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Terrestrial animals such as ants, mice and dogs often use surface-bound scent trails to establish
navigation routes or to find food and mates, yet their tracking strategies are poorly understood.
Tracking behavior features zig-zagging paths with animals often staying in close contact with the
trail. Upon sustained loss of contact, animals execute a characteristic sequence of sweeping “casts” —
wide oscillations with increasing amplitude. Here, we provide a unified description of trail-tracking
behavior by introducing an optimization framework where animals search in the angular sector
defined by their estimate of the trail’s heading and its uncertainty. In silico experiments using rein-
forcement learning based on this hypothesis recapitulate experimentally observed tracking patterns.
We show that search geometry imposes limits on the tracking speed, and quantify its dependence
on trail statistics and memory of past contacts. By formulating trail-tracking as a Bellman-type
sequential optimization problem, we quantify the basic geometric elements of optimal sector search
strategy, effectively explaining why and when casting is necessary. We propose a set of experiments
to infer how tracking animals acquire, integrate and respond to past information on the tracked
trail. More generally, we define navigational strategies relevant for animals and bio-mimetic robots,
and formulate trail-tracking as a novel behavioral paradigm for learning, memory and planning.

Experimental studies demonstrate the ability of ants, wild. In experiments with broken trails'®, the ab-

dogs, humans, and rodents to track odor trails'¢. Ro-
dents accurately track trails in the dark, remaining close
to the trail and casting when contact is lost (Figure
la)®. Carpenter ants closely follow a trail while sam-
pling it using a “criss-cross” pattern with their two an-
tennae (Figure 1b)!. Current models of this behavior
rely on variants of chemotaxis” based on continuous es-
timates of the rising and falling odor gradients as the
trail is crossed. One such strategy compares simul-
taneous odor concentrations detected by two spatially
separated sensors®. Yet, rats with a blocked nostril®
and ants with a single antenna' are still able to track
trails, although less accurately. An alternative chemo-
taxis strategy has the animal measuring odor gradients
along its trajectory and turning when a significant de-
crease is perceived®.

While chemotaxis-based strategies can allow for trail
tracking when trails are continuous, they fail when
trails are broken and gradients are absent, which is
certainly relevant for animals tracking trails in the
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sence of signal triggers casting, which is a fundamen-
tal feature shared with olfactory searches in a turbu-
lent medium® . Even though turbulent searches also
feature sporadic cues, airborne odor signals tend to be
localized in a cone and, even within the cone, the signal
is highly fluctuating'?'3. Therefore, beyond qualita-
tive similarities between terrestrial trail tracking and
airborne olfactory searches, the specific statistics of de-
tections, geometric constraints and behavioral patterns
are distinct.

In contrast with chemotaxis-based algorithms, we
propose an alternative framework built on the searcher
exploiting past contacts with the trail to maintain an
estimate of the trail’s local heading and its uncertainty,
which defines an angular sector of probable trail head-
ings that radiates from the most recent detection point.
The resulting “sector search" provides a quantitative de-
scription of trail-tracking behavior that unifies its vari-
ous phases and yields specific experimental predictions.

We first show that reinforcement learning (RL) based
on the sector search idea can recapitulate natural be-
havior. An RL agent in this scheme learns to traverse
the trail as quickly as possible while minimizing the
probability of losing it (see Methods for details). Our
in silico RL experiments show that general aspects of
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Figure 1. Sample trail tracking trajectories from previous experiments and our reinforcement learning (RL) simulations. (a)
A rat (head position in red) tracking a trail (in black). Adapted from ref. 5. Note the wide casts on extended loss of contact
with the trail. (b) A carpenter ant tracking an odor trail (black) using a stereotyped “criss-crossing” strategy'. (c,d) Sample
trajectories obtained from RL for agents with one sensor (panel c¢) and two sensors (panel d) recapitulate experimentally
observed tracking patterns in panels a,b. (e) Left: Search paths executed by RL agents with a single sensor upon loss of
contact with the trail. Right: The initial prior distribution (bottom plot) over trail headings transforms into a bimodal
posterior distribution (top two plots), which drives the oscillatory pattern of casting. (f) RL agents with two sensors show
a characteristic criss-crossing pattern close to the last detection point. The search path is similar to the single-sensor agent
at large distances (Figure Mla). (g) RL agents show a trade-off between tracking speed (re-scaled by the sector angle o,
sensor size a and sampling frequency w) and the probability of losing the trail entirely.

animal tracking behavior naturally emerge (see Fig-
ure le,d). Specifically, casts are observed around the
most likely heading of the trail, and their amplitude is
within the angular sector defined by the initial uncer-
tainty o of the trail’s heading ¢. The reason for the
oscillatory pattern of casting is intuitive. Indeed, while
moving along a path C without detecting the trail, the
estimated heading’s probability distribution P(¢) (see
Figure 1le) is updated into Pe(¢) as

P(¢) = Fe(d) x Te(o)P(9), (D)

where I'c(¢) is the probability of not detecting the trail
headed along ¢. Irrespective of the explicit form of
T'c(¢), the depletion of headings already explored gen-
erally leads to a bimodal posterior distribution, with
the two modes at the edges of the angular sector (see
Figure le). Oscillations are then understood in terms
of marginal value theory'4!%: we show using a minimal
model of casting (Methods) that the turning point of a

cast occurs when the marginal value of continuing on
one side of the sector is outweighed by the probability
of finding the trail on the opposite side.

We proceed now by establishing geometric limits on
tracking speed. A typical RL curve for the probability
of losing the trail versus speed is shown in Figure 1g.
Its monotonicity epitomizes universal limits that “stay-
ing on the trail” imposes on tracking speed. Intuitively,
searching slowly reduces the distance between detec-
tions (the inter-detection interval (IDI)), decreases the
uncertainty in the estimate of the trail’s heading, and
thus the probability of losing the trail. However, these
benefits come at the cost of slow forward progression
along the trail. In contrast, moving quickly reduces the
detection rate, leading to longer IDIs, increased uncer-
tainty and loss probability.

We quantify the above trade-off using simple scaling
arguments. Suppose the tracking agent has a sensor
of size a, samples at a frequency w and moves with a
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fixed forward speed v. As shown in Figure 2a, the angle
subtended by the detector at distance r from the last
contact is a/r. The agent searching over an angular
sector scans then at a rate d¢/dt = wa/r. Integrating
the above expression for the angular rate, we obtain the
typical time for re-establishing contact with the trail:
te ~ w'e?/®  The corresponding distance L ~ vt,
is obtained using r ~ vt. The heading of the trail is
known with uncertainty o, which is the opening angle
of the conical sector shown in Figure 2a. Uncertainty is
expected to depend on the distance L’ from the previous
detection as o (L") = (L' /¢)Y where £ and 7 characterize
the statistics of trails (see below and Figure 2d). Impor-
tantly, a stable strategy for long-term tracking requires
that successive IDIs should on average be equal, i.e.,
L = L. Combining L = vt, with L' = ¢'/7¢ and the
expression for t., we finally obtain an upper bound on
the tracking speed v:

ity

m = (wtc)f'y log(wtc) S 771671 . (2)
Its maximum vpax ~ w(am)ﬁ defines the optimal sta-
ble tracking speed in terms of the tracker’s sensory pa-
rameters and trail statistics. The basic element that
leads to this bound is the geometric factor 1/r that un-
derlies searching over an angular sector. The result from
(2) that wt. is of order one (e'/7) explains experimental
observations (Figure 1) that tracking animals typically
take only a few samples to re-establish contact with the
trail.

Ideas from polymer physics suggest a statistical de-
scription of trails. We ask how detecting the trail at a
set of points r¢, 71, 72,... (Figure 2b) constrains its fu-
ture heading? We consider the case when the searcher
keeps track of the two most recent points of contact;
a more extended memory is discussed further below.
Intuition for the two-point case is provided by the fa-
miliar “curve” tool in graphical design software, which
draws a cubic spline through a set of prescribed points
(Figure 2c). The tool captures the simple intuition that
tangents to a curve are continuous, i.e., the trail’s head-
ing has local persistence, which is a plausible, minimal
assumption about trails. We show in the SI that cubic
spline interpolation corresponds to the most likely path
(through a fixed set of points) in the so-called worm-
like chain (WLC) ensemble (originally introduced for
polymers)'®17. In this ensemble, the tangent direction
undergoes diffusion with rate x, and the uncertainty is
then 0 = (kL/3)2, which determines the two param-
eters v = 1/2 and ¢ = 3x~! in Eq. (2). Actual trails
could be smoother and have a well-defined curvature
(the rate of change of heading) that persists on a char-
acteristic length scale \. We capture this ensemble of
curves by an extended WLC model (EWLC) with two
parameters: persistence length A and typical radius of

curvature ¢ (Methods). Uncertainty is then given by
o ~ L/2¢ (hence v = 1 and ¢ = 2¢) at distances
L < )\ while diffusive scaling is recovered at larger
distances with an effective diffusivity x = 2A\¢72. Fi-
nally, the two models are combined in the general WLC
(GWLC) ensemble with crossovers across the various
regimes (Methods). In summary, each model leads to a
“propagator” which encodes how information about past
contacts is integrated to form an estimate of the trail’s
heading while taking into account geometric aspects
of trails. A feature shared across models is that the
headings at two consecutive contacts are anti-correlated
(Figure 2e), which reflects the bending of the spline rel-
ative to the chord seen in Figure 2c.

Why and when do searchers need to cast? The ques-
tion stems from our previous result that a few samples
are typically sufficient to re-establish contact with the
trail. To address it quantitatively, we consider again the
setup of Egs. (1), (2). The non-detection probability
averaged over the ensemble of trails that pass through
past contact points is

T = (e /e %Ia(T(S),y(S))M7 (3)

where s parametrizes the searcher’s path C and the
Boolean indicator function I, measures if the agent at
r(s) is within sensing range a of the trail at y, i.e, the
integral is the time spent in contact with the trail. Nu-
merical simulations of the search show a power-law scal-
ing regime for I'c, which is cut-off at short distances by
the initial surge and at large distances by trails escaping
out of the casting envelope (Figure 3a-c). We proceed
to explain these three regimes shown in Figure 3b. In-
tuitively, at short radial distances r < a/o ~ v/w (the
latter from Eq. (2)), the sensor covers the entire sec-
tor of likely headings, the searcher can just move for-
ward and T¢ o e “"/v (Figure 3b). Casting sets in
if the searcher reaches, without detection, a distance
r 2 a/o, i.e., when the sector is not fully covered any
longer by the sensor of size a. The sector geometry
in Figure 3a implies that the length of a single casting
sweep is proportional to r. A fixed forward speed then
implies that the distance between successive encounters
with the trail also scales with r. Hence, the number of
times the searcher crosses the trail (and thus the time
spent on the trail) per unit radial distance decreases
as 1/r. This 1/r scaling in the overlap then leads to
a logarithmic integral in the exponent of Eq. (3) and
thus a power-law regime I'c oc r—# during casting. The
optimal exponent 5* depends on the statistics of the
trails, yet it generally satisfies 5* > 1 (8* = 1.63 for
the EWLC model, see Eq. (M15)). Since I'¢ is a cu-
mulative distribution, S > 1 implies that the mean dis-
tance is indeed determined by the lower cutoff, i.e., the
trail is typically found in a few samples, as estimated
in Eq. (2). However, the power-law decay implies that
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Figure 2. History-dependence and trail models. (a,b) Trail tracking naturally splits into distinct episodes punctuated by
trail detections by the searcher. In each episode, we propose that the tracker searches for the trail using an estimate of
the trail’s heading updated based on the past points of contact with the trail and a model of trail statistics. We affix a
polar coordinate system with the origin at the most recent contact point and the azimuthal angle defined relative to the
estimated trail heading. The uncertainty o fixes the angular width of the search. The searcher moves forward with a speed
v while sampling at a frequency w. A sensor of size a spans a/r radians at distance r, which determines the rate at which
the angular space is searched. (c) To estimate where the trail is headed and its uncertainty from past contacts, the tracker
can either use local anisotropy estimated from a single contact (left) or extrapolate from previous points of contact using
a model of trail statistics (middle, right). In the latter case, the most likely trail paths (dashed blue lines) are similar to
interpolated splines, which capture basic geometric notions of persistence in heading and curvature. (d) The uncertainty in
trail heading (in radians) as a function of the distance between points of contact for the GWLC model of trails discussed
in the text. (e) The correlation between trail heading at the most recent and second-most recent point of contact for the
GWLC model changes with the distance between these points yet it is generally expected to be negative.

casting phases are frequent and can span up to the up-
per cutoff where all aspects of trail statistics and search
geometry come into play, as discussed next.

