
1 
 

Disentangling effects of climate and land use on biodiversity and ecosystem 1 

services – a multi-scale experimental design 2 

 3 

Sarah Redlich1, Jie Zhang1, Caryl Benjamin2, Maninder Singh Dhillon3, Jana Englmeier4, Jörg 4 

Ewald5, Ute Fricke1, Cristina Ganuza1, Maria Haensel6, Thomas Hovestadt7, Johannes 5 

Kollmann8, Thomas Koellner6, Carina Kübert-Flock3, Harald Kunstmann9,10, Annette 6 

Menzel2, Christoph Moning5, Wibke Peters11, Rebekka Riebl6, Thomas Rummler9, Sandra 7 

Rojas Botero8, Cynthia Tobisch5, Johannes Uhler4, Lars Uphus2, Jörg Müller4,12, Ingolf 8 

Steffan-Dewenter1 9 

 10 

Affiliations: 11 

1 Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, 12 

Würzburg, Germany 13 

2 TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Freising, Germany 14 

3 Institute of Geography and Geology, Department of Remote Sensing, Julius-Maximilians-University 15 

Würzburg, Würzburg, Germany 16 

4 Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Julius-17 

Maximilians-University Würzburg, Würzburg, Germany 18 

5 Institute of Ecology and Landscape, Weihenstephan-Triesdorf University of Applied Sciences, 19 

Freising, Germany 20 

6 Professorship of Ecological Services, Bayreuth Center of Ecology and Environmental Research 21 

(BayCEER), University of Bayreuth, Bayreuth, Germany 22 

7 Theoretical Evolutionary Ecology Group, Department of Animal Ecology and Tropical Biology, 23 

Julius-Maximilians-University Würzburg, Würzburg, Germany 24 

8 Chair of Restoration Ecology, Technical University of Munich, Freising, Germany. 25 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.05.434036doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.05.434036
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

9 Chair for Regional Climate and Hydrology, Institute of Geography, University of Augsburg, 26 

Augsburg, Germany 27 

10 Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology - 28 

Campus Alpin, Garmisch-Partenkirchen, Germany 29 

11 Department of Biodiversity, Conservation and Wildlife Management, Bavarian State Institute of 30 

Forestry, Freising, Germany 31 

12 Bavarian Forest National Park, Grafenau, Germany 32 

 33 

 34 

Corresponding authors: Sarah Redlich, Department of Animal Ecology and Tropical Biology, 35 

University of Würzburg, Am Hubland, 97074, sarah.redlich@uni-wuerzburg.de 36 

Ingolf Steffan-Dewenter, Department of Animal Ecology and Tropical Biology, University of 37 

Würzburg, Am Hubland, 97074, Ingolf.Steffan@uni-wuerzburg.de 38 

 39 

Running title: Joint climate and land-use effects on ecosystems  40 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.05.434036doi: bioRxiv preprint 

mailto:Ingolf.Steffan@uni-wuerzburg.de
https://doi.org/10.1101/2021.03.05.434036
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Summary 41 

1. Climate and land-use change are key drivers of environmental degradation in the 42 

Anthropocene, but too little is known about their interactive effects on biodiversity 43 

and ecosystem services. Long-term data on biodiversity trends are currently lacking. 44 

Furthermore, previous ecological studies have rarely considered climate and land use 45 

in a joint design, did not achieve variable independence or lost statistical power by not 46 

covering the full range of environmental gradients. 47 

2. Here, we introduce a multi-scale space-for-time study design to disentangle effects of 48 

climate and land use on biodiversity and ecosystem services. The site selection 49 

approach coupled extensive GIS-based exploration and correlation heatmaps with a 50 

crossed and nested design covering regional, landscape and local scales. Its 51 

implementation in Bavaria (Germany) resulted in a set of study plots that maximizes 52 

the potential range and independence of environmental variables at different spatial 53 

scales. 54 

3. Stratifying the state of Bavaria into five climate zones and three prevailing land-use 55 

types, i.e. near-natural, agriculture and urban, resulted in 60 study regions covering a 56 

mean annual temperature gradient of 5.6–9.8 °C and a spatial extent of 380x360 km. 57 

Within these regions, we nested 180 study plots located in contrasting local land-use 58 

types, i.e. forests, grasslands, arable land or settlement (local climate gradient 4.5–10 59 

