

1 **Disentangling effects of climate and land use on biodiversity and ecosystem
2 services – a multi-scale experimental design**

3

4 Sarah Redlich¹, Jie Zhang¹, Caryl Benjamin², Maninder Singh Dhillon³, Jana Englmeier⁴, Jörg
5 Ewald⁵, Ute Fricke¹, Cristina Ganuza¹, Maria Haensel⁶, Thomas Hovestadt⁷, Johannes
6 Kollmann⁸, Thomas Koellner⁶, Carina Kübert-Flock³, Harald Kunstmann^{9,10}, Annette
7 Menzel², Christoph Moning⁵, Wibke Peters¹¹, Rebekka Riebl⁶, Thomas Rummel⁹, Sandra
8 Rojas Botero⁸, Cynthia Tobisch⁵, Johannes Uhler⁴, Lars Uphus², Jörg Müller^{4,12}, Ingolf
9 Steffan-Dewenter¹

10

11 **Affiliations:**

12 ¹ Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg,
13 Würzburg, Germany

14 ² TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Freising, Germany

15 ³ Institute of Geography and Geology, Department of Remote Sensing, Julius-Maximilians-University
16 Würzburg, Würzburg, Germany

17 ⁴ Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Julius-
18 Maximilians-University Würzburg, Würzburg, Germany

19 ⁵ Institute of Ecology and Landscape, Weihenstephan-Triesdorf University of Applied Sciences,
20 Freising, Germany

21 ⁶ Professorship of Ecological Services, Bayreuth Center of Ecology and Environmental Research
22 (BayCEER), University of Bayreuth, Bayreuth, Germany

23 ⁷ Theoretical Evolutionary Ecology Group, Department of Animal Ecology and Tropical Biology,
24 Julius-Maximilians-University Würzburg, Würzburg, Germany

25 ⁸ Chair of Restoration Ecology, Technical University of Munich, Freising, Germany.

26 ⁹ Chair for Regional Climate and Hydrology, Institute of Geography, University of Augsburg,
27 Augsburg, Germany
28 ¹⁰ Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology -
29 Campus Alpin, Garmisch-Partenkirchen, Germany
30 ¹¹ Department of Biodiversity, Conservation and Wildlife Management, Bavarian State Institute of
31 Forestry, Freising, Germany
32 ¹² Bavarian Forest National Park, Grafenau, Germany
33
34
35 Corresponding authors: Sarah Redlich, Department of Animal Ecology and Tropical Biology,
36 University of Würzburg, Am Hubland, 97074, sarah.redlich@uni-wuerzburg.de
37 Ingolf Steffan-Dewenter, Department of Animal Ecology and Tropical Biology, University of
38 Würzburg, Am Hubland, 97074, Ingolf.Steffan@uni-wuerzburg.de
39
40 Running title: Joint climate and land-use effects on ecosystems

41 **Summary**

42 1. Climate and land-use change are key drivers of environmental degradation in the
43 Anthropocene, but too little is known about their interactive effects on biodiversity
44 and ecosystem services. Long-term data on biodiversity trends are currently lacking.
45 Furthermore, previous ecological studies have rarely considered climate and land use
46 in a joint design, did not achieve variable independence or lost statistical power by not
47 covering the full range of environmental gradients.

48 2. Here, we introduce a multi-scale space-for-time study design to disentangle effects of
49 climate and land use on biodiversity and ecosystem services. The site selection
50 approach coupled extensive GIS-based exploration and correlation heatmaps with a
51 crossed and nested design covering regional, landscape and local scales. Its
52 implementation in Bavaria (Germany) resulted in a set of study plots that maximizes
53 the potential range and independence of environmental variables at different spatial
54 scales.

55 3. Stratifying the state of Bavaria into five climate zones and three prevailing land-use
56 types, i.e. near-natural, agriculture and urban, resulted in 60 study regions covering a
57 mean annual temperature gradient of 5.6–9.8 °C and a spatial extent of 380x360 km.
58 Within these regions, we nested 180 study plots located in contrasting local land-use
59 types, i.e. forests, grasslands, arable land or settlement (local climate gradient 4.5–10
60 °C). This approach achieved low correlations between climate and land-use
61 (proportional cover) at the regional and landscape scale with $|r| \leq 0.33$ and $|r| \leq 0.29$,
62 respectively. Furthermore, using correlation heatmaps for local plot selection reduced
63 potentially confounding relationships between landscape composition and
64 configuration for plots located in forests, arable land and settlements.

65 4. The suggested design expands upon previous research in covering a significant range
66 of environmental gradients and including a diversity of dominant land-use types at
67 different scales within different climatic contexts. It allows independent assessment of
68 the relative contribution of multi-scale climate and land use on biodiversity and
69 ecosystem services. Understanding potential interdependencies among global change
70 drivers is essential to develop effective restoration and mitigation strategies against
71 biodiversity decline, especially in expectation of future climatic changes. Importantly,
72 this study also provides a baseline for long-term ecological monitoring programs.

73

74

75

76 **Keywords:** biodiversity, climate change, ecosystem functioning, insect monitoring, land use,
77 space-for-time approach, spatial scales, study design

78 **Introduction**

79 Human actions are threatening the interdependent yet fragile balance of the biosphere,
80 with far-reaching consequences for the diversity of plants (Brummitt et al., 2015) and animals
81 (Dirzo et al., 2014). As biodiversity contributes a wealth of ecological services, cascading
82 effects and reassembly of communities jeopardize human well-being and biosphere's
83 resilience against current and future disturbance (Chaplin-Kramer et al., 2019; Mori et al.,
84 2018). Many of the services, such as food provisioning, decomposition or maintenance of soil
85 fertility, rely on biotic interactions potentially sensitive to global change. This is especially
86 true for regulating services provided by the highly diverse class of insects: pollination and
87 pest regulation, both shown to strongly affect food production (Dainese et al., 2019; Duffy et
88 al., 2017). Reported losses of insect biomass and abundances across Europe and the globe are
89 therefore particularly worrisome (Hallmann et al., 2017; Seibold et al., 2019; Wagner, 2020).
90 Yet the full cross-taxon magnitude of declines and the relative contributions of man-made
91 drivers remain poorly understood.

92 One of the greatest threats to biodiversity is land-use change, the transformation of
93 terrestrial ecosystems for infrastructure, human settlements and the production of crops,
94 animals and timber (Newbold et al., 2015). Landscape simplification, urbanization,
95 deforestation, and agricultural intensification alter environmental conditions and the
96 availability of habitats and resources, but also the structure of entire landscapes, i.e. their
97 composition (amount of different habitat types) and configuration (spatial arrangement and
98 patch size of habitats). Both variables are often highly correlated (Fahrig et al., 2011) and
99 might interact in nonlinear ways (Martin et al., 2019; Redlich et al., 2018), while attempts to
100 disentangle them may reduce the statistical power of study designs (Fig. 1). Concurrently,
101 land-use effects on biodiversity and ecosystem services depend on spatial scaling, the degree
102 of specialization and movement capability of taxa and ecological processes considered (Piano

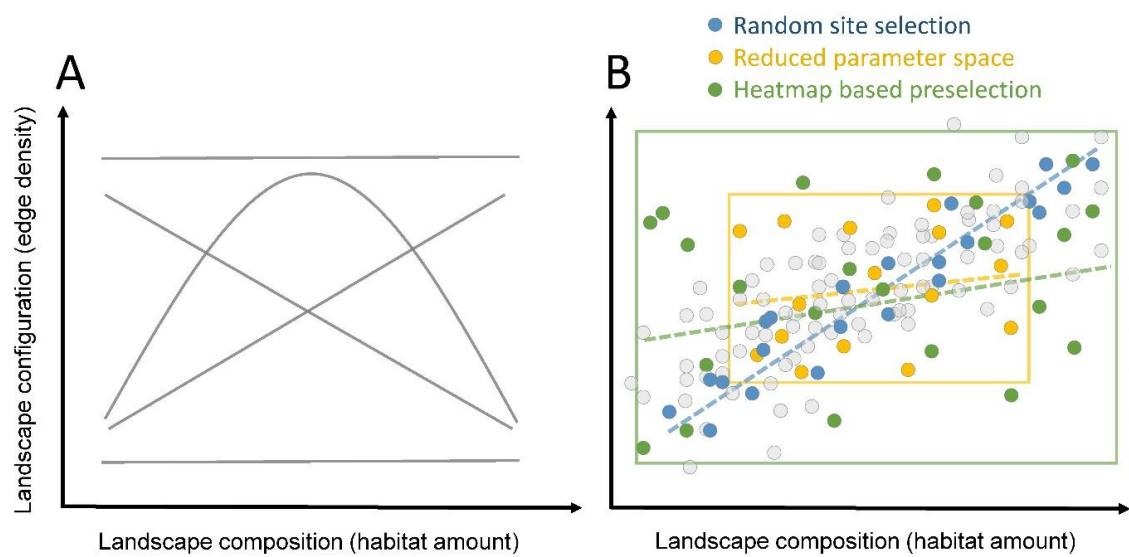
103 et al., 2020; Wiens, 1989), with important implications for population dynamics, the diversity
104 of fungi, plants and animals, and in consequence for ecosystem functions and services (Díaz
105 et al., 2019; Foley et al., 2005; Newbold et al., 2015). While macroecological processes such
106 as environmental filtering determine regional species pools, species diversity and population
107 abundances at smaller spatial scales relate to multi-habitat use, dispersal ability, resource
108 availability and trophic interactions. For instance, large-scale urbanization reassembles
109 terrestrial and aquatic invertebrate communities (Piano et al., 2020), but local conversion to
110 cropland reduces species abundances and the multitrophic functional biodiversity in
111 agroecosystems (Provost et al., 2020) with flow-on effects for pollination, pest regulation and
112 crop productivity (Dainese et al., 2019).

