

1 **Title:**

2 Experimental tests of functional molecular regeneration via a standard framework for
3 coordinating synthetic cell building

4

5 **Authors:**

6 Eric Wei^{1,3}, Drew Endy^{2,3}

7

8 **Affiliations:**

9 ¹ Electrical Engineering Department, Stanford University

10 ² Bioengineering Department, Stanford University

11 ³ The Stanford Synthetic Biology **eXperience**

12

13 **Contact:**

14 Drew Endy, endy@stanford.edu

15 Shriram Center RM252, 443 Via Ortega, Stanford, CA 94305 USA

16

17 **Authors' Wishes:**

18 We welcome direct inquiries from editors interested in facilitating a frank, fair, and fast peer
19 review process for this manuscript. We are committed to publishing all our research as open
20 access to benefit all peoples and the planet.

21

22 **Last Revised:**

23 3 March 2021

24

25 **Abstract:**

26 The construction of synthetic cells from lifeless ensembles of molecules is expected to require
27 integration of hundreds of genetically-encoded functions whose collective capacities enable self-
28 reproduction in simple environments. To date the regenerative capacities of various life-
29 essential functions tend to be evaluated on an ad hoc basis, with only a handful of functions
30 tested at once and only successful results typically reported. Here, we develop a framework for
31 systematically evaluating the capacity of a system to remake itself. Using the cell-free Protein
32 synthesis Using Recombinant Elements (PURE) as a model system we apply our framework to
33 evaluate the capacity of PURE, whose composition is completely known, to remake 36 life-
34 essential functions. We find that only 23 of the components can be well tested and that only 19
35 of the 23 can be remade by the system itself; translation release factors remade by PURE are not
36 fully functional. From both a qualitative and quantitative perspective PURE alone cannot
37 remake PURE. We represent our findings via a standard visual form we call the Pureiodic Table
38 that serves as a tool for tracking which life-essential functions can work together in remaking
39 one another and what functions remain to be remade. We curate and represent all available data
40 to create an expanded Pureiodic Table in support of collective coordination among ongoing but
41 independent synthetic cell building efforts. The history of science and technology teaches us that
42 how we organize ourselves will impact how we organize our cells, and vice versa.

43

44 [246 words]

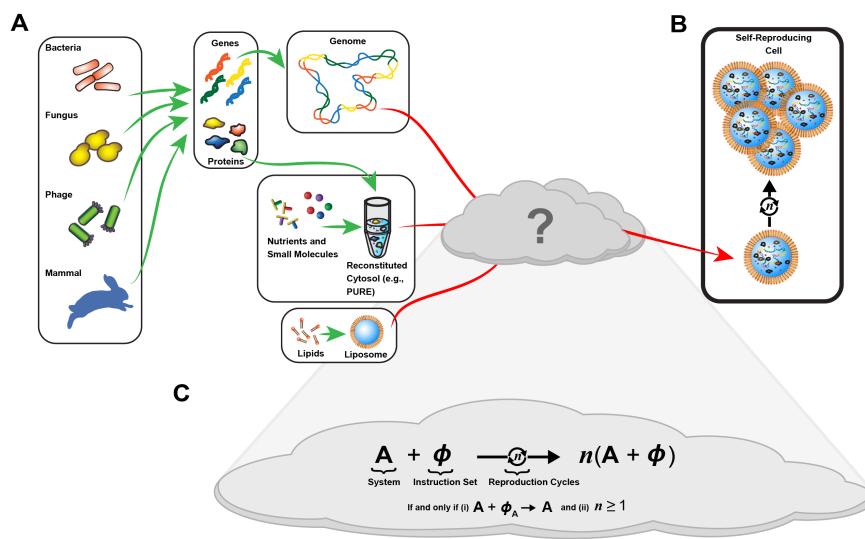
45

46 **Introduction**

47 Cells are the fundamental units of life, capable of growth, division, morphogenesis, and more.
48 Yet, there is no natural cell for which we understand all of its life-essential functions [1]. Our
49 lingering collective ignorance has practical costs that are difficult to quantify and overstate. For
50 example, most of biotechnology research and development has remained an Edisonian process,
51 grounded in trial and error, with state-of-the-art commercial platforms representing their prowess
52 with automation or ‘atheoretic’ approach. Fully-distributed biomanufacturing, in which cells are
53 optimized to operate reliably in many different local environments, remains practically
54 impossible. As a second example, biosecurity strategies presume that we will always remain at
55 risk from biology [2], a reasonable position given that each now-unknown life-essential function
56 is a potential vulnerability to be exploited by the next natural emerging infectious disease, let
57 alone by any mal-intentioned actor.

58

59 Understanding simple living cells in their entirety has been a dream of modern biology for
60 almost 60 years [3]. The best ongoing examples are pioneering efforts to fully understand simple
61 *mycoplasma* and *mesoplasma*. For example, sequencing followed by transposon mutagenesis,
62 comparative and experimental genomics, and ultimately genome design and synthesis have been
63 carefully combined to determine well-defined gene sets encoding all necessary and sufficient
64 life-essential functions [4-9]. Practically, these approaches starkly reveal that dozens to
65 hundreds of genes, each encoding life-essential functions, remain to be fully understood.
66 Ongoing work to apply modeling and computation in guiding future experiments [10-11]
67 suggests that many mysteries remain.


68

69 As a complementary approach scientists have long wondered about and explored the origins of
70 life, both in the context of Earth’s history and beyond [12]. More recently the possibility of
71 building simple cells from scratch has motivated the formation of world-leading scientific
72 consortia; significant work to establish and benchmark the performance of individual life-
73 essential functions is underway [13] (Fig. 1A-B). However, less well advanced is the
74 consideration of challenges that loom inevitably for any bottom-up cell building effort. Most
75 abstractly, just as natural genome minimization efforts highlight the mysteries of life-essential
76 genes encoding unknown functions, bottom-up synthetic cell building efforts seem likely to
77 encounter the puzzles of missing life-essential functions that are unknown (e.g., everything
78 thought to be necessary and sufficient for life has been added but the hoped-for synthetic cell still
79 does not grow and divide).

80

81 From a first-principles perspective the engineering of physical systems capable of self-
82 reproduction [14-15] must satisfy two criteria (Fig. 1C). First, qualitatively, the system enacting
83 the instructions for reproducing the system must be capable of producing a functional copy of the
84 system at both the level of individual components and as an integrated whole. Second,
85 quantitatively, the system must possess sufficient generative capacity to make or organize at least
86 as much material as needed to reproduce. For bottom-up synthetic cell building efforts the
87 qualitative criteria means that the DNA encoding the system, when expressed in the environment
88 defined within synthetic cell alone, must result in fully functional molecules for all so-encoded
89 molecules. Next, satisfying the quantitative criteria means, for example, that the total number of
90 peptide bonds used to instantiate proteins comprising the system can be catalyzed by the system
91 within a single reproduction cycle.

92
93 The Protein synthesis Using Recombinant Elements (PURE) system enables transcription and
94 translation of user-defined DNA [16]. PURE itself is well established as a research tool and
95 benefits from reliable commercial and informal supply chains [17-18]. Many have imagined
96 PURE or its analogs as a compelling biomolecular foundation upon which to build synthetic cells

Figure 1. Can we build cells from lifeless ensembles of independently-sourced natural biomolecules? (a)

We have the capacity to source, encapsulate, and encode the molecules thought to be essential for cellular functions. **(b)** Success would result in the capacity to produce autonomous reproducing simple cells comprised only of known components. **(c)** However, success requires that two abstract conditions be met. First, the ensemble itself must be capable of regenerating the functionality of all components comprising the ensemble (i.e., qualitative reproduction). Second, given energy and materials, the ensemble must be capable of remaking more of itself (i.e., quantitative growth).

97 [19-20]. Practically, for PURE to form the basis of any free-living synthetic cell, PURE alone
98 must satisfy the qualitative and quantitative criteria stated above or, more reasonably, when
99 supplemented with additional functions. Stated differently, if we added the DNA encoding all of
100 PURE to a mixture that began as PURE alone, would we get more working PURE made by
101 PURE?

102

103 Simple calculations suggest that PURE itself cannot satisfy the quantitative criteria for self-
104 reproduction. For example, on a quantitative volumetric basis, we estimate that PURE is only
105 capable of remaking ~1% of the peptide bonds needed to instantiate PURE itself; expression
106 capacity will need to be increased ~87-fold to enable sustained self-reproduction (Materials and
107 Methods). However, such quantitative challenges can likely be addressed via exogenous supply
108 of resources directly from the environment, via booting up of a regenerative and auto-sustaining
109 metabolism, or by addition of enzymes and mechanisms that increase the efficiency of protein
110 expression by reducing the number of truncated peptides produced and decreasing the rate of
111 ribosomal stalling [17,21-25].

112

113 Whether PURE can satisfy the qualitative criteria for self-reproduction is less clear. PURE is
114 well known to enable expression and synthesis of arbitrary genes, including many of the genes
115 encoding PURE itself [25-26]. However, the molecules comprising PURE are made by and
116 purified from intact cells, within natural contexts defined by the entire native complement of
117 biochemical functions. Functional modification of one or more of the molecules comprising
118 PURE via functions present in the source-cells may contribute to PURE activity yet not be
119 present within PURE. As examples, Li et al. reported that *E. coli* ribosomes consisting of
120 PURE-synthesized 30S r-proteins, native 16S rRNA, and a native 50S ribosomal subunit only
121 had ~13% activity compared to the native *E. coli* ribosomes [27]; Hibi et al. showed that PURE
122 itself could simultaneously remake 21 tRNA, one for each corresponding amino acid and
123 initiator tRNA, and when used by PURE recovered ~40% of full PURE activity [28]; Lavickova
124 et al. showed that PURE could regenerate the T7 RNA polymerase (RNAP) and eight tRNA
125 synthetases within a diluting fluidic system initiated by functional PURE [29]; and Libicher et al.
126 verified that PURE, through serial transfer, could make functional T7 RNAP, two energy
127 recycling factors, and an ensemble of 12 tRNA synthetases and RF1 [30]. Separately, Libicher et
128 al. and Doerr et al. used multi-plasmid systems to encode ~30 of the translation factors of PURE
129 and verified successful co-expression via mass spectrometry, but it is unclear whether these
130 PURE-made enzymes were functional [25,31].

