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 2 

Abstract 25 

Studying genetic variation of gene expression provides a powerful way to unravel the molecular components 26 

underlying complex traits.  Expression QTL studies have been performed in several different model species, 27 

yet most of these linkage studies have been based on genetic segregation of two parental alleles. Recently 28 

we developed a multi-parental segregating population of 200 recombinant inbred lines (mpRILs) derived 29 

from four wild isolates (JU1511, JU1926, JU1931 and JU1941) in the nematode Caenorhabditis elegans. 30 

We used RNA-seq to investigate how multiple alleles affect gene expression in these mpRILs. We found 31 

1,789 genes differentially expressed between the parental lines. Transgression, expression beyond any of 32 

the parental lines in the mpRILs, was found for 7,896 genes. For expression QTL mapping almost 9,000 33 

SNPs were available. By combining these SNPs and the RNA-seq profiles of the mpRILs, we detected 34 

almost 6,800 eQTLs. Most trans-eQTLs (63%) co-locate in six newly identified trans-bands. The trans-35 

eQTLs found in previous 2-parental allele eQTL experiments and this study showed some overlap (17.5%-36 

46.8%), highlighting on the one hand that a large group of genes is affected by polymorphic regulators 37 

across populations and conditions, on the other hand it shows that the mpRIL population allows 38 

identification of novel gene expression regulatory loci. Taken together, the analysis of our mpRIL 39 

population provides a more refined insight into C. elegans complex trait genetics and eQTLs in general, as 40 

well as a starting point to further test and develop advanced statistical models for detection of multi-allelic 41 

eQTLs and systems genetics studying the genotype-phenotype relationship.    42 
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Introduction 43 

Investigation of the genotype-phenotype relationship is at the heart of genetic research. The detection and 44 

description of allelic variants and genetic mechanisms have been a demanding task due to the quantitative 45 

nature of most phenotypic variation. Quantitative trait locus (QTL) mapping has been one of the methods 46 

of choice for finding the loci on which these allelic variants can be found. Many functional polymorphisms 47 

in plants and animals, including many model species such as model nematode C. elegans, have been 48 

discovered using QTL mapping [1-25]. Over the last decade molecular phenotypes such as transcript levels, 49 

protein levels and metabolites have also been used in QTL mapping [26-32]. Heritable variation in these 50 

molecular phenotypes often plays a role in heritable phenotypic variation [10, 30, 33]. Mapping expression 51 

QTLs (eQTLs) can provide insight into the transcriptional architecture of complex traits and have been 52 

conducted in model species such as Arabidopsis thaliana and C. elegans as well as several other taxa [26, 53 

28-31, 34-41].  54 

Most eQTL studies have been done on populations of recombinant inbred lines (RILs) originating 55 

from a cross between two different parental genotypes [26, 28-31, 34-40]. Inclusion of more than two 56 

parents can capture more genetic variation, increasing the number of detected QTLs, potentially allowing 57 

more precise mapping and therefore reducing the number of potential candidate causal genes to be verified 58 

[42]. Such a strategy was first used for Arabidopsis by developing a Multiparent Advanced Generation Inter-59 

Cross (MAGIC) lines population consisting of 527 RILs developed from 19 different parental accessions 60 

[43]. Several other MAGIC populations have been developed since then for a range of species, including C. 61 

elegans [44-46]. 62 

Recently multi parental RIL (mpRILs) populations have been developed in C. elegans [45, 46]. 63 

These populations have been created using other strains than the most frequently used N2 strain and the 64 

Hawaiian CB4856 strain [26-31, 37, 47-61]. In this study we used the population of 200 mpRILs, derived 65 

from an advanced cross between four wild-types: JU1511 and JU1941 isolated from Orsay (France) and 66 

JU1926 and JU1931 isolated from Santeuil (France) (kindly provided by MA Félix, Paris, France; [45, 62]). 67 

