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Abstract 

Protein kinases are among the largest druggable family of signaling proteins, involved in various human diseases, 

including cancers and neurodegenerative disorders. Despite their clinical relevance, nearly 30% of the 545 

human protein kinases remain highly understudied. Comparative genomics is a powerful approach for predicting 

and investigating the functions of understudied kinases. However, an incomplete knowledge of kinase orthologs 

across fully sequenced kinomes severely limits the application of comparative approaches for illuminating 

understudied kinases. Here, we propose KinOrtho, a query- and graph-based orthology inference method that 

combines full-length and domain-based approaches to map one-to-one kinase orthologs across 17 thousand 

species. Using multiple metrics, we show that KinOrtho performed better than existing methods in identifying 

kinase orthologs across evolutionarily divergent species and eliminated potential false positives by flagging 

sequences without a proper kinase domain for further evaluation. We demonstrate the advantage of using 

domain-based approaches for identifying domain fusion events, highlighting a case between an understudied 
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serine/threonine kinase TAOK1 and a metabolic kinase PIK3C2A with high co-expression in human cells. We 

also identify evolutionary fission events involving the understudied OBSCN kinase domains, further highlighting 

the value of domain-based orthology inference approaches. Using KinOrtho-defined orthologs, Gene Ontology 

annotations, and machine learning, we propose putative biological functions of several understudied kinases, 

including the role of TP53RK in cell cycle checkpoint(s), the involvement of TSSK3 and TSSK6 in acrosomal 

vesicle localization, and potential functions for the ULK4 pseudokinase in neuronal development. 

The well-curated kinome ortholog set can serve as a valuable resource for illuminating understudied kinases, 

and the KinOrtho framework can be extended to any gene-family of interest. 

 

Introduction 

Since the completion of the human genome project, thousands of species have been fully sequenced (Adams 

et al. 1991), providing a broader coverage of species diversity across the tree of life. “Moonshot” approaches, 

such as the Earth BioGenome Project (EBP), aim to catalog, and then characterize, genomes across eukaryotic 

biodiversity during the next decade (Lewin et al. 2018). The acquisition of genomic (and their associated 

proteomic) datasets enables the accurate prediction of protein functions through ever-deeper evolutionary 

analysis of related sequences (Weiss 1993). Protein kinases transfer the gamma phosphate group from ATP to 

an expanding subset of amino acids in their regulatory targets (Hardman et al. 2019). They can be distinguished 

from other mechanistically related enzymes, such as metabolic and glycan-modifying kinases (Shrestha et al. 

2020b). Protein kinases represent one of the largest druggable families of signaling proteins that are abnormally 

regulated in various human diseases, including most human cancers (Hopkins and Groom 2002; Arslan et al. 

2006). The human genome encodes nearly 550 protein kinase-related genes (collectively referred to as the 

human kinome) that have been broadly classified into major groups and families (Manning et al. 2002; Wilson et 

al. 2018). A majority of the human kinome members have been functionally characterized in multiple model 

organisms; however, nearly 30% of human kinases remain understudied, despite multi-organism knowledge of 

their primary sequence. These orphan kinases are collectively referred to as “dark” kinases (Health 2019) 

(Jensen PubMed score (Nguyen et al. 2017) < 50, no R01s, and PubTator score (Wei et al. 2013) < 150), and 

many contain clear orthologs in a majority of eukaryotic genomes, suggesting essential biological functions 
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across life. A major focus of the Illuminating the Druggable Genome (IDG; https://commonfund.nih.gov/idg/index) 

consortium is to characterize the functions of these understudied proteins as a conceptual starting point for 

developing new drugs for a wide range of diseases such as cancer, neurodegenerative and auto-immune 

disorders that are associated with abnormal kinome signaling (Moret et al. 2020). 

Comparative genomics is a powerful approach for inferring gene functions and is based on the 

assumption that genes descended from the same ancestor are likely to retain commonly shared functions (Fitch 

1970; Wei et al. 2002). These gene descendants are called orthologs and paralogs, two major types of homologs 

related to speciation and duplication events, respectively (Fitch 2000). Paralogs can be further defined as in-

paralogs and out-paralogs: the former arises from duplication after speciation, while the latter arises from 

duplication before speciation (Koonin 2005). The concept of “one-to-one” orthologous relationships (one protein 

in one species versus one protein in the other species) has been extended to “one-to-many” or “many-to-many” 

relationships and are collectively termed orthologous groups (Tatusov et al. 1997). Co-orthologs are defined as 

a pair of genes from the same orthologous group but different species (O'Brien et al. 2005). Given the importance 

of these relationships for functional analysis, several orthology inference methods have been developed. We 

have previously used these approaches to analyze canonical protein kinases and pseudokinases, including a 

broad survey of pseudoenzymes (Ribeiro et al. 2019), pseudokinases (Kwon et al. 2019), and a variety of 

understudied kinases whose biological function remains unknown, despite conservation in various eukaryotic 

lineages (Bailey et al. 2015; Eyers et al. 2017; Shrestha et al. 2020a). 

Current orthology inference methods can be broadly classified into two major categories: tree-based 

methods (Vilella et al. 2009; Kaduk and Sonnhammer 2017; Huerta-Cepas et al. 2019; Mi et al. 2019) and graph-

based methods (Li et al. 2003; Lechner et al. 2011; Altenhoff et al. 2013; Sonnhammer and Ostlund 2015; Train 

et al. 2017; Cosentino and Iwasaki 2019; Emms and Kelly 2019; Nevers et al. 2019; Derelle et al. 2020). Tree-

based methods, such as EnsemblCompara (Vilella et al. 2009), construct reconciled trees based on gene trees 

and corresponding species trees while graph-based methods identify hypothetical orthologs, expand the graph 

by adding in-paralogs and co-orthologs, and then cluster them into orthologous groups. Tree-based methods 

are generally more accurate than graph-based methods, depending on the accuracy of species trees (Gabaldon 

2008; Trachana et al. 2011). However, tree-based methods are computationally expensive in terms of time, 
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limiting the exploration of thousands of species across the tree of life (Gabaldon 2008). In contrast, graph-based 

methods such as OrthoMCL (Li et al. 2003) are faster, but the increased speed is usually achieved at the cost 

of reduced sensitivity. 

 Most orthology inference methods rely on time-consuming all-vs-all sequence similarity searches across 

full-length gene or protein sequences across entire genomes. As such, these methods are not designed for 

focused analysis on individual gene families. Within large protein families, such as the protein kinase superfamily, 

traditional orthology inference methods possess high false-positive rates since they do not consider the 

conservation of known functional domains. It can end up identifying sequences as putative orthologs that almost 

certainly lack the classical bilobal kinase domain. In contrast, domain-based methods, such as Hierarchical 

grouping of Orthologous and Paralogous Sequences (HOPS) (Storm and Sonnhammer 2003), FlowerPower 

(Krishnamurthy et al. 2007), Domain based Detection of Orthologs (DODO) (Chen et al. 2010), Microbial 

Genome Database (MBGD) (Uchiyama et al. 2015), and Domainoid (Persson et al. 2019), are tailored to identify 

evolutionary relationships based on functionally relevant regions, notably domains, of a protein. However, the 

performances of these methods are reliant on the annotation of domains based on prior knowledge, thereby 

making it challenging to identify novel domains and relationships. A good example of this is the discovery of 

atypical kinases with very low sequence identity compared to search sequences, such as the atypical SelO 

kinase (Sreelatha et al. 2018). 