131

132 Here, we sought to develop and apply a method by which each molecule comprising a candidate
133 auto-reproductive biomolecular system can be unambiguously evaluated in terms of the
134 qualitative ability of the system to remake the molecule. We also wished to develop an approach
135 by which additional molecules could be evaluated and accounted for. Finally, given the
136 complexity of bottom-up synthetic cell building efforts and mindful of couplings between
137 technical approach and cultural practice, what we sought was not just a method in which to
138 evaluate molecules but a framework around which a fellowship could form. We know from the
139 experience of other technologies that the essence of communal biotechnology will not only be
140 about performing experiments in laboratories but to encourage close communication and
141 collaboration [32].

142

143 **Results**

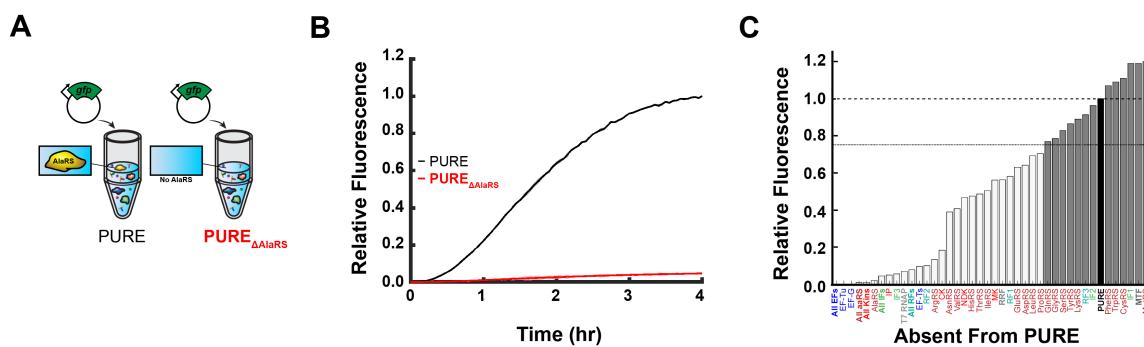
144 We first sought to systematically determine and quantify which individual enzymatic
145 components of PURE, when removed from PURE, result in diminished PURE activity as
146 measured by expression of a reporter gene. Since the standard commercially-available starting
147 material (PURExpress) combines all of the enzymes into a single tube (PURExpress Solution B),
148 we produced our own custom mixtures consisting of single-enzyme depletions by purifying each
149 enzyme comprising PURE and reconstituting single-enzyme depletion PURE variants.

150

151 We started by purifying all 20 tRNA synthetases (aaRSs) from *E. coli* (Fig. S2). We then tested
152 whether the purified synthetases were functional by adding them, all together, to the PURE
153 Solution B that lacked its own aaRS set and measuring expression of a green fluorescent protein
154 (GFP) (Fig. S4A, Fig. S3, red curve). We chose GFP as a simple, easily accessible reporter for
155 our study (Table S1). PURE Solution B lacking any aaRSs produced almost no GFP whereas
156 GFP was well-expressed by PURE Solution B containing commercially supplied aaRSs (Fig.
157 S3). We observed that the expression profile of PURE using our newly-purified aaRSs nearly
158 matched those of the commercial mixture, suggesting that our so-purified aaRSs were all
159 functional and could be used to construct each of the 20 aaRS single-depletion PURE mixtures.

160

161 To construct the remaining 16 single-enzyme depletion PURE variants we sourced six different
162 custom PURE Solution B kits (NEB), each with a different subset of missing enzymes (Fig. S4).
163 We then made all remaining single-enzyme depletion PURE variants by supplementing each
164 depletion subset with the appropriate combinations of enzymes that we had independently
165 purified from *E. coli* or sourced commercially (Methods).


166

167 We next measured GFP expression capacity for each single-component depletion (SCD) (Fig. 2, 168 Fig S6-7). We use $\text{PURE}_{\Delta(\text{component})}$ to indicate specific SCDs. We expected some decrease in 169 expression for all SCDs since each component tested is necessary for gene expression, in 170 general, and our reporter gene (GFP) requires at least one of each of the 20 standard amino acids 171 (Table S1). For example, $\text{PURE}_{\Delta(\text{AlaRS})}$ (i.e., PURE lacking the alanine tRNA synthetase) 172 produced ~98% less in GFP expression relative to intact PURE (Fig. 2AB). However, we 173 observed that each SCD produced a different level of GFP expression, from no change to almost 174 complete loss of expression (Fig. 2C).

175

176 We used an expression-loss threshold of 75 percent full PURE activity to select which SCDs to 177 advance for use in testing if PURE-made components can reconstitute PURE. We selected this 178 threshold empirically to provide sufficient dynamic range in our subsequent reconstitution 179 experiments; we expect that optimized reporters and improved measurement methods will be 180 helpful evaluating the thirteen components we did not consider further here (nine aaRSs, IF1, 181 IF2, MTF, and RF3). The remaining 23 SCDs, each exhibiting a sufficient decrease in reporter 182 gene expression, include all translation elongation factors, all PURE-specific kinases, T7 RNA 183 polymerase (RNAP), and eleven aaRSs.

184

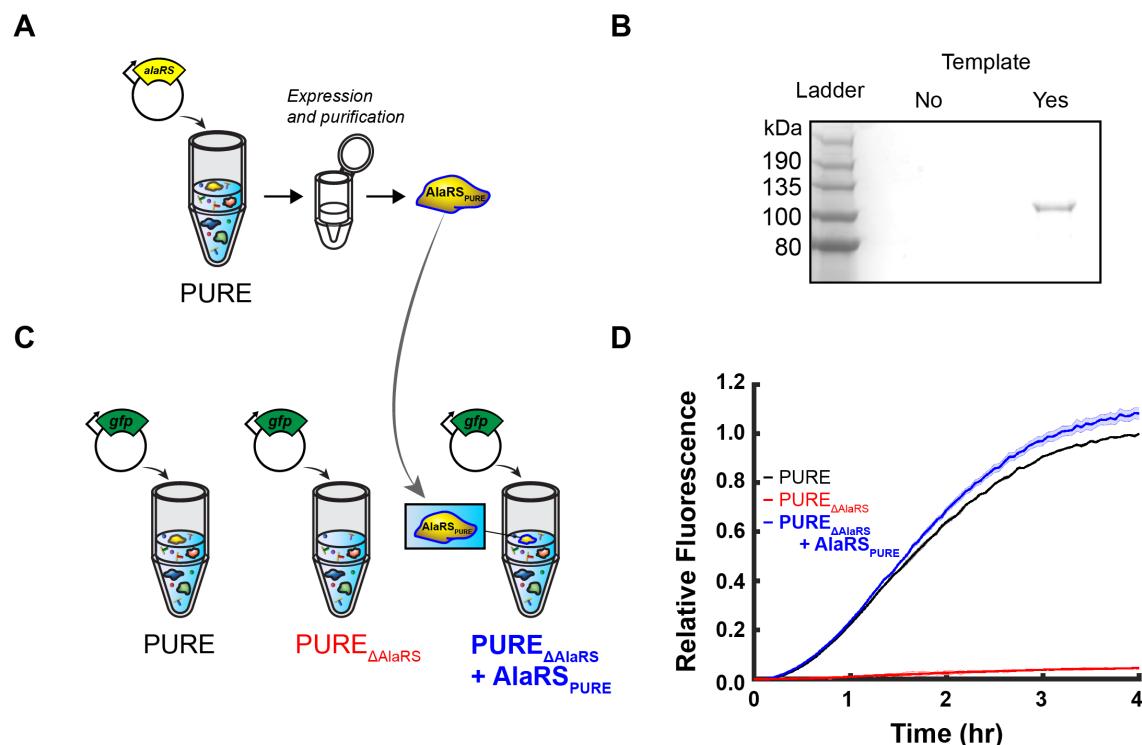


Figure 2. Molecular ensembles lacking individual components can be evaluated for reduced activity. (a) PURE lacking the alanine tRNA synthetase, $\text{PURE}_{\Delta(\text{AlaRS})}$, can be made and compared to complete PURE. (b) Expression of a green fluorescent protein (GFP) reveals that the absence of AlaRS (red) almost entirely eliminates PURE gene expression activity compared to intact PURE (black). (c) Single-component depletions (SCDs) of PURE result in a range of expression levels. All expression values taken from four-hour time points of triplicate PURE reactions and normalized to complete PURE (black bar, top dashed line). SCDs are rank ordered from lowest-to-highest expression level (left to right). Most SCDs produced enough expression reduction to support reconstitution assays (light grey bars, 75% or lower expression threshold, lower dashed line). Some SCDs did not result in significant reduction in gene expression (dark grey bars). Time course curves and standard deviations for individual and groups of enzymes can be found in Figs. S6 and S7.

185 We next used PURE to produce PURE-made versions for each of the remaining 23 components.
186 Specifically, we made expression vectors for each component, to be used with PURE, adding a
187 twin-strep tag to the N-terminus of each component. We then expressed each component in
188 PURE, as opposed to *E. coli*, performed strep-based affinity purification to recover the PURE-
189 made component (PMC), and used SDS-PAGE to verify the mass and purity of each preparation
190 (e.g., AlaRS, Fig. 3AB). We successfully expressed, purified, and verified the mass for 21 of the
191 23 PMCs. Ribosome Release Factor (RRF) is a small protein (2.98 kDa) and was difficult to
192 confirm via SDS-PAGE gels, although we used the purified eluent for subsequent reconstitution
193 experiments. We failed to obtain verified-mass T7 RNAP by our method.

