

1 **Optimization of an LNP-mRNA vaccine candidate targeting SARS-CoV-2**
2 **receptor-binding domain**

3

4 Kouji Kobiyama^{1,7}, Masaki Imai^{2,7}, Nao Jounai^{3,7}, Misako Nakayama^{4,7}, Kou Hioki¹,
5 Kiyoko Iwatsuki-Horimoto², Seiya Yamayoshi², Jun Tsuchida¹, Takako Niwa⁵, Takashi
6 Suzuki⁵, Mutsumi Ito², Shinya Yamada², Tokiko Watanabe², Maki Kiso², Hideo
7 Negishi¹, Burcu Temizoz¹, Hirohito Ishigaki⁴, Yoshinori Kitagawa⁶, Cong Thanh
8 Nguyen⁴, Yasushi Itoh^{4,8}, Fumihiko Takeshita^{3,8}, Yoshihiro Kawaoka^{2,8}, and Ken J.
9 Ishii^{1,8}

10

11 ¹Division of Vaccine Science,

12 ²Division of Virology, Department of Microbiology and Immunology, The Institute of
13 Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
14 108-8639, Japan.

15 ³Biologics Division, Vaccine Research Laboratories, Daichi Sankyo Co., Ltd. 1-16-13,
16 Kitakasai, Edogawa-ku, Tokyo 134-0081, Japan

17 ⁴Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga
18 University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan

19 ⁵Biologics Division, Modality Research Laboratories, Daichi Sankyo Co., Ltd. 1-2-58,
20 Hiromachi, Shinagawa-ku, Tokyo 134-0081, Japan

21 ⁶Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga
22 University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan

23

24 ⁷The authors are contributed to this work equally

25

26 ⁸Correspondence should be addressed to

27 Ken J. Ishii kenishii@ims.u-tokyo.ac.jp, or

28 Yoshihiro Kawaoka kawaoka@ims.u-tokyo.ac.jp

29 Fumihiko Takeshita takeshita.fumihiko.aw@daiichisankyo.co.jp

30 Yasushi Itoh yasushii@belle.shiga-med.ac.jp

31

32

33 **In 2020, two mRNA-based vaccines, encoding the full length of severe**
34 **acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, have been**
35 **introduced for control of the coronavirus disease (COVID-19) pandemic^{1,2}.**
36 **However, reactogenicity, such as fever, caused by innate immune responses to the**
37 **vaccine formulation remains to be improved. Here, we optimized a lipid**
38 **nanoparticle (LNP)-based mRNA vaccine candidate, encoding the SARS-CoV-2**
39 **spike protein receptor-binding domain (LNP-mRNA-RBD), which showed**
40 **improved immunogenicity by removing reactogenic materials from the vaccine**
41 **formulation and protective potential against SARS-CoV-2 infection in cynomolgus**
42 **macaques. LNP-mRNA-RBD induced robust antigen-specific B cells and follicular**
43 **helper T cells in the BALB/c strain but not in the C57BL/6 strain; the two strains**
44 **have contrasting abilities to induce type I interferon production by dendritic cells.**
45 **Removal of reactogenic materials from original synthesized mRNA by HPLC**
46 **reduced type I interferon (IFN) production by dendritic cells, which improved**
47 **immunogenicity. Immunization of cynomolgus macaques with an LNP**
48 **encapsulating HPLC-purified mRNA induced robust anti-RBD IgG in the plasma**
49 **and in various mucosal areas, including airways, thereby conferring protection**
50 **against SARS-CoV-2 infection. Therefore, fine-tuning the balance between the**
51 **immunogenic and reactogenic activity of mRNA-based vaccine formulations may**
52 **offer safer and more efficacious outcomes.**

53 The SARS-CoV-2 spike glycoprotein contains a receptor-binding domain
54 (RBD) that binds to human angiotensin-converting enzyme 2 (hACE2) as a receptor to
55 facilitate membrane fusion and cell entry³. Recent evidence suggests that the immune
56 response to the SARS-CoV-2 spike protein is the key to controlling SARS-CoV-2
57 infection; a vaccine that can induce robust and specific T and B cells against the
58 receptor-binding domain (RBD) of the spike protein antigen of SARS-CoV-2 may be
59 ideal for protective efficacy and safety⁴. Accordingly, various animal experiments have
60 demonstrated that the induction of humoral and cellular immune responses to the RBD
61 by various types of vaccines confers protective efficacy with no signs of detrimental
62 outcomes such as antibody-dependent enhancement^{5,6}.

63 Concurrently with animal studies, a number of human clinical trials with
64 various types of vaccines against COVID-19 have been initiated, conducted, and
65 completed globally within a year after the viral genome sequence was reported in

66 Wuhan, China, in December 2019⁷. Two mRNA vaccines encoding the full-length spike
67 protein of SARS-CoV-2 have undergone Phase I-II-III trials, which were completed in
68 nine months and approved by regulatory authorities in various countries as well as the
69 WHO^{1,2,8-10}. The results of their initial phase I-II clinical trials suggest that in both
70 younger and older adults, the two vaccine candidates elicited similar dose-dependent
71 SARS-CoV-2–neutralizing geometric mean titers, which were equivalent to that of a
72 panel of SARS-CoV-2 convalescent serum samples^{9,10}. It is worth noting that an mRNA
73 vaccine (BNT162b2) encoding the full length of the SARS-CoV-2 spike protein was
74 associated with a lower incidence and severity of systemic reactions than another
75 mRNA vaccine encoding the RBD of spike protein (BNT162b1), particularly in older
76 adults¹⁰. A few scientific explanations have been offered: one is the amount of mRNA in
77 the RBD-mRNA vaccine, whose molar ratio is five times more than that of the
78 full-length mRNA vaccine due to an RNA length shorter by 1/5 at the same dose.
79 Although each RNA modification in the *in vitro* translated (IVT) mRNA to avoid innate
80 immune recognition was made, the number or position of the modified nucleoside of the
81 mRNAs may alter their immunostimulatory activity, acting as an endogenous adjuvant.
82 Here, we optimized an mRNA vaccine candidate encoding SARS-CoV-2 spike protein
83 RBD (319–541 aa) encapsulated in lipid nanoparticles (LNP-mRNA-RBD).

84 To date, a mouse model using the BALB/c strain has been commonly
85 used^{6,11,12}, except for one study where C57BL/6 mice were immunized with
86 LNP-mRNA encoding SARS-CoV-2 RBD, resulting in antigen-specific germinal center
87 (GC) B cells and follicular helper CD4⁺ T cells (T_{FH}) cells¹³.

88 First, we immunized 6–8-week-old female mice of either the C57BL/6 or
89 BALB/c strains intramuscularly with 3 µg of LNP-mRNA-RBD on days 0 and 14.
90 Unexpectedly, after two intramuscular immunizations, LNP-mRNA-RBD induced
91 significantly higher anti-RBD antibody responses in BALB/c mice but not in C57BL/6
92 mice in this study (**Fig. 1a, Extended Fig 1**). To understand why LNP-mRNA-RBD
93 immunogenicity for antigen-specific B cell responses was different among mouse
94 strains, we further examined whether LNP-mRNA-RBD induces T_{FH} and GC B cells
95 collected from the draining popliteal lymph nodes (pLN) and analyzed by flow
96 cytometry (**Extended data Fig. 2**). In correlation with serum antibody responses, the
97 frequency (%) of both T_{FH} (CD4⁺CD185⁺PD-1⁺ cells) and GC B cells
98 (CD38⁺GL7⁺CD19⁺ cells) in the immunized pLN was significantly higher in BALB/c

99 mice than that in C57BL/6 mice (**Fig. 1b-e**) after LNP-mRNA-RBD immunization.

100 To further evaluate antigen-specific CD8⁺ and other CD4⁺ T cells induced by
101 LNP-mRNA-RBD, we synthesized 128 peptides, consisting of a 20-aa sequence of
102 spike protein with 10 overlapping aa divided into eight pools containing 16 peptides in
103 one pool (**Fig. 1f**). After two LNP-mRNA-RBD immunizations in either mouse strain,
104 *in vitro* re-stimulation of the immunized spleen with peptide pools 3 and 4 induced
105 substantial IFN- γ production in C57BL/6 mice, while in BALB/c mice this was
106 achieved with peptide pool 3 (**Fig. 1g and h, Extended data Fig. 3a and b**). IL-13
107 production was not found in the supernatant of the spleen cell culture with peptides in
108 either C57BL/6 or BALB/c mice (**Extended data Fig. 3c and d**). To further
109 characterize LNP-mRNA-RBD-induced T cells, we performed intracellular cytokine
110 staining of three antigen-specific type-1 cytokines (IL-2, IFN- γ , and TNF- α) produced
111 by the immunized spleen T cells re-stimulated with peptide pools 2, 3, or 4. Spike
112 antigen-specific polyfunctional CD8⁺ and CD4⁺ T cells were significantly upregulated
113 in LNP-mRNA-RBD-immunized BALB/c mice after re-stimulating the spleen cells
114 with peptide pools 3 and 4 (**Fig. 1h, Extended data Fig. 4b and 5b**). However, those in
115 the immunized C57BL/6 mice showed substantial polyfunctional CD8⁺ T cells and
116 weak CD4⁺ T cell responses (**Fig. 1g, Extended data Fig. 4a and 5a**). These data
117 clearly demonstrate that LNP-mRNA-RBD induces robust B and T cell responses in
118 BALB/c mice but relatively weak T cell and B cell responses in C57BL/6 mice,
119 suggesting the immunogenic profile of LNP-mRNA-RBD is different between these
120 mouse strains.

121 Nucleic acid-based vaccines are known to utilize their backbone DNA or
122 RNA as built-in adjuvants¹⁴⁻¹⁶. In LNP-mRNA vaccines, it has been shown that mRNA
123 itself acts as an endogenous adjuvant sensed by Toll-like receptors 3, 7, or 8 and/or
124 cytosolic RNA sensors such as RIG-I and MDA5¹⁷. Kariko et al. reported that
125 modification of RNA by methylation or incorporating modified nucleoside such as
126 pseudouridine enables the escape from innate immune sensing, thereby improving
127 translation efficiency^{18,19}. Several studies have revealed that type I IFN interferes with
128 the CD8 T cell responses elicited by LNP-mRNA and the translation efficiency of the
129 encoded protein^{20,21,22}. In addition to T cell responses, BNT162b1 showed higher
130 reactogenicity than BNT162b2 in the clinical trial; therefore, BNT162b2 has been
131 selected for further development in a Phase III clinical trial¹⁰. The reason for the

132 difference in reactogenicity remains unclear, but the authors considered that
133 immunostimulatory activity of the mRNA in LNP formulation might be attributed to its
134 reactogenicity¹⁰.

135 In order to translate our findings from mice to humans, we then examined
136 whether LNP-mRNA-RBD triggers type I IFN production from human PBMCs. When
137 mixed with LNP-mRNA-RBD *in vitro*, PBMCs from three healthy humans produced a
138 higher amount of IFN- α than that induced by LNP-mRNA-Full (**Fig. 2a**). We then
139 performed a similar experiment using mouse bone marrow-derived dendritic cells
140 (BM-DCs) from either C57BL/6 or BALB/c mice. Surprisingly, a high level of IFN- α
141 was observed upon culture with LNP-mRNA-full or LNP-mRNA-RBD in C57BL/6
142 mice, but very low or no IFN- α production was observed in BALB/c mice (**Fig. 2b**).
143 LNP-mRNA products usually contain undesirable RNA, such as dsRNA as TLR3
144 ligand²², produced during the manufacturing process, which might affect innate immune
145 activation. To remove such RNA byproducts, we performed HPLC purification (**data**
146 **not shown**) and then the resultant mRNA containing the active ingredient was
147 encapsulated in LNP [RBD (HPLC)]. RBD (HPLC) showed significantly less potential
148 in production of type I IFN from both human PBMCs and GM-DCs (**Fig. 2a and b**). In
149 order to examine the immunogenicity, C57BL/6 or BALB/c mice were administered
150 with RBD (HPLC) or LNP-mRNA-RBD. Of interest, RBD (HPLC) showed
151 significantly higher levels of the RBD-specific B cell response than LNP-mRNA-RBD,
152 including serum IgG1, IgG2, and total IgG in both BALB/c and C57BL/6 mice (**Fig. 2c**
153 **and Extended Fig. 6a**). In particular, RBD (HPLC) induced significantly higher
154 number of GC B cells in the draining lymph nodes of the C57BL/6 mice than
155 LNP-mRNA-RBD (**Fig. 2d and e**). In addition to antibody responses, effects of
156 RNA-purification on antigen-specific T cell responses were further examined. RBD
157 (HPLC) induced higher frequency of the RBD-specific polyfunctional CD8 $^{+}$ and CD4 $^{+}$
158 T cells that produced significantly more IFN- γ and other type-1 cytokines, but not
159 type-2 cytokines such as IL-13, in response to peptide pools 3 or 4 re-stimulation than
160 LNP-mRNA-RBD (**Fig. 2f-i, and Extended Fig. 6b-e, 7, 8**).