In a previous study, the RNA-seq data of these mpRILs was used to obtain almost 9,000 SNPs variable 68 
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between the four parental genotypes and used to identify QTLs for life-history traits [45]. The RNA was 69 

sampled from the mpRILs grown under standardised conditions (24°C, OP50, 48h after bleaching) and 70 

obtained from animals from two 6-cm dishes, with one RNA-seq replicate per mpRIL and two per parental 71 

isolate.  To investigate the effect of multiple genetic backgrounds on gene expression, we used the RNA-72 

seq data to associate gene expression levels to genetic variants present in the population. We compared the 73 

gene expression level differences between the parental wild isolates, calculated transgression, as well as 74 

heritability and mapped eQTLs. We identified six trans-bands, hotspots at which many trans-eQTLs co-75 

locate, which we further studied by gene ontology enrichment. Lastly, we compared the eQTLs found in 76 

this study to the eQTLs found in previous eQTL studies in C. elegans [26, 28, 30, 31, 37, 39]. Together 77 

these results present the first insights into the genetic architecture of gene expression in a C. elegans multi 78 

parental RIL population.  79 
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 5 

Results 80 

Gene expression differences between the parental lines 81 

To study the effect of genetic variation on gene expression we used RNA-seq on a population of 200 multi 82 

parental recombinant inbred lines (mpRILs) [45], made from a cross between four parental lines isolated 83 

from Orsay, France (JU1511, JU1941) and Santeuil, France (JU1926, JU1931) [62]. The animals used were 84 

grown on two 6-cm dishes (24°C, OP50, 48h after bleaching) per sample pooled for RNA isolation, with 85 

one RNA-seq replicate per mpRIL and two per parental isolate. First, we determined the expression 86 

differences between the parental lines (Supplement table 1). Of the 12,029 detected transcripts we found 87 

1,789 genes differently expressed between at least one parental pair (TukeyHSD p < 0.001; FDR < 0.05; 88 

Figure 1). Of the four strains, JU1926 was most different when compared to the other lines, with 409 genes 89 

being differently expressed between JU1926 and the other three lines. Thereafter, JU1941 was most 90 

different from the remaining two lines. These differences in gene expression between the parental lines are 91 

likely genotype dependent.   92 

 93 

Figure 1: Gene expression differences between the four mpRIL parental lines. Upset plot shows the pairwise comparisons and 94 

the overlap between the pairs (TukeyHSD; p<0.001; FDR=0.05). The horizontal bar plot shows the number of differentially 95 

expressed genes per parental pair, while the vertical bar plot indicates the number of shared differentially expressed genes per 96 

comparison. For example, an overlap of 409 genes was found between the three comparisons that include the JU1926 parental line, 97 

which shows that JU1926 differed most from all other lines. 98 
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 99 

Transgression and Heritability 100 

To explore the variation in gene expression between the different parental and mpRIL genotypes we applied 101 

principal component analysis on the log2 gene expression ratios (Figure2A). Here we can see that the 102 

expression variation in many of the mpRILs extends beyond the parental expression variation, which 103 

suggests transgression. We quantified this and found transgression for 7,896 genes (FDR = 0.08; Figure2B-104 

C, Supplement table 2). Notably, most transgression was one-sided, showing increased expression level 105 

beyond the highest expression level found in the parental lines. This suggests that multiple segregated loci 106 

are involved in regulating the transcription in the mpRILs. Transgression often indicates that the trait 107 

variation, in this case gene expression levels, is heritable. We calculated the narrow sense heritability (h2) 108 

and found significant h2 for expression variation of 9,500 genes (FDR = 0.05; Figure 2D, Supplement table 109 

2). Most gene expression variation showed a h2 below 0.5, indicating that part of the variation is caused by 110 

other factors than additive genetic effects. These factors could be technical, environmental but also more 111 

complex genetic interactions such as epistasis.    112 

 113 

Figure 2: Gene expression variation in the mpRILs and parental genotypes. A) Principal component analysis (PCoA) of the 114 

log2 ratios, mpRILs shown in grey, parental lines shown in colour. B) Transgression: number of mpRILs beyond the parental 115 

expression level (x-axis) against the number of genes (y-axis). The mpRILs below (under) the lowest parental expression level in 116 

blue, mpRILs over the highest parental expression level in green and the sum of these (total) in black.  C) Example of two-sided 117 

transgression for expression levels of gene T06D8.1. D) Genes with significant narrow sense heritability (h2) and the distribution 118 