194

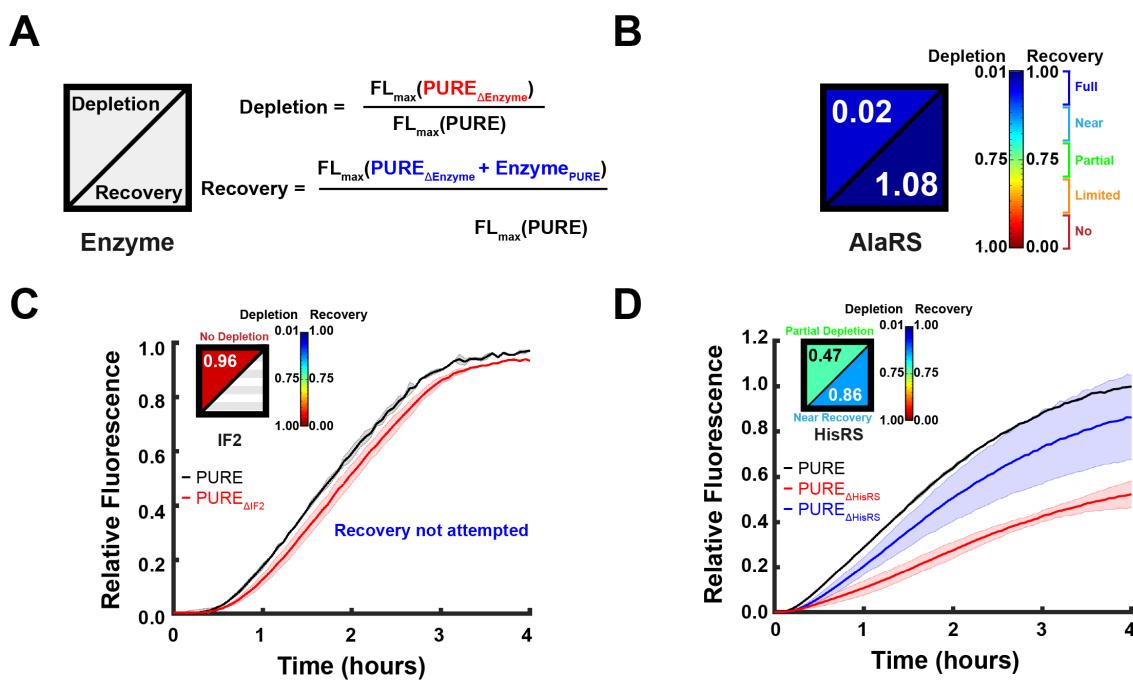
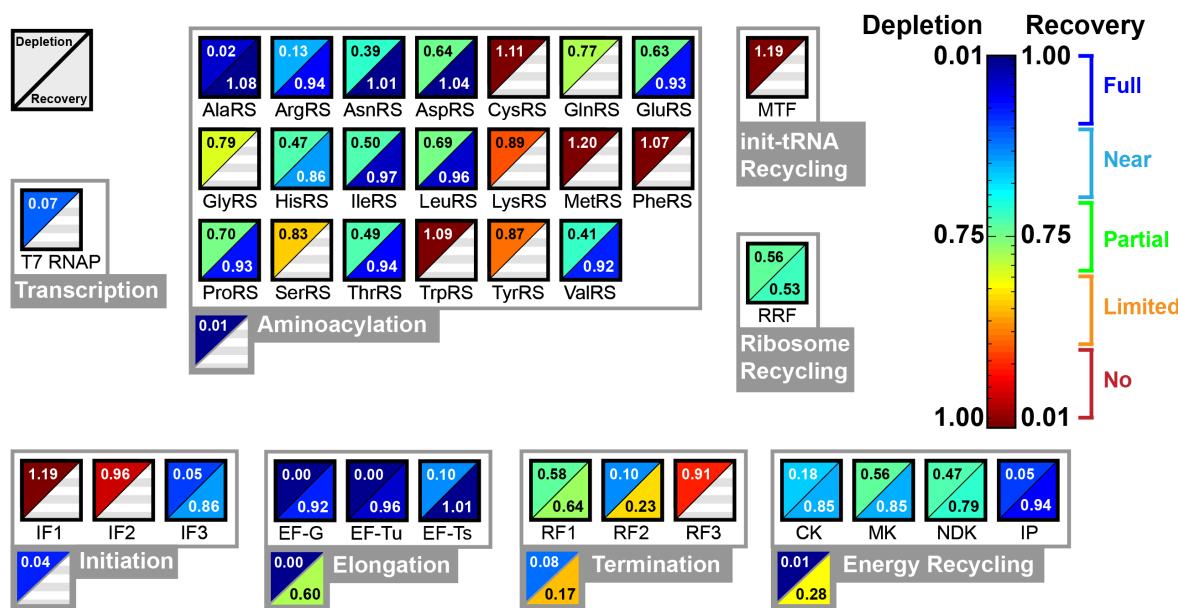

195 We then performed complementation experiments in which we supplemented each SCD with its
196 cognate PMC and observed if and to what extent PURE activity was recovered. As independent
197 benchmarks, we also supplemented each SCD with the missing component as made by
198 expression and purification from *E. coli* cells (i.e., *E. coli*-made components, or EcMCs). We
199 added the same component final concentrations for both the PMC- and EcMC-complementation
200 reactions, allowing us to more directly discriminate between any differences in expression
201 arising via differences in functional activity of components due to source (i.e., PURE or intact
202 cells), versus differences in expression arising merely due to differences in the concentration of
203 each component in the supplemented SCD reactions relative to commercial PURE. As one
204 example, we added equal amounts of PMC- and EcMC-produced AlaRS to two independent
205 PURE_{Δ(AlaRS)} samples and observed GFP expression (Fig. 3C), finding that both mixtures
206 produced nearly-equal and high levels of expression, consistent with commercial PURE (Fig.
207 3D), suggesting that functional AlaRS can be remade by PURE alone. We performed similar
208 experiments for the 21 remaining SCDs and observed differing levels of expression recovery for
209 each (Figs. S5-6, blue curves).

Figure 3. A molecular ensemble lacking an individual component can be complemented with an ensemble-made component. (a) As one representative example, an expression vector for N-terminal dual strep-tagged AlaRS is added to PURE. **(b)** PURE-expressed AlaRS is purified and validated for mass and homogeneity via SDS-PAGE and staining. **(c)** PURE-made AlaRS is added to PURE lacking AlaRS, PURE_{Δ(AlaRS)}, to evaluate whether PURE-made AlaRS is functional. **(d)** Expression time series for a GFP reporter in PURE_{Δ(AlaRS)} (red), PURE_{Δ(AlaRS)} complemented with *E. coli*-made AlaRS (black), and PURE_{Δ(AlaRS)} complemented with PURE-made AlaRS (blue).

210

211 To represent if and to what extent a system can remake itself at a single-component level we
 212 developed standard quantitative metrics that can be used for any component whose function can
 213 be transduced to expression of a reporter gene. Specifically, we used the levels of GFP
 214 expression from each SCD and PMC-complemented SCD relative to the GFP expression level
 215 obtained via intact PURE to define depletion and recovery scores, respectively (Fig. 4A). We
 216 used a split-box template and color map to visualize both values (Fig. 4B). We used this method
 217 of representation to abstract and quickly summarize the capacity of our assay to detect depleted
 218 components, as well as the capacity of the system to remake its individual components. As one
 219 example, depletion of Initiation Factor 2 (IF2) did not result in sufficient reduction of expression
 220 to warrant further study here (Fig. 4C). As a second example, depletion of HisRS reduced GFP

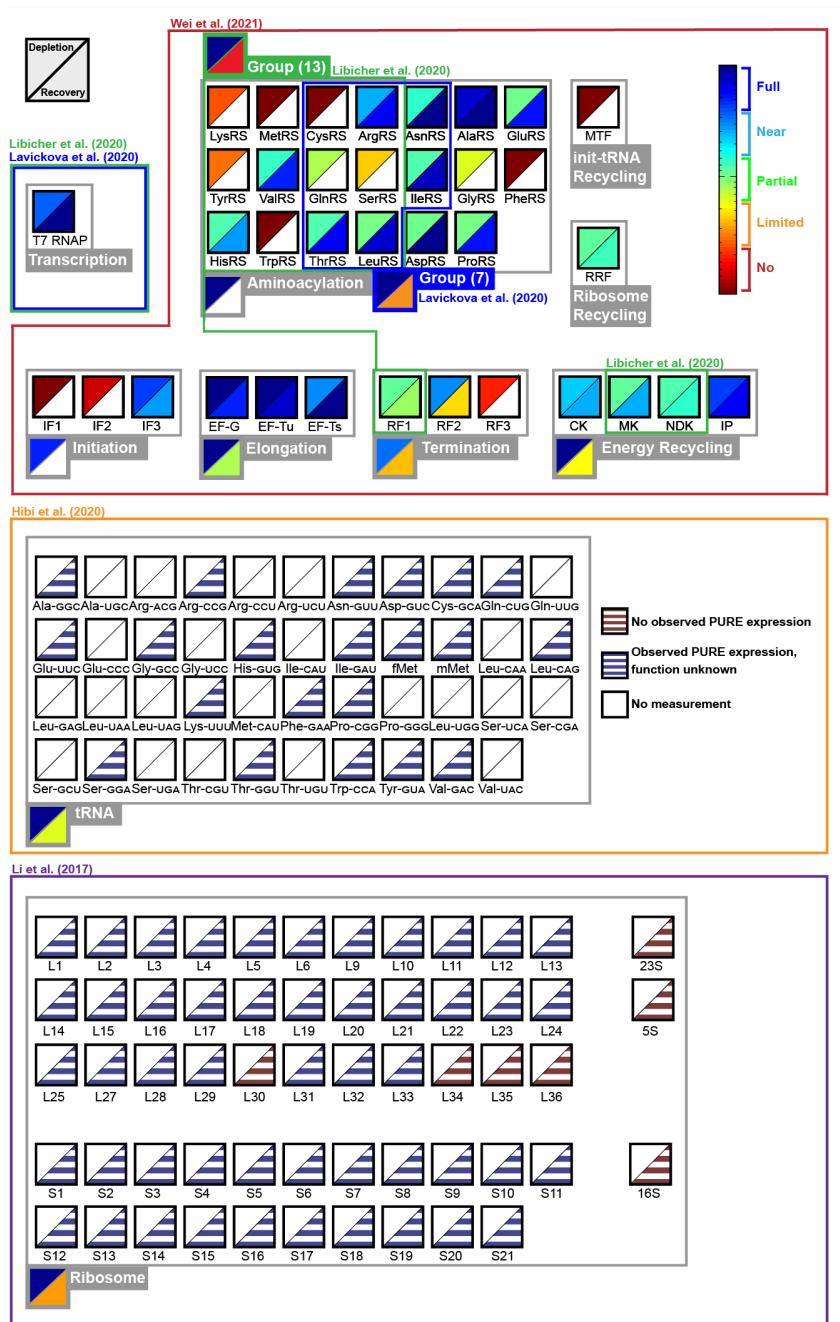

Figure 4. A standard and quantitative metric can be used to evaluate the extent to which an ensemble loses and restores activity as components are removed and regenerated. (a) Depleted system activity is defined by the activity of the depleted system relative to the intact system. The regenerative capacity of the system is defined by the extent to which the system recovers full system activity when a depleted system is complemented with the missing system-made components. **(b)** Color maps selected to represent effects of depletion and complementation on a single scale; depletion of AlaRS results in near full loss of activity, and complementation of PURE-made AlaRS recovers full system activity. **(c)** Representative example for a component, Initiation Factor 1 (IF1) whose individual depletion does not result in significant reduction of system activity. **(d)** Representative example for a component, Histidine tRNA synthetase (HisRS), whose individual depletion results in a partial reduction of system activity, and complementation recovers near-full system activity.