How should an agent perform sustained casts so as to
minimize the probability of losing the trail while max-
imizing tracking speed? To go beyond the above scal-
ing arguments, we now consider the geometry of sector
search in detail. The searcher’s path is parameterized
by the sequence of turning points of its casting trajec-
tory, {rg,0} (in polar coordinates w.r.t the most re-
cent point of contact), which are to be optimized. We
maximize the average tracking speed L/T, where L and
T are the distance and duration between the most re-
cent and the subsequent point of contact with the trail.
As discussed previously, the uncertainty estimated for
a bout of sector search depends on the inter-detection
interval (IDI). To constrain the uncertainty, we there-
fore constrain the average, (L). Hence, we consider the

following optimization problem :

L

(7))o
where A is the Lagrange multiplier enforcing the (L)
constraint. The turning points and the searcher’s speed
v affect the probability of detecting the trail in a single
cast, which is implicit in the expectation in Eq. (4). We
solve the Bellman equation corresponding to the above
optimization problem using dynamic programming (see
Methods), which sequentially optimizes for the turning
points by considering at each step the two possibilities
that either the trail is detected during the cast or the
agent advances to the next cast. The probabilities for
these two events are controlled by the non-detection
probability given by Eq. (3). In the event of no de-
tection, the estimate of the trail’s heading is updated
according to Eq. (1). The resulting optimization yields
a search strategy with an increasing sequence of cast-
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Figure 3. The role of casting in trail tracking. (a,b,c) The probability of not detecting the trail at distance L decays
exponentially during the initial forward surge (red) and as a power-law during casting (blue) over a conical envelope. The
searcher often finds the trail within the initial surge (mean in panel b) whereas casting determines the probability of losing
the trail (determined by the upper cutoff) if the trail is not found during the surge. Beyond a characteristic lengthscale ¢,
the detection-rate becomes negligible (green region in panel b) as trails initially well-inside the casting envelope “escape”
out of the envelope (panel c¢). (d,e) The casting policy obtained from Bellman optimization. The specific casting strategy
depends on trail statistics. Note the increasing casting angle and the slowing down of the agent at r ~ ¢ (panel e). (f) The
trade-off between the probability of missing the trail for fixed (L) and searcher speed v.

ing angles (Figure 3d). The specific casting strategy
depends on how trails meander and curve (Figure 3e).
The choice of v controls the trade-off between the track-
ing speed and the probability of losing the trail entirely
(Figure 3f). Independent of the choice of v and (L),
azimuthal excursions are by and large conical but ex-
tend dramatically (Figure 3d,e) when trails that were
initially inside the cone escape from it with high prob-
ability (Figure 3c). This happens at a distance that
scales with ¢ but also depends on the sector envelope
(which in turn depends on ). Intuitively, at length-
scales ~ £ the trail’s heading decorrelates from its initial
value, the relevance of information on past detections
has expired, the trail is effectively lost and it is optimal
to stop progressing forward.

A number of transformative experimental assays are
suggested by our theoretical framework. The broad
theme is whether and how animals adapt their behav-
ior to the statistics of trails. For field experiments, it
would be informative to measure the statistics of natu-
ral trails, analogous to the statistics of natural images
that has brought insight into the adaptation of visual
responses'® 22, Specifically, one can measure the auto-
correlation of local heading and curvature of natural
trails, which would test the validity and fix the param-

eters of our WLC-type models. In laboratory settings,
the statistics of trails can be controlled by varying per-
sistence, curvature or using broken trails (Figure 4a).
The general issue of adaptation is articulated in the fol-
lowing four specific questions that stem from our work.

First: how long after the loss of contact do ani-
mals “give up” tracking? Our prediction is that they
should when they get beyond the characteristic corre-
lation length of the trails. At this point, the value of
past information has expired and it is best to turn back
or start a new search. This prediction can be tested
by varying trail statistics, interrupting the trails and
measuring when animals give up.

Second: does the amplitude of casting depend on the
statistics of trails and the inter-detection interval? We
predict that it should, and the specific quantitative re-
lationship is a signature of the underlying predictive
model employed by the animal (Figure 4b). Our predic-
tion should be contrasted with the non-adaptive casting
envelope assumed in ref. 5. The IDI can be experimen-
tally manipulated by generating dashed trails as shown
in Figure 4b, which forces the animal to detect the trail
sporadically yet at controllable intervals. It would be
particularly informative to verify whether or not ani-
mals include curvature in their estimates of the trails’
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Figure 4. Behavioral assays to dissect trail tracking strategies. (a) A tracker executing a sector search often maintains
continuous contact with the trail (left). Extended sector searches can instead be systematically elicited using broken
trails (right). The subsequent search envelope’s orientation and width relative to past contact points informs the tracker’s
internal estimate and uncertainty o of the trail’s heading. (b) We propose dashed trails as an assay to infer how a tracking
animal integrates past information. The distance between dashes forces contact points to be separated by at least §L and
the subsequent search sector yields an estimate of o. (c) Our theory predicts that the most likely trail heading ¢mr is
proportional to the angle ¢ between the line segments joining points of contact (red dots), with a pre-factor that depends
on the distance §L between the two most recent contact points, the trail model and memory. (d) Automated behavioral
tracking of rodents on a treadmill allows control of tracking speed and trail statistics®'®. (e) The mean distance to trail
with speed in simulations of sector search (as in panel a (left)), which recapitulates the linear relationship (dashed line)
observed in experiments with rats®. We use a sector search strategy where the longitudinal speed v is fixed and the tracker
rapidly casts within a conical envelope (see Figure M4a for a sample trajectory in a single bout). For each v, we simulate
100 trials, where each trial consists of successive 10 successful contacts with the trail. Trails are generated from the GWLC

ensemble with k = 0,&£/\ = 3,a/A = 0.1. Error bars are 1 s.e.m.

future heading or limit to persistence.

Third: what is the memory of past trail contacts?
Experiments with forked trails® show that rats exhibit
a predictive component, suggesting a memory that ex-
tends over the recent past. Our theory posits that the
tracker remembers (at least) the two most recent de-
tection points. For the case of two-point memory, we
predict the sector search is oriented along the line con-
necting those two points. If more than two points are re-
membered, the expected heading deviates from this line
(by an angle that we calculate explicitly in the Supple-
ment) as illustrated in Figure 4c. Note that the heading
is not an average of the past headings, as assumed in
ref. 5, and actually depends on the IDI between recent
contacts: this prediction could again be tested by using
curved, dashed trails as in Figure 4b.

Fourth: does the tracking speed vary with the typical
IDI, reducing with increased uncertainty as predicted
by the speed-accuracy trade-off Eq. (2)? This can be
tested by varying the speed, for instance of the tread-
mill in ref. 5 (see Figure 4d), and measuring tracking

accuracy. Available data for three speeds in ref. 5 are
captured by our theory (see Figure 4e), which high-
lights the importance of revisiting those pioneering ex-
periments and measuring additional quantities, namely
the explicit prediction in Figure 3f.

In conclusion, we show that an optimized sector
search strategy based on the memory of two or more
recent detection events yields an oscillatory search
path with increasing amplitude that naturally unifies
the observed low-amplitude “zig-zagging” and larger-
amplitude “casting” behaviors into the same quantita-
tive framework. This framework elucidates the geomet-
ric and computational constraints faced by tracking an-
imals, and identifies general features of the algorithms
that efficiently solve the task, which can also be im-
plemented for robotic applications. Insights and pre-
dictions developed here impact and should inform the
design and analysis of future animal behavior experi-
ments.
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METHODS

A reinforcement learning framework for trail
tracking

Trail tracking naturally splits into discrete episodes
where, after each loss of contact, the tracker searches
and attempts to re-establish contact with the trail.
We use reinforcement learning (RL) to identify opti-
mal search strategies for each episode and explore how
factors such as sensory configuration or movement con-
straints influence the strategy. The task is a one-
dimensional search over angular space 0, the geometry
of which is illustrated in Figure 2a. The tracker controls
its tangential speed u(t) = r6 while its radial speed v is
kept constant. For simplicity, we focus here on the con-
figuration featuring a single sensor of size a sampling
with a Poisson frequency w. The generalization to two
sensors is found in SI.

In each episode, the (Bayesian) agent maintains a
posterior probability distribution function (PDF) P(¢)
over possible trail headings, which is continuously up-
dated based on the locations already visited, until the
trail is recontacted. The agent’s strategy of decisions
about its future trajectory a priori depends on the full
high-dimensional distribution P(¢), which is difficult to
learn. To circumvent this issue, we formulate the search
task using a tractable parametrization of the posterior
as a mixture of K Gaussian basis functions:

K
PO = aBie). B = (12200
i=1
(M1)
where ¢ is the standard normal PDF and the ¢;’s are
normalized weights. The posterior is encoded by the
weights g, the posterior probabilities of the latent states
given the agent’s history. The corresponding vector is
lower-dimensional and yields to standard RL methods.
For simulations in the main text, we used K = 3, equal
initial weights, w1, po, u3 = —0,0,0, and s = 0.50.
These values were chosen so that the prior has mean
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Figure M1. Two-sensor RL sector search path and learning curves. (a) The complete search path for an RL agent with
two sensors. The gray shaded region close to the last detection point is shown in Figure 1f to highlight the criss-crossing
pattern. At large distances, the search path shows casting similar to the one-sensor case (Figure le). (b) The probability
of not finding the trail until time 7" (set to 100) as a function of the training time normalized by the probability of not
finding the trail without any training. We show results for various values of the parameters («,1/8,d), where o = u/aw,
B = aw/2v0Oy, and 2d is the distance between sensors for the two sensor case (see SI). The curves are meant to demonstrate

non-trivial learning for different conditions.

zero and standard deviation =~ ¢. Using K > 3 led to
similar strategies of search but training was slower. We
define the detection probability given latent state i for
an agent at r as

i(r) = / +(r,6)B; (6) dé, (M2)

where (7, ¢) is the detection probability of finding a
trail headed along ¢ if the searcher is at . We assume
a Gaussian detection kernel of size a, with distance
measured to the closest point on the trail: ~(r,¢) =
e~ sin®(0-¢)/2a° o o—*(0-¢)"/20 hore we have used
the small-angle approximation. Conditional on no de-
tection at r, Bayes’ rule yields ¢; = —wq; (3:(r) —7(r)),
where 4 = Y, ¢;%; is the total probability of detection.
From (M2), we have

_ T o, 0 — p;
Yilr) = 2077\ o ’

where ¢, = a/r, and o, = y/o2 + s2.

We use a discount rate A and provide a reward as
discussed below, after (M4). Training is performed in an
episodic fashion with each episode lasting time T'. The
kinematic variables are updated with timestep dt and
actions are taken with timestep dt..i > dt. Movement
constraints are imposed by restricting the set of actions
to three values, u/aw € {—a,0,a}. The state-space
has four dimensions, r, 8, —In¢q;/¢2 and —Ings/g2. We
discretize our state space using a non-overlapping tile
coding scheme??. We refer to the SI for hyperparameter
values, details about the state space architecture and
the case of two sensors.