113 Climate is another major driver of biodiversity. Long-term data on species
114 distributions along latitudinal and elevational climatic gradients demonstrate significant
115 poleward and upward shifts of species' ranges driven by global warming (Parmesan, 2006). In
116 the future, extinction risks across all animal taxa – but particularly ectothermic organisms
117 such as insects – may further increase with accelerating climate change (Urban, 2015; R.
118 Warren et al., 2018). Similarly, plant community richness is likely to decrease in temperate
119 climates, where the range of thermal tolerances in regional species pools is narrow (Harrison,
120 2020).

121 Specific land-use types may prevent climate-induced range shifts and accelerate
122 extinctions (Fox et al., 2014; Peters et al., 2019), especially in case of less mobile specialists
123 (Warren et al., 2001). Alternatively, (in)vertebrate communities in anthropogenic land-use
124 types may shift towards drought- and warming-tolerant species (Williams & Newbold, 2020).
125 Understanding the independent and combined impact of land-use and climate change on
126 biodiversity, community composition and ecosystem services is needed to predict future
127 changes and allow for management strategies to mitigate further losses. However, less than

128 10% of available studies analyse combinations of those drivers (Rillig et al., 2019). Land-use
129 change may also feedback to the atmosphere and alter regional climate including water
130 availability by precipitation (Dale, 1997; Laux et al., 2017; Williams & Newbold, 2020),
131 resulting in correlated land-use and climate gradients that make it difficult to disentangle
132 individual effects (Peters et al., 2019). Furthermore, long-term data on climate, land use and
133 biodiversity are currently lacking, recently established monitoring schemes will not deliver
134 sufficient data in the near future and time-series analysis may be prone to biases (Didham et
135 al., 2020).

136



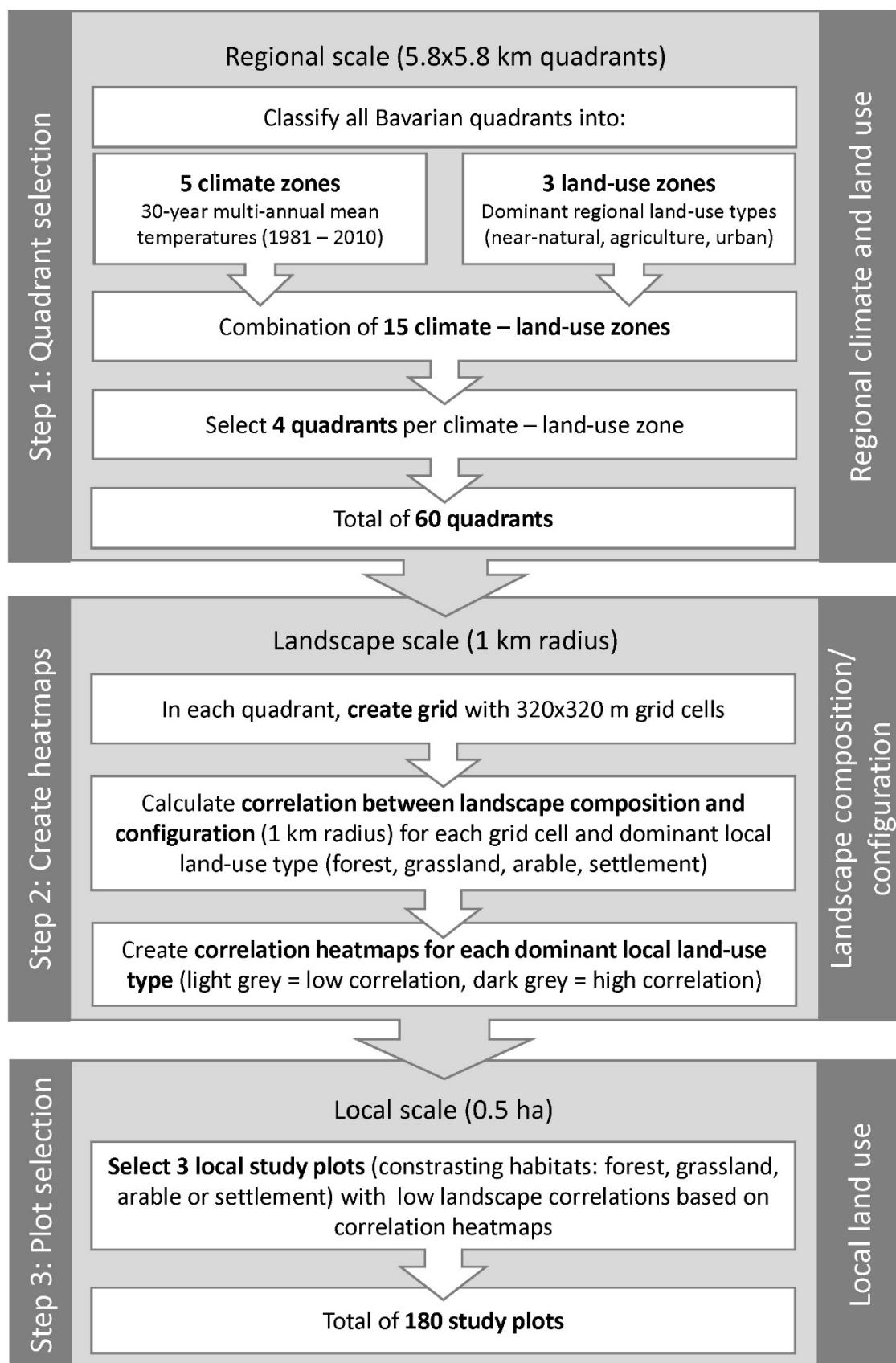
137
138 Figure 1. Disentangling effects of landscape composition and configuration in large-scale
139 ecological studies. (A) Relationship between variables can be positive, negative, non-linear or
140 independent, depending on habitat amount, habitat type and region. (B) Random selection of
141 study plots regularly results in significant correlations between variables (blue points), while
142 posterior exclusion of plots reduces correlations but also the covered parameter space (yellow
143 rectangle and points). A priori knowledge of potential correlations and targeted selection of
144 study plots using heatmaps reduces correlations and increases the parameter space (green

145 rectangle and points). Dashed trend lines in blue, yellow and green in (B) indicate the
146 expected change of landscape variable correlations depending on the site selection approach.

147

148 Here, we report on a novel protocol (Fig. 2) for a comprehensive study design that
149 systematically combines full gradients of climate and land use at various spatial scales to
150 investigate interacting effects on biodiversity of a wide range of taxa. This method was
151 developed within the framework of a large-scale interdisciplinary climate research project
152 (LandKlif, www.landklif.biozentrum.uni-wuerzburg.de). The stratified, nested design used
153 intensive GIS-based exploration of potential study regions and a new site-selection approach
154 based on heatmaps to reduce potential pitfalls of ecological studies on effects of land-use and
155 climate: a) non-independence of climate and land-use variables, and correlations among land-
156 use related composition and configuration variables; b) restrictions in gradient range or the
157 number of spatial scales considered; c) lacking monitoring data for biodiversity and
158 ecosystem services. The described method can be useful for similar multi-scale research
159 programs and long-term ecosystem monitoring but will also allow for predictions of potential
160 interactive impacts of climate and land use in a space-for-time approach.

161



163 Figure 2. General overview of three-step plot selection process. Step 1: Selection of 60 study
164 regions based on 15 climate – land-use combinations. Step 2: Creation of heatmaps to
165 disentangle landscape composition and configuration variables in 1-km radius. Step 3: Based
166 on heatmaps, selection of final 180 study plots in contrasting local land-use types.

