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Summary

1.

Climate and land-use change are key drivers of environmental degradation in the
Anthropocene, but too little is known about their interactive effects on biodiversity
and ecosystem services. Long-term data on biodiversity trends are currently lacking.
Furthermore, previous ecological studies have rarely considered climate and land use
in a joint design, did not achieve variable independence or lost statistical power by not

covering the full range of environmental gradients.

Here, we introduce a multi-scale space-for-time study design to disentangle effects of
climate and land use on biodiversity and ecosystem services. The site selection
approach coupled extensive GIS-based exploration and correlation heatmaps with a
crossed and nested design covering regional, landscape and local scales. Its
implementation in Bavaria (Germany) resulted in a set of study plots that maximizes
the potential range and independence of environmental variables at different spatial

scales.

Stratifying the state of Bavaria into five climate zones and three prevailing land-use
types, i.e. near-natural, agriculture and urban, resulted in 60 study regions covering a
mean annual temperature gradient of 5.6-9.8 °C and a spatial extent of 380x360 km.
Within these regions, we nested 180 study plots located in contrasting local land-use
types, i.e. forests, grasslands, arable land or settlement (local climate gradient 4.5—10
°C). This approach achieved low correlations between climate and land-use
(proportional cover) at the regional and landscape scale with [#<0.33| and |r<0.29,
respectively. Furthermore, using correlation heatmaps for local plot selection reduced
potentially confounding relationships between landscape composition and

configuration for plots located in forests, arable land and settlements.
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4. The suggested design expands upon previous research in covering a significant range
of environmental gradients and including a diversity of dominant land-use types at
different scales within different climatic contexts. It allows independent assessment of
the relative contribution of multi-scale climate and land use on biodiversity and
ecosystem services. Understanding potential interdependencies among global change
drivers is essential to develop effective restoration and mitigation strategies against
biodiversity decline, especially in expectation of future climatic changes. Importantly,

this study also provides a baseline for long-term ecological monitoring programs.

Keywords: biodiversity, climate change, ecosystem functioning, insect monitoring, land use,

space-for-time approach, spatial scales, study design
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78  Introduction

79 Human actions are threatening the interdependent yet fragile balance of the biosphere,
80  with far-reaching consequences for the diversity of plants (Brummitt et al., 2015) and animals
81  (Dirzo et al., 2014). As biodiversity contributes a wealth of ecological services, cascading

82  effects and reassembly of communities jeopardize human well-being and biosphere’s

83  resilience against current and future disturbance (Chaplin-Kramer et al., 2019; Mori et al.,

84  2018). Many of the services, such as food provisioning, decomposition or maintenance of soil
85 fertility, rely on biotic interactions potentially sensitive to global change. This is especially

86 true for regulating services provided by the highly diverse class of insects: pollination and

87  pest regulation, both shown to strongly affect food production (Dainese et al., 2019; Duffy et

88 al., 2017). Reported losses of insect biomass and abundances across Europe and the globe are
89 therefore particularly worrisome (Hallmann et al., 2017; Seibold et al., 2019; Wagner, 2020).

90  Yet the full cross-taxon magnitude of declines and the relative contributions of man-made

91  drivers remain poorly understood.

92 One of the greatest threats to biodiversity is land-use change, the transformation of

93 terrestrial ecosystems for infrastructure, human settlements and the production of crops,

94  animals and timber (Newbold et al., 2015). Landscape simplification, urbanization,

95  deforestation, and agricultural intensification alter environmental conditions and the

96 availability of habitats and resources, but also the structure of entire landscapes, i.e. their

97  composition (amount of different habitat types) and configuration (spatial arrangement and

98  patch size of habitats). Both variables are often highly correlated (Fahrig et al., 2011) and

99  might interact in nonlinear ways (Martin et al., 2019; Redlich et al., 2018), while attempts to
100  disentangle them may reduce the statistical power of study designs (Fig. 1). Concurrently,
101  land-use effects on biodiversity and ecosystem services depend on spatial scaling, the degree