°C). This approach achieved low correlations between climate and land-use 60 

(proportional cover) at the regional and landscape scale with |r≤0.33| and |r≤0.29|, 61 

respectively. Furthermore, using correlation heatmaps for local plot selection reduced 62 

potentially confounding relationships between landscape composition and 63 

configuration for plots located in forests, arable land and settlements. 64 
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4. The suggested design expands upon previous research in covering a significant range 65 

of environmental gradients and including a diversity of dominant land-use types at 66 

different scales within different climatic contexts. It allows independent assessment of 67 

the relative contribution of multi-scale climate and land use on biodiversity and 68 

ecosystem services. Understanding potential interdependencies among global change 69 

drivers is essential to develop effective restoration and mitigation strategies against 70 

biodiversity decline, especially in expectation of future climatic changes. Importantly, 71 

this study also provides a baseline for long-term ecological monitoring programs. 72 

 73 

 74 

 75 
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Introduction 78 

Human actions are threatening the interdependent yet fragile balance of the biosphere, 79 

with far-reaching consequences for the diversity of plants (Brummitt et al., 2015) and animals 80 

(Dirzo et al., 2014). As biodiversity contributes a wealth of ecological services, cascading 81 

effects and reassembly of communities jeopardize human well-being and biosphere’s 82 

resilience against current and future disturbance (Chaplin-Kramer et al., 2019; Mori et al., 83 

2018). Many of the services, such as food provisioning, decomposition or maintenance of soil 84 

fertility, rely on biotic interactions potentially sensitive to global change. This is especially 85 

true for regulating services provided by the highly diverse class of insects: pollination and 86 

pest regulation, both shown to strongly affect food production (Dainese et al., 2019; Duffy et 87 

al., 2017). Reported losses of insect biomass and abundances across Europe and the globe are 88 

therefore particularly worrisome (Hallmann et al., 2017; Seibold et al., 2019; Wagner, 2020). 89 

Yet the full cross-taxon magnitude of declines and the relative contributions of man-made 90 

drivers remain poorly understood. 91 

One of the greatest threats to biodiversity is land-use change, the transformation of 92 

terrestrial ecosystems for infrastructure, human settlements and the production of crops, 93 

animals and timber (Newbold et al., 2015). Landscape simplification, urbanization, 94 

deforestation, and agricultural intensification alter environmental conditions and the 95 

availability of habitats and resources, but also the structure of entire landscapes, i.e. their 96 

composition (amount of different habitat types) and configuration (spatial arrangement and 97 

patch size of habitats). Both variables are often highly correlated (Fahrig et al., 2011) and 98 

might interact in nonlinear ways (Martin et al., 2019; Redlich et al., 2018), while attempts to 99 

disentangle them may reduce the statistical power of study designs (Fig. 1). Concurrently, 100 

land-use effects on biodiversity and ecosystem services depend on spatial scaling, the degree 101 

of specialization and movement capability of taxa and ecological processes considered (Piano 102 
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et al., 2020; Wiens, 1989), with important implications for population dynamics, the diversity 103 

of fungi, plants and animals, and in consequence for ecosystem functions and services (Díaz 104 

et al., 2019; Foley et al., 2005; Newbold et al., 2015). While macroecological processes such 105 

as environmental filtering determine regional species pools, species diversity and population 106 

abundances at smaller spatial scales relate to multi-habitat use, dispersal ability, resource 107 

availability and trophic interactions. For instance, large-scale urbanization reassembles 108 

terrestrial and aquatic invertebrate communities (Piano et al., 2020), but local conversion to 109 

cropland reduces species abundances and the multitrophic functional biodiversity in 110 

agroecosystems (Provost et al., 2020) with flow-on effects for pollination, pest regulation and 111 

crop productivity (Dainese et al., 2019).  112 

Climate is another major driver of biodiversity. Long-term data on species 113 

distributions along latitudinal and elevational climatic gradients demonstrate significant 114 

poleward and upward shifts of species' ranges driven by global warming (Parmesan, 2006). In 115 

the future, extinction risks across all animal taxa – but particularly ectothermic organisms 116 

such as insects – may further increase with accelerating climate change (Urban, 2015; R. 117 

Warren et al., 2018). Similarly, plant community richness is likely to decrease in temperate 118 

climates, where the range of thermal tolerances in regional species pools is narrow (Harrison, 119 

2020). 120 

Specific land-use types may prevent climate-induced range shifts and accelerate 121 

extinctions (Fox et al., 2014; Peters et al., 2019), especially in case of less mobile specialists 122 