We use a SARSA Q-learning algorithm??, which
learns the so-called @ function, that is the value func-

(M3)

tion for each action in a given state:

er (T7 q, u) = ﬁ(r)dt—"_ <M4)
[1—(A+7(r))dt] Vi (r + vdt, g + qdt) ,

where Vi(r,q) = >, Q«(r,q,u)n(u|r,q), and the in-
dex m highlights the dependence on the probabilistic
policy 7(ul|r,q). The above equation differs from the
standard SARSA update by the addition of 4dt in the
discount term, which is due to our formulation of the
search as a continuing process conditional on no con-
tact with the trail. Alternatively, one may provide a
unit reward when the trail is found, stop the episode
and start over. However, the credit assignment prob-
lem in goal-oriented tasks makes the training (see (M5)
hereafter) problematic even though the final optimal
policy is equivalent (see, e.g.,?4). Our formulation cir-
cumvents both issues by (i) giving a local reward 7dt
rather than a final one, which addresses the credit as-
signment, and (ii) including the detection probability
~dt into the discount rate to account for the condition
of no contact.

To learn the Q-function as defined in (M4), we
use a “softmax" training policy, i.e., Inw(u|r,q) o
Q(r,q,u) /Texplo, Where Q is the current estimate of
the @ function, and Tixplo is a “temperature” param-
eter that is annealed as training progresses to allow for
sufficient exploration of actions. Given an action u at
state (r,q) and a subsequent action u’ at state (7', q’),
Q is updated during training as

Qx(r,q,u) = Qr(r,q,u)(1 —n)+ (M5)
n (3(r)dt + (1= (0 +2(r)d)Qx (v, q' ) )

where 7 is the learning rate. The function Q obtained
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at the end of the training period yields a search strategy
as: m*(r,q) = argmax, Q(7, g, u).

We applied the algorithm just described for a range
of values of v, and d (half the distance between sen-
sors for the two-sensor case). For each parameter set,
we obtain a search strategy, the corresponding prob-
ability T'¢(T') of missing the trail in time T, and the
expected number of samples to find the trail. Compar-
ing Tc(T) on a test set for different number of train-
ing episodes (Figure M1b) shows that non-trivial learn-
ing takes place, typically saturating at ~ 10* training
episodes.

Casting in a minimal model of sector search

In order to establish the relation between casting and
marginal value theory, here we propose a minimal model
of sector search. The model lends to an analytical so-
lution which allows us to quantify how the frequency of
casting and the efficiency of search depend on the move-
ment and computational constraints imposed upon the
tracker.

We consider the same setting as the above episodic
RL framework, where the tracker is searching for the
trail over a sector after losing contact with it. To fo-
cus on casting, we analyze the behavior of the searcher
after an initial forward excursion along the most likely
heading. This surge decreases the probability weight ¢
of the mode at ¢ = 0 and yields a symmetric bimodal
posterior distribution concentrated at the two modes,
+¢o (typically ¢g ~ o). The resulting model is equiv-
alent to (M1) with K = 2, 3 = —¢o, u2 = ¢o and s
small. The searcher moves radially as r(¢) (fixed), con-
trols its tangential speed u = 7"9, receives a unit reward
when it finds the trail and incurs a movement cost per
unit time, pu? /2, where p sets the movement constraint.
The reward and cost are discounted at a rate A\. The
two-dimensional state space of the agent consists of
and the probability ¢ of finding the target at ¢y (the
probability is 1 — ¢ at —¢g). For full details, we refer to
the SI.

The above model is exactly solvable. An opti-
mal searcher exhibits oscillations between —¢g and ¢q
(“casting") until it finds the trail (Figure M2a). After
an initial transient, the searcher traverses a loop in state
space (6, q), alternating between sampling at —¢@g or ¢q,
and casting to the other side:

cast * *) cast

(QSan:) —>(_¢07qs) % (_¢05 1- ds

* mpl «
(d)(), 1- qs) &) (¢ans)7

where ¢7 is the optimal switching probability at which
the searcher stops sampling at ¢ and traverses to —¢g.

The speed of traversal from ¢g to —¢g is determined
by balancing the cost of traversing quickly and the po-
tential value at —¢y discounted due to the limited time
horizon.

Intuitively, the searcher casts when the marginal
value of continuing to sample at ¢q is just outweighed
by the marginal value that the searcher receives if it
stops sampling, traverses from ¢y to —¢g and samples
at —¢g. Balancing the marginal value of these two pos-
sibilities then yields the optimal switching probability
q¥. For small ¢*, we derive (see SI):

~ ¢?
TIHAHCH (I HNE -

where ¢ = 1 — /2¢3uA(1+ ) > 0. When ¢ < 0,
the movement cost outweighs the value the agent may
receive, and the optimal strategy is to simply not move.
q: get smaller and thus the searcher casts less frequently
with increasing time horizon (A < 1) or movement costs
(0 < ¢ < 1). The probability of not detecting the trail
after time ¢ is given by

*

a (M7)

ds

t
Te(t) ~ e o 75 )

(M8)

where [ is interpreted as the rate of information ac-
quisition. Its dependence on u, A and ¢ is shown in
Figure M2b. As expected, increasing movement cost
(decreasing ¢) decreases how quickly information is ac-
quired. Similarly, a large time horizon (A small) makes
the agent sample at +¢( longer and cast slower, decreas-
ing the rate of information acquisition. For a constant
radial speed v, the probability I'c(t) ~ t~1/¥ decreases
as a power-law, which arises quite generally from the
sector search geometry as discussed in the main text.

Trail statistics

If an agent makes contact with the trail at two points
separated by distance L, statistical and geometric infor-
mation is encoded in the “propagator" P(¢y,, ¢o), where
@1, Po are the trail headings at the two points (mea-
sured relative to the line joining them). If H points of
contact are remembered, then the propagator can be
used to compute the posterior distribution of the head-
ing: P(¢) = [ DpiP(¢lop1) P($1]d2) ... P(dr—2, prr—1).
We introduce an ensemble of trails (which we call the
Generalized Worm-Like Chain (GWLC) ensemble) that
have persistence in heading and curvature, quantified
respectively by the parameters x and A\ (distinct from
the discount rate used for RL) and a typical radius
of curvature, £. Typical samples of trails from this
ensemble are presented in Figure M3a. The WLC
ensemble'®!7 previously introduced for polymers is a
special case with £ = oco. The propagator P(¢y, ¢o)
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Figure M2. (a) The behavior of the agent searching for the trail which is either along —¢@o or ¢o. The agent alternates
between sampling at +¢o and traversing to the other side. ¢ is the agent’s estimate of the probability that the trail is along
¢o. (b) The rate of information acquisition I as a function of the movement cost (1 — ¢) and the effective time horizon
(A™1). (c) The optimal switching probability, ¢¥, as a function of ¢ for A = 10~%,107%,107*, 1072 plotted with blue, orange,
green and red respectively. The dots are the exact solution obtained numerically (see SI), and the solid lines are from using

the approximation (M7).

takes into account all the trails constrained to pass
through two contact points, weighted by their proba-
bility. In particular, we define

1%¢b¢@::Z*{/Iw%px¢*“meﬁ% (M9)

where Z is a normalization constant and the integral is
over all possible headings and curvatures ¢, x, at the
various positions x. The trails satisfy the constraints
Yo = yr. = 0 and have end-point headings ¢, ¢r. The
action £ of a path is given by

L
g({¢zaXz}) = ié dx((bm - Xz)2 (MIO)

DY A N R
+4Ad4M+A)+z-

Here, we have oriented the x axis along the line join-
ing the two points of contact and used the small-angle
approximation so that ¢, = ¢,. The model (M10)
is a Gaussian process. Since symmetry dictates that
(pr) = {(do) = 0, it follows that P(¢r,po) is defined
entirely by the variance o%(L) = (¢2) = (¢3), and by
the correlation p(L) = (¢opr)/0o%.

We present the full calculation of o(L) and p(L) in
the SI. In summary, the first integral over x, can be per-
formed using the Gaussian integral formula and leads
to an effective action in ¢,. The Euler-Lagrange equa-
tion of this effective action then yields extremal paths
(“splines") that minimize the effective action (see SI for
details). The splines have the form:

3 3

Yo = ao(L — ) +apx + Co% + CL%
+ Ndoe™ BT 4 N d e/,

(M11)

where the constants in the above equation are set so
that yo = yr = 0 and can be expressed in terms of
@0, ¢r,. Figure M3b shows the splines between contact
points spaced at increasing intervals. Plugging (M11)
in the effective action, we obtain

Q2X2 by + by by — by
2y =" L L) = M12
(L) = TR (D) = gt ()
where the two functions b; and by are
L? AL _L
b1 = 7 — 7292‘/2 (1 — € ) (M13)
L? XL +2)) L
=— ———— " ((L-2 X (L+2
b2 =5~ oever (E—2)+e %@ ran)],

and V = \/k€2)\/2,0% = A2+ V2. The variance o(L)
and the correlation p(L) are plotted in Figure M3c,d.
Three distinct regimes are apparent. For L/ < 1, we
can appproximate 02(L) ~ xL/3 + L?/4¢%, which re-
flects diffusive < L and curvature-dominated o< L? scal-
ings. When diffusion dominates, p(L) = —1/2, whereas
p(L) = —1 when curvature dominates. The perfect anti-
correlation in the curvature-dominated regime is intu-
itive as the line joining the two points of contact can be
viewed as the chord of a circle with radius &, whereas
o(L) = L/2¢ is the angular deviation of the trail around
this chord. When L/ > 1, the heading is randomized
over many correlation lengths and the diffusive scaling
0?(L) ~ 2\L/3£? is recovered.

While P(¢r|¢o) (the interpolation model) is required
to integrate past information, search strategies also
require the forward propagator P(¢r,yr|éo), which
keeps track of trail headings and locations while the
agent searches for the trail. The methods described
above can be used again (see SI for details) to yield
extremal paths as (M11), and the three quantities


https://doi.org/10.1101/2021.03.03.433838
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.433838; this version posted March 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

<
diffusion-dominated  curvature-dominated GWLC model Q

(WLQ)

Figure M3.

11
e Interpolation model
= 20
7 — — theory
7 / 16 ==== numerics
’ —— KkE2/2A=0.0001 10 — &A=5
k€2/2A=0.0010 &A=10
—— k£2/2A=0.0100 — &A=15
—— k£2/2A=0.1000 0
T T T T 0 25 50 75
107 10 100 10 LA
L/A f
Forward model
30
— 20 —— theory
< |/ / @ == numerics|
° 10 — E&A=5
&/A=10
4 — EA=15
\.—/ . . . 0 ’
107 10° 100 10* 0 10 20 30
L/A L/A

(a) From left to right: samples of trails diffusion-dominated (kA = 0.05,{/\ = o0), curvature-dominated

(kA =0,&/X =T), and trails which have both diffusive and curvature components (kA = 0.05,/A = 7). (b) Extremal paths
(blue) between detection points (red) on a trail (black) are plotted using (M11) for kA = 0,&/A = 7. (¢,d) The uncertainty
ol (plotted in log-log scale to highlight the three scaling regimes) and the correlation pr between end-point angles versus
the distance between detections, L, for the generalized worm-like chain (GWLC) model. (e,f) Numerical validation (dashed
lines) of the theoretical predictions (solid lines) obtained by generating trail samples from the GWLC ensemble.

<(,Z52L>fwd, <y%>fwd7 <¢LyL>fwd~ These quantities fully de-
scribe P(¢r,yr|do). We validated our interpolation
model (M12) and the forward model using numerical
simulations (Figure M3e,f).

The non-detection probability during surge and
cast

We introduce a sector search strategy that allows us
to quantify the non-detection probability taking into ac-
count the full dynamics of the trails and yields intuition
on the factors that contribute towards losing the trail
entirely. We suppose the radial speed v is fixed and the
tangential speed u > aw. In other words, the agent
casts rapidly within a conical envelope of semi-aperture
angle 0©, where ¢ is the prior uncertainty of the trail’s
heading and ©y = 1 (Figure M4a). To simplify the pre-
sentation, we assume curvature-dominated trails, i.e.,
o(L) = L/2¢, though the arguments below are general.