of heritable variation of gene expression variation at FDR = 0.05.   119 

 120 

Expression QTLs 121 

To find the loci involved in gene expression variation between the mpRILs we used a single marker QTL 122 

model. We found 6,784 eQTLs (one eQTL per gene, -log10(p) > 5.35; FDR = 0.01), of which 929 were cis- 123 
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and 5,855 trans-eQTLs (Table 1; Figure 3; Supplement table 2). Most cis-eQTLs were found on 124 

chromosome V and most trans-eQTLs on chromosomes I and X. For both cis- and trans-eQTLs, fewest 125 

where found on chromosome II and IV. The SNP Distribution Pattern (SDP) groups SNPs with the same 126 

distribution in the parental lines. When the SDP is considered, many of the cis-eQTLs were found to have 127 

an effect where either the JU1511 or JU1941 allele was different from the three other parental genotypes. 128 

For the trans-eQTLs the largest groups also show this allelic difference or those SNPs that distinguish 129 

JU1511/JU1941 from JU1926/JU1931. A substantial group was found for the JU1931 allele, whereas hardly 130 

any were found for the JU1926 specific SNPs. The lack of JU1926 is somewhat surprising as it had the most 131 

differentially expressed genes (DEG) in the comparison of the parental lines, however we found much more 132 

genes with eQTLs than being DEG in the parental comparison. These are much more likely to be caused by 133 

new allelic combinations present in the mpRILs. Overall, the majority of the eQTLs are found on a few 134 

major effect loci with a specific SDP linkage (Figure 3). Moreover, comparing the h2 to the eQTLs showed 135 

that genes with an eQTL have a much higher h2 than those without an eQTL, where genes with an h2 > 0.25 136 

almost all have an eQTL (Figure 4). Comparing cis- and trans-eQTLs showed that genes with a cis-eQTL 137 

have a higher h2 on average, yet the h2 distributions of cis- and trans-eQTLs are overlapping.   138 

 139 

Table 1: eQTLs per type (cis/trans) per chromosome per SNP Distribution Pattern (SDP). 140 

 Cis Trans 

SDP I II III IV V X Tot I II III IV V X Tot 

12  
JU1511 & JU1926 vs.  
JU1931 & JU1941 

14 2 17 2 23 13 71 35 0 1 1 3 67 107 

13 
JU1511 & JU1931 vs.  
JU1926 & JU1941 

6 1 14 39 41 3 104 0 2 106 13 15 27 163 

14 
JU1511 & JU1941 vs.  
JU1926 & JU1931 

12 0 19 0 53 11 95 1373 0 119 5 103 44 1644 

JU1511 37 32 61 14 18 81 243 457 28 211 20 9 430 1155 

JU1926 0 32 4 59 5 1 101 5 44 5 26 10 5 95 

JU1931 8 0 15 3 81 1 108 31 0 12 21 919 2 985 

JU1941 76 0 66 5 38 22 207 150 1 155 35 94 1271 1706 

Total 153 67 196 122 259 132 929 2051 75 609 121 1153 1846 5855 

 141 
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 142 

Figure 3: Cis/Trans plot of the identified eQTLs. eQTL position shown on the x-axis, gene position shown on the y-axis (upper 143 

plot) or number of eQTLs (bottom plot). SDP shown in colour, chromosomes shown in the grey strips on top and on the right of the 144 

panels. 145 

 146 

Figure 4: Relation between eQTLs, transgression and Narrow Sense Heritability (h2). A) Narrow Sense Heritability (h2; x-147 

axis), distribution in genes (y-axis) with cis- and trans-eQTLs, significance of the eQTLs is TRUE (green) when > 5.35 and FALSE 148 

(grey) otherwise. B) Relation between Narrow Sense Heritability (h2; x-axis) and transgression (y-axis) for genes with and without 149 

a significant eQTL, individual datapoints shown in red, colour gradient indicates datapoint density. 150 
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 151 

Trans-bands 152 

A large majority of the trans-eQTLs (3,704; 63% of all trans-eQTLs) were found in six hotspots, so called 153 

trans-bands (TBs) (number of trans-eQTLs > 100, window 1Mbp to both sides; Table 2; Figure 3). Two 154 

