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Abstract

Vicarious trial and error behaviors (VTEs) indicate periods of indecision during decision-making,
and have been proposed as a behavioral marker of deliberation. In order to understand the neural
underpinnings of these putative bridges between behavior and neural dynamics, researchers need the
ability to readily distinguish VTEs from non-VTEs. Here we utilize a small set of trajectory-based
features and standard machine learning classifiers to identify VI'Es from non-VTEs for rats performing a
spatial delayed alternation task (SDA) on an elevated plus maze. We also show that previously reported
features of the hippocampal field potential oscillation can be used in the same types of classifiers to
separate VTEs from non-VTEs with above chance performance. However, we caution that the modest
classifier success using hippocampal population dynamics is not sufficient for identifying trials where
VTEs occur, and show that combining oscillation-based features with trajectory-based features degrades
classifier performance compared to trajectory-based features alone. Overall, we propose a standard set
of features useful for trajectory-based VTE classification and support previous suggestions that VTEs
are supported by a network including, but likely extending beyond, the hippocampus.

1 Background and Introduction

Introduced and popularized in the 1930s, vicarious trial and error (VTE) is a well documented behavioral
phenomenon where subjects vacillate between reward options before settling on their final choice (Muenzinger
and Gentryl, [1931; Tolman, [1938). This behavior is best understood in rats making decisions to go left or
right, and as such, VTE trajectories tend to have curves that change direction at decision points. Current
theories claim that subjects mentally assess possible options before making a final decision during VTEs
(Redish} [2016]). This makes them a valuable behavioral variable to take into account when studying decision
making, particularly when investigating neural processing during decisions.

The majority of recent experiments examining the neural underpinnings of VTEs have focused on the
rodent hippocampus (HPC). Bilateral electrolytic HPC lesions decrease the mean number of VTEs in a
visual discrimination task, particularly during early learning (Hu and Amsel, [1995); though see (Bett et al.,
2012)). Similarly, bilateral ibotenic acid HPC lesions decrease the number of VTEs rats exhibit before
they have located a reward in a spatial task (Bett et al., 2012)). In addition to lesion studies, several
electrophysiological findings link the HPC to VTEs. Dorsal HPC recordings during VTEs show serial sweeps
of place cell sequences, which first trace the initial direction of the VTE before sweeping in the direction
a rat ends up choosing (Johnson and Redish| 2007). Furthermore, dorsal HPC place cell recordings are
more likely to represent locations of an unchosen option during VTEs than non-VTEs (Papale et al., [2016)).
There is also evidence that field potential oscillations recorded from dorsal HPC differ on decisions where
VTEs do and do not occur. In particular, characteristics of HPC theta (4-12 Hz) oscillations, such as shape
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and duration, appear to be altered during VTEs, as do aspects of gamma-band (35-100 Hz) oscillations
(Amemiya and Redish, [2018; [Schmidt et al., [2019), but see (Dvorak et al., [2018)).

Despite decades long interest and their utility as an overt marker of a putative cognitive process, VTEs
have been studied by only a small number of labs. We suspect part of the reason they have not received
more attention is that VTE trajectories can be highly variable, which makes it difficult to identify them
algorithmically (Goss and Wischner, (1956]). The Redish lab has proposed the IdPhi metric, which quantifies
changes in heading angles as rats traverse choice points, for identifying VTEs (Papale et al., [2012, [2016;
Redish, 2016 |Amemiya and Redish, 2016, |2018} [Schmidt et al., |2019; Hasz and Redish, 2020). While
successful in their hands, IdPhi, admittedly, “does not provide a sharp boundary between VTE and not”
(Papale et al., |2016]), Supplemental Material: FEzperimental Procedures). Looking to improve upon this
method of VTE identification, we demonstrate here that standard machine learning models utilizing a
small number of trajectory features are able to robustly and reliably distinguish VTEs from non-VTEs in a
manually scored data-set.