The rapid casting limit «/aw > 1 allows us to com-
pute the non-detection probability at distance r from
the most-recent contact point defined by Eq. (3):

Te(r) = <e—% Jo dwv(w,y(w))>

where the expectation is over the full ensemble of trails
{y(z)} that pass through past detection points. Here,
we provide intuition for the detection rate w~y(x,y(x))

and refer to the SI for full details. For small z, i.e.,
x < a/2000, y(z,y(x)) = 1 for most trails as the
sensor size a spans the entire casting envelope 20zx0y.
In the casting regime (x 2 a/200y), since the time
spent on the trail in a single cast is a/u, the proba-
bility of non-detection per crossing is e~ /%, After n
crossings, the non-detection probability is then e ~"4w/%,
As the agent moves a distance dz in the radial direc-
tion, it crosses the trail n = udxz/2voxOq times, i.e.,
v(z,y(z)) = a/2020y, which is independent of u. From
(M14), these relations yield an exponential I'c (r) during
the initial surge followed by a power-law, »~# with ex-
ponent 8 = aw/20v0. This heuristic argument aligns
well with the results of numerical simulations in Figure
M4b.

The spline formulation of the GWLC yields a geo-
metric picture of the dynamics. Intuitively, the non-
detection probability (and thus the posterior probabil-
ity from Eq. (1)) is large if the trail has a large probabil-
ity of escaping the casting envelope before it is found by
the tracker. In order to “escape” the casting envelope,
the trails that are initially well within the casting enve-
lope have to bend significantly. This bending incurs a
cost in the action (M10), which reduces with increasing
r. The non-detection probability conditional on initial
trail heading, T'c(r|¢), flattens out (i.e., the detection
rate vanishes) when a significant fraction of trails es-
cape the casting envelope, including trails with initial
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Figure M4. Sector search over a conical envelope: simulations. (a) A sample episode of a sector search starting from
the most recent point of contact with the trail in dark blue. The tracker samples at discrete locations (red) with Poisson
statistics while casting within the conical envelope until it re-establishes contact. (b) The prediction (black dashed line)
of an exponential non-detection probability during the surge followed by a power-law decay during casting aligns well
with simulations in panel (a) (red circles). Parameters are 1/ = 20v0q/aw = 0.25,0¢ = 5,0 = 0.02. Trail parameters
are kK = 0,§/X = 5,a/A = 0.1 for all panels. (c¢) The probability of losing the trail in simulations (open circles). The
solid lines correspond to the theory prediction €, = I'c(Lin), where Li, = 20€0¢ (see Methods). (d) The path of the
trail (blue) that is most likely to go undetected for three values of ¢. The black line is the rotated casting envelope

R(z) = 02Ocnv(z) — z¢,0 = 0.17(10°).

heading ¢ = 0 (Figure 3c).

This geometric picture yields a length scale L;,, which
is the distance at which the trails initially along the
most-likely heading ¢ = 0 escape the casting envelope.
For curvature-dominated trails, escaping trails should
deviate by an angle 0©¢ ~ L;,/2¢, which gives L, ~
20£0(. The probability of losing the trail can then be
estimated as €, = I'¢(Lin). An additional contribution
to the flattening of T'¢(r) comes from the trails which
are headed outside of the cone |¢p| > ©( even before
reaching L;,. The probability I'¢(r) would then flatten
out at a different length scale Loy, where I'c(Lowt) =
€out- The relative contributions of the two mechanisms
are discussed in detail in the SI and they are validated
by using numerical simulations as shown in Figure M4c
and Figure M5b.

Due to the power-law tail for T'c(r) with exponent
[, the mean distance to find the trail, 7, is determined

by the upper or lower cutoff for 8 < 1 or 8 > 1, re-
spectively. Since the upper cutoff is much larger than
the lower cutoff, it is more convenient for the tracker
to use 8 > 1. By using the self-consistency condition
o = 7/2¢ in the curvature-dominated regime, and the
relation 7 ~ vw™! (1 4+ e7# /(8 — 1)), we obtain for the
maximum speed

eB\!
(g_1)> 20.47&]\/0{/@0,
(M15)

where the maximum occurs at 8* = 1.63 (see Figure
Mb5c¢). The mean number of samples to find the trail
at this optimum is ~ 1.3, indicating that the optimal
strategy is for the agent to move slow enough that it
typically finds the trail within one or two samples.
Intuition for the above results holds quite generally,
including for other statistical ensembles of trails and

vt =w af/@omﬁax (ﬂ+
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Figure M5. Sector search over a conical envelope: numerics. (a) The non-detection probability obtained by numerically
evaluating (M14) (blue circles) instead of simulating the process (Figure M4a). The black and blue dashed lines are the
theory predictions as in Figure M4b. (b) The probability of losing the trail computed numerically (circles). The dash-dot
lines correspond to predictions (to a constant prefactor of order one) from the regime where the missed trails escape the
cone, €in, and the solid lines corresponds to the prediction when the trails outside the cone are the ones most likely to
be missed, €ous. Inset shows the same data plotted against S = aw/20v0 to highlight the small v behavior. (c) The
speed obtained from imposing the self-consistency relationship between IDIs and uncertainty (see Eq. (2)). Solid lines are
from theory in the curvature-dominated limit of the GWLC ensemble and dashed lines are from the values that satisfy the

self-consistency relationship computed numerically.

for non-conical casting envelopes. The latter is relevant
because we expect that a slow down in the radial direc-
tion and a widening casting envelope may increase the
likelihood of finding the trail. Relaxing the constraints
of fixed radial speed and conical envelopes constitutes
the aim of the next Section.

Bellman optimization of the casting strategy

Our final step is to formulate the problem of optimiz-
ing the casting strategy. The geometry of the search
is shown in Figure M6a. To simplify, we parametrize
the path by the set of turning points {r;6;}. We
assume a fixed speed v (note that the average radial
speed depends on the strategy), which is set later based
on the probability of losing the trail. As discussed
in the main text, we optimize the average tracking
speed, (L/T), after constraining the inter-detection in-

terval, (L), using a Lagrange multiplier A (see Eq. (4)).
This optimization can be recast as a Bellman-type dy-
namic programming problem by breaking the problem
up into discrete steps, each corresponding to a cast from
{ri,0;} = {riz1,0;4+1} (denoted {r',0'} — {r,0} below

for conciseness):
V(’I"I,t/, Pl(¢)) _ (Mlﬁ)
max [(g - Ar) (1=Ty0) +Tro V(r,t, Pro(e))|

7,0

where the required reward function in Eq.(4) is V,, a
V(0,0, Po(¢)) with the Gaussian normal prior Py(¢) =
N(0,0%). The first term in the square bracket returns
the reward if the trail is found (weighted by the detec-
tion probability 1 — I',.4), while the second term ad-
vances to the next cast if detection failed. The Bell-
man equation thus relates V before and after a cast by
updating the current state variables, r', ', P'(¢). The
time elapsed is updated as t — t' + (r — /' + 2r|0|) /v,
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Figure M6. (a) We approximate a zigzagging casting trajectory as a sequence of casts parameterized by turning points
{ri,0;}, which are defined using polar coordinates with the origin at the last contact point. The turning points are optimized
using Bellman optimization so as to maximize the average radial speed (L/T) after constraining the average radial distance

(L). (b) Contours of constant L after optimization.

where we approximate [§' — 0] ~ 2|6| for simplic-
ity. The prior P'(¢) is updated using Bayes’ rule
P.g(¢) =T, 0(¢)P'(¢)/I'9, where I', o(¢) is the non-
detection probability given the initial trail heading ¢,
and Ty 9 = ([),9(4)) 4 is the normalization.

It remains to calculate f‘r,g (¢), which depends on the
forward model of the trail. We consider generally that
the trail’s azimuthal position expands as opyq(r) i.e.,
a trail initially headed along ¢ is located at the az-
imuthal position, ¢ + Ag, where Agp ~ N(0,02 4(r)).
For the GWLC model, we show in the SI that ogwq(r) =
o(r), where o(r) is given in (M12). Since the time
spent on the trail within the casting envelope in a
single cast is a/v, we have T, q(¢) = e~ /v if |¢ +
Ag¢| < 6 and equal to unity otherwise. Since A¢ is
normal-distributed, we have (1(|¢ + A¢| < [0]))ay =
P (Uei) - (ﬂ), where ® is the normal cu-

fwd (1) Otwd (1)

mulative distribution function. We finally approximate
T,0(p) = e & (LIo+A0I<ION)as - and compute the ex-
pectation over ¢ in T,y numerically. The previous ap-
proximation greatly simplifies the optimization as P(¢)
is then a sufficient statistic for past measurements (thus
allowing the decomposition in Eq. (M16)) and yet cap-
tures the effect of the trail’s widening trajectory on the
optimized casting strategy.

At each casting step, we optimize (using standard

black-box optimization methods in SciPy) for Ar =
r—r" > 0 and 6 by expanding Eq. (M16) two steps
further into the future. The optimization then involves
six variables, the immediate pair Ar,8 and the subse-
quent two pairs. The optimized immediate pair is then
used for updating as detailed above, and the process
is repeated. Optimizing more than two steps did not
yield different results as the f‘mg factors introduce an
effective planning horizon, effectively suppressing con-
tributions from future rewards beyond two steps. For
less than two steps, optimization is “greedy” and the
corresponding landscape was found to have a qualita-
tively different, shallow landscape around the optimum.
After completing the optimization procedure, the con-
straint of fixed (L) is imposed by varying v and the
Lagrange multiplier A (see Figure M6b).
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1 Additional details of reinforcement learning implementation

Here, we expand on the details of the reinforcement learning implementation presented in the
main text and Methods, specifically the case of two sensors and the hyperparameters used for
training. We set a = 1,w = 1 to fix the units.

The agent’s position vector r is updated with a time step dt = 0.05 and the agent’s actions
are updated with a time step dt,.t = 0.1. The agent chooses its tangential speed from three
values, u € {—a, 0, a}, where « is a parameter. The tangential speed, viang, is smoothed over
a time scale tgmooth:

d'Utang U — Utang (1)

)

dt ZL/smooth

where we use tgmooth = 1. The agent’s heading is given by Oagent = tan_l(vtang /Vrad), where
the radial speed v,,q = v is kept fixed. The two sensors are located at 71,79 which are at
a distance d from 7 in a direction perpendicular to the agent’s heading. The case of two
sensors is similar to the case of one sensor described in the Methods except for the detection
probability given latent state i. For one sensor, we have

itr) =326 (22, @)

where o, = 1/r, and o, = /02 + s?. For two sensors, we assume that each sensor has a
Gaussian detection kernel of size a and samples at a frequency w/2, where the factor of half
ensures that the two sensor case reduces to the one sensor case for d = 0. The detection
probability is then ;(7)|two sensors = (%i(r1) + 7i(r2))/2. The rest of the details of the RL
implementation remain the same as the one sensor case.

For the figures in the paper, we fix 0 = 0.2 as the strategy depends largely on ov/u, which
is varied by changing ov for a given a. The state-space has four dimensions, r, 6, —Inq; /g2
and —Ings/qe. We discretize our state space using a non-overlapping tile coding scheme:
the variable r is discretized using ovT'/5 (rounded) states between 0 to ovT, € into 15 states
between —1.50 and 1.50, and, finally, —Ing;/g2 and —Ings/ge into 5 states each between
—4 and 4. We choose a number of samples w7 = 100, which implies that if v/aw = 1, for
instance, we have 20 states for r and a total of 20 x 15 x 5 x 5 = 7500 states that tile the
state space.
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As noted in the Methods, we use a softmax policy with an annealing scheme for training.
Q(s,a)—min, Q(s,a’) o that

max,s Q(s,a’)—min, s Q(s,a’)

the normalized @) values lie between 0 and 1. The “temperature” parameter, Teypo is first

set to 3 and annealed linearly down to 0.2 from the first training episode to the last training
episode. For generating trajectories after learning, we set Teyplo = 0.2. We use a learning rate
n = 0.02 and discount rate X\ such that e~ *¥act = (.98 which corresponds to a time horizon
A~ ~ 5 samples.