TBs were found on chromosome I, one on chromosome V and three on chromosome X. The two TBs on 155 

chromosome I co-located but were linked to different SDP: the SDP 14 (JU1511/JU1941 vs 156 

JU1926/JU1931) and SDP JU1511 (vs. the rest). The TB on chromosome V was linked to SDP JU1931 and 157 

the three TBs found on chromosome X were linked to SPD JU1511 and JU1941.  158 

 159 

Table 2: Descriptive overview of the 6 identified trans-bands. SNP Distribution Pattern (SDP), Chromosome, Peak position and 160 

left and right borders in Mega-base pairs. Selection of enriched GO terms from supplement table 3 and overlap with phenotypic 161 

QTLs found in Snoek et al 2019 [45].  162 
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(selection from enrichment table) 

Phenotypic 

QTL (in 

Snoek et al. 

2019 [45]) 

TB1 14 
(JU1511 & 

JU1941 vs 

JU1926 & 

JU1931) 

I 1.03 0.03 2.03 1339 thermosensory behaviour, negative regulation of 

engulfment of apoptotic cell, DNA replication, 
embryonic body morphogenesis, establishment or 

maintenance of actin cytoskeleton polarity, muscle 

fiber development, epidermis development, 
response to unfolded protein and, molting cycle, 

collagen and cuticulin-based cuticle, 

Population 

growth on 
Erwinia and on 

B. thuringiensis 

TB2 JU1511 I 0.83 0 1.83 443 regulation of protein stability, regulation of vulval 
development, DNA replication, anaphase-promoting 

complex and, microtubule polymerization 

NA 

TB3 JU1931 V 10.74 9.74 11.74 607 hemidesmosome assembly, external side of plasma 

membrane and, negative regulation of response to 
oxidative stress 

NA 

TB4 JU1511 X 3.40 2.40 4.40 133 few heat-shock 

sensitivity 

TB5 JU1941 X 14.69 13.69 15.64 225 few population 
growth on B. 

thuringiensis 

TB6 JU1941 X 16.60 15.65 17.6 957 embryonic body morphogenesis, DNA replication, 
integral component of peroxisomal membrane, 

anaphase-promoting complex, endosome, 

phagocytic vesicle membrane, neuronal signal 
transduction, response to anoxia, cuticle pattern 

formation, cell fate commitment, hemidesmosome 

associated protein complex and, response to lipid 

sensitivity to 
oxidative stress 

 163 

 164 

 165 

 166 

 167 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2021.03.04.433879doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.04.433879
http://creativecommons.org/licenses/by-nc/4.0/


 10 

GO enrichment 168 

To study the effect of TBs on biological function we used GO term enrichment (Table 2, Supplement table 169 

3). Each of the TBs was linked to mostly different sets of GO terms, suggesting an effect on different parts 170 

of C. elegans biology. The genes mapping to TB1 on chromosome I were enriched for behaviour and muscle 171 

and epidermis development GO categories. The genes mapping to TB2 on chromosome I were enriched for 172 

the GO term “vulval development”, among others. The genes with a trans-eQTL on TB3 on chromosome 173 

V were enriched for GO terms associated with oxidative stress. The genes mapping to TB4 and TB5 on 174 

chromosome X only showed a few GO terms to be enriched and the genes mapping to TB6 on chromosome 175 

X were enriched for the GO term “response to anoxia” and many more. This shows that these TBs can be 176 

involved in several developmental processes and in the interaction with the environment. 177 

 178 

Overlap with other eQTL experiments 179 

To investigate if the genes with eQTLs found in the present mpRIL study also had eQTLs in other studies, 180 

we compared them with the studies found in WormQTL2 (Table 3; [26, 28, 30, 31, 37, 39, 56]). In general, 181 

we found that a substantial group of genes with a trans eQTL in any of the studies had an eQTL in our 182 

mpRIL experiment (26.5% - 36.9%). The groups of genes with trans-eQTLs show much higher overlap 183 

than the genes with a cis-eQTL in any of the experiments (10.2% - 20.0%). Around a third of the genes with 184 