Additionally, we assess how the same types of classifier models perform when trained on curated features
of the dorsal HPC oscillation that have been shown to differ between VTEs and non-VTEs (e.g. differ-
ences in gamma power and theta wave shape)(Amemiya and Redish) 2018} [Schmidt et al., |2019)). In doing
so, we demonstrate that these features are indeed able to separate decision types better than would be ex-
pected by random binary classification, though with much worse performance than trajectory-based features.
Furthermore, we show that providing a classifier with HPC oscillatory dynamics from when animals make
choices yields better performance than oscillations from the immediately preceding delay interval, which is
when information about the previous choice would need to be held in memory. We also show that a more
comprehensive description of the HPC oscillation, the power spectrum, does not perform any better than
the model trained on curated features. Finally, we demonstrate that combining informative trajectory- and
oscillation-based features leads to a slight, but significant, decrease in classifier performance when compared
to classification using trajectory features alone, leading us to conclude that the HPC oscillation does not
contain information that compliments what can be extracted from the trajectories.

2 Results

2.1 Trajectory-based classification

A VTE occurs when rats vacillate between options before their final choice. Behaviorally, this manifests as a
trajectory with curves or sharp angles at choice points, where reorientations occur (figure ) We analyzed
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Figure 1: Example VTEs and IdPhi distribution. A - Example trajectories showing VTEs (yellow) and non-
VTEs (black). Trajectories are shown on top of outlines of the decision-point, coming from each possible
direction (shown by dashed arrow). B - Empirical cumulative distributions of IdPhi scores for VTEs (yellow)
and non-VTEs (black). Note the prominent rightward shift for VTEs (p < 0.001, two-sample K-S test).
Cumul. Prob. - Cumulative probability, K-S - Kolmogorov-Smirnov
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a data set with 1137 trajectories from rats running a spatial delayed alternation (SDA) task
[2019; Kidder et all [2021). Each trajectory was scored as VIE (n = 184) or non-VTE (n = 953) by at
least two trained annotators. We calculated IdPhi (Papale 2012), the integrated change in heading angle, for
each trajectory, as well as several other features (see for more details). As expected, we saw statistically
distinct empirical distributions for IdPhi values on trials scored as VTE compared to non-VTE (figure ,
p < 0.001, two-sample K-S test). When compared to manual scoring, however, using IdPhi did not reliably
separate VTE and non-VTE trials (figure [2JA).

We reasoned that we could obtain more accurate and reliable VTE detection by assessing multiple aspects
of the trajectory instead of just one. As such, we calculated seven trajectory-based features (see
for details) with the expectation that these features would allow for separation of VTEs
and non-VTEs in a higher dimensional space. Like IdPhi, many of these features formed distinct empirical
distributions for VTEs and non-VTEs, which suggested to us that this feature set could be used to build
machine learning classifiers for algorithmic VTE detection.

Classifiers are often evaluated for their accuracy, precision, and recall scores (Malley et al., 2011} [Lever|
let all, 2016) (see [Classifier implementation| for detailed descriptions). In the context of VTE identification,
accuracy measures the proportion of correctly labeled trials (i.e. VTE or non-VTE), precision measures the
proportion of trials labeled VTE that are actually VTEs, and recall measures the proportion of VT'Es found
out of the total number of VTEs present. We compared performance of two widely used machine learning
models — k-nearest neighbors (KNN) and support vector machines (SVM) — to IdPhi alone in figure |2| To
generate distributions for each of these metrics, we scored 100 iterations of randomly sampled splits of data,
with mutually exclusive testing and training trajectories (see |[Classifier implementation| for further details).
To ensure scores were not influenced by the fact that we had many more non-VTE trials than VTE trials, we
equalized the number of VTE and non-VTE trials for each data split. Both KNN and SVM classifiers show
high accuracy (Agnn, = 0.83, Agym = 0.86; bars above letters denote mean), precision (Pgn, = 0.86, Py
= 0.88), and recall (Rpnn = 0.80, Rgym = 0.82) on our trajectory data. Comparing the different classifiers’
distributions of a composite precision and recall score, the F} score, shows that the performance for the SVM
classifier is generally higher (Fipn, = 0.82, Figpm = 0.85; p = 0.0001, two-sample K-S test). Overall, these
results suggest that we have defined a feature set suitable for VTE classification, that both KNN and SVM
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Figure 2: Multi-feature classifiers outperform a single metric. A - Classification performance on 100 random
splits of manually scored data using IdPhi (orange), an SVM model (grey), and a KNN model (blue). Colored
patches are kernel density estimates of the underlying distributions, with boxplots representing the same
data inside the patches. B - Cumulative distributions of F} scores for SVM in grey and KNN in blue. Note
the rightward shift for the SVM model (p = 0.0001, two-sample K-S test).

