

1 **The cryptic gonadotropin-releasing hormone neuronal system of human basal ganglia**

2
3 Katalin Skrapits*¹, Miklós Sárvári¹, Imre, Farkas¹, Balázs Göcz¹, Szabolcs Takács¹, Éva Rumpler¹,
4 Viktória Vácz¹, Csaba Vastagh², Gergely Rácz³, András Matolcsy³, Norbert Solymosi⁴, Szilárd Póliska⁵,
5 Blanka Tóth⁶, Ferenc Erdélyi⁷, Gábor Szabó⁷, Michael D. Culler⁸, Cécile Allet⁹, Ludovica Cotellessa⁹,
6 Vincent Prévot⁹, Paolo Giacobini⁹ and Erik Hrabovszky*¹

7
8 ¹Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, 1083 Budapest,
9 Hungary;

10 ²Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary;

11 ³1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1083
12 Budapest, Hungary;

13 ⁴Centre for Bioinformatics, University of Veterinary Medicine, 1078 Budapest, Hungary

14 ⁵Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032
15 Debrecen, Hungary;

16 ⁶Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics,
17 1111 Budapest, Hungary;

18 ⁷Department of Gene Technology and Developmental Biology, Institute of Experimental Medicine, 1083
19 Budapest, Hungary;

20 ⁸Amolyt Pharma, Newton, MA, 02466 USA and 69-130 Ecully, France;

21 ⁹Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille,
22 France

23
24 *Correspondence: hrabovszky.erik@koki.hu and skrapits.katalin@koki.hu

25 **Abstract**

26 Human reproduction is controlled by ~2,000 hypothalamic gonadotropin-releasing hormone (GnRH)
27 neurons. Here we report the discovery and characterization of additional 150-200,000 GnRH-synthesizing
28 cells in the human basal ganglia and basal forebrain. Extrahypothalamic GnRH neurons were cholinergic.
29 Though undetectable in adult rodents, the GnRH-GFP transgene was expressed transiently by caudate-
30 putamen cholinergic interneurons in newborn transgenic mice. In slice electrophysiological studies,
31 GnRH inhibited these interneurons via GnRHR1 autoreceptors. Whole-transcriptome analysis of
32 cholinergic interneurons and medium spiny projection neurons laser-microdissected from the human
33 putamen confirmed selective expression of *GNRH1* and *GNRHR1* autoreceptors in cholinergic cells and
34 uncovered the detailed transcriptome profile and molecular connectome of these two cell types. Higher-
35 order non-reproductive functions regulated by GnRH under physiological conditions in the human basal
36 ganglia and basal forebrain require clarification. GnRH/GnRHR1 signaling as a potential therapeutic
37 target in the treatment of neurodegenerative disorders affecting cholinergic neurocircuitries, including
38 Parkinson's and Alzheimer's diseases, needs to be explored.

39 **INTRODUCTION**

40 Mammalian reproduction is controlled by a few hundred/thousand preoptic/hypothalamic neurons which
41 release the decapeptide neurohormone gonadotropin-releasing hormone (GnRH) into the hypophysial
42 portal circulation. GnRH promotes fertility via increasing the synthesis and secretion of luteinizing
43 hormone and follicle-stimulating hormone in the anterior pituitary (Herbison, 2018). Unlike other neurons
44 of the central nervous system, GnRH neurons are born in the olfactory placodes and migrate into the
45 forebrain prenatally (Casoni et al., 2016; Schwanzel-Fukuda et al., 1989; Wray et al., 1989). Recent
46 developmental studies on embryos/fetuses determined the detailed spatio-temporal profile of this process
47 in the human (Casoni et al., 2016). ~2,000 neurons were observed along a ventral migratory path whereby
48 GnRH neurons reach the hypothalamus to regulate reproduction after puberty. In addition, a previously
49 unknown dorsal migratory route was identified whereby ~8,000 GnRH neurons migrated towards pallial
50 and/or subpallial structures. The fate of these neurons at later stages of pre- and postnatal development
51 has been unexplored so far.

52 While GnRH neurons in adult laboratory rodents are mostly hypothalamic and serve reproductive
53 functions (Merchenthaler et al., 1980), a handful of anatomical studies on primates identified additional
54 *GnRH1* mRNA expression and/or GnRH immunoreactivity in extrahypothalamic regions unrelated to
55 reproduction. These included several basal ganglia and the basal forebrain (Krajewski et al., 2003;
56 Quanbeck et al., 1997; Rance et al., 1994; Terasawa et al., 2001). Initial enthusiasm to study these
57 neurons further faded after suggestions that extrahypothalamic GnRH neurons in monkeys contain the
58 GnRH degradation product GnRH1-5, instead of the *bona fide* GnRH decapeptide (Quanbeck et al., 1997;
59 Terasawa et al., 2001).

60 Here we study human extrahypothalamic GnRH neurons in adult *postmortem* brains with
61 immunohistochemistry (IHC), *in situ* hybridization (ISH), single-cell transcriptomics (RNA-Seq) and
62 high performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS). We report and
63 characterize a previously unexplored large GnRH neuron population with ~150,000-200,000 cell bodies
64 scattered in different basal ganglia and the basal forebrain. GnRH neurons of the putamen (Pu) contain

65 *bona fide* GnRH decapeptide, as shown by HPLC-MS/MS. Deep transcriptome analysis reveals that these
66 neurons express GnRH biosynthetic enzymes, *GNRHR1* autoreceptors, inhibitory G proteins implicated in
67 GnRHR1 signaling and the molecular machinery of cholinergic and GABAergic co-transmission. To
68 obtain an insight to the function of GnRH/GnRHR1 signaling in these neurons, we introduce a neonatal
69 mouse model. Slice electrophysiological studies of this model reveal that GnRHR1 autoreceptor
70 activation reduces the resting membrane potential and the electric activity of cholinergic interneurons in
71 the caudate-putamen. Altogether, these data indicate that GnRH is a cotransmitter of many cholinergic
72 neurons in the human Pu and other extrahypothalamic sites. GnRH acts on GnRHR1 autoreceptors to
73 regulate higher order non-reproductive functions associated with cholinergic systems of the basal ganglia
74 and the basal forebrain. Based on these observations GnRH/GnRHR1 signaling may emerge as a new
75 therapeutic target in the treatment of neurodegenerative disorders affecting cholinergic neurocircuitries,
76 including Parkinson's and Alzheimer's diseases.

77

78 **RESULTS**

79 **Human extrahypothalamic GnRH-immunoreactive neurons occur in the basal ganglia and the
80 basal forebrain**

81 The primate central nervous system contains extrahypothalamic GnRH cell populations which have
82 unknown functions (Krajewski et al., 2003; Quanbeck et al., 1997; Rance et al., 1994; Terasawa et al.,
83 2001). ISH studies of adult human brains identified ~6-7 thousand *GNRHI* mRNA expressing neurons in
84 the Pu and the nucleus basalis magnocellularis of Meynert (nbM), among other sites (Rance et al., 1994).
85 Here we used IHC to address the presence and map the distribution of GnRH-immunoreactive (IR)
86 neurons in extrahypothalamic sites of adult human brains (N=3). Every 24th 100- μ m-thick coronal section
87 between Bregma levels -22.5 and 33.1 (Mai et al., 1997) was immunostained using a well-characterized
88 guinea pig antiserum (#1018) against GnRH decapeptide (Hrabovszky et al., 2011). This experiment
89 revealed numerous extrahypothalamic GnRH-IR neurons in the Pu, moderate numbers in the nucleus
90 accumbens (nAcc) and the head of the nucleus caudatus (Cd) and lower numbers also in the nbM (**Fig.**

91 **1A).** Scattered labeled neurons occurred in the globus pallidus (GP), the ventral pallidum (VP) and the
92 bed nucleus of the stria terminalis (BnST). Labeled perikarya showed round or oval shape, with a mean
93 diameter of 29 μ m in the Pu (**Fig. 1B**).

94

95 **Quantitative analysis detects 150-200,000 extrahypothalamic GnRH neurons in the adult human**
96 **brain most of which are located in the putamen**

97 GnRH neurons develop in the olfactory placodes and migrate to the brain prenatally (Schwanzel-Fukuda
98 et al., 1989; Wray, 2001). Recent studies from Casoni and colleagues identified 10,000 migrating GnRH
99 neurons in human embryos/fetuses most of which (~8,000) followed a previously unknown dorsal
100 migratory route targeting subpallial and/or pallial structures, instead of the hypothalamus (Casoni et al.,
101 2016). We addressed the possibility that these neurons give rise to extrahypothalamic GnRH-IR neurons
102 of the adult brain by determining the total number of GnRH-IR neurons in the basal ganglia and the basal
103 forebrain. Immunolabeled neurons were counted in every 24th section of a single hemisphere using light
104 microscopy (**Fig. 1A**). Cell counts were then multiplied by 24 and 2 (for two hemispheres) and
105 compensated for overcounting (Abercrombie, 1946; Guillory, 2002) (**Supplementary File 1**). The total
106 number of extrahypothalamic GnRH neurons calculated this way was 229,447, 155,357 and 104,699 in
107 three brains (**Supplementary File 4**), respectively (163,168 \pm 36,223; Mean \pm SEM). Such high cell
108 numbers argued against the placodal origin of extrahypothalamic GnRH neurons. 82.2 \pm 1.1 % of labeled
109 cells were observed in the Pu, 5.5 \pm 0.2 % in the nAcc, 4.9 \pm 0.7 % in the Cd, 3.5 \pm 1.1 % in the nbM, 1.8 \pm 0.5
110 % in the GP, 1.3 \pm 0.1 % in the VP and 0.8 \pm 0.2 % in the BnST (**Fig. 1B**).

111

112 **Extrahypothalamic GnRH neurons synthesize *bona fide* GnRH decapeptide derived from the**
113 ***GNRH1* transcript**

114 Results of previous IHC studies on rhesus monkeys questioned whether extrahypothalamic GnRH
115 neurons synthesize *bona fide* GnRH decapeptide (Quanbeck et al., 1997; Terasawa et al., 2001). First,
116 these cells were not recognized by several GnRH antibodies including the widely-used LR-1 rabbit GnRH

117 polyclonal antiserum (Silverman et al., 1990). Second, they exhibited immunoreactivity to EP24.15
118 metalloendopeptidase which cleaves GnRH at the Tyr5-Gly6 position to generate GnRH1-5. Here we
119 tested a series of polyclonal antibodies against human GnRH-associated peptide (hGAP1) or GnRH
120 decapeptide (**Supplementary File 5**) for their reactivity with GnRH neurons of the Pu (N=10). All of
121 these antibodies, including the LR-1 antiserum, recognized GnRH-IR neurons (**Supplementary File 2A**),
122 suggesting these cells contain *bona fide* GnRH. Neurons detected with different antibodies were identical
123 as they were double-labeled in dual-immunofluorescence (IF) experiments using two GnRH antibodies
124 from different host species (**Supplementary File 2B**). Results of further experiments with the combined
125 use of IF and non-isotopic ISH showed that GnRH-IR neurons express *GNRH1* mRNA (**Supplementary**
126 **File 2C**). To provide direct evidence for the biosynthesis of the GnRH decapeptide in these cells, tissue
127 samples were microdissected from the mediobasal hypothalamus (MBH), Pu, Cd and Cl. HPLC-MS/MS
128 analysis of the tissue extracts established that the dominant peptide form in the Pu and Cd is the GnRH
129 decapeptide, with nearly 4-times lower tissue concentrations of GnRH1-5. Only GnRH decapeptide was
130 detectable in the MBH (used as a positive control) where hypophysiotropic GnRH neurons occur and
131 neither peptide form was present in the Cl, in accordance with the absence of IHC labeling at this site
132 (**Supplementary File 2D-F**). Together with observations from the IHC and ISH experiments, HPLC-
133 MS/MS results gave firm support to the notion that extrahypothalamic GnRH neurons synthesize *bona*
134 *fide* GnRH decapeptide derived from the *GNRH1* gene.

135
136 **GnRH neurons of the putamen are large multipolar interneurons with smooth-surfaced dendrites**
137 The immunohistochemical method left important fine structural properties of extrahypothalamic GnRH-
138 IR cells unlabeled (**Fig. 1B**). Therefore, the dendritic compartment was labeled with the lipophilic dye DiI
139 for further analysis (Takacs et al., 2018) (**Fig. 1C**). Following the immunofluorescent visualization of
140 GnRH neurons in the Pu of a 72-year-old female, DiI-coated tungsten particles were delivered into the
141 sections using a Helios Gene Gun (Bio-Rad) (Takacs et al., 2018). Spreading of this lipophilic dye
142 along the cytoplasmic membrane surface caused Golgi-like labeling of random-hit neurons, including

143 12 GnRH-IR cells (**Fig. 1D**). Confocal microscopic analysis and 3-D reconstruction of the DiI signal
144 revealed spider-like neurons with rich arborization of poorly-spined dendrites. DiI-labeled GnRH neurons
145 were clearly distinct from the main Pu cell type, the densely-spined medium spiny GABAergic projection
146 neuron (SPN) (**Fig. 1E**).

147

148 **Extrahypothalamic GnRH cells represent subpopulations of cholinergic neurons**

149 SPNs represent 80-98% of striatal neurons, the remainder being made up of cholinergic and different
150 subclasses of GABAergic interneurons (Gonzales et al., 2015). DiI-labeled GnRH cells resembled
151 anatomically to cholinergic interneurons (ChINs). Indeed, dual-IF experiments established that GnRH
152 neurons of the Pu contain the cholinergic marker enzyme choline acetyltransferase (ChAT) (**Fig. 1F**).

153 Similarly, GnRH neurons in the nbM (**Fig. 1G**) and other extrahypothalamic sites contained ChAT
154 immunoreactivity. The extent of ChAT/GnRH colocalization was assessed quantitatively in five distinct
155 regions of a 62-year-old male subject (#3). Confocal microscopic analysis of representative dual-labeled
156 sections established that the vast majority of extrahypothalamic GnRH neurons are cholinergic (**green**
157 **bars in Fig. 1H**). In contrast, GnRH-IR neurons represented only 34.9% of all cholinergic neurons in the
158 Pu, 1.8% in the head of the Cd, 6.3% in the nAcc, 28.4% in the GP and 3.6% in the nbM (**magenta bars**
159 **in Fig. 1H**). GnRH-positive and GnRH-negative cholinergic neurons often intermingled, without gross
160 morphological differences between the two phenotypes (**Figs. 1F, G**).

161

162 **Hypothalamic GnRH neurons regulating reproduction also exhibit an unexpected cholinergic** 163 **phenotype**

164 The ChAT phenotype emerged as a hallmark of extrahypothalamic GnRH neurons. To verify absence of
165 ChAT in the hypothalamic GnRH neuron population, tissue sections were processed for dual-IF detection
166 of the ChAT and GnRH antigens and analyzed with confocal microscopy. Unexpectedly, $41.2 \pm 7.1\%$ of
167 the hypothalamic GnRH neurons also exhibited ChAT signal in adult human male and female subjects
168 (N=7) (**Fig. 2A**), a phenomenon not observed in other species before.

169

170 **Cholinergic phenotype of GnRH neurons develops prenatally**

171 Prenatal co-expression of ChAT and GnRH was then explored via dual-IF experiments in coronal sections
172 of fetal heads (N=2) at gestational week 11 (GW11). At this age ~20% of GnRH neurons can still be
173 found in the nasal region, whereas the majority have already entered the brain to migrate toward
174 hypothalamic and extrahypothalamic target areas (Casoni et al., 2016). While GnRH positive neurons
175 within the nasal compartment did not contain ChAT signal (**Fig. 2B**), those in the septum (**Fig. 2C**), the
176 striatum (**Fig. 2D**) and elsewhere in the developing brain were already ChAT-IR. These data suggest that
177 migrating GnRH neurons gain their cholinergic phenotype as soon as they enter the brain and continue to
178 express ChAT immunoreactivity in hypothalamic as well as extra-hypothalamic regions.

179

180 **Transient GnRH-GFP transgene expression in the caudate-putamen of neonatal mice offers a
181 functional model**

182 Functional studies of extrahypothalamic GnRH neurons require relevant animal models. Although GnRH
183 immunoreactivity or mRNA expression has never been reported in the rodent caudate-putamen (CPU), in
184 a pilot study we noticed that the developing CPU of a GnRH-enhanced green fluorescent protein (GnRH-
185 GFP) transgenic mouse strain (Suter et al., 2000) transiently expresses green fluorescence. The
186 fluorescent signal was most intense at postnatal week 1 (PNW1) and then, gradually faded to disappear by
187 PNW4 (**Supplementary File 3A-C**). ChAT immunoreactivity showed an inverse temporal profile, being
188 nearly undetectable at PNW1 and increasing with time (**Supplementary File 3A-C**). As established in
189 PNW2 mice, the transient GnRH-GFP fluorescence characterized selectively a subset of the ChINs in the
190 CPU (**Supplementary File 3B**). Although efforts to confirm neonatal GnRH biosynthesis with HPLC-
191 MS/MS or RT-PCR in the PNW1 CPU failed likely because of the low mRNA and peptide expression
192 levels, the transient GnRH-GFP transgene expression of ChINs raised the possibility that neonatal mice
193 are a relevant model to study GnRH effects in the striatum via slice electrophysiology. Three transgenic
194 mouse strains showing green fluorescence selectively in GnRH-GFP neurons, in cholinergic neurons

195 (ChAT-Cre/zsGreen) and in GABAergic neurons (GAD65-GFP) (Lopez-Bendito et al., 2004),
196 respectively, were used.

197

198 **GnRH inhibits GnRH-GFP and ChAT-Cre/zsGreen neurons in the CPU of neonatal mice**

199 In whole-cell patch-clamp experiments on PNW1 mice (**Fig. 3A**), 7 out of 15 GnRH-GFP neurons
200 responded to 1.2 μ M GnRH with a transient hyperpolarization ($V_{rest} = -51.0 \pm 1.11$ mV, $\Delta V_{rest} = -4.3 \pm$
201 0.99 mV, **Fig. 3B**; $p=0.0007$) which started within 2.7 ± 2.1 min and persisted for 8.0 ± 4.5 min. The
202 majority of ChINs were silent at resting potential. Therefore, action potentials (APs) were induced by a 10
203 pA/15-min-long depolarizing current pulse to address GnRH effects on neuronal activity. GnRH
204 transiently decreased the firing rate in 7 out of 13 GnRH-GFP neurons to $69.3 \pm 10.01\%$ of the control
205 value (1.36 ± 0.06 Hz, **Fig. 3B**; $p=0.0098$). GnRH elicited similar inhibitory responses from ChINs of
206 PNW1 ChAT-Cre/zsGreen mice and hyperpolarized 8 out of 15 cholinergic neurons ($V_{rest} = -53.6 \pm 2.48$
207 mV, $\Delta V_{rest} = -4.1 \pm 0.87$ mV, **Fig. 3C**; $p=0.0004$). Furthermore, in 7 out of 13 neurons, GnRH decreased
208 transiently the current pulse-induced firing activity to $72.5 \pm 7.61\%$ of the 1.05 ± 0.13 Hz control value
209 (**Fig. 3C**; $p=0.0098$).