For each state s, we first normalize the Q-values: Q(s,a) —

2 Optimal stochastic control and searching

We first describe a general formulation of searching in the framework of optimal control and
then proceed to analyze the case of sector search in more detail further below.

2.1 The Hamilton-Jacobi-Bellman equation for search problems

Consider an optimal control problem where the agent searches for a target at an unknown
location y. The agent has prior knowledge encoded in the vector 9 which is updated during
the search. The agent receives a reward of one and stops searching upon finding the target.
The probability per unit time of finding the target for an agent at « is given by w~y(x,y) with
~ being the detection kernel of size a. Additionally, there is a cost per unit time of controlling
its velocity, # = u, along various directions, pu?/2 (u is speed and u is some constant), and
the rewards and costs are discounted per unit time using a discount rate A. In this section,
we set w=1,a = 1.

The agent has an internal model of how 1 is updated when it doesn’t detect the target at
x. In general, 1 represents all the information that the agent maintains about the location of
the target. In particular, if we take 1) as a posterior distribution, P(y), updated using Bayes’
rule starting from some prior, we have

dlndf;(y) =—(z(t),y) +3(=x()), H(z)= /’Y(:B,y/)P(y/)dy/7 (3)

where x(t) is the position of the agent at time t. Note that 7(x) is the probability per
unit time of detecting the target given current information. We introduce the value function
V(x, 1), which is the optimal expected sum of discounted rewards given the current position
of the agent and available information about the target. The evolution of the value function
in a time interval dt satisfies the dynamic programming equation

V(z, ) = max {wt - “;‘th (1= M) (1 — 3dt)V (z + udt, b + ¢dt)} (4)

2
o pu _ ov . oV
= — —)dt + (1 — dt(A Vv dt | u.— — |- 5
m{ (= 150+ (= a3+ V) 4 (w465 ) L 6)
The first two terms on the right hand side of (4) are the probability of detecting the target
and the cost of control in the interval dt respectively. The latter term is the discounted value
function if the process continues, i.e., target is not detected in dt. The optimal policy is
obtained by optimizing the terms in the curly brackets with respect to the control variables
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u. Taking the gradient w.r.t © and equating to zero, we get

ut = —. (6)

Plugging this back into (5) and canceling V' (x, 1) on both sides, we get the Hamilton-Jacobi-
Bellman (HJB) equation

1 [oV\? .oV
21u<am> + -%*(’7+)\)V+’V:O. (7)

The solution of the above HJB equation yields the optimal policy via (6). In most cases, ¥ is

high-dimensional and an exact solution is infeasible. We consider a minimal model of sector
search which enables an exact solution, as described below.

2.2 A minimal model of casting

We consider a minimal model of trail tracking discussed in the Methods where the search is
over a one-dimensional angular space. The model naturally gives rise to casting dynamics
and quantifies how the frequency of casts and the efficiency of search depends on various
movement and computational constraints.

Consider two point targets located at +¢g. As noted in the Methods, these correspond
to the modes of a bimodal posterior distribution of the heading of the trail after an initial
forward excursion. Suppose ¢ is the probability of the target at ¢9. When the agent is at
0 = +¢g, we assume

¢=Fq(1—q)/r (8)

respectively, where the factor 1/r is the angle subtended by the detector at distance r from
the last contact (note that we have set @ = 1,w = 1). For intermediate values of 6, ¢ = 0.
The radial path r(t) is assumed fixed a priori with r(0) = 9 > 0.

We would like to find the optimal control variable 6 that maximizes the reward while
minimizing a energy cost per unit time £ = ur292 /2. However, the dependence on r makes
the problem non-stationary and challenging to analyze. To circumvent this issue, we introduce

the coordinate 7 = fot %. We have % = %% and 7’3—? = g—ﬁ, so that the update rule on ¢ and

the energy cost are both independent of r in the new coordinates. We use ¢ and 0 to denote
the derivative w.r.t 7 henceforth.
We re-write equation (4) for a one-dimensional search (along ) with the above assump-

tions:
12
V(0.0) = max { (ww) - "3) dr
%

+ (1 — (A +5(0)dr)V (0 + 0dr, q + qdf)}, (9)

where () is the detection rate and A is the effective discount rate in the new coordinates; if

! .
T v g, the

the time horizon in the ¢-scale is T', we have an effective time horizon A1~ 0 (@)
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T-scale. Taylor expanding the V' in the curly brackets above to first order and optimizing for
0 we have

_ 1

0 :
0

(10)

Plugging this back into (9) and canceling V (6, ¢) on both sides, we get the HJB equation

2
¥ (%‘g) +d = (6 + MV +7(6) =0 (1)

2.3 Solution to the HJB equation

The dynamics of the agent is as follows: 1) If the agent is initially between —¢y and ¢g, it
chooses to travel to either —¢qy or ¢y depending on its current # and ¢. In other words, there
is a location 6(q), such that the agent travels to the right if the current position § > 6(¢) and
vice-versa. 2) If the agent chooses to travel to ¢g, say, then it travels at a speed that balances
out the cost of traveling with the discounted value it expects to obtain at ¢o. 3) Once at
¢o, the agent begins sampling and if it doesn’t find the target, it remains stationary until
q decreases to a ‘switching’ probability ¢s;. At that point, a decision is made to traverse to
—¢o. The choice of g5 depends on the balance between the cost of traversing (at an optimized
speed) and the potential future reward at —¢g versus the expected reward from remaining at
¢o. Once at —¢p, by symmetry, the agent samples until ¢ increases to 1 — g5 or until it finds
the target. Eventually, the agent cycles between —¢¢ and ¢ at an optimized speed, sampling
for a fixed amount of time at each end, until it finds the target.

There are three choices made by the agent corresponding to the above three steps of the
dynamics: 1) Given the initial # and ¢, which direction should the agent move i.e., what
is 6(¢q)? 2) At what speed should the agent move? 3) When should the agent switch from
searching at one end to the other i.e., what is the optimal value of g5, ¢;7 Below, we calculate
qr and the optimal speed. We do not calculate 5(q), since it does not affect the agent’s
long-term behavior of cycling between —¢g and ¢g.

We have ¢ = F¢q(1 — q) depending on whether 6 = +¢p, and ¢ = 0 otherwise. Likewise,
the detection rate is ¥ = ¢,1 — ¢ at ¢, —¢g respectively, and 0 otherwise. Since the agent
remains stationary while sampling at § = ¢g, —¢o, we have 9V/96 = 0 from (10) at these two
points. Putting these together, (11) can be re-written as the set of equations

1 [oV\?
2M<69) — AV =0, —¢g <0< gy, (12)
ov
q(l—Q)aqur(qu/\)V—q:O, 0= ¢o,q > gs, (13)
oV
Q(l—Q)%—(l—Q+A)V+1—q:0, 0 =—¢o,q <1—gqs. (14)

The first equation is the HJB equation of a “free particle” (with an additional discount factor)
which describes the motion of the agent while it traverses from one end to the other. The
latter two equations capture the evolution of the value function as the agent samples at ¢
and —¢q respectively conditional on not finding the target.
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The agent traverses a loop in state space:

cast sample

(¢07q5) S (_¢07q5) m (_¢07 1— QS) m (¢07 1-— QS) E— (¢07q5)7

The solution is found by following the value function around this loop, obtained by integrating
the above set of equations and matching the value function at (¢o, ¢s) at the beginning and
the end of the loop. We exploit the symmetry V(¢o,qs) = V(—do, 1 — ¢s), which reduces the
problem to matching the first and third points in the above loop. For an arbitrary choice of
(s, the solution to the first equation yields the value function during a traversal between —pg
and ¢g, which is then used to match the value functions at the two boundaries obtained from
the latter two equations. Optimizing over g5 then yields the optimal policy.

—¢pp < 0 < ¢o: Consider the first equation for —¢y < 6 < ¢g. Equation (12) has two possible
solutions

Va0,0) = "2 (0~ hala)?, (15)

where +/— corresponds to the solution where the agent moves right/left. At 6 = 6(q), the

two solutions meet. Since V is continuous, we have ((q) — h(q))? = (6(q) — h_(q))? giving

hy(q) + h_(q) = 20(q). We re-write hs(q) = 0(q) T g(q)\/% (with g(q) > 0) to get

V(t,q) = <\/‘;7 (0-0()) ig<q>) . (16)

The above expression represents the cost of travel and connects the value at the boundaries;
the two unknown functions 6(q) and g(g) can be found by matching the value functions at
+¢o. Note that V' is positive as expected; if not, the agent would simply choose to stop and
incur no control cost. From the equation for the optimal speed (10), for 6 > 6(q), the agent

moves to the right with speed A(0 — 0(q)) + \/%g(q) until it reaches ¢g. The trajectory is

therefore an exponential with exponent A. By symmetry, we expect é(q) = —5(1 — q) and
V(0,q) =V (—0,1 - q). In particular, #(1/2) = 0, i.e., moving to the right or left are equally
favorable if the agent is at § =0 and ¢ = 1/2.

0 = ¢o: Consider now the HJB equation at § = ¢g. By inspection, equation (13) has the
particular solution ¢(1 + X\)~!. The general solution is then the particular solution plus a
constant C' times the homogeneous solution (1 — ¢)'**/¢*:

(1—g)t+* q

(17)

Note that the above expression satisfies the boundary condition V(¢g,1) = (1 4+ A)~!, con-
sistent with the expectation that if the target is known to be at ¢y and the agent is at ¢y,
the expected discounted reward is [;° e *7e~"dr = (14 A)~'. Equation (17) has an alter-
native, perhaps more intuitive, derivation. Recall the switching probability ¢s at which point
the agent decides to leave ¢g. The value at V' (¢o,q) is the expected discounted reward of
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finding the target before the posterior ¢ gets to gs plus the discounted value at V(¢o,qs)
if the agent doesn’t find the target. Since ¢ = —¢q(1 — ¢), the sampling time for ¢ to get
to gs is 75 = qus dq/q(1 —q) = lnl%q —1In 1373%' The expected discounted reward is there-
fore q [)* e e Tdr = (1 - e~(+N7)  The probability of not finding the target in 7, is

1 — ¢+ ge~ ™. Combining these expressions we get
__ 4 —(14+N)7s
V(o = 1 18

+(1—qg+qge™)e MV (¢, gs)

Plugging in the expression for 75 yields (17). The equation holds for ¢ > g, for any arbitrary
gs. From the second derivation, it is clearer that the constant C' in (17) contains all the
dependencies on ¢s. Since the optimal switching point, ¢Z, corresponds to the point at which
the value is maximized, it is therefore the point at which C(gs) attains its maximum.

2.3.1 Relationship with marginal value theory

Before proceeding to find ¢, it is worth making a few clarifying points regarding the calcu-
lation of the optimal switching probability ¢ as the maximum of C(gs) and its relationship
with marginal value theory.