SVM - support vector machine, KNN - k-nearest neighbor
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models provide more accurate, sensitive, and precise VTE classification than a single metric alone, and that
the SVM model has a slight performance edge over the KNN model.

2.2 Oscillation-based classification

Previous research has suggested HPC involvement in decisions where VTEs occur. Early work showed that
rats with bilateral HPC lesions perform less VI'Es during initial learning in a visual discrimination task than
rats with their hippocampi intact (Hu and Amsel, [1995). More recent research did not find differences in
VTE rates for lesioned and non-lesioned animals during visual discrimination, but showed that lesioned rats
exhibit fewer VTEs during early learning when performing a spatial decision-making task. In particular,
lesioned rats showed fewer VTEs before finding a new reward location after it had been moved (Bett et al.)
2012)). Additionally, multiple studies have shown that HPC place cell activity is more likely to represent
future locations during decisions involving a VTE than when no VTE occurs (Johnson and Redish, 2007)),
(Papale et al.;|2016|). Furthermore, several features of the hippocampal local field potential oscillation appear
to be different when decisions are made with, as opposed to without, VTEs (Amemiya and Redish) [2018;
Schmidt et al.l 2019).

We tested how well features of the HPC oscillation could identify VTEs using the same approach we
employed for trajectory-based VTE classification. Consistent with previous work, we found several oscillatory
features with different empirical distributions for VTE and non-VTE trials (figure , bottom panel). To
test whether an SVM classifier could identify VTEs above chance levels when trained with features of the
HPC oscillation, we calculated classifier metric A scores. We compared classifier performance from two
distinct behavioral epochs - one where rats actively made choices (i.e. when VTEs would occur), or during
the delay interval that preceded the choice epoch. Each score shows how far above chance the classifier
performed when oscillations were taken from the choice or delay epoch (figure ) Chance estimates were
obtained by training a classifier on oscillations from the choice epoch, but randomly labeling each trial
as VTE or non-VTE. Thus, a score of zero indicates that the classifier performed the same as would be
expected if randomly labeling trials. Classifier performance on HPC oscillations during choices is above
the performance for classifiers trained on HPC oscillations during the delay epoch of the task (figure ;
AFldelay = 0.02, AFchoice = 0.12; two-sample K-S test, p < 0.0001).
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Figure 3: FEzample oscillation data and feature distributions. A - Sample HPC oscillation. Data are nor-
malized (z-scored), so amplitude is measured in standard deviations (see scale bar). B - Normalized power
timeseries for low gamma (blue) and high gamma (orange) for the oscillation shown in A. C - Cumulative
distributions for 4 (of 12) curated features of the HPC oscillation. Asterisks denote significantly different
distributions after Benjamini-Hochberg false discovery rate correction across features (Low Gamma, p <
0.005; High Gamma p < 0.05)

AT - asymmetry index, SD - standard deviation, ms - millisecond
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Figure 4: VTE classification is better for oscillation-based features from choices than delays. A - Classi-
fication performance when using oscillations from the delay epoch (green) compared to oscillations from
the choice epoch (purple). Each A score is a difference between performance using data from either epoch
and corresponding randomly labeled data. B - Scatterplots of AFj score distributions for oscillations taken
from the delay and choice epochs. Dotted vertical line shows the mean choice AF score, dotted horizontal
line shows the mean delay AF; score. Dashed diagonal line marks where equal departures from chance
would occur. Individual distributions and kernel density estimates for AF} scores are shown in the marginal
distributions. Note skew below the diagonal, indicating significantly higher choice AF; scores (p < 0.0001,
two-sample K-S test)

Though the highly curated features used in the classifier for figure [4 have been shown to differ during
VTEs and non-VTEs (Amemiya and Redish| [2018} [Schmidt et al., 2019)), these features are only a small
subset of attributes that could describe the HPC field potential oscillation. As such, we used arguably the
most common descriptor of oscillations, the power spectrum, in an attempt to increase classifier performance.
We first compared average power spectral density (PSD) estimates for different frequencies, calculated for
different splits of data, to identify which frequencies had significantly different average power on VTE and
non-VTE decisions. Frequencies that survived false discovery rate correction (see were used as
features for an SVM classifier trained on PSD estimates. Interestingly, although these classifiers utilized a
much higher dimensional feature-space (roughly seven-fold more features using PSD estimates than curated
features), AF; scores did not differ from those obtained with the highly curated features (figure 5B, p =
0.58, two-sample K-S test).