161 To further translate these findings to a more relevant pre-clinical evaluation of
162 RBD (HPLC), non-human primates (NHPs), cynomolgus macaques, were chosen for
163 further study. In this study, we immunized four macaques intramuscularly with RBD
164 (HPLC) with two macaques as mock controls. After the first immunization, RBD

165 (HPLC) induced an anti-RBD-specific antibody, and the second immunization enhanced
166 these responses (**Fig. 3b**). Neutralizing antibodies were also induced by RBD (HPLC)
167 vaccination (**Fig. 3c**). We further examined antigen-specific antibody responses in swab
168 samples. Interestingly, following intramuscular immunization, levels of RBD-specific
169 IgG in the swab samples from conjunctiva, nasal cavity, oral cavity, trachea, and rectum
170 were significantly higher in RBD (HPLC) group than in the mock group (**Fig. 3d**).

171 Individual macaques administered with RBD (HPLC) showed drastically
172 lower RNA levels of SARS-CoV-2 (**Fig. 4a**) and infectious virus (**Fig. 4b**) in the swab
173 at day 1 post-infection than those administered with mock. Viral RNA levels in the
174 trachea, bronchus, and lung were lower in vaccinated macaques at day 7 (**Fig. 4c and**
175 **Extended Fig. 9**). All mock-administered macaques manifested fever and pneumonia
176 after viral infection, which were not observed in immunized macaques (**Extended Fig.**
177 **10 and 11**). These results suggest that RBD (HPLC) administration confers protection
178 against SARS-CoV-2 infection. Histological analysis of the lung at 7 days post
179 infection demonstrated infiltration of lymphocytes and neutrophils, alveolar wall
180 thickening, and viral protein in macaques administered with mock but not in those
181 administered with RBD (HPLC) (**Fig. 4d and 4e**). Accordingly, histological scores of
182 the lung in macaques administered with RBD (HPLC) were lower than those
183 administered with mock (**Fig. 4f**). Of importance, intramuscular administration with
184 RBD (HPLC) induced the development of bronchus-associated lymphoid tissue (BALT)
185 (**Fig. 4d**), although intramuscular immunization induced RBD-specific IgG, but not IgA,
186 in swab samples without intranasal and intratracheal virus challenge (**Fig. 3b**).
187 Interestingly, the IgG titer was slightly reduced or similar after viral challenge (**Fig. 3d**).
188 These results suggest that the induced antibody in the mucosa through BALT formation,
189 such as the nasal and trachea mucosa, might capture and neutralize SARS-CoV-2,
190 resulting in the reduction of viral RNA and infective virus in the swab at day 1
191 post-challenge.

192 In this study, we evaluated the nonclinical efficacy of LNP-mRNA vaccine
193 candidates targeting SARS-CoV-2 RBD. First, LNP-mRNA-RBD showed higher
194 immunogenicity only in BALB/c mice than in C57BL/6 mice (**Fig. 1a**). We initially
195 interpreted the data by suggesting the less T cell epitopes of the RBD in C57/BL6 as the
196 cause. In fact, CD4 Tfh induction was lower in C57BL/6 mice than that of BALB/c
197 mice even after HPLC purification (**Fig. 1e and 2e**). However, recent clinical trials by

198 BioNTech/Pfizer showed that an mRNA vaccine that encoded the RBD resulted in a
199 high titer of RBD-specific IgG and neutralizing antibodies in humans and monkeys.
200 These results suggest that RBD does contain T cell epitopes, at least in primates^{6,10}.
201 These data led us to hypothesize that the difference in vaccine-induced adaptive
202 immune responses is altered by the species- or strain-specific innate immune responses
203 to the LNP-mRNA formulation, which is shown to interfere with the mRNA expression
204 of the protein antigen of interest, thereby reducing immunogenicity and efficacy¹⁶. Our
205 data strongly suggest that optimization of purification and formulation of LNP-mRNA
206 contributes to improvement of LNP-mRNA immunogenicity with less reactogenicity.

207 It is of note that macaques administered with LNP-mRNA targeting RBD
208 acquired significantly high levels of protective IgG specific to SARS-CoV-2 in mucosal
209 swab samples from conjunctiva, oral cavity, nasal cavity, trachea, bronchus, and rectum
210 (Fig. 3d and data not shown). Corbett KS et al. recently demonstrated that vaccination
211 of NHPs with LNP-mRNA encoding the full-length spike antigen (mRNA-1273)
212 induced robust SARS-CoV-2 neutralizing activity and rapid protection in the upper and
213 lower airways and showed that the IgG level in the BALF was higher than the IgA level
214 after the infection, although whether the vaccine antigen-specific IgG was induced
215 before the virus challenge was not shown²³. Although HPLC-purified
216 LNP-mRNA-RBD elicited RBD-specific mucosal IgG, no RBD-specific IgA was
217 detected (data not shown), indicating that the mucosal IgG through BALT formation or
218 leaked from the blood circulation, which may be critical for the protective efficacy of
219 LNP-mRNA-RBD. Further detailed analyses are needed to clarify whether LNP-mRNA
220 induces unique and/or specific immune responses including IgG secretion in the mucosa
221 after intramuscular vaccination.

222 Based on our results obtained in murine and NHP models, reduction of
223 reactogenicity without losing immunogenicity, in other words, fine-tuning of the
224 balance between endogenous adjuvant activity and antigen translation efficiency of
225 LNP-mRNA, may provide a means towards better efficacy and safety and will also be
226 crucial for the development of anti-SARS-CoV2 vaccines in the near future.
227

228 **Figure legends**

229 **Figure 1. Mouse strain-specific immunogenicity of mRNA vaccine against**
230 **SARS-CoV-2 RBD.**

231 **(a–e, g, and h)** Six to eight week-old C57BL/6 and BALB/c mice were
232 intramuscularly immunized with mock or LNP-mRNA-RBD (3 μ g) at days 0 and 14.
233 **(a)** Two weeks after the second immunization, plasma anti-RBD antibody titers were
234 measured using ELISA. **(b–e)** Popliteal lymph nodes were collected from immunized
235 mice. **(b–d)** GC B cells were gated as GL7 $^{+}$ CD38 $^{-}$ CD19 $^{+}$ cells. **(e)** T_{FH} cells were gated
236 as CD185 $^{+}$ PD-1 $^{+}$ CD3 ϵ $^{+}$ CD4 $^{+}$ T cells. **(f)** Overlapping peptides of SARS-CoV-2 spike
237 protein. Overlapping peptides were divided into eight pools, and each pool contained 16
238 peptides. **(g–h)** Cells were harvested from the spleen of mRNA-RBD immunized mice
239 and re-stimulated with pooled peptides for 24 h. IFN- γ levels in the culture supernatant
240 were measured using ELISA. **(g–h)** Percentages of cytokine-producing CD8 $^{+}$ and CD4 $^{+}$
241 T cells after stimulation with pools 2, 3, and 4 for 6 h with protein transport inhibitor are
242 shown in a pie chart. 3 $^{+}$: IFN- γ $^{+}$ IL-2 $^{+}$ TNF- α $^{+}$, 2 $^{+}$: IFN- γ $^{+}$ IL-2 $^{+}$, IFN- γ $^{+}$ TNF- α $^{+}$, and
243 IL-2 $^{+}$ TNF- α $^{+}$, 1 $^{+}$: IFN- γ $^{+}$, IL-2 $^{+}$, and TNF- α $^{+}$. $N = 4–5$ mice per group, mean \pm SEM, * p
244 < 0.05 by Mann-Whitney test.

245

246 **Figure 2. HPLC purification improves the immunogenicity of mRNA vaccine. (a)**
247 Human PBMCs from non-infected individuals were stimulated with LNP-mRNA-Full
248 (0.4, 2, and 10 μ g/mL), LNP-mRNA-RBD (0.4, 2, and 10 μ g/mL), or
249 LNP-mRNA-RBD (HPLC) (0.4, 2, and 10 μ g/mL) for 24 h. IFN- α level in the culture
250 supernatant was measured using ELISA. **(b)** Bone-marrow-derived dendritic cells
251 (BM-DCs) from C57BL/6 and BALB/c mice were stimulated by LNP-mRNA-Full (0.4,
252 2, and 10 μ g/mL), LNP-mRNA-RBD (0.4, 2, and 10 μ g/mL), or LNP-mRNA-RBD
253 (HPLC) (0.4, 2, and 10 μ g/mL) for 24 h. IFN- α level in the culture supernatant was
254 measured using ELISA. **(c–i)** C57BL/6 mice were intramuscularly immunized with
255 mock, LNP-mRNA-RBD (3 μ g), or LNP-mRNA-RBD (HPLC) (3 μ g) at days 0 and 14.
256 **(c)** Two weeks after the second immunization, plasma anti-RBD antibody titers were
257 measured using ELISA. **(d and e)** Popliteal lymph nodes were collected from
258 immunized mice. **(d)** GC B cells were gated as GL7 $^{+}$ CD38 $^{-}$ CD19 $^{+}$ cells. **(e)** T_{FH} cells
259 were gated as CD185 $^{+}$ PD-1 $^{+}$ CD3 ϵ $^{+}$ CD4 $^{+}$ T cells. **(f and g)** Cells were harvested from
260 the spleen of immunized mice and re-stimulated with pooled peptides for 24 h. IFN- γ

261 level in the culture supernatant was measured using ELISA. Percentages of
262 cytokine-producing CD8⁺ and CD4⁺ T cells after stimulation of peptide pools 3 and 4
263 for 6 h with protein transport inhibitors are shown in a pie chart. 3⁺: IFN- γ ⁺IL-2⁺TNF- α ⁺,
264 2⁺: IFN- γ ⁺IL-2⁺, IFN- γ ⁺TNF- α ⁺, and IL-2⁺TNF- α ⁺, 1⁺: IFN- γ ⁺, IL-2⁺, and TNF- α ⁺. (h
265 and i) Representative data from Figure 2f, g, Extended data Fig. 8, and 9 are shown.
266 IFN- γ ⁺IL-2⁺TNF- α ⁺ and IFN- γ ⁺TNF- α ⁺ CD8⁺ T cell are shown as a scatter dot plot. $N =$
267 4–5 mice per group, mean \pm SEM, * $p < 0.05$ by ANOVA followed by Dunn's multiple
268 comparisons test.

269

270 **Figure 3. HPLC-purified LNP-mRNA-RBD induces RBD-specific antibodies in the**
271 **plasma and swab samples of non-human primates** (a) Schedule of immunization,
272 infection, and sample collection. (b–c) Cynomolgus macaques were intramuscularly
273 immunized with mock or LNP-mRNA-RBD (HPLC) (100 μ g) at days 0 and 21. (b)
274 Plasma anti-RBD antibody titer at days 0, 7, 14, 21, 28, and 7 dpi were measured using
275 ELISA. (c) Neutralizing activity against SARS-CoV-2 infection were measured by
276 neutralization assay. (d) Anti-RBD IgG titers in the swab samples (conjunctiva, oral
277 cavity, nasal cavity, tracheal, and rectum) were measured using ELISA. Black arrows
278 indicate date of vaccination, and red arrows indicate infection date.

279

280 **Figure 4. HPLC-purified LNP-mRNA-RBD protects against SARS-CoV-2**
281 **infection in non-human primates.** One week after the second immunization,
282 SARS-CoV-2 (2×10^7 PFU) was inoculated into conjunctiva, nasal cavity, oral cavity,
283 and trachea of cynomolgus. (a) Viral RNA and (b) viral titers in the swab sample were
284 measured by RT-PCR and a cell culture method. (c) Viral RNA in the lung tissues were
285 measured by RT-PCR. RU: right upper lobe, RM: right middle lobe, RL: right lower
286 lobe, LU: left upper lobe, LM: left middle lobe, LL: left lower lobe. (d) HE staining and
287 (e) immunohistochemical staining of viral nucleocapsid protein in lung sections from
288 Mock (left) and mRNA-RBD (HPLC) (right) immunized macaques. (f) The average
289 histological scores of eight sections in each macaque were evaluated in a blinded
290 manner.