102  of specialization and movement capability of taxa and ecological processes considered (Piano
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103 etal., 2020; Wiens, 1989), with important implications for population dynamics, the diversity
104  of fungi, plants and animals, and in consequence for ecosystem functions and services (Diaz
105  etal., 2019; Foley et al., 2005; Newbold et al., 2015). While macroecological processes such
106  as environmental filtering determine regional species pools, species diversity and population
107  abundances at smaller spatial scales relate to multi-habitat use, dispersal ability, resource

108  availability and trophic interactions. For instance, large-scale urbanization reassembles

109 terrestrial and aquatic invertebrate communities (Piano et al., 2020), but local conversion to
110  cropland reduces species abundances and the multitrophic functional biodiversity in

111 agroecosystems (Provost et al., 2020) with flow-on effects for pollination, pest regulation and

112 crop productivity (Dainese et al., 2019).

113 Climate is another major driver of biodiversity. Long-term data on species

114  distributions along latitudinal and elevational climatic gradients demonstrate significant

115  poleward and upward shifts of species' ranges driven by global warming (Parmesan, 2006). In
116  the future, extinction risks across all animal taxa — but particularly ectothermic organisms

117  such as insects — may further increase with accelerating climate change (Urban, 2015; R.

118  Warren et al., 2018). Similarly, plant community richness is likely to decrease in temperate
119  climates, where the range of thermal tolerances in regional species pools is narrow (Harrison,

120 2020).

121 Specific land-use types may prevent climate-induced range shifts and accelerate

122 extinctions (Fox et al., 2014; Peters et al., 2019), especially in case of less mobile specialists
123 (Warren et al., 2001). Alternatively, (in)vertebrate communities in anthropogenic land-use
124  types may shift towards drought- and warming-tolerant species (Williams & Newbold, 2020).
125  Understanding the independent and combined impact of land-use and climate change on

126  biodiversity, community composition and ecosystem services is needed to predict future

127  changes and allow for management strategies to mitigate further losses. However, less than

6
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10% of available studies analyse combinations of those drivers (Rillig et al., 2019). Land-use
change may also feedback to the atmosphere and alter regional climate including water
availability by precipitation ( Dale, 1997; Laux et al., 2017; Williams & Newbold, 2020),
resulting in correlated land-use and climate gradients that make it difficult to disentangle
individual effects (Peters et al., 2019). Furthermore, long-term data on climate, land use and
biodiversity are currently lacking, recently established monitoring schemes will not deliver
sufficient data in the near future and time-series analysis may be prone to biases (Didham et

al., 2020).
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Figure 1. Disentangling effects of landscape composition and configuration in large-scale
ecological studies. (A) Relationship between variables can be positive, negative, non-linear or
independent, depending on habitat amount, habitat type and region. (B) Random selection of
study plots regularly results in significant correlations between variables (blue points), while
posterior exclusion of plots reduces correlations but also the covered parameter space (yellow
rectangle and points). A priori knowledge of potential correlations and targeted selection of

study plots using heatmaps reduces correlations and increases the parameter space (green
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145  rectangle and points). Dashed trend lines in blue, yellow and green in (B) indicate the

146  expected change of landscape variable correlations depending on the site selection approach.

147

148 Here, we report on a novel protocol (Fig. 2) for a comprehensive study design that
149  systematically combines full gradients of climate and land use at various spatial scales to

150  investigate interacting effects on biodiversity of a wide range of taxa. This method was

151  developed within the framework of a large-scale interdisciplinary climate research project
152 (LandKlif, www. landklif.biozentrum.uni-wuerzburg.de). The stratified, nested design used
153  intensive GIS-based exploration of potential study regions and a new site-selection approach
154  based on heatmaps to reduce potential pitfalls of ecological studies on effects of land-use and
155  climate: a) non-independence of climate and land-use variables, and correlations among land-
156  use related composition and configuration variables; b) restrictions in gradient range or the
157  number of spatial scales considered; ¢) lacking monitoring data for biodiversity and

158  ecosystem services. The described method can be useful for similar multi-scale research

159  programs and long-term ecosystem monitoring but will also allow for predictions of potential
160 interactive impacts of climate and land use in a space-for-time approach.