To address the above challenges in orthology prediction, we developed KinOrtho as a complementary 

approach for efficient and accurate identification of human kinase orthologs across ~17,000 species, extending 

well beyond the 15 model organisms defined in the seminal study of Manning and colleagues (Manning et al. 

2002) and a recently updated kinase-centric database with kinases from 2,000 species (Krupa et al. 2004). 

KinOrtho is query-based and achieves increased sensitivity by combining similarities in the commonly conserved 

protein kinase domain and flanking regulatory domains. This enables us to develop one-to-one orthology 

relationships providing a finer resolution of orthologs across species compared to previous efforts. We apply 

KinOrtho towards identifying putative proteins involving fusion or fission events, or so-called “Rosetta Stone 

protein” (Marcotte et al. 1999). By integrating evolutionary information with gene expression patterns, we identify 

a potential functional association between an understudied kinase “Serine/threonine-protein kinase TAO1” 
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(TAOK1) and a metabolic kinase “Phosphatidylinositol-4-phosphate 3-kinase” (PI3KC2A) in autophagy. Using 

KinOrtho-defined orthologs, Gene Ontology (GO) annotations, and machine learning models, we prioritize 

understudied kinases for functional studies by developing a Novel Inferred Annotation Score (NIAS). The 

KinOrtho pipeline and ortholog datasets are available at the GitHub (https://github.com/esbgkannan/KinOrtho), 

and the patterns of conservation in aligned orthologs sequences are visualized in both KinView (McSkimming et 

al. 2016) (https://prokino.uga.edu/kinview/) and Pharos (Sheils et al. 2021) (https://pharos.nih.gov/). 

 

Results 

Overview of KinOrtho algorithm 

KinOrtho is a query- and graph-based orthology inference method that combines full-length and domain-based 

orthology inference approaches. It consists of two pipelines (full-length and domain-based) and six main steps: 

(i) homology search, (ii) building kinome databases, (iii) all-vs-all homology search, (iv) orthology inference, (v) 

cluster analysis, and (vi) combining the results from two pipelines (Figure 1). 

 

Figure 1. Overview of the KinOrtho algorithm. KinOrtho is an orthology inference method combining full-length and domain-

based approaches. It consists of six main steps: (i) homology search against reference proteomes, (ii) building BLAST 

databases, (iii) all-vs-all homology search, (iv) orthology inference, (v) cluster analysis, and (vi) combining the results of full-

length and domain-based approaches. 

 

 Because KinOrtho is query-based, it omits a large portion of unnecessary sequence comparisons 

unrelated to the query sequence(s). This characteristic makes KinOrtho a more efficient tool to identify orthologs 

of interest across the tree of life. We applied KinOrtho to identify the orthologs of 545 human kinases across 
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some 17,000 species found in UniProt reference proteomes (Suzek et al. 2007). Without target genes, traditional 

orthology inference methods start from an all-vs-all homology search, which would require orders of magnitude 

(more than two quadrillion) pairwise sequence comparisons for this sample of reference proteomes. Because 

our query sequences were human kinases, only about eight thousand species were found to have human kinase 

homologs, which resulted in a nearly 2,000-fold reduction in the number of comparisons to be made 

(Supplementary Table S1). This makes KinOrtho one of the most computationally efficient orthology inference 

methods currently available for the identification of kinases. 

When performing orthology inference, we adopted the definition of orthologous relationship used by 

OrthoMCL (Li et al. 2003) (see Methods), which resulted in twice as many orthologous relationships using 

similarity in full-length sequences compared to similarities within the kinase domain alone (302 million for full-

length vs. 148 million for kinase domain; Supplementary Table S1). However, the application of graph-based 

clustering and further refinement of the clusters resulted in a comparable number of orthologous relationships in 

the full-length (97 million) and domain-based (100 million) pipelines (referred to as full-length set and domain-

based set, respectively). Finally, the combination of both pipelines resulted in 75 million overlapping orthologous 

relationships (termed “overlapping set” from here on), including ~133,000 relationships between human kinases 

and kinases from other species (Supplementary Table S1). Since this is the most refined set of relationships 

obtained from KinOrtho, this overlapping set will be referred to as KinOrtho throughout this manuscript. In 

contrast, the reference to the full-length and domain-based results will be stated explicitly when they occur. 

 

Benchmarking and comparison of KinOrtho with other orthology inference methods 

To evaluate and compare the performance of KinOrtho with the ability of other orthology inference methods in 

identifying kinase orthologs, we applied KinOrtho to the well-curated Quest for Orthologs (QfO) reference 

proteomes 2018 (Altenhoff et al. 2016). As shown in Figure 2a, the overall comparison metrics for KinOrtho are 

better (in terms of the overall precision and recall) than existing methods in the benchmarking datasets based 

on the enzyme classification conservation test, agreement with reference gene phylogenies, and species tree 

discordance benchmarks. The remaining metrics are shown in Supplementary Figure S1. It is also important to 

note that the selection of orthologs from KinOrtho’s full-length pipeline, domain-based pipeline, and the 
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overlapping results all yielded similar performance (compared to other methods), suggesting robustness and 

agreement across these methods. 

 

Figure 2. Benchmarking and comparison of KinOrtho with other methods. (a) Evaluations of the kinase orthologs identified 

by KinOrtho (marked in red) and 21 other methods. The title of each plot represents the evaluation metric. The dotted line 

represents the Pareto frontier, which runs over the participants with the best efficiency (except KinOrtho). The arrow in the 

plot shows the optimal corner. Red square: KinOrtho full-length set; red diamond: KinOrtho domain-based set; red triangle: 

KinOrtho overlapping set. (b) The 100% stacked bar chart shows the overlap in kinase orthologs identified by KinOrtho 

versus other orthology inference methods (blue region); a dashed line indicates the average percentage of the overlaps 

(KinOrtho Full-length and KinOrtho Domain-based do not count). The orange region represents the percentage of orthologs 

only identified by KinOrtho; a dotted line indicates the average percentage of the blue and orange regions. The gray region 

shows the percentage of orthologs unique to the compared method. (c) The heat map represents the Jaccard similarity 

matrix among orthology inference methods. Method indices are shown on the left and top of the matrix. 
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Next, a direct comparison between the pairs of orthologs identified by KinOrtho was performed alongside 

other methods in order to gain insights into overlapping predictions. In general, 35-60% of the orthologs identified 

by KinOrtho were also identified by other methods (blue bars in Figure 2b). Besides, KinOrtho (overlapping set) 

consistently found orthologs not identified by other methods (orange bars in Figure 2b). Several unique KinOrtho-

defined human kinase orthologs, such as cyclin-dependent protein kinase (CDK) orthologs, are described in 