291

292

293

294 **Extended data Fig 1. LNP-mRNA-RBD vaccine induces ectodomain-specific**
295 **antibody responses in BALB/c mice.** C57BL/6 and BALB/c mice were
296 intramuscularly immunized with mock or LNP-mRNA-RBD (3 μ g) on days 0 and 14.
297 Two weeks after the second immunization, plasma anti-ECD antibody titers were
298 measured using ELISA. $N = 4-5$ mice per group, mean \pm SEM, $*p < 0.05$ by
299 Mann-Whitney test.

300

301 **Extended data Fig 2. Gating strategy for GC B and T_{FH} cells.** Cells were harvested
302 from popliteal lymph nodes of immunized mice and stained for GC B and T_{FH} cells.
303 Cells were gated for lymphocyte size, singlets, live, T or B cells, and T_{FH} or GC B cells.

304

305 **Extended data Fig 3. T cell responses to LNP-mRNA-RBD.** Cells were harvested
306 from the spleen of mRNA-immunized mice, re-stimulated by the spike protein peptide
307 pool, ECD, or RBD for 24 h. IFN- γ and IL-13 levels in the culture supernatant were
308 measured using ELISA. $N = 4-5$ mice per group, mean \pm SEM, $*p < 0.05$ by ANOVA
309 followed by Sidak's multiple comparisons test.

310

311 **Extended data Fig 4. CD8 T cell responses to the mRNA vaccine.** Cells were
312 harvested from the spleen of immunized mice and re-stimulated by pooled peptides for
313 6 h with a protein transport inhibitor. The percentage of cytokine-producing CD8 $^{+}$ T
314 cells was analyzed by flow cytometry. $N = 4-5$ mice per group, mean \pm SEM, $*p < 0.05$
315 by Mann-Whitney test.

316

317 **Extended data Fig 5. CD4 T cell responses to the mRNA vaccine.** Cells were
318 harvested from the spleen of immunized mice and re-stimulated by pooled peptides for
319 6 h with a protein transport inhibitor. Percentage of cytokine-producing CD4 $^{+}$ T cells
320 was analyzed by flow cytometry. $N = 4-5$ mice per group, mean \pm SEM, $*p < 0.05$ by
321 Mann-Whitney test.

322

323 **Extended data Fig 6. T cell responses to an HPLC-purified mRNA vaccine in**
324 **C57/BL6 mice. (a)** C57/BL6 and BALB/c mice were intramuscularly immunized with
325 mock, mRNA-RBD, or RBD (HPLC) (3 μ g) on days 0 and 14. Two weeks after the
326 second immunization, serum anti-ECD antibody titers were measured using ELISA. **(b-**

327 e) Cells were harvested from the spleen of mRNA-immunized mice, re-stimulated by
328 the peptide pool of spike protein, ECD, or RBD for 24 h. IFN- γ and IL-13 levels in the
329 culture supernatant were measured using ELISA. $N = 4$ mice per group, mean \pm SEM, *
330 $p < 0.05$ by ANOVA followed by Dunn's or Sidak's multiple comparisons test.

331

332 **Extended data Fig 7. T cell responses to an HPLC-purified mRNA vaccine in**
333 **C57/BL6 mice.** Cells were harvested from the spleen of immunized mice and
334 re-stimulated by pooled peptides for 6 h with a protein transport inhibitor. The
335 percentage of cytokine-producing CD8 $^{+}$ and CD4 $^{+}$ T cells was analyzed by flow
336 cytometry. $N = 4$ mice per group, mean \pm SEM, * $p < 0.05$ by ANOVA followed by
337 Dunn's multiple comparisons test.

338

339 **Extended data Fig 8. T cell responses to an HPLC-purified mRNA vaccine in**
340 **BALB/c mice.** Cells were harvested from the spleen of immunized mice and
341 re-stimulated with pooled peptides for 6 h with a protein transport inhibitor. The
342 percentage of cytokine-producing CD8 $^{+}$ and CD4 $^{+}$ T cells was analyzed by flow
343 cytometry. $N = 4$ mice per group, mean \pm SEM, * $p < 0.05$ by ANOVA followed by
344 Dunn's multiple comparisons test.

345

346 **Extended data Fig 9. HPLC-purified mRNA vaccine protects against SARS-CoV-2**
347 **infection in non-human primates.** One week after the second immunization,
348 SARS-CoV-2 (2×10^7 PFU) was inoculated into conjunctiva, nasal cavity, oral cavity,
349 and trachea of cynomolgus. Viral RNA in the trachea and bronchus tissues were
350 measured by RT-PCR.

351

352 **Extended data Fig 10. Change in body temperature after SARS-CoV-2 infection**
353 One week after the second immunization, SARS-CoV-2 (2×10^7 PFU) was inoculated
354 into conjunctiva, nasal cavity, oral cavity, and trachea of cynomolgus. Body temperature
355 was recorded from two days before infection using telemetry transmitters and a
356 computer.

357

358 **Extended data Fig 11. The HPLC-purified mRNA vaccine protects against**
359 **SARS-CoV-2-induced pneumonia.** X-ray radiographs of macaques were taken before

360 and after SARS-CoV-2 infection.

361

362

363 **Material and Methods**

364

365 **Mice**

366 Six to eight week-old C57BL/6 and BALB/c mice were purchased from CLEA, Japan.
367 The mice were maintained under specific pathogen-free conditions. All mouse studies
368 were approved by the Animal Experiment Committee of the Institute of Medical
369 Science, University of Tokyo.

370

371 **Cynomolgus macaque**

372 Seven to ten-year-old female cynomolgus macaques born at Shiga University of
373 Medical Science and originating from Philippines, Vietnam, and China were used. All
374 procedures were performed under ketamine and xylazine anesthesia, and all efforts were
375 made to minimize suffering. Food pellets of CMK-2 (CLEA Japan, Inc., Tokyo, Japan)
376 were provided once a day after recovery from anesthesia and drinking water was
377 available *ad libitum*. The animals were singly housed in cages under controlled
378 conditions of light (12-h light/12-h dark cycle, lights on at 8:00 a.m.). The macaques
379 were challenged with the SARS-CoV-2 (2×10^7 PFU/7 mL HBSS), which was
380 inoculated into the conjunctiva (0.05 mL \times 2), nostrils (0.5 mL \times 2), oral cavity (0.9
381 mL), and trachea (5 mL) with pipettes and catheters under ketamine/xylazine anesthesia.
382 Under ketamine/xylazine anesthesia, two cotton sticks (Eiken Chemical, Ltd., Tokyo,
383 Japan) were used to collect fluid samples from the conjunctivas, nasal cavities, oral
384 cavities and tracheas, and the sticks were subsequently immersed in 1 mL of Dulbecco's
385 modified Eagle medium (DMEM, Nacalai Tesque, Kyoto, Japan) containing 0.1%
386 bovine serum albumin (BSA) and antibiotics. A bronchoscope (MEV-2560; Machida
387 Endoscope Co. Ltd., Tokyo, Japan) and cytology brushes (BC-203D-2006; Olympus
388 Co., Tokyo, Japan) were used to obtain bronchial samples.

389

390 **LNP-mRNA vaccines**

391 T7 RNA polymerase-mediated transcription *in vitro* was used to synthesize the mRNA
392 from a linearized DNA template, which flanked the open-reading frames of RBD with
393 the 5' and 3' untranslated regions and a poly-A tail. Messenger RNA for RBD (HPLC)
394 was purified by reversed phase chromatography. Messenger RNA was encapsulated into
395 lipid nanoparticles (LNP) composed of ionizable lipid, phospholipid, cholesterol, and

396 PEG-lipid.

397

398 **Reagents**

399 Overlapping 20-aa peptides of spike protein were synthesized and purchased from
400 Eurofins Genomics (Ebersberg, Germany). The SARS-CoV-2 spike protein (ECD) and
401 RBD were purchased from GenScript (Piscataway, NJ, USA).

402

403 **Virus**

404 SARS-CoV-2 isolates were propagated in VeroE6 cells in Opti-MEM I (Invitrogen,
405 Carlsbad, CA, USA) containing 0.3% bovine serum albumin (BSA) and 1 μ g of
406 L-1-tosylamide-2-phenylethyl chloromethyl ketone (TPCK)-treated trypsin/mL at 37°C.

407

408 **Immunization**

409 Six to eight week-old C57BL/6 and BALB/c mice were intramuscularly immunized
410 with mock, LNP-mRNA-RBD (3 μ g), or LNP-mRNA-RBD (HPLC) (3 μ g) on days 0
411 and 14. Two weeks after the second immunization, the popliteal lymph nodes, spleen,
412 and blood were collected. Cynomolgus macaques were intramuscularly immunized with
413 mock or LNP-mRNA-RBD (HPLC) (100 μ g) on days 0 and 21. Blood was drawn on
414 days 0, 7, 14, 21, and 28.

415

416 **ELISA**

417 ECD and RBD-specific antibody titers were measured using ELISA. In brief, half-area
418 96-well plates were coated with ECD (1 μ g/mL) or RBD (1 μ g/mL) in bicarbonate
419 buffer at 4°C. Plates were blocked with PBS containing 1% BSA for 60 min at room
420 temperature. Plates were washed with PBST three times and incubated with diluted
421 plasma or swab samples at room temperature for 120 min. Plates were washed with
422 PBST three times and incubated with HRP-labeled goat anti-mouse IgG, IgG1, IgG2a,
423 IgG2c, or mouse anti-monkey IgG at room temperature for 120 min. After washing with
424 PBST three times, TMB substrate buffer was added, followed by incubation at room
425 temperature for 10 min. Then, 1 N H₂SO₄ was added to stop the reaction. OD values at
426 450 and 540 or 560 nm were measured using a spectrophotometer. The reciprocal value
427 of the plasma dilution with OD₄₅₀–OD₅₄₀ or OD₄₅₀–OD₅₆₀ of 0.2 was defined as the
428 antibody titer.

429 Single-cell suspensions of splenocytes from immunized mice were stimulated by
430 peptide pools 1–8, ECD, and RBD protein for 24 hours. IFN- γ and IL-13 levels in the
431 supernatant were measured using ELISA (R&D).

432

433 **GC B cell and T_{FH} staining**

434 Single-cell suspensions of popliteal lymph nodes were stained with LIVE/DEAD Aqua,
435 anti-CD279 (29F.1A12), San Diego, CA, USA), anti-CD8a (53-6.7), anti-CD3e
436 (145-2C11), anti-GL7 (GL7), anti-CD4 (RM4-5), anti-CD185 (L138D7), anti-CD38
437 (90), and anti-CD19 (6D5) antibodies. All antibodies were purchased from BioLegend,
438 San Diego, CA, USA. The percentage of GC B cells and T_{FH} cells was analyzed by flow
439 cytometry.

440

441 **Intracellular staining assay for cytokines**

442 Single-cell suspensions of splenocytes were stimulated with peptide pools 2, 3, and 4
443 together with protein transport inhibitors (eBioscience, San Diego, CA, USA) for 6 h.
444 After stimulation, the cells were stained with LIVE/DEAD Aqua for dead cells. After
445 washing, the cells were stained with anti-CD8a (53-6.7), anti-CD4 (RM4-5: Invitrogen),
446 anti-TCR β (H57-597), anti-F4/80 (RM8), anti-TER-119 (TER-119), anti-CD11b
447 (M1/70), anti-CD19 (6D5), anti-CD11c (N418), anti-NK-1.1 (PK136), and
448 anti-CD45R/B220 (RA3-6B2) antibodies. All antibodies were purchased from
449 BioLegend unless otherwise stated. After fixation, permeabilization by IC Fixation
450 Buffer (eBioscience), intracellular cytokines, and CD3 were stained with anti-IFN- γ
451 (XMG1.2), anti-IL-2 (JES6-5H4), anti-TNF- α (MP6-XT22), and anti-CD3 (17A2)
452 antibodies. All antibodies were purchased from BioLegend. The percentage of
453 cytokine-producing CD8 $^{+}$ and CD4 $^{+}$ T cells was determined by flow cytometry.