161
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163  Figure 2. General overview of three-step plot selection process. Step 1: Selection of 60 study
164  regions based on 15 climate — land-use combinations. Step 2: Creation of heatmaps to

165  disentangle landscape composition and configuration variables in 1-km radius. Step 3: Based
166  on heatmaps, selection of final 180 study plots in contrasting local land-use types.

167

168  Material and methods

169  Study area

170 The three-step study design (Fig. 2) was implemented in Bavaria in Southern

171 Germany. With an area of around 70,000 km? and 13 mio. inhabitants, it is the largest and
172 second most populous state of Germany (Bayerisches Landesamt fiir Statistik, 2020). It

173 covers an elevational gradient of 93—2943 m averaged at a resolution of 1 arc-second (SRTM,
174  2020) with mean annual temperatures (climatological reference period 1981-2010) averaged
175  in 1-km? grid cells ranging from -3.8—-10.4 °C (Deutscher Wetterdienst, 2020). The land use
176  of Bavaria is dominated by human influences, but also comprises less intensively used near-
177  or semi-natural areas. While 7% constitute urban areas and 53% agricultural land or managed
178  grassland, the remaining 40% are covered by (mostly managed) forests, nature protection

179  areas and other near-natural habitats (CORINE, 2012). Bavaria’s size and heterogeneity of
180 climate and anthropogenic influences makes it a pilot region for studying and disentangling
181  effects of climate and land use in temperate regions and at the regional, landscape and local
182  scale.

183

184  Step I - Selection of study regions based on climate and land-use zones

185 At the regional scale, a stratified sampling approach ensured complete coverage of
186  climate and land-use gradients and largely uncorrelated, orthogonal parameter combinations

187  of both (Fig. 2). Regions were hereby defined as existing 5.8x5.8 km quadrants, which build

10
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188  the cells of a spatial grid covering the whole of Bavaria (‘TK25’ topographical map, scale
189  1:25,000). These quadrants are widely used for floristic and faunistic inventories.

190 To select potential climate—land-use combinations, quadrants were first classified
191 into five climatic zones based on 30-year (1981-2010) mean air temperature data for each
192  quadrant (Deutscher Wetterdienst, 2020). We further categorized each quadrant as one of
193  three dominant regional land-use types based on proportional land use (CORINE, 2012): near-
194  natural quadrants (>85% near-natural vegetation including a minimum of 50% forest),

195  agricultural quadrants (>40% arable land and managed grassland), and urban quadrants

196  (>14% housing, industry and traffic infrastructure). Cut-off values for land use and climate
197  were chosen to 1) maximize climatic differences and the contrast among land-use types, with
198  anthropogenic impact ranging from low (near-natural) to very high (urban); 2) achieve equal
199  intervals and a similar number of quadrants within each category; and 3) obtain enough

200 quadrants in each class to realise an even distribution and meet logistic requirements (e.g.
201 reduce travelling time, avoid no-fly zones for UAVs where aerial assessments were planned).
202  Based on these prerequisites, we selected four quadrants of each of the 15 climate—land-use

203  combinations (60 study regions, Fig. 2).

204

11
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206  Figure 3. Implementation of a full-factorial, stratified design crossing regional climate and
207 land use in Bavaria, Southern Germany. Climate zones (A) were based on 30-year (1981—
208  2010) mean air temperatures in each quadrant (1 (cold) to 5 (warm)). For land use (B), we
209  distinguished between near-natural quadrants (>85% natural vegetation including a minimum
210  of 50% forest), agricultural quadrants (>40% arable land and managed grassland) and urban
211 quadrants (>14% housing, industry and traffic infrastructure). The final 60 study regions (C)

212 covered 15 climate—land use combinations with four replicates each.