210

211 **GnRH-dependent inhibition of neonatal cholinergic neurons is mediated by GnRH receptors**

212 To identify the receptor involved in the GnRH-induced inhibition of neonatal ChAT-Cre/zsGreen
213 neurons, slices were preincubated with the selective GnRH receptor (GnRHR1) antagonist Antide (100
214 nM) for 10 min prior to GnRH administration (**Fig. 3A**). In the presence of Antide, GnRH was unable to
215 affect the resting membrane potential (N=13; **Fig. 3C**) and the firing rate (N=14; **Fig. 3C**) of ChINs,
216 indicating that GnRH acts on GnRHR1. Neurons containing GnRHR1 remained to be identified.

217

218 **GnRHR1 is localized to ChINs**

219 GnRHR1 is a G-protein coupled receptor (GPCR). When the membrane-impermeable GPCR inhibitor
220 GDP- β -S (2 mM, **Fig. 3A**) was added to the internal electrode solution, GnRH was unable to alter the

221 V_{rest} (N=12) and the firing rate (N=12) of ChINs (**Fig. 3C**). In addition, when the action potential inhibitor
222 TTX (660 nM, **Fig. 3A**) was present in the aCSF to eliminate activity-dependent transsynaptic effects,
223 GnRH was still able to hyperpolarize 7 out of 14 ChINs ($V_{rest} = -54.1 \pm 1.59$ mV, $\Delta V_{rest} = -3.6 \pm 0.97$ mV,
224 **Fig. 3C**; p=0.0029). Together, these functional results served as proof that GnRHR1 mediating the effects
225 of exogenous GnRH is localized within ~50 % of CPU ChINs.

226

227 **GnRH does not influence ChINs in adult mice**

228 GnRH actions on ChINs were only observed in PNW1 mice and none of the ChAT-Cre/zsGreen neurons
229 responded with altered V_{rest} (N=12) or firing rate (N=10) to GnRH in adult animals (**Fig. 3D**).

230

231 **GnRH inhibits CPU GABAergic neurons via indirect actions**

232 The majority of striatal neurons are medium-sized GABAergic SPNs which receive strong input from
233 ChINs (Gonzales et al., 2015). GnRH did not change the resting membrane potential of putative SPNs
234 (medium-sized GAD65-GFP neurons) in neonatal transgenic mice (N=20; **Fig. 3E**). In turn, GnRH
235 decreased the firing rate of 9 from 13 GAD65-GFP neurons to $66.3 \pm 9.07\%$ of the control frequency
236 (0.84 ± 0.16 Hz, **Fig. 3E**; p=0.0030). Together, these observations suggested that GnRH can inhibit a
237 subset of SPNs via acting indirectly.

238 ANOVA revealed significant effects of GnRH on V_{rest} and firing rates in neonatal GnRH-GFP and ChAT-
239 Cre/zsGreen neurons but not in adult ChAT-Cre/zsGreen neurons (**Figs. 3F, G**). Application of Antide or
240 GDP- β -S alone did not change the V_{rest} or the firing rate of the control recording periods (see **Figure 3 –**
241 **Source Data**).

242

243 **Neurons laser-capture microdissected from the *postmortem* putamen provide sources for high-
244 quality RNA suitable for RNA-seq**

245 Electrophysiological observations indicated that GnRH acts on inhibitory GnRHR1 autoreceptors within
246 CPU ChINs of newborn mice. To address if a similar GnRHR1 autoreceptor signaling also acts in the

247 adult human Pu, deep transcriptome profiling of ChINs was carried out using SPNs as a control cell
248 population. Being the largest cell type, ChINs were readily recognizable in sections subjected to Nissl-
249 staining under RNase-free conditions (**Fig. 4A**). Laser capture microdissection (LCM) was used to collect
250 neurons from cresyl violet-stained Pu sections of two human subjects. Each ChIN-enriched pool
251 contained ~300 large neurons a third of which are GnRH-IR (**Fig. 1H**). Each of the two SPN-enriched
252 control pools consisted of ~600 medium-sized neurons (**Fig. 4A**). Total RNA was isolated and RNA-Seq
253 libraries prepared from the four cell pools and sequenced with the Illumina NextSeq 500/550 High Output
254 (v2.5) kit. 23.4 M and 18.4 M reads were obtained from the two ChIN pools, respectively, from which
255 ~9.6 M and 6.6 M reads were mapped to transcripts of the the GRCh38.p13 human reference genome;
256 13664 and 12637 transcripts occurred at cpm >5 in ChINs (**Fig. 4A**).
257

258 **Size-based laser-capture microdissection allows adequate sampling of striatal cholinergic
259 interneurons and medium spiny projection neurons**

260 Cholinergic markers, including *CHAT*, *SLC5A7*, *SLC18A3*, *ACHE* and *CHRM2*, were highly enriched in
261 the ChIN pools from subjects #21 and #22. These transcripts were either absent or found at low levels
262 only in the two SPN pools (**Fig. 4B**). Mouse ChINs arise from Nkx2.1+ progenitors. During development,
263 Nkx2.1 upregulates the expression of the LIM homeobox proteins LHX8, ISL1 and GBX2 which, in turn,
264 promote cell differentiation into ChINs (Allaway et al., 2017). These LIM transcripts as well as type-3
265 vesicular glutamate transporter (*SLC17A8*) showed robust and exclusive expression in ChINs (**Fig. 4B**).
266 The control SPN pools, in turn, expressed much higher levels of known SPN markers than ChINs,
267 including cholinergic (*CHRM1*), serotonergic (*HTR6*), glutamatergic (*GRM1*) and dopaminergic (*DRD1*)
268 receptor isoforms and several neuropeptides (*TAC1*, *PDYN*, *PENK*) (**Fig. 4B**). Differential distribution of
269 the above transcripts verified that the size-based LCM strategy efficiently separated ChINs from SPNs for
270 deep transcriptome profiling. Relatively high levels of expression of known GABAergic marker
271 transcripts *GAD1*, *GAD2*, *SLC32A1* and *SLC6A1* in ChINs, in addition to SPNs (**Fig. 4B**), revealed that
272 ChINs use GABAergic co-transmission, as proposed earlier in the rodent CPU (Lozovaya et al., 2018).

273

274 **Cholinergic interneurons selectively express *GNRHI* and *GNRHR1* and contain GnRH biosynthetic
275 enzymes and inhibitory G proteins**

276 *GNRHI* was expressed exclusively in the two ChIN pools, confirming the morphological observations
277 (**Fig. 4C**). Processing of the proGnRH1 protein begins with endoproteolysis by prohormone convertases
278 from which ChINs abundantly expressed the *PCSK2* isoform. Enzymes catalyzing subsequent steps of
279 GnRH biosynthesis, including carboxypeptidases (*CPE*, *CPD*), peptidylglycine α -amidating
280 monooxygenase (*PAM*), and glutaminyl cyclase enzymes (*QPCT*), were also present in ChINs (**Fig. 4C**).
281 The THOP1 peptidase accounts for the degradation of multiple neuropeptides, including GnRH. This
282 enzyme was expressed in both ChINs and SPNs, with a higher abundance in the latter. The seven
283 transmembrane receptor *GNRHR1* was expressed selectively in ChINs, strongly suggesting that GnRH in
284 the human Pu acts on GnRHR1 autoreceptors. Electrophysiological observations on newborn mice
285 showed that this action is mediated by inhibitory G-proteins encoded by *GNAI* genes. Indeed, GnRHR1
286 can be coupled to inhibitory G-proteins in prostate cancer (Limonta et al., 1999) and in GT1-7 cells
287 (Krsmanovic et al., 2003). We found that ChINs expressed all three *GNAI* isoforms, with the highest
288 abundance of *GNAII* (**Fig. 4C**). Altogether, transcriptome profiling of ChINs and SPNs provided
289 molecular support to the concept that GnRH is synthesized by ChINs and acts via inhibitory G-protein-
290 coupled GnRHR1 autoreceptors.

291

292 **Transcriptome profiling provides novel insight into the molecular connectome of the human
293 putamen**

294 Deep transcriptome profiling of ChINs and SPNs revealed a large set of genes that were expressed
295 selectively or predominantly in one cell type only, in addition to many other genes expressed in both.
296 Neurotransmitter and neurotransmitter receptor transcripts identified this way allowed us to propose
297 signaling mechanisms that act in the bidirectional communication between ChINs and SPNs. Some
298 receptors appear to serve as autoreceptors (e.g. GnRHR1, NMBR, CRH1R/2R). Others may receive

299 ligands from multiple neuronal sources within (e.g.: QRFPR, NPY1R/5R, TACR1, SSTR2/3) or outside
300 (e.g.: OXTR, MC4R, GLP1R, PRLR1) the striatum. Peptidergic mechanisms concluded from the
301 transcriptome profiles are illustrated as a schematic model in **Fig. 5**. A deeper insight into the molecular
302 connectome of the human Pu can be obtained from the detailed receptor and neuropeptide expression
303 profiles of ChINs and SPNs (**Supplementary File 6**; BioProject accession number: PRJNA680536)

304

305 **DISCUSSION**

306 **Extrahypothalamic GnRH-IR neurons correspond to Type-III GnRH neurons detected earlier with
307 *in situ* hybridization**

308 A pioneer ISH study by Rance and co-workers distinguished three types of *GNRH1* mRNA expressing
309 neurons in the human brain based on size, shape, and labeling intensity (Rance et al., 1994). GnRH-IR
310 neurons detected in our study correspond to Type-III neurons characterized by round/oval shape, large
311 nucleus and nucleolus, prominent Nissl substance and *GNRH1* mRNA levels intermediate between those
312 of heavily-labeled Type-I neurons in the mediobasal hypothalamus and lightly-labeled Type-II neurons in
313 the medial septum and the dorsal medial preoptic area (Rance et al., 1994). Our IHC also detected many
314 heavily labeled Type-I hypothalamic GnRH neurons but only few septal Type-II neurons which latter had
315 negligible contribution to the total GnRH cell numbers. Type-III neurons also occur in non-human
316 primates (Krajewski et al., 2003; Quanbeck et al., 1997; Terasawa et al., 2001), whereas they have not
317 been reported in rodent species.

318

319 **Overlap with cholinergic neurons and large cell numbers argue against the placodal origin**

320 The ISH study of Rance and coworkers identified 5,800 Type-III GnRH neurons in the basal forebrain
321 complex rostral to the mammillary bodies, caudal to the optic chiasm and ventral to the anterior
322 commissure (Rance et al., 1994). Tissues with these anatomical guidelines are devoid of the bulk of the
323 Pu which contained the majority (82%) of the extrahypothalamic GnRH neurons in our study. Total
324 GnRH-IR cell numbers we calculated for the basal forebrain and basal ganglia of three adult brains

325 (229,447, 155,357 and 104,699, respectively) exceeded all previous estimates and also made it unlikely
326 that these cells are identical to GnRH neurons observed recently along the dorsal migratory route (~8,000)
327 during embryonic/fetal development (Casoni et al., 2016). Extrahypothalamic GnRH neurons of the
328 human seem to be homologous to the early type of developing GnRH neurons reported from monkeys
329 (Quanbeck et al., 1997). In this species, the early and late types of GnRH neurons were distinguished
330 based on differences in their time of appearance, morphology and immunoreactivity pattern using GnRH
331 antibodies against different GnRH epitopes (Quanbeck et al., 1997). It was speculated that early GnRH
332 neurons originated from the dorsal olfactory placode before olfactory pit formation at E30, migrated into
333 the brain along the olfactory nerve and settled in striatal and limbic structures of the fetal brain (Quanbeck
334 et al., 1997). However, in a subsequent study (Terasawa et al., 2001) these authors noted that a 10- to
335 10,000-fold increase in the number of “early” GnRH neurons in the basal forebrain during the next 4 days
336 indicates that early GnRH neurons might be derived from the ventricular wall of the telencephalic vesicle.
337 The possibility of non-placodal GnRH neuron development is compatible with the *in vitro* capability of
338 hypothalamic and hippocampal progenitors to generate GnRH cells and all other neuroendocrine cell
339 types (Markakis et al., 2004).

340 It is worth noting that our RNA-Seq studies provided transcriptomic information about a mixed ChIN
341 population of the Pu, whereas ChINs exhibit substantial diversity in their physiology, morphology, and
342 connectivity (Gonzales et al., 2015). Subclasses differ in their developmental origin (medial ganglionic
343 eminence, septal epithelium or preoptic area) and transcription factor profiles (Ahmed et al., 2019). It
344 remains to be determined which ChIN subset expresses *GNRH1*. Selective harvesting of intact cellular
345 RNA specifically from GnRH-IR ChINs of the *postmortem* Pu remains a technical challenge.

346

347 **Extrahypothalamic GnRH neurons contain the full-length GnRH decapeptide derived from the
348 *GNRH1* gene**

349 It was proposed that extrahypothalamic GnRH neurons of the monkey contain the GnRH1-5 degradation
350 product of GnRH, instead of the *bona fide* GnRH decapeptide (Quanbeck et al., 1997; Terasawa et al.,

351 2001). Circumstantial evidence to support this notion stemmed from the observations that i) these neurons
352 can not be immunolabeled with the LR-1 rabbit polyclonal antiserum and some other antibodies, and ii)
353 they are IR to the THOP1 enzyme which can cleave GnRH at the Tyr5-Gly6 position. In contrast, our
354 results suggest that the human Pu mostly synthesizes *bona fide* GnRH decapeptide. First, its ChINs can be
355 immunolabeled with the LR-1 antibodies (and several other GAP1 and GnRH antibodies). Second, ChINs
356 possess the full enzyme set of GnRH biosynthesis, as revealed by deep transcriptome profiling. Finally,
357 ChINs contain 4-times as much uncleaved GnRH decapeptide as GnRH1-5, as shown by results of
358 HPLC-MS/MS studies. It is worth to note that the human genome contains a fully functional *GNRH2*
359 gene (Stewart et al., 2009), in addition to *GNRH1*. Nevertheless, the GnRH signal we detected in the Pu is
360 due to *GNRH1*, rather than *GNRH2* expression, because i) extrahypothalamic GnRH-IR neurons exhibit
361 ISH signal for *GNRH1* mRNA, ii) they are IR to GAP1 which has low homology with the corresponding
362 GAP2 sequence, iii) and ChINs of the Pu express high levels of *GNRH1*, but not *GNRH2* mRNA,
363 according to RNA-Seq results.

364

365 **Both hypothalamic and extrahypothalamic GnRH neurons use cholinergic co-transmission**
366 ChAT co-expression provided evidence that extrahypothalamic GnRH neurons correspond to
367 subpopulations of previously known cholinergic cells. These include ChINs of the Pu which communicate
368 locally with SPNs as well as projection neurons of the nbM which innervate distant limbic structures
369 (Ahmed et al., 2019). Although ChAT emerged as a hallmark of the extrahypothalamic GnRH system, we
370 found evidence that a relatively large subset of human hypothalamic GnRH neurons also express this
371 cholinergic marker enzyme. To our knowledge, this colocalization has not been reported in any other
372 species before, suggesting a species difference from rodent GnRH neurons which are regulated by
373 cholinergic afferents but not known to co-express cholinergic markers (Turi et al., 2008). Our
374 colocalization experiments on GW11 human fetuses established that migratory GnRH neurons in the
375 nasal compartment are not cholinergic, whereas both hypothalamic and extrahypothalamic GnRH neurons
376 already express the ChAT signal at this age.

377

378 **Neonatal mice may provide tools for functional studies of striatal GnRH signaling**

379 The transient GFP fluorescence we observed in the CPU of neonatal GnRH-GFP transgenic mice (Suter
380 et al., 2000) has not been reported before. Although so far we were unable to confirm GnRH and
381 GnRHR1 biosynthesis in these cells, the identification of the GnRH promoter-driven selective GFP signal
382 in ChINs raised the possibility to use neonatal mice as relevant models to study extrahypothalamic GnRH
383 signaling with electrophysiology. In whole-cell patch-clamp experiments on tissue slices of newborn
384 mice, exogenous GnRH effectively decreased the resting membrane potential and firing activity of a
385 subpopulation (~50%) of CPU cholinergic cells. The inhibitory action of GnRH was exerted on
386 cholinergic neurons via GnRHR1 autoreceptors, because i) it was prevented by the GnRHR1 antagonist
387 Antide, ii) as well as by the intracellularly applied universal G-protein coupled receptor inhibitor. RNA-
388 Seq detection of selective *GNRHR1* mRNA expression in ChINs of the human Pu suggests that these
389 functional data are relevant to the human. However, we have to recognize that the neonatal mouse model
390 has severe limitations. First, the electrophysiological responses of immature murine CPU neurons are not
391 necessarily relevant to those of adult human ChINs. Second, while the GnRH signal is readily detectable
392 in the adult human Pu using anatomical approaches, no one has so far been able to detect GnRH
393 decapeptide and/or mRNA signals in the CPU of neonatal mice, which likely reflects extremely low
394 levels of expression.

395

396 **Laser-microdissection of size-selected cholinergic interneurons and spiny projection neurons is a
397 highly efficient approach to characterize these cell types from the *postmortem* brain**

398 Deep transcriptome profiling of *postmortem* human neurons is technically challenging. Difficulties
399 include i) compromised RNA quality, ii) lack of obvious marker signals to distinguish cell types, and iii)
400 low RNA yield from the LCM-isolated 300-600 neurons. Our strategy to isolate size-selected ChINs and
401 SPNs with LCM was justified by the RNA-Seq results which showed high enrichment of known cell
402 type-specific marker genes in the two cell pools and millions of identified reads in each. As one-third of

403 ChINs in the Pu also contain GnRH, deep transcriptome profiling of ChINs offered an insight into the
404 extrahypothalamic GnRH neuron transcriptome. It is important to recognize that ChINs of the Pu consist
405 of several subclasses (Ahmed et al., 2019; Gonzales et al., 2015) and our RNA-Seq studies determined the
406 transcriptome profile of a mixed ChIN cell population. Thus, it remains to be determined which ChIN
407 subset expresses *GNRH1* and *GNRHR1*. To answer this question, a technical challenge for the future will
408 be to collect intact RNA from GnRH neurons identified immunohistochemically or with ISH.