It is possible that features of the HPC oscillation contain information about VTE occurrence that com-
pliments the information contained in trajectory data. In other words, VTEs that are difficult to classify
based on trajectories alone may have accompanying HPC oscillatory dynamics that, when combined with
the trajectory features, lead to improved VTE classification. To examine this possibility, we trained an SVM
classifier on combined trajectory and curated oscillation-based features that had significantly different distri-
butions on VTE and non-VTE trials. Interestingly, combining feature sets (slightly) decreased performance
when compared to trajectory features alone (figure E[) Thus, we conclude that, although features of the
HPC oscillation can be used to some extent for classifying VTEs, these features do not contain novel or
complementary information beyond what can be extracted from the trajectories.
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Figure 5: Full power spectra do not outperform highly curated oscillation features. A - Classification perfor-
mance when using PSD estimates (dark red) compared to curated features from the choice epoch (purple).
Each A score is measured as a difference between performance using data from either epoch and corre-
sponding randomly labeled data. B - Scatterplots of AFj score distributions for PSD estimates and curated
features choice epochs. Dotted vertical line shows the mean choice AF; score, dotted horizontal line shows
the mean PSD AF; score. Dashed diagonal line marks where equal departures from chance would occur.
Individual distributions and kernel density estimates for AF; scores are shown in the marginal plots. AF}
scores are not significantly different for SVMs trained on PSD-based and curated feature sets (p = 0.58,
two-sample K-S test).

PSD - power spectral density

3 Discussion

The purpose of this study was to improve upon current methods of VTE identification and build on our
understanding of hippocampal involvement during VTEs. We show that VTE behavior can be robustly and
reliably separated from non-VTE behavior using a small set of trajectory-based features. Additionally, we
show that classifiers trained on features of the dorsal HPC field potential oscillation separate VTEs from
non-VTEs more than would be expected by chance, supporting previous research linking the HPC to VTEs.
Moreover, we show that when oscillations are taken from the delay epoch that precedes the choice epoch,
oscillation-based features no longer enable above chance VTE classification, which suggests a brief temporal
window underlying HPC involvement in VTE processing. We also caution, however, that despite above
chance VTE identification using oscillation-based features, our results also clearly show that population
level HPC dynamics are not sufficient for robust VTE identification (figures @ and . In particular, we
demonstrate that combining neural features and trajectory features leads to slightly, but significantly, worse
performance than using trajectory features alone, suggesting that the HPC oscillation-based features do not
contain information that compliments or adds to the behavioral features.

Not only do curated HPC oscillation-based features show only modest VTE classification, we show that
full power spectra do not improve performance, despite using roughly seven-fold more features. We see this
as further evidence that population level HPC dynamics are not sufficient to identify VTEs, but acknowledge
that taking information from place cell sequences into account might bolster performance, given the reports
of sequences tracing out upcoming VTEs before the behavior occurs (Johnson and Redish) 2007). In our
opinion, however, it is more likely that examining HPC interactions with other areas, such as the medial
prefrontal cortex (mPFC). (Brown et al.,[2016} [Voss and Cohenl, 2017} |Schmidt et al.,[2019; Hasz and Redishl,
[2020; [Kidder et al.| 2021), would be more fruitful for improving our ability to classify VTEs based on neural
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Figure 6: Adding oscillations-based features slightly degrades classifier performance. A - Comparison of SVM
classifier performance using both oscillation- and trajectory- based features (purple) or trajectory features
alone (grey, same as figure 2| A - SVM). B - Distribution of F1 A scores for different data splits. Values
below zero indicate worse performance using combined features. Scores are significantly shifted below zero
(p < 0.0001, two-sample K-S test)