213

214 Step 2 — Create heatmaps to reduce correlations among landscape variables
215 Within each of the 60 study regions, we aimed to investigate the impact of local land

216  use and interactive effects of landscape-scale land use (composition and configuration) on

12
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217  biodiversity and ecosystem services. The landscape-scale was hereby defined as 1-km radius
218  around local study plots, as this scale was shown to have ecological relevance for arthropods
219  (Bosem Baillod et al., 2017; Holzschuh et al., 2016; Thies et al., 2003). As the strength of
220  correlations among landscape variables depends on the location of local study plots, we

221  implemented a novel heatmap approach with a priori knowledge of potential relationships
222 (Fig. 1). These correlation heatmaps — created for four dominant contrasting local land-use
223 types identified within our study regions — served as systematic criterion for local study plot

224 selection (Fig. 2).

225 The heatmap procedure involved the following steps: (1) Within each quadrant and
226  starting 1 km away from the quadrant edge, we created a grid of 320 m resolution (resolution
227  of the underlying CORINE data (2012), Fig. 4A). We calculated four landscape composition
228  variables (proportional cover of four local land-use types: forest, grassland, arable land,

229  settlement) and one configuration variable (edge density, i.e. length of edges between all

230  habitat types on a per unit area, m ha™') for a 1-km radius buffer around the centre of each
231 320x320 m grid cell (Fig. 4B). The next steps, here exemplified for forest, were repeated for
232 each local land-use type. (2) We selected all grid cells (Fig. 4C) with a proportional forest
233 cover of >20% (to accommodate a 0.5-ha study plot and a 3x30 m experimental area) and
234 >5% forest in the surrounding 1-km radius buffer (to ensure a minimum amount of forest was
235  present in the surrounding landscape). (3) Of these forest grid cells and associated landscape
236  buffers, we randomly chose one in each of the 60 study quadrants - if existent (quadrants

237  without forest grids were excluded) - and calculated the overall Pearson’s » correlation

238  coefficient between the surrounding landscape composition (here forest cover) and

239  configuration (edge density) based on the random plot selection. (4) This random selection

240  and calculation was repeated 10,000 times. (5) For each forest grid-cell i we then calculated

13
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241  the average Pearson’s r; coefficient across all the random combinations of points in which this
242 cell was included:

n
. ’r'. .
- =1"1)
243 p o= 2=ty
n

244 where 1y is the j Pearson’s r coefficient resulting from random selection of that specific

245  forest dominated grid cell 7, and # is the number of times that grid cell i was included in one
246 of the 10,000 random selections of points. (6) In a last step and considering all forest grid

247  cells in our 60 quadrants, we used natural breaks (Jenks natural breaks algorithm implemented
248  in ArcMap v10.4) to classify the range of mean correlations into three categories to create the
249  correlation heatmap for the local land-use type forest (Fig. 4C). By repeating the steps

250  described in (2—6) for all land-use types (forest, grassland, arable land, settlement), we

251  derived a set of four heatmaps for each of the 60 quadrants. During the local plot selection
252 process (Step 3), these heatmaps helped to reduce correlations of landscape composition and
253  configuration around plots with specific land-use types (e.g. only forest plots), but also across
254  all study plots.

255

256 Step 3 - Selection of local study plots

257 Within each quadrant, we aimed to establish local study plots of 0.5 ha size within
258  contrasting land-use types (Fig. 2). Although four local, dominant land-use types had been
259  identified during the heatmap process (forest, grassland, arable land or settlement), not all
260  were present in each quadrant. Therefore, we focused on three out of four land-use types per
261  quadrant by considering availability (if only three types present) or regional dominance (three
262  types with highest proportional cover) and contrast (whenever proportional cover of two land-
263 use types was similar). We then used the respective heatmaps to preferentially place study
264  plots in grid cells that had a low predicted correlation values for the specific land-use type.