In marginal value theory as applied to foraging, one computes the optimal switching point
as the point at which the value of continuing to sample at a certain location equals the value
of switching to another location. If the agent decides to continue sampling at ¢Z, it would
imply that (13) applies just below ¢ as well as above it, where %—‘g is instead the left derivative
at ¢i. Continuity of V' then implies that the left and right derivatives match at the optimal

switching probability
oV oV

s o= g _. 1
i = ol (19)

We now show that this condition is equivalent to maximizing C(¢s) w.r.t ¢gs. Call fi(q) =
(1 —q)"*/¢* and fa(q) = q/(1 + A). From (17) we have for the right derivative %—‘q/|q57+ =
C(qs) f1(gs) + f5(gs). For q < gs, the agent immediately traverses from ¢g to —¢o. Using (16)
at ¢p and —¢g we get

V(o,0)"? = —\/2udo + V(—¢o, q)*/? (20)
= —/2p¢o + V(¢o, 1 — ¢)'/? (21)

Equation (17) applies to V(¢o,1 — ¢) since 1 — ¢ > 1 — g5 > ¢gs. Taking the derivative of (21)
w.r.t ¢ on both sides

v v o 1
VV(do,q) 94 V(¢o,1—q)
(Clgs) i1 —q) + f2(1—q)), (22)

which yields the left derivative of V' at ¢s. At the optimal switching point, equating the left
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and right derivatives at ¢}, we get the condition for the optimal switching probability

1
——— (C(a5) fi(q}) + f3(a3)
oo i +(a)
RN R (Cla) il = a¢) + f5(1 —q7)) (23)
For an arbitrary switching point ¢s, using (16) at g5, we have
V(0,1 - g5)"/% = /2urdo + V (o, ¢5) /. (24)

Plugging in (17) for the two value functions, taking the derivative w.r.t gs on both sides and
imposing (23) at ¢, it is cumbersome but straightforward to show that dC(gs)/dgs = 0 at g.
2.3.2 Optimizing for g;

Finally, to calculate the maximum of C(gs), we use (24) to first calculate C(gs) for any gs.
Using (17) for V(¢o, qs) and V(¢o, 1 — gs) in (24), and solving for C(gs), we get

A
C(gs) = —62—22\/>, where (25)
1
142 14X
qs 1_qs
clz(l_q)r( qA) , (26)
1 —2g, 2 5 (1—gy)'t
C =C1 < T xn QM)\%) - 4MA¢0Ta (27)
2

A= (2228 oungd) - suned—% 28
= T BAD, M¢01+)\ : (28)

The value of ¢} is then obtained using dC/dgs = 0 if there is a maximum for ¢s < 1/2 or
otherwise gs = 0. To get a sense of what the solution looks like, for A < 1 or when the cost
of control is large (but below the point where it is no longer optimal to traverse), we expect
q¢ < 1. In this limit, we use (24) and match terms up to O(¢>**) to get

A
s

Clgs) = —

(P ma(ire-caen - )

+O0(¢2™) (29)

where ¢ = 1 — 1/2¢2uX(1 + A). The above expression holds for ¢ > 0. Equating dC/dgs to
zero, we get
o o A ¢
CETINI+ + A+ 0=

(30)

where we have used ¢?* =~ 1 for g, ~ A and A < 1. For ¢ < 1, that term can be ignored as
its pre-factor is (3. For ¢ < 0, (24) cannot be satisfied, and we have ¢* = 0. In Figure M2c,
we verify the above approximation for ¢;.
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2.4 Rate of information acquisition

An agent has a constant probability of finding the target per cycle. We compute the rate at
which the probability of not detecting the target decays with time, which quantifies the rate
of information acquired by the agent about the target. After 7 = nr. i.e., after n cycles of 7.
each, the probability of not detecting the target I'¢(7) is

Ce(r) =07, (31)

where v < 1 is the probability of not finding the target per cycle computed below. Denote
Ts as the time spent sampling at ¢g (or —¢g) per cycle respectively. Since at ¢g, the agent

samples such that ¢ goes from 1 — ¢} to ¢%, we have 74 = — Eq* dq/q(1—¢q) =2In 1;3;. The
probability of finding the target in this period is g} fOTS e 7dr = ¢%(1 — e 7). Therefore, we

have

2

ve=(1-q¢(1-¢e™))". (32)

It remains to calculate 7.. If 7 is the time required for traversing from ¢g to —¢o (or vice-
versa), we have 7. = 2(7+ + 75). In (16) note that 6(¢¥) = ¢o so that g(¢i) = 'V (¢o,q})
(which can be evaluated using (17)). The leftward speed when ¢ = ¢} is thus

a _ 2V (60, 42)
G = MO = 0g) - [T, (33

This is easily integrated to give

2\l
7=A"'In (1 + V(cbﬁ@)) . (34)
To summarize,
Te(t) ~e ™,  where (35)
I=-— In(1-qi(1—e"™)) (36)

T+ Ts

is interpreted as the rate of information acquisition. Reverting back to the original t-scale,
we get

t _at’

Te(t) ~ e Mo ry, (37)

For the specific case of constant radial speed v, r(t) = vt +rg, the probability of not detecting
decays as a power law,

eI~

Le(t) ~t v, (38)

The mean time to find the target therefore diverges above a speed v*/aw = I, which is set by
a combination of the uncertainty ¢g, the movement cost p and the discount rate A.
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3 The Generalized Worm-like Chain (GWLC) ensemble of
trails

Suppose ¢q, @1, are the headings at two points separated by distance L. We first compute
the joint distribution P(¢g, ¢1,) for an Gaussian ensemble of trails with persistence in heading
(WLC) and then introduce a new model with persistence in curvature, which we call the
Generalized Worm-like Chain (GWLC) ensemble. While P(¢g, ¢r) is the “interpolation”
model, we will subsequently also calculate the forward model of how the trail’s heading and
transverse position changes with distance from a fixed end.

Since ¢g, ¢1, are jointly normal, it is sufficient to compute their means and the covariance
matrix. We denote b1, bs for the diagonal and off-diagonal elements respectively of the inverse
covariance matrix. In the interpolation models, the agent makes contact with the trail at
=0,y =0and x = L,y = 0. Small-angle approximation is used throughout; its validity
is examined further below. ¢, = 9, is the local heading (i.e., the tangent) and y, is the
curvature.

3.1 Wormlike-chain

We begin by considering a simple wormlike-chain (WLC) model with no force, which corre-
sponds to the model in the main text without curvature. The probability of a given path
is

e 1 [k
P({¢s}) ~ e €UD | where &= — / drg? = — / dzif (39)
2K 0 2K 0
The Euler-Lagrange equation is d*y/dz* = 0, so that the extremal path is a cubic polynomial,
Yy = Zizo apz3. There are four parameters. Setting yo = 0 and y;, = 0, writing az’s in terms
of ¢r,, ¢o and plugging this in (39), we get the joint distribution

2
P (g0, ¢1) ~ exp <‘m (#6 + dodr + d%)) (40)
The inverse covariance matrix therefore has diagonal elements, by = 4/kL and off-diagonal
elements, by = 2/kL. From inverting the matrix, the correlation is p;, = —ba/b1 and U% =
(%) = (¢2) = b1 /(b? — b3), which gives
p(L) = —1/2, o*(L)=kL/3. (41)

3.2 Fixed but unknown curvature

We now consider the case when the trail has a fixed but unknown curvature y ~ N(0,£72),
where £ is the typical radius of curvature. Given y, the WLC action is modified as

L
£0) = = /0 dx(de - X)°. (42)

:2,%

When the hidden variable x is integrated out, we get

1 Loy (¢r— o)
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This looks much like the WLC case from before except for the extra boundary terms. These
don’t affect the extremal path which is still a cubic polynomial. Plugging this in as before
after setting yo,yr, = 0, we get

2
P(¢o,¢1) ~ exp (-:L <(¢(2) + door + ¢7) — m>> : (44)

We can immediately see that when x&2/L > 1, this reduces to the WLC case. This is simply
the case of (kL)'/2 > L/¢ i.e., the curve diffuses much more than it curves. Call iy, = k&2/L.
Expanding the above equation, we have

4 1
by=— (1——-—" ), 45
! /@L< 4(1+ML)> (45)
4 (1 1
by=— (=4 - 4
2 /—@L<2+4(1+ML)>’ (46)
so that
1+2u1/3 kL 3
L)=-——°-FL= L)="2(1+-2-). a7
p(L) T 4 /3 o (L) =~ + (47)

When jiy, > 1, we recover p(L) ~ —1/2 and 0?(L) ~ xL/3. On the other hand, when uj < 1,
we have

p(L)~ —1+2up/3, o*(L) =~ L?/4¢>. (48)

3.3 Varying curvature with a finite correlation length (GWLC)

In the previous section, we calculated the case of a fixed curvature, i.e., the curvature has
infinite correlation length. Now, we assume the curvature is an Ornstein-Uhlenbeck process
with correlation length A. This corresponds to the full model considered in the main text. In
this case, we have to integrate out the uncertainty over the initial curvature yo as well as the
stochastic curvature field.
The full action including the y, curvature field and the stationary prior is
L . 2 rL 2 2.2
€00 = o [ ot + 2 [ (1 22) 4 0 (19)
The prefactor A\é?/4 ensures the stationary distribution of x is N(0,£72). We integrate Y.
out using the Gaussian integral formula and obtain the effective action in ¢,. To do this, we
require the correlation matrix of the curvature process x,, which we calculate below.
Let’s first calculate the correlation function for the curvature OU process without coupling
it to the ¢ field, i.e., we ignore the first term in the action above. Let xo, x1, ..., xn~ be the
curvature at lengths 0, dx, 2dx, ..., Ndz, where de = L/N < A. The dynamics is defined by

2

e dW (x), (50)

Xit1 — Xi = —Xidx /A +

10
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where dW (z) ~ N(0,v/dz). Then, the joint distribution of this set including the prior is

a2 N—1(Xit17Xi | X5 _%
P(x0:X1,---,xN) ~e E~e Tl () -5 (51)

The cross term when the parenthesis is expanded is o fOL dz(2xzxz) = X% — X3- The action
is

AE? = i -\ X7 2 X8
5:46595(25 (dx +35 |+ Oy —x0) + 25 (52)
A2 [ (&= dz? dz
= Idz { (Z (i1 — xi)* + X?ﬁ + (X% + x0) BN (53)
=0
a2 (L
= 1dr Z XG5 | (54)
4,7=0

where G is the correlation matrix and G~! is a tridiagonal matrix,

1+ dx /X + dz? /N2 -1 0 0
—-1 2+dz? /N2 —1 0
Gt = : . (55)
0 0 ce 24 da? /N2 -1
0 0 ~1 1+ dz /X

The inverse of a tridiagonal matrix can be calculated using a pair of recurrence equations [1]:

R, _1Sj11/Ry, ifi<j
i = o (56)
Rj_1Siv1/RN, ifi>j,
where R and S satisfy the recurrence relations and boundary conditions (d; = G, D)
Ri:diRi—l_Ri—Qa i:1,27...,N, R_l = ]-,RO:dO; (57)
Si =d;Siy1 — Siy2, i=N—-1,N-2,...,0, Syy1=15v=dy, (58)
(59)

Since d; = 2+ dx?/)\? for i # 0, N, we can immediately see that in the continuous limit away
from the boundaries

R—R/\ =0, (60)
S—S/A% =0, (61)

The difference between R and S is in the boundary conditions. We have R_1 = 1,Sy11 = 1,
Ro— Ry =dx/\+ dx?/)? and Syy1 — Sy = —dx /), which implies in the continuum

(62)
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Solving for R and S, we get
R(z) =", S(x) = eF=0)/A, (63)

Finally, we should be careful about Ry which appears at the denominator of the correlation
matrix (56). We have Ry = (14+dx/A)Ry_1 — Rny—_2. R(z) is not continuous at the rightmost
point. Call Ry = Z(L), Ry—1 = R(L — dx) and Ry_o = R(L — 2dz), we have as dz/\ — 0,

Z(L) = (1 + dz/\) R(L — dx) — R(L — 2dx), (64)
= du (R(AL) - R(L)y_> : (65)

where R(L)|_ is the left derivative of R at L. We get Z(L) = (2dz/\)e™/*
Plugging into (56), the correlation matrix in the continuous limit is

A /
A o=/ (66)

Glw,2) = 2dx

as expected for the correlation function of an OU process (note that we multiply by 2dz/\ in
).
Now, let’s get back to the full problem. The full action is

1 L ) A2 L A2 £2y2
5(X):2H/0 d$(¢m—Xx)2+i/() dx (XI+X7) +% (67)
1 E 1 /L. A2 L _ 2
=2 ), dl‘(%)Z—K/O d$¢zX:v+i/O dx ((Xa:)2+92x§)+%(><%+x3), (68)

where the boundary terms are the same as above and we have defined 9% = A\™2 + V2 and
V2 = k€2)/2. We need the correlation matrix G of  in this case.