Comb. - Combined, Traj. - Trajectory alone

activity. Schmidt et al. have shown that rats perform fewer VTEs when faced with difficult decisions if
their mPFC has been inhibited chemogenetically. Furthermore, the window in which HPC oscillations are
best able to identify VTEs is during choices, which is when brief increases in theta coherence between the
dorsal HPC and mPFC occurs (Jones and Wilson, |2005; Benchenane et al., [2010), suggestive of cross-regional
communication (Fries| 2005, 2015). Finally, experiments using optogenetics to perturb the mPFC in a task-
epoch-specific manner during the SDA task showed that stimulation decreased the proportion of VTEs rats
engaged in, with a trend toward choice epoch mPFC disruption having a greater effect than stimulation in
other epochs (Kidder et al. 2021)).

Methodologically, we find comparing classification performance between behavior and neural activity
an intuitive way to understand how well the activity under scrutiny relates to the behavior in question.
When behavior classification is good, that level of performance can often be thought of as an upper bound
for assessing how well neural activity describes the behavior, while randomly labeled classifiers can set the
lower performance bound. This may provide a more nuanced picture of how well neural activity describes a
behavior than hypothesis testing alone. For example, while we and others show multiple features of the HPC
oscillation form distinct empirical distributions for VT'Es and non-VTEs, the fact that classifier performance
using these features does not meet classification performance of the behavior itself suggests that these features
only provide a partial description about the neural substrate of the behavior. Additionally, feature-based
classification allows for very flexible control of what parameters — behavioral or neural — one wishes to
examine, as well as the size of the parameter space one would like to search. Moreover, as demonstrated
by comparing HPC power spectra with curated oscillation features, feature vectors can be arbitrarily sized
with surprisingly little influence on classifier performance, as long as the classifier is constructed to protect
against overfitting (e.g. with proper hyper-parameter selection and cross-validation). For these reasons, we
see this framework as extremely flexible in terms of feature selection and use, as well as an intuitive way of
gauging how well neural activity measurements describe behavior.

Altogether, our results expand previous efforts to algorithmically identify VTEs based on trajectories,
improving our ability to detect these important variants of decision-making behavior. In addition, we provide
support for hypotheses that position the hippocampus as one element in what is likely a broader network
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of interacting neural structures that support VTEs. We believe future decision-making research will benefit
from tracking VTEs and VTE-like behaviors, such as saccades and head movements in humans and non-
human primates (Voss and Cohenl 2017} |Santos-Pata and Verschure,|2018)) and hope our classification scheme
enables more wide-spread VTE analysis. Additionally, we encourage future VTE research to expand beyond
the HPC and further our understanding of the neural system(s) involved in this decision-making behavior.

4 Methods

4.1 Behavioral task

Food restricted (85% of body weight) Long Evans rats (n = 9, Charles River Laboratories) were trained on a
previously described spatial delayed alternation (SDA) task (Baker et al.|[2019), (Kidder et al.,2021)). Briefly,
sessions were run on an elevated plus maze (black plexiglass arms, 58 cm long x 5.5 cm wide, elevated 80 cm
from floor), with moveable arms and reward feeders controlled by custom LabView 2016 software (National
Instruments, Austin, TX, USA). Each trial consisted of a rat leaving its starting location in a randomly
chosen “north” or “south” arm, then navigating to an “east” or “west” arm for a 45 mg sucrose pellet
reward (TestDiet, Richmond, IN, USA). Rewards were delivered when rats alternated from their previously
chosen arm (i.e. if they selected the “east” arm on trial n — 1 then they had to select the “west” arm for
reward on trial n). After making a choice, rats had the opportunity for reward consumption (if correct)
before they returned to the assigned start arm and entered into a 10 second delay period before the next
trial began. Based on this structure, we divided the task into three epochs - choice, return, and delay.