265  Additional decision rules for plot selection included landowner permission, >2 km between

14
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266  plots, >50 m away from roads, water bodies and other land-use types, protection from

267  vandalism and good accessibility. Nested within our large-scale factorial design, the resulting
268 180 plots allowed us to assess the influence of local land use on biodiversity and ecosystem
269  services, while minimizing correlations between landscape composition and configuration.

270

Land use classes
agriculture
forest
grassland
natural/seminatural vegetation
urban
water

0 1 2

Kilometers

271

272 Figure 4. Process of deriving correlation heatmaps for each dominant land-use type to guide
273 the selection of local study plots. Colours of polygons represent different land-use types. (A)
274 Create a fishnet of 320 m resolution inside each of 60 study quadrants. (B) Calculate

275  landscape composition and configuration within a 1-km radius around centre of each 320x320
276 m grid cell. (C) Select grid cells dominated by the respective land-use type (here forest, dark
277  green) and create land-use specific heatmaps of mean correlations between landscape

278  composition and configuration based on 10,000 random selections of grid cells across all
279  quadrants. Shades of grey in heatmaps indicate levels of the predicted degree of correlation
280  (light = high correlation, dark = low correlation) if the respective grid was chosen.

281

282  Assessing efficiency of study design

283 We assessed the efficiency of our stratified selection and heatmap approach by a)
284  region (5.8x5.8 km): calculating Pearson’s r correlation coefficients between climate and the
285  proportion of our regional dominant land-use types near-natural, agriculture and urban; b)
286  landscape (1-km radius): assessing relationships between climate and the proportion of our

287  dominant local land-use types forest, grassland, arable land and settlement. We also visually
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288  compared final correlations between landscape composition and configuration with potential

289  correlations based on 10,000 random selections.

290 The proportion of land-use types (region, landscape) and landscape composition and
291  configuration variables were calculated in ArcGIS pro v2.2.0 and ArcMap v10.4 using

292  CORINE data (2012). Climate data for regions and landscapes (mean air temperatures and
293  associated precipitation amounts) were calculated using Esri ASCII grid raster files with

294  1x1lkm resolution (Deutscher Wetterdienst, 2020) by averaging pixel values within each

295  5.8x5.8 km quadrant and 1-km buffer around selected study plots, respectively. All Pearson’s

296  r coefficients calculated in R v4.0.2.

297

298  Results

299  Implementation of the experimental design

300 Our design and selection process (Fig. 2) allowed us to minimize the potential

301 correlations between climate, land use and landscape metrics at multiple scales and resulted in
302  an approximately even distribution of 60 study regions (quadrants) across Bavaria (Fig. 3).
303  These regions covered a climate gradient of 5.6-9.8 °C (8.2 + 0.8 °C, mean + SD) and 614—
304 1820 mm of annual precipitation amounts (939 = 263 mm). Across all quadrants, the cover of
305  our dominant regional land—use types (i.e. landscape composition) ranged from 0.8 to 97.1%
306 (40 +27.7%) for near-natural land use, 0.3-91.0% (44.7 £+ 24.9%) for agriculture, and 0—

307  97.2% (14.7 = 21.1%) for urban areas. Regional mean temperatures (Fig. SA—C) and

308  precipitation (]7<0.3|, Appendix Fig. S1A—C) showed low correlations with regional land use
309 (proportion of near-natural, agriculture and urban habitat).