However, notice now that even though the effective dynamics contain Q2 instead of A\72,
the boundary conditions remain the same. That is, we should still get (62), but the solutions
of (60) are now of the form R(x) = Ae* 4+ Be~%* (and similarly for S). We instead get

R(x) = cosh(Q) + ALQ sinh(Q) (69)
S(z) = cosh(Q(L — ) + % sinh(Q(L — ), (70)

ie, A= (14+1/72)/2,B = (1 —1/XQ)/2. Since the boundary conditions are the same as
above, we have for the normalization

Z(L) = dzx (R(AL) + R(L)|_> (71)
= dx (A (i + Q) 4B (i - Q> e_QL) (72)
= 2;% ((1 + QN — (1)) e*QL) : (73)

12
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Once we multiply by the pre-factor, \/2dz, the re-scaled correlation matrix, G(z, ') is

K(L) | R(z)S(z'), ifx<a
3 R(z")S(z), ifx>a,
4N\
where K(L) = 5 5 (75)
(1+ QN7 el — (1 — QM) e 0L
Using the Gaussian integral formula in (67), we get for the effective action
1 [

et = ﬂ dx( @; ~ 53 / / dzdr’ $,G (x,z )gbw/ (76)

3.3.1 Fixed curvature limit

We check if the case derived for fixed curvature is recovered when A — oo. Since ) =
AE/1 + 20 /k€2, when ) is taken to be large, we get (AQ)? ~ 2\/k€2. Also, QL < 1. From
(75), in this limit,

4X0)
K(L) =~
B~ Ras20+ 005aL (77)
1 1

1 N 1+(/\Q) 1 14 L/k€2 (78)

When QL < 1, both R(x) and S(z) are 1. The correlation matrix is therefore
Gla,2) ~ — (79)

T2+ Lk
Plugging in (76), we get
1 b (¢ — ¢0)”

i ([ do(dn)? = L_20S ) 80

which is the one derived assuming fixed curvature.

3.3.2 Extremal equation

With the correlation matrix in hand, we proceed to compute the extremal equation in y,
satisfied by the effective action. From (76), the Euler-Lagrange equation is

d? 1 [t
@ (y:r - H/() G(x,l',):i]x/d.%/) = 0> (81)
which gives
1 L
i — /-;/ G(z,2")jwrdz’ = (QN)7? (co(L — 2) + cr2), (82)
0

where the form of the r.h.s has been chosen for notational convenience which will be apparent
later. ¢p and ¢y, are constants. The integral over G can be eliminated by differentiating w.r.t

13
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x twice. Define f(z) = AR(x). Then the correlation matrix is G(z,2’) = K(L)f(x)f(L —
o) /N2¢2 for v < 2’ and G(w,2') = K(L)f(L — x) f(2')/N\2€2 for x > o',

Differentiating once w.r.t = gives

K(L L i v "
0 =2 ([ 1@ it = [0 0@ de’) + @ - ) (59
Differentiating once more, we can use

F@)f(L—z)+ fl@)f (L —=z) =" ((1+ (AQ)?) cosh(Qz) + 2AQ sinh(Qx)) (84)
= 2)\/K(L) (85)

and f"(x) = Q?f(z) and f"(L —z) = Q>f(L — x) to get

T e
= — iyl + 0%, - WEZDEAL, (57)
_ %yw B co(L —):132) + CL:L" (8)
where we have used Q2 = A\=2 + V=2 and (82) to get rid of the integral over G.
3.3.3 The joint distribution of end-point angles
The general solution of the extremal equation (88) can be written as
Yo = ao(L —x) +arz + co(L6x)3 + ch; + N2doe=Em/A 4 N2 eme/? (89)

We'd like to get the coefficients in terms of ¢g and ¢, given yg,yr, = 0. The coefficients dj
and dj, are not independent of ¢y and ¢z, and are to be obtained by plugging in (89) into (82).
For convenience, we work in terms of ¢(z) = §j,. We have

Y(x) = §p = co(L — x) + cpaz + doe”F=D/ 4 dpe=2/2, (90)
We can use integration by parts to compute the integral in (82). We have

i/OL G(z, 2 ) () da’ K;gz < / f@)(a)da' + f(a / f(L m)¢(x’)dx’)~

(91)

Write ¢(x) = h(z) + g(x), where h(z) = cO(L —x)+ ch and g( ) has the exponential terms.
Then h"(z) = 0 and ¢"(x) = g(x)/A*. Let I(g) = [3 f( x')dz’. We have

- /0 ’ f'(@)g(a')da' = Q72 (f'(2)g(x) — f(0)9(0) — f(x)g'(x) + f(0)g'(0)) (92)
+ (AQ)2I(g). (93)

14
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Sending the I(g) to the left side and using 1 — (AQ)™2 = (VQ) 2, we get

I(g) = V2 (f'(x)9(x) — f'(0)9(0) — f()g'(x) + £(0)4'(0)) (94)
Similarly, define I'(g f f(L Jg(x')dx'.
/ (L )dz' = Q72 (f'(0)g(L) + (L — 2)g(x) = [(L - x)g'(x) — f(0)g'(L))
(95)
+ (A2 (g), (96)
which gives
I'(g) = V2 (f'(0)g(L) + f'(L —x)g(x) = f(L —x)g'(x) — f(0)g'(L)) (97)
Eventually, after some simplifications we get
N (=210 + [)I'(9)) = (98)
K(L)

9(@) = == (f(@) (f(0)g(L) + [(0)g' (L)) + F(L = z) (f(0)9(0) = f(0)g'(0))) - (99)

When we compute the same integrals for h(x) instead of g(z), since h”(x) = 0, when we
integrate by parts we don’t get the I(g) as we d1d on the r. h s of (93). We can replace V2 by

72 and repeat the same calculation for I(h fo "Ydx' and I'(h) to get
g(fg (F(L = 2)I(h) + f()I'(R)) = (100)
@) (o) - S5 (7(0) (FORD) + FOWD) + (= ) (FOH0) = FOH () ).

(101)

We subtract (99) and (101) from ) (x ) to evaluate the L.h.s of (82). The g(x) cancels out,
whereas h(z)(1—(2V)72) = h(x)(2)\) "2 cancels out with the r.h.s of (82). The leftover terms
read

f(@) (f ()( )+ £(0)g' (L)) + F(L — ) (f/(0)g(0) — f(0)g'(0)) +  (102)
(QV)72 (f(2) (F(O)A(L) + FO)(L)) + F(L =) (f'(0)h(0) = F(O)W'(0)) =0 (103)
Define m(z) = g(x) + (2 ) 2h(x). Using £(0) = X and f/(0) = 1, we have

f(x) (m( )+ A/ (L)) + f(L—x) (m(O) — )\m'(O)) =0. (104)
Since f(z) and f(L—x) are independent, we have m(L)+ Am’(L) = 0 and m(0) —Am/(0) = 0,
which we re-write as m(L) +m(0) = A(m/(0) —m/(L)) and m(0) —m(L) = AX(m/(0) +m/(L)).
From the definition of g(z) and h(z), we have

m(0) = (QV)2¢oL + doe X/ + dp,, m(L) = (QV)2cL L + do + dre "/, (105)
m/(0) = (QV) (e, —co) + A1 (doefL/’\ - dL) ,m/ (L) = (QV) (e, — co) + A7 (do — dLefL/A> :
(106)
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From the above two conditions m(L) + Am/(L) = 0 and m(0) — Am’(0) = 0, it is easy to show
that

L
_292‘/2 (CO + CL) = dO + dL7 (107)
L+ 2\
Sopye(co —cr) = do —dy. (108)

We want to write the effective action as a quadratic form in ¢g and ¢r. Notice that the
effective action can be written as

1/ [F 1 [* ) )
_ i (5, -1 Vi . 1
Eoft oy </0 dxj <y /f/o G(z,z") i dx )) (109)

When we integrate by parts twice, two of the terms are zero, one because yg,yr, = 0 and the
other from the extremal equation (82). The leftover term is a boundary term

1 1 (L 1 [k
Eoft = 27 (ylL <yL - / G(La$/)?jx’dx/> - y6 (yO - / G(val)yI’dJ:/)) (110)
K K Jo Kk Jo

L
= 2002 (¢rer — ¢oco) , (111)

where we have used (82). It remains to express cg, ¢z, in terms of ¢, ¢. The inverse covariance
matrix should have equal diagonal elements and equal off-diagonal elements, and so we should
have the form by (cr, + co) = ¢ — ¢o and ba(cr, — co) = ¢r + ¢o for some by, by which are to
be found. From (89), we have

0=aoL 4 coL?/6 + N2doe™*/* + X2dy, (112)
0=arL +cpL?/6 + X2do 4+ N2dpe 1/, (113)
doL = arL — agL — coL?/2 + ALdpe "/* — \Ldy, (114)
¢rL = arL — agL + cp L3 /2 + ALdy — MdpLe "/, (115)

After some straightforward manipulations, we get

L? AL —L/
b= = s (1) (116)
L? ML+ 2)) ~L/x —L/A
b=~ gamvar (L(1+e?) =2 (1-c71)). (117)
It can be checked that
by — b1 9 KO2\2 b1 + bs
L) = L) = 118

To recover the WLC and fixed curvature limits, we can expand b; and by for small L/\ < 1
to O(L?). We get

L? L3
bR Same T hare (119)
LQ

Plugging in (118), we recover o%(L) ~ xL/3 + L?/4¢2.
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3.3.4 Numerical validation

Before comparing to numerics, we would like to examine the limits of validity of our original
small-angle approximation, i.e., the conditions for <¢2L) < 1 to hold. For simplicity, we
consider the case when k is small w.r.t the other length scales in the problem. Then, we can
show that

A [AL? ML +2X
)~ 57e (3 — LA (1= e - (22) (L=22+ (L+2)) eL/)‘)> (121)

We assume £ > A since otherwise the trail forms circles. When L > A, we can show
diffusive scaling (also apparent in Figure M3c), (¢2) ~ 2AL/3¢2. This expression is valid
when 1 < L/ < 3¢2/20%. When L < A, (121) reduces to (¢2) ~ L?/4£% derived previously,
which is always much less than one in that limit if £ > A. Thus, the small-angle approximation
is valid for L/\ < 362/2)2.

For numerical validation, we integrate over s, dz/ds = cos@, dy/ds = sinf, df/ds = x
and dx/ds = —x/\ + \/2/A&3n, where n is white noise. The initial conditions are z(0) =
yo = 0(0) = 0 and x(0) ~ N(0,£72). Rotating the # axis so that initial and final y are zero,
we have ¢g = —yr/L and ¢, = (L) — y/L. We plot o vs L, where 0% = ((¢3) + (¢2))/2.
Results are shown in Figure M3e.

3.3.5 Forward propagator

We exploit our previous calculation of the extremal path to compute the forward propagator,
ie., P(or,yrloo = 0,50 = 0) (if ¢p # 0, we can simply re-orient axes). In this case, the
extremal path remains the same, but when we integrate the effective action (109) by parts we
get a different expression:

eff = 9% Yr |\ YL % Jo y L)Y QAT yde Yz % Jo T, T )Yy AT ;
1
= 522 (¢rLer, —yr(er — co)). (123)

We need to express ¢y, and ¢g in terms of ¢, and yr. We have from (89)

0=aoL + coL3/6 + N2dpe L/ 4+ \2dy, (124)
yr, = arL + cp L3 /6 + N2dgy + N2dpe 1/, (125)
0=arL —apL — coL?/2 + ALdoe "/* — ALdy, (126)
¢rL = arL — agL + ¢ L3 /2 + ALdy — MdpLe 1/, (127)

The relationship between do, dy, and co, ¢y, in (107) remains the same as before. From these
equations, it is lengthy but straightforward to show that

o = (cr, + co)by, (128)
yy = ot ;L)blL L (oo ;L)bQL_ (129)
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Solving for ¢y, and ¢y and plugging in to (123), we eventually get

(0% )twa = 2m(Q0)%b1 /L, (130)
(4 )iwa = HOAPL S = 12467,

(GLyL)twa = K(QN)?by

These expressions are numerically validated as shown in Figure M3f. Note also that the
widening of the azimuthal position yr,/L is given by o2 (L) = (y%)twa/L?* = (¢%), which is
the variance of end-point angles for the interpolation model.