221 expression to ~0.47 of intact PURE, and subsequent complementation recovered ~0.86 of intact
 222 levels (Fig. 4D). We observed that the expression dynamics across all experiments followed a
 223 pattern, with maximum observed expression by four hours; thus, all values represented here were
 224 calculated from four-hour time points.

225
 226 Inspired by the utility of the Periodic Table in organizing and representing humanity's collective
 227 understanding of the fundamental chemical elements comprising matter, we explored if and how
 228 to best organize our representations of the capacities of fundamental life-essential functions. We
 229 grouped the split-box for each component into higher-order life-essential clusters (e.g.,

230 transcription, aminoacylation, recycling of tRNA, ribosomes, energy carriers, and translation
 231 factors). Because we choose to study the PURE system here, as have others, as a foundation
 232 from which to support ongoing bottom-up synthetic cell building efforts, we named our
 233 integrated visual representation the “Pureiodic Table” (Fig. 5). Going forward, as still-more life-
 234 essential and life-contributing functions are added and evaluated, we imagine that “pure” will
 235 refer only to the fact that purified components are being tested within the context of a well-
 236 defined ensemble of molecules.

237
 238 Practically, from the initial table, we can quickly discern that the blue/blue boxes represent
 239 components that have the greatest certainty of functional auto-regeneration, including AlaRS,
 240 AergRS, EF-G, EF-Ts, ET-Tu, IF3, CK (creatine kinase), and IP (inorganic pyrophosphatase).
 241 Perhaps more importantly, we can also quickly identify components that still need validation
 242 (red/empty boxes) as well as components that cannot now be sufficiently regenerated. For
 243 example, PURE-made RRF, RF1, and RF2 did not recover PURE-based gene expression in
 244 PMD-complemented SCDs. Finally, in addition to presenting the properties at a single-


Figure 5. A Pureiodic Table representing the capacity for functional regeneration among the 36 enzymes in PURE. Quantitative depletion and recovery scores for all individual components tested. Some components did not result in sufficient loss of system activity when depleted to warrant complementation testing (lower right triangles with grey stripes). Components are clustered on basis of higher-order life-essential functions (as-labeled grey box outlines). Cluster-wide depletion and recovery assays (i.e., removing and restoring all cluster-specific components at once) reveal intra-cluster functional complementation hidden by single-component tests.

245 component level, we also created cluster-wide boxes for subsets of functions that we could
246 perform cluster-wide depletion and complementation experiments. For example, each individual
247 translation elongation factor could be removed and fully regenerated as measured by our
248 individual assays but, when all three components were depleted and complemented together,
249 only ~0.60 full PURE activity was recovered, suggesting that redundant activities within this trio
250 mask partial loss of function in the SCD-based assays.

251
252 Well aware that realizing fully-reproducing synthetic cells is expected to involve integration and
253 testing of hundreds of components, and that others are pursuing and reporting on the regenerative
254 capacities of molecular systems including PURE, we sought to explore integration of reported
255 results across groups in the form of an expanded Pureiodic Table. To do so we incorporated
256 data, where available from the literature, for the components tested here as well as for tRNA and
257 ribosome regeneration (Fig. 6). While it is immediately apparent that much work remains, a
258 simple and standard visual representation that can be simply shared and quickly updated should
259 facilitate collaboration and support the scaling of team-based efforts seeking to accelerate
260 synthetic cell building.

261
262 **Discussion**
263 We tested if PURE can express functional versions all of the 36 single-enzyme components
264 comprising PURE. We constructed single-enzyme dropout PURE reactions and measured the
265 resulting decreases in reporter gene expression. 23 of the 36 enzymes tested, when absent from
266 PURE, resulted in gene expression levels below 75 percent of full PURE. We then used PURE
267 to remake these 23 enzymes and successfully purified 21 of the 23 attempted. We added each
268 enzyme back to its cognate dropout PURE and measured any recovery in gene expression levels.
269 19 of the 22 enzymes tested recovered some or all of full PURE activity. We developed a
270 standard quantitative visual framework for representing our results, the Pureiodic Table, as a tool
271 for enabling community formation and fellowship among and within synthetic cell building
272 efforts.

273
274 The PURE system is represented to be a minimal transcription and translation system, in the
275 sense that expression should decrease – at least 50% reduction across all enzymes and over 90%
276 reduction for 20 enzymes – if any single component is removed from the system [16]. Instead
277 we found that 13 of the 36 individual dropouts tested here did not result in significant reductions
278 in gene expression. One difference is our use of GFP as a reporter versus DHFR in the original
279 study and any resulting differences in demand for individual amino acids (Table S1).
280 Development and testing of reporters optimized for probing the reproductive capacity of PURE,

Figure 6. An expanded Pureiodic Table represents community-wide results and enables coordination of effort towards synthetic cell building. The table as in Fig. 5 but with overlapping literature data incorporated as possible. Colored-block outlines indicate specific sources of data and regions of overlap. Additional life-essential components (e.g., tRNA, ribosomes) are incorporated as possible. Empty blocks and triangles (white) highlight individual components for which data is not yet available. Data referenced from [27-30].

282 and of genetic devices that transduce other biochemical activities into gene expression signals,
283 can improve and expand the scope of future testing efforts.

284

285 We found that three enzymes – RRF, RF1, and RF2 – did not result in recovered PURE activity
286 when tested. As noted, we could not verify production of RRF via SDS PAGE due to its small
287 size even though we were able to detect in the purified sample a 0.81 ratio of 260 nm/280 nm via
288 spectroscopy. Thus, we cannot now discriminate between the possible absence of RRF in our
289 complementation test versus the possibility that PURE-made RRF is non-functional, either due
290 to a missing modification when made by PURE or due to the presence of a N-terminal strep tag.

291

292 We suspect that the failure of PURE-made RF1 and RF2 in recovering gene expression are due
293 to the likely absence of methylation. Mora et al. previously reported that RF1 and RF2 activities
294 are greatly reduced if a universally conserved tripeptide, GGQ, is not methylated [33]. The
295 required methylase, while present in the *E. coli* used to manufacture PURE, is not included in
296 PURE thereby hindering the qualitative ability of PURE to support functional self-reproduction.
297 Complementing PURE with the needed methylation function is an obvious next step that should
298 also include additional tests that ensure the so-added methylase can be remade via the expanded
299 PURE.

300

301 We note that while many PURE functions could be individually removed and restored via
302 PURE-made copies, several groupings of functions performed differently when tested together.
303 For example, IF1 or IF2 could be individually removed with no impact on gene expression but
304 could not be removed in combination with IF3. As a second example, all three elongation
305 factors could be individually removed and replaced with near total loss and full recovery of gene
306 expression. However, when all three were simultaneously replaced with PURE-made versions
307 gene expression only recovered to ~60 percent of *E. coli*-made PURE levels. As a third
308 example, the four energy recycling factors only recovered ~40 percent of *E. coli*-made PURE
309 levels when replaced all together. The difference between individual and ensemble recovery
310 levels may be due to compounding impacts of partially-functional and complementary
311 components. For example, no individual kinase showed a recovery of less than 79 percent yet the
312 recovery via the PURE-made ‘energy recycling’ ensemble was only 28 percent. If each kinase
313 was entirely functionally independent of the others we would expect 54 percent recovery across
314 the ensemble ($0.85*0.85*0.79*0.94$), suggesting that among these four components there may be
315 some functional complementation occurring in the single-component assays.

316

317 A simpler-to-setup assay that avoids the need to purify PURE-expressed enzymes involves
318 providing the template encoding the component(s) of interest directly into the starting PURE
319 mixture. So long as there is sufficient PURE activity in the starting mixture to kickstart the
320 process, the PURE mixture itself remakes the partially-depleted component. We explored this
321 approach using AlaRS as a test case, first observing GFP expression dynamics in PURE
322 containing various initial concentrations of AlaRS, with and without DNA expressing AlaRS
323 (Fig. S1). However, the challenge with this type of experiment lies in carefully discerning PURE
324 activity arising due to the PURE-expressed enzymes versus enzymes present in the starting
325 PURE, sourced from *E. coli*. To address this challenge Libicher et al. [30] proposed a serial
326 transfer technique, whereby the initial concentration of the target components is increasingly
327 minimized. Discrete depletion and complementation assays have the advantage of eliminating
328 any crosstalk from the original non-PURE expressed enzymes and offer a simpler readout.
329 However, fractional depletion and dilution approaches may serve to improve dynamic range for
330 some components and enable for more widespread testing.