(Warren et al., 2001). Alternatively, (in)vertebrate communities in anthropogenic land-use 123 

types may shift towards drought- and warming-tolerant species (Williams & Newbold, 2020). 124 

Understanding the independent and combined impact of land-use and climate change on 125 

biodiversity, community composition and ecosystem services is needed to predict future 126 

changes and allow for management strategies to mitigate further losses. However, less than 127 
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10% of available studies analyse combinations of those drivers (Rillig et al., 2019). Land-use 128 

change may also feedback to the atmosphere and alter regional climate including water 129 

availability by precipitation ( Dale, 1997; Laux et al., 2017; Williams & Newbold, 2020), 130 

resulting in correlated land-use and climate gradients that make it difficult to disentangle 131 

individual effects (Peters et al., 2019). Furthermore, long-term data on climate, land use and 132 

biodiversity are currently lacking, recently established monitoring schemes will not deliver 133 

sufficient data in the near future and time-series analysis may be prone to biases (Didham et 134 

al., 2020).  135 

 136 

 137 

Figure 1. Disentangling effects of landscape composition and configuration in large-scale 138 

ecological studies. (A) Relationship between variables can be positive, negative, non-linear or 139 

independent, depending on habitat amount, habitat type and region. (B) Random selection of 140 

study plots regularly results in significant correlations between variables (blue points), while 141 

posterior exclusion of plots reduces correlations but also the covered parameter space (yellow 142 

rectangle and points). A priori knowledge of potential correlations and targeted selection of 143 

study plots using heatmaps reduces correlations and increases the parameter space (green 144 
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rectangle and points). Dashed trend lines in blue, yellow and green in (B) indicate the 145 

expected change of landscape variable correlations depending on the site selection approach. 146 

 147 

Here, we report on a novel protocol (Fig. 2) for a comprehensive study design that 148 

systematically combines full gradients of climate and land use at various spatial scales to 149 

investigate interacting effects on biodiversity of a wide range of taxa. This method was 150 

developed within the framework of a large-scale interdisciplinary climate research project 151 

(LandKlif, www. landklif.biozentrum.uni-wuerzburg.de). The stratified, nested design used 152 

intensive GIS-based exploration of potential study regions and a new site-selection approach 153 

based on heatmaps to reduce potential pitfalls of ecological studies on effects of land-use and 154 

climate: a) non-independence of climate and land-use variables, and correlations among land-155 

use related composition and configuration variables; b) restrictions in gradient range or the 156 

number of spatial scales considered; c) lacking monitoring data for biodiversity and 157 

ecosystem services. The described method can be useful for similar multi-scale research 158 

programs and long-term ecosystem monitoring but will also allow for predictions of potential 159 

interactive impacts of climate and land use in a space-for-time approach. 160 

 161 
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Figure 2. General overview of three-step plot selection process. Step 1: Selection of 60 study 163 

regions based on 15 climate – land-use combinations. Step 2: Creation of heatmaps to 164 

disentangle landscape composition and configuration variables in 1-km radius. Step 3: Based 165 

on heatmaps, selection of final 180 study plots in contrasting local land-use types. 166 

 167 

Material and methods 168 

Study area 169 

The three-step study design (Fig. 2) was implemented in Bavaria in Southern 170 

Germany. With an area of around 70,000 km2 and 13 mio. inhabitants, it is the largest and 171 

second most populous state of Germany (Bayerisches Landesamt für Statistik, 2020). It 172 

covers an elevational gradient of 93–2943 m averaged at a resolution of 1 arc-second (SRTM, 173 

2020) with mean annual temperatures (climatological reference period 1981–2010) averaged 174 

in 1-km² grid cells ranging from -3.8–10.4 °C (Deutscher Wetterdienst, 2020). The land use 175 

of Bavaria is dominated by human influences, but also comprises less intensively used near- 176 

or semi-natural areas. While 7% constitute urban areas and 53% agricultural land or managed 177 

grassland, the remaining 40% are covered by (mostly managed) forests, nature protection 178 

areas and other near-natural habitats (CORINE, 2012). Bavaria’s size and heterogeneity of 179 

climate and anthropogenic influences makes it a pilot region for studying and disentangling 180 

effects of climate and land use in temperate regions and at the regional, landscape and local 181 

scale.  182 

 183 

Step 1 - Selection of study regions based on climate and land-use zones 184 

At the regional scale, a stratified sampling approach ensured complete coverage of 185 

climate and land-use gradients and largely uncorrelated, orthogonal parameter combinations 186 

of both (Fig. 2). Regions were hereby defined as existing 5.8x5.8 km quadrants, which build 187 
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the cells of a spatial grid covering the whole of Bavaria (‘TK25’ topographical map, scale 188 