167

168 **Material and methods**

169 *Study area*

170 The three-step study design (Fig. 2) was implemented in Bavaria in Southern
171 Germany. With an area of around 70,000 km² and 13 mio. inhabitants, it is the largest and
172 second most populous state of Germany (Bayerisches Landesamt für Statistik, 2020). It
173 covers an elevational gradient of 93–2943 m averaged at a resolution of 1 arc-second (SRTM,
174 2020) with mean annual temperatures (climatological reference period 1981–2010) averaged
175 in 1-km² grid cells ranging from -3.8–10.4 °C (Deutscher Wetterdienst, 2020). The land use
176 of Bavaria is dominated by human influences, but also comprises less intensively used near-
177 or semi-natural areas. While 7% constitute urban areas and 53% agricultural land or managed
178 grassland, the remaining 40% are covered by (mostly managed) forests, nature protection
179 areas and other near-natural habitats (CORINE, 2012). Bavaria's size and heterogeneity of
180 climate and anthropogenic influences makes it a pilot region for studying and disentangling
181 effects of climate and land use in temperate regions and at the regional, landscape and local
182 scale.

183

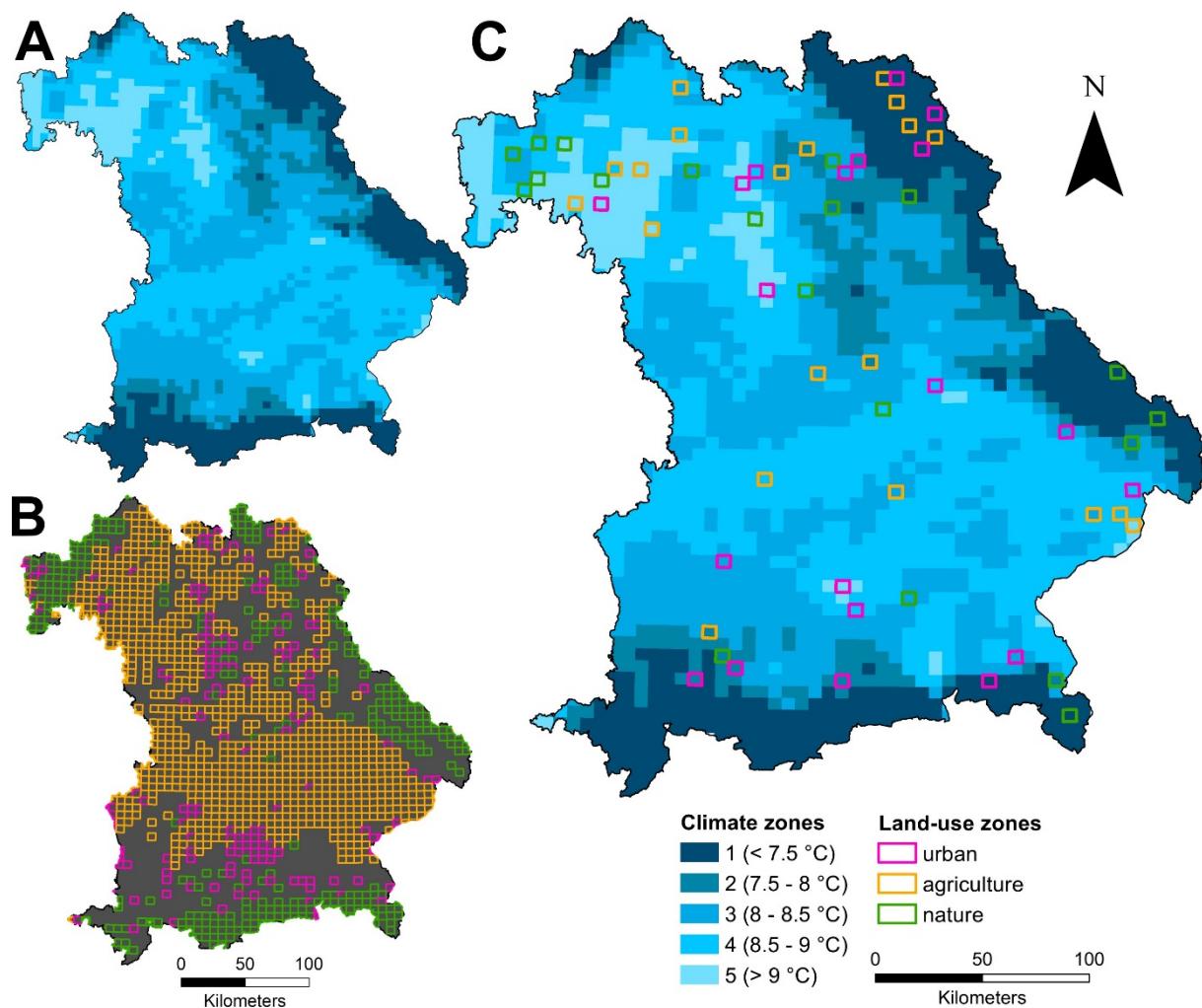
184 *Step 1 - Selection of study regions based on climate and land-use zones*

185 At the regional scale, a stratified sampling approach ensured complete coverage of
186 climate and land-use gradients and largely uncorrelated, orthogonal parameter combinations
187 of both (Fig. 2). Regions were hereby defined as existing 5.8x5.8 km quadrants, which build

188 the cells of a spatial grid covering the whole of Bavaria ('TK25' topographical map, scale
189 1:25,000). These quadrants are widely used for floristic and faunistic inventories.

190 To select potential climate—land-use combinations, quadrants were first classified
191 into five climatic zones based on 30-year (1981–2010) mean air temperature data for each
192 quadrant (Deutscher Wetterdienst, 2020). We further categorized each quadrant as one of
193 three dominant regional land-use types based on proportional land use (CORINE, 2012): near-
194 natural quadrants (>85% near-natural vegetation including a minimum of 50% forest),
195 agricultural quadrants (>40% arable land and managed grassland), and urban quadrants
196 (>14% housing, industry and traffic infrastructure). Cut-off values for land use and climate
197 were chosen to 1) maximize climatic differences and the contrast among land-use types, with
198 anthropogenic impact ranging from low (near-natural) to very high (urban); 2) achieve equal
199 intervals and a similar number of quadrants within each category; and 3) obtain enough
200 quadrants in each class to realise an even distribution and meet logistic requirements (e.g.
201 reduce travelling time, avoid no-fly zones for UAVs where aerial assessments were planned).
202 Based on these prerequisites, we selected four quadrants of each of the 15 climate—land-use
203 combinations (60 study regions, Fig. 2).

204



205

206 Figure 3. Implementation of a full-factorial, stratified design crossing regional climate and
207 land use in Bavaria, Southern Germany. Climate zones (A) were based on 30-year (1981–
208 2010) mean air temperatures in each quadrant (1 (cold) to 5 (warm)). For land use (B), we
209 distinguished between near-natural quadrants (>85% natural vegetation including a minimum
210 of 50% forest), agricultural quadrants (>40% arable land and managed grassland) and urban
211 quadrants (>14% housing, industry and traffic infrastructure). The final 60 study regions (C)
212 covered 15 climate–land use combinations with four replicates each.

213

214 *Step 2 – Create heatmaps to reduce correlations among landscape variables*

215 Within each of the 60 study regions, we aimed to investigate the impact of local land
216 use and interactive effects of landscape-scale land use (composition and configuration) on

217 biodiversity and ecosystem services. The landscape-scale was hereby defined as 1-km radius
218 around local study plots, as this scale was shown to have ecological relevance for arthropods
219 (Bosem Baillod et al., 2017; Holzschuh et al., 2016; Thies et al., 2003). As the strength of
220 correlations among landscape variables depends on the location of local study plots, we
221 implemented a novel heatmap approach with a priori knowledge of potential relationships
222 (Fig. 1). These correlation heatmaps – created for four dominant contrasting local land-use
223 types identified within our study regions – served as systematic criterion for local study plot
224 selection (Fig. 2).

225 The heatmap procedure involved the following steps: (1) Within each quadrant and
226 starting 1 km away from the quadrant edge, we created a grid of 320 m resolution (resolution
227 of the underlying CORINE data (2012), Fig. 4A). We calculated four landscape composition
228 variables (proportional cover of four local land-use types: forest, grassland, arable land,
229 settlement) and one configuration variable (edge density, i.e. length of edges between all
230 habitat types on a per unit area, $m \text{ ha}^{-1}$) for a 1-km radius buffer around the centre of each
231 320x320 m grid cell (Fig. 4B). The next steps, here exemplified for forest, were repeated for
232 each local land-use type. (2) We selected all grid cells (Fig. 4C) with a proportional forest
233 cover of >20% (to accommodate a 0.5-ha study plot and a 3x30 m experimental area) and
234 >5% forest in the surrounding 1-km radius buffer (to ensure a minimum amount of forest was
235 present in the surrounding landscape). (3) Of these forest grid cells and associated landscape
236 buffers, we randomly chose one in each of the 60 study quadrants - if existent (quadrants
237 without forest grids were excluded) - and calculated the overall Pearson's r correlation
238 coefficient between the surrounding landscape composition (here forest cover) and
239 configuration (edge density) based on the random plot selection. (4) This random selection
240 and calculation was repeated 10,000 times. (5) For each forest grid-cell i we then calculated

241 the average Pearson's \bar{r}_i coefficient across all the random combinations of points in which this
242 cell was included:

243

$$\bar{r}_i = \frac{\sum_{j=1}^n r_{i,j}}{n}$$

244 where $r_{i,j}$ is the j^{th} Pearson's r coefficient resulting from random selection of that specific
245 forest dominated grid cell i , and n is the number of times that grid cell i was included in one
246 of the 10,000 random selections of points. (6) In a last step and considering all forest grid
247 cells in our 60 quadrants, we used natural breaks (Jenks natural breaks algorithm implemented
248 in ArcMap v10.4) to classify the range of mean correlations into three categories to create the
249 correlation heatmap for the local land-use type forest (Fig. 4C). By repeating the steps
250 described in (2–6) for all land-use types (forest, grassland, arable land, settlement), we
251 derived a set of four heatmaps for each of the 60 quadrants. During the local plot selection
252 process (Step 3), these heatmaps helped to reduce correlations of landscape composition and
253 configuration around plots with specific land-use types (e.g. only forest plots), but also across
254 all study plots.