409

410 **The transcriptome profile of cholinergic interneurons and spiny projection neurons provides novel
411 insight into the molecular connectome of the human putamen**

412 Although it was beyond the focus of our study, deep sequencing of ChINs and SPNs also unveiled the
413 neurotransmitter and receptor profiles of these cell types and provided information about the putative
414 molecular interactions taking place in the Pu. The transcriptome databases allowed us to propose putative
415 peptidergic mechanisms and thus, build the partial molecular connectome model of the two cell types.

416

417 **GnRH acts outside the hypothalamus to regulate various reproductive and non-reproductive
418 functions**

419 Clearly, the functions of GnRH are far from being restricted to the regulation of hypophysial
420 gonadotropin secretion. Its receptor, *GNRHR1* is expressed in normal peripheral endocrine tissues
421 including the uterus, the placenta, the ovaries, the testes and the prostate gland as well as in various
422 tumour cell types (Harrison et al., 2004). High levels of *GNRHR1* mRNA and immunoreactivity were
423 reported in pyramidal neurons of the human hippocampus and cerebral cortex (Wilson et al., 2006).

424 GnRH analogues were anti-apoptotic in a rat model of ischemia/reperfusion (Chu et al., 2010). Further,
425 GnRH increased hippocampal estradiol levels and the spontaneous firing and *GNRHR1* expression of
426 pyramidal neurons and prevented memory deficits caused by amyloid β deposition (Marbouti et al.,
427 2020). While the source of GnRH acting on hippocampal neurons remains to be explored, GnRHR1 in
428 ChINs of the basal ganglia can bind locally synthesized GnRH neuropeptide. ChINs of the striatum

429 contribute as interneurons to the regulation of cortico-striato-thalamocortical neural pathways. Functions
430 associated with this circuitry include motor control, learning, language, reward, cognitive functioning,
431 and addiction (Fazl et al., 2018). The exact role of GnRH/GnRHR1 signaling in these functions requires
432 clarification. Cholinergic neurons of the nbM which project to the entire cortical mantle, the olfactory
433 tubercle, and the amygdala have been implicated in the control of attention, in the maintenance of arousal,
434 and in learning and memory formation (Koulousakis et al., 2019).

435

436 **GnRHR1 signaling may become a therapeutic target to treat cholinergic dysfunctions**

437 Dysfunctions unrelated to the reproductive systems have not been characterized in GnRH deficient
438 patients (Chan, 2011). Future studies will need to clarify alterations of extrahypothalamic
439 GnRH/GnRHR1 signaling in neurodegenerative disorders affecting cholinergic systems. Leading
440 symptoms and cognitive decline in Alzheimer's disease are due to the loss of basal forebrain cholinergic
441 neurons many of which exhibited GnRH immunoreactivity in nbM. Parkinson's disease (PD) is
442 characterized by motor symptoms such as abnormal involuntary movements, bradykinesia, rigidity, gait,
443 and tremor. Non-motor symptoms often include cognitive impairment, mood disorders, sleep alterations,
444 dysautonomia, anosmia and hallucinations (Perez-Lloret et al., 2016; Tubert et al., 2020). Many of these
445 malfunctions in PD can be explained with the loss of the nigrostriatal dopaminergic input and ameliorated
446 with levodopa. However, gait disorders, cognitive impairment/dementia are most often unresponsive to
447 dopamine precursor treatment. These data indicate involvement of other neurotransmitter systems. In
448 particular, loss of striatal dopamine input causes a local hypercholinergic state in the striatum with
449 consequences reviewed recently (Tubert et al., 2020). This hypercholinergic state explains the success of
450 early PD therapies with *atropa belladonna* derivatives (Goetz, 2011). Although the low efficacy of
451 anticholinergic drugs compared to levodopa and unwanted side effects limit the use of general
452 anticholinergic strategies (Katzenschlager et al., 2003), selective inhibition of striatal ChINs has been
453 proposed recently as a more promising strategy to improve the transmitter balance in dopamine-deprived
454 basal ganglia (Mallet et al., 2019; Tubert et al., 2020). An important physiological mechanism to inhibit

455 acetylcholine release from ChINs is via M2-type (M2 and M4) muscarinic autoreceptors coupled to Gi
456 proteins. Accordingly, deletion of M2-type autoreceptors results in increased striatal acetylcholine release
457 (Bonsi et al., 2008). Autoinhibitory mechanism by muscarinic autoreceptors was found to be lost in PD
458 animal models (Ding et al., 2006). Indeed, our RNA-Seq analysis established that human ChINs contain
459 very high levels of *CHRM2* autoreceptors (**Fig. 4** and **Supplementary File 6**). The receptor transcriptome
460 profile of these cells (**Fig. 4** and **Supplementary File 6**) offers a few alternative mechanisms to inhibit
461 the striatal hypercholinergic state in PD. In particular, selective GnRHR1 agonist treatment which inhibits
462 ChINs in our neonatal mouse model, or induction of *GNRH1* expression in human ChINs may prove to be
463 useful strategies to counteract the hyperactivity of ChINs in PD.

464

465 CONCLUSIONS

466 This study reports discovery and characterization of 150,000-200,000 GnRH-IR neurons which are
467 located in the basal ganglia and the basal forebrain of the adult human brain. These extrahypothalamic
468 GnRH cells represent subsets of previously known cholinergic neurons and synthesize *bona fide* GnRH
469 decapeptide. Unexpectedly, a large subpopulation of hypothalamic GnRH neurons share this cholinergic
470 (ChAT) neurochemistry. Using a neonatal mouse model, GnRHR1 autoreceptor activation reduces the
471 resting membrane potential and electric activity within ChINs of the CPU. Human relevance of these
472 functional data has been shown by the results of RNA-Seq experiments on ChINs and SPNs of the human
473 Pu, which showed that ChINs express *GNRH1*, GnRH biosynthetic enzymes, *GNRHR1* autoreceptors and
474 several inhibitory G-protein isoforms. The role of GnRH/GnRHR1 signaling within extrahypothalamic
475 neuronal circuitries and higher-order functions regulated by GnRH will require clarification.

476

477 MATERIALS AND METHODS

478 Human subjects

479 Adult human brain tissues were collected from autopsies (N=28) at the 1st Department of Pathology and
480 Experimental Cancer Research, Semmelweis University, Budapest, Hungary. Ethic permissions were

481 obtained from the Regional and Institutional Committee of Science and Research Ethics of Semmelweis
482 University (SE-TUKEB 251/2016), in accordance with the Hungarian Law (1997 CLIV and
483 18/1998/XII.27. EÜM Decree/) and the World Medical Association Declaration of Helsinki. The
484 demographic data of donors and use of their tissue samples in the different experiments are summarized
485 in **Supplementary File 4**, whereas the most important details of IHC studies are shown schematically in
486 **Supplementary File 5**. The dissected adult tissue blocks were rinsed briefly with running tap water.
487 Then, depending on use, they were either immersion-fixed with buffered paraformaldehyde (PFA) as
488 detailed below or snap-frozen on powdered dry-ice.

489

490 **Human fetuses**

491 Fetal tissues (**Supplementary File 4**; #29, 30) were made available in accordance with French bylaws
492 (Good Practice Concerning the Conservation, Transformation, and Transportation of Human Tissue to Be
493 Used Therapeutically, published on December 29, 1998). The studies on human fetal tissue were
494 approved by the French agency for biomedical research (Agence de la Biomédecine, Saint-Denis la
495 Plaine, France, protocol n°: PFS16–002). Non-pathological human fetuses (N=2) were obtained at
496 gestational week 11 (GW11) from pregnancies terminated voluntarily after written informed consent of
497 the parents (Gynaecology Department, Jeanne de Flandre Hospital, Lille, France).

498

499 **Mapping and quantitative analysis of extrahypothalamic GnRH neurons in adult brains**

500 Brains (N=3) were cut into ~15 mm thick coronal slices. The tissue slabs were immersion-fixed in several
501 changes of buffered (0.1 M PBS; pH 7.4) 4% PFA for 21 days and then, infiltrated with 20 % sucrose for
502 7 days (4 °C). The right hemispheres were isolated and processed to determine the distribution and
503 number of extrahypothalamic GnRH neurons in the nucleus caudatus (Cd), putamen (Pu), globus pallidus
504 (GP), nucleus accumbens (nAcc), bed nucleus of the stria terminalis (BnST) and nucleus basalis of
505 Meynert (nbM). Brain slices were embedded in Jung tissue freezing medium (Leica Biosystems,
506 Nussloch, Germany), snap-frozen on powdered dry ice. Then, 100-µm-thick coronal sections were

507 collected with a Leica SM 2000R freezing microtome into tissue culture plates filled with anti-freeze
508 solution (30% ethylene glycol; 25% glycerol; 0.05 M phosphate buffer; pH 7.4) and stored at -20 °C.
509 Every 24th section between Bregma levels -22.5 and 33.1 (Mai et al., 1997) was immunostained using a
510 well-characterized guinea pig antiserum (#1018) against GnRH decapeptide (Hrabovszky et al., 2011)
511 (**Fig. 1A**). The sections were rinsed in PBS, pretreated with a mixture of 1% H₂O₂ and 0.5% Triton X-100
512 for 30 min and subjected to antigen retrieval in 0.1 M citrate buffer (pH 6.0) at 80 °C for 30 min. To
513 maximize signal, mmunohistochemical incubations were extended: guinea pig anti-GnRH antibodies
514 (#1018; 1:30,000) (Hrabovszky et al., 2011), 5 days; biotinylated donkey anti-guinea pig IgG antibodies
515 (Jackson ImmunoResearch Europe, Cambridgeshire, UK; 1:500), 12 h; ABC Elite reagent (Vector,
516 Burlingame, CA; 1:1000), 4 h. The signal was visualized with nickel-diaminobenzidine (Ni-DAB)
517 chromogen (10 mg diaminobenzidine, 30 mg nickel-ammonium-sulfate and 0.003% H₂O₂ in 24 ml Tris-
518 HCl buffer solution (0.05M; pH 8.0). Immunostained sections were mounted on 75 mm X 50 mm
519 microscope sides from 0.3% polyvinyl alcohol, air-dried, dehydrated with 70%, 95% and 100% ethanol (5
520 min each), cleared with xylenes (2X5 min) and coverslipped with DPX mounting medium (Merck,
521 Darmstadt, Germany).
522 Anatomical sites to be analyzed separately were identified at each rostro-caudal level (Mai et al., 1997) by
523 macroscopic and microscopic analyses and their borders were marked on the coverslips. Labeled cell
524 bodies were counted in each region with light microscopy and cell numbers were corrected against
525 overcounting (**Supplementary File 1**) using Abercrombie's correction factor $T/(T+h)$, where T is actual
526 section thickness and h is the average diameter of GnRH neurons along the Z axis (Guillery, 2002). Two
527 Pu sections were used to determine T and h. These sections were processed for the immunofluorescent
528 detection of GnRH neurons with guinea pig anti-GnRH antibodies (#1018; 1:30,000; 12 h), followed by
529 peroxidase-conjugated anti-guinea pig IgG (Jackson ImmunoResearch; 1:250; 2h) and FITC-tyramide
530 (1:1000; 30 min). The sections were embedded into 4% agarose, resectionned with a Leica vibratome
531 perpendicularly to the original section plane. T and h were measured with confocal microscopy to
532 calculate a final correction factor of 0.712. The number of GnRH cells (n) counted in every 24th section of

533 a single hemisphere was first doubled (with the assumption that the distribution of extrahypothalamic
534 GnRH neurons is symmetrical) and then, multiplied by 24 and Abercrombie's correction factor to
535 estimate the total number of extrahypothalamic GnRH neurons ($\Sigma = n \times 2 \times 24 \times 0.712$) in the basal
536 ganglia and the basal forebrain of each brain.

537

538 **Immuno-peroxidase detection of extrahypothalamic GnRH neurons using different primary
539 antibodies**

540 Dissected tissue samples (N=10) containing the extrahypothalamic regions of interest were fixed by
541 immersion in freshly-prepared 4% PFA in PBS for 14-21 days at 4 °C. The fixed blocks were trimmed,
542 infiltrated with 20% sucrose for 5 days at 4 °C, placed in a freezing mold, surrounded with Jung tissue
543 freezing medium, snap-frozen on powdered dry ice, and sectioned coronally at 20-30 µm with a freezing
544 microtome (Leica Biosystems). The sections were stored permanently in anti-freeze solution (30%
545 ethylene glycol; 25% glycerol; 0.05 M phosphate buffer; pH 7.4) at -20 °C. Following the pretreatments
546 detailed above, a series of different GnRH and GAP1 antibodies (**Supplementary File 5**) were tested for
547 reactivity with extrahypothalamic GnRH neurons. These included guinea pig (#1018; 1:30,000)
548 (Hrabovszky et al., 2011), rat (#1044; 1:20,000) (Skrapits et al., 2015) and sheep (#2000; 1:1,000)
549 (Skrapits et al., 2015) polyclonal antisera generated in our laboratory against the GnRH decapeptide and
550 the LR1 rabbit GnRH antiserum (1:10,000; gift from Dr. R.A. Benoit) which was reported not to produce
551 specific labeling of extrahypothalamic GnRH neurons in rhesus monkeys (Quanbeck et al., 1997;
552 Terasawa et al., 2001). In addition, a rabbit polyclonal antiserum (MC-2; 1: 5,000) (Culler et al., 1986) to
553 aa 25-53 of hGAP1 (accession: P01148) was used. The signals were detected using biotinylated
554 secondary antibodies (Jackson ImmunoResearch; 1:500; 1h), ABC Elite reagent (Vector; 1:1,000; 1h),
555 and Ni-DAB chromogen and coverslipped with DPX.

556

557 **Dual-label immunofluorescence experiments used as a positive control for GnRH labeling**

558 Positive control experiments with immunofluorescence (IF) double-labeling used two sequential rounds
559 of tyramide signal amplification (TSA) to maximize both GnRH signals. The sections were pretreated as
560 above, followed by an additional Sudan Black step (Mihaly et al., 2000) to reduce tissue
561 autofluorescence. Then, a mixture of guinea pig GnRH (#1018; 1:30,000) and rat GnRH (#1044;
562 1:20,000) primary antibodies were applied to the sections for 16h at 4°C, followed by peroxidase-
563 conjugated anti-guinea pig IgG (Jackson ImmunoResearch; 1:250; 1h) and Cy3-tyramide (Hopman et al.,
564 1998) (diluted 1:1,000 with 0.05 M Tris-HCl buffer/0.005% H₂O₂; pH 7.6). Peroxidase was inactivated
565 with 0.5% H₂O₂ and 0.1 M sodium azide in PBS for 30 min. Then, the rat GnRH antibodies were reacted
566 with biotin-conjugated secondary antibodies (Jackson ImmunoResearch; 1:500; 1h), ABC Elite reagent
567 (1:1,000, 1h) and FITC-tyramide (Hopman et al., 1998) (diluted 1:1,000 with 0.05 M Tris-HCl
568 buffer/0.005% H₂O₂; pH 7.6). The dual-labeled sections were mounted and coverslipped with the aqueous
569 mounting medium Mowiol.

570

571 ***In situ* hybridization detection of *GNRH1* mRNA in GnRH neurons of the human putamen**

572 The digoxigenin-labeled antisense probe targeting bases 32-500 of human *GNRH1* mRNA
573 (NM_001083111.2) was transcribed in the presence of digoxigenin-11-UTP (Merck Millipore) in a
574 reaction mixture containing linearized cDNA template (1 µg), 5X transcription buffer (2 µl), 100 mM
575 DTT (1 µl), 10 mM ATP, CTP, and GTP (0.5 µl each), 10 mM digoxigenin-11-UTP (0.5 µl), 1 mM UTP
576 (1 µl), 40 U/µl RNase inhibitor (RNasin; Promega, Madison, WI; 0.5 µl) 20 U SP6 RNA polymerase
577 (Promega; 1 µl). Following a 1-h incubation of the cocktail at 37 °C, a second 20 U aliquot of SP6 RNA
578 polymerase was added and the reaction was allowed to proceed for an additional 1 h. The volume was
579 brought up to 90 µl with nuclease-free water, and the cDNA template was digested for 30 min at 37 °C
580 after the addition of 1 µl DNase I (10 U/µl; Roche Diagnostics, Rotkreuz, Switzerland), 5 µl 1M Tris/HCl
581 buffer (pH 8.0), 1 µl transfer RNA (tRNA; 25 mg/ml), 1 µl 1 M MgCl₂ and 0.5 µl RNasin (40 U/µl) to the
582 reaction mixture. The cRNA probe was purified using sodium chloride/ethanol precipitation, dissolved in
583 100 µl of 0.1% sodium dodecyl sulfate, stored at -20 °C and added to the hybridization buffer (50%

584 formamide, 2X SSC, 20% dextran sulfate, 1X Denhardt's solution, 500 µg/ml yeast tRNA, 50 mM DTT)
585 at a 1:100 dilution (1XSSC = 0.15 M NaCl/0.015 M sodium citrate, pH 7.0). Four-mm-thick putamen
586 blocks were dissected out from the brains (N=5), immersion-fixed in 4% PFA for 48 h and infiltrated with
587 20% sucrose for 48 h. 20-µm-thick floated sections were prepared with a freezing microtome and
588 processed for combined *in situ* hybridization (ISH) detection of *GNRH1* mRNA and IF detection of
589 GnRH peptide. First, the sections were acetylated with 0.25% acetic anhydride in 0.9% NaCl/0.1 M
590 triethanolamine-HCl for 10 min, rinsed in 2X SSC for 2 min, treated sequentially with 50%, 70%, and
591 50% acetone (5 min each), rinsed with 2X SSC, and hybridized overnight in microcentrifuge tubes
592 containing the hybridization solution. Non-specifically bound probes were digested with 20 µg/ml
593 ribonuclease A (Merck; dissolved in 0.5 M NaCl/10 mM Tris-HCl/1 mM EDTA; pH 7.8) for 60 min at 37
594 °C, followed by a 60-min-stringent treatment (55 °C in 0.1XSSC solution for) to reduce background. The
595 floated sections were rinsed briefly with 100 mM maleate buffer (pH 7.5) and blocked for 30 minutes
596 against non-specific antibody binding with 2% blocking reagent (Merck) in maleate buffer. To detect the
597 hybridization signal, the sections were incubated overnight at 4 °C in digoxigenin antibodies conjugated
598 to horseradish peroxidase (anti-digoxigenin-POD; Fab fragment; 1:100; Roche), rinsed in TBS (0.1 M
599 Tris-HCl with 0.9% NaCl; pH 7.8) and then, reacted with Cy3-tyramide (Hopman et al., 1998) (diluted
600 1:1,000 with 0.05 M Tris-HCl buffer/0.005% H₂O₂; pH 7.6) for 30 min. Peroxidase was inactivated with
601 0.5% H₂O₂ and 0.1 M sodium azide in PBS for 30 min. Subsequently, GnRH immunoreactivity was
602 detected with guinea pig anti-GnRH (#1018; 1:30,000) primary antibodies (16 h at 4 °C), biotin-
603 conjugated secondary antibodies (Jackson ImmunoResearch; 1:500; 1h), ABC Elite reagent (1:1,000, 1h)
604 and FITC-tyramide (Hopman et al., 1998) (diluted 1:1,000 with 0.05 M Tris-HCl buffer/0.005% H₂O₂;
605 pH 7.6).