1:25,000). These quadrants are widely used for floristic and faunistic inventories. 189 

To select potential climate—land-use combinations, quadrants were first classified 190 

into five climatic zones based on 30-year (1981–2010) mean air temperature data for each 191 

quadrant (Deutscher Wetterdienst, 2020). We further categorized each quadrant as one of 192 

three dominant regional land-use types based on proportional land use (CORINE, 2012): near-193 

natural quadrants (>85% near-natural vegetation including a minimum of 50% forest), 194 

agricultural quadrants (>40% arable land and managed grassland), and urban quadrants 195 

(>14% housing, industry and traffic infrastructure). Cut-off values for land use and climate 196 

were chosen to 1) maximize climatic differences and the contrast among land-use types, with 197 

anthropogenic impact ranging from low (near-natural) to very high (urban); 2) achieve equal 198 

intervals and a similar number of quadrants within each category; and 3) obtain enough 199 

quadrants in each class to realise an even distribution and meet logistic requirements (e.g. 200 

reduce travelling time, avoid no-fly zones for UAVs where aerial assessments were planned). 201 

Based on these prerequisites, we selected four quadrants of each of the 15 climate–land-use 202 

combinations (60 study regions, Fig. 2).  203 

 204 
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 205 

Figure 3. Implementation of a full-factorial, stratified design crossing regional climate and 206 

land use in Bavaria, Southern Germany. Climate zones (A) were based on 30-year (1981–207 

2010) mean air temperatures in each quadrant (1 (cold) to 5 (warm)). For land use (B), we 208 

distinguished between near-natural quadrants (>85% natural vegetation including a minimum 209 

of 50% forest), agricultural quadrants (>40% arable land and managed grassland) and urban 210 

quadrants (>14% housing, industry and traffic infrastructure). The final 60 study regions (C) 211 

covered 15 climate–land use combinations with four replicates each. 212 

 213 

Step 2 – Create heatmaps to reduce correlations among landscape variables 214 

Within each of the 60 study regions, we aimed to investigate the impact of local land 215 

use and interactive effects of landscape-scale land use (composition and configuration) on 216 
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biodiversity and ecosystem services. The landscape-scale was hereby defined as 1-km radius 217 

around local study plots, as this scale was shown to have ecological relevance for arthropods 218 

(Bosem Baillod et al., 2017; Holzschuh et al., 2016; Thies et al., 2003). As the strength of 219 

correlations among landscape variables depends on the location of local study plots, we 220 

implemented a novel heatmap approach with a priori knowledge of potential relationships 221 

(Fig. 1). These correlation heatmaps – created for four dominant contrasting local land-use 222 

types identified within our study regions – served as systematic criterion for local study plot 223 

selection (Fig. 2).  224 

The heatmap procedure involved the following steps: (1) Within each quadrant and 225 

starting 1 km away from the quadrant edge, we created a grid of 320 m resolution (resolution 226 

of the underlying CORINE data (2012), Fig. 4A). We calculated four landscape composition 227 

variables (proportional cover of four local land-use types: forest, grassland, arable land, 228 

settlement) and one configuration variable (edge density, i.e. length of edges between all 229 

habitat types on a per unit area, m ha-1) for a 1-km radius buffer around the centre of each 230 

320x320 m grid cell (Fig. 4B). The next steps, here exemplified for forest, were repeated for 231 

each local land-use type. (2) We selected all grid cells (Fig. 4C) with a proportional forest 232 

cover of >20% (to accommodate a 0.5-ha study plot and a 3x30 m experimental area) and 233 

>5% forest in the surrounding 1-km radius buffer (to ensure a minimum amount of forest was 234 

present in the surrounding landscape). (3) Of these forest grid cells and associated landscape 235 

buffers, we randomly chose one in each of the 60 study quadrants - if existent (quadrants 236 

without forest grids were excluded) - and calculated the overall Pearson’s r correlation 237 

coefficient between the surrounding landscape composition (here forest cover) and 238 

configuration (edge density) based on the random plot selection. (4) This random selection 239 

and calculation was repeated 10,000 times. (5) For each forest grid-cell i we then calculated 240 
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the average Pearson’s 𝑟𝑟𝑖̄𝑖 coefficient across all the random combinations of points in which this 241 