310
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311

312 Figure 5. Relationships between 30-year mean temperatures (1981-2010) and proportional

313 land cover (composition) for the regional land-use types near-natural (A), agriculture (B) and
314  urban (C), and for the landscape-scale land-use types forest (D), grassland (E), arable land (F)
315 and settlement (G). Pearson’s r coefficients based on 60 study regions (5.8x5.8 km quadrants,

316 A-C) and 179 (out of expected 180) study plots (1-km radius around local study plots, D-G).

317

318 For each study region, the heatmap procedure yielded four heatmaps for the local

319 land-use types forest, grassland, arable land and settlement, which were used to identify

320 potential study plots within dominant local land-use types (Fig. 6B-D). After ground-truthing
321  of'sites and gaining permission of landowners, three final plots were chosen per quadrant

322 (Fig. 6E), yielding 179 out of 180 expected study plots (Fig. 6A). One study plot was

323 discarded as landowner permission was denied. Forest (n = 55) was the most selected local

324  land-use type, followed by grassland (n = 46), arable land (n = 43) and settlement (n = 35).

325
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326

327  Figure 6: Map of all 179 (out of expected 180) study plots in 60 study regions (A) and

328 example of heatmaps for three dominant local land-use types (arable land (B), forest (C), and
329  settlement (D)) used for the final selection of study plots (E). Shades of grey in heatmaps
330 indicate levels of the predicted degree of correlation (light = high correlation, dark = low

331  correlation) if the respective grid was chosen.

332

333 At the landscape-scale in 1-km radius around study plots, mean temperatures across
334  our 179 study plots ranged from 4.5-10 °C (8.2 £ 0.8 °C), with annual precipitation amounts
335  0f590-2893 mm (933 + 279 mm). Landscape composition gradients across all plots stretched
336 from 0-100% for forest (37.9 + 32.3%), 0—80.2 % for grassland (15.7 = 17.1%), 0-99.4% for
337  arable land (28.7 + 29.2%) and 0-100% for settlement (16.1 + 25.8%). Edge density across all

338 study plots was 0—66.0 m ha! (28.1 £ 13.8 m ha!). Correlations of landscape-scale

18


https://doi.org/10.1101/2021.03.05.434036
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.05.434036; this version posted March 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

339  temperature with composition variables (Fig. 4D-G) and edge density were low (Pearson’s r

340 =-0.17).

341 Compared to potential correlations based on random selection of study plots, the

342  heatmap approach resulted in lower correlations between landscape composition and

343  configuration (in 1-km radius around study plots) for plots located in forest, arable land and
344  settlements (blue line, Fig. 7A, C, D). Only for grassland, the final correlation was positive
345  and higher than predicted (blue line, Fig. 7B). Taking all study plots independent of the local
346  land-use type into account, this pattern was even stronger, with correlations between the

347  proportion of habitats and edge density being very low for forest (Pearson’s » =-0.31), arable
348 land (» = 0.09) and settlement (» = -0.08), yet high for grassland (» = 0.51) (red line, Fig 7,
349  Fig. S2). Correlations among composition variables ranged from » = -0.13 (settlement and
350 grassland) to -0.55 (arable land and forest).

351 This multi-scale GIS-supported study design is suited to disentangle climate and land-
352  use effects on general and functional biodiversity and plant- or animal-based ecosystem

353  services, as done within this project using a range of observational, empirical, modelling and

354  survey data collected on different spatial scales in 2019 and 2020 (Table 1).
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356  Figure 7. Potential and actual Pearson’s correlations between landscape composition

357  (proportional cover of land-use types) and configuration (edge density) in 1-km radius around
358  study plots. Compared to the histograms of potential correlations resulting from 10,000

359 random selections of grid cells (i.e. potential study plots, cf. ‘heatmap procedure’), blue lines

360 show reduced actual correlations based on subsets of plots located in the land-use types forest
361 (n=55, A), arable land (n =43, C) and settlement (n = 35, D), yet higher correlations for

362  plots located in grassland (n = 46, B). Red lines show correlations for land-use specific actual
363  correlations across all selected study plots (n =179).