4 The non-detection probability during surge and cast

In this section, we analyze a sector search strategy where the agent casts rapidly and moves
radially with constant speed. In contrast to the previous section, the full dynamics of trails is
considered. The key quantity here is the non-detection probability of not detecting the trail
at radial distance L after loss of contact, I'¢(L), using which we can calculate mean times to
detection and the probability of missing the trail. We compute the non-detection probability
conditioned on initial path heading, I'c(L|¢). We have

2

rew) = [ h jj?es’izrc@w (131)

where o is the uncertainty. We assume constant longitudinal speed v, transverse speed wu,
sampling rate w and kernel size a. We also assume there is a duration, t,, after the most
recent detection where the agent does not detect which represents the minimum delay after a
sample (for e.g., the exhalation phase of a sniff). We expect ¢, ~ w™!. We set t, = 0 for the
results presented in the main text and Methods. Throughout, we use the GWLC ensemble of
trails (Section 3.3).

4.1 Non-detection probabilities in the cast phase

The probability that a particular trail path, {y(z)}, is not detected is the probability that the
agent does not sample during the period when it is within detection range of the trail. The non-
detection probability is thus e~ “7{¥(®)}) where T({y(z)}) is the total time of overlap between
the agent’s detection range and the trail’s path. We assume the tangential speed u/aw > 1
and the detection kernel has full-width a. Let the turning points be at the azimuthal envelope
02Oy (), where x is the distance along the most likely heading. During casting, the agent
repeatedly traverses from —oxOeny () t0 02Oeny(z) (and vice versa) in time 202Oeny () /u.
It is easy to show that if |y(z)| < a/24 02Oenv(x), then the time spent within detection range
of the trail during a single traversal is given by

Tiraversal = U (min(202Oeny (), y(x) + a/2 + 02Ocny(z)) — max(0,y(x) — a/2 + 0xOcny(x)))) .
(132)

In the time it takes to travel dx in the longitudinal direction, the total number of traversals

is %d—m. Therefore, the total time spent within detection range while the agent travels
o1Oenv () v
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dz is

y(x,y(x))dx/v = min(202Oeny (), y(x) + a/2 + 02Ocny(z)) — max(0,y(x) — a/2 + 0xOcny(x)))
dx

200 Oeny () (133)

In this u/aw > 1 limit, the detection probability is thus independent of u. To compute
I'c(L|p), we need to integrate over all trail paths with y(0) = 0,y'(0) = ¢ up to length L.
That is

To(L|p) = / Dy(2)e EW@Ny@=0y == foi, @I @y@)I(y@]<a/2+oa0me@)  (134)

where £ is the action defined by the specific model of the trail and the integral is over trails
with y(0) = 0,y/(0) = ¢. It is useful to rotate axes such that the paths y(x) have initial
heading 0, i.e., equivalently,

Te(L|¢) = /Dy(x)e5({y($)})y(o)_o,y/(o)_o:j vatT dm’(ffﬂ7<7J("JC)+¢>90)]1(|y(96)+¢96|<a/2+096@cnv(93))7 (135)

We now exploit the spline formulation from the previous sections. The simplification is that
the extremal paths of the action have relatively simple forms like the one in eq. (89). Since the
extremal paths are constrained only by the initial and final positions and headings, they have
four parameters, two of which are fixed by y(0) = 0,4'(0) = 0. The action for the extremal
case thus has two free parameters, viz., the final transverse position, yr, and final heading,
¢r. From our previous results, the action is a quadratic form in y; and ¢, which have
mean 0 and covariance (¢F )gwd, (Y2 Vtwds (PLYL)twa in (130). We will assume the diffusivity &
is negligible in the analysis hereafter. The results can be easily generalized to diffusive trails.
Note that £ > A, otherwise the trail forms circles. The path y(x) has the form (89), where the
coefficients ag, ar, co, cr,dp,dr, can be written in terms of yr,, ¢r using the relations derived
previously. The expectation over paths in (135) is replaced with an expectation over ¢r,yr:

Te(L|g) = (e~ % o @@ +o1 (u(e) orl<o/2tonOum(@)y (136)

which is efficiently computed numerically by sampling (sampled ¢, yr can be re-used for all
®)-
4.2 Geometric interpretation

When v is small, the first order contributions to the non-detection probability come from the
path most likely to survive the casting search. That is, to first order we can approximate the
integral (135) as

w [T
—InTe(L|p) ~ ﬁuﬁ {S(yL, or) + " /t dzy(x,y(x) + o) 1(ly(z) + ¢z| < a/2 + aw@env(aj))} ,
' (137)

where E(yr, ¢r) is the action. Note that the minimum is rather shallow, so the first order
approximation is not a very good one (since the trails are flexible at the length scales of
interest), but leads to some geometric intuition.
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In Figure M4d we show examples of the path that minimizes the quantity in the parenthesis
above. Intuitively, when ¢ is small, the minimizer path is ‘immersed’ in the rotated casting
profile and should expend significant bending cost in order to escape the casting region. The
minimizer is simply a straight line. In this case, £(yr, ¢r) = 0 and all the ¢ within this range
have approximately equal probability of being absorbed. As ¢ increases, the casting profile
gets lower and there is a transition point, ¢* (which depends on L), where the minimizer path
can escape the casting region without incurring too much bending cost. This is shown in the
middle panel of Figure M4d. For ¢ > ¢*, the non-detection probability rapidly increases.
At large angle, the casting profile no longer has a significant effect on the non-detection
probability and the minimizer path begins to straighten out again.

The posterior distribution of the initial heading P(¢, L) is P(¢, L) o Te(L|¢)e™%"/20%,
which can be numerically computed from (136). The prior is unimodal, which transitions to a
trimodal shape at intermediate values of L. At large L, the posterior becomes bimodal. The
locations of the modes at large L are computed below for small v and conical envelopes.

4.3 Conical casts

We analyze the case when Ogpny () = Og is a constant. In this case, I'¢c(L) can be approx-
imated and the optimal speed derived. The contribution to I'c(L) from trails outside the
cone, || > 00y is calculated further below. For trails directed inside the cone, their non-
detection probability decreases independent of their initial heading until they escape the cone.
The point at which they escape the cone is easily calculated. We give a heuristic argument
(partly reproduced in the Methods) which captures the basic intuition and leads to a good
approximation for T'¢(L).

The idea is that to first order, for L/A < 1, the trail paths have a single curvature scale
x ~ &L If |¢] < 0Oy, the trails need to curve 0©g — ¢ radians to leave the cone, which
is at L* ~ 26 (0©¢ — |¢|). The non-detection probability can be calculated from (136), but
~ has a complicated dependence on x and y(x). To simplify, we assume for trails inside the
cone y(z,y(x)) ~ v(x,0), which corresponds to the trail directed along the cone’s midline.
Then, v(z,y(z)) = 1 if a/2 > 0Oeny(z) and y(z,y(x)) = a/20Oeny(z) otherwise. Define
B = aw/20v0y. From (136), we get for |¢p| < 0Oy

a/200g

B
7 ) if a/200¢ > vt,, (138)

Le(L|) ~ et? (

vty

B
~ <L> if a/200¢ < vt,,

until it flattens out at some Lj, calculated below. For small L and ©¢ > 1, T'¢(L) is determined
by the trails directed within the cone and thus I'¢(L) ~ T'¢(L|0) also decays as (138) until it
flattens out. There are two possibilities for I'c(L) to flatten out, whichever occurs earlier: 1) a
significant fraction of trails leave the cone, or 2) I'¢(L) decays until it matches the probability
of missing the trails that began outside the cone.

We estimate the length scale at which a significant fraction of trails leave as Ly, ~ 2600y,
when even the trails initially directed towards the center of the cone escape. This underesti-
mates Li, since the curvature of trails with large initial curvature (the ones that escape) may
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revert back to the mean. At L = Lj,, I'c(L) flattens out at

€in ~ L'c(Lin) = Te(Lin|0), where (139)
Lin ~ 250‘@0 (140)

This fixed curvature estimate is valid when 26009 < A. When L > A, the trails’ azimuth
diffuses as A¢? ~ AL/, and thus it takes Ly, ~ 20203 /) for most trails to diffuse 00( and
out of the cone.

We now calculate the probability of missing the trails that began outside the cone, €gyt,
i.e., the trails with |¢| > 00g. These trails leave the cone early before the casting phase
2000L > a begins. Since L is small, we can assume these are stiff, straight paths with angle
¢. The distance at which they escape is L* ~ a/2(|¢| — 0©g). Define 8’ = ov/aw. The
conditional non-detection probability is

Te(L|p) ~ e ftr dzfv _ QWtT_QB’(\¢\}G—@0). (141)

Then,

26LUtT e’}
€out ™~
V2ro? Jse,

Transforming variables ¢ — ¢/ — ©¢ and expanding the prior term, we get

T e 12 gy (142)

2O [0 1 s2/2-ge
€out ~¥ ———F— e 28'¢ °de. 143
out m 0 ¢ ( )

We calculate the above integral in the small 8’ limit. This is because, as shown below, when
f' < 1, the detection rate of trails towards the center of the cone scales as /~!, whereas for
trails that begin outside the cone the detection rate scales as /~2/3 or #/~1/2. Thus the small
B’ limit is the relevant one for eyy; i.e., when eout > €in.

When ' <« 1, (143) can be approximated using Laplace’s method, but the maximum
is hard to calculate analytically since its a cubic root. It is easy to show that depending on
whether 2803 < 1 or 28’03 >> 1, either ¢?/2 or $O respectively dominate at the maximum.
For the two cases, we substitute ¢ = 8/~2/3¢/ or ¢ = 5/~1/2¢/ respectively to transform the
moving maxima and use Laplace’s method to get up to constant prefactors

2
0

Cout ~ 2 2@ ip0gr@3 (144)
. _©8f  (2008)'/?
Cont ~ (B'OF) VAT T if 2508 > 1. (145)

When €5yt > €in, we can define a length scale, Loy¢ when I'c(L) flattens out, which satisfies
€out ™~ PC(Lout)- (146)

We can also estimate the initial heading of the trails that are most likely missed. When
€out < €in, this is the trail directed towards the center of the cone, ¢ ~ 0, since the trails
missed are the ones inside the cone and ¢ = 0 has the highest prior probability. When
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€out > €in, this is located at the extrema in the integrals above, i.e., |¢|/oc = O + (267)~ /3

and |¢|/o = Qg + (28'09) /2 for 26’0} < 1 and 26O} > 1 respectively.
In summary, we estimate if a/200g > vt,,

1, for L < wt,
ewtr_wL/U’ for vt, < L < a/200y,
B
ewtr—B <a/2+@°> , fora/2000 < L < min(Liy, Lout)

max(€in, €out), for L 2 min(Lin, Lout)

Fc (L) ~

If a/200¢ < vt,, we have

1, for L <wt,
Te(L) ~ < (4)° ) for vt, < L < min(Lin, Lout)

max(€in, €out), for L 2 min(Lin, Lout)

L (47

(148)

In Figure Mb5a we compare the prediction for I'c(L) to the numerically obtained result
using (136). Figure M5b shows the comparison between numerics and the prediction for

I'c(o00) for a range of values of 5 and .
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