454

455 **Preparation and stimulation of human peripheral blood mononuclear cells**

456 Peripheral blood mononuclear cells (PBMCs) were obtained from three
457 SARS-CoV-2-uninfected healthy adult volunteers after obtaining informed consent. All
458 experiments using human PBMCs were approved by the Institutional Review Board of
459 the Institute of Medical Science, University of Tokyo. After preparation of PBMCs
460 using Ficoll Histopaque, the cells were stimulated by LNP-mRNA-Full (0.4, 2, and 10
461 μ g/mL), LNP-mRNA-RBD (0.4, 2, and 10 μ g/mL), or LNP-mRNA-RBD (HPLC) (0.4,

462 2, and 10 µg/mL) for 24 h. IFN- α level in the culture supernatant was measured using
463 ELISA (Mabtech, Stockholm, Sweden).

464

465 **Bone marrow-derived dendritic cells and stimulation**

466 Bone marrow-derived dendritic cells (BM-DCs) were differentiated by culturing for
467 seven days with murine GM-CSF. Cells were stimulated with LNP-mRNA-Full (0.4, 2,
468 and 10 µg/mL), LNP-mRNA-RBD (0.4, 2, and 10 µg/mL), or LNP-mRNA-RBD
469 (HPLC) (0.4, 2, and 10 µg/mL) for 24 h. IFN- α in the culture supernatant was measured
470 using ELISA (Invitrogen).

471

472 **Neutralization activity against SARS-CoV-2 infection**

473 Thirty-five microliters of virus (140 tissue culture infectious dose 50) was incubated
474 with 35 µL of two-fold serial dilutions of sera for 1 h at room temperature, and 50 µL of
475 the mixture was added to confluent VeroE6/TMPRSS2 cells in 96-well plates and
476 incubated for 1 h at 37°C. After the addition of 50 µL of DMEM containing 5% FCS,
477 the cells were further incubated for three days at 37°C. Viral cytopathic effects (CPE)
478 were observed under an inverted microscope, and virus neutralization titers were
479 determined as the reciprocal of the highest serum dilution that completely prevented
480 CPE ²⁴.

481

482 **Virus titration using VeroE6/TMPRSS2 for SARS-CoV-2**

483 Confluent TMPRSS2-expressing Vero E6 cell line (JCRB Cell Bank, Japan) were
484 incubated with diluted swab samples and 10% w/v tissue homogenate samples for 1 h.
485 The cells were washed with HBSS and incubated with DMEM containing 0.1% BSA
486 for three days ²⁵. Virus titers were monitored using a microscope and calculated using
487 the Reed-Muench method.

488

489 **Real-time RT-PCR for viral RNA**

490 Viral RNA from swab samples and tissues (20 mg) was collected using a QIAamp Viral
491 RNA Mini kit and RNeasy Mini Kit, respectively. Viral RNA was measured by
492 real-time RT-PCR (2019-nCoV_N1-F, 2019-nCoV_N1-R, 2019-nCoV_N1-P, and
493 TaqMan Fast Virus 1-step Master Mix) using CFX-96 (Bio-Rad, Hercules, CA, USA).

494

495 **Histological evaluation of lung section**

496 Lungs were obtained at autopsy, and 8 lung tissue slices were collected from each
497 macaque: one slice from each upper lobe and middle lobe and two slices from each
498 lower lobe in bilateral lungs. They were fixed in 10% neutral buffered formalin for
499 approximately 72 h, embedded in paraffin and cut into 3- μ m-thick sections on glass
500 slides. Sections were stained with hematoxylin and eosin (H & E) and observed under
501 the light microscope. Histological evaluation was performed blindly by two pathologists
502 based on a following criteria established in influenza virus infection ²⁶ (0: normal lung,
503 1: mild destruction of bronchial epithelium, 2: mild peribronchiolar inflammation, 3:
504 inflammation in the alveolar walls resulting in alveolar thickening, 4: mild alveolar
505 injury accompanied by vascular injury, 5: moderate alveolar injury and vascular injury,
506 6, 7: severe alveolar injury with hyaline membrane-associated alveolar hemorrhage
507 (under or over 50% of the section area)). The average score of 8 sections was calculated
508 for each macaque, and the mean score of the two pathologists were defined as the
509 histological score. SARS-CoV-2 N antigen was detected by a monoclonal antibody
510 8G8A (Bioss Inc) and secondary antibody following antigen retrieval using autoclave in
511 pH 9 citrate buffer.

512

513 **Body temperature**

514 Two weeks before virus inoculation, two temperature data loggers (iButton, Maxim
515 Integrated, San Jose, CA) were implanted in the peritoneal cavity of each macaque
516 under ketamine/xylazine anesthesia followed by isoflurane inhalation to monitor body
517 temperature.

518

519 **X-ray radiography**

520 Chest X-ray radiographs were taken using the I-PACS system (Konica Minolta Inc.,
521 Tokyo, Japan) and PX-20BT mini (Kenko Tokina Corporation, Tokyo, Japan).

522

523 **Statistical analysis**

524 Statistical significance ($P < 0.05$) between groups was determined using the
525 Mann-Whitney U test or ANOVA.

526

527 **Acknowledgments**

528 We thank Fusako Ikeda, Ryoko Suda, Yoko Watanabe, Naomi Sato, Naoko Kitagawa
529 and Hideaki Ishida for technical assistance. This study was supported by AMED under
530 Grant Number JP20fk0108113h0001 and JP20nk0101625h0201.

531

532 **Author contribution**

533 K.K., M.I., N.J., M.N., S.Y., Y.I., F.T., Y.K., K.J.I., designed research; K.K., M.I., N.J., M.N., K.H., K.I.H.,
534 S.Yamayoshi., J.T., M.I., S.Yamada., T.W., M.K., H.N., H.I., Y.K., C.T.N., Y.I., performed research; K.K.,
535 M.I., M.N., K.H., J.T., B.T., C.T.N., Y.I., analyzed data; N.J., T.N., T.S., F.T., contributed to provide
536 LNP-mRNA vaccine. K.K., N.J., Y.I., Y.K., F.T., K.J.I. wrote the paper.

537

538 **Conflict of interest**

539 N.J., T.N., T.S., F.T., are employees of Daichi Sankyo Co., Ltd.
540 K.K., M.I., N.J., S.Yamayoshi., T.N., T.S., F.T., Y.K., K.J.I. are inventors on patent
541 application related to the content of this manuscript.

542

543 **References**

544

- 545 1 Baden, L. R. *et al.* Efficacy and Safety of the mRNA-1273 SARS-CoV-2
546 Vaccine. *N Engl J Med*, doi:10.1056/NEJMoa2035389 (2020).
- 547 2 Polack, F. P. *et al.* Safety and Efficacy of the BNT162b2 mRNA
548 Covid-19 Vaccine. *N Engl J Med* **383**, 2603-2615,
549 doi:10.1056/NEJMoa2034577 (2020).
- 550 3 Lan, J. *et al.* Structure of the SARS-CoV-2 spike receptor-binding
551 domain bound to the ACE2 receptor. *Nature* **581**, 215-220,
552 doi:10.1038/s41586-020-2180-5 (2020).
- 553 4 Rydzynski Moderbacher, C. *et al.* Antigen-Specific Adaptive Immunity
554 to SARS-CoV-2 in Acute COVID-19 and Associations with Age and
555 Disease Severity. *Cell* **183**, 996-1012 e1019,
556 doi:10.1016/j.cell.2020.09.038 (2020).
- 557 5 McMahan, K. *et al.* Correlates of protection against SARS-CoV-2 in
558 rhesus macaques. *Nature*, doi:10.1038/s41586-020-03041-6 (2020).
- 559 6 Vogel, A. B. *et al.* BNT162b vaccines are immunogenic and protect
560 non-human primates against SARS-CoV-2. *bioRxiv*,

561 2020.2012.2011.421008, doi:10.1101/2020.12.11.421008 (2020).

562 7 Zhou, P. *et al.* A pneumonia outbreak associated with a new
563 coronavirus of probable bat origin. *Nature* **579**, 270-273,
564 doi:10.1038/s41586-020-2012-7 (2020).

565 8 Jackson, L. A. *et al.* An mRNA Vaccine against SARS-CoV-2 -
566 Preliminary Report. *N Engl J Med* **383**, 1920-1931,
567 doi:10.1056/NEJMoa2022483 (2020).

568 9 Anderson, E. J. *et al.* Safety and Immunogenicity of SARS-CoV-2
569 mRNA-1273 Vaccine in Older Adults. *N Engl J Med* **383**, 2427-2438,
570 doi:10.1056/NEJMoa2028436 (2020).

571 10 Walsh, E. E. *et al.* Safety and Immunogenicity of Two RNA-Based
572 Covid-19 Vaccine Candidates. *N Engl J Med* **383**, 2439-2450,
573 doi:10.1056/NEJMoa2027906 (2020).

574 11 Elia, U. *et al.* Design of SARS-CoV-2 RBD mRNA Vaccine Using Novel
575 Ionizable Lipids. *bioRxiv*, 2020.2010.2015.341537,
576 doi:10.1101/2020.10.15.341537 (2020).

577 12 Tai, W. *et al.* A novel receptor-binding domain (RBD)-based mRNA
578 vaccine against SARS-CoV-2. *Cell Res* **30**, 932-935,
579 doi:10.1038/s41422-020-0387-5 (2020).

580 13 Lederer, K. *et al.* SARS-CoV-2 mRNA Vaccines Foster Potent
581 Antigen-Specific Germinal Center Responses Associated with
582 Neutralizing Antibody Generation. *Immunity* **53**, 1281-1295 e1285,
583 doi:10.1016/j.jimmuni.2020.11.009 (2020).

584 14 Desmet, C. J. & Ishii, K. J. Nucleic acid sensing at the interface
585 between innate and adaptive immunity in vaccination. *Nat Rev
586 Immunol* **12**, 479-491, doi:10.1038/nri3247 (2012).

587 15 Coban, C. *et al.* Novel strategies to improve DNA vaccine
588 immunogenicity. *Curr Gene Ther* **11**, 479-484,
589 doi:10.2174/156652311798192815 (2011).

590 16 Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines -
591 a new era in vaccinology. *Nat Rev Drug Discov* **17**, 261-279,
592 doi:10.1038/nrd.2017.243 (2018).

593 17 Iavarone, C., O'Hagan D, T., Yu, D., Delahaye, N. F. & Ulmer, J. B.

594 18 Mechanism of action of mRNA-based vaccines. *Expert Rev Vaccines* **16**,
595 871-881, doi:10.1080/14760584.2017.1355245 (2017).

596 19 Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA
597 recognition by Toll-like receptors: the impact of nucleoside
598 modification and the evolutionary origin of RNA. *Immunity* **23**,
599 165-175, doi:10.1016/j.jimmuni.2005.06.008 (2005).

600 20 Kariko, K. *et al.* Incorporation of pseudouridine into mRNA yields
601 superior nonimmunogenic vector with increased translational
602 capacity and biological stability. *Mol Ther* **16**, 1833-1840,
603 doi:10.1038/mt.2008.200 (2008).

604 21 Kariko, K., Muramatsu, H., Ludwig, J. & Weissman, D. Generating
605 the optimal mRNA for therapy: HPLC purification eliminates immune
606 activation and improves translation of nucleoside-modified,
607 protein-encoding mRNA. *Nucleic Acids Res* **39**, e142,
608 doi:10.1093/nar/gkr695 (2011).

609 22 De Beuckelaer, A. *et al.* Type I Interferons Interfere with the Capacity
610 of mRNA Lipoplex Vaccines to Elicit Cytolytic T Cell Responses. *Mol*
611 *Ther* **24**, 2012-2020, doi:10.1038/mt.2016.161 (2016).

612 23 Linares-Fernandez, S., Lacroix, C., Exposito, J. Y. & Verrier, B.
613 Tailoring mRNA Vaccine to Balance Innate/Adaptive Immune
614 Response. *Trends Mol Med* **26**, 311-323,
615 doi:10.1016/j.molmed.2019.10.002 (2020).

616 24 Corbett, K. S. *et al.* Evaluation of the mRNA-1273 Vaccine against
617 SARS-CoV-2 in Nonhuman Primates. *N Engl J Med* **383**, 1544-1555,
618 doi:10.1056/NEJMoa2024671 (2020).

619 25 Imai, M. *et al.* Syrian hamsters as a small animal model for
620 SARS-CoV-2 infection and countermeasure development. *Proc Natl*
621 *Acad Sci USA* **117**, 16587-16595, doi:10.1073/pnas.2009799117
622 (2020).

623 26 Ishigaki, H. *et al.* Neutralizing antibody-dependent and -independent
624 immune responses against SARS-CoV-2 in cynomolgus macaques.
625 *Virology* **554**, 97-105, doi:10.1016/j.virol.2020.12.013 (2021).