Supplementary Results and shown in Supplementary Figure S2-S4. On the other hand, KinOrtho consistently 

omitted at least 10% of the orthologs (average: 23.2%; gray bars in Figure 2b) that were identified by other 

methods. This number is significantly reduced when considering KinOrtho full-length or domain-based sets alone 

(average: 14.3% and 17.2%, respectively; gray bars in Supplementary Figure S5), suggesting that KinOrtho 

eliminates putative ortholog sequences that lack the well-defined bilobal kinase domain associated with protein 

kinases. The ability of KinOrtho to delineate the orthologs based on the protein kinase domain against the 

orthologs based on other conserved domains is described in Supplementary Results and shown in 

Supplementary Figure S6. Additional details about the utility and benchmarking of the domain-based approach 

are discussed below. Finally, we generated a similarity heat map to quantify orthology predictions by KinOrtho 

and other methods (Figure 2c). Similarities measured by the Jaccard similarity coefficient between two ortholog 

sets ranged from 25.3% (Reciprocal Smallest Distance (RSD) (Wall et al. 2003) vs. Orthologous Matrix (OMA) 

(Train et al. 2017) to 81.5% (SonicParanoid (Cosentino and Iwasaki 2019) vs. OrthoInspector (Nevers et al. 

2019). The average similarity among all methods was 50.4%. Orthology results from Bidirectional Best Hits (BBH) 

(Overbeek et al. 1999) and two BBH- and graph-based methods, OrthoInspector and SonicParanoid, were found 

to have the most agreement with KinOrtho results (average similarities: 59.9%, 59.8%, and 58.7%, respectively). 

 

Inferring functional associations using KinOrtho-based identification of kinase domain fusion and 

fission events 

KinOrtho’s ability to find orthologs for individual domains allows identifying domain fusion and fission events for 

kinases with multiple kinase domains. In the human kinome, there are 13 kinases with two tandem kinase 

domains within the same polypeptide, many of which are functionally annotated phosphorylation targets of 

Mitogen Activated Protein Kinase (MAPK) signaling pathways. Figure 3a illustrates the four scenarios of finding 
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domain-based orthologs for these 13 kinases: (1) tandem domains in one kinase match tandem domains in 

another kinase, (2) tandem domains in one kinase match tandem domains in another kinase in reverse order, 

(3) two domains from two human kinases match tandem domains in one kinase from another species, and (4) 

tandem domains in one human kinase match two domains from two kinases in another species. Traditional full-

length BBH-based orthology inference methods do not have the resolution to distinguish between these 

scenarios. However, KinOrtho’s domain-based approach allows the definition of orthologs from all scenarios, 

thus identifying fusion and fission events in orthologous sequences. 

Scenario 3 in Figure 3a reflects potential domain fusion events. Although we identified 113 potential 

fusion events, we use TAOK1 and PIK3C2A as an example to illustrate how integrating evolutionary data with 

other contextual data (protein-protein interaction, co-expressions, and co-occurrence) can reveal potential 

functions for understudied kinases (Supplementary Data S1). TAOK1, an understudied kinase, belongs to the 

STE20 family, while PIK3C2A belongs to the PI3K family. We found nine kinases with two domains matching 

both the human TAOK1 kinase domain and PIK3C2A kinase domain (Figure 3b). In addition, we identified 236 

species with both TAOK1 and PIK3C2A domain-based orthologs in different kinases. We concatenated the 

sequences of TAOK1 orthologs and PIK3C2A orthologs for each species and then built a phylogenetic tree. We 

found that eight kinases with TAOK1 and PIK3C2A domains reside in the same clade of Nematodes. Based on 

this, we postulate two potential fusion events (indicated by red stars on the phylogenetic tree, Figure 3b). Proteins 

involved in a fusion event usually belong to the same functional category (Yanai et al. 2001). As an example, 

TAOK1, an understudied kinase, shows high co-expression with PIK3C2A in 17,382 normal samples and 1,376 

cancer samples in the Genotype-Tissue Expression project (Consortium 2013) (GTEx, version 8) and the Cancer 

Dependency Portal (Tsherniak et al. 2017) (DepMap, 20Q4), respectively. The correlations (Pearson correlation 

coefficient = 0.856 in normal samples and 0.612 in cancer samples) are among the top 0.15% of all kinase pairs 

(Supplementary Figure S7). The co-expressed patterns are conserved in A.aegypti, B.taurus, D.melanogaster, 

and S.mansoni (STRING (Szklarczyk et al. 2019), version 11.0), suggesting a possible physical interaction. 

Moreover, TAOK1 and PIK3C2A have been reported to be involved in the autophagy response (Bennetzen et 

al. 2012). Based on the finding of these evolutionary fusion events and contextual data, we predict a functional 

association between the understudied kinase TAOK1 and PIK3C2A in human cellular biology, perhaps involving 
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communication between the membrane, where phospholipids are sensed, and the cytosol, where TAOK1 has 

known functions in relaying information to MAPK pathways. 

 

 

Figure 3. Scenarios of a single protein with two kinase domains and examples of potential gene fusion and fission events. 

(a) Four scenarios of a single protein with two kinase domains and their domain-based orthologs. Arrows represent 

orthologous pairs. The number of cases for each scenario is shown in parentheses. (b) Example of Scenario 3 and 

phylogenetic tree analysis on the fusion event of TAOK1 orthologs and PIK3C2A orthologs. Human TAOK1’s and 

PIK3C2A’s domain-based orthologs in 245 species were aligned, concatenated (represented by a dotted line if these two 

domains are from different species), and used to build a phylogenetic tree. Species names are labeled at the leaves of the 

circular-mode phylogenetic tree. The leaves are colored according to the clade of the species (refer to legend). Black stars 

mark the species with a TAOK1-PIK3C2A fused gene. The time when potential fusion events occurred is indicated by the 

red stars shown on the tree. (c) Example of Scenario 4 and analysis of the fission event of OBSCN orthologs. The domain-

based orthologs of human OBSCN’s two kinase domains in 80 species were used to build a phylogenetic tree. Black 

triangles mark the species with fissioned genes. Red triangles indicate the time when potential fission events occurred. 
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We also analyzed cases in Scenario 4 for potential domain fission events. We found ten kinases in five 

species (ferrets, turkeys, Atlantic salmon, rainbow trout, and huchen) matching the tandem kinase domains in 

human Obscurin (OBSCN) kinase (Figure 3c). Besides, the tandem kinase domain arrangement in OBSCN is 

conserved in 75 species (Scenario 1). In species where the tandem domains are encoded in two different 

proteins, we concatenated the domains and performed phylogenetic comparisons with species where the two 

domains are naturally fused. The concatenated sequences of Atlantic salmon, rainbow trout, and huchen occur 

in the same clade. Based on the phylogenetic tree, we estimate three kinase domain fission events (marked by 

red triangles in Figure 3c). Although the functional significance of these fission events is unclear, the established 

role of OBSCN in eye development (Kontrogianni-Konstantopoulos and Bloch 2005; Perry et al. 2013) suggests 

a role for these events in the evolution of vision in these species (Dickson 1992; Fraser et al. 1993; Kadri et al. 