364

365 Table 1: Example for assessments of biodiversity, ecosystem services and socio-
366  economic/management information in the LandKlif project. Observational and empirical data

367  was collected on up to 179 study plots in 2019 and 2020 and complemented with modelling
20
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approaches and stakeholder surveys. Extended categorization of ecosystem services based on
TEEB (2010) and Rabe et al. (2016).
Group/Service Detail Scale
Plants Plant/Pollen diversity and phenology Plot
Microbes Soil/decomposer microbial diversity Plot
:g Arthropods Total Biomass and richness of flying and Plot
E crawling arthropods; functional abundance and
o richness of arthropod decomposers, pollinators,
o .
= trap-nesting Hymenoptera, pests and predators
Vertebrates Diversity and density of game Plot/Bavaria
Ecosystems Landscape diversity, composition, configuration Landscape/Region
Decomposition Decomposition of deadwood, carrion and dung  Plot
Pest regulation Predation and parasitim rate, herbivory Plot
Pollination Seed set and pollination services Plot/Region
§ Productivity Crop biomass and yield; vegetation biomass; Plot/Region
2 Normalized Difference Vegetation Index (NDVI);
a flower resource availiability
£ . . . . .
2 Soil fertility Soil organic carbon and nutrient content Plot
% Soil erosion prevention Erosion Region
|.|8.| Carbon sequestration Soil Organic Carbon Bavaria
Microclimate regulation =~ Temperature Plot
Flood control Prevention of floods Region
Water quality regulation  Nitrogen and phosphorus retention Region
Stakeholder preferences  Preferences for ecosystem services Region
E Stakeholder perceptions  Climate change perceptions Region
© Landowner management Management of land and crop fields used for Plot
experiments
Discussion

Studies assessing the combined effects of land use and climate on biodiversity and

ecosystem services commonly struggle with non-independence of climate and land-use

variables, restrictions in gradient range or scale and insufficient long-term data sets. Here, we

present the protocol for a large-scale experimental design that aims to overcome these issues.

While our basic design follows the selection principles for multi-scale landscape studies

outlined in previous papers (Fahrig et al., 2011; Gillespie et al., 2017; Pasher et al., 2013), the

use of a novel, automated heatmap approach and the inclusion of independent climatic

gradients sets this design apart, both as baseline and space-for-time study.
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381 First, the crossed and nested design at the regional scale resulted in relatively weak
382  correlations between climate and land use (proportional cover of forest, near-natural and

383  urban area). The design also decoupled regional climate and land-use effects from the

384  influence of small-scale land use due to the selection of three out of four dominant local land-
385  use types (forest, grassland, arable land or settlements) within our 60 study regions.

386  Regarding landscape composition and configuration in a 1-km radius around study plots, the
387  heatmap approach lowered correlations compared to average potential correlations for

388  specific local land-use types (blue lines, Fig. 7), but these benefits were not that substantial in
389  absolute terms (i.e. correlations for selected plots quite close to peak of distribution for

390 random selection). However, there are three points to consider: 1) these actual correlations
391  were based on a subset of plots (specific local land-use types), and were much lower for

392  forest, arable land and settlement if calculated across all study plots (red lines, Fig. 7), which
393  is the gradient range primarily used for analysis in our project; 2) reducing landscape

394  correlations may be difficult for land-use types such as forest, where patches generally occur
395 clustered, causing higher negative correlations with edge density than for settlements or arable
396 land. For grassland, correlations seem the be generally low, yet increased during the selection
397  process, possibly due to inherent correlations among land-use types and non-linear

398 relationships between grassland amount and edge density in the landscape ; 3) in our project,
399  complex private ownership structures, logistic and other constraints (e.g. transportation costs,
400  time constraints, accessibility, permissions) prevented us from selecting combinations of

401  study plots closer to ¥=0. Our method is situated halfway between two extremes: the blind
402  selection of study plots that may inherently cause strong landscape correlations or requires the
403  reduction in parameter space (see Fig. 1) and choosing the best available random selection of
404  plots during the process of creating heatmaps. Accordingly, the chance of moving towards

405 low landscape correlations ultimately depends on the gradient range and land-use type
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406  considered and methodological, logistical and ownership constraints that may be lower in

407  other studies.