606

607 **DiI-labeling of putamen sections to study GnRH cell morphology**

608 Combined immunofluorescent detection of peptidergic neurons and their Golgi-like cell membrane
609 labeling with the lipophilic dye DiI using a Gene Gun was adapted to studies of human extrahypothalamic

610 GnRH neurons from our recently reported procedure (Takacs et al., 2018). A 4-mm-thick tissue block was
611 dissected from the Pu and immersion-fixed lightly with freshly prepared 2% PFA in 0.1 M PBS (pH 7.4)
612 for 14 days (4 °C). 100-μm-thick coronal sections were prepared with a Leica VTS-1000 Vibratome
613 (Leica Biosystems) and stored in PBS/0.1% sodium azide at 4 °C before use. The sections were pretreated
614 with a mixture of 1% H₂O₂ and 0.5% Tween 20 for 30 min, followed by epitope retrieval with 0.1 M
615 citrate buffer (pH 6.0) at 80 °C for 30 min. Then, sequential incubations were carried out in the guinea pig
616 GnRH antibodies (#1018; 1:30,000) for 4 days, peroxidase-conjugated anti-guinea pig antibodies
617 (Jackson ImmunoResearch Laboratories; 1:250) for 4 h, and finally, FITC-tyramide (diluted 1:1,000 with
618 0.05 M Tris-HCl buffer/0.005% H₂O₂; pH 7.6; 30 min) prepared (Hopman et al., 1998) and used (Takacs
619 et al., 2018) as reported. Methods to prepare and deliver DiI-coated tungsten particles with a Helios Gene
620 Gun (Bio-Rad, Hercules, CA) were adapted from published procedures (Seabold et al., 2010; Staffend et
621 al., 2011). Sections of the Pu were transferred into 12-well tissue culture plates containing PBS. The
622 buffer was removed with a pipette and diolistic labeling was carried out using a 40-mm spacer and a 120-
623 150 pounds per square inch (PSI) helium pressure, which resulted in random-labeling of cells, including
624 12 GnRH-IR neurons. Labeled sections were rinsed in PBS/0.1% sodium azide/0.2% EDTA and the
625 lipophilic dye was allowed to diffuse along the cytoplasmic membranes for 24 h at 4 °C. The sections
626 were coverslipped with Mowiol to study the Golgi-like DiI labeling of the randomly hit GnRH neurons.
627

628 **Dual-label immunofluorescence experiments to colocalize choline acetyltransferase with GnRH**
629 Sections from striatal (N=4) and hypothalamic (N=7) samples were rinsed in PBS followed by a mixture
630 of 1% H₂O₂ and 0.5% Triton X-100 for 30 min, and then, subjected to antigen retrieval in 0.1M citrate
631 buffer (pH=6.0) at 80 °C for 30 min and Sudan Black pretreatment. GnRH neurons were detected using
632 sequentially guinea pig GnRH antibodies (#1018; 1:30,000; 16h; 4 °C), peroxidase-conjugated anti-
633 guinea pig IgG (Jackson ImmunoResearch; 1:250; 1h) and FITC-tyramide (Hopman et al., 1998) (diluted
634 1:1,000 with 0.05 M Tris-HCl buffer/0.005% H₂O₂; pH 7.6). Peroxidase was inactivated with 0.5% H₂O₂
635 and 0.1 M sodium azide in PBS for 30 min. Then, ChAT neurons were detected using goat anti-ChAT

636 antibodies (AB144P; Merck; 1:2,000) (Yonehara et al., 2011), biotinylated secondary antibodies (donkey
637 anti-goat IgG; Jackson ImmunoResearch; 1:500), ABC Elite reagent (Vector) and Cy3-tyramide (diluted
638 1:1,000 with 0.05M Tris-HCl buffer, pH 7.6, containing 0.005% H₂O₂; 30 min) (Hopman et al., 1998).
639 The dual-labeled sections were mounted on slides, coverslipped with Mowiol and analyzed with confocal
640 microscopy. Confocal Z-stacks were prepared from each region and analyzed to determine the percentage
641 of GnRH neurons showing ChAT immunoreactivity and, *vice versa*.

642

643 **Dual-imunofluorescence studies of fetal tissues**

644 The fetuses (N=2) were fixed by immersion in 4% buffered PFA at 4 °C for 5 days. The tissues were then
645 cryoprotected in PBS containing 30% sucrose at 4°C overnight, embedded in Tissue-Tek OCT compound
646 (Sakura, Finetek), frozen in dry ice and stored at -80 °C until sectioning. Frozen samples were cut serially
647 at 20 µm with a cryostat (Leica Biosystems) and immunolabeled, as described previously (Casoni et al.,
648 2016), with polyclonal goat anti-ChAT (AB144P; Merck; 1:150) and guinea pig anti-GnRH antibodies
649 (#1018; 1:10,000), in a solution containing 10% normal donkey serum and 0.3% Triton X100 at 4 °C for
650 3 days. 3 x 10 min washes in 0.01 M PBS were followed by incubations in AF568-conjugated donkey
651 anti-goat (Invitrogen; 1:400) and AF488-conjugated donkey anti-guinea pig (Jackson ImmunoResearch;
652 1:400) antibodies for 1h each. The section were counterstained with Hoechst (1:1,000) and coverslipped
653 with Mowiol.

654

655 **RNA-sequencing**

656 ***Reagents for RNA-Seq***

657 For all experiments, nuclease-free water was used and reagents were of molecular biology grade. Work
658 surfaces and equipments were cleaned with RNaseZAP.

659

660 ***Section preparation for RNA-seq experiments***

661 After dissection, tissue samples from the Pu of two subjects (#21 and 22) were snap-frozen in -40 °C
662 isopentane precooled with a mixture of dry ice and ethanol. Then, 20 µm-thick coronal sections were cut
663 with a Leica CM1860 UV cryostat (Leica Biosystems. Wetzlar, Germany), collected onto PEN membrane
664 glass slides (Membrane Slide 1.0 PEN, Carl Zeiss, Göttingen, Germany), air-dried for 5 min in the
665 cryostat chamber, and fixed with a mixture of 2% PFA, 0.1% diethyl pyrocarbonate, 1% sodium acetate
666 and 70% ethanol (10 min). After brief rehydration (RNase-free water 2 min), sections were stained with
667 0.5% cresyl violet solution (1 min), rinsed in RNase-free water and dehydrated again in 70, 96 and 100%
668 ethanol (30 sec each). The slides were kept at -80 °C in clean slide mailers containing silica gel desiccants
669 until further processing.

670

671 ***Laser-capture microdissection***

672 Slides were placed into the slide holder of the microscope and 300 cholinergic interneurons (ChINs) were
673 microdissected by LCM using a PALM Microbeam system (Zeiss). The cells were pressure-cataapulted
674 from the object plane into 0.5 ml tube caps (Adhesive Cap 200, Zeiss) with a single laser pulse using a
675 40x objective lens. A second control cell pool was prepared from 600 medium sized neurons most of
676 which corresponded to SPNs. The mean profile areas of ChINs and SPNs were 674.76 µm² and 161.22
677 µm², respectively. The LCM caps were stored at -80 °C until RNA extraction.

678

679 ***RNA extraction, RNA-seq library preparation and sequencing***

680 The Arcturus Paradise Plus RNA Extraction and Isolation Kit (Thermofisher, Waltham, MA, USA) was
681 used to isolate total RNA according to the manufacturers protocol. Samples collected from control
682 sections of the two brains showed RNA integrity numbers (RINs) of 5.7 and 4.1, respectively, as
683 determined using Bioanalyzer Eukaryotic Total RNA Pico Chips (Agilent, Santa Clara, CA, USA). RNA
684 samples were converted to RNA-seq libraries with the TruSeq Stranded Total RNA Library Preparation
685 Gold kit (Illumina, San Diego, CA, USA). This kit was reported to reliably and reproducibly generate
686 libraries from 1-2 ng input RNA (Schuierer et al., 2017). The manufacturer's protocol was followed,

687 except for the use of 17, instead of 16, cycles of amplification for adaptor-ligated DNA fragment
688 enrichment. Single-end sequencing was performed on Illumina NextSeq500 instrument using the Illumina
689 NextSeq500/550 High Output kit v2.5 (75 Cycles).

690

691 ***Bioinformatics***

692 After quality check with FastQC, raw reads were cleaned by trimming low-quality bases by Trimmomatic
693 0.39 (settings: LEADING:3, TRAILING:3, SLIDINGWINDOW:4:30, MINLEN:50). The prepared reads
694 were mapped to the GRCh38.p13 human reference genome using STAR (v 2.7.3a) (Dobin et al., 2013)
695 with an average overall alignment rate of 68.4% (s.d. = 9.9%). Gene level quantification of read counts
696 based on human genome with Ensembl (release 99) (Yates et al., 2020) annotation was performed by
697 featureCounts (subread v 2.0.0) (Liao et al., 2014), with a mean of 30.4% (s.d. = 9.7%) of mapped reads
698 assigned to genes in the case of the four samples. The raw read counts per genes were normalized and
699 processed further in R (R2020) with the package DESeq2 (Love et al., 2014) and edgeR (McCarthy et al.,
700 2012). For feature annotation, the R package KEGGREST (Dan Tenenbaum, KEGGREST: Client-side
701 REST access to KEGG. R package version 1.26.1.; 2019) and the PANTHER database (v. 15.0) (Thomas
702 et al., 2003) were used.

703

704 **High Performance Liquid Chromatography-tandem mass spectrometry (HPLC-/MS/MS)**

705 Brain tissue specimens were snap-frozen and kept at -80 °C. ~10-60 mg samples (**Supplementary File 4**)
706 were microdissected in a -20 °C cryostat chamber from the MBH, Pu, Cd and Cl. After addition of the
707 extraction solution containing 1% acetic acid and Complete Mini protease inhibitor cocktail (Roche,
708 Basel, Switzerland) in 1:2 w/v proportion, samples were homogenized using an ultrasonic sonotrode. The
709 homogenates were mixed with double volume acetonitrile and centrifuged to produce protein-free
710 supernatants. Separation of 10 µl samples was carried out by HPLC (Perkin Elmer Series 200) using
711 gradient elution on a Luna Omega Polar C18 50x3 mm, 3 µm column (Phenomenex, Torrance, CA,
712 USA). Acetonitrile and 0.1% formic acid were applied for gradient elution with the flow rate of 500

713 μ l/min. Acetonitrile increased from 10% to 40% in 3 min, and this was maintained for 0.5 min. The initial
714 10% was reached in 0.5 min and maintained for 2 min. Analytes were detected using a triple quadrupole
715 MDS SCIEX 4000 Q TRAP mass spectrometer (Applied Biosystems) in positive multiple reaction
716 monitoring mode (MRM transitions: GnRH: 592.1 \rightarrow 249.3, GnRH1-5: 671.2 \rightarrow 159.1). Peak areas were
717 integrated with Analyst 1.4.2 software (Sciex, Framingham, MA, USA), and concentrations were
718 calculated using matrix-matched calibration.

719

720 **Animals**

721 Experiments involving genetically modified male mice were carried out in accordance with the
722 Institutional Ethical Codex, Hungarian Act of Animal Care and Experimentation (1998, XXVIII, section
723 243/1998) and the European Union guidelines (directive 2010/63/EU), and with the approval of the
724 Institutional Animal Care and Use Committee of the Institute of Experimental Medicine. The animals
725 were housed under standard conditions (lights on between 06.00 and 18.00 h, temperature 22 ± 1 °C, chow
726 and water *ad libitum*) and all measures were taken to minimize potential stress or suffering during
727 sacrifice and to reduce the number of animals to be used. i) ChAT-Cre/zsGreen mice were generated by
728 crossing ChAT-IRES-Cre knock-in mice (Jackson Laboratory, Bar Harbor, ME; RRID:
729 IMSR_JAX:006410) with the Ai6(RCL-ZsGreen) indicator strain (The Jackson Laboratory, JAX No.
730 007906). Mice used for the experiments were heterozygous for both the Cre and the indicator gene alleles.
731 ii) GnRH-GFP transgenic mice which selectively express enhanced green fluorescent protein in GnRH
732 neurons were generated in the laboratory of Dr. S.M. Moenter (Suter et al., 2000) and maintained as a
733 homozygous colony for the transgenes. iii) The gad65-GFP (FVB.129 Tg gad65-gfp) transgenic mice
734 were generated by Ferenc Erdélyi and Gábor Szabó and characterized elsewhere (Lopez-Bendito et al.,
735 2004). Their colony was maintained as heterozygous for the transgene and positive offsprings were
736 identified by direct fluorescence visualization.

737

738 **Perfusion-fixation and section preparation for anatomical studies**

739 Male GnRH-GFP transgenic mice (N=9) were anesthetized between 0900 and 1100 h with a cocktail of
740 ketamine (25 mg/kg), xylavet (5 mg/kg) and pipolphen (2.5 mg/kg) in saline, and then, perfused
741 transcardially with 4% PFA in 0.1 M PBS (pH 7.4). The brains were removed, infiltrated with 20%
742 sucrose overnight and snap-frozen on powdered dry ice. 25- μ m-thick coronal sections were collected
743 from the CPU with a freezing microtome and stored at -20 °C in antifreeze solution. This region in adults
744 corresponded to Atlas plates 20-30 of Paxinos (Bregma levels 1.34-0.14 mm) (Paxinos et al., 2001).

745

746 **Simultaneous visualization of GnRH-GFP fluorescence and ChAT-immunoreactivity**

747 Floating sections of the CPU were pretreated with 0.5% H₂O₂ and 0.2% Triton X-100. Cholinergic
748 neurons were detected with the AB144P goat ChAT antiserum (1:2,000) and TSA, as described for
749 human studies. The sections were mounted on slides, coverslipped with Mowiol and analyzed with
750 confocal microscopy. Expression of the GnRH-GFP transgene was shown by the green fluorescence of
751 scattered CPU neurons.

752

753 **Light microscopy**

754 Representative light microscopic images were prepared with an AxioCam MRc 5 digital camera mounted
755 on a Zeiss AxioImager M1 microscope, using the AxioVision 4.6 software (Carl Zeiss, Göttingen,
756 Germany).

757

758 **Confocal microscopy**

759 Fluorescent signals were studied with a Zeiss LSM780 confocal microscope. High-resolution images
760 were captured using a 20 \times /0.8 NA objective, a 0.6–1 \times optical zoom and the Zen software (CarlZeiss).
761 Different fluorochromes were detected with laser lines 488 nm for FITC and AF488 and 561 nm for Cy3.
762 Emission filters were 493–556 nm for FITC and AF488 and 570–624 nm for Cy3. To prevent emission
763 crosstalk between the fluorophores, the red channel was recorded separately from the green one (“smart
764 setup” function). To illustrate the results, confocal Z-stacks (Z-steps: 0.85-1 μ m, pixel dwell time: 0.79-

765 1.58 μ s, resolution: 1024 \times 1024 pixels, pinhole size: set at 1 Airy unit) were merged using maximum
766 intensity Z-projection (ImageJ). The final figures were adjusted in Adobe Photoshop using the magenta-
767 green color combination and saved as TIF files.

768 Fetal sections were examined using an Axio Imager.Z1 ApoTome microscope (Carl Zeiss, Germany)
769 equipped with a motorized stage and an AxioCam MRm camera (Zeiss). For confocal observation and
770 analyses, an inverted laser scanning Axio observer microscope (LSM 710, Zeiss) with an EC Plan
771 NeoFluor \AA \sim 100/1.4 numerical aperture oil-immersion objective (Zeiss) was used (Imaging Core Facility
772 of IFR114, of the University of Lille, France).

773

774 **Brain slice preparation for electrophysiological recordings**

775 Brain slices of the different transgenic mice were prepared as described earlier (Farkas et al., 2010) and
776 used to record PW1 (postnatal day 4-7) GnRH-GFP (n=13), PW1 ChAT-Cre/zsGreen (n=41), adult
777 ChAT-Cre/zsGreen (n=10), and PW1 GAD65-GFP (n=16) neurons. Briefly, the mice were decapitated in
778 deep inhalation anesthesia with Isoflurane. The brains were immersed in ice-cold low-Na cutting solution
779 bubbled with carbogen (mixture of 95% O₂ and 5% CO₂). The cutting solution contained the following (in
780 mM): saccharose 205, KCl 2.5, NaHCO₃ 26, MgCl₂ 5, NaH₂PO₄ 1.25, CaCl₂ 1, glucose 10. CPU blocks
781 were dissected, and 200- μ m-thick coronal slices were prepared with a VT-1000S vibratome (Leica
782 Biosystems) in ice-cold oxygenated low-Na cutting solution. The slices were transferred into
783 carbogenated artificial cerebrospinal fluid (aCSF) containing in mM: NaCl 130, KCl 3.5, NaHCO₃ 26,
784 MgSO₄ 1.2, NaH₂PO₄ 1.25, CaCl₂ 2.5, glucose 10, and allowed to equilibrate for 1 h while temperature
785 was allowed to drop slowly from 33 °C to room temperature.

786 Recordings were carried out in carbogenated aCSF at 33 °C using Axopatch-200B patch-clamp
787 amplifier, Digidata-1322A data acquisition system, and pCLAMP 10.4 software (Molecular Devices Co.,
788 Silicon Valley, CA, USA). The patch electrodes (OD = 1.5 mm, thin wall; WPI, Worcester, MA, USA)
789 were pulled with a Flaming-Brown P-97 puller (Sutter Instrument Co., Novato, CA, USA). Neurons were
790 visualized with a BX51WI IR-DIC microscope (Olympus Co., Tokyo, Japan). GnRH-GFP, ChAT-

791 Cre/zsGreen and GAD65-GFP neurons showing green fluorescence were identified by brief illumination
792 at 470 nm using an epifluorescent filter set.
793 Whole-cell patch-clamp measurements started with a control recording (2 min). Then, a single bolus of
794 GnRH (final 1.2 μ M) was pipetted into the aCSF-filled measurement chamber and the recording
795 continued for 12 min. Pretreatment of slices with the GnRHR1 antagonist Antide (100 nM) or the
796 voltage-gated Na-channel inhibitor tetrodotoxin (TTX, 660 nM) started 10 min before GnRH was added
797 to the aCSF and these inhibitors were present in the aCSF throughout the recording. To block GPCRs in
798 the recorded neurons, Guanosine 5'-[β -thio]diphosphate trilithium salt (GDP- β -S, 2 mM) was added to the
799 intracellular pipette solution. To allow the intracellular milieu to reach equilibrium, the recording was
800 only started 15 min after achieving the whole-cell patch clamp configuration. Each neuron served as its
801 own control when drug effects were evaluated.