1997; Fox and Marini 2014). 

 

Phylogenetic profile analysis reveals the evolutionary depth of human protein kinase conservation and 

enriched molecular functions across species 

We next sought to classify human kinases based on conservation depth across species by building a 

phylogenetic profile of KinOrtho-defined orthologs. Figure 4a highlights a human kinase phylogenetic profile 

consisting of 558 human kinase domains and their orthologs across 561 clades. As expected, human kinase 

orthologs are barely present in bacteria, archaea, and viruses, except for the orthologs of eukaryotic-like protein 

kinases. Consistent with previous findings, four eukaryotic-like kinases, Protein adenylyltransferase SelO, 

mitochondrial (SELENOO; 3,936 orthologs), AarF domain-containing protein kinase 1 (ADCK1; 3,258 orthologs), 

Ketosamine-3-kinase (FN3KRP; 2,234 orthologs), and Serine/threonine-protein kinase RIO1 (RIOK1; 1,849 

orthologs) have the most orthologs. In contrast, Casein kinase II subunit alpha 3 (CSNK2A3), Rhodopsin kinase 

GRK1 (GRK1), Putative serine/threonine-protein kinase PRKY (PRKY), and Probable serine/threonine-protein 

kinase SIK1B (SIK1B) are “orphan” kinases with no orthologs based on KinOrtho’s stringent criteria. The 

phylogenetic profile also shows that the kinases in tyrosine kinase (TK), tyrosine kinase-like (TKL), and receptor 

guanylate cyclase (RGC) groups are mainly conserved in Metazoa (including mammals, reptiles, birds, fish, and 

protostomes), which is consistent with the findings of a previous study (Suga et al. 2012). 
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Figure 4. Cluster analysis of the phylogenetic profile of human kinases. (a) Phylogenetic profile of human kinases. X-axis: 

558 human kinase domains, ordered by the kinase group and the number of orthologs identified by KinOrtho. Y-axis: 561 

clades, ordered by classification. Each dot’s color represents the coverage of the human kinase ortholog in each clade. (b) 

Phylogenetic clusters of human kinases. The human kinase domains in the x-axis are in the order of clusters and the number 

of orthologs. The boundaries of each cluster and classification are highlighted in red. (c) Top 5 understudied kinases with 

the most orthologs in each cluster. The number of species in each classification is shown in parentheses. 

 

 Many understudied kinases have escaped analysis due to weak conservation in model organisms. Based 

on the distribution of orthologs across different species, we organized human kinases into 10 clusters (Figure 

4b). The top 5 understudied kinases with the most orthologs in each cluster are highlighted in Figure 4c. Kinases 

within each cluster are closely related (small Euclidean distance) with high co-occurrence with each other. Using 

this clustered phylogenetic profile, we sought to identify potentially conserved kinase-regulated biological 

functions across species. For example, because the kinases in Cluster 5 are highly conserved in Metazoa, we 

can hypothesize a role for these kinases in metazoan-specific biological functions. To this end, we performed 

Gene Ontology (GO) enrichment analyses using the GO annotations of all kinases as background. We identified 

802 significantly enriched GO terms (false discovery rate (FDR) < 0.05), and the GO term is annotated for at 
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least five human kinases in the cluster. The top three enriched GO terms for each cluster are shown in Table 1, 

and the entire list is shown in Supplementary Data S2. 

 

Table 1. GO term enrichment analysis on the phylogenetic clusters of human kinases. Based on fold enrichment, only the 

top three enriched GO terms in each cluster are shown. Cluster: the cluster ID shown in Figure 4b; #Kinases: the total 

number of human kinases and their orthologs in the cluster; K: the total number of kinases associated with the GO term; 

k: the number of kinases associated with the GO term in the cluster; Fold: fold enrichment; FDR: false discovery rate. 

Cluster #Kinases Conserved in Enriched GO term K k Fold FDR 

2 27,128 Eukaryota GO:0000075 
(Cell cycle checkpoint) 

4,765 3,619 3.66 < 1.0E-320 

GO:0098805 
(Whole membrane) 

1,289 890 3.33 2.3E-306 

GO:0046488 
(Phosphatidylinositol metabolic process) 

2,634 1,772 3.24 < 1.0E-320 

3 16,899 Vertebrata, 
Protostomia 
(partial), 
Fungi 

GO:0000165 
(MAPK cascade) 

1,943 1,025 4.08 < 1.0E-320 

GO:0005694 
(Chromosome) 

284 120 3.27 < 1.0E-320 

GO:1902749 
(Regulation of cell cycle G2/M phase transition) 

983 380 2.99 2.2E-10 

4 6,933 Vertebrata, 
Protostomia 
(partial), 
Plants 

GO:0010468 
(Regulation of gene expression) 

9,690 796 1.55 < 1.0E-320 

GO:0006807 
(Nitrogen compound metabolic process) 

20,390 1,470 1.36 < 1.0E-320 

GO:0044238 
(Primary metabolic process) 

23,630 1,663 1.33 2.1E-09 

5 12,496 Metazoa GO:0008047 
(Enzyme activator activity) 

778 341 4.59 1.9E-10 

GO:0090287 
(Regulation of cellular response to growth factor stimulus) 

627 249 4.15 3.7E-11 

GO:0016055 
(Wnt signaling pathway) 

415 161 4.06 < 1.0E-320 

6 16,115 Vertebrata, 
Protostomia 
(partial) 

GO:0045669 
(Positive regulation of osteoblast differentiation) 

437 243 4.51 1.1E-102 

GO:0030500 
(Regulation of bone mineralization) 

508 244 3.90 < 1.0E-320 

GO:0034645 
(Cellular macromolecule biosynthetic process) 

797 330 3.36 1.0E-10 

7 17,842 Vertebrata GO:0042629 
(Mast cell granule) 

54 54 7.33 5.5E-46 

GO:0030522 
(Intracellular receptor signaling pathway) 

152 146 7.04 8.6E-116 

GO:0042102 
(Positive regulation of T cell proliferation) 

211 202 7.01 1.6E-159 

8 10,994 Mammals, 
Reptiles/Birds 
(partial), 
 Fish 

GO:0051965 
(Positive regulation of synapse assembly) 

250 177 8.42 2.2E-128 

GO:0005004 
(GPI-linked ephrin receptor activity) 

215 130 7.19 5.4E-81 

GO:0005005 
(Transmembrane-ephrin receptor activity) 