331
332 We hope that the expanded Pureiodic Table (Fig. 6) will serve as a framework for tracking
333 humanity's collective capacity to construct life from scratch. Many additional life-essential
334 functions remain to be added and tested (e.g., replication, metabolism, membrane formation,
335 cytokinesis, etc.). Each life-essential function so-represented serves as a visual icon of what is
336 required to support autonomous reproduction. We also expect that factors improving ensemble
337 performance, including dynamic control and expression fine-tuning, will be required and should
338 be represented. For example, the addition of chaperones and Elongation Factor P (EF-P) to
339 PURE has been shown to increase protein yield and quality [17]. There may also be chemical or
340 physical aspects essential to cell building that are not directly genetically encoded. As the
341 Pureiodic Table is expanded we look forward to collectively confronting a seemingly complete
342 table and pondering, if needed, what life-essential unknowns remain to be discovered.

343

344 Materials and Methods

345 Plasmids and strains

346 All plasmids used in this work will be made freely available as the “Pureiodic Table
347 Construction Kit” via the bionet node maintained by the Stanford Freegene project
348 (stanford.freogenes.org) and, independently, via Addgene (addgene.org). We used a pET-28a
349 vector and *E. coli* BL21(DE3) for all 36 single-enzyme expression preparations following
350 established protocols [34]. We used a pPSG-IBA105 vector (IBA Lifesciences), including a T7
351 RNAP promoter and twin strep tag [35], to clone and express enzymes in PURE. We modified

352 the iGEM pSB3K5 (BBa_I50032) by replacing the promoter with a T7 RNAP promoter and
353 adding sfGFP to its open reading frame.

354

355 *PURE cell-free expression*

356 We purchased all commercial PURE-related materials from New England Biolabs (neb.com).
357 Each reaction was constructed from 5 μ l of Solution A (NEB), 3.5 μ l of Solution B (NEB or
358 made from scratch as reported here), 1.25 μ l of DNA template (5 nM final concentration), 1.25 μ l
359 of RNase inhibitor, Murine (NEB), and 1.25 μ l water or as reported. For complementation
360 reactions we matched the final enzyme concentration as reported in the academic literature [36].
361 The reaction was pipette-mixed and a 10 μ l aliquot of the total mixture is transferred to a 384-
362 well round clear-bottom plate (Corning). Reactions were mixed and initialized at 4C in a cold
363 room, transferred to plates, and then sealed with clear micro-plate tape (Corning) before being
364 placed in a plate reader (SpectraMax i3) at 37C. We obtained measurements every three minutes
365 over four hours. We used 485 nm excitation (10 nm bandwidth) and 520 nm emission (10 nm
366 bandwidth) wavelengths for measuring GFP levels.

367

368 *Protein purification from E. coli*

369 For His-tag purification of *E. coli* proteins we back-diluted 1:1000 an overnight culture into 2 L
370 of LB. Following 3 hours of growth at 30C we added IPTG to 0.1 mM final concentration.
371 After another 9-15 hours of growth, we pelleted cell cultures via centrifugation at 5000 x g at 4C
372 for 20 minutes (JA-10 rotor). We resuspended cell pellets in 25 ml of equilibration buffer in 50 ml
373 falcon tubes and sonicated four times using a microtip (duty cycle 50%, 45 seconds treatment
374 with 2 minutes on ice in between treatments). We centrifuged the resulting solution at 15000 x g
375 at 4C for 60 minutes (JA-10 Fixed-Angle Rotor, Beckman Coulter). We placed Ni-NTA slurry
376 (Thermofisher) in columns with 20 ml of equilibration buffer running through followed by the
377 sample-containing supernatant followed by 20 ml of wash buffer and 5 ml of elution buffer. We
378 then ran the eluted mixture through a FPLC (AKTA PURE) with a salt gradient consisting of
379 mixtures of buffer A (50 mM HEPES) and buffer B (50 mM HEPES plus 1M sodium chloride).
380 We combined protein fractions, exchanged the buffer for storage (Amicon filter), and stored the
381 so-purified proteins at -80C following flash freezing.

382

383 *Protein purification from PURE*

384 We added T7-expression vectors encoding strep-tagged proteins (5 nM concentration) in 200 μ l
385 of total PURE (NEB) working volume. We pre-washed 500 μ l of strep-tactin beads (IBA
386 Lifesciences) three times using 1 mL of wash buffer (Buffer W, IBA Lifesciences) before adding
387 the entire PURE reaction volume and incubating at 4C for 3 hours. We immobilized the

388 magnetic beads using a magnet and washed (5x) via pipetting 1 ml of wash buffer. We added
389 elution buffer (IBA Lifesciences) and incubated at 4C for 10 minutes. We then immobilized the
390 bead while taking the supernatant, exchanged buffers for storage (Amicon filter), verified quality
391 via gel separation and mass via a spectrophotometer (Nanodrop). We stored the proteins at -80C
392 following flash freezing.

393

394 *Buffer recipes*

395 Our equilibration buffer consisted of 50 mM sodium phosphate, 300 mM sodium chloride, and
396 10 mM imidazole. Our wash buffer consisted of 300 mM sodium chloride, and 25 mM
397 amidazole. Our elution buffer consisted of 300 mM sodium chloride and 250 mM imidazole.
398 Our regeneration buffer consisted of 20 mM MES sodium and 100 mM sodium chloride. Our
399 protein storage buffer consisted of 50 mM HEPES, 100 mM potassium chloride, 10 mM
400 magnesium chloride, 7 mM 2-mercaptoethanol, and 30% glycerol.

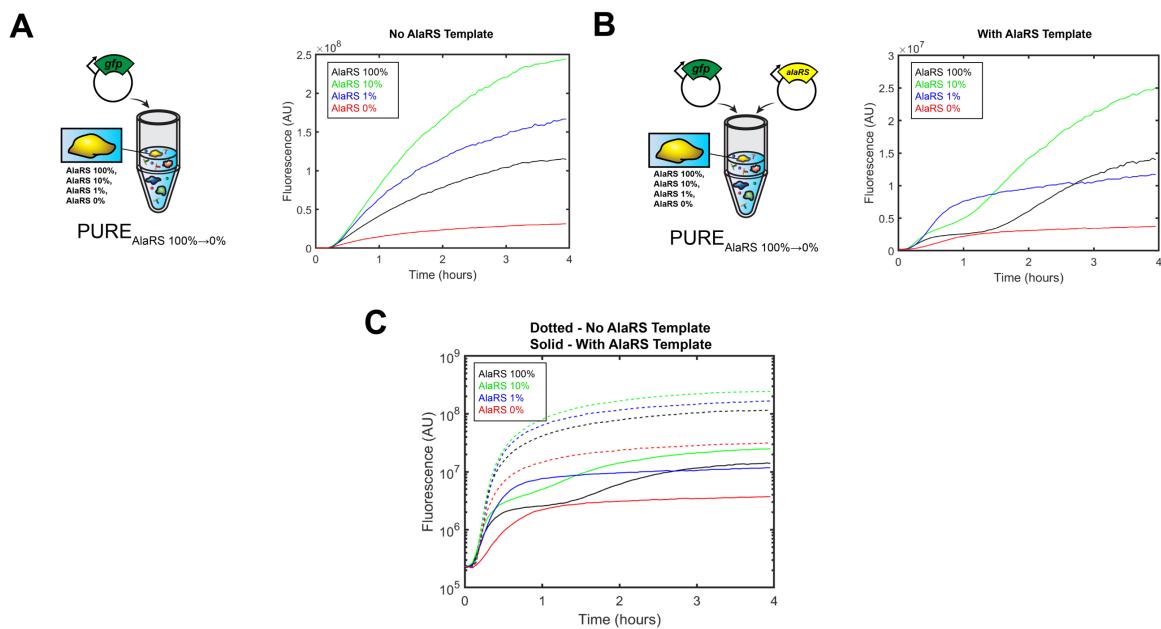
401

402 *Protein gels*

403 We ran our SDS-PAGE separations with 10% Bis-Tris in MOPS buffer, or MES buffer for
404 smaller proteins (~10 kDa), typically at 200 volts for 30 minutes followed by staining with
405 Instant Blue (Radeon) for 15 minutes.