cell was included: 242 

𝑟𝑟𝚤̄𝚤 =
∑ 𝑟𝑟𝑖𝑖,𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑛𝑛
 243 

where 𝑟𝑟𝑖𝑖,𝑗𝑗  is the jth Pearson’s r coefficient resulting from random selection of that specific 244 

forest dominated grid cell i, and n is the number of times that grid cell i was included in one 245 

of the 10,000 random selections of points. (6) In a last step and considering all forest grid 246 

cells in our 60 quadrants, we used natural breaks (Jenks natural breaks algorithm implemented 247 

in ArcMap v10.4) to classify the range of mean correlations into three categories to create the 248 

correlation heatmap for the local land-use type forest (Fig. 4C). By repeating the steps 249 

described in (2–6) for all land-use types (forest, grassland, arable land, settlement), we 250 

derived a set of four heatmaps for each of the 60 quadrants. During the local plot selection 251 

process (Step 3), these heatmaps helped to reduce correlations of landscape composition and 252 

configuration around plots with specific land-use types (e.g. only forest plots), but also across 253 

all study plots. 254 

 255 

Step 3 - Selection of local study plots 256 

 Within each quadrant, we aimed to establish local study plots of 0.5 ha size within 257 

contrasting land-use types (Fig. 2). Although four local, dominant land-use types had been 258 

identified during the heatmap process (forest, grassland, arable land or settlement), not all 259 

were present in each quadrant. Therefore, we focused on three out of four land-use types per 260 

quadrant by considering availability (if only three types present) or regional dominance (three 261 

types with highest proportional cover) and contrast (whenever proportional cover of two land-262 

use types was similar). We then used the respective heatmaps to preferentially place study 263 

plots in grid cells that had a low predicted correlation values for the specific land-use type. 264 

Additional decision rules for plot selection included landowner permission, >2 km between 265 
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plots, >50 m away from roads, water bodies and other land-use types, protection from 266 

vandalism and good accessibility. Nested within our large-scale factorial design, the resulting 267 

180 plots allowed us to assess the influence of local land use on biodiversity and ecosystem 268 

services, while minimizing correlations between landscape composition and configuration.  269 

 270 

 271 

Figure 4. Process of deriving correlation heatmaps for each dominant land-use type to guide 272 

the selection of local study plots. Colours of polygons represent different land-use types. (A) 273 

Create a fishnet of 320 m resolution inside each of 60 study quadrants. (B) Calculate 274 

landscape composition and configuration within a 1-km radius around centre of each 320x320 275 

m grid cell. (C) Select grid cells dominated by the respective land-use type (here forest, dark 276 

green) and create land-use specific heatmaps of mean correlations between landscape 277 

composition and configuration based on 10,000 random selections of grid cells across all 278 

quadrants. Shades of grey in heatmaps indicate levels of the predicted degree of correlation 279 

(light = high correlation, dark = low correlation) if the respective grid was chosen. 280 

 281 

Assessing efficiency of study design 282 

We assessed the efficiency of our stratified selection and heatmap approach by a) 283 

region (5.8x5.8 km): calculating Pearson’s r correlation coefficients between climate and the 284 

proportion of our regional dominant land-use types near-natural, agriculture and urban; b) 285 

landscape (1-km radius): assessing relationships between climate and the proportion of our 286 

dominant local land-use types forest, grassland, arable land and settlement. We also visually 287 
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compared final correlations between landscape composition and configuration with potential 288 

correlations based on 10,000 random selections. 289 

The proportion of land-use types (region, landscape) and landscape composition and 290 

configuration variables were calculated in ArcGIS pro v2.2.0 and ArcMap v10.4 using 291 

CORINE data (2012). Climate data for regions and landscapes (mean air temperatures and 292 

associated precipitation amounts) were calculated using Esri ASCII grid raster files with 293 

1x1km resolution (Deutscher Wetterdienst, 2020) by averaging pixel values within each 294 

5.8x5.8 km quadrant and 1-km buffer around selected study plots, respectively. All Pearson’s 295 

r coefficients calculated in R v4.0.2. 296 

 297 

Results 298 

Implementation of the experimental design 299 

Our design and selection process (Fig. 2) allowed us to minimize the potential 300 

correlations between climate, land use and landscape metrics at multiple scales and resulted in 301 

an approximately even distribution of 60 study regions (quadrants) across Bavaria (Fig. 3). 302 