267 143 6.37 3.9E-79 

9 10,202 Mammals, 
Reptiles/Birds 
(partial) 

GO:0001669 
(Acrosomal vesicle) 

103 75 9.33 3.2E-58 

GO:0031253 
(Cell projection membrane) 

283 161 7.29 1.8E-99 

GO:0014068 
(Positive regulation of phosphatidylinositol 3-kinase signaling) 

413 164 5.09 4.8E-11 

10 3,043 Mammals 
(partial) 

GO:0035173 
(Histone kinase activity) 

665 96 6.20 1.1E-11 

GO:0050321 
(Tau-protein kinase activity) 

318 43 5.81 8.7E-12 

GO:0051051 
(Negative regulation of transport) 

818 98 5.15 < 1.0E-320 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.05.434161doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.05.434161
http://creativecommons.org/licenses/by/4.0/


14 

 

The orthologs of human kinases in Cluster 2 are present in most eukaryotic species. The most enriched 

GO term in Cluster 2 is a biological process term “cell cycle checkpoint” (GO:0000075), which encompasses a 

variety of DNA and spindle-assembly checkpoints, well-established control mechanisms that control progression 

through the eukaryotic cell cycle (Hartwell and Weinert 1989). EKC/KEOPS complex subunit TP53RK (TP53RK), 

an understudied kinase with 1,367 orthologs, plays a vital role in the cell cycle and G1 checkpoint control (Abe 

et al. 2001; Richardson et al. 2012). However, this GO term is currently absent in both human TP53RK annotation 

and TP53RK ortholog annotation. Kinases in Cluster 9 are mostly present in mammals. Consistently, the cellular 

component term “acrosomal vesicle” (GO:0001669) is the most enriched GO term in Cluster 9. Acrosomal 

vesicles, components in the sperm’s head, contain enzymes essential for fertilization (Moreno et al. 2000). All 

members of testis-specific serine/threonine-kinases (TSSK) belong to Cluster 9, and they are all understudied 

kinases: TSSK1B, TSSK2, TSSK3, TSSK4, and TSSK6. Currently, TSSK1B, TSSK2, and TSSK4 are annotated 

with this GO term. Although TSSK3, TSSK6, and their orthologs lack this annotation, both TSSK3 and TSSK6 

are highly expressed in testis (median Transcripts Per Million = 60.86 and 424.6, respectively) (Consortium 2013). 

TSSK6 is also reported to be involved in the acrosome reaction and egg fertilization (Sosnik et al. 2009). 

Therefore, based on the cluster analysis of the phylogenetic profile, we predict TSSK3 and TSSK6 function in 

acrosomal biology and vesicle localization. 

 

Machine learning model to prioritize understudied kinases using KinOrtho and GO annotations 

The human kinome contains several understudied kinases of unknown function. We next wanted to investigate 

if KinOrtho-defined orthologs, along with sequence similarities and GO annotations from different species, can 

be used to infer the functions of understudied kinases using “guilt-by-association” (Oliver 2000) and machine 

learning methods. To this end, we trained machine learning classifiers using orthology and functional annotations 

of well-studied human kinases to predict whether functional annotation could be transferred from orthologs in 

other species to human kinases. In brief, we built training sets using the manually curated GO annotations of 

well-studied kinases (Figure 5). The input features of each training instance represent the GO annotation status 

of human kinase orthologs; the output shows whether the human kinase has this GO term annotation or not. 

Input features were weighted based on the sequence similarities between the human kinase and orthologs. The 
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training sets contained 0.3 million instances with 730 GO terms for 393 well-studied kinases and their orthologs 

across 176 species. After class balancing and 10-fold cross-validation, random forest displayed high prediction 

accuracies among various machine learning methods attempted (90.9%, 92.1%, and 95.5% for the training sets 

of biological process, cellular component, and molecular function, respectively; Table 2). 

 

 

Figure 5. Calculating the Novel Inferred Annotation Score (NIAS) for understudied kinases using the phylogenetic profile, 

GO annotations, and machine learning methods. The weight matrices represent the normalized sequence similarities 

between the human kinase and orthologs. The training sets and test sets show an example of a GO term (GO:0050896, 

response to stimulus) annotation status across well-studied human kinases, understudied human kinases, and orthologs. 

CV: cross-validation; IAS: Inferred Annotation Score; UAS: Unreviewed Annotation Score; NIAS: Novel Inferred Annotation 

Score. 
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Table 2. Performance of GO annotation prediction in each training set. The best performance in each measurement and 

each GO domain is highlighted in bold. 

GO domain Model Accuracy Precision Recall F-measure AUC 

Biological process Logistic regression 0.896 0.942 0.844 0.891 0.914 

SVM 0.896 0.943 0.843 0.890 0.896 

Random forest 0.909 0.944 0.869 0.905 0.923 

Cellular component Logistic regression 0.908 0.955 0.856 0.903 0.924 

SVM 0.908 0.955 0.858 0.903 0.908 

Random forest 0.921 0.959 0.880 0.918 0.932 

Molecular function Logistic regression 0.940 0.959 0.919 0.939 0.961 

SVM 0.942 0.959 0.925 0.941 0.942 

Random forest 0.955 0.964 0.945 0.955 0.965 

 

Next, we used the trained models (random forests) to predict the functions of understudied kinases. To 

this end, we constructed test sets in which understudied human kinases could be annotated based on the GO 

terms available for one or more of their orthologs. This resulted in 16 thousand instances with 2,642 GO terms 

for 144 understudied kinases. Application of the pre-trained random forest models on the test sets resulted in 

11,573 predictions of kinase-GO term pairs as present (Supplementary Table S2). Among these predicted 

annotations, 8,933 predictions (77.2%) already existed in the UniProt as manually reviewed annotations, while 

2,640 predictions (22.8%) were not found in the UniProt. Instead of referring to these 2,640 predictions as false 

positives, we considered them as missing annotations. In fact, 1,452 of them (55%) were found to be unreviewed 

electronic annotations from Ensembl (Yates et al. 2020), InterPro (Mitchell et al. 2019), the UniProt Consortium, 

or the GO Consortium. The remaining 1,188 annotations, including 236 lowest-level GO term annotations, were 

novel inferred annotations (available in Supplementary Data S3). By aggregating the prediction score of each 

novel inferred annotation, we calculated a Novel Inferred Annotation Score (NIAS) for each understudied human 

kinase (the last step in Figure 5). 