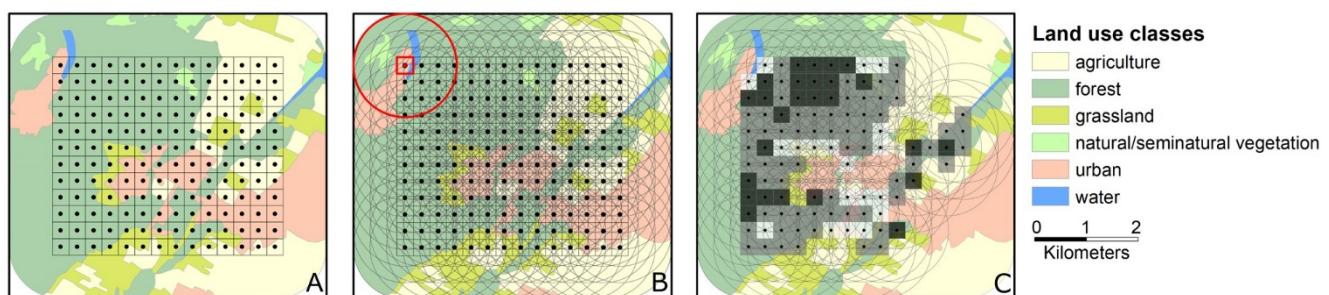
255

256 *Step 3 - Selection of local study plots*

257 Within each quadrant, we aimed to establish local study plots of 0.5 ha size within
258 contrasting land-use types (Fig. 2). Although four local, dominant land-use types had been
259 identified during the heatmap process (forest, grassland, arable land or settlement), not all
260 were present in each quadrant. Therefore, we focused on three out of four land-use types per
261 quadrant by considering availability (if only three types present) or regional dominance (three
262 types with highest proportional cover) and contrast (whenever proportional cover of two land-
263 use types was similar). We then used the respective heatmaps to preferentially place study
264 plots in grid cells that had a low predicted correlation values for the specific land-use type.
265 Additional decision rules for plot selection included landowner permission, >2 km between

266 plots, >50 m away from roads, water bodies and other land-use types, protection from
267 vandalism and good accessibility. Nested within our large-scale factorial design, the resulting
268 180 plots allowed us to assess the influence of local land use on biodiversity and ecosystem
269 services, while minimizing correlations between landscape composition and configuration.

270



271
272 Figure 4. Process of deriving correlation heatmaps for each dominant land-use type to guide
273 the selection of local study plots. Colours of polygons represent different land-use types. (A)
274 Create a fishnet of 320 m resolution inside each of 60 study quadrants. (B) Calculate
275 landscape composition and configuration within a 1-km radius around centre of each 320x320
276 m grid cell. (C) Select grid cells dominated by the respective land-use type (here forest, dark
277 green) and create land-use specific heatmaps of mean correlations between landscape
278 composition and configuration based on 10,000 random selections of grid cells across all
279 quadrants. Shades of grey in heatmaps indicate levels of the predicted degree of correlation
280 (light = high correlation, dark = low correlation) if the respective grid was chosen.

281

282 *Assessing efficiency of study design*

283 We assessed the efficiency of our stratified selection and heatmap approach by a)
284 region (5.8x5.8 km): calculating Pearson's r correlation coefficients between climate and the
285 proportion of our regional dominant land-use types near-natural, agriculture and urban; b)
286 landscape (1-km radius): assessing relationships between climate and the proportion of our
287 dominant local land-use types forest, grassland, arable land and settlement. We also visually

288 compared final correlations between landscape composition and configuration with potential
289 correlations based on 10,000 random selections.

290 The proportion of land-use types (region, landscape) and landscape composition and
291 configuration variables were calculated in ArcGIS pro v2.2.0 and ArcMap v10.4 using
292 CORINE data (2012). Climate data for regions and landscapes (mean air temperatures and
293 associated precipitation amounts) were calculated using Esri ASCII grid raster files with
294 1x1km resolution (Deutscher Wetterdienst, 2020) by averaging pixel values within each
295 5.8x5.8 km quadrant and 1-km buffer around selected study plots, respectively. All Pearson's
296 r coefficients calculated in R v4.0.2.

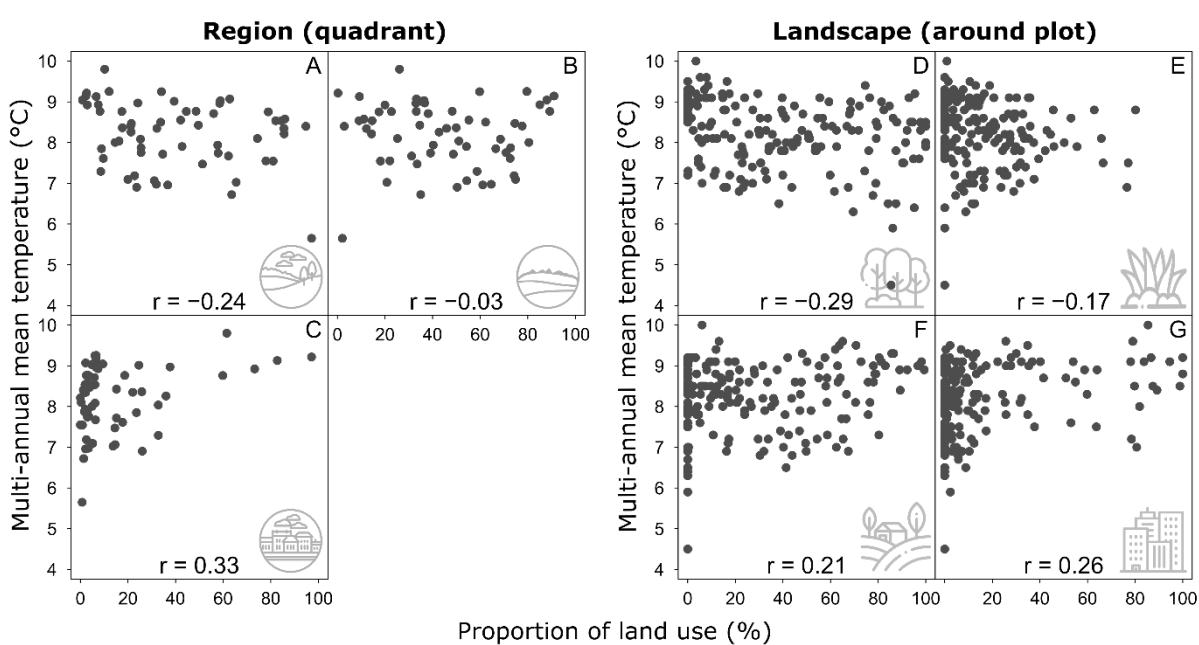
297

298 **Results**

299 *Implementation of the experimental design*

300 Our design and selection process (Fig. 2) allowed us to minimize the potential
301 correlations between climate, land use and landscape metrics at multiple scales and resulted in
302 an approximately even distribution of 60 study regions (quadrants) across Bavaria (Fig. 3).
303 These regions covered a climate gradient of 5.6–9.8 °C (8.2 ± 0.8 °C, mean \pm SD) and 614–
304 1820 mm of annual precipitation amounts (939 ± 263 mm). Across all quadrants, the cover of
305 our dominant regional land-use types (i.e. landscape composition) ranged from 0.8 to 97.1%
306 ($40 \pm 27.7\%$) for near-natural land use, 0.3–91.0% ($44.7 \pm 24.9\%$) for agriculture, and 0–
307 97.2% ($14.7 \pm 21.1\%$) for urban areas. Regional mean temperatures (Fig. 5A–C) and
308 precipitation ($|r| < 0.3$, Appendix Fig. S1A–C) showed low correlations with regional land use
309 (proportion of near-natural, agriculture and urban habitat).