4.2 Microdrive implantation

Micro-drive bodies were 3-D printed (Form 2 Printer; Formlabs, Sommerville, MA) to contain between 8
and 16 gold plated tetrodes (nichrome; SANDVIK, Sandviken, Sweden), which were implanted unilaterally
into the CA1 region of HPC (AP: -3.0, M/L: +£2.0mm, D/V: -1.8mm). A subset of animals (3) had two
optic fibers that were implanted bilaterally into the mPFC and used for additional experiments (Kidder,
et al., 2021)), and the remainder (6) also had tetrodes implanted into the ipsilateral lateral habenula for
additional experiments, but all animals ran the same behavioral task, and data used for this study were from
before any optogenetic stimulation was ever delivered. Tetrodes were connected to a 64-channel Open Ephys
electrode interface board (EIB) (open-ephys.org). To eliminate external noise, drive bodies were shelled in
plastic tubes lined with aluminum foil coated in a super-conductive nickel spray. One ground wire connected
the shell with the EIB and, during surgery, another ground wire was implanted near the cerebellum just
inside the skull. After surgery, rats were allowed to recover for approximately seven days before entering
into testing, and HPC tetrodes were lowered over the course of several days until at least one tetrode showed
oscillations consistent with the CA1 fissure (high-amplitude, asymmetric theta oscillations).

4.3 Data Acquisition

Behavior tracking

Two LEDs were attached to either the rat’s microdrive or the tethers plugged into the microdrive’s head-
stage before recordings. Rat locations were determined by subtracting a background image taken at the
beginning of the session from each frame. Pixels containing the LEDs showed an above threshold difference
in brightness, which allowed us to determine rat head locations in each frame. Camera frames were recorded
at approximately 35 Hz using a SONY USB web camera (Sony Corporation, Minato, Tokyo). Frames were
time-stamped with a millisecond timer run by LabView and sent to the Open Ephys acquisition software
(open-ephys.org) for later alignment of electrophysiological and position information.

Electrophysiology

Electrophysiological data were sampled at 30 kHz using Intan headstages (RHD2132; Intan Technologies,
Los Angeles, California) connected to the Open-Ephys EIB. Digitized signals were sent via daisy chained
SPI cables through a motorized commutator that prevented tether twisting (AlphaComm-I; Alpha Omega
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Co., Alpharetta, GA) and into an Open-Ephys acquisition board (open-ephys.org). All further processing
and filtering was done offline using custom MATLAB scripts (see section for more details).

4.4 Classifier features - trajectories

We calculated 7 features of choice epoch trajectories - the standard deviation (SD) of the x-position (z, ), the
SD of the y-position (y,), the trial’s integrated change in heading angle (IdPhi), the trial duration (dur),
how well the trial was fit by a sixth degree polynomial (72), and the number of Fourier coefficients needed
to describe the fit of the polynomial (necf). Both x, and y, were calculated using the std method from
Python’s numpy package for the x and y position vectors of the rat’s trajectory on a given trial. The IdPhi
score for a trial was defined as:

¢ = arctan2(dy, dx) (1)
b
IdPhi =) | |¢a — du-i] (2)

where arctan2 is the 2-argument arctangent function and dx and dy are changes in the trajectory’s x and
y position, respectively. We set the IdPhi threshold value, above which something was assigned as a VTE,
by iterating through values from the 50th to the 80th percentile and choosing the value that maximized
classification accuracy. The dur feature measures the duration a rat was within an experimenter defined
choice point on the maze. The r? value was determined using a two-step process. First, optimal coefficients
for each of the terms in the polynomial were calculated using the curve_fit method of the scipy.optimize
package with the vector of x positions as the independent variable and the vector of y positions as the
dependent variable. From here, we used the optimized outputs as inputs to a generic sixth degree polynomial
function, calculated the error sum of squares between the observed y values and modeled outputs (SSE, see
equation , and calculated the total sum of squares (SST, see equation . The calculation of the 72 value
is shown in equation

n
SSE = Z(yl —4:)° (3)
i=1
n
SST =3 (yi —9)° (4)
i=1
SSE
e (5)
SST
In (3), y: is the estimated y position at the i-th location in the trajectory, and g is the mean y position of
the trajectory in . We noticed that plotting the polynomial estimates with poor fits (which were mainly
VTEs) created a trajectory that looked similar to a damped oscillation, so we devised the ngees feature -
which is the number of Fourier coefficients needed to describe the polynomial fit estimate - to capture this
oscillatory character. Intuitively, higher values of n...s were expected to correlate with instances of VTE.