408 Second, we increased the coverage of spatial scales and land-use types, thereby

409  maximizing the number of explanatory factors that can be analysed in parallel. Concurrently,
410  our method of ‘a priori’ employing long-term climate data and extensive GIS-based

411  exploration of potential study plots enabled us to cover independent, large climatic and land-
412  use gradients. For landscape composition and configuration of the full set of 179 final study
413  plots, our data highlights the natural, unimodal relationship between these variables, which is
414  most pronounced for forest cover and grows weaker from grassland to arable land and

415  settlement, with peaks between 40-60% land cover (Appendix S2). This implies that studies
416  covering narrow landscape gradients between 0-50% or 50-100% may observe contrasting
417  positive or negative correlations between these landscape variables, respectively, while

418  studies focussed on intermediate landscape gradients are most likely to reduce the correlation
419  between variables and differentiate between individual effects, which may be impossible at

420  the extreme ends of the spectrum.

421 Finally, our extensive on-field assessments within this experimental framework will
422  fill existing knowledge gaps about biodiversity trends across taxa, relationships between

423  above- and belowground arthropods and the microbial diversity of decomposer communities.
424  We can also assess potential trade-offs among ecosystem service provisioning and current and
425  predicted interactive effects of climate and land use on biodiversity-ecosystem functioning
426  relationships. In this context, the implemented space-for-time approach has crucial advantages
427  over time series. Recently established long-term biodiversity monitoring schemes will not

428  yield meaningful results before several decades, which may be too late considering the current
429  speed of global change. Furthermore, long-term climatic change often goes hand in hand with

430 land-use change, making it difficult to disentangle individual effects (Dale, 1997). In addition,
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431  issues such as shifting baselines or phenologies, bias in site selection and detection may cause
432 misleading results in time series analysis (Didham et al., 2020). Other methods, such as large-
433 scale, manipulative climate—land-use experiments following the idea of BACI designs

434  (Before-After-Control-Impact studies, Christie et al., 2019) are highly interesting but almost

435  impossible to implement.

436 Space-for-time approaches also have limitations. For instance, other drivers of

437  biodiversity, such as anthropogenic pressure or altered biotic interactions, may mask the

438  response to climate, especially if only small spatial scales (a few kilometres or less) with

439  small climatic differences are considered (Blois et al., 2013). In contrast, data obtained from
440  spatial observations was shown to overestimate phenology responses to temperature

441  compared to long-term phenological data (Jochner et al., 2013). Still, space-for-time

442  substitutions based on the largest possible climatic gradient is a useful and fast alternative to
443  gain important, policy-relevant insights into the interactive effects of climate and land-use
444  change on biodiversity and ecosystem services. By utilizing the full parameter space of the
445  climatic and landscape variables assessed here (Fig. 1), we enhanced the validity of space-for-
446  time substitutions related to climate change (Blois et al., 2013). We further reduced the

447  chance of observing misleading findings in cases where non-monotonic relationships cause
448  contradictory relationships between environmental variables and biodiversity if only a narrow
449  variable range is used (Eigenbrod et al., 2011).

450

451  Conclusions

452 Our multi-scale study protocol expands on previous designs which addressed local
453  gradients in climate and land use (Peters et al., 2019) or gradients in landscape structure in
454  multiple regions (Gillespie et al., 2017; Holzschuh et al., 2016). It allows to evaluate scale-

455  dependent and interactive effects of current climate and land-use gradients on biodiversity and
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456  ecosystem services, and to predict long-term responses to climate change. Furthermore, it

457  provides valuable baseline data to assess the effectiveness of future restoration measures at
458 local, landscape and regional scales. We believe that this approach of an objective, multi-scale
459  site selection across large regions deserves consideration in the implementation of national

460  and European long-term ecosystem monitoring schemes.
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