406

407 *Quantitative estimate of peptide-bond formation capacity of batch PURE*

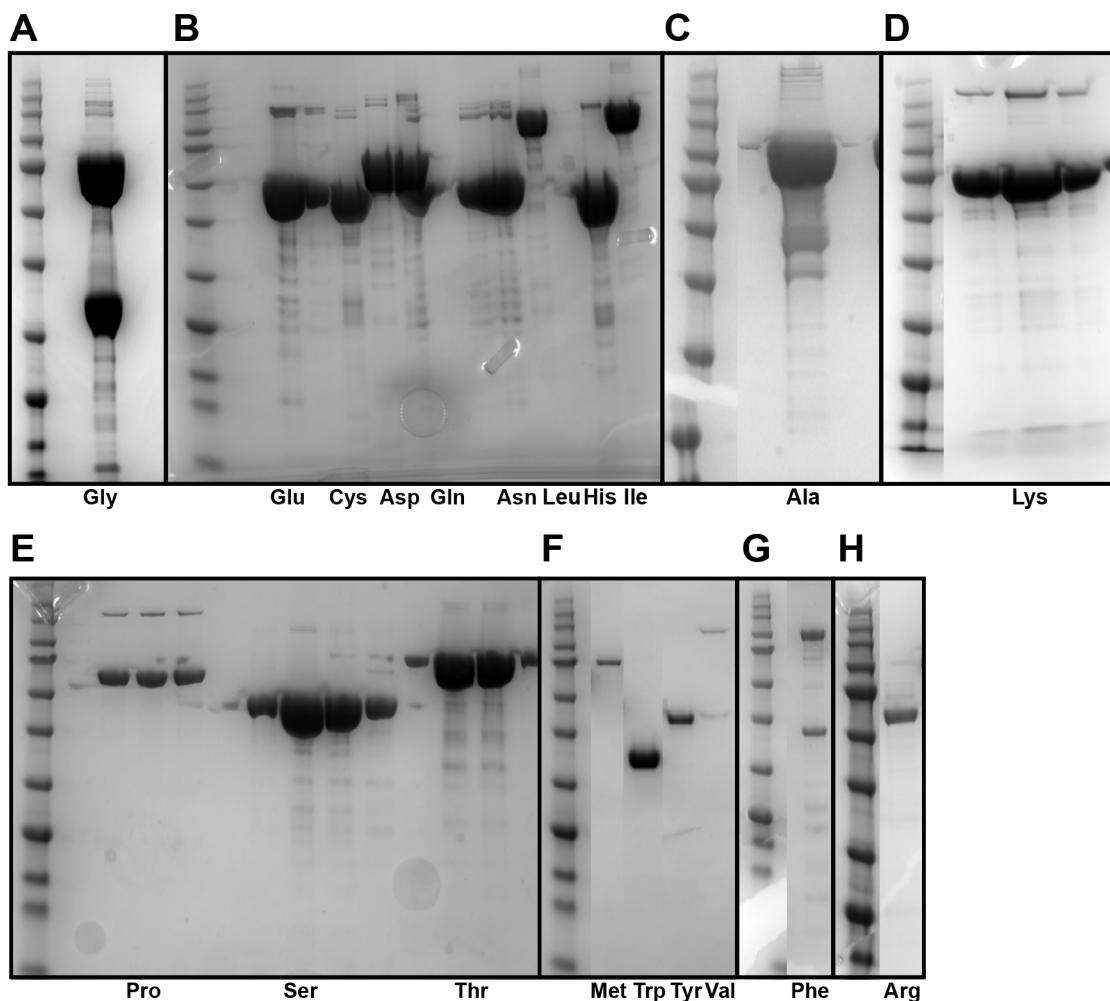

408 Adding up the total concentrations of proteins in PURE [36], excluding ribosomes, yields ~5,400
409 $\mu\text{g/mL}$ or $\sim 3 \times 10^7$ peptide bonds/fL; Including ribosomal proteins increases the total PURE
410 protein concentration to ~17,400 $\mu\text{g/mL}$ or $\sim 10^9$ peptide bonds/fL. Meanwhile, the
411 expression capacity of PURE is ~200 $\mu\text{g/mL}$ or $\sim 10^6$ peptide bonds/fL [NEB; confirmed
412 experimentally]. Thus, the capacity of PURE to synthesize proteins would need to be increased
413 ~27-fold, or ~87-fold including ribosomal proteins, to satisfy the quantitative reproduction
414 requirement (Fig. 1C).

415

416 **Acknowledgements**

417 We thank Conary Meyer for discussions and advice in formulating and framing the work
418 presented here. We thank CM and Alec Lourenço for helping with the cloning of pET constructs.
419 We thank Corinna Tuckey and New England BioLabs for constructing and providing customized
420 PURE kits. We thank Kai Yuet, Ray Zhuang, James Payne, and Tim Valentic for guidance with
421 protein purification and access to FPLC. We thank the Endy Lab for discussions and general
422 support. Funding was provided, in part, by a U.S. National Science Foundation Graduate
423 Fellowship and a Stanford Graduate Fellowship to EW.

424 **Supplementary Figure 1. Varying the concentration of a PURE-essential component**
425 **impacts report gene expression, and providing DNA template expressing the same**
426 **component impacts expression dynamics and levels. (a)** PURE lacking AlaRS was
427 complemented with a range of initial concentrations of AlaRS (0%, 1%, 10%, 100% PURE) and
428 expression of a GFP reporter (2.5 nM DNA concentration) was measured. **(b)** When a DNA
429 template expressing AlaRS is added to the initial system (2.5 nM DNA concentration), GFP
430 expression dynamics change and decrease. **(c)** data from **(a)** and **(b)** plotted on a log10 y-axis.
431

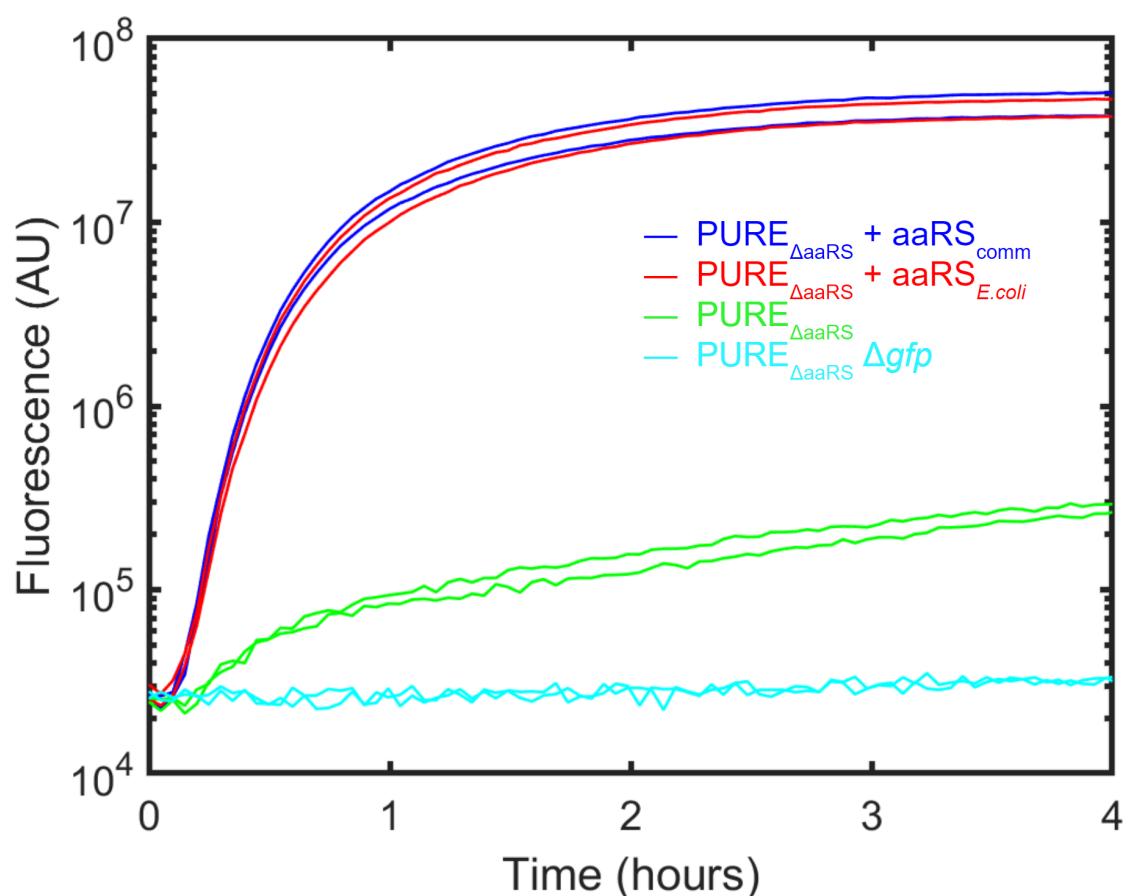


432

433 **Supplementary Figure 2. Production and purification of all 20 *E. coli* tRNA synthetases**
434 **from *E. coli*. (A-H)** Individual tRNA synthetases as indicated below each experimental lane. A
435 broad range pre-stained protein standard (NEB #P7712) was used as a ladder. Each individual
436 protein was His-purified using a Ni-NTA resin column along with FPLC and buffer exchange to
437 increase purity. Expression, purification, gel, and buffer details as described (Materials and
438 Methods).

439

440

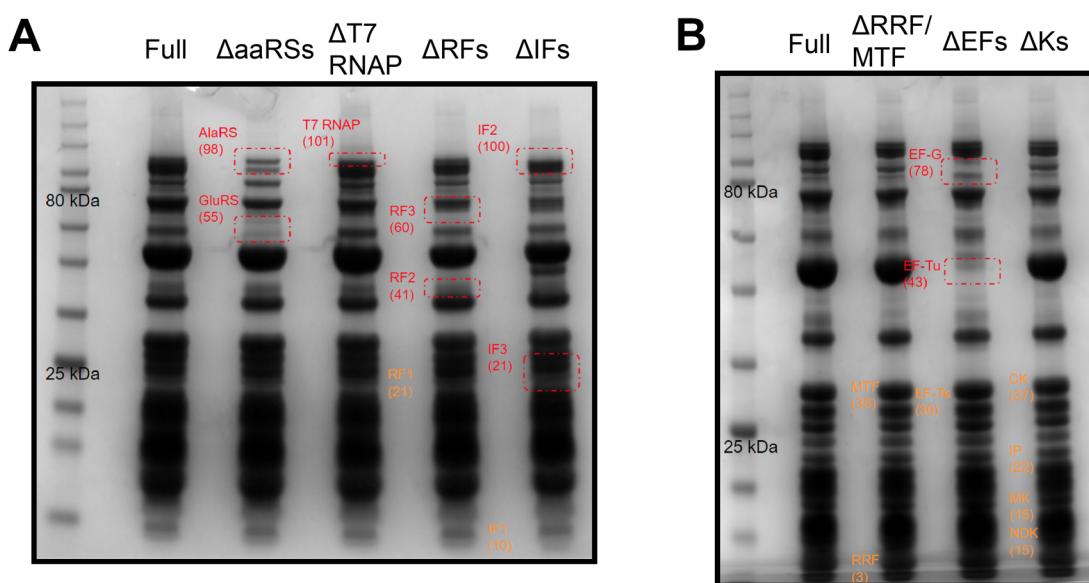


441

442

443

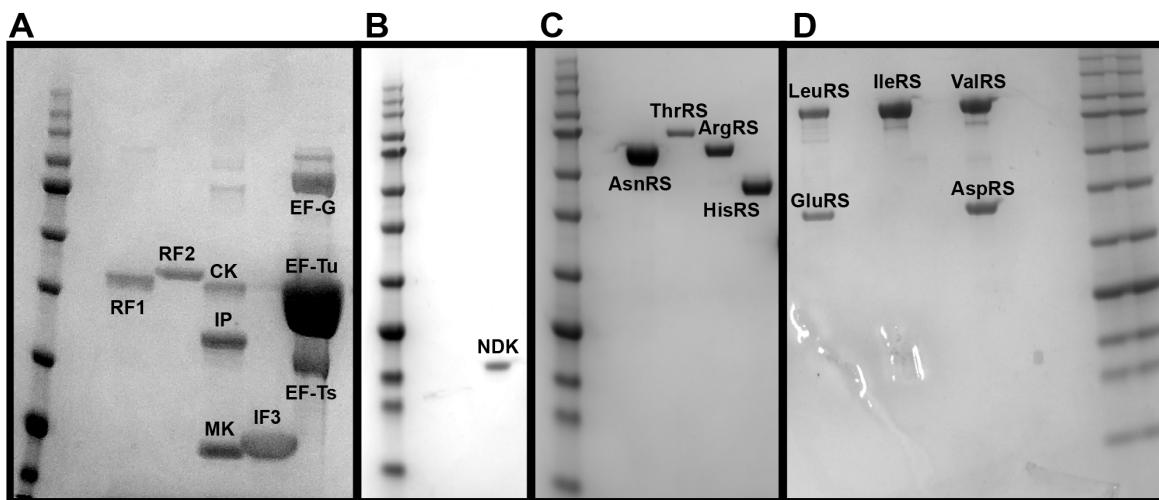
444 **Supplementary Figure 3. Commercially-sourced and locally-made tRNA synthetases both**
445 **restore expression activity.** Expression of a GFP reporter in PURE lacking a GFP expression
446 template (light blue), containing a GFP expression template but lacking all tRNA synthetases
447 (bright green), and containing a GFP expression template plus tRNA synthetases either sourced
448 commercially (blue) or made locally via purification from *E. coli* (red).
449
450