 Our analysis reveals that Serine/threonine-protein kinase ULK4 (ULK4) has the highest NIAS among all 

understudied human kinases. It has 22 novel inferred annotations. Fifteen of them with prediction scores higher 

than 0.9 are inferred from mouse/rat Ulk4. Twelve of these inferred annotations with a high score are associated 

with neuronal function and brain development, such as “ventricular system development” (GO:0021591), “corpus 

callosum development” (GO:0022038), “neuronal stem cell division” (GO:0036445), and “GABAergic neuron 

differentiation” (GO:0097154). A role for human ULK4 in neuronal function and brain development has been 

suggested (Lang et al. 2014; Lang et al. 2016; Khamrui et al. 2020), and it is an unusual pseudokinase that binds 
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to nucleotides in the absence of cations (Murphy et al. 2014; Eyers 2020). Serine/threonine-protein kinase PAK 

5 (PAK5), an understudied kinase with the second highest NIAS, has 12 novel inferred annotations. The 

association between PAK5 and “activation of MAPK activity” (GO:0000187), the GO term with the highest 

prediction score for PAK5, is also known from the literature, where these kinases act as upstream regulators of 

MAPK modules (Pandey et al. 2002). We also identified 80 understudied kinases with a NIAS of 0. We can still 

prioritize these proteins by Inferred Annotation Score (IAS, which aggregates all prediction scores regardless of 

existing unreviewed annotations; see Methods) for further manual curation or experimental validation. For 

example, the NIAS of Eukaryotic elongation factor 2 kinase (EEF2K) is 0. Kinases in this list include 

pseudokinases such as Serine/threonine-protein kinase H2 (PSKH2), which represent the “darkest” of kinases 

with little or no information across species and no functional biology currently reported (Shrestha et al. 2020a). 

 

Discussion 

Here we map human kinase orthologs across diverse species by developing a kinase orthology inference method 

called KinOrtho. We demonstrate that KinOrtho performs better than existing orthology inference methods based 

on comparisons across standard benchmarking datasets and metrics. KinOrtho utilizes domain-based orthology 

inference to eliminate orthologs with no kinase domains, allowing researchers to focus on the functional domains 

of interest. KinOrtho’s query-based characteristic enables users to identify orthologs of specific kinases across 

thousands of species within a reasonable time. In contrast to orthologous groups provided by other methods, 

this approach provides one-to-one ortholog, in-paralog, and co-ortholog relationships, thereby revealing 

functional relationships and separating even the most closely related paralogous sequences. 

 While KinOrtho’s performance is better than existing methods based on metrics in the benchmarking 

dataset (Figure 2a and Supplementary Figure S1), overlap in orthologous relationships (not only kinase orthologs) 

defined by various methods in the benchmarking dataset is significantly low (only 29.9% similarity; 

Supplementary Figure S8), presumably because of the variability in orthology definition, methods used, or even 

potential genome assembly errors in the UniProt reference database. Thus, the interpretation of ortholog sets 

should be made with some caution. The Alliance of Genome Resources (AGR) has recently established 

orthologous relationships among humans and six model organisms: Caenorhabditis elegans, Drosophila 
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melanogaster, Danio rerio, Mus musculus, Rattus norvegicus, and Saccharomyces cerevisiae (Alliance of 

Genome Resources 2020). The orthologous relationships in AGR are based on the consensus of seven 

orthology inference methods (Thomas et al. 2003; Kaduk et al. 2017; Train et al. 2017; Emms and Kelly 2019; 

Nevers et al. 2019; Yates et al. 2020) and five databases (Povey et al. 2001; Li et al. 2006; DeLuca et al. 2012; 

Huerta-Cepas et al. 2014; Ruzicka et al. 2019). Comparison of KinOrtho-defined human kinase orthologs with 

AGR-defined orthologs reveals nearly 70.5% similarity. The greatest difference in kinase orthology sets occurs 

in the CMGC and CAMK groups, presumably because of the deeper conservation of these kinases across taxa 

(Supplementary Figure S2). 

In our previous study (Huang et al. 2018), we developed an annotation score (AS) for prioritizing 

understudied kinases based on existing knowledge; in this study, we propose a complementary NIAS for 

prioritizing understudied kinases based on missing knowledge. Together, these scores provide a comprehensive 

metric for pursuing understudied kinase studies. To accurately infer the function of understudied kinases using 

orthologous relationships, extensive annotations from broad coverage of species are needed. For illuminating 

understudied kinases, or understudied enzyme superfamilies, ion channels, or G-protein-coupled receptors, a 

broader collection of manually curated biological functions from various species would be immensely helpful. 

In conclusion, we have developed an efficient query-based orthology inference method that combines 

full-length and domain-based orthology inference methods to comprehensively map human kinase orthologs 

across the tree of life in this study. KinOrtho performed better than existing methods in a benchmarking dataset 

and identified putative domain fusion and fission events. We confirmed kinase-associated molecular functions 

enriched across species using phylogenetic profiles after identifying overlapping orthologous relationships from 

full-length and domain-based pipelines. Finally, we prioritized and inferred functions of understudied human 

kinases using KinOrtho-defined orthology and GO annotations as features in machine learning. Our studies 

serve as a conceptual starting point for investigating understudied human kinase biology by leveraging 

evolutionary information. This is exemplified, but by no means limited-to, pharmacologically tractable enzyme 

superfamilies such as the protein kinases. 
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Methods 

KinOrtho workflow 

KinOrtho is a query-based, graph-based, and combinatorial orthology inference method. It consists of six main 

steps (Figure 1): 

1. Homology search for the query sequences of interest against reference proteomes 

2. Building Basic Local Alignment Search Tool (Altschul et al. 1990) (BLAST) databases, containing full-

length and domain-based databases 

3. All-vs-all homology search for the rebuilt databases 

4. Orthology inference and determining orthologs, paralogs, and co-orthologs 

5. Cluster analysis and filtering out the orthologous relationships between two proteins in different clusters 

or the clusters without query sequences 

6. Combining the results of full-length and domain-based methods 

 

Query sequences 

This study’s query sequences are based on a recent article that re-analyzes the human kinome’s composition 

(Moret et al. 2020). We collected 545 human kinases, containing 483 protein kinases, 19 eukaryotic-like protein 

kinases, and 43 atypical protein kinases. Based on a manually curated eukaryotic protein kinase sequence 

profile (Kwon et al. 2019), Pfam (El-Gebali et al. 2019), and Conserved Domain Database (Lu et al. 2020), we 

manually annotated and collected 558 kinase domain sequences from the 545 human kinases. More information 

about the domain name, domain boundary, and kinase group are available in Supplementary Data S4. 

 

Reference proteomes 

We applied KinOrtho to the UniProt reference proteomes (release 2019_11), which are chosen to broadly 

represent the taxonomic diversity (Suzek et al. 2007). It is also the most well-curated and extensive collection of 

entire proteomes across the tree of life. The reference proteomes contain 18,870,318 protein sequences 

spanning the tree of life (Supplementary Table S1). To benchmark the performance of KinOrtho, we applied 

KinOrtho to the Quest for Orthologs (QfO) reference proteomes 2018 (Altenhoff et al. 2016), which contains 
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885,338 protein sequences from 48 eukaryotic species, 82,507 sequences from 23 bacterial species, and 17,317 

sequences from 7 archaea species (Supplementary Table S1). To benchmark KinOrtho based on a domain-

based kinase classification, we also applied KinOrtho to the model organisms in KinBase (Manning), which 

includes 15 species and 7,597 kinase sequences (Supplementary Table S3). 