a trans-eQTL in Vinuela & Snoek et al. 2010 and Snoek & Sterken et al. 2017 also showed a trans-eQTL 185 

in the mpRILs, with numbers almost equal between developmental stages and treatments. Slightly fewer 186 

overlapping genes with eQTLs were found with Rockman et al. 2010 and Sterken et al. 2017. Comparing 187 

the experiments performed with the same N2 x CB4856 in the same lab, Li et al 2006, Vinuela & Snoek et 188 

al. 2010, Snoek & Sterken et al 2017, shows that environmental conditions and developmental stage only 189 

have a small effect on the global overlap and difference between cis-and trans-eQTLs. As the genetic 190 

backgrounds of the mpRILs are different from the N2 x CB4856 populations used in the other experiments, 191 

the low percentage of overlapping cis-eQTLs could be expected. The large group of genes with a trans-192 

eQTL in both experiments shows that the expression levels of a substantial group of genes are more prone 193 
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 11 

to be affected by genetic variation independent of environment or developmental stage, while the loci 194 

involved are most likely different in each experiment/condition [28, 30, 31]. 195 

 196 

Table 3: Overlapping eQTLs between this mpRIL experiment and the RIL experiments available in WormQTL2 [63]. Percentages 197 

indicate the percentage of eQTLs found in the indicated experiment that are also found in the mpRILs eQTLs. Threshold used for 198 

the eQTL experiments in this table: -log10(p) > 3.5; Cis-eQTLs were called if the peak of the eQTL was within 1Mbp of the gene 199 

start, otherwise it was called a trans-eQTL. 200 

eQTL experiment 

Total 

Cis 

Cis 

Overlap(%) 

Total 

Trans  

Trans 

Overlap(%) 

Li et al. 2006 16°C [37] 240 14.6 817 31.6 

Li et al. 2006 24°C [37] 337 12.2 998 30.5 

Li et al. 2010 [26] 752 14.5 3544 28.7 

Rockman et al. 2010 [39] 1958 12.0 2792 28.8 

Snoek & Sterken et al. 2017 control [28] 961 17.1 1481 36.1 

Snoek & Sterken et al. 2017 heat-shock [28] 976 20.0 2776 36.9 

Snoek & Sterken et al. 2017 recovery [28] 992 16.1 1519 33.4 

Sterken et al. 2017 [30] 719 10.2 1116 26.5 

Vinuela & Snoek et al. 2010 juvenile [31] 303 11.9 2206 33.4 

Vinuela & Snoek et al. 2010 old [31] 220 15.0 1790 34.9 

Vinuela & Snoek et al. 2010 reproductive [31] 348 13.2 2010 32.7 

 201 

 202 

Discussion 203 

In this experiment we used a population of multi-parental RILs (mpRILs) and RNA-seq to find 6,784 204 

expression quantitative trait loci (eQTLs), of which 929 were cis-eQTLs and 5,855 were trans-eQTLs. A 205 

large proportion (63%) of the trans-eQTLs were found in six trans-bands. The total number of eQTLs found 206 

in this mpRIL study (6,784) is at the high end of what was previously found in other experiments (mean: 207 

2,560; 653 – 6,518) [28, 30, 31, 37, 39]. This number is hard to compare as the number of identified eQTLs 208 

depend on many factors, such as population size, number of recombinations, statistical model, and RNA 209 

measurement technology used, which are nearly all different between this and the other eQTL studies in C. 210 

elegans [28, 30, 31, 37, 39]. Nevertheless, it seems that a combination of RNA-seq and multiple genetic 211 

backgrounds increased the number of detected eQTLs. A very clear increase was found for trans-eQTLs 212 
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(5,855) compared to the numbers found in previous studies, even at a much lower significance threshold. 213 

For example, the study of Rockman et al. 2010 used a comparable number of recombinant inbred advanced 214 

intercross lines (RIAILs) as the number of mpRILs in this study (~200), yet found fewer trans-eQTLs, 215 

however the different conditions and technologies used prevent any definitive conclusions. With respect to 216 

trans-eQTLs we do know that they depend on environmental conditions or a response to changing 217 

conditions. It could be that with a background of four parental genotypes the mpRILs perceive the ambient 218 

environment in a broader range than the RIAILs with a background of two parental genotypes used by 219 