310



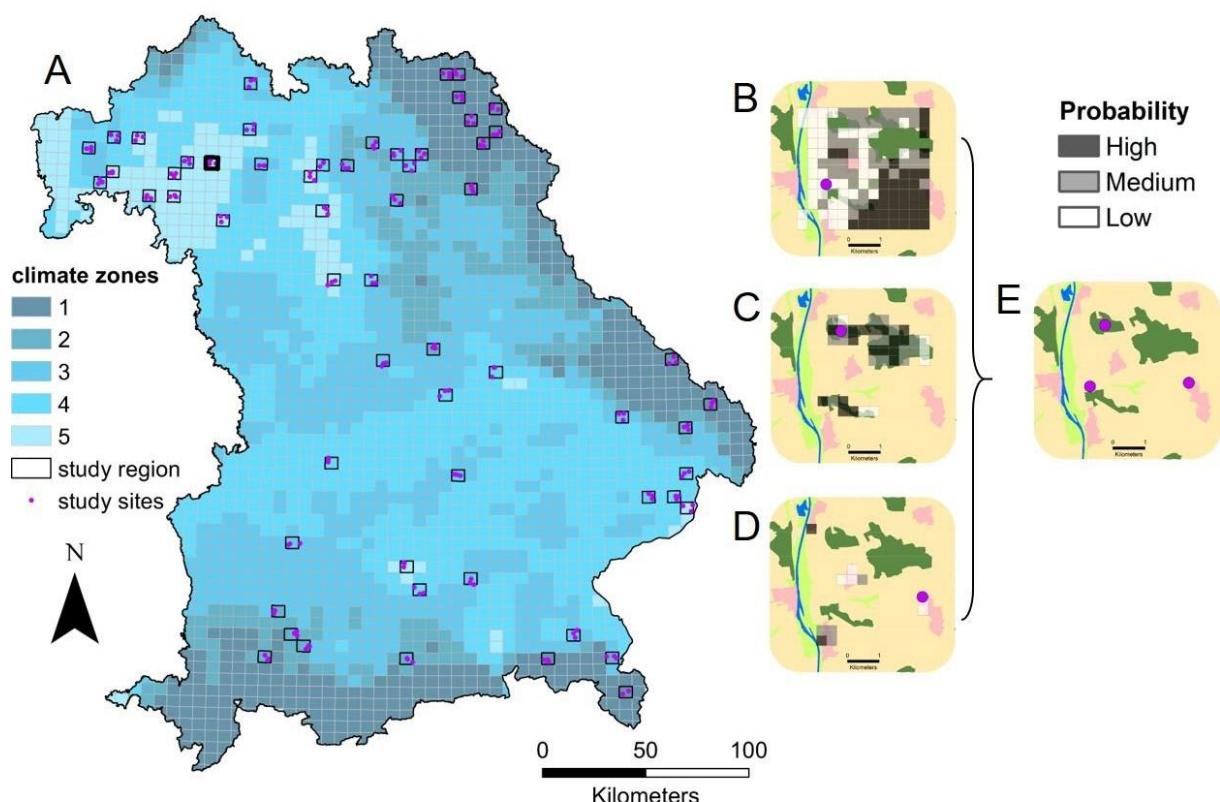
311

312 Figure 5. Relationships between 30-year mean temperatures (1981–2010) and proportional
313 land cover (composition) for the regional land-use types near-natural (A), agriculture (B) and
314 urban (C), and for the landscape-scale land-use types forest (D), grassland (E), arable land (F)
315 and settlement (G). Pearson's r coefficients based on 60 study regions (5.8x5.8 km quadrants,
316 A–C) and 179 (out of expected 180) study plots (1-km radius around local study plots, D–G).

317

318 For each study region, the heatmap procedure yielded four heatmaps for the local
319 land-use types forest, grassland, arable land and settlement, which were used to identify
320 potential study plots within dominant local land-use types (Fig. 6B–D). After ground-truthing
321 of sites and gaining permission of landowners, three final plots were chosen per quadrant
322 (Fig. 6E), yielding 179 out of 180 expected study plots (Fig. 6A). One study plot was
323 discarded as landowner permission was denied. Forest ($n = 55$) was the most selected local
324 land-use type, followed by grassland ($n = 46$), arable land ($n = 43$) and settlement ($n = 35$).

325



326

327 Figure 6: Map of all 179 (out of expected 180) study plots in 60 study regions (A) and
328 example of heatmaps for three dominant local land-use types (arable land (B), forest (C), and
329 settlement (D)) used for the final selection of study plots (E). Shades of grey in heatmaps
330 indicate levels of the predicted degree of correlation (light = high correlation, dark = low
331 correlation) if the respective grid was chosen.

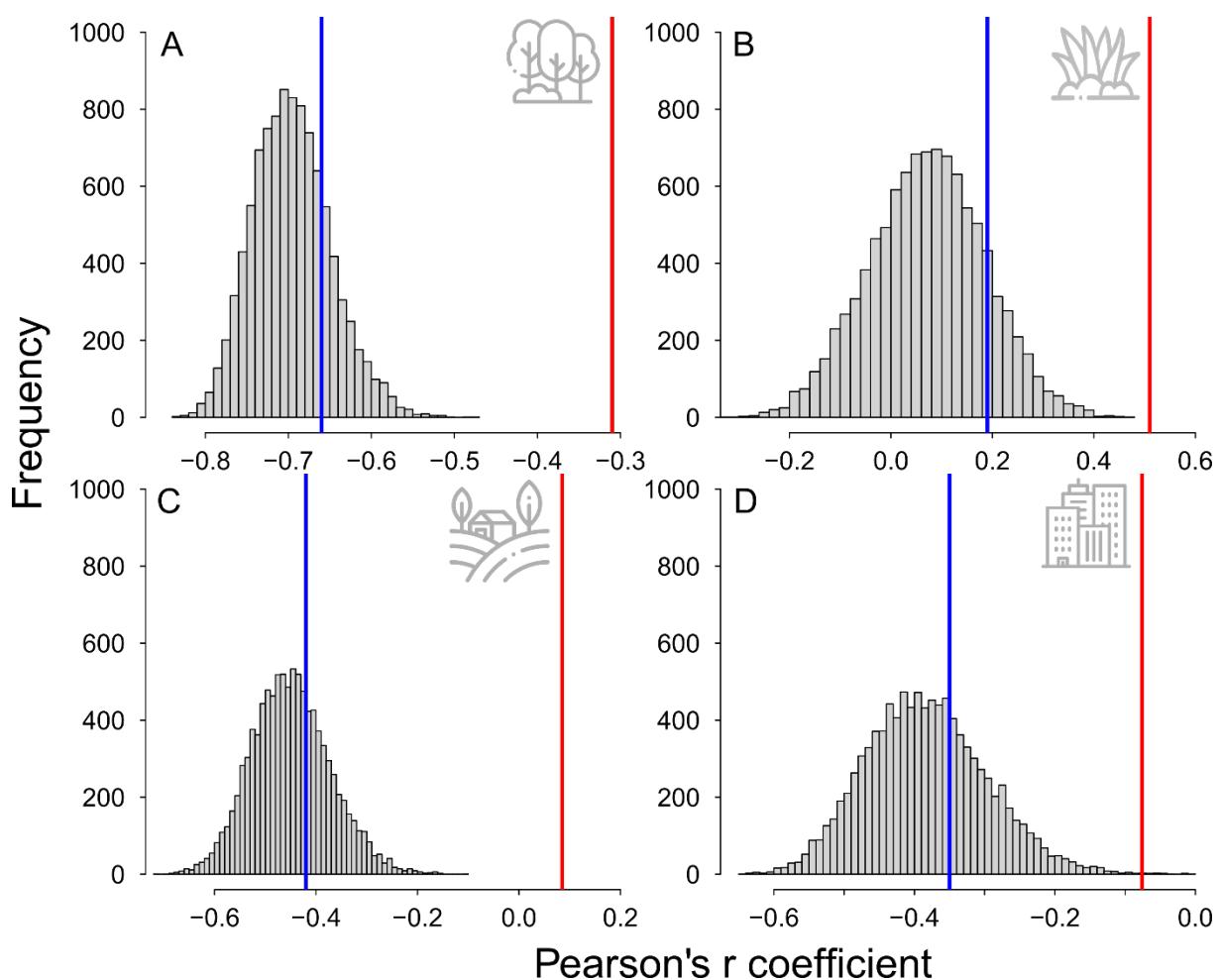
332

333 At the landscape-scale in 1-km radius around study plots, mean temperatures across
334 our 179 study plots ranged from 4.5–10 °C (8.2 ± 0.8 °C), with annual precipitation amounts
335 of 590–2893 mm (933 ± 279 mm). Landscape composition gradients across all plots stretched
336 from 0–100% for forest ($37.9 \pm 32.3\%$), 0–80.2 % for grassland ($15.7 \pm 17.1\%$), 0–99.4% for
337 arable land ($28.7 \pm 29.2\%$) and 0–100% for settlement ($16.1 \pm 25.8\%$). Edge density across all
338 study plots was 0–66.0 m ha⁻¹ (28.1 ± 13.8 m ha⁻¹). Correlations of landscape-scale

339 temperature with composition variables (Fig. 4D–G) and edge density were low (Pearson's r
340 $= -0.17$).