 

Homology search and building BLAST databases 

Before performing a time-consuming all-vs-all homology search for all reference proteomes, KinOrtho looks for 

potential homologs of query sequences by screening the reference proteomes using NCBI BLAST+ (Camacho 

et al. 2009) (version 2.7.1) with default settings, except for the E-value threshold. Referring to other orthology 

inference methods, such as OrthoMCL-DB (Fischer et al. 2011) and PANTHER (Thomas et al. 2003), KinOrtho 

uses 10-5 as a default E-value threshold for BLAST search. This threshold has been demonstrated to balance 

between false-positive and false-negative rates (Chen et al. 2007). An additional experiment showed that 

choosing the default E-value threshold of BLAST+ (101) yielded 19 times more sequence comparisons than 

choosing 10-5 in the benchmarking dataset (Supplementary Table S4) but reduced performance based on the 

six benchmarking metrics shown in Supplementary Figure S9. Then, KinOrtho builds two sets of BLAST 

databases as new reference proteomes (“kinomes” hereafter) based on full-length and domain-based query 

sequences. To build a full-length kinome for each proteome, KinOrtho keeps the sequences in the BLAST result, 

generates a new sequence file, and then applies the “makeblastdb” function provided by NCBI BLAST+. To build 

a domain-based kinome for each proteome, KinOrtho generates a new sequence file and builds a BLAST 

database based on the BLAST hit region (between “sstart” and “send”) of the sequences in the BLAST result. 

After building a set of full-length kinomes and a set of domain-based kinomes, KinOrtho performs an all-vs-all 

homology search for each set using the E-value threshold (10-5) mentioned above. 

 

Orthology inference 

The orthologous relationships identified by KinOrtho include orthologs, in-paralogs, and co-orthologs. KinOrtho 

defines a pair of one-to-one orthologs using the Bidirectional Best Hits (BBH) method (Overbeek et al. 1999). A 

pair of in-paralogs is defined as two protein sequences with a higher similarity score (BLAST bit score) in the 
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same species than the homologous sequences in other species. A pair of co-orthologs is defined based on the 

following two criteria: (i) ortholog of one sequence is the in-paralog of the other, or (ii) in-paralog of each 

sequence are a pair of orthologs. Using all orthologous relationships as edges, KinOrtho builds two graphs by 

connecting the kinases in the full-length and domain-based kinomes, respectively. 

 

Cluster analysis 

To identify orthologous groups, KinOrtho performs the Markov Cluster (MCL) Algorithm (Van Dongen 2000) 

(version 14.137) for the two graphs. MCL is a fast, unsupervised clustering method using a simulation of flow in 

graphs. It has been utilized in other graph-based orthology inference methods (Li et al. 2003; Emms and Kelly 

2015) and detecting protein families (Enright et al. 2002). In the orthologous relationship graphs, KinOrtho 

assigns the negative logarithm of the E-value as a weight for each edge. If an E-value is reported 0 by the BLAST 

program, KinOrtho assigns an arbitrary E-value of 10-200. Considering the systematic differences among species, 

such as nucleotide composition bias, KinOrtho normalizes the weights based on the method used by OrthoMCL 

(Li et al. 2003). For the orthologs or co-orthologs between any two species, KinOrtho normalizes the weights by 

dividing them by the average weight of all the orthologs or co-orthologs between the two species. For in-paralogs, 

the weights are divided by the average weight of all in-paralogs in each kinome. When performing MCL after 

setting a normalized weight for each edge, KinOrtho chooses 1.5 as a default inflation value to control the cluster 

tightness. This value is the best inflation value to balance the sensitivity and selectivity for functional classification 

(Li et al. 2003). Each protein is assigned to a cluster, after which KinOrtho refines orthologous relationships by 

filtering out the relationships between two proteins in different clusters or the clusters without query sequences. 

 

Combining results 

In the last step, KinOrtho combines the orthologous relationships from full-length and domain-based results. We 

define an “overlapping orthologous relationship” as a relationship present in both full-length and domain-based 

results. For example, in Scenario 1 of Figure 3a, if A1B1 (meaning the pair of A’s 1st kinase domain and B’s 1st 

kinase domain) and A2B2 are domain-based orthologs and A-B is a full-length ortholog pair, then both A1B1 and 

A2B2 are defined as overlapping orthologous relationships. However, in Scenario 4 of Figure 3a, if A1B1 and A2C1 
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are domain-based orthologs and A-B is a full-length ortholog pair, only A1B1 is an overlapping orthologous 

relationship, but A2C1 is not. Because non-overlapping relationships are also informative in domain-based 

orthology analyses, KinOrtho keeps all the results from full-length and domain-based methods. 

 

Comparison of orthology inference methods 

There are 21 public orthology inference results available at Ortholog Benchmarking Webservice (Altenhoff et al. 

2016) (Supplementary Table S5; similarity matrices are shown in Supplementary Figure S8). These datasets 

generated by full-length orthology inference methods contain the kinase relationships and all other proteins’ 

relationships in the QfO reference proteomes 2018. To make the orthologs identified by KinOrtho and those 

identified by the 21 methods comparable, we performed the following preprocessing for the compared datasets. 

First, because KinOrtho defines orthologs based on the BBH method, we only kept one-to-one relationships in 

the compared datasets. Second, to identify the kinase orthologs in the compared datasets, we only kept the 

relationships with at least one protein found in the ortholog relationships identified by KinOrtho (either full-length 

or domain-based approach). Finally, to identify human kinase orthologs in the compared datasets, we only kept 

the relationships involving human kinases. The numbers of remaining proteins and ortholog relationships are 

shown in Supplementary Table S5. We submitted these 21 preprocessed one-to-one kinase ortholog datasets 

to Ortholog Benchmarking Webservice for performance evaluation. 

 

Protein domain annotation 

This study employed the annotations in Pfam (El-Gebali et al. 2019) (version 32.0) as known protein domain 

annotations. There are 305,472 proteins with at least one orthologous relationship identified by KinOrtho from 

the UniProt reference proteomes. In these proteins, 197,327 of them have 398,313 domain annotations, and 

149,080 have at least one of the two major protein kinase domains: “Pkinase” and “Pkinase_Tyr”. 

 

Phylogenetic analysis 

The phylogenetic tree analyses in this study were utilized to investigate the gene fusion and fission events of 

proteins with two kinase domains (Figure 3). First, we obtained the domain-based orthologs of the kinase 
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domains of interest. To identify gene fusion events, we used TAOK1 and PIK3C2A as an example. There are 

245 species (including humans) having both TAOK1 and PIK3C2A orthologs. To identify gene fission events, 

we used OBSCN as an example. There are 80 species with the orthologs of both OBSCN’s two kinase domains. 