These regions covered a climate gradient of 5.6–9.8 °C (8.2 ± 0.8 °C, mean ± SD) and 614–303 

1820 mm of annual precipitation amounts (939 ± 263 mm). Across all quadrants, the cover of 304 

our dominant regional land–use types (i.e. landscape composition) ranged from 0.8 to 97.1% 305 

(40 ± 27.7%) for near-natural land use, 0.3–91.0% (44.7 ± 24.9%) for agriculture, and 0–306 

97.2% (14.7 ± 21.1%) for urban areas. Regional mean temperatures (Fig. 5A–C) and 307 

precipitation (|r<0.3|, Appendix Fig. S1A–C) showed low correlations with regional land use 308 

(proportion of near-natural, agriculture and urban habitat). 309 

 310 
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  311 

Figure 5. Relationships between 30-year mean temperatures (1981–2010) and proportional 312 

land cover (composition) for the regional land-use types near-natural (A), agriculture (B) and 313 

urban (C), and for the landscape-scale land-use types forest (D), grassland (E), arable land (F) 314 

and settlement (G). Pearson’s r coefficients based on 60 study regions (5.8x5.8 km quadrants, 315 

A–C) and 179 (out of expected 180) study plots (1-km radius around local study plots, D–G). 316 

 317 

For each study region, the heatmap procedure yielded four heatmaps for the local 318 

land-use types forest, grassland, arable land and settlement, which were used to identify 319 

potential study plots within dominant local land-use types (Fig. 6B–D). After ground-truthing 320 

of sites and gaining permission of landowners, three final plots were chosen per quadrant 321 

(Fig. 6E), yielding 179 out of 180 expected study plots (Fig. 6A). One study plot was 322 

discarded as landowner permission was denied. Forest (n = 55) was the most selected local 323 

land-use type, followed by grassland (n = 46), arable land (n = 43) and settlement (n = 35).  324 

 325 
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 326 

Figure 6: Map of all 179 (out of expected 180) study plots in 60 study regions (A) and 327 

example of heatmaps for three dominant local land-use types (arable land (B), forest (C), and 328 

settlement (D)) used for the final selection of study plots (E). Shades of grey in heatmaps 329 

indicate levels of the predicted degree of correlation (light = high correlation, dark = low 330 

correlation) if the respective grid was chosen. 331 

 332 

At the landscape-scale in 1-km radius around study plots, mean temperatures across 333 

our 179 study plots ranged from 4.5–10 °C (8.2 ± 0.8 °C), with annual precipitation amounts 334 

of 590–2893 mm (933 ± 279 mm). Landscape composition gradients across all plots stretched 335 

from 0–100% for forest (37.9 ± 32.3%), 0–80.2 % for grassland (15.7 ± 17.1%), 0–99.4% for 336 

arable land (28.7 ± 29.2%) and 0–100% for settlement (16.1 ± 25.8%). Edge density across all 337 

study plots was 0–66.0 m ha-1 (28.1 ± 13.8 m ha-1). Correlations of landscape-scale 338 
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temperature with composition variables (Fig. 4D–G) and edge density were low (Pearson’s r 339 

= - 0.17). 340 

Compared to potential correlations based on random selection of study plots, the 341 

heatmap approach resulted in lower correlations between landscape composition and 342 

configuration (in 1-km radius around study plots) for plots located in forest, arable land and 343 

settlements (blue line, Fig. 7A, C, D). Only for grassland, the final correlation was positive 344 

and higher than predicted (blue line, Fig. 7B). Taking all study plots independent of the local 345 

land-use type into account, this pattern was even stronger, with correlations between the 346 

proportion of habitats and edge density being very low for forest (Pearson’s r = -0.31), arable 347 

land (r = 0.09) and settlement (r = -0.08), yet high for grassland (r = 0.51) (red line, Fig 7, 348 

Fig. S2). Correlations among composition variables ranged from r = -0.13 (settlement and 349 

grassland) to -0.55 (arable land and forest). 350 

This multi-scale GIS-supported study design is suited to disentangle climate and land-351 

use effects on general and functional biodiversity and plant- or animal-based ecosystem 352 

services, as done within this project using a range of observational, empirical, modelling and 353 

survey data collected on different spatial scales in 2019 and 2020 (Table 1).  354 
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 355 

Figure 7. Potential and actual Pearson’s correlations between landscape composition 356 