802

803 **Whole-cell patch clamp experiments**

804 The action potentials (APs) and resting potentials (V_{rest}) were recorded in current-clamp mode. V_{rest} was
805 measured at 0 pA. Most of the neurons were silent at 0 pA. Therefore, APs were triggered with a 15 min-
806 long 10 pA depolarizing current pulse throughout the recording. Intracellular pipette solution contained
807 (in mM): HEPES 10, KCl 140, EGTA 5, CaCl₂ 0.1, Mg-ATP 4, Na-GTP 0.4 (pH 7.3 with NaOH). The
808 resistance of the patch electrodes was 2–3 M Ω . Spike-mediated transmitter release was blocked in some
809 experiments by adding the voltage-sensitive Na-channel inhibitor TTX (660 nM, Tocris) to the aCSF 10
810 min before V_{rest} was recorded.

811

812 **Drugs**

813 Extracellularly used drugs: GnRH decapeptide (1.2 μ M, Merck); GnRH-R antagonist Antide (100 nM;
814 Bachem, Bubendorf, Switzerland); voltage-gated Na-channel inhibitor TTX (660 nM, Tocris).
815 Intracellularly applied drug: the membrane impermeable G-protein blocker GDP- β -S (2 mM, Merck)
816 (Farkas et al., 2016; McDermott et al., 2011).

817

818 **Statistical analysis**

819 To minimize sampling bias in electrophysiological studies, animals from the same litter were used for
820 different experiments and slices from the same animals were randomized between treatments. Recordings
821 were stored and analyzed off-line. Event detection was performed using the Clampfit module of the
822 PClamp 10.4 software (Molecular Devices Co., Silicon Valley, CA, USA).

823 Firing rates were calculated from the number of APs in the given recording time (3 min or 12 min). All
824 experiments were self-controlled. Frequencies and V_{rests} following treatments were expressed as
825 percentages of the untreated control periods. Two-tailed Student's *t*-tests were applied to assess treatment
826 effects which were considered significant at $p < 0.05$. Treatment groups were characterized with the mean
827 \pm standard error of mean (SEM) and compared with one-way ANOVA with repeated measurements
828 followed by Tukey's test.

829

830 **ACKNOWLEDGEMENTS**

831 The research leading to these results has received funding from the National Science Foundation of
832 Hungary (K128317 to E.H.; PD125393 and PD134837 to K.S.), the Hungarian Brain Research Program
833 (2017-1.2.1-NKP-2017-00002 to E.H.), the Institut National de la Santé et de la Recherche Médicale,
834 Inserm, France (grant number U1172) to P.G. and V.P., and from the Agence Nationale de la Recherche,
835 France (grant number ANR-19-CE16-0021-02 to P.G.). We thank the midwives of the Gynecology
836 Department, Jeanne de Flandre Hospital of Lille (Centre d'Orthogénie), France, for their kind assistance
837 and support; M Tardivel and A Bongiovanni (BICeL core facility of Lille, Univ. Lille, CNRS, Inserm,
838 CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, F-59000 Lille, France) for expert technical
839 assistance. The authors acknowledge support of the Inserm Cross-Cutting Scientific Program (HuDeCA).
840 The research carried out at BME has been supported by the NRDI Fund (TKP2020 IES, Grant No. BME-
841 IE-BIO) based on the charter of bolster issued by the NRDI Office under the auspices of the Ministry for

842 Innovation and Technology. The authors are grateful to Dr. R.A Benoit for the LR-1 antiserum and to Dr.
843 Suzanne M. Moenter for the GnRH-GFP mice.

844

845 **AUTHOR CONTRIBUTIONS**

846 **Conceptualization**, K.S., M.S., B.G., C.V., N.S., S.P., V.P., P.G., E.H.; **Methodology**, K.S., M.S., I.F.,
847 B.G., S.T., É.R., V.V., G.R., A.M., N.S., S.P., B.T., F.E., G.S., M.D.C., P.G., E.H.; **Investigation**, K.S.,
848 M.S., I.F., B.G., S.T., É.R., V.V., N.S., B.T., C.A., L.C., P.G., E.H.; **Writing—editing**, M.S., I.F., N.S.,
849 B.T., V.P., P.G., E.H.; **Funding acquisition and supervision**, K.S., V.P., P.G., E.H.

850

851 **COMPETING INTERESTS**

852 The authors declare no competing interests.

853

854 **DATA AVAILABILITY**

855 The data that support the findings of this study are available from the corresponding author upon reasonable
856 request. RNA sequencing files will be available in BioProject with the accession number PRJNA680536
857 (release date: 2021-12-24).

858

859 **CODE AVAILABILITY**

860 Scripts will be available upon request at https://github.com/solymosin/PRJNA680536_ms_codes

861

862 **REFERENCES**

863 Abercrombie, M. (1946). Estimation of nuclear population from microtome sections. *Anat Rec*, 94, 239-
864 247. doi:10.1002/ar.1090940210

865 Ahmed, N. Y., Knowles, R., & Dehorter, N. (2019). New Insights Into Cholinergic Neuron Diversity.
866 *Front Mol Neurosci*, 12, 204. doi:10.3389/fnmol.2019.00204

867 Allaway, K. C., & Machold, R. (2017). Developmental specification of forebrain cholinergic neurons.
868 *Dev Biol*, 421(1), 1-7. doi:10.1016/j.ydbio.2016.11.007

869 Bonsi, P., Martella, G., Cuomo, D., Platania, P., Sciamanna, G., Bernardi, G., Wess, J., & Pisani, A.
870 (2008). Loss of muscarinic autoreceptor function impairs long-term depression but not long-term

871 potentiation in the striatum. *J Neurosci*, 28(24), 6258-6263. doi:10.1523/JNEUROSCI.1678-
872 08.2008

873 Casoni, F., Malone, S. A., Belle, M., Luzzati, F., Collier, F., Allet, C., Hrabovszky, E., Rasika, S., Prevot,
874 V., Chedotal, A., & Giacobini, P. (2016). Development of the neurons controlling fertility in
875 humans: new insights from 3D imaging and transparent fetal brains. *Development*, 143(21), 3969-
876 3981. doi:10.1242/dev.139444

877 Chan, Y. M. (2011). A needle in a haystack: mutations in GNRH1 as a rare cause of isolated GnRH
878 deficiency. *Mol Cell Endocrinol*, 346(1-2), 51-56. doi:10.1016/j.mce.2011.06.013

879 Chu, C., Xu, B., & Huang, W. (2010). GnRH analogue attenuated apoptosis of rat hippocampal neuron
880 after ischemia-reperfusion injury. *J Mol Histol*, 41(6), 387-393. doi:10.1007/s10735-010-9300-8

881 Culler, M. D., & Negro-Vilar, A. (1986). Development of specific antisera and a radioimmunoassay
882 procedure for the gonadotropin-releasing hormone associated peptide (GAP) of the LHRH
883 prohormone. *Brain Res Bull*, 17(2), 219-223.

884 Ding, J., Guzman, J. N., Tkatch, T., Chen, S., Goldberg, J. A., Ebert, P. J., Levitt, P., Wilson, C. J.,
885 Hamm, H. E., & Surmeier, D. J. (2006). RGS4-dependent attenuation of M4 autoreceptor
886 function in striatal cholinergic interneurons following dopamine depletion. *Nat Neurosci*, 9(6),
887 832-842. doi:10.1038/nn1700

888 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., &
889 Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*, 29(1), 15-21.
890 doi:10.1093/bioinformatics/bts635

891 Farkas, I., Kallo, I., Deli, L., Vida, B., Hrabovszky, E., Fekete, C., Moenter, S. M., Watanabe, M., &
892 Liposits, Z. (2010). Retrograde endocannabinoid signaling reduces GABAergic synaptic
893 transmission to gonadotropin-releasing hormone neurons. *Endocrinology*, 151(12), 5818-5829.
894 doi:10.1210/en.2010-0638

895 Farkas, I., Vastagh, C., Farkas, E., Balint, F., Skrapits, K., Hrabovszky, E., Fekete, C., & Liposits, Z.
896 (2016). Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic Miniature
897 Postsynaptic Currents (mPSCs) in Gonadotropin-Releasing Hormone (GnRH) Neurons of the
898 Male Mice via Activation of Nitric Oxide (NO) and Suppression of Endocannabinoid Signaling
899 Pathways. *Front Cell Neurosci*, 10, 214. doi:10.3389/fncel.2016.00214

900 Fazl, A., & Fleisher, J. (2018). Anatomy, Physiology, and Clinical Syndromes of the Basal Ganglia: A
901 Brief Review. *Semin Pediatr Neurol*, 25, 2-9. doi:10.1016/j.spen.2017.12.005

902 Goetz, C. G. (2011). The history of Parkinson's disease: early clinical descriptions and neurological
903 therapies. *Cold Spring Harb Perspect Med*, 1(1), a008862. doi:10.1101/cshperspect.a008862

904 Gonzales, K. K., & Smith, Y. (2015). Cholinergic interneurons in the dorsal and ventral striatum:
905 anatomical and functional considerations in normal and diseased conditions. *Ann N Y Acad Sci*,
906 1349, 1-45. doi:10.1111/nyas.12762

907 Guillery, R. W. (2002). On counting and counting errors. *J Comp Neurol*, 447(1), 1-7.
908 doi:10.1002/cne.10221

909 Harrison, G. S., Wierman, M. E., Nett, T. M., & Glode, L. M. (2004). Gonadotropin-releasing hormone
910 and its receptor in normal and malignant cells. *Endocr Relat Cancer*, 11(4), 725-748.
911 doi:10.1677/erc.1.00777

912 Herbison, A. E. (2018). The Gonadotropin-Releasing Hormone Pulse Generator. *Endocrinology*, 159(11),
913 3723-3736. doi:10.1210/en.2018-00653

914 Hopman, A. H., Ramaekers, F. C., & Speel, E. J. (1998). Rapid synthesis of biotin-, digoxigenin-,
915 trinitrophenyl-, and fluorochrome-labeled tyramides and their application for In situ hybridization
916 using CARD amplification. *J Histochem Cytochem*, 46(6), 771-777.
917 doi:10.1177/002215549804600611

918 Hrabovszky, E., Molnar, C. S., Sipos, M. T., Vida, B., Ciofi, P., Borsay, B. A., Sarkadi, L., Herczeg, L.,
919 Bloom, S. R., Ghatei, M. A., Dhillon, W. S., Kallo, I., & Liposits, Z. (2011). Sexual dimorphism of
920 kisspeptin and neurokinin B immunoreactive neurons in the infundibular nucleus of aged men
921 and women. *Front Endocrinol (Lausanne)*, 2, 80. doi:10.3389/fendo.2011.00080

922 Katzenschlager, R., Sampaio, C., Costa, J., & Lees, A. (2003). Anticholinergics for symptomatic
923 management of Parkinson's disease. *Cochrane Database Syst Rev*(2), CD003735.
924 doi:10.1002/14651858.CD003735

925 Koulousakis, P., Andrade, P., Visser-Vandewalle, V., & Sesia, T. (2019). The Nucleus Basalis of Meynert
926 and Its Role in Deep Brain Stimulation for Cognitive Disorders: A Historical Perspective. *J*
927 *Alzheimers Dis*, 69(4), 905-919. doi:10.3233/JAD-180133

928 Krajewski, S. J., Abel, T. W., Voytko, M. L., & Rance, N. E. (2003). Ovarian steroids differentially
929 modulate the gene expression of gonadotropin-releasing hormone neuronal subtypes in the
930 ovariectomized cynomolgus monkey. *J Clin Endocrinol Metab*, 88(2), 655-662.
931 doi:10.1210/jc.2002-020887

932 Krsmanovic, L. Z., Mores, N., Navarro, C. E., Arora, K. K., & Catt, K. J. (2003). An agonist-induced
933 switch in G protein coupling of the gonadotropin-releasing hormone receptor regulates pulsatile
934 neuropeptide secretion. *Proc Natl Acad Sci U S A*, 100(5), 2969-2974.
935 doi:10.1073/pnas.0535708100

936 Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program for
937 assigning sequence reads to genomic features. *Bioinformatics*, 30(7), 923-930.
938 doi:10.1093/bioinformatics/btt656

939 Limonta, P., Moretti, R. M., Marelli, M. M., Dondi, D., Parenti, M., & Motta, M. (1999). The luteinizing
940 hormone-releasing hormone receptor in human prostate cancer cells: messenger ribonucleic acid
941 expression, molecular size, and signal transduction pathway. *Endocrinology*, 140(11), 5250-5256.
942 doi:10.1210/endo.140.11.7087

943 Lopez-Bendito, G., Sturgess, K., Erdelyi, F., Szabo, G., Molnar, Z., & Paulsen, O. (2004). Preferential
944 origin and layer destination of GAD65-GFP cortical interneurons. *Cereb Cortex*, 14(10), 1122-
945 1133. doi:10.1093/cercor/bhh072

946 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for
947 RNA-seq data with DESeq2. *Genome Biol*, 15(12), 550. doi:10.1186/s13059-014-0550-8

948 Lozovaya, N., Ben-Ari, Y., & Hammond, C. (2018). Striatal dual cholinergic /GABAergic transmission in
949 Parkinson disease: friends or foes? *Cell Stress*, 2(6), 147-149. doi:10.15698/cst2018.06.142

950 Mai, J., Assheuer, J., & Paxinos, G. (Eds.). (1997). *Atlas of the human brain*. San Diego: Academic Press.

951 Mallet, N., Leblois, A., Maurice, N., & Beurrier, C. (2019). Striatal Cholinergic Interneurons: How to
952 Elucidate Their Function in Health and Disease. *Front Pharmacol*, 10, 1488.
953 doi:10.3389/fphar.2019.01488

954 Marbouti, L., Zahmatkesh, M., Riahi, E., & Shafiee Sabet, M. (2020). GnRH protective effects against
955 amyloid beta-induced cognitive decline: A potential role of the 17beta-estradiol. *Mol Cell*
956 *Endocrinol*, 518, 110985. doi:10.1016/j.mce.2020.110985

957 Markakis, E. A., Palmer, T. D., Randolph-Moore, L., Rakic, P., & Gage, F. H. (2004). Novel neuronal
958 phenotypes from neural progenitor cells. *J Neurosci*, 24(12), 2886-2897.
959 doi:10.1523/JNEUROSCI.4161-03.2004

960 McCarthy, D. J., Chen, Y., & Smyth, G. K. (2012). Differential expression analysis of multifactor RNA-
961 Seq experiments with respect to biological variation. *Nucleic Acids Res*, 40(10), 4288-4297.
962 doi:10.1093/nar/gks042

963 McDermott, C. M., & Schrader, L. A. (2011). Activation of kappa opioid receptors increases intrinsic
964 excitability of dentate gyrus granule cells. *J Physiol*, 589(Pt 14), 3517-3532.
965 doi:10.1113/jphysiol.2011.211623

966 Merchenthaler, I., Kovacs, G., Lavasz, G., & Setalo, G. (1980). The preoptico-infundibular LH-RH tract
967 of the rat. *Brain Res*, 198(1), 63-74.

968 Mihaly, E., Fekete, C., Tatro, J. B., Liposits, Z., Stopa, E. G., & Lechan, R. M. (2000). Hypophysiotropic
969 thyrotropin-releasing hormone-synthesizing neurons in the human hypothalamus are innervated
970 by neuropeptide Y, agouti-related protein, and alpha-melanocyte-stimulating hormone. *J Clin*
971 *Endocrinol Metab*, 85(7), 2596-2603. doi:10.1210/jcem.85.7.6662

972 Paxinos, G., & Franklin, K. B. J. (Eds.). (2001). *The mouse brain in stereotaxic coordinates* (2nd ed.):
973 Academic Press

974 Perez-Lloret, S., & Barrantes, F. J. (2016). Deficits in cholinergic neurotransmission and their clinical
975 correlates in Parkinson's disease. *NPJ Parkinsons Dis*, 2, 16001. doi:10.1038/npjparkd.2016.1

976 Quanbeck, C., Sherwood, N. M., Millar, R. P., & Terasawa, E. (1997). Two populations of luteinizing
977 hormone-releasing hormone neurons in the forebrain of the rhesus macaque during embryonic
978 development. *J Comp Neurol*, 380(3), 293-309.