626 26 Ogiwara, H. *et al.* Histopathological evaluation of the diversity of cells

627 susceptible to H5N1 virulent avian influenza virus. *Am J Pathol* **184**,
628 171-183, doi:10.1016/j.ajpath.2013.10.004 (2014).
629

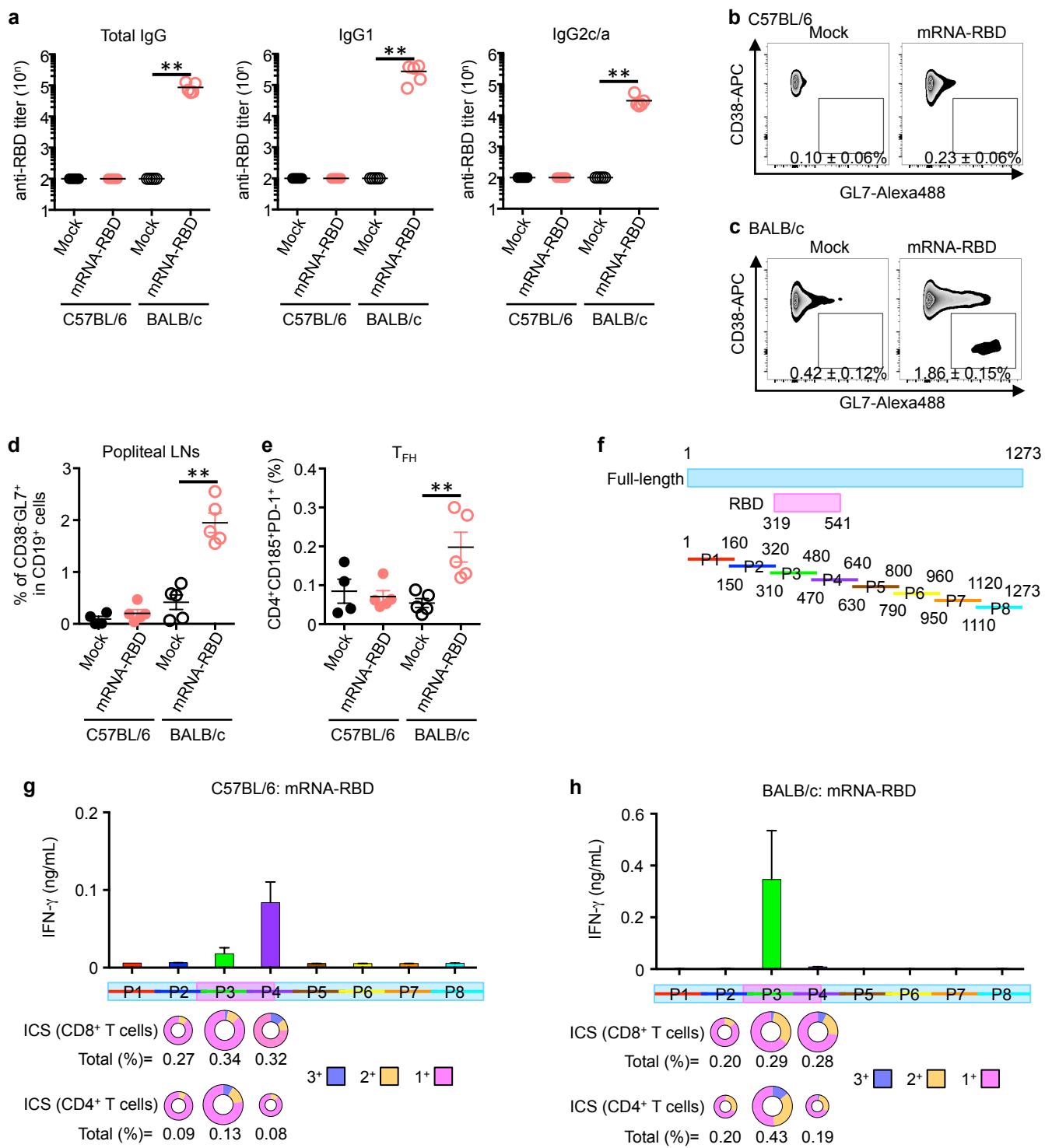


Figure. 1

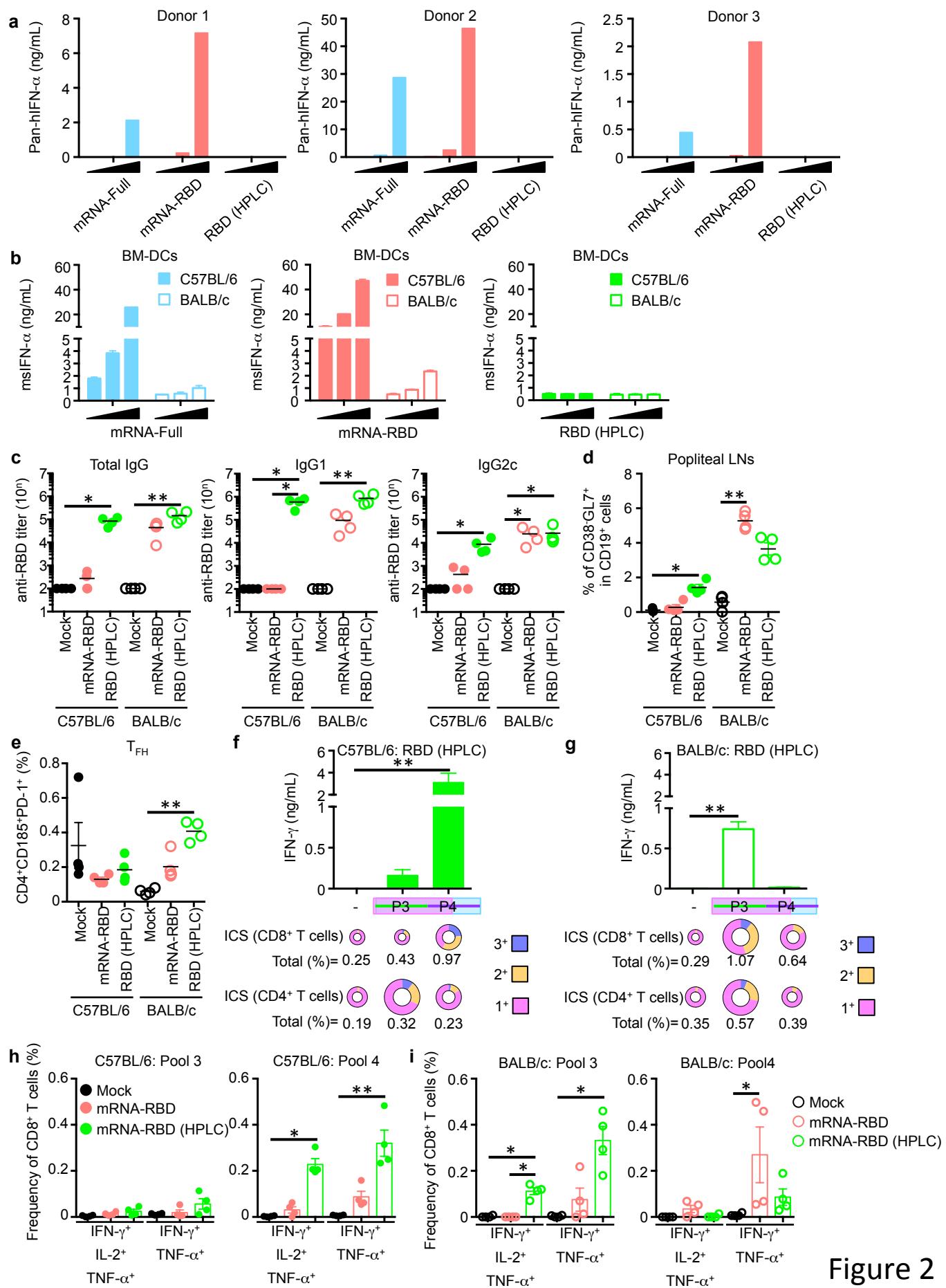
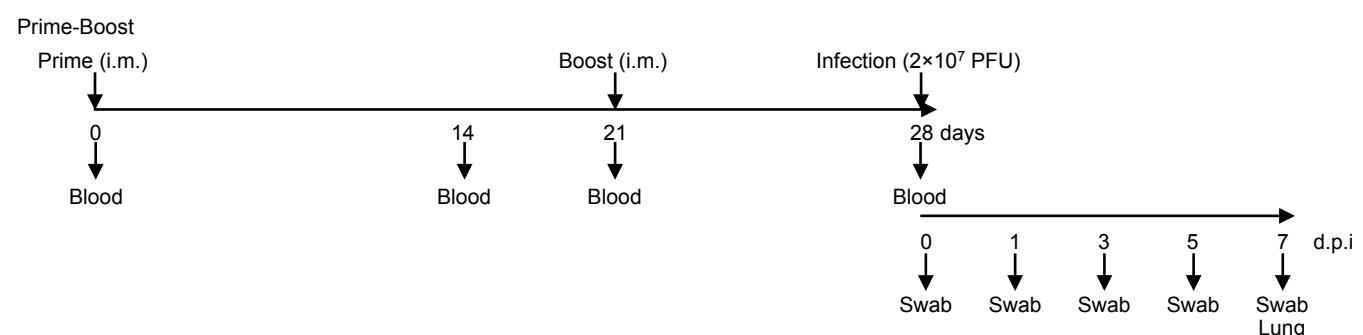
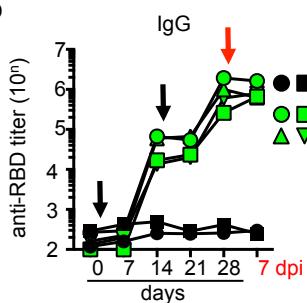
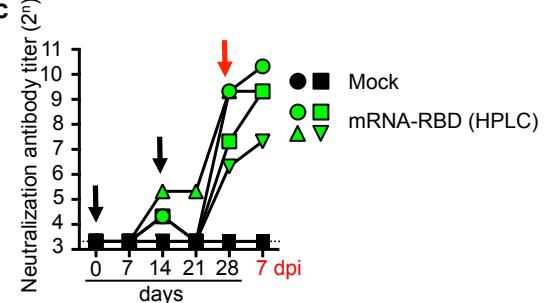
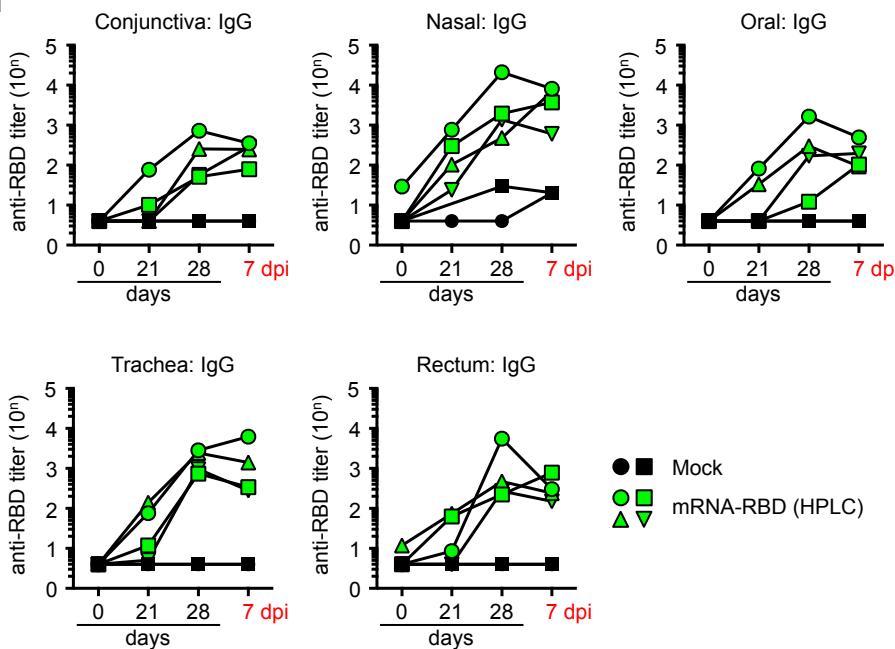