341 Compared to potential correlations based on random selection of study plots, the
342 heatmap approach resulted in lower correlations between landscape composition and
343 configuration (in 1-km radius around study plots) for plots located in forest, arable land and
344 settlements (blue line, Fig. 7A, C, D). Only for grassland, the final correlation was positive
345 and higher than predicted (blue line, Fig. 7B). Taking all study plots independent of the local
346 land-use type into account, this pattern was even stronger, with correlations between the
347 proportion of habitats and edge density being very low for forest (Pearson's $r = -0.31$), arable
348 land ($r = 0.09$) and settlement ($r = -0.08$), yet high for grassland ($r = 0.51$) (red line, Fig 7,
349 Fig. S2). Correlations among composition variables ranged from $r = -0.13$ (settlement and
350 grassland) to -0.55 (arable land and forest).

351 This multi-scale GIS-supported study design is suited to disentangle climate and land-
352 use effects on general and functional biodiversity and plant- or animal-based ecosystem
353 services, as done within this project using a range of observational, empirical, modelling and
354 survey data collected on different spatial scales in 2019 and 2020 (Table 1).



355

356 Figure 7. Potential and actual Pearson's correlations between landscape composition
357 (proportional cover of land-use types) and configuration (edge density) in 1-km radius around
358 study plots. Compared to the histograms of potential correlations resulting from 10,000
359 random selections of grid cells (i.e. potential study plots, cf. 'heatmap procedure'), blue lines
360 show reduced actual correlations based on subsets of plots located in the land-use types forest
361 ($n = 55$, A), arable land ($n = 43$, C) and settlement ($n = 35$, D), yet higher correlations for
362 plots located in grassland ($n = 46$, B). Red lines show correlations for land-use specific actual
363 correlations across all selected study plots ($n = 179$).

364

365 Table 1: Example for assessments of biodiversity, ecosystem services and socio-
366 economic/management information in the LandKtif project. Observational and empirical data
367 was collected on up to 179 study plots in 2019 and 2020 and complemented with modelling

368 approaches and stakeholder surveys. Extended categorization of ecosystem services based on
369 TEEB (2010) and Rabe et al. (2016).

Group/Service	Detail	Scale
Biodiversity	Plants	Plant/Pollen diversity and phenology
	Microbes	Soil/decomposer microbial diversity
	Arthropods	Total Biomass and richness of flying and crawling arthropods; functional abundance and richness of arthropod decomposers, pollinators, trap-nesting Hymenoptera, pests and predators
	Vertebrates	Diversity and density of game
Ecosystem services	Ecosystems	Landscape diversity, composition, configuration
	Decomposition	Decomposition of deadwood, carrion and dung
	Pest regulation	Predation and parasitism rate, herbivory
	Pollination	Seed set and pollination services
	Productivity	Crop biomass and yield; vegetation biomass; Normalized Difference Vegetation Index (NDVI); flower resource availability
	Soil fertility	Soil organic carbon and nutrient content
Other	Soil erosion prevention	Erosion
	Carbon sequestration	Soil Organic Carbon
	Microclimate regulation	Temperature
	Flood control	Prevention of floods
	Water quality regulation	Nitrogen and phosphorus retention
Other	Stakeholder preferences	Preferences for ecosystem services
	Stakeholder perceptions	Climate change perceptions
	Landowner management	Management of land and crop fields used for experiments

370

371

372 Discussion

373 Studies assessing the combined effects of land use and climate on biodiversity and
374 ecosystem services commonly struggle with non-independence of climate and land-use
375 variables, restrictions in gradient range or scale and insufficient long-term data sets. Here, we
376 present the protocol for a large-scale experimental design that aims to overcome these issues.

377 While our basic design follows the selection principles for multi-scale landscape studies
378 outlined in previous papers (Fahrig et al., 2011; Gillespie et al., 2017; Pasher et al., 2013), the
379 use of a novel, automated heatmap approach and the inclusion of independent climatic
380 gradients sets this design apart, both as baseline and space-for-time study.

381 First, the crossed and nested design at the regional scale resulted in relatively weak
382 correlations between climate and land use (proportional cover of forest, near-natural and
383 urban area). The design also decoupled regional climate and land-use effects from the
384 influence of small-scale land use due to the selection of three out of four dominant local land-
385 use types (forest, grassland, arable land or settlements) within our 60 study regions.
386 Regarding landscape composition and configuration in a 1-km radius around study plots, the
387 heatmap approach lowered correlations compared to average potential correlations for
388 specific local land-use types (blue lines, Fig. 7), but these benefits were not that substantial in
389 absolute terms (i.e. correlations for selected plots quite close to peak of distribution for
390 random selection). However, there are three points to consider: 1) these actual correlations
391 were based on a subset of plots (specific local land-use types), and were much lower for
392 forest, arable land and settlement if calculated across all study plots (red lines, Fig. 7), which
393 is the gradient range primarily used for analysis in our project; 2) reducing landscape
394 correlations may be difficult for land-use types such as forest, where patches generally occur
395 clustered, causing higher negative correlations with edge density than for settlements or arable
396 land. For grassland, correlations seem the be generally low, yet increased during the selection
397 process, possibly due to inherent correlations among land-use types and non-linear
398 relationships between grassland amount and edge density in the landscape ; 3) in our project,
399 complex private ownership structures, logistic and other constraints (e.g. transportation costs,
400 time constraints, accessibility, permissions) prevented us from selecting combinations of
401 study plots closer to $r=0$. Our method is situated halfway between two extremes: the blind
402 selection of study plots that may inherently cause strong landscape correlations or requires the
403 reduction in parameter space (see Fig. 1) and choosing the best available random selection of
404 plots during the process of creating heatmaps. Accordingly, the chance of moving towards
405 low landscape correlations ultimately depends on the gradient range and land-use type

406 considered and methodological, logistical and ownership constraints that may be lower in
407 other studies.

408 Second, we increased the coverage of spatial scales and land-use types, thereby
409 maximizing the number of explanatory factors that can be analysed in parallel. Concurrently,
410 our method of ‘*a priori*’ employing long-term climate data and extensive GIS-based
411 exploration of potential study plots enabled us to cover independent, large climatic and land-
412 use gradients. For landscape composition and configuration of the full set of 179 final study
413 plots, our data highlights the natural, unimodal relationship between these variables, which is
414 most pronounced for forest cover and grows weaker from grassland to arable land and
415 settlement, with peaks between 40–60% land cover (Appendix S2). This implies that studies
416 covering narrow landscape gradients between 0–50% or 50–100% may observe contrasting
417 positive or negative correlations between these landscape variables, respectively, while
418 studies focussed on intermediate landscape gradients are most likely to reduce the correlation
419 between variables and differentiate between individual effects, which may be impossible at
420 the extreme ends of the spectrum.

421 Finally, our extensive on-field assessments within this experimental framework will
422 fill existing knowledge gaps about biodiversity trends across taxa, relationships between
423 above- and belowground arthropods and the microbial diversity of decomposer communities.
424 We can also assess potential trade-offs among ecosystem service provisioning and current and
425 predicted interactive effects of climate and land use on biodiversity-ecosystem functioning
426 relationships. In this context, the implemented space-for-time approach has crucial advantages
427 over time series. Recently established long-term biodiversity monitoring schemes will not
428 yield meaningful results before several decades, which may be too late considering the current
429 speed of global change. Furthermore, long-term climatic change often goes hand in hand with
430 land-use change, making it difficult to disentangle individual effects (Dale, 1997). In addition,

431 issues such as shifting baselines or phenologies, bias in site selection and detection may cause
432 misleading results in time series analysis (Didham et al., 2020). Other methods, such as large-
433 scale, manipulative climate–land-use experiments following the idea of BACI designs
434 (Before-After-Control-Impact studies, Christie et al., 2019) are highly interesting but almost
435 impossible to implement.

436 Space-for-time approaches also have limitations. For instance, other drivers of
437 biodiversity, such as anthropogenic pressure or altered biotic interactions, may mask the
438 response to climate, especially if only small spatial scales (a few kilometres or less) with
439 small climatic differences are considered (Blois et al., 2013). In contrast, data obtained from
440 spatial observations was shown to overestimate phenology responses to temperature
441 compared to long-term phenological data (Jochner et al., 2013). Still, space-for-time
442 substitutions based on the largest possible climatic gradient is a useful and fast alternative to
443 gain important, policy-relevant insights into the interactive effects of climate and land-use
444 change on biodiversity and ecosystem services. By utilizing the full parameter space of the
445 climatic and landscape variables assessed here (Fig. 1), we enhanced the validity of space-for-
446 time substitutions related to climate change (Blois et al., 2013). We further reduced the
447 chance of observing misleading findings in cases where non-monotonic relationships cause
448 contradictory relationships between environmental variables and biodiversity if only a narrow
449 variable range is used (Eigenbrod et al., 2011).