979 Rance, N. E., Young, W. S., 3rd, & McMullen, N. T. (1994). Topography of neurons expressing
980 luteinizing hormone-releasing hormone gene transcripts in the human hypothalamus and basal
981 forebrain. *J Comp Neurol*, 339(4), 573-586. doi:10.1002/cne.903390408 [doi]

982 Schuierer, S., Carbone, W., Knehr, J., Petitjean, V., Fernandez, A., Sultan, M., & Roma, G. (2017). A
983 comprehensive assessment of RNA-seq protocols for degraded and low-quantity samples. *BMC*
984 *Genomics*, 18(1), 442. doi:10.1186/s12864-017-3827-y

985 Schwanzel-Fukuda, M., & Pfaff, D. W. (1989). Origin of luteinizing hormone-releasing hormone
986 neurons. *Nature*, 338(6211), 161-164. doi:10.1038/338161a0

987 Seabold, G. K., Daunais, J. B., Rau, A., Grant, K. A., & Alvarez, V. A. (2010). DiOLISTIC labeling of
988 neurons from rodent and non-human primate brain slices. *J Vis Exp*(41). doi:10.3791/2081

989 Silverman, A. J., Witkin, J. W., & Millar, R. P. (1990). Light and electron microscopic
990 immunocytochemical analysis of antibodies directed against GnRH and its precursor in
991 hypothalamic neurons. *J Histochem Cytochem*, 38(6), 803-813. doi:10.1177/38.6.2186087

992 Skrapits, K., Kanti, V., Savanyu, Z., Maurnyi, C., Szenci, O., Horvath, A., Borsay, B. A., Herczeg, L.,
993 Liposits, Z., & Hrabovszky, E. (2015). Lateral hypothalamic orexin and melanin-concentrating
994 hormone neurons provide direct input to gonadotropin-releasing hormone neurons in the human.
995 *Front Cell Neurosci*, 9, 348. doi:10.3389/fncel.2015.00348

996 Staffend, N. A., & Meisel, R. L. (2011). DiOlistic Labeling of Neurons in Tissue Slices: A Qualitative
997 and Quantitative Analysis of Methodological Variations. *Front Neuroanat*, 5, 14.
998 doi:10.3389/fnana.2011.00014

999 Stewart, A. J., Katz, A. A., Millar, R. P., & Morgan, K. (2009). Retention and silencing of prepro-GnRH-
1000 II and type II GnRH receptor genes in mammals. *Neuroendocrinology*, 90(4), 416-432.
1001 doi:10.1159/000233303

1002 Suter, K. J., Song, W. J., Sampson, T. L., Wuarin, J. P., Saunders, J. T., Dudek, F. E., & Moenter, S. M.
1003 (2000). Genetic targeting of green fluorescent protein to gonadotropin-releasing hormone
1004 neurons: characterization of whole-cell electrophysiological properties and morphology.
1005 *Endocrinology*, 141(1), 412-419. doi:10.1210/endo.141.1.7279

1006 Takacs, S., Bardoczi, Z., Skrapits, K., Gocz, B., Vaczi, V., Magloczky, Z., Szucs, I., Racz, G., Matolcsy,
1007 A., Dhillon, W. S., Watanabe, M., Kadar, A., Fekete, C., Kallo, I., & Hrabovszky, E. (2018). Post
1008 mortem single-cell labeling with DiI and immunoelectron microscopy unveil the fine structure of
1009 kisspeptin neurons in humans. *Brain Struct Funct*, 223(5), 2143-2156. doi:10.1007/s00429-018-
1010 1610-8

1011 Terasawa, E., Busser, B. W., Luchansky, L. L., Sherwood, N. M., Jennes, L., Millar, R. P., Glucksman,
1012 M. J., & Roberts, J. L. (2001). Presence of luteinizing hormone-releasing hormone fragments in
1013 the rhesus monkey forebrain. *J Comp Neurol*, 439(4), 491-504. doi:10.1002/cne.1364

1014 Thomas, P. D., Campbell, M. J., Kejariwal, A., Mi, H., Karlak, B., Daverman, R., Diemer, K.,
1015 Muruganujan, A., & Narechania, A. (2003). PANTHER: a library of protein families and
1016 subfamilies indexed by function. *Genome Res*, 13(9), 2129-2141. doi:10.1101/gr.772403

1017 Tubert, C., & Murer, M. G. (2020). What's wrong with the striatal cholinergic interneurons in Parkinson's
1018 disease? Focus on intrinsic excitability. *Eur J Neurosci*. doi:10.1111/ejn.14742

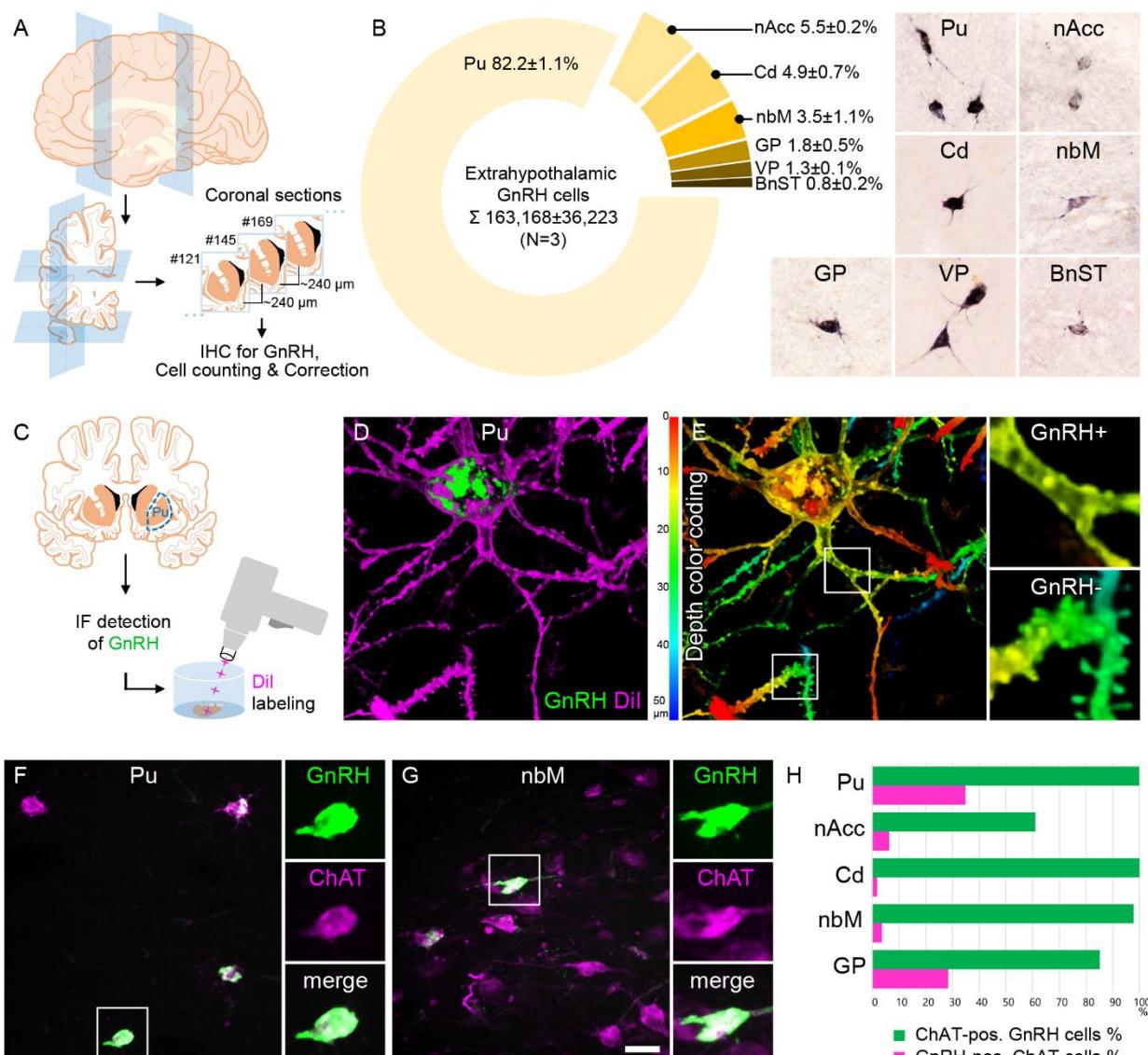
1019 Turi, G. F., Liposits, Z., & Hrabovszky, E. (2008). Cholinergic afferents to gonadotropin-releasing
1020 hormone neurons of the rat. *Neurochem Int*, 52(4-5), 723-728. doi:10.1016/j.neuint.2007.09.001

1021 Wilson, A. C., Salamat, M. S., Haasl, R. J., Roche, K. M., Karande, A., Meethal, S. V., Terasawa, E.,
1022 Bowen, R. L., & Atwood, C. S. (2006). Human neurons express type I GnRH receptor and

1023 respond to GnRH I by increasing luteinizing hormone expression. *J Endocrinol*, 191(3), 651-663.
1024 doi:10.1677/joe.1.07047

1025 Wray, S. (2001). Development of luteinizing hormone releasing hormone neurones. *J Neuroendocrinol*,
1026 13(1), 3-11.

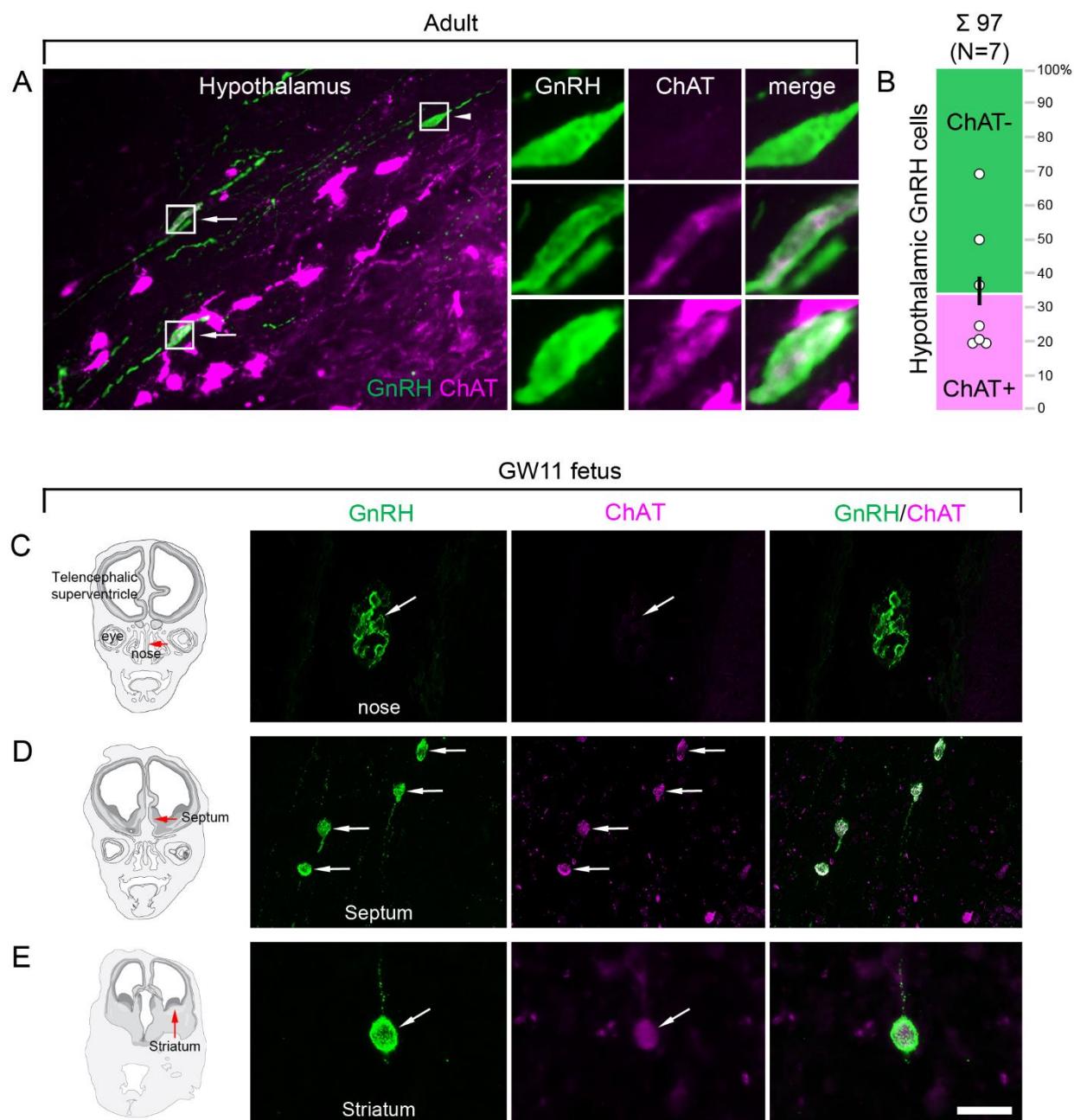
1027 Wray, S., Grant, P., & Gainer, H. (1989). Evidence that cells expressing luteinizing hormone-releasing
1028 hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. *Proc
1029 Natl Acad Sci U S A*, 86(20), 8132-8136.

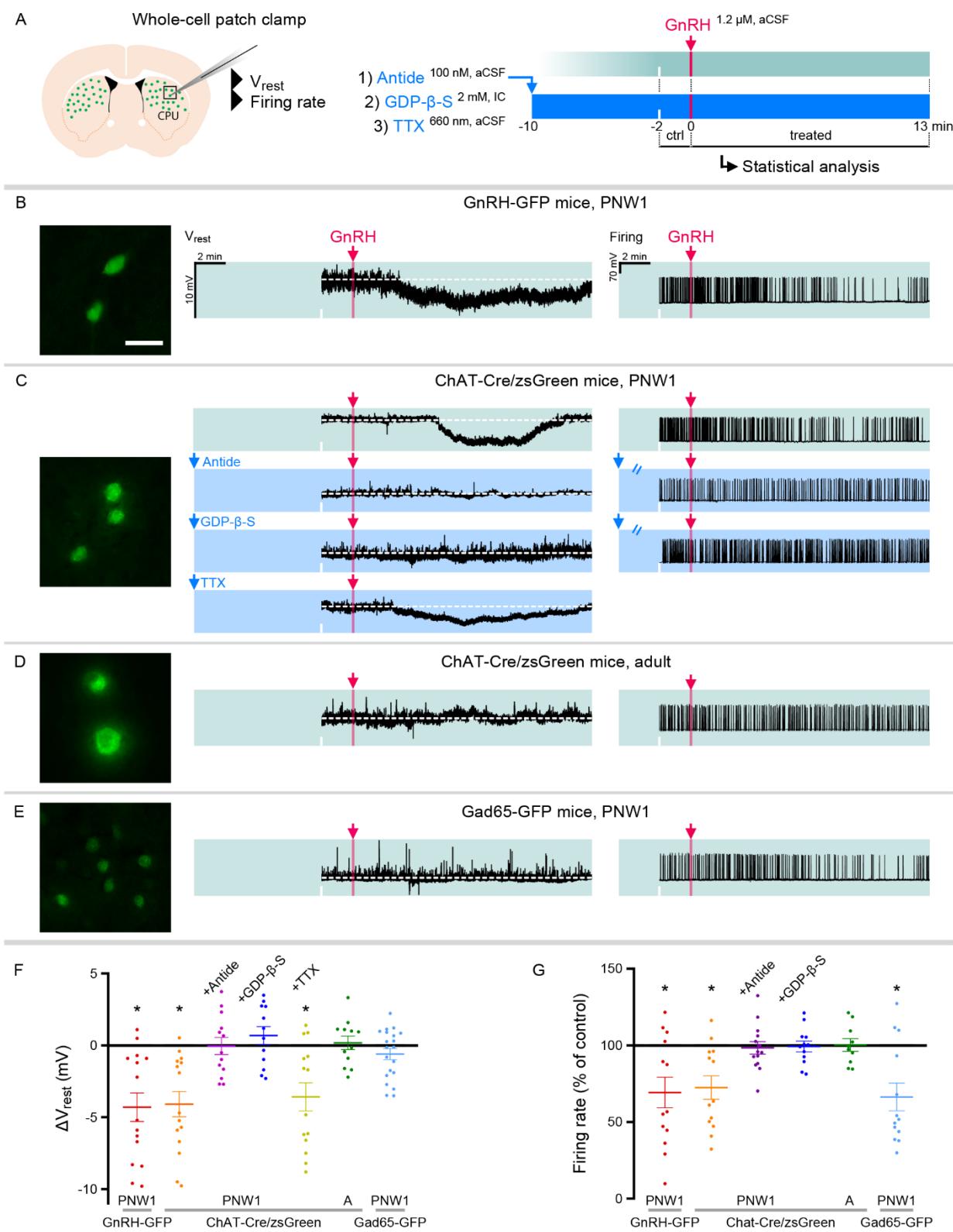

1030 Yates, A. D., Achuthan, P., Akanni, W., Allen, J., Allen, J., Alvarez-Jarreta, J., Amode, M. R., Armean, I.
1031 M., Azov, A. G., Bennett, R., Bhai, J., Billis, K., Boddu, S., Marugan, J. C., Cummins, C.,
1032 Davidson, C., Dodiya, K., Fatima, R., Gall, A., Giron, C. G., Gil, L., Grego, T., Haggerty, L.,
1033 Haskell, E., Hourlier, T., Izuogu, O. G., Janacek, S. H., Juettemann, T., Kay, M., Lavidas, I., Le,
1034 T., Lemos, D., Martinez, J. G., Maurel, T., McDowall, M., McMahon, A., Mohanan, S., Moore,
1035 B., Nuhn, M., Oheh, D. N., Parker, A., Parton, A., Patricio, M., Sakthivel, M. P., Abdul Salam, A.
1036 I., Schmitt, B. M., Schuilenburg, H., Sheppard, D., Sycheva, M., Szuba, M., Taylor, K.,
1037 Thormann, A., Threadgold, G., Vullo, A., Walts, B., Winterbottom, A., Zadissa, A., Chakiachvili,
1038 M., Flint, B., Frankish, A., Hunt, S. E., G, I. I., Kostadima, M., Langridge, N., Loveland, J. E.,
1039 Martin, F. J., Morales, J., Mudge, J. M., Muffato, M., Perry, E., Ruffier, M., Trevanion, S. J.,
1040 Cunningham, F., Howe, K. L., Zerbino, D. R., & Flicek, P. (2020). Ensembl 2020. *Nucleic Acids
1041 Res*, 48(D1), D682-D688. doi:10.1093/nar/gkz966

1042 Yonehara, K., Balint, K., Noda, M., Nagel, G., Bamberg, E., & Roska, B. (2011). Spatially asymmetric
1043 reorganization of inhibition establishes a motion-sensitive circuit. *Nature*, 469(7330), 407-410.
1044 doi:10.1038/nature09711