Second, we aligned those two sets of kinase domain orthologs separately by Multiple Alignment using Fast 

Fourier Transform (Katoh et al. 2002) (MAFFT, version 7.407). We used options “L-INS-i”, “--localpair”, and “--

maxiterate 10000” to generate more accurate alignments. Third, the two kinase domains’ alignments were 

concatenated as a single alignment file: the first kinase domain’s orthologs followed by the second kinase 

domain’s orthologs for each species. Fourth, we used IQ-TREE (Nguyen et al. 2015) with options “-m TEST” 

(standard model), “-bb 1000” (bootstrap replicates), and “-alrt 1000” (approximate likelihood ratio test) to build 

consensus trees. Finally, phylogenetic trees were visualized using Interactive Tree Of Life (Letunic and Bork 

2019) (iTOL, version 4). 

 

Cluster and enrichment analyses on phylogenetic profile 

The phylogenetic profile of human kinases in this study was built upon 558 human kinase domains and their 

orthologs identified by KinOrtho’s both full-length and domain-based approaches across the 17,134 species in 

the UniProt reference proteomes (Figure 4). We manually grouped these species into 561 clades based on the 

NCBI Taxonomy database (Federhen 2012). Each clade contains at least five species; each clade in eukaryotes, 

bacteria, archaea, or viruses contains at most 41, 240, 35, or 2,287 species, respectively. Then we calculated 

an ortholog coverage for each kinase-clade pair by dividing the number of orthologs by the total number of 

species in each clade. Based on this phylogenetic profile (a kinase-clade matrix), in addition to ordering the 

human kinase domains by their groups defined by KinBase (Figure 4a), we clustered them using k-means 

clustering (MacQueen 1967) (Figure 4b). We used an R package “factoextra” (Kassambara and Mundt 2017) 

(version 1.0.7) with options “kmeans” (clustering function), “nstart = 50” (initial random centroids), “nboot = 500” 

(number of bootstrap samples), and “gap_stat” (compute gap statistic (Tibshirani et al. 2001)) to determine the 

optimal number of clusters. We found that the optimal number of clusters was 10 (Supplementary Figure S10). 

 We performed Gene Ontology (GO) enrichment analyses using the GO annotations of all human kinases 

and their orthologs in each cluster. We extracted all three GO domains (biological process, cellular component, 
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and molecular function) annotations from UniProt (UniProt 2019) (release 2019_11). We then expanded the 

lowest-level GO terms to all-levels GO terms for every kinase based on the hierarchical controlled vocabulary 

defined by the GO Consortium (Ashburner et al. 2000; The Gene Ontology 2019). Because the GO terms are 

annotated at the protein level instead of the domain level, we removed duplicate annotations if a protein’s tandem 

kinase domains are in the same cluster. When performing enrichment analyses, we chose all kinase orthologs’ 

annotations as background, used Fisher’s exact test, and then controlled the FDR by the Benjamini-Hochberg 

procedure (Benjamini and Hochberg 1995). A significantly enriched GO term is defined as its FDR < 0.05, and 

it is annotated for at least five human kinases in a cluster. If multiple GO terms in the same lineage are enriched 

in a cluster, we only keep the lowest-level term. 

 

Novel Inferred Annotation Score 

The Novel Inferred Annotation Score (NIAS) proposed in this study is used to estimate the number of potential 

annotations we can infer from orthologous relationships to annotate understudied human kinases, which are 

defined by NIH Illuminating the Druggable Genome program (IDG) (Health 2019) (Supplementary Data S4, last 

updated on June 11, 2019). The scoring system was built upon machine learning-based annotation inference 

models using overlapping orthologous relationships and GO annotations (Figure 5). 

First, to prevent prediction models from being biased by unreviewed data, we only used the manually 

reviewed (non-electronic) annotations of all well-studied kinases and their orthologs to build training sets for the 

three GO domains. The GO terms annotated for less than 100 kinases were excluded from the training sets. 

Each instance of a kinase-GO term pair in the training sets showed the values of output and input features based 

on the GO annotation status (1 for present and 0 for absent) of a well-studied human kinase and its orthologs, 

respectively. For example, in Figure 5, an instance shows that mouse’s and rat’s Egfr genes have a GO term 

“response to stimulus” (GO:0050896) annotation, but human EGFR has not. The training sets consisted of 0.3 

million instances with 730 GO terms for 393 well-studied kinases and their orthologs across 176 species. To 

prioritize the annotations from different species, we further introduced a sequence similarity for each ortholog. 

Sequence similarities are defined by the average of the normalized weights generated when we built orthologous 

relationship graphs. 
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After building the three training sets, we built annotation inference models for each training set using 

logistic regression, support vector machine (SVM), and random forest implemented by WEKA (Hall et al. 2009). 

All models were trained with class balancing (using instance reweighting) and 10-fold cross-validation to prevent 

overfitting. The three machine learning methods’ prediction performances for each training set are shown in 

Table 2. Because random forest showed the best performance among the three training sets, we used the 

annotation inference models built by random forest to predict missing GO annotations for understudied human 

kinases. When building test sets, we used the GO terms annotated for at least one understudied kinase ortholog. 

There were 11,503 instances in the biological process test set, 1,810 instances in the cellular component test 

set, and 2,507 instances in the molecular function test set. After applying the random forest models, the confusion 

matrices built upon the annotation inference result and existing annotations are shown in Supplementary Table 

S2. We collected those GO annotations currently absent but predicted as present for each understudied kinase 

and then only kept the lowest-level term in each GO term lineage. The summation of each prediction score 

calculated by random forest is defined as an Inferred Annotation Score (IAS): 

𝑆(𝑘𝑔) = {
𝑃(𝑘𝑔), 𝑖𝑓 𝑃(𝑘𝑔) > 0.5 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃(𝑘𝑔′) ≤ 0.5

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐼𝐴𝑆(𝑘) = ∑ 𝑆(𝑘𝑔)

𝐺

𝑔=1

 

where 𝑃(𝑘𝑔) is the prediction score of 𝑔th GO term annotation for understudied kinase 𝑘, 𝑔 = {1,2, … , 𝐺}, and 𝑔′ 

represents any descendant of 𝑔th GO term. Because the predicted annotations may include existing unreviewed 

electronic annotations, we defined the NIAS of an understudied kinase by subtracting the unreviewed annotation 

score (UAS) from IAS: 

𝑈(𝑘𝑔) = {
1, 𝑖𝑓 𝑘𝑔 𝑖𝑠 𝑎𝑛 𝑢𝑛𝑟𝑒𝑣𝑖𝑒𝑤𝑒𝑑 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑈𝐴𝑆(𝑘) = ∑ 𝑆(𝑘𝑔)𝑈(𝑘𝑔)

𝐺

𝑔=1

 

𝑁𝐼𝐴𝑆(𝑘) = 𝐼𝐴𝑆(𝑘) − 𝑈𝐴𝑆(𝑘) 
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