451
452
453
454

455 **Supplementary Figure 4. Verification of dropout PURE mixtures via 1-D protein gel**
456 **electrophoresis.** SDS-PAGE results for each custom dropout Solution B (NEB). **(a)** from left
457 to right, normal Solution B (full), missing all tRNA synthetases (Δ aaRSs), missing T7 RNA
458 polymerase (Δ T7 RNAP), missing all release factors (Δ RFs), and missing all initiation factors
459 (Δ IFs). **(b)** from left to right, normal Solution B (full), missing ribosome and tRNA recycling
460 factors (Δ RRF/MTF), missing elongation factors (Δ EFs), and missing energy recycling factors
461 (Δ Ks). A broad range pre-stained protein standard (NEB #P7712) was used as a ladder for each
462 gel. Expected location of specific components as noted (red, orange).

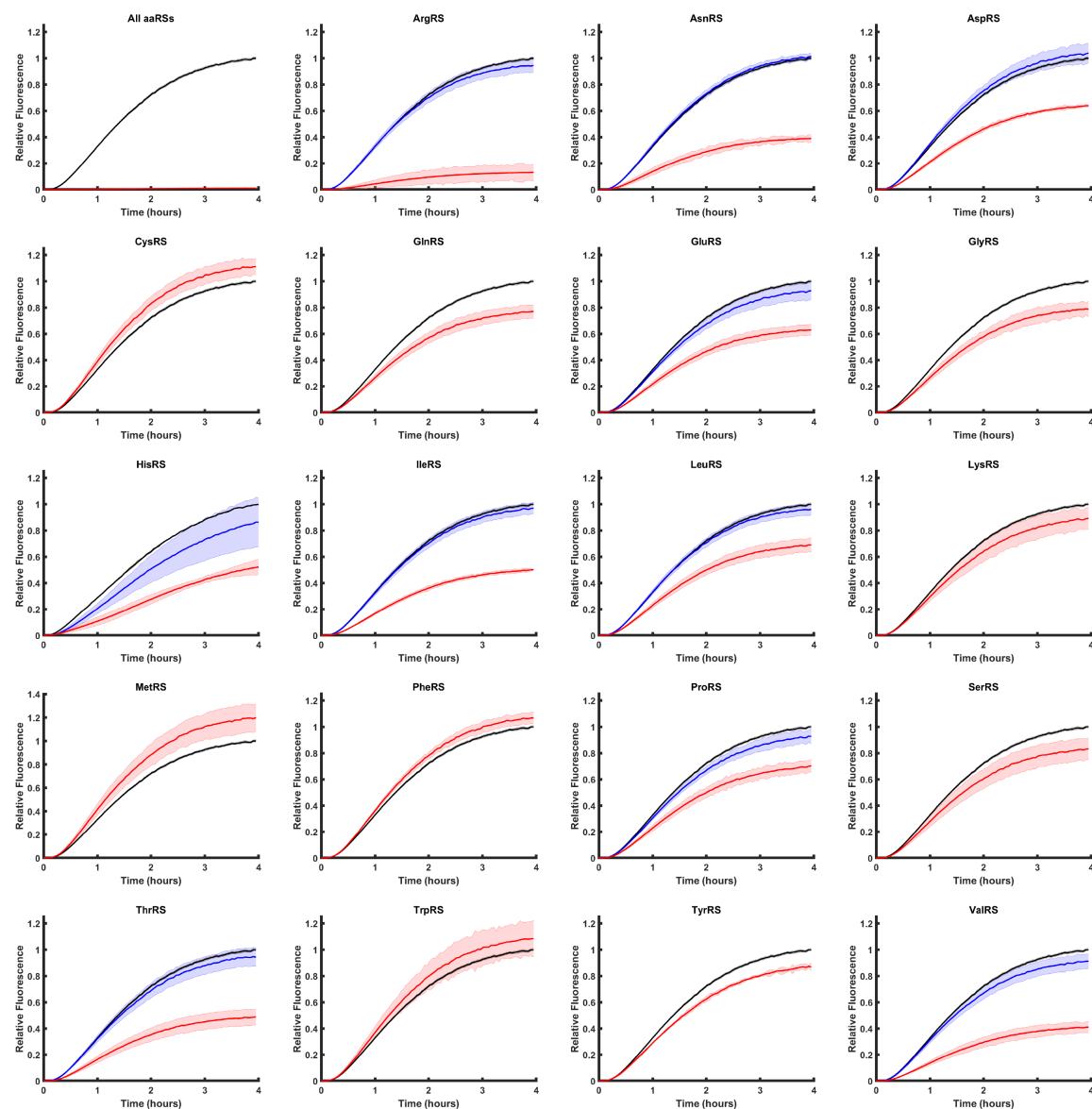
463


464

465

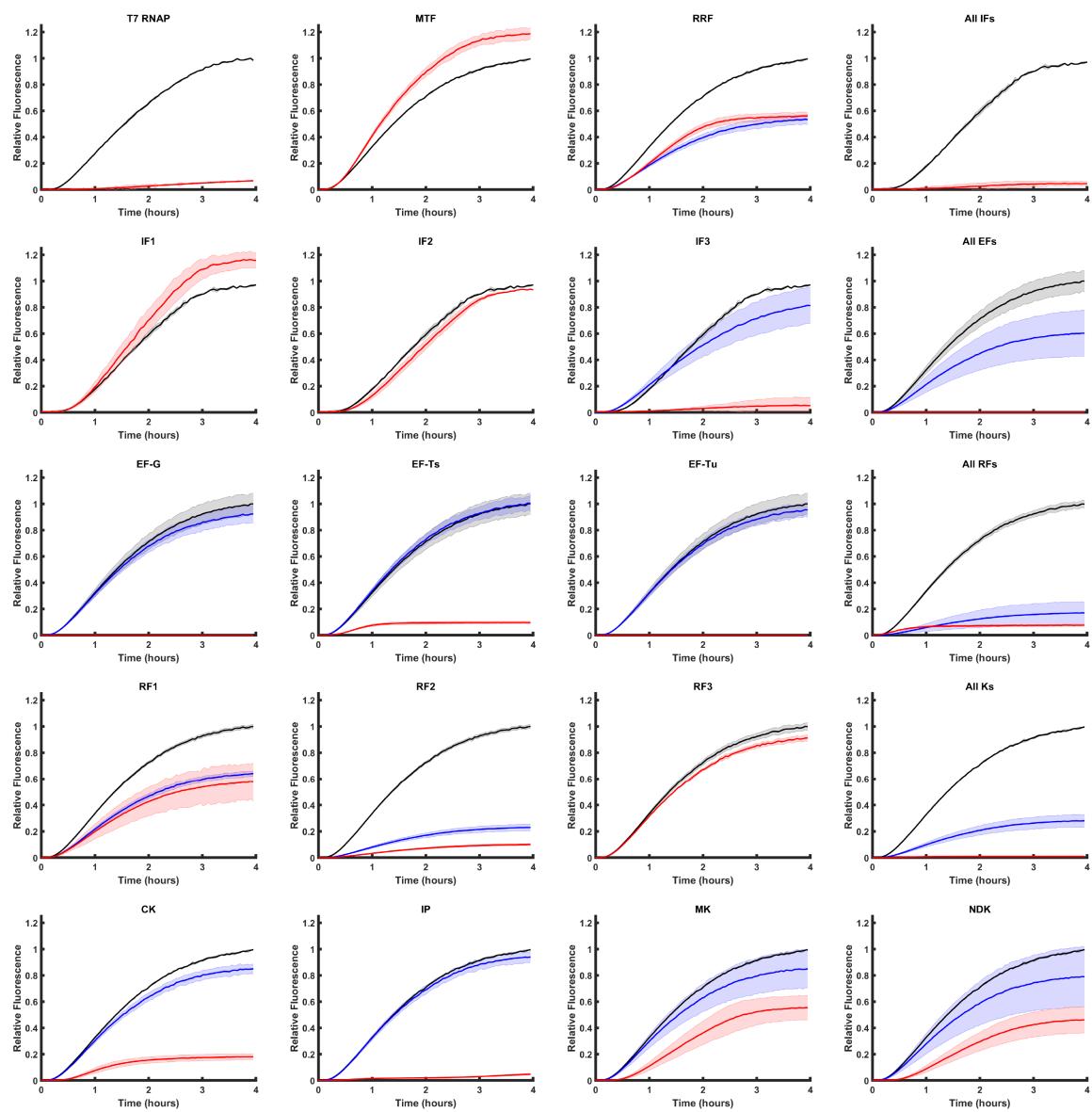
466 **Supplementary Figure 5. Production and purification of PURE components from PURE.**
467 **(a-d)** various PURE components made via expression and purification from PURE as describe
468 (Materials and Methods) and noted directly on each gel. A broad range pre-stained protein
469 standard (NEB #P7712) was used as a ladder for each gel.