Rockman et al. 2010, and the RILs in the other studies. For example, the mpRILs could have inherited parts 220 

of four different sets of environmental preferences as opposed to two in the RIAILs and RILs, potentially 221 

extending the accompanying gene expression patterns and eQTLs. Yet, the most likely reason for the 222 

increased number of trans-eQTLs is the use of RNA-seq in this study compared to micro-arrays in the other 223 

studies. Another reason for finding more trans-eQTLs could be due to the generally genome-wide equal 224 

allelic distributions in this population [45]. Namely, a similar trans-band as the chromosome I trans-band 225 

at 1 Mb (TB1) related to development has been spotted before, but has been spurious due to the peel-1 zeel-226 

1 incompatibility near that location [16, 28, 39].  Another advantage of using RNA-seq is that the genotype 227 

and gene-expression levels can be obtained from the same sample, preventing mis-labelling errors and the 228 

need for “reGenotyping” [64].  In summary, as has been shown for yeast [65], the combination of generally 229 

smaller effect of trans-eQTLs and higher dynamic range of RNA-seq would at least increase the possibility 230 

to pick-up trans-eQTLs in C. elegans and in general.       231 

We previously found QTLs for several different phenotypes, such as population growth on different 232 

bacteria, sensitivity to heat-shock and oxidative stress [45]. Four trans-bands were found to co-locate with 233 

the previously found phenotypic QTLs (Table 2). Population growth on Erwinia and on B. thuringiensis 234 

DSM was found to co-locate with TB1, which was enriched for GO terms related to muscle, epidermis, and 235 

moulting. This could indicate a difference in these structures that can affect the interaction with different 236 

types of bacteria or could indicate that there is a difference in developmental speed through which 237 

differences in the expression, and subsequent eQTLs, of moulting related genes are picked up. A QTL for 238 
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heat-shock sensitivity was inferred to co-locate with TB4, however no indication for a link with this 239 

phenotype was found in the annotation of the genes with an eQTL at this position. The same was observed 240 

for TB5 and the overlap with population growth on B. thuringiensis, where GO enrichment also did not 241 

provide any leads to a potential mechanistic link. The overlap between the QTL for sensitivity to oxidative 242 

stress and TB6 however did show some clues from GO enrichment as genes involved in the peroxisome as 243 

well as DNA replication and cuticle formation could be involved in dealing with oxidative stress.         244 

We expect to have only found a fraction of the eQTLs, as we only used a simple additive mapping 245 

model, a conservative score of one eQTL per gene, and standard lab conditions with only one time point for 246 

RNA isolation. Both the number of eQTLs and genes with one or more eQTLs are expected to increase 247 

when more complex models are applied to this data and/or different experimental conditions and time points 248 

are considered. Moreover, we use a SNP-based method for eQTL mapping, which has a binary option for 249 

each marker and therefore does not consider the genetic origin (parent) of the SNP. Using the genetic origin 250 

of the SNPs could reveal the more complex genetic interactions that could underly the differences in 251 

transcript levels between the mpRILs. These complex genetic interactions are suggested to be present in this 252 

mpRIL population, by the heritability and transgression found. A model in which each marker has the four 253 

parental options might indicate loci with more than two alleles affecting gene expression. Furthermore, 254 

some (relatively small) genetic loci might have been missed all together as our investigations are based on 255 

the N2 reference genome and wild-isolates can have vastly divergent regions of which sequences reads fail 256 

to align to the N2 reference genome with conventional methods [49].  257 

This study provides a more detailed insight into the genetic architecture of heritable gene expression 258 

variation in a multiparent recombinant inbred population. The use of RNA-seq data in combination with 259 

more than two alleles allows for a more precise detection of QTLs and incorporates a wider band of standing 260 

genetic variation, resulting in a substantial increase in eQTLs especially trans-eQTLs. Comparison to bi-261 

allelic studies supports the position of eQTLs and may be used to detect a more detailed pattern of associated 262 

loci.  We expect this study, data, and results to provide new insights into C. elegans genetics and eQTLs in 263 
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general as well as to be a starting point to further test and develop advanced statistical models for detection 264 

of eQTLs and systems genetics studying the genotype-phenotype relationship.  265 
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Methods 266 