4.5 Classifier features - curated oscillation features

To quantify features of the HPC CA1 oscillation, we down-sampled our data by a factor of 30, going from
a 30kHz sampling rate to a 1kHz sampling rate, and z-scored the downsampled timeseries to put amplitude
in units of standard deviations. Based on previous work (Amemiya and Redish, 2018 |Schmidt et al., [2019)),
we were interested to see if we could use features of the HPC CA1 oscillation to classify VITE vs non-VTE
trials. We used 7 features - the asymmetry index (AI) of the wide-band theta oscillation, average ascending
(asc) and descending (desc) durations of the wide-band theta oscillation, the average (normalized) low and
high gamma powers (LG and HG, respectively), the cycle-averaged gamma ratio (GR), and the average
duration of a theta cycle. Each trial had multiple measurements of each value, so we also used the SD of
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these measurements as a feature for all but the asc and desc features, giving a 12-variable feature vector for
each trial.

Previous reports have demonstrated asymmetric theta oscillations in different layers of the HPC (Buzsaki
et al.l {1985, 1986; Buzsdki, 2002), so we used a low-pass filtered signal with the cutoff frequency at 80 Hz to
identify peaks and troughs of the theta oscillation as well as the ascending duration, descending duration,
and total duration of each theta cycle (Belluscio et al.| 2012)) (see figure for an example). The Al is
defined as:

Al = log(asc) — log(desc) (6)

such that cycles with longer ascending than descending durations will give positive values, cycles with
equal ascending and descending durations will equal 0, and cycles with shorter ascending than descending
durations will give negative values. Because different HPC recording locations can have differently shaped
theta oscillations (Buzséki et al., (1985, [1986; [Buzséki, 2002), we ensured that all days used for analysis had
Al distributions that were skewed in the same direction.

To estimate gamma powers, first we bandpass filtered our downsampled timeseries between 35-55 Hz for
low gamma and 61 - 100 Hz for high gamma using third order, zero-lag Butterworth filters. These values were
then z-scored, putting units of amplitude into standard deviations. The power in a gamma-band timeseries,
g(t), was estimated using:

p(t) = 1g()? (7)

where §(t) denotes the Hilbert transform of g(¢). We then used these power estimates to calculate cycle-by-
cycle GRs. For a given cycle, the gamma ratio was defined as:

_ LG
 HG(t)

and the gamma ratio for the entire trial was the average of these cycle-by-cycle values.

GR (8)

4.6 Classifier features - power spectral density

In addition to pre-defined oscillation bands and bandpass filtering signals, we performed the same classifier-
based analysis of neural data using PSD estimates as features instead of the curated oscillation features.
For this, we used MATLAB’s periodogram function (version 2018 B; MathWorks, Nattick, MA), with a
Hamming window over the duration of the signal, a frequency resolution of 1 Hz, and a range of 1 Hz to 100
Hz. To maintain consistency with curated oscillation features, we use the z-transformed HPC oscillation.
PSD estimates are kept as original values, as opposed to the common decibel conversion.

4.7 Classifier implementation

Classifier models

We used the scikit_learn library from Python to create and test k-nearest neighbor (KNN) and support
vector machine (SVM) models. All instances of the KNN model used 5 neighbors for classification, though
results for 3-10 neighbors did not lead to different conclusions. All instances of the SVM model used a radial
basis function (RBF) kernel for assessing distance/similarity. A v parameter dictates the width and shape of
the RBF, with lower values giving wider kernel functions and higher values giving narrower kernel functions.
We chose to search values between 0.005 and 10 for 7. Another parameter, the C parameter, controls the
trade-off between the size of the decision function margin and classification accuracy, which can be thought
of as a way to control overfitting the decision function. Low values of C favor a larger margin, high values
of C favor a more complex decision function. We tested a range of C values from 0.01 to 10. Data used to
train the model were standardized and scaled. Testing data given to the model were transformed based on
the scalings calculated for the training data (see Cross Validation for more details on how data were used
for classifier training and testing).