Figure 2

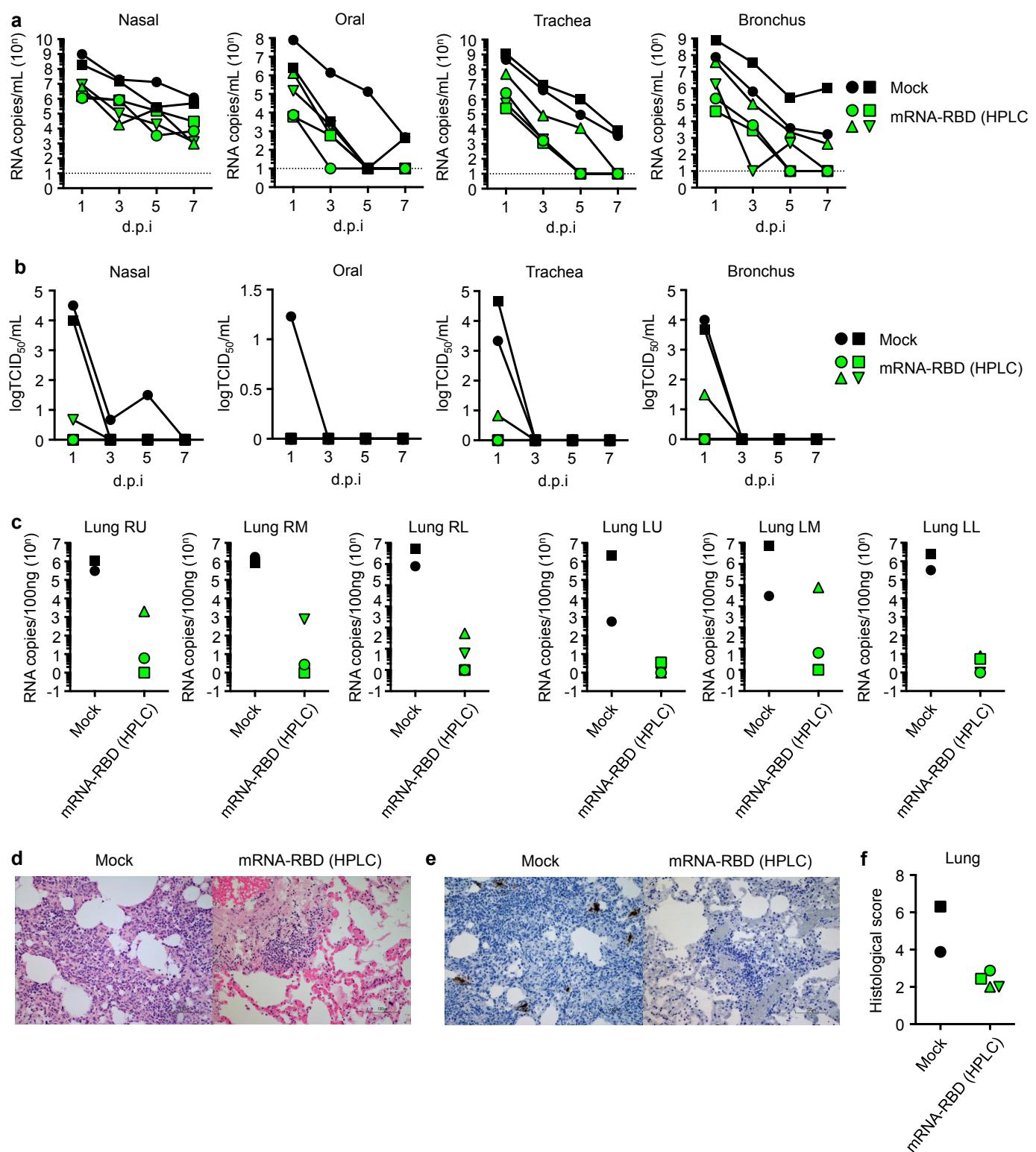
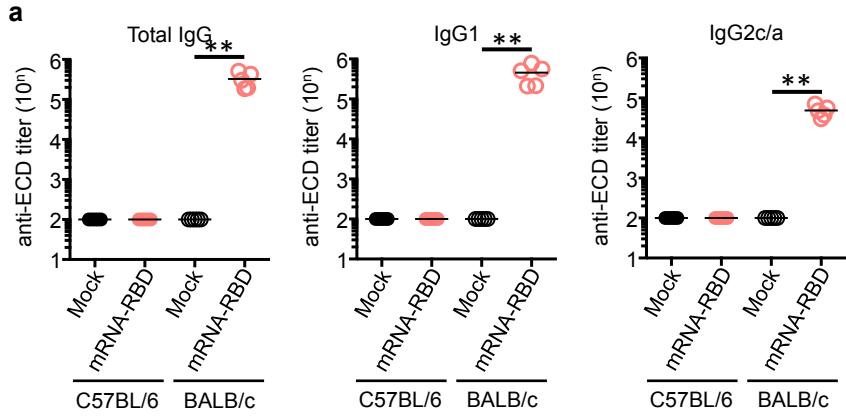
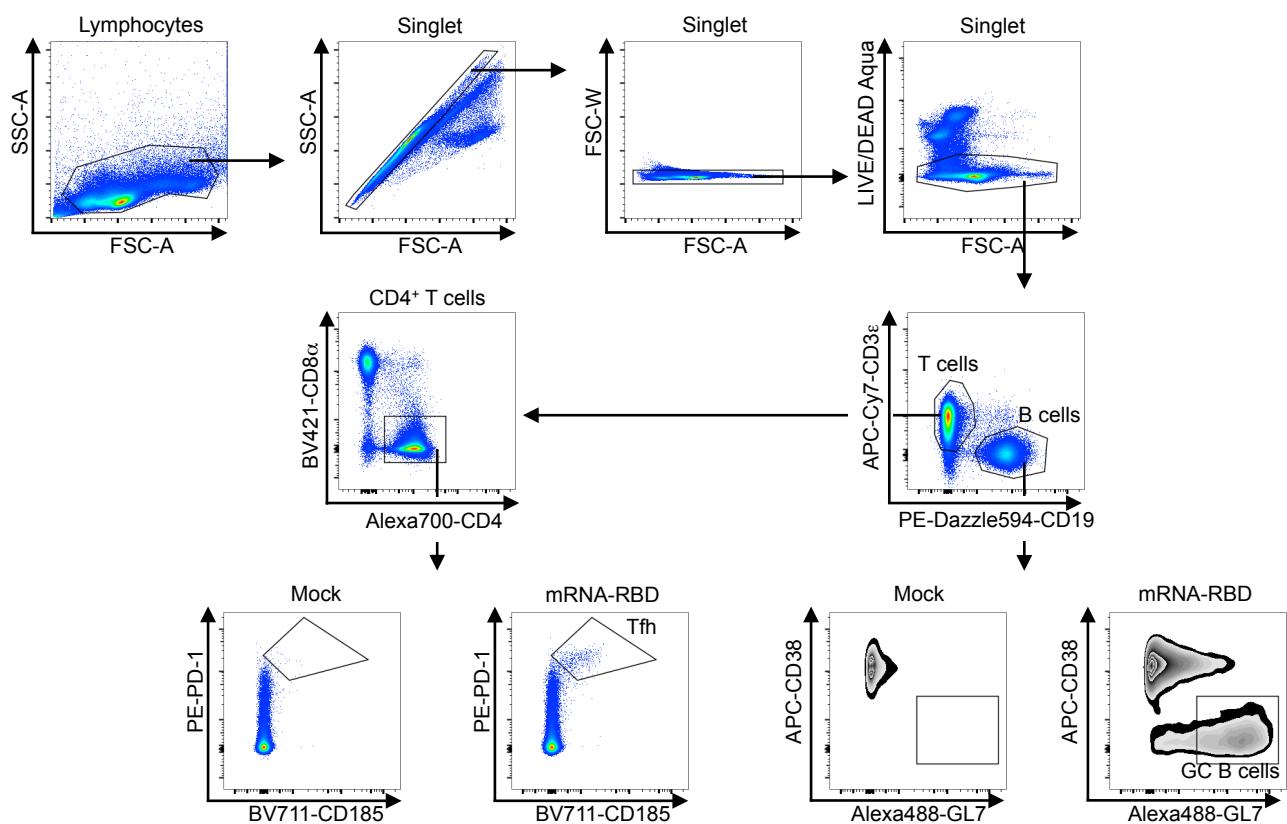