450

451 **Conclusions**

452 Our multi-scale study protocol expands on previous designs which addressed local
453 gradients in climate and land use (Peters et al., 2019) or gradients in landscape structure in
454 multiple regions (Gillespie et al., 2017; Holzschuh et al., 2016). It allows to evaluate scale-
455 dependent and interactive effects of current climate and land-use gradients on biodiversity and

456 ecosystem services, and to predict long-term responses to climate change. Furthermore, it
457 provides valuable baseline data to assess the effectiveness of future restoration measures at
458 local, landscape and regional scales. We believe that this approach of an objective, multi-scale
459 site selection across large regions deserves consideration in the implementation of national
460 and European long-term ecosystem monitoring schemes.

461 **Acknowledgements**

462 Icons used in graphs made by Freepik (<http://www.flaticon.com/>). CORINE Land
463 Cover (CLC) provided by the European Union, European Environment Agency (EEA) under
464 the framework of the Copernicus programme. Climate data provided by Deutscher
465 Wetterdienst (DWD). This study was conducted within the framework of the joint project
466 *Landklif* (<https://www.landklif.biozentrum.uni-wuerzburg.de/>) funded by the Bavarian
467 Ministry of Science and the Arts via the Bavarian Climate Research Network (bayklif).

468

469 **Authors' contributions**

470 SR, JZ, JM, TH and ISD conceived the ideas and designed the methodology; JZ and
471 CKF collected the data; SR and JZ analysed the data; SR, JZ and ISD led the writing of the
472 manuscript. All authors contributed critically to the drafts and gave final approval for
473 publication.

474

475

476 **Data Availability**

477 Data available from the Dryad Digital Repository <http://XXX> (Redlich et al 2021).

478 **References**

479 Bayerisches Landesamt für Statistik. (2020). *Statistics*. <https://www.statistik.bayern.de/>

480 Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T., & Ferrier, S. (2013). Space
481 can substitute for time in predicting climate-change effects on biodiversity.
482 *Proceedings of the National Academy of Sciences*, 110(23), 9374–9379.
483 <https://doi.org/10.1073/pnas.1220228110>

484 Bosem Baillod, A., Tscharntke, T., Clough, Y., & Batáry, P. (2017). Landscape-scale
485 interactions of spatial and temporal cropland heterogeneity drive biological control of
486 cereal aphids. *Journal of Applied Ecology*, 1804–1813. <https://doi.org/10.1111/1365->
487 2664.12910

488 Brummitt, N. A., Bachman, S. P., Griffiths-Lee, J., Lutz, M., Moat, J. F., Farjon, A.,
489 Donaldson, J. S., Hilton-Taylor, C., Meagher, T. R., Albuquerque, S., Aletrari, E.,
490 Andrews, A. K., Atchison, G., Baloch, E., Barlozzini, B., Brunazzi, A., Carretero, J.,
491 Celesti, M., Chadburn, H., ... Lughadha, E. M. N. (2015). Green Plants in the Red: A
492 Baseline Global Assessment for the IUCN Sampled Red List Index for Plants. *PLOS
493 ONE*, 10(8), e0135152. <https://doi.org/10.1371/journal.pone.0135152>

494 Chaplin-Kramer, R., Sharp, R. P., Weil, C., Bennett, E. M., Pascual, U., Arkema, K. K.,
495 Brauman, K. A., Bryant, B. P., Guerry, A. D., Haddad, N. M., Hamann, M., Hamel,
496 P., Johnson, J. A., Mandle, L., Pereira, H. M., Polasky, S., Ruckelshaus, M., Shaw, M.
497 R., Silver, J. M., ... Daily, G. C. (2019). Global modeling of nature's contributions to
498 people. *Science*, 366(6462), 255–258. <https://doi.org/10.1126/science.aaw3372>

499 Christie, A. P., Amano, T., Martin, P. A., Shackelford, G. E., Simmons, B. I., & Sutherland,
500 W. J. (2019). Simple study designs in ecology produce inaccurate estimates of

501 biodiversity responses. *Journal of Applied Ecology*, 56(12), 2742–2754.
502 <https://doi.org/10.1111/1365-2664.13499>

503 CORINE. (2012). *Copernicus Land Monitoring Service 2012, European Environment*
504 *Agency*. <https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012>

505 Dainese, M., Martin, E. A., Aizen, M. A., Albrecht, M., Bartomeus, I., Bommarco, R.,
506 Carvalheiro, L. G., Chaplin-Kramer, R., Gagic, V., Garibaldi, L. A., Ghazoul, J., Grab,
507 H., Jonsson, M., Karp, D. S., Kennedy, C. M., Kleijn, D., Kremen, C., Landis, D. A.,
508 Letourneau, D. K., ... Steffan-Dewenter, I. (2019). A global synthesis reveals
509 biodiversity-mediated benefits for crop production. *Science Advances*, 5(10),
510 eaax0121. <https://doi.org/10.1126/sciadv.aax0121>

511 Dale, V. H. (1997). The Relationship Between Land-Use Change and Climate Change.
512 *Ecological Applications*, 7(3), 753–769. [https://doi.org/10.1890/1051-0761\(1997\)007\[0753:TRBLUC\]2.0.CO;2](https://doi.org/10.1890/1051-0761(1997)007[0753:TRBLUC]2.0.CO;2)

513

514 Deutscher Wetterdienst. (2020). DWD Climate Data Center (CDC): Multi-annual means of
515 grids of precipitation and air temperature (2m) over Germany from 1981-2010,
516 version v1.0. <https://opendata.dwd.de>

517 Diaz, S., Settele, J., Brondízio, E., Ngo, H., Guèze, M., Agard, J., Arneth, A., Balvanera, P.,
518 Brauman, K., Butchart, S., Chan, K., Garibaldi, L., Ichii, K., Liu, J., Subrmanian, S.,
519 Midgley, G., Miloslavich, P., Molnár, Z., Obura, D., ... Zayas, C. (2019). *Summary*
520 *for policymakers of the global assessment report on biodiversity and ecosystem*
521 *services of the Intergovernmental Science-Policy Platform on Biodiversity and*
522 *Ecosystem Services*. Secretariat of the Intergovernmental Science-Policy Platform on
523 Biodiversity and Ecosystem Services.

524 Didham, R. K., Basset, Y., Collins, C. M., Leather, S. R., Littlewood, N. A., Menz, M. H. M.,
525 Müller, J., Packer, L., Saunders, M. E., Schönrogge, K., Stewart, A. J. A., Yanoviak,
526 S. P., & Hassall, C. (2020). Interpreting insect declines: Seven challenges and a way
527 forward. *Insect Conservation and Diversity*, 13(2), 103–114.
528 <https://doi.org/10.1111/icad.12408>

529 Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., & Collen, B. (2014).
530 Defaunation in the Anthropocene. *Science*, 345(6195), 401–406.
531 <https://doi.org/10.1126/science.1251817>

532 Duffy, J. E., Godwin, C. M., & Cardinale, B. J. (2017). Biodiversity effects in the wild are
533 common and as strong as key drivers of productivity. *Nature*, 549(7671), 261–264.
534 <https://doi.org/10.1038/nature23886>

535 Eigenbrod, F., Hecnar, S. J., & Fahrig, L. (2011). Sub-optimal study design has major impacts
536 on landscape-scale inference. *Biological Conservation*, 144(1), 298–305.
537 <https://doi.org/10.1016/j.biocon.2010.09.007>

538 Fahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C.,
539 Siriwardena, G. M., & Martin, J.-L. (2011). Functional landscape heterogeneity and
540 animal biodiversity in agricultural landscapes. *Ecology Letters*, 14(2), 101–112.
541 <https://doi.org/10.1111/j.1461-0248.2010.01559.x>

542 Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S.,
543 Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E.
544 A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., &
545 Snyder, P. K. (2005). Global consequences of land use. *Science*, 309(5734), 570–574.
546 <https://doi.org/10.1126/science.1111772>

547 Fox, R., Oliver, T. H., Harrower, C., Parsons, M. S., Thomas, C. D., & Roy, D. B. (2014).

548 Long-term changes to the frequency of occurrence of British moths are consistent with
549 opposing and synergistic effects of climate and land-use changes. *Journal of Applied
550 Ecology*, 51(4), 949–957. <https://doi.org/10.1111/1365-2664.12256>

551 Gillespie, M. A. K., Baude, M., Biesmeijer, J., Boatman, N., Budge, G. E., Crowe, A.,
552 Memmott, J., Morton, R. D., Pietravalle, S., Potts, S. G., Senapathi, D., Smart, S. M.,
553 & Kunin, W. E. (2017). A method for the objective selection of landscape-scale study
554 regions and sites at the national level. *Methods in Ecology and Evolution*, 8(11),
555 1468–1476. <https://doi.org/10.1111/2041-210X.12779>