(proportional cover of land-use types) and configuration (edge density) in 1-km radius around 357 

study plots. Compared to the histograms of potential correlations resulting from 10,000 358 

random selections of grid cells (i.e. potential study plots, cf. ‘heatmap procedure’), blue lines 359 

show reduced actual correlations based on subsets of plots located in the land-use types forest 360 

(n = 55, A), arable land (n = 43, C) and settlement (n = 35, D), yet higher correlations for 361 

plots located in grassland (n = 46, B). Red lines show correlations for land-use specific actual 362 

correlations across all selected study plots (n =179).  363 

 364 

Table 1: Example for assessments of biodiversity, ecosystem services and socio-365 

economic/management information in the LandKlif project. Observational and empirical data 366 

was collected on up to 179 study plots in 2019 and 2020 and complemented with modelling 367 
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approaches and stakeholder surveys. Extended categorization of ecosystem services based on 368 

TEEB (2010) and Rabe et al. (2016). 369 

 370 

 371 

Discussion 372 

Studies assessing the combined effects of land use and climate on biodiversity and 373 

ecosystem services commonly struggle with non-independence of climate and land-use 374 

variables, restrictions in gradient range or scale and insufficient long-term data sets. Here, we 375 

present the protocol for a large-scale experimental design that aims to overcome these issues. 376 

While our basic design follows the selection principles for multi-scale landscape studies 377 

outlined in previous papers (Fahrig et al., 2011; Gillespie et al., 2017; Pasher et al., 2013), the 378 

use of a novel, automated heatmap approach and the inclusion of independent climatic 379 

gradients sets this design apart, both as baseline and space-for-time study.  380 

  Group/Service Detail Scale 

Bi
od

iv
er

si
ty

 

Plants Plant/Pollen diversity and phenology Plot 
Microbes Soil/decomposer microbial diversity Plot 
Arthropods Total Biomass and richness of flying and 

crawling arthropods; functional abundance and 
richness of arthropod decomposers, pollinators, 
trap-nesting Hymenoptera, pests and predators 

Plot 

Vertebrates Diversity and density of game Plot/Bavaria 
Ecosystems Landscape diversity, composition, configuration Landscape/Region 

Ec
os

ys
te

m
 se

rv
ic

es
 

Decomposition Decomposition of deadwood, carrion and dung Plot 
Pest regulation Predation and parasitim rate, herbivory Plot 
Pollination Seed set and pollination services Plot/Region 
Productivity Crop biomass and yield; vegetation biomass; 

Normalized Difference Vegetation Index (NDVI); 
flower resource availiability 

Plot/Region 

Soil fertility Soil organic carbon and nutrient content Plot 
Soil erosion prevention Erosion Region 
Carbon sequestration  Soil Organic Carbon Bavaria 
Microclimate regulation Temperature Plot 
Flood control  Prevention of floods Region 
Water quality regulation Nitrogen and phosphorus retention  Region 

O
th

er
 Stakeholder preferences Preferences for ecosystem services Region 

Stakeholder perceptions Climate change perceptions Region 
Landowner management Management of land and crop fields used for 

experiments 
Plot 
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First, the crossed and nested design at the regional scale resulted in relatively weak 381 

correlations between climate and land use (proportional cover of forest, near-natural and 382 

urban area). The design also decoupled regional climate and land-use effects from the 383 

influence of small-scale land use due to the selection of three out of four dominant local land-384 

use types (forest, grassland, arable land or settlements) within our 60 study regions. 385 

Regarding landscape composition and configuration in a 1-km radius around study plots, the 386 

heatmap approach lowered correlations compared to average potential correlations for 387 

specific local land-use types (blue lines, Fig. 7), but these benefits were not that substantial in 388 

absolute terms (i.e. correlations for selected plots quite close to peak of distribution for 389 

random selection). However, there are three points to consider: 1) these actual correlations 390 

were based on a subset of plots (specific local land-use types), and were much lower for 391 

forest, arable land and settlement if calculated across all study plots (red lines, Fig. 7), which 392 

is the gradient range primarily used for analysis in our project; 2) reducing landscape 393 

correlations may be difficult for land-use types such as forest, where patches generally occur 394 

clustered, causing higher negative correlations with edge density than for settlements or arable 395 

land. For grassland, correlations seem the be generally low, yet increased during the selection 396 

process, possibly due to inherent correlations among land-use types and non-linear 397 

relationships between grassland amount and edge density in the landscape ; 3) in our project, 398 

complex private ownership structures, logistic and other constraints (e.g. transportation costs, 399 