a Cynomolgus Monkey

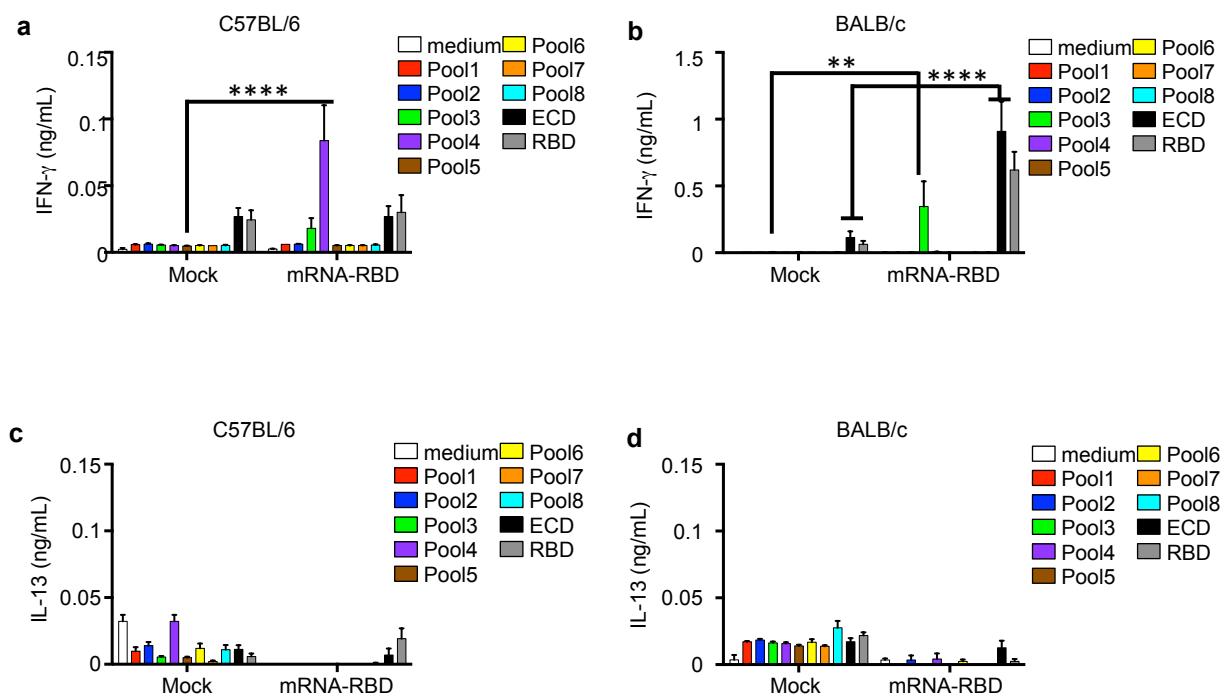

b

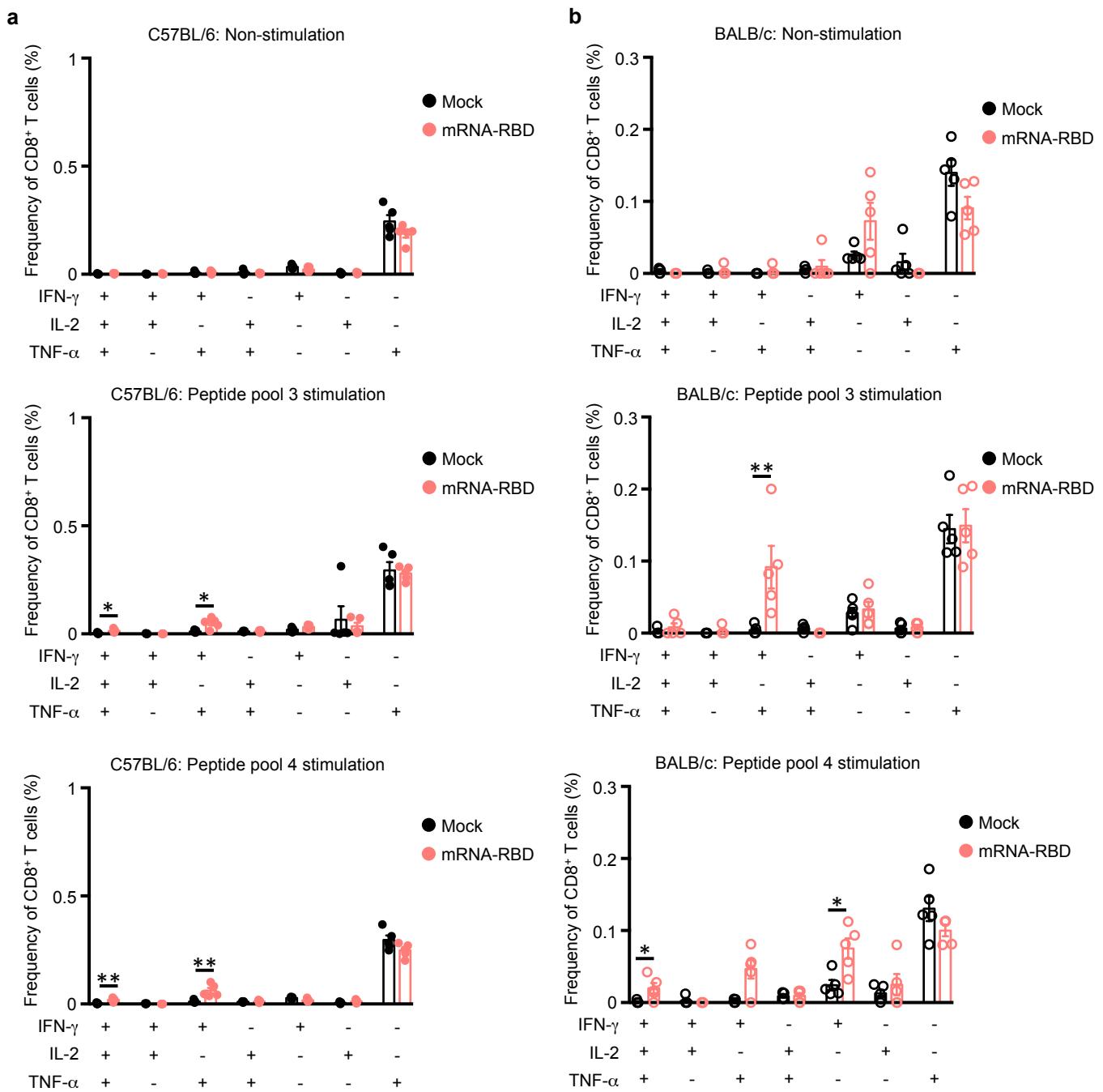
c

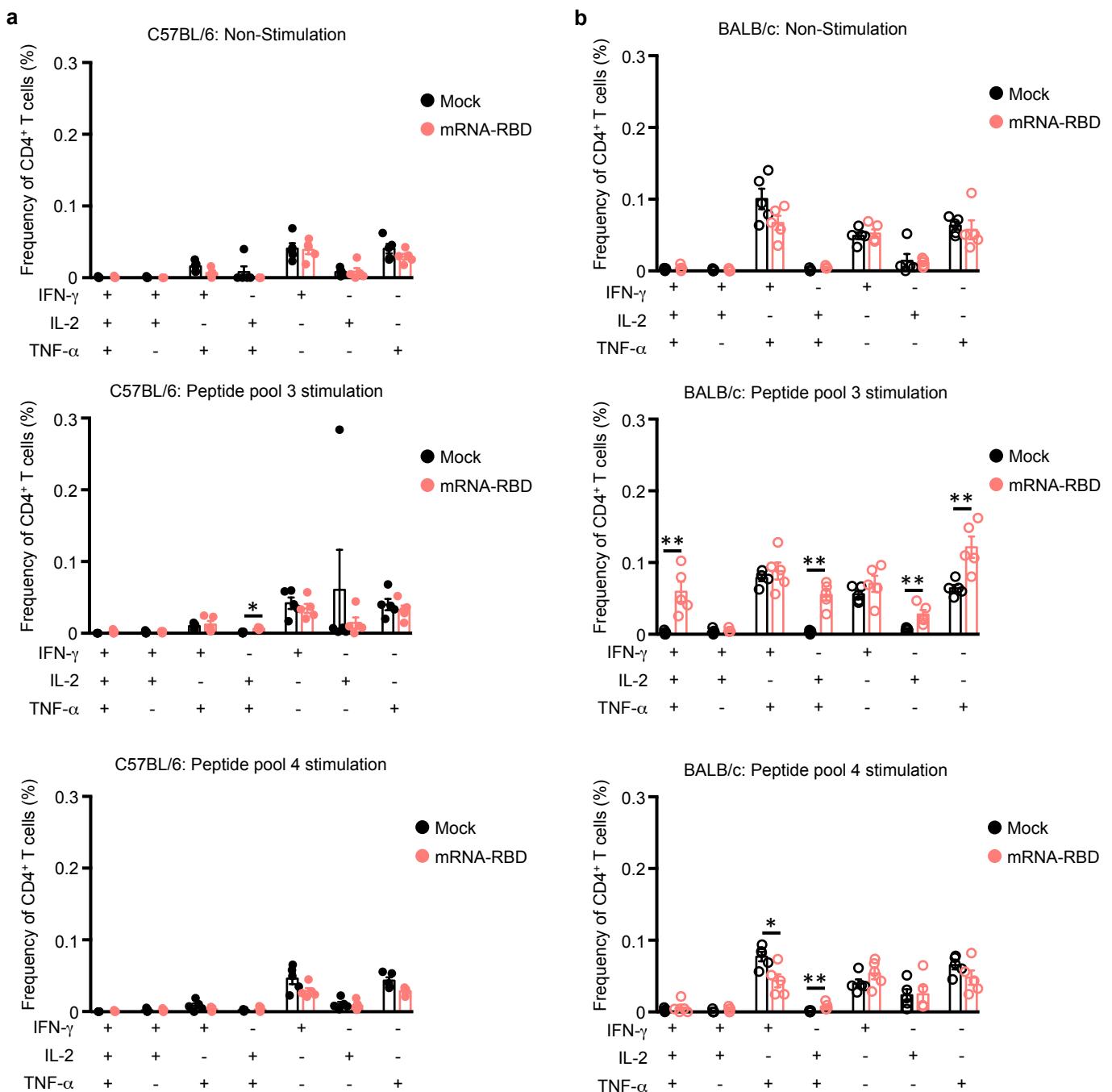
d

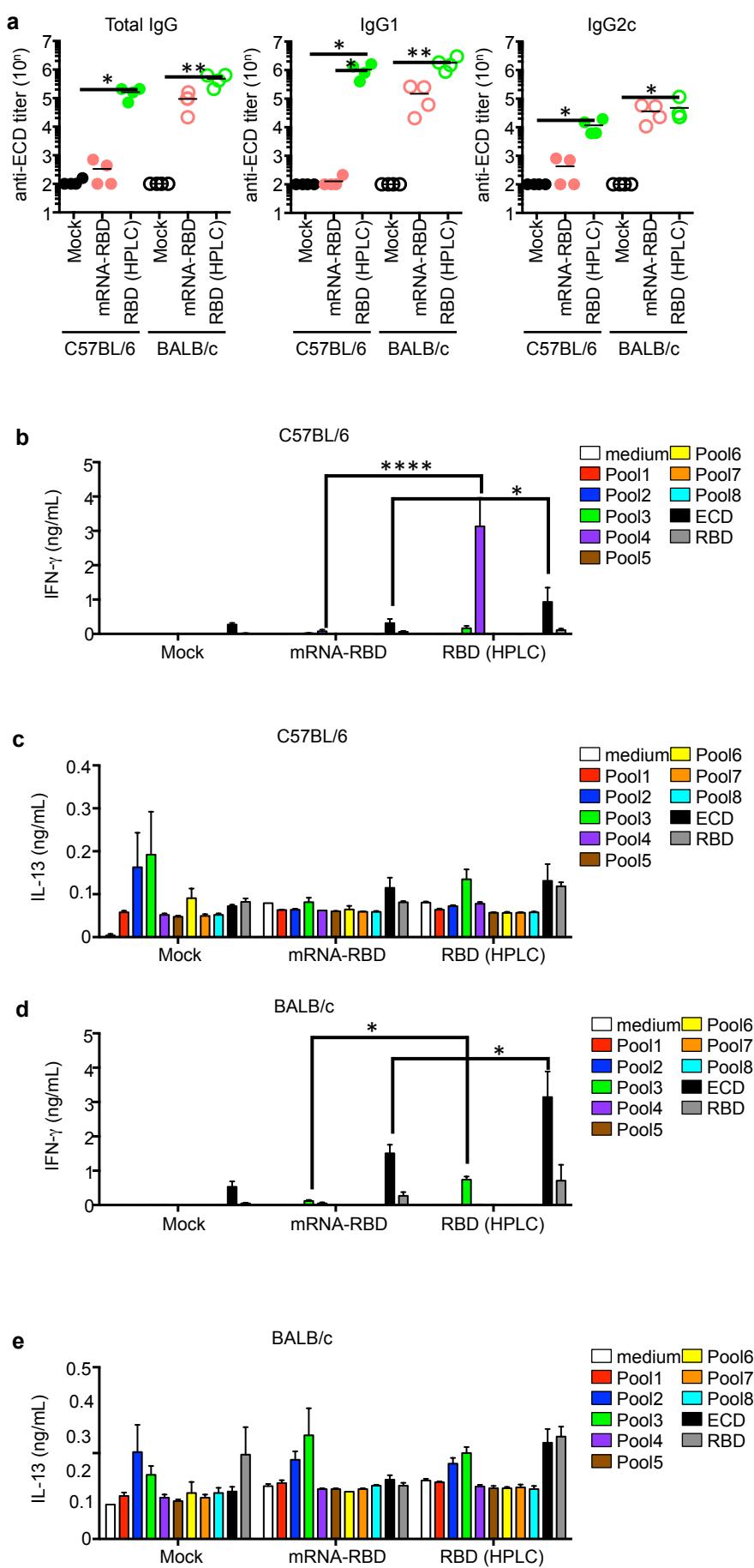
Figure 3

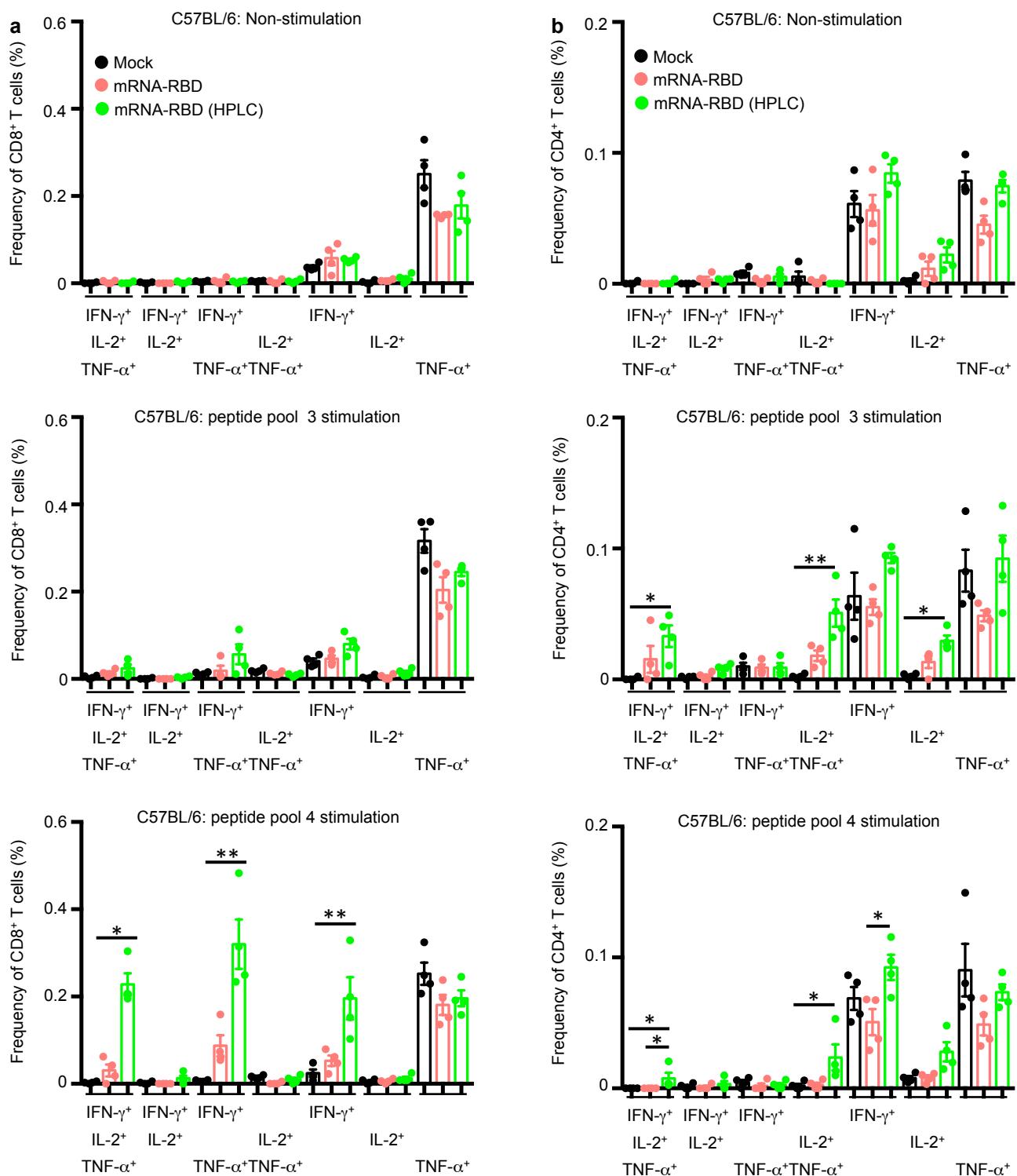




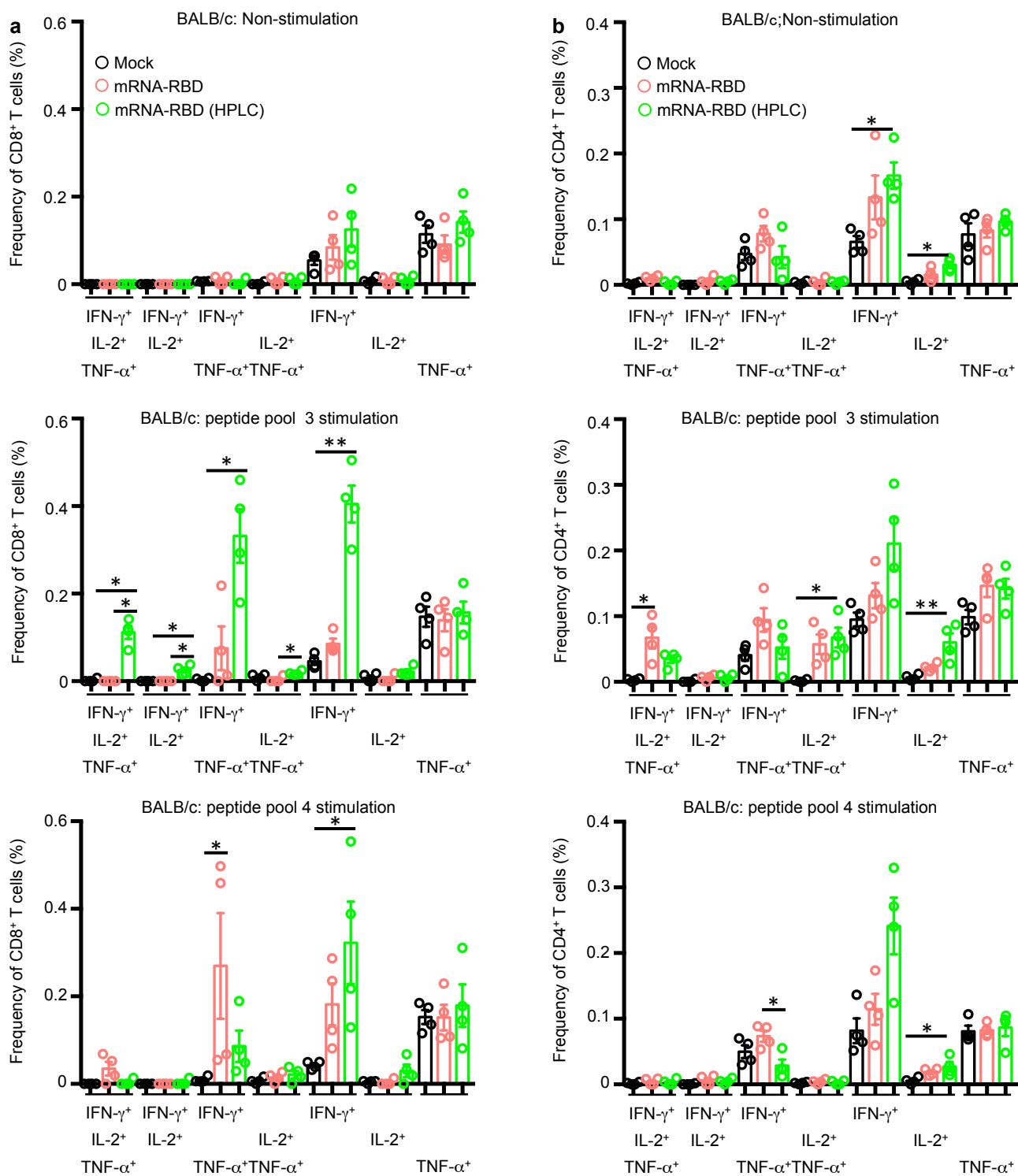

Figure 4

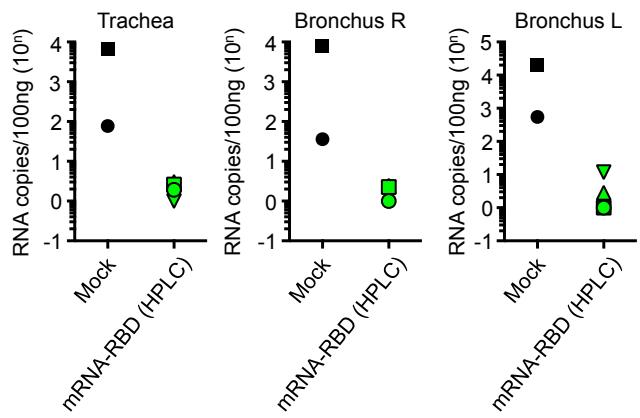

