence intensity values (MFI) were higher than 3x standard

157  deviation (SD) of the negative control samples for both antigen-coated bead sets. All samples that
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158  were considered to be positive on the MIA (n=7) were checked for neutralizing antibodies using a
159 conventional viral neutralization test (cVNT) (Marién et al 2021). We only considered a sample to

160 be seropositive if antibodies were detected on both the MIA and the cVNT.

161 PCR tissues

162  Viral RNA was extracted from 140 pL of oral swabs samples in PBS and from 1 cm” of feces using
163  the QlAamp Viral RNA mini kit (QIAGEN, Valencia, California, USA) and from 30 mg kidney, lung,
164 liver and colon samples using the NucleoSpin RNA mini kit (Macherey-Nagel, Diiren, Germany)
165  according to the manufacturer’s instructions. We tested for the presence of SARS-CoV-2 RNA via
166  the CDC 2019-nCoV Real-Time RT-PCR protocol targeted to two regions of the nucleocapsid

167 protein (N) gene, N1 and N2 (Lu et al 2020) performed on 5 pL of RNA using the SARS-CoV-2 (2019-
168 nCoV) CDC RUO kit (IDT Cat. No. 10006713). The positive control used was a SARS-CoV-2 N

169  synthetic probe (IDT, USA) designed for the present study. To monitor RNA extraction, we ran

170  simultaneously a beta-actin (ACTB) assay as internal control (Borremans et al 2015) in a duplex
171  assay N1/ACTB designed following Vogels et al (2020). N1/ACTB and N2 PCRs were performed

172 separately for each sample with Luna Universal gPCR Master Mix (New England Biolabs) on an

173  Applied Biosystems StepOne Real-Time PCR Instrument (Thermo Fisher Scientific) under the

174  following thermal conditions: 52 °C for 10 min, 95 °C for 2 min, 44 cycles with 95 °C for 10 s and 55

175 °Cfor30s.

176 Results

177  Of the 8 water samples tested, 4 samples had detectable Ct values for Sars-CoV-2. Two samples
178  were positive below the LLOQ and two samples had Ct values that equaled with + 7 gene copies

179 per ml of wastewater.
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180  Serum samples of 35 sewer rats were analyzed by MIA. Three had MFI values higher than the cut-
181  off values of the negative controls for both nucleocapsid and spike IgG antibodies, but all
182 remained lower than the MFI values of the positive control samples (Fig. 1). The three potentially
183  positive sera and four other sera with high MFI values were subsequently checked for neutralizing
184 antibodies by cVNT. All samples were seronegative for neutralizing antibodies; suggesting that the

185 captured sewer rats had not experienced SARS-CoV-2 in their life.

186 Regarding the tissue samples analyzed, oral swabs, feces, colon, lung, liver and kidney samples of

187 39 sewer rats tested for the presence of SARS-CoV-2 by gRT-PCR were all considered negative.

188 Discussion

189  To our knowledge, this is the first study that evaluates SARS-CoV-2 infection in urban Norway rats
190  exposed to an environment contaminated with the virus, the sewer wastewater. According to the
191 negative results obtained in both serology and PCR tests, we can conclude that the rodents

192 studied had never been infected with SARS-CoV-2 despite continuous detection of viral RNA in the
193 Antwerp sewer water (Boogaerts et al 2021), including sewer water collected at the exact location

194  where the rats were captured.

195 Regarding the observed discrepancy between the results of the MIA and the VNT, we think it is
196  worth mentioning that the interpretation of SARS-CoV-2 binding antibody tests (MIA or Elisa)

197  should be made with care when used on different types of samples than what the assays were
198  validated for. Indeed, although our MIA was clearly able to differentiate negative from positive
199 control cases in laboratory mice (Fig. 1), it falsely categorized three wild type rats as positive when
200  we estimated cut-off values based on serum from wild rats that were trapped outside of the

201 sewers. The misclassification is explained by the fact that sewer rats had overall higher MFI values

202  than rats trapped outside of the sewers (Fig. 1). This difference is likely caused by the higher
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exposure rate to many other pathogens in the sewer systems (dirtier conditions and higher
population densities), which stimulates the adaptive immune system and results in overall higher
binding antibody levels. Therefore, to confirm exposure to SARS-CoV-2 in a particular wildlife

population based on serological data, VNTs are a better alternative (Tan et al 2020).

Studies to elucidate the animal species susceptible to SARS-CoV-2 have demonstrated the ability
of the virus to spillover to several distantly related mammalian species (e.g. Chen at al 2020,
McAloose et al 2020, Sit et al 2020, Hammer et al 2021), with the potential to stimulate the
evolution of new variants with different antigenic properties (van Dorp et al 2020). This
phenomenon can lead to various consequences, such as putting species conservation actions at
risk if the virus affects endangered species, the establishment of novel reservoirs with the
potential to start new outbreaks in humans, and the evolution of novel variants that may evade
antibodies generated in humans, forcing the development of new antiviral therapies (Gryseels et

al 2020, Mercatelli & Giorgi 2020, Hammer et al 2021, Oude Munnink et al 2021).

The absence of SARS-CoV-2 in our sample of Norway rats could possibly be explained by the
dominance of SARS-CoV-2 lineages without the spike N501Y substitution in humans prior and at
the time of sampling the rats. Since the beginning of the SARS-CoV-2 pandemic, many new
variants have been involved in humans and in non-human animal hosts (van Dorp et al 2020;
Hodcroft 2021; Leung et al 2021; Mercatelli & Giorgi 2020). Some of the currently most
widespread variants, like B.1.1.7/501Y.V1, B.1.351/501Y.V2 and P.1/501Y.V3 that emerged from
the UK, South Africa and Brazil, are potentially able to infect previous resistant species, such as
Muridae rodents, thanks to the N501Y substitution in the RBD (Gu et al 2020, Yao et al 2021). This
scenario, in conjunction with the synanthropic habits of several Muridae rodents and their ability
to develop high-density populations, creates the ideal conditions for the spread of new epidemics.

As such, despite the negative results found in Norway rats in the present study, we emphasize the
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227 need to carry out regular monitoring activities for the presence of SARS-CoV-2 in Muridae rodents,
228 as well as other mammals exposed to humans, in order to detect human-to-animal transmission

229 events and prevent future outbreaks emerging from new animal reservoirs.
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Figure 1: Boxplot showing the variation in log(MFI) values (Median Fluorescent intensities) for the
different categories of mice/rats analysed in the microsphere immunoassay using the SARS-CoV-2

nucleocapsid and spike antigens.
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