Evaluating classifiers
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We used several standard metrics for assessing classifier performance (Lever et all [2016), all of which de-
scribe different combinations and/or weightings of true positives (T'P), true negatives (T'N), false positives
(FP), and false negatives (F'N). For VTE identification, a TP is trial correctly classified as a VIE, a TN
is a trial correctly classified as a non-VTE, a F'P is a trial incorrectly classified as a VITE, and a F'N is
a trial incorrectly classified as a non-VTE. Accuracy measures the number of trials assigned to the correct
class (VTE or non-VTE) out of the total number of trials, and is defined as:

TP+ TN )
TP+TN+FP+FN
such that accuracy equals 1 if every trial, VITE and non-VTE, is correctly classified, and 0 if no trials are

correctly classified. Precision measures the number of correctly classified VTEs out of the total number of
trials classified as a VTE, i.e.:

accuracy =

TP
TP+ FP

meaning precision takes a value of 1 if all of the trials classified as a VTE are in fact VTEs, even if it does
not identify all VTEs in the dataset. As a complimentary metric, recall takes F'N into account:

precision = (10)

TP
recall = m (11)

and is thus a measure of how many VTEs were correctly classified out of the total number of VTEs in the
dataset. For a binary classifier with equal numbers of each class, chance performance for each metric would
be 0.5 on average.

It is often helpful to compare accuracy, precision, and recall, individually but a composite measure that
combines precision and recall scores is the F-score. For this paper we summarize classifier performance with

the Fl-score (F'1) which is defined as follows:

Fl—9x precision X recall

precision + recall (12)
Cross validation

To ensure our classifiers were generalizable and performance was not biased by a particular ordering of our
dataset, we performed cross-validation on distinct test/train splits of the dataset. For each evaluation, we
used 67% of data for supervised training, and used the remainder for testing performance. For reproducibility,
and to make comparisons across classifier models and feature modalities, we created a (seeded) matrix of
randomly shuffled trials where each column contained a distinct ordering of trial values to use for one split
of model training and testing (Liu, X.-Y. et al., |2009)). For a given assessment, we used 100 distinct splits
of testing and training data, giving a matrix with 100 columns. Since VTEs occur on roughly 20% of trials,
every VTE in the dataset was present in each column, and a randomly drawn, equal number of non-VTEs
made up the rest of the column, meaning each distinct split used the same VTE trials, but was allowed to
contain different non-VTE trials (Liu, X.-Y. et al.| [2009). This same matrix was used any time we evaluated
classifier performance, meaning all evaluations were done using the exact same 100 iterations of test/train
splits. Put simply, we assessed performance with 100 iterations of randomly selected trials constituting
each test/train split, but ensured that assessments for different classifier models and feature modalities were
performed on the exact same data. All hypotheses were tested using seed values of 1 through 5 with the
numpy . random.default_rng(seed) method, and all conclusions were the same with each value of seed. The
figures in this paper were generated using seed = 5.

4.8 Dataset curation

Training and assessing performance of the supervised classifier required manual VTE scoring to assign labels
to trials. Because it is difficult to define an exact set of criteria for scoring a VIE (hence the need for a
classifier), we instead chose to have at least two raters score each trial, and used their consensus to determine
the label. All raters first trained together on a subset of trials to develop “implicit criteria” for scoring.
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We also excluded trials based on several criteria of the hippocampal oscillations. First, we checked that
the overall central tendency of the AI distribution was positive for a given session. Note that other studies
have reported generally negative Als (Amemiya and Redish, [2018; |Schmidt et al., [2019). We suspect this is
due to systematic shifts in theta shape characteristics across the different hippocampal axes (Buzsiki et al.|
1985, (1986} [Buzsakil, [2002]). We also excluded trials where a 4 SD noise threshold, calculated based on the
SD of the entire timeseries, was exceeded. If any session had more than 25% of its trials excluded, we did
not use any of the data from that session.

4.9 Statistics

We performed two-sample, two-tailed Kolmogorov-Smirnov (K-S) tests to evaluate whether empirical distri-
butions are likely drawn from the same underlying population distribution. To test whether a distribution of
differences is centered at zero (i.e. to test for differences between paired groups), we performed one-sample,
two-tailed Wilcoxon signed-rank tests. To assess which features exhibit statistically distinct empirical dis-
tributions when testing a number of features, we follow K-S testing with Benjamini-Hochberg (BH) false
discovery rate correction to adjust p-values. Criteria for significance is set at p = 0.05 for all tests and
corrections.
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