556 Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W.,
557 Müller, A., Sumser, H., Hörren, T., Goulson, D., & Kroon, H. de. (2017). More than
558 75 percent decline over 27 years in total flying insect biomass in protected areas.
559 *PLOS ONE*, 12(10), e0185809. <https://doi.org/10.1371/journal.pone.0185809>

560 Harrison, S. (2020). Plant community diversity will decline more than increase under climatic
561 warming. *Philosophical Transactions of the Royal Society B: Biological Sciences*,
562 375(1794), 20190106. <https://doi.org/10.1098/rstb.2019.0106>

563 Holzschuh, A., Dainese, M., González-Varo, J. P., Mudri-Stojnić, S., Riedinger, V., Rundlöf,
564 M., Schepers, J., Wickens, J. B., Wickens, V. J., Bommarco, R., Kleijn, D., Potts, S. G.,
565 Roberts, S. P. M., Smith, H. G., Vilà, M., Vujić, A., & Steffan-Dewenter, I. (2016).
566 Mass-flowering crops dilute pollinator abundance in agricultural landscapes across
567 Europe. *Ecology Letters*, 19(10), 1228–1236. <https://doi.org/10.1111/ele.12657>

568 Jochner, S., Caffarra, A., & Menzel, A. (2013). Can spatial data substitute temporal data in
569 phenological modelling? A survey using birch flowering. *Tree Physiology*, 33(12),
570 1256–1268. <https://doi.org/10.1093/treephys/tpt079>

571 Laux, P., Nguyen, P. N. B., Cullmann, J., Van, T. P., & Kunstmann, H. (2017). How many
572 RCM ensemble members provide confidence in the impact of land-use land cover
573 change? *International Journal of Climatology*, 37(4), 2080–2100.

574 <https://doi.org/10.1002/joc.4836>

575 Martin, E. A., Dainese, M., Clough, Y., Báldi, A., Bommarco, R., Gagic, V., Garratt, M. P.
576 D., Holzschuh, A., Kleijn, D., Kovács-Hostyánszki, A., Marini, L., Potts, S. G., Smith,
577 H. G., Hassan, D. A., Albrecht, M., Andersson, G. K. S., Asís, J. D., Aviron, S.,
578 Balzan, M. V., ... Steffan-Dewenter, I. (2019). The interplay of landscape
579 composition and configuration: New pathways to manage functional biodiversity and
580 agroecosystem services across Europe. *Ecology Letters*, 22(7), 1083–1094.

581 <https://doi.org/10.1111/ele.13265>

582 Mori, A. S., Isbell, F., & Seidl, R. (2018). β -Diversity, community assembly, and ecosystem
583 functioning. *Trends in Ecology & Evolution*, 33(7), 549–564.

584 <https://doi.org/10.1016/j.tree.2018.04.012>

585 Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L.,
586 Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-
587 Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini,
588 T., ... Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity.
589 *Nature*, 520(7545), 45–50. <https://doi.org/10.1038/nature14324>

590 Parmesan, C. (2006). Ecological and Evolutionary Responses to Recent Climate Change.
591 *Annual Review of Ecology, Evolution, and Systematics*, 37(1), 637–669.

592 <https://doi.org/10.1146/annurev.ecolsys.37.091305.110100>

593 Pasher, J., Mitchell, S. W., King, D. J., Fahrig, L., Smith, A. C., & Lindsay, K. E. (2013).
594 Optimizing landscape selection for estimating relative effects of landscape variables

595 on ecological responses. *Landscape Ecology*, 28(3), 371–383.

596 <https://doi.org/10.1007/s10980-013-9852-6>

597 Peters, M. K., Hemp, A., Appelhans, T., Becker, J. N., Behler, C., Classen, A., Detsch, F.,
598 Ensslin, A., Ferger, S. W., Frederiksen, S. B., Gebert, F., Gerschlauer, F., Gütlein, A.,
599 Helbig-Bonitz, M., Hemp, C., Kindeketa, W. J., Kühnel, A., Mayr, A. V., Mwangomo,
600 E., ... Steffan-Dewenter, I. (2019). Climate–land-use interactions shape tropical
601 mountain biodiversity and ecosystem functions. *Nature*, 568(7750), 88–92.
602 <https://doi.org/10.1038/s41586-019-1048-z>

603 Piano, E., Souffreau, C., Merckx, T., Baardsen, L. F., Backeljau, T., Bonte, D., Brans, K. I.,
604 Cours, M., Dahirel, M., Debortoli, N., Decaestecker, E., Wolf, K. D., Engelen, J. M.
605 T., Fontaneto, D., Giana, A. T., Govaert, L., Hanashiro, F. T. T., Higuti, J., Lens, L.,
606 ... Hendrickx, F. (2020). Urbanization drives cross-taxon declines in abundance and
607 diversity at multiple spatial scales. *Global Change Biology*, 26(3), 1196–1211.
608 <https://doi.org/10.1111/gcb.14934>

609 Provost, G. L., Badenhausser, I., Bagousse-Pinguet, Y. L., Clough, Y., Henckel, L., Violle,
610 C., Bretagnolle, V., Roncoroni, M., Manning, P., & Gross, N. (2020). Land-use
611 history impacts functional diversity across multiple trophic groups. *Proceedings of the
612 National Academy of Sciences*, 117(3), 1573–1579.
613 <https://doi.org/10.1073/pnas.1910023117>

614 Rabe, S.-E., Koellner, T., Marzelli, S., Schumacher, P., & Grêt-Regamey, A. (2016). National
615 ecosystem services mapping at multiple scales—The German exemplar. *Ecological
616 Indicators*, 70, 357–372. <https://doi.org/10.1016/j.ecolind.2016.05.043>

617 Redlich, S., Martin, E. A., & Steffan-Dewenter, I. (2018). Landscape-level crop diversity
618 benefits biological pest control. *Journal of Applied Ecology*, 55(5), 2419–2428.
619 <https://doi.org/10.1111/1365-2664.13126>

620 Rillig, M. C., Ryo, M., Lehmann, A., Aguilar-Trigueros, C. A., Buchert, S., Wulf, A.,
621 Iwasaki, A., Roy, J., & Yang, G. (2019). The role of multiple global change factors in
622 driving soil functions and microbial biodiversity. *Science*, 366(6467), 886–890.
623 <https://doi.org/10.1126/science.aay2832>

624 Seibold, S., Gossner, M. M., Simons, N. K., Blüthgen, N., Müller, J., Ambarlı, D., Ammer,
625 C., Bauhus, J., Fischer, M., Habel, J. C., Linsenmair, K. E., Nauss, T., Penone, C.,
626 Prati, D., Schall, P., Schulze, E.-D., Vogt, J., Wöllauer, S., & Weisser, W. W. (2019).
627 Arthropod decline in grasslands and forests is associated with landscape-level drivers.
628 *Nature*, 574(7780), 671–674. <https://doi.org/10.1038/s41586-019-1684-3>

629 SRTM. (2020). Digital Elevation - Shuttle Radar Topography Mission (SRTM) 1 Arc-
630 Second. <https://doi.org/10.5066/TEEBF7PR7TFT>

631 TEEB. (2010). The economics of ecosystems and biodiversity. Ecological and economic
632 foundations. Edited by Pushpam Kumar. Earthscan London, Washington

633 Thies, C., Steffan-Dewenter, I., & Tscharntke, T. (2003). Effects of landscape context on
634 herbivory and parasitism at different spatial scales. *Oikos*, 101(1), 18–25.
635 <https://doi.org/10.1034/j.1600-0706.2003.12567.x>

636 Urban, M. C. (2015). Accelerating extinction risk from climate change. *Science*, 348(6234),
637 571–573. <https://doi.org/10.1126/science.aaa4984>

638 Wagner, D. L. (2020). Insect declines in the Anthropocene. *Annual Review of Entomology*,
639 65(1), 457–480. <https://doi.org/10.1146/annurev-ento-011019-025151>

640 Warren, M. S., Hill, J. K., Thomas, J. A., Asher, J., Fox, R., Huntley, B., Roy, D. B., Telfer,
641 M. G., Jeffcoate, S., Harding, P., Jeffcoate, G., Willis, S. G., Greatorex-Davies, J. N.,
642 Moss, D., & Thomas, C. D. (2001). Rapid responses of British butterflies to opposing
643 forces of climate and habitat change. *Nature*, 414(6859), 65–69.
644 <https://doi.org/10.1038/35102054>

645 Warren, R., Price, J., Graham, E., Forstenhaeusler, N., & VanDerWal, J. (2018). The
646 projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C
647 rather than 2°C. *Science*, 360(6390), 791–795. <https://doi.org/10.1126/science.aar3646>

648 Wiens, J. A. (1989). Spatial scaling in ecology. *Functional Ecology*, 3(4), 385–397.
649 <https://doi.org/10.2307/2389612>

650 Williams, J. J., & Newbold, T. (2020). Local climatic changes affect biodiversity responses to
651 land use: A review. *Diversity and Distributions*, 26(1), 76–92.
652 <https://doi.org/10.1111/ddi.12999>