470
471



472
473
474
475
476

477 **Supplementary Figure 6 and 7.** GFP expression profiles obtained as described (Materials and
478 Methods) for all individual PURE depletion mixtures (as noted) and some combinations of
479 PURE components (e.g., all aaRSs, all IFs, all EFs, all RFs, and all Ks). Shaded region
480 indicated standard deviation in observed fluorescence for each specific experiment measured in
481 triplicate. GFP expression trajectories were obtained for full PURE (black), depleted PURE
482 (red), and, for depletions exhibiting below 75% full PURE activity, complemented PURE (blue).
483 The values for each experiment were normalized to each experiment's average full PURE value
484 obtained at four hours.


485

486

487

488

489

490

491

492

493

494

495

496

497

498 **Supplementary Table 1. A given reporter gene may have characteristics that affect**
499 **suitability for measuring auto-regenerative systems. (AA)** the twenty canonical amino acids
500 with given three letter abbreviations. **(a)** the number of residues for each amino acid in the
501 reporter gene used here (green fluorescent protein, GFP). **(c)** the concentration of each cognate
502 amino acid's tRNA synthetase in the PURE system. **(d)** the “demand” for a given amino acid
503 normalized to the capacity of PURE to recharge spent tRNA. **(r)** the “regeneration number” as
504 defined by the number of residues for each amino acid in its cognate tRNA synthetase. **(x)** the
505 ratio “demand” to “regeneration number.”

506

507

Amino Acid (AA)	a = AA # in GFP	c = aaRS concentration in PURE (mg/mL)	Load-balanced GFP expression demand, d = a/c	r = AA # in cognate aaRS	x = d/r = a/(rc)
Ala	8	690	11.6	91	0.13
Arg	8	20	400	32	12.5
Asn	13	220	59.1	20	2.95
Asp	18	80	225	46	4.89
Cys	2	12	167	5	33.3
Gln	7	38	184	15	12.3
Glu	16	126	127	39	3.26
Gly	22	96	229	22	10.4
His	10	8	1250	8	156
Ile	11	400	27.5	46	0.60
Leu	20	40	500	65	7.69
Lys	20	64	313	24	13.0
Met	5	21	238	21	11.3
Phe	12	17	70.6	20	3.53
Pro	10	100	100	28	3.57
Ser	10	19	526	18	29.2
Thr	18	63	286	24	11.9
Trp	1	11	90.9	2	45.5
Tyr	9	6	1500	11	136
Val	18	18	1000	61	16.4

508

509 **References**

510

511 [1] Glass JI, Merryman C, Wise KS, Hutchinson CA, Smith HO. Minimal cells — real and
512 imagined. *Cold Spring Harbor Perspectives in Biology*. 2017;9:a023861.

513

514 [2] Hummel S, Cruickshank P, Rassler D. A view from the CT Foxhole: Drew Endy,
515 Associate Chair, Bioengineering Stanford University. *CTC Sentinel*. 2020;13(10):24-34.

516

517 [3] Morowitz HJ, Tourtellotte ME. The smallest living cells. *Sci. Am.* 1962;206:117-126.

518

519 [4] Fraser CM, et al. The minimal gene complement of *Mycoplasma genitalium*. *Science*.
520 1995;270:397-403.

521

522 [5] Hutchinson CA, Peterson SN, Gill SR, Cline RT, White O, Fraser CM. Global
523 transposon mutagenesis and a minimal *Mycoplasma* genome. *Science*. 1999;286:2165-
524 2169.

525

526 [6] Hutchinson CA, Chuang R-Y, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH,
527 et al. Design and synthesis of a minimal bacterial genome. *Science*. 2016;351:aad6253.

528

529 [7] Baby V, Matteau D, Knight TF, Rodrigue S. Complete genome sequence of *Mesoplasma*
530 *florum* W37 strain. *Genome Announcements*. 2013;1:e00879-13.

531

532 [8] Baby V, et al. Inferring the minimal genome of *Mesoplasma forum* by comparative
533 genomics and transposon mutagenesis. *mSystems*. 2018;3:e00198-17.

534

535 [9] Matteau D, et al. Integrative characterization of the near-minimal bacterium *Mesoplasma*
536 *florum*. *Mol. Syst. Biol.* 2020;16(12):e9844.

537

538 [10] Zhang C, Zheng W, Cheng M, Omenn GS, Freddolino PL, Zhang Y. Functions of
539 essential genes and a scale-free protein interaction network revealed by structure-based
540 function and interaction prediction for a minimal genome. *J. Proteome. Res.* 2021;
541 20(2):1178-1189.

542

543 [11] Breuer M, Earnest TM, Merryman C, Wise KS, Sun L, Michaela R, et al. Essential
544 metabolism for a minimal Cell. *eLife*. 2019;8:e36842.

545

546 [12] Szostak JW, Bartel DP, Luisi PL. Synthesizing life. *Nature*. 2001;409:387–390.

547

548 [13] Zwart, H. From primal scenes to synthetic cells. *eLife*. 2019;8:e46518.

549

550 [14] von Neumann J. Theory of self-reproducing automata. Urbana: University of Illinois

551 Press. 1966.

552

553 [15] Ganti T. Chemoton theory: theory of living systems. New York: Kluwer

554 Academic/Plenum Publishers. 2003.

555

556 [16] Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T. Cell-free

557 translation reconstituted with purified components. *Nature Biotechnology*. 2001;19:751-

558 755.

559

560 [17] Li J, Zhang C, Huang P, Kurk E, Forster-Benson ETC, Li T, Church GM. Dissecting

561 limiting factors of the protein synthesis using recombinant elements (PURE) system.

562 *Translation*. 2017;9:e1327006(1-13).

563

564 [18] Villarreal F, et al. Synthetic microbial consortia enable rapid assembly of pure

565 translation machinery. *Nat. Chem. Biol.* 2018;14:29-35.

566

567 [19] Swartz JR. A PURE approach to constructive biology. *Nature Biotechnology*.

568 2001;19:732-733.

569

570 [20] Gaut NJ, Adamala KP. Reconstituting natural cell elements in synthetic cells. *Adv.*

571 *Biology*. 2021;2000188.

572

573 [21] Noireaux V, Libchaber A. A vesicle bioreactor as a step toward an artificial cell

574 assembly. *PNAS*. 2004;101(51):17669-17674.

575

576 [22] Jackson K, Kanamori T, Ueda T, Fan ZH. Protein synthesis yield increased 72 times in

577 the cell-free PURE system. *Integrated Biology*. 2014;6:781-788.

578

579 [23] Fragasso A, et al. Reconstitution of ultrawide DNA origami pores in liposomes for
580 transmembrane transport of macromolecules.
581 bioRxiv. 2021.02.24.432733; doi: <https://doi.org/10.1101/2021.02.24.432733>.
582

583 [24] Sikkema HR, Gaastra BF, Pols T, Poolman B. Cell fueling and metabolic energy
584 conservation in synthetic cells. *ChemBioChem*. 2019;20:2581-2592.
585

586 [25] Doerr A, Foschepoth D, Forster AC, Danelon C. In vitro synthesis of 32 translation-
587 factor proteins from a single template reveals impaired ribosomal processivity. *Scientific
588 Reports*. 2021;11:1898(1-12).
589

590 [26] Nourian Z, Roelofsen W, Danelon C. Triggered gene expression in fed-vesicle
591 microreactors with a multifunctional membrane. *Angew Chem Int Ed Engl*. 2012;
592 51(13):3114-8.
593

594 [27] Li J, Haas W, Jackson K, Kuru E, Jewett MC, Fan ZH, Gygi S, Church GM.
595 Cogenerating synthetic parts toward a self replicating system. *ACS Synthetic Biology*.
596 2017;6:1327-1336.
597 [28] Hibi K, Amikura K, Sugiura N, Masuda K, Ohno S, Yokogawa T, Ueda T, Shimizu Y.
598 Reconstituted cell-free protein synthesis using in vitro transcribed tRNAs.
599 *Communications Biology*. 2020;3:350(1-11).
600

601 [29] Lavickova B, Laohakunakorn N, Maerkl SJ. A partially self-regenerating synthetic cell.
602 *Nature Comm*. 2020;11:6340(1-11).
603

604 [30] Libicher K, Mutschler H. Probing self-regeneration of essential protein factors required
605 for in vitro translation activity by serial transfer. *Chem. Commun.* 2020;56:15426-
606 15429.
607

608 [31] Libicher K, Hornberger R, Heymann M, Mutschler H. In vitro self-replication and
609 multicistronic expression of large synthetic genomes. *Nature Communications*.
610 2020;11:904(1-8).
611

612 [32] ATT Archives and History Center, UNIX: making computers easier to use. 2014.
613 Retrieved from <https://www.youtube.com/watch?v=XvDZLjaCJuw>.
614

615 [33] Mora L, Heurgué-Hamard V, de Zamaroczy M, Kervestin S, Buckingham RH.
616 Methylation of bacterial release factors RF1 and RF2 is required for normal translation
617 termination in vivo. *J. Biol. Chem.* 2007;282(49):35638-45.

618

619 [34] Mierendorf RC, Morris BB, Hammer B, Novy RE. Expression and purification of
620 recombinant proteins using the pET system. *Methods Mol Med.* 1998;13:257-92.

621

622 [35] Schmidt TGM, Batz L, Bonet L, Uwe C, Holzapfel G, Kiem K, Matulewicz K, Niermeier
623 D, Schuchardt I, Stanar K. Development of the Twin-Strep-tag and its application for
624 purification of recombinant proteins from cell culture supernatants. *Protein Expression*
625 and Purification. 2013;92:54-61.

626

627 [36] Shimizu Y, Ueda T. PURE technology. *Methods in Molecular Biology.* 2010;607:11-21.

628

629 [37] Awai T, Ichihashi, N. & Yomo, T. Activities of 20 aminoacyl-tRNA synthetases
630 expressed in a reconstituted translation system in *Escherichia coli*. *Biochem. Biophys.*
631 *Rep.* 2015;3,140–143.