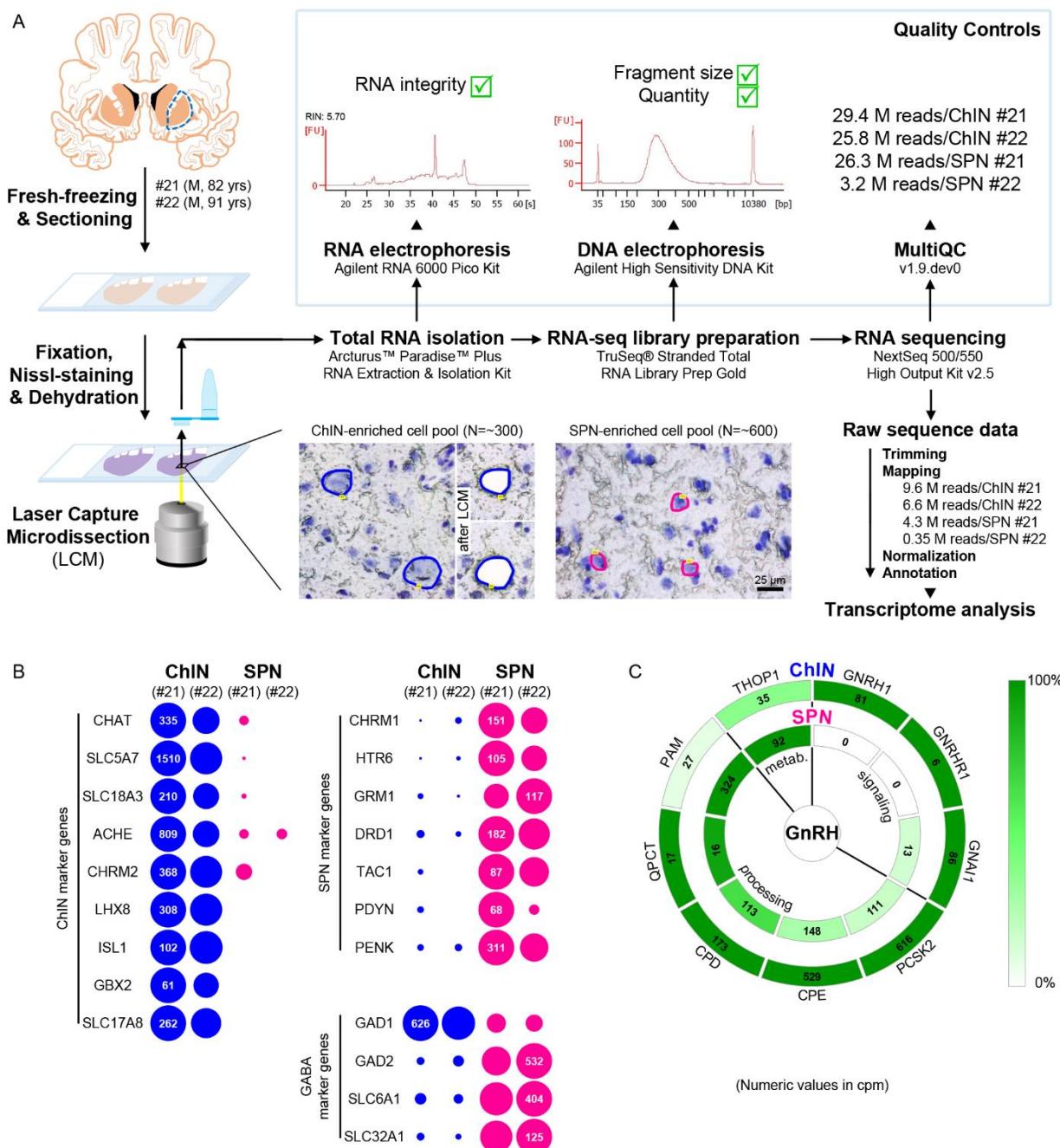
1045

1046 **FIGURES AND LEGENDS**

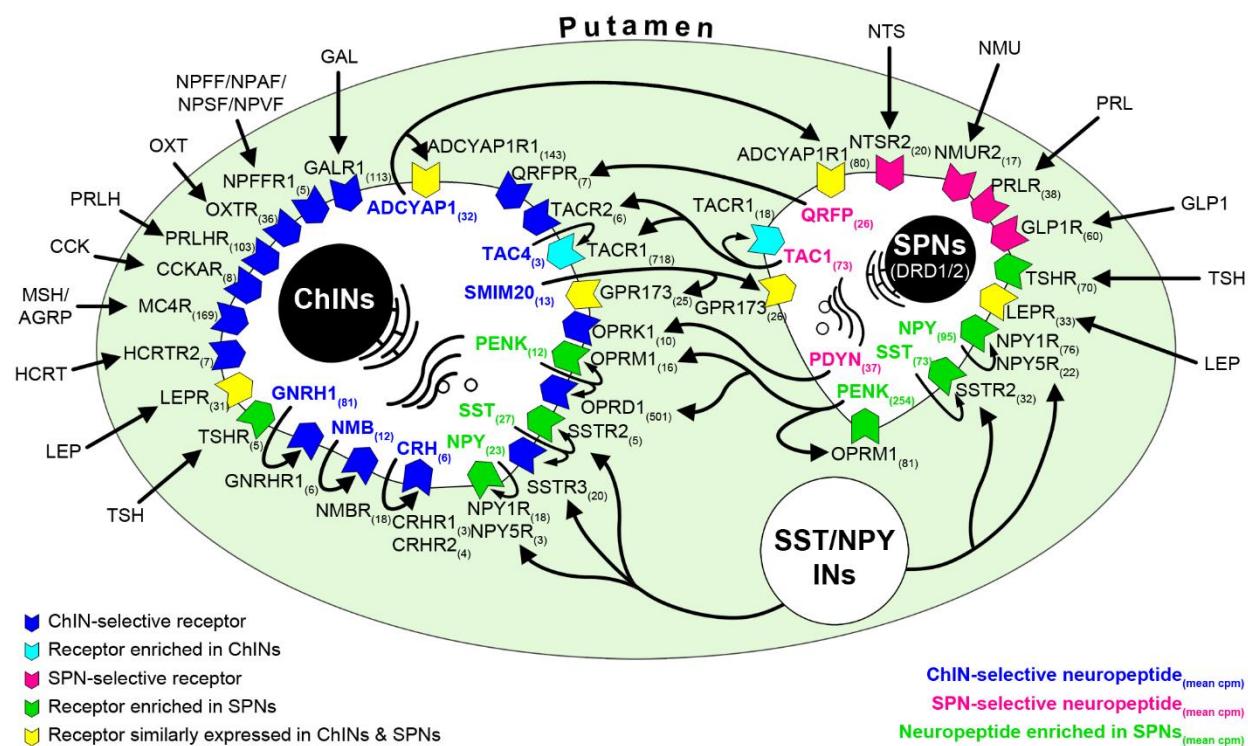

1047


1048

1049 **Fig. 1. Anatomical approaches unveil the distribution, number, fine structure and cholinergic**
 1050 **phenotype of extrahypothalamic GnRH neurons in the adult human brain. A:** Extrahypothalamic
 1051 GnRH-IR neurons were mapped with immunohistochemistry (IHC) and quantified in 3 adult human
 1052 brains. **B:** The majority (82.2%) of the 163,168 \pm 36,223 extrahypothalamic GnRH neurons occurred in the
 1053 putamen (Pu), followed by the nucleus accumbens (nAcc), nucleus caudatus (Cd), nucleus basalis
 1054 magnocellularis (nbM), globus pallidus (GP), ventral pallidum (VP) and bed nucleus of the stria


1055 terminalis (BnST). **C:** Immunofluorescent (IF) detection of GnRH was combined with cell membrane
1056 labeling using Gene Gun-delivered DiI to visualize the fine structure of dendrites. **D:** 3-D reconstruction
1057 of the DiI-labeled (magenta) GnRH-immunoreactive (green) neurons revealed large multipolar cells
1058 which exhibited only few dendritic spines. **E:** Depth color coding allowed better distinction between DiI-
1059 labeled processes of the GnRH neuron (upper inset; GnRH+) from other DiI-labeled neuronal elements
1060 many of which belonged to medium spiny GABAergic projection neurons (lower inset; GnRH-). **F:**
1061 Double-IF experiments addressed the presence of known interneuron phenotype markers in GnRH
1062 neurons. Nearly all GnRH neurons in the Pu contained the cholinergic marker enzyme choline
1063 acetyltransferase (ChAT). **G:** The GnRH neuron population also overlapped with cholinergic projection
1064 neurons of the nbM. **H:** With few exceptions, GnRH neurons were ChAT-immunoreactive (green
1065 columns), whereas they represented smaller subsets of cholinergic cells (magenta columns) being highest
1066 in the Pu (~35%). Scale bar: 50 μ m in **B, F, G**, 25 μ m in **F, G** insets, 12.5 μ m in **D, E** (insets: 3.7 μ m).

1073 from framed regions. **B:** Quantitative analysis of 97 GnRH neurons from 7 subjects reveal the ChAT
1074 phenotype in $41.2 \pm 7.1\%$ of hypothalamic GnRH neurons. **C-E:** The cholinergic phenotype of GnRH
1075 neurons is gained during early fetal development. Left panels illustrate coronal views of the fetal head at
1076 GW11. Representative photomicrographs taken from sites indicated by the red arrows show results of
1077 dual-immunofluorescence experiments. **C:** At this stage of development a large subset of GnRH neurons
1078 (green immunofluorescent signal) migrate in the nasal region toward the brain and do not exhibit ChAT
1079 signal. **D, E:** In contrast, GnRH neurons migrating through the septal area (**D**, arrows) or located in the
1080 striatum (**E**, arrow) express ChAT (magenta). Scale bar: 50 μm in **A** (insets: 12.5 μm), **C** and **D**, 20 μm in
1081 **E**.
1082


1084 **Fig. 3. GnRH inhibits cholinergic interneurons in the caudate-putamen of neonatal transgenic mice**
1085 **via signaling on GnRHR1 autoreceptors. A:** Neonatal GnRH-GFP transgene expression within
1086 cholinergic neurons of the caudate-putamen (CPU) indicates that newborn transgenic mice may serve as
1087 animal model to study GnRH effects with slice electrophysiology. To reveal receptor mechanisms, the
1088 selective GnRHR1 antagonist Antide, the membrane-impermeable G Protein-Coupled Receptor inhibitor
1089 GDP- β -S and the action potential inhibitor tetrodotoxin (TTX) were used in whole-cell patch-clamp
1090 experiments. **B:** Postnatal week 1 (PNW1; postnatal day 4-7) GnRH-GFP neurons responded to GnRH
1091 with reduced resting membrane potential (V_{rest}) and decreased rates in current pulse-induced firing
1092 activity. **C:** The same inhibitory responses could also be elicited from cholinergic interneurons of
1093 newborn ChAT-Cre/zsGreen. GnRH acted via its specific receptor GnRHR1 because inhibitory responses
1094 could be prevented with Antide. GnRHR1 mediating GnRH effects was localized within CPU cholinergic
1095 neurons. First, GnRH was unable to inhibit cholinergic neurons if the internal electrode solution contained
1096 GDP- β -S. Second, GnRH was still able to hyperpolarize cholinergic neurons in the presence of TTX to
1097 eliminate activity-dependent indirect actions (TTX+GnRH). **D:** In contrast to the newborn mice, adult
1098 ChAT-Cre/zsGreen animals did not respond to GnRH with reduced V_{rest} or firing rate. **E:** Medium spiny
1099 projection neurons which receive input from cholinergic interneurons were studied in neonatal GAD65-
1100 GFP transgenic mice. GnRH did not change the V_{rest} but decreased the firing rate of these neurons,
1101 indicating together that the inhibitory response is indirect. **F, G:** Scatter dot plots summarize the results of
1102 measurements in the different treatment groups. * $p<0.05$ with ANOVA. Scale bar: 25 μ m. See also
1103 **Figure 3 – Source Data** for recordings.

1104

1105 **Fig. 4. Deep transcriptome profiling of cholinergic interneurons and spiny projection neurons**
 1106 **provides new insight into extrahypothalamic GnRH signaling mechanisms and the molecular**
 1107 **connectome of the human putamen. A:** 20- μ m-thick coronal sections were collected on PEN membrane
 1108 slides from frozen putamen samples of two male human subjects (#21 and 22) and fixed with an
 1109 ethanol/paraformaldehyde mixture. Neurons were visualized using Nissl-staining and isolated with laser-

1110 capture microdissection (LCM). 300 neurons included in each cholinergic interneuron (ChIN)-enriched
1111 cell pool were recognized based on their large perikaryon size. 600 medium-sized neurons in the control
1112 pool mostly included medium spiny GABAergic projection neurons (SPNs), the major putamen cell type.
1113 Total RNA was isolated and RNA-Seq library prepared from both cell pools and sequenced with the
1114 Illumina NextSeq 500/550 High Output (v2.5) kit. **B:** Bioinformatic analysis verified high enrichment of
1115 known cholinergic markers in the two ChIN pools and of SPN markers in the SPN control pools.
1116 Expression levels in dots reflect counts per million reads (cpm) and in each case, dot areas reflect
1117 transcript abundances relative to the highest cpm (100%). **C:** Key elements of proGnRH processing,
1118 GnRH signaling and GnRH metabolism are illustrated in two concentric circles. The *GNRH1* and
1119 *GNRHR1* transcripts are present in ChINs only (outer circle). ChINs express inhibitory G protein-coupled
1120 receptor subunits including *GNAI1*, all enzymes required for proGnRH processing and *THOP1* which
1121 may account for GnRH cleavage. Color coding reflects relative transcript abundances, whereas numbers
1122 indicate cpms (mean cpms of subjects #21 and 22).

1123

1124 **Fig. 5. RNA-Seq studies reveal the neuropeptide and neuropeptide receptor expression profiles of**
 1125 **cholinergic interneurons and spiny projection neurons and provide insight into the molecular**
 1126 **connectome of putamen cell types.** Proposed signaling mechanisms are based on neuropeptide and
 1127 peptide receptor expression profiles of the two cell types. ChINs appear to use GnRHR1, CRH1R/2R and
 1128 NMBR autoreceptor signaling. SSTR2, NPY1R/5R, NKR1, OPRM1 and TACR1 may serve, at least
 1129 partly, as autoreceptors in SPNs. Proposed peptidergic communication between the two cell types are also
 1130 indicated by arrows. Other receptors receive ligands from different neuronal sources within (e.g.: QRFPR,
 1131 NPY1R/5R, TACR1, SSTR2/3) or outside (e.g.: OXTR, MC4R, GLP1R, PRLR1) the putamen. Numbers
 1132 in receptor symbols reflect transcript abundances expressed as mean CPMs (counts per million) from
 1133 subjects #21 and #22. The figure illustrates receptors that were consistently observed in the given cell
 1134 type of both human samples. Abbreviations: ChINs, cholinergic interneurons; INs, interneurons; SPNs,
 1135 spiny projection neurons.

1136 **SOURCE DATA FILES**

1137 **Figure 3 – Source Data**

1138

1139 **SUPPLEMENTARY FILES**

1140 **Supplementary File 1. Cell numbers determined with light microscopic analysis requires**
1141 **compensation for overcounting using Abercrombie's correction factor.** Total extrahypothalamic
1142 GnRH cell numbers were determined in three brains (#1-3) by counting GnRH-immunoreactive neurons
1143 in every 24th 100- μ m-thick coronal section of a single hemisphere. This count was multiplied by 24 and
1144 then, doubled, with the assumption that neurons are distributed evenly between right and left
1145 hemispheres. **A:** When section thickness (T) and cell diameter (h) along the Z axis are close to each other,
1146 a relatively high proportion of cells visualized in section 2 will be transsected (asterisks). Note that taking
1147 into account the transsected neurons at both surfaces of section 2 causes considerable over-counting
1148 within the tissue volume. This systematic error can be corrected by using Abercrombie's correction factor
1149 calculated from the actual section thickness (T) and the mean diameter of uncut GnRH neurons (h) along
1150 the Z axis (schemas based on Guillory et al., 2002) (Guillory, 2002). **B:** To determine T and h, GnRH
1151 neurons were detected in floating section of the putamen. Then, the sections were embedded into 2%
1152 agarose and recut perpendicular to the original section plane with a Vibratome, mounted on glass slides,
1153 coverslipped and analyzed with confocal microscopy. Abercrombie's correction factor obtained with this
1154 approach for the putamen was 0.712. Scale bar: 100 μ m.

1155

1156 **Supplementary File. 2. Combined evidence from immunohistochemistry, *in situ* hybridization and**
1157 **high performance liquid chromatography-tandem mass spectrometry indicates that**
1158 **extrahypothalamic GnRH neurons synthesize *bona fide* GnRH decapeptide derived from the**
1159 **GNRH1 transcript. A:** A series of different primary antisera against the human GnRH-associated peptide
1160 (hGAP1) or GnRH recognize immunoreactive neurons in the human putamen (Pu) using
1161 immunohistochemistry (IHC). Such antibodies include the LR1 rabbit primary antiserum which was

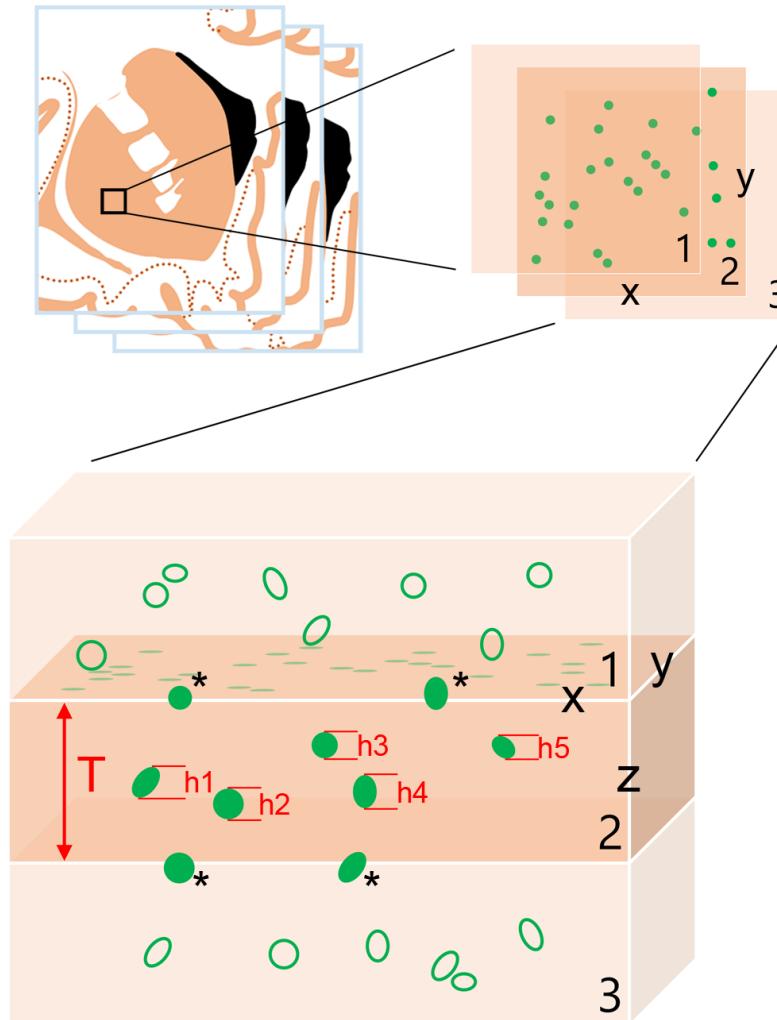
1162 reported previously not to label extrahypothalamic GnRH neurons in monkeys. **B:** Positive control with
1163 the combined use of two GnRH antibodies from different host species for dual-immunofluorescence (IF)
1164 experiments provides evidence that the antibodies detect the same neuronal elements. **C:** Non-isotopic *in*
1165 *situ* hybridization (ISH)/IF dual-labeling studies reveal that GnRH-immunoreactive neurons express
1166 *GNRH1* mRNA, indicating that extrahypothalamic GnRH is a *GNRH1* gene product. **D:** As illustrated in
1167 representative chromatograms, high performance liquid chromatography followed by tandem mass
1168 spectrometry (HPLC-MS/MS) detects *bona fide* GnRH decapeptide in tissue extracts from the mediobasal
1169 hypothalamus (MBH), putamen (Pu) and nucleus caudatus (Cd), but not the claustrum (Cl). **E:** The
1170 GnRH1-5 degradation product is present in the Pu and Cd and undetectable in the MBH and Cl. **F:**
1171 Quantitative analysis reveals the highest tissue concentrations of GnRH in the MBH, somewhat lower
1172 levels in the Pu and the Cd, and no detectable GnRH decapeptide signal in the Cl. Note that tissue
1173 concentrations of GnRH1-5 in the Pu and the Cd are 3-4 times higher than those of GnRH1-5. Scale bar:
1174 50 μ m.