time constraints, accessibility, permissions) prevented us from selecting combinations of 400 

study plots closer to r=0. Our method is situated halfway between two extremes: the blind 401 

selection of study plots that may inherently cause strong landscape correlations or requires the 402 

reduction in parameter space (see Fig. 1) and choosing the best available random selection of 403 

plots during the process of creating heatmaps.  Accordingly, the chance of moving towards 404 

low landscape correlations ultimately depends on the gradient range and land-use type 405 
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considered and methodological, logistical and ownership constraints that may be lower in 406 

other studies. 407 

Second, we increased the coverage of spatial scales and land-use types, thereby 408 

maximizing the number of explanatory factors that can be analysed in parallel. Concurrently, 409 

our method of ‘a priori’ employing long-term climate data and extensive GIS-based 410 

exploration of potential study plots enabled us to cover independent, large climatic and land-411 

use gradients. For landscape composition and configuration of the full set of 179 final study 412 

plots, our data highlights the natural, unimodal relationship between these variables, which is 413 

most pronounced for forest cover and grows weaker from grassland to arable land and 414 

settlement, with peaks between 40–60% land cover (Appendix S2). This implies that studies 415 

covering narrow landscape gradients between 0–50% or 50–100% may observe contrasting 416 

positive or negative correlations between these landscape variables, respectively, while 417 

studies focussed on intermediate landscape gradients are most likely to reduce the correlation 418 

between variables and differentiate between individual effects, which may be impossible at 419 

the extreme ends of the spectrum. 420 

Finally, our extensive on-field assessments within this experimental framework will 421 

fill existing knowledge gaps about biodiversity trends across taxa, relationships between 422 

above- and belowground arthropods and the microbial diversity of decomposer communities. 423 

We can also assess potential trade-offs among ecosystem service provisioning and current and 424 

predicted interactive effects of climate and land use on biodiversity-ecosystem functioning 425 

relationships. In this context, the implemented space-for-time approach has crucial advantages 426 

over time series. Recently established long-term biodiversity monitoring schemes will not 427 

yield meaningful results before several decades, which may be too late considering the current 428 

speed of global change. Furthermore, long-term climatic change often goes hand in hand with 429 

land-use change, making it difficult to disentangle individual effects (Dale, 1997). In addition, 430 
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issues such as shifting baselines or phenologies, bias in site selection and detection may cause 431 

misleading results in time series analysis (Didham et al., 2020). Other methods, such as large-432 

scale, manipulative climate–land-use experiments following the idea of BACI designs 433 

(Before-After-Control‐Impact studies, Christie et al., 2019) are highly interesting but almost 434 

impossible to implement. 435 

Space-for-time approaches also have limitations. For instance, other drivers of 436 

biodiversity, such as anthropogenic pressure or altered biotic interactions, may mask the 437 

response to climate, especially if only small spatial scales (a few kilometres or less) with 438 

small climatic differences are considered (Blois et al., 2013). In contrast, data obtained from 439 

spatial observations was shown to overestimate phenology responses to temperature 440 

compared to long-term phenological data (Jochner et al., 2013). Still, space-for-time 441 

substitutions based on the largest possible climatic gradient is a useful and fast alternative to 442 

gain important, policy-relevant insights into the interactive effects of climate and land-use 443 

change on biodiversity and ecosystem services. By utilizing the full parameter space of the 444 

climatic and landscape variables assessed here (Fig. 1), we enhanced the validity of space-for-445 

time substitutions related to climate change (Blois et al., 2013). We further reduced the 446 

chance of observing misleading findings in cases where non-monotonic relationships cause 447 

contradictory relationships between environmental variables and biodiversity if only a narrow 448 

variable range is used (Eigenbrod et al., 2011).  449 

 450 

Conclusions 451 

Our multi-scale study protocol expands on previous designs which addressed local 452 

gradients in climate and land use (Peters et al., 2019) or gradients in landscape structure in 453 

multiple regions (Gillespie et al., 2017; Holzschuh et al., 2016). It allows to evaluate scale-454 

dependent and interactive effects of current climate and land-use gradients on biodiversity and 455 
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ecosystem services, and to predict long-term responses to climate change. Furthermore, it 456 

provides valuable baseline data to assess the effectiveness of future restoration measures at 457 

local, landscape and regional scales. We believe that this approach of an objective, multi-scale 458 

site selection across large regions deserves consideration in the implementation of national 459 

and European long-term ecosystem monitoring schemes.  460 
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