Extended data Fig. 1

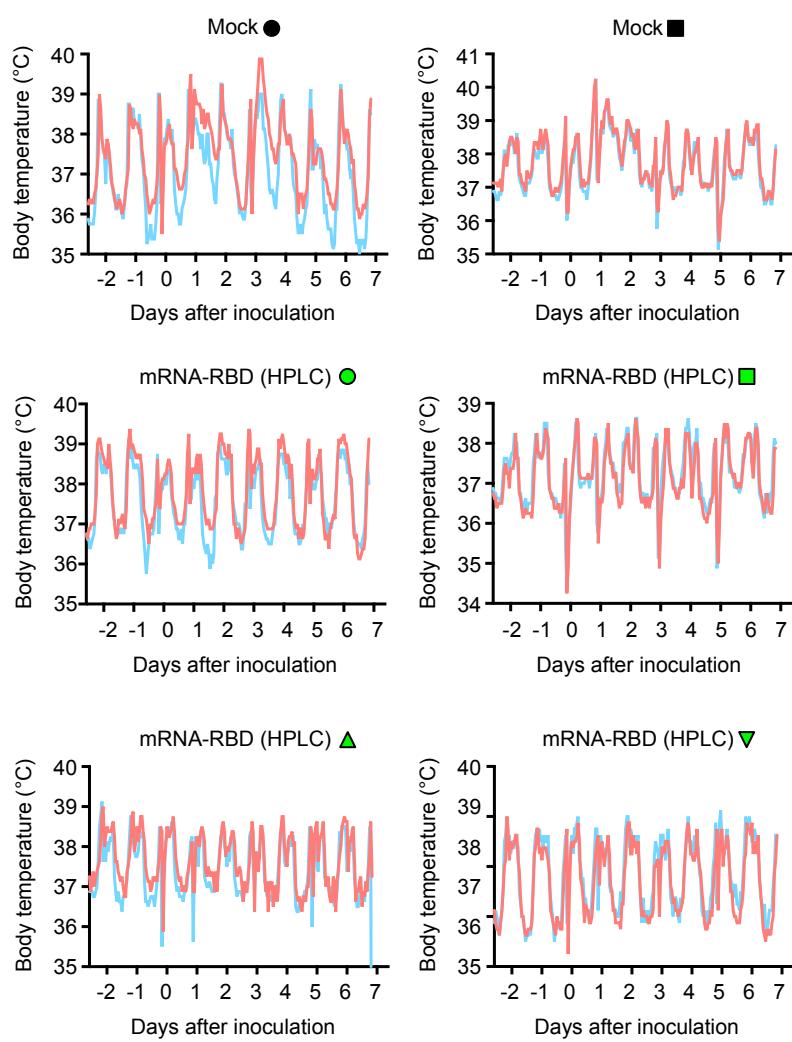

Extended data Fig. 2

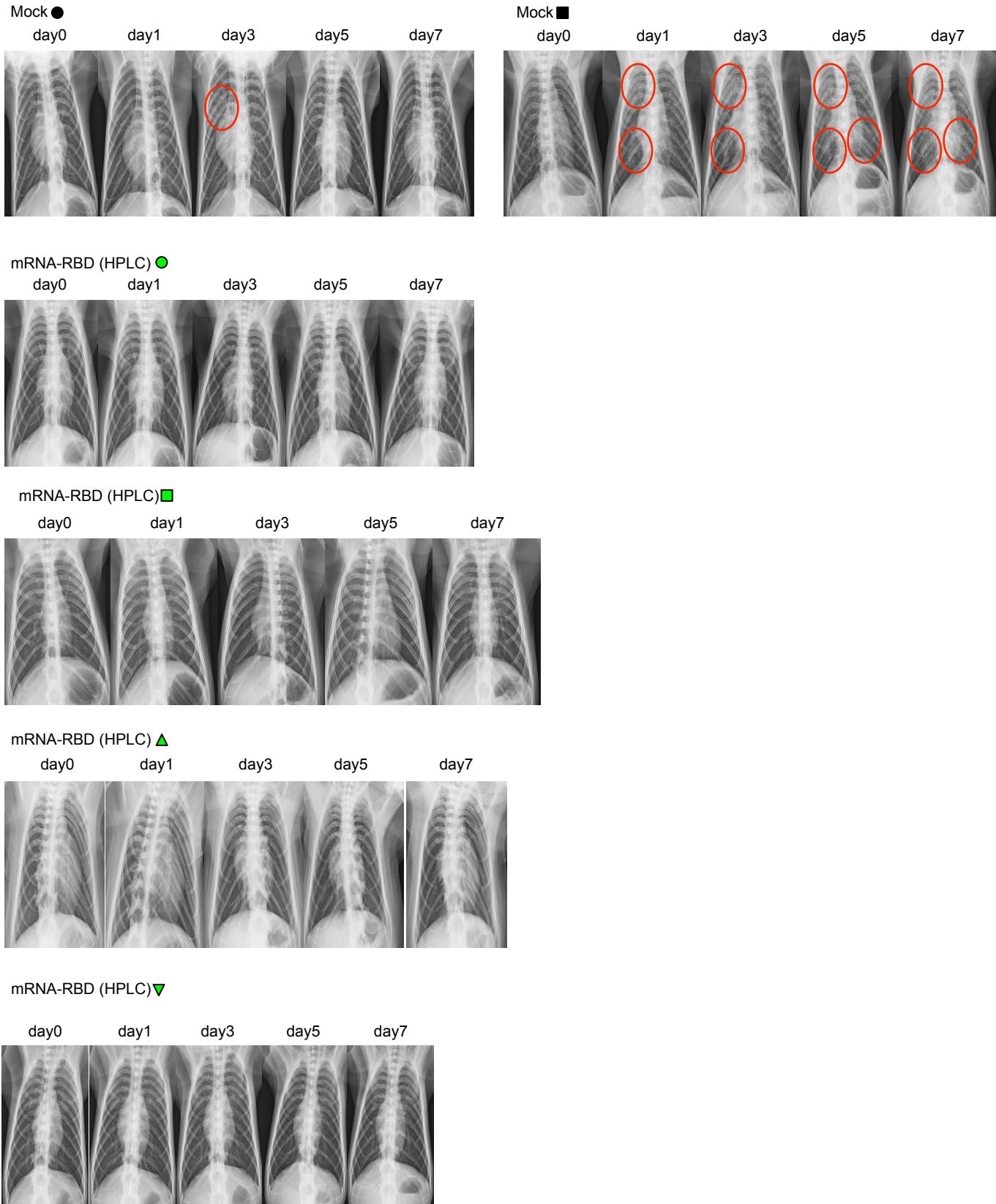

Extended data Fig. 3


Extended data Fig. 4


Extended data Fig. 5


Extended data Fig. 6


Extended data Fig. 7


Extended data Fig. 8

Extended data Fig. 9

Extended data Fig. 10

Extended data Fig. 11