1175

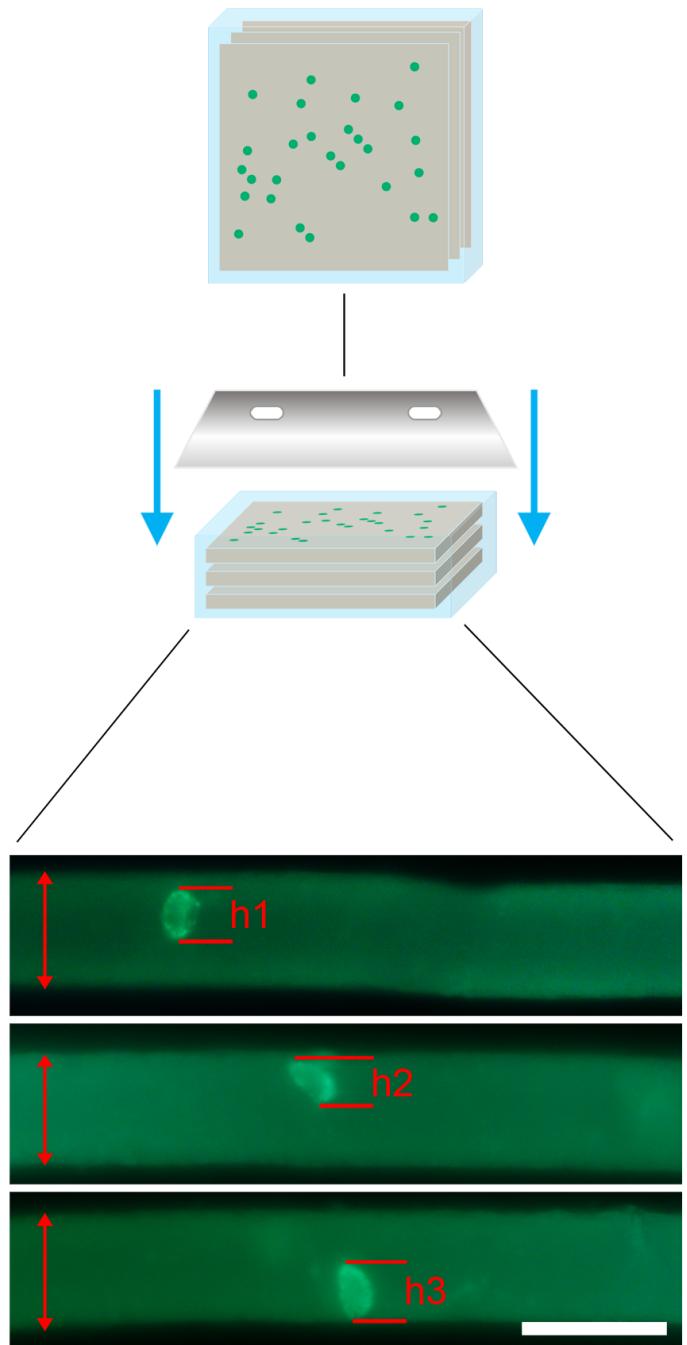
1176 **Supplementary File 3. The GnRH-GFP transgene is expressed transiently in the caudate-putamen**
1177 **of neonatal mice. A:** Postnatal week 1 (PNW1) mice exhibit transient green fluorescent protein (GFP)
1178 fluorescence in the caudate-putamen (CPU; green) of GnRH-GFP transgenic mice (Suter et al., 2000).
1179 The cholinergic marker choline acetyltransferase (ChAT; magenta) is not detectable yet with
1180 immunohistochemistry at this age. High-power image shows a GnRH-GFP neuron from the framed
1181 region. **B:** PNW2 mice exhibit the GFP signal and also express immunoreactivity to ChAT in the CPU.
1182 GnRH-GFP fluorescence occurs selectively within ChAT-immunoreactive cholinergic neurons (high-
1183 power inset). **C:** The ChAT signal becomes much stronger by PNW4. By this time the GnRH-GFP
1184 fluorescent signal fades away from cholinergic cells (high-power inset). Scale bar: 50 μ m, and 25 μ m in
1185 insets.

1186

1187 **Supplementary File 4. Demographic information about the donors and use of tissue specimens in**
1188 **different experiments.** ChAT, choline acetyltransferase, ChINs, cholinergic interneurons; GW11.
1189 gestational week 11; IF, immunofluorescence; IHC, immunohistochemistry; ISH, *in situ* hybridization;
1190 HPLC-MS/MS, high performance liquid chromatography-tadem mass spectrometry; PMI, *postmortem*
1191 interval; RIN, RNA integrity number; RNA-Seq, RNA sequencing; SPNs, medium spiny projection
1192 neurons.


1193

1194 **Supplementary File 5. Basic data on antibody specification, concentration and previous**
1195 **characterization immunohistochemical reagents and applied detection methods.** ChAT, choline
1196 acetyltransferase; GAP1, GnRH-associated peptide-1; GnRH, gonadotropin-releasing hormone; IF,
1197 immunofluorescence; IHC, immunohistochemistry; TSA, tyramide signal amplification.

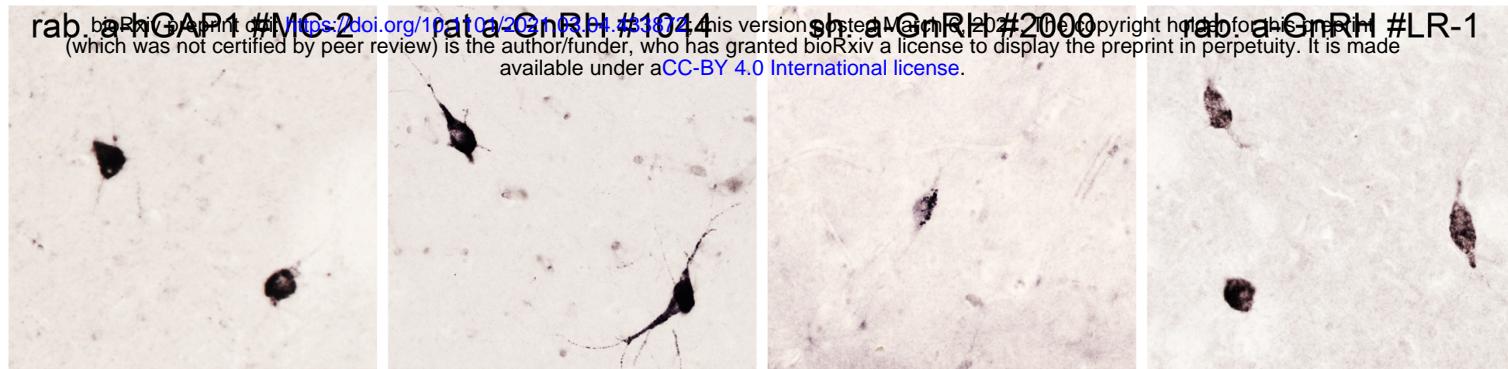

1198

1199 **Supplementary File 6. Detailed receptor expression profile of ChINs and SPNs from the human**
1200 **putamen.** (Numeric values in cpm.)

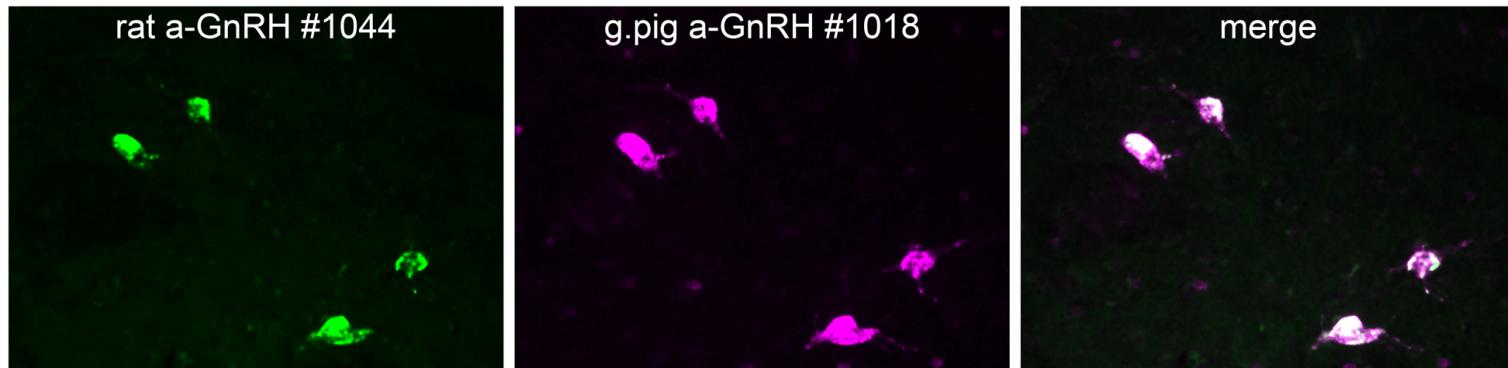
A 100- μm -thick serial sections

B Gelatin embedding

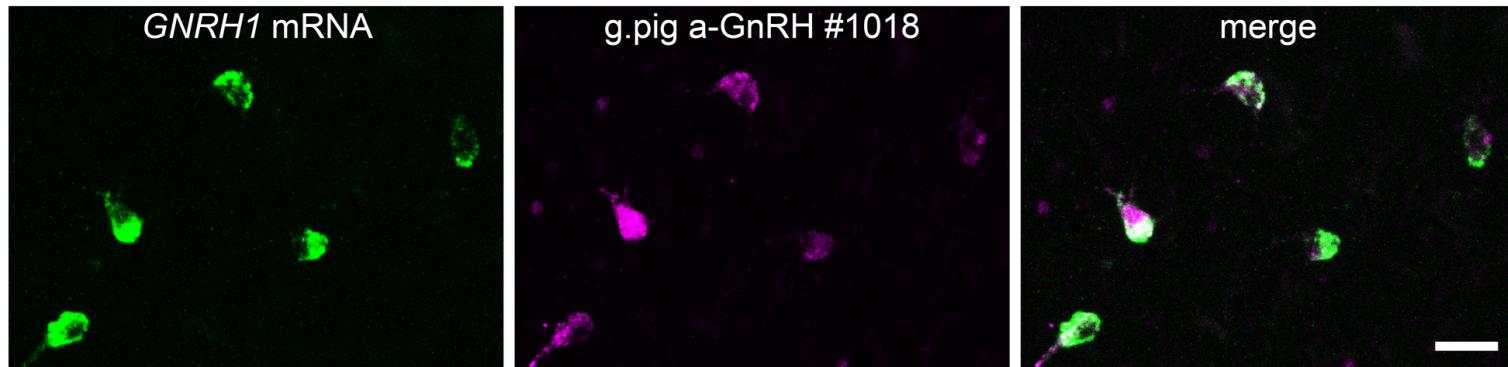
*double-counted cells

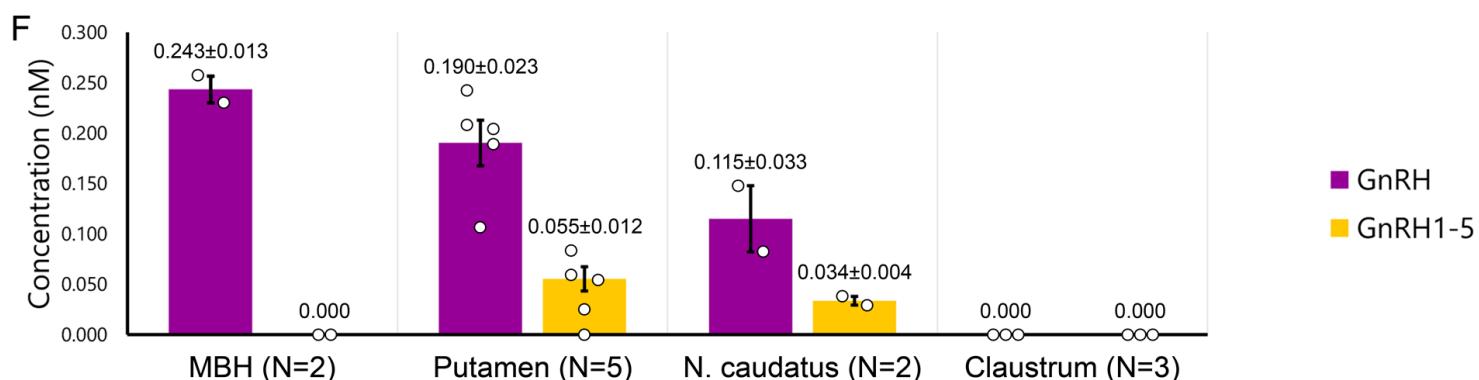
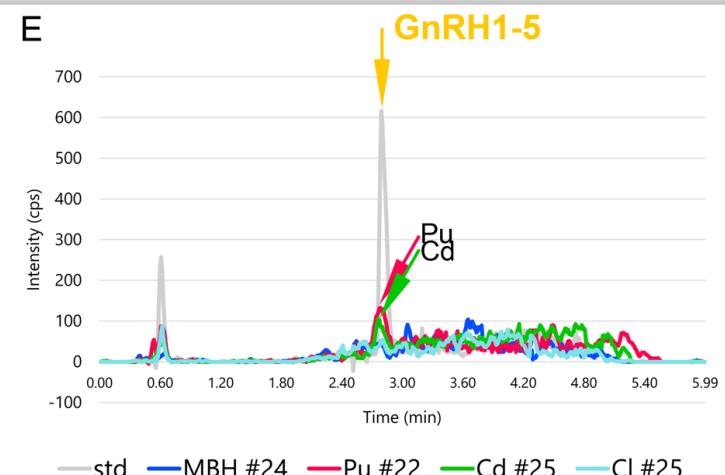
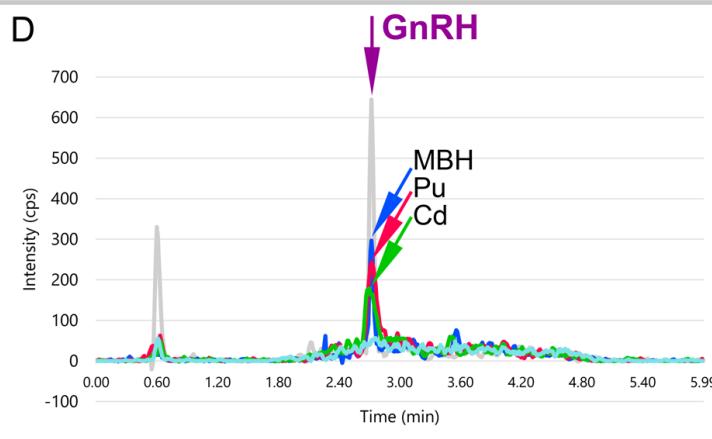

Overcounting

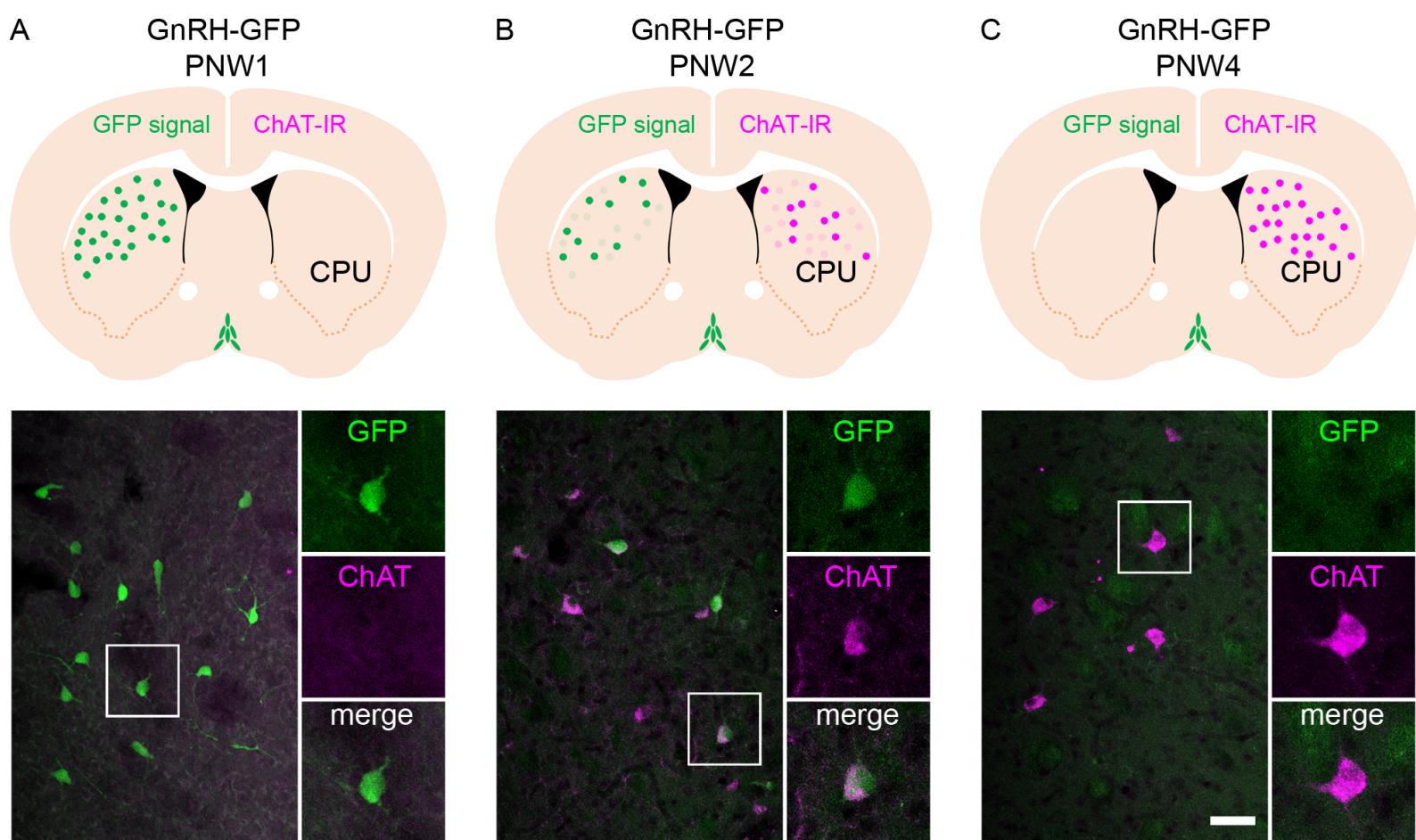
Correction by


Abercrombie's formula:

$$T/(T+h)$$


IHC




B



C

LC-MS/MS