Nematode strains and culturing, RNA-sequencing, Construction of the genetic map 267 

The C. elegans strains and culturing condition, RNA-sequencing and construction of the genetic map can 268 

all be found in Snoek et al. 2019. RILs, Genetic map and eQTL profiles can found on WormQTL2 [66] 269 

(http://www.bioinformatics.nl/EleQTL; Snoek & Sterken et al. 2020 [56]) 270 

 271 

SNP calling and gene expression levels 272 

The paired end reads were mapped against the N2 reference genome (WS220) using Tophat [67], allowing 273 

for 4 read mismatches, and a read edit distance of 4. SNPs were called using samtools [66], mpileup with 274 

bcftools and vcfutils also described in Snoek et al. 2019 [45]. Expression levels were determined using the 275 

tuxedo pipeline [68]. Transcripts were assembled from the mapped reads using cufflinks [68]. Raw RNA-276 

seq data can be found in the Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra) with ID 277 

PRJNA495983. Normalized read-counts can be found on WormQTL2  278 

(http://www.bioinformatics.nl/EleQTL; [56]) 279 

 280 

Heritability and Transgression 281 

Heritability of gene expression levels was calculated using the heritability package in “R”. A narrow-sense 282 

heritability was calculated using the function marker_h2 [69]. The required kinship matrix was calculated 283 

using the emma.kinship function from the EMMA package [70]. To determine significance, we used a 284 

permutation approach where we shuffled the expression levels per transcript. After 100 permutations, the 285 

95th highest value was taken as the 0.05 false-discovery rate [69, 71, 72]. Transgression was determined by 286 

counting the number of mpRILs with an expression level beyond the mean + 2SD of the most extreme 287 

parental lines. SD was calculated on the within variation of the parental samples. False discovery rate (FDR) 288 

was determined by permutations, randomly assigning the parental labels to gene-expression values. 289 
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Transgression was evaluated at an arbitrary 50 mpRILs (25% of all lines; FDR = 0.08) beyond the most 290 

extreme parental lines.  291 

 292 

eQTL mapping and FDR 293 

For eQTL mapping we first selected the genes with consistently found transcripts, meaning those expressed 294 

in at least 20 samples with a mean log2 expression (fpkm) > -5. eQTLs were mapped by a linear model using 295 

a single maker model explaining gene expression (as log2 ratio with the mean) by one SNP-marker at the 296 

time for the whole genome. False Discovery Rate (FDR) was determined by one round of permutations 297 

where for each transcript the counts were randomly distributed over the RILs before eQTL mapping. The -298 

log10(p) value when number of false positives divided by the number of true positives was < 0.01 (-log10(p) 299 

> 5.35).  Genome wide eQTL significance profiles (-log10(p)) can be found on WormQTL2  300 

(http://www.bioinformatics.nl/EleQTL; [56]) 301 

 302 

Enrichment analysis and figures 303 

Enrichment of GO terms was done using the hyper-geometric test in “R” [73]. GO term genes associations 304 

were download from Wormbase (www.wormbase.org) version WS276. Only genes that passed the filtering 305 

step for eQTL mapping where used as background genes. For significant enrichment, a p-value < 1e-5 was 306 

used and a geneset size per GO term > 3. Most figures were made using the R package ggplot2 [74] except 307 

figure 1 which was made using the UpSetR library.   308 

 309 

eQTL comparison between experiments/studies 310 

To compare how many genes with an eQTL overlapped between the different studies [26, 28, 30, 31, 37, 311 

39, 56] available in WormQTL2 [56], we downloaded the eQTL profiles and markers used per experiment 312 

and listed the genes with a cis or a trans eQTL. For eQTL determination, the most significant marker per 313 

gene was taken as the peak. A -log10(p) > 3.5 was use as threshold for calling the eQTL. An eQTL was 314 

determined cis when the peak position was within 1Mbp of the start position of the gene. These lists were 315 
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compared with the genes having an eQTL in this study. The percentage overlap was calculated against the 316 

original study. 317 
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