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Abstract  

 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder whose aetiology is 

currently unknown. Although numerous studies have attempted to identify the genetic risk 

factor(s) of AD, the interpretability and/or the prediction accuracies achieved by these studies 

remained unsatisfactory, reducing their clinical significance. Here, we employ the ensemble of 

random-forest and regularized regression model (LASSO) to the AD-associated microarray 

datasets from four brain regions - Prefrontal cortex, Middle temporal gyrus, Hippocampus, and 

Entorhinal cortex- to discover novel genetic biomarkers through a machine learning-based 

feature-selection classification scheme. The proposed scheme unrevealed the most optimum 

and biologically significant classifiers within each brain region, which achieved by far the 

highest prediction accuracy of AD in 5-fold cross-validation (99% average). Interestingly, 

along with the novel and prominent biomarkers including CORO1C, SLC25A46, RAE1, 

ANKIB1, CRLF3, PDYN, numerous non-coding RNA genes were also observed as 

discriminator, of which AK057435 and BC037880 are uncharacterized long non-coding RNA 

genes. 
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1. Introduction 

 

Currently, 40-50 million people around the world are living with dementia and this number has 

doubled from 1990 to 20161. Alzheimer's disease being the most common form of dementia is 

expected to rise notoriously with the aging population. With the increase in its incidence, the 

expenses are also rising. It is estimated that in 2010 alone, Alzheimer's disease had cost the 

world $604 billion2 and is expected to incur a global AD-associated healthcare cost of $2 

trillion by 2030 affecting more than 131 million people by 20503. Hence, Alzheimer's disease 

is rapidly emerging as critical global health and economic challenge that has prompted vigorous 

scientific investigations to identify underlying genetic risk factors and regulatory markers, to 

suppress the estimated healthcare burden by early detection, especially at pre-symptomatic 

stages. Much research is performed on the late occurring hallmarks of AD4-6 such as 

neurofibrillary tangles, amyloid plaques, neuronal tangles, etc. Although these findings hold 

some important diagnostic values, the overall therapeutic contributions of these late occurring 

hallmarks of AD remain murky4. Moreover, clinical trials indicate that patients with AD show 
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a varied pattern of symptoms and varying responses to a particular therapy that substantiates 

several pathological causes, making AD even more intricate to investigate7.  

 

In recent years, data generated through high throughput gene expression profiling has opened 

new avenues for a better understanding of the complex disease mechanism and pathways at a 

molecular level8, 9. However, the huge dimension, low sample size, and noise in high-

throughput gene expression data make it challenging to identify embedded patterns within the 

dataset. Currently, the methods to identify the most explaining gene subsets by data reduction 

and feature selection in the context of gene expression profile dataset analysis are broadly 

classified into two classes10: (i) marginal filtering method11, 12 and (ii) wrapper (embedded) 

method13, 14. The marginal filtering further is subdivided into two types namely, univariate and 

multivariate. Some examples of univariate filtering methods are paired t-test (TS), F-test (FT), 

and Pearson Correlation coefficient (PC)11-13. Some multivariate filtering approaches are 

Analysis of variance (ANOVA), F-score, feature selection based on correlation (CFS), and 

Max-Relevance-Max-Distance (MRMD)15-18. Using these methods, weights are assigned to the 

features (genes), and the genes with higher weights are considered to be the biologically 

important features. Although the filtering methods are computationally less expensive than the 

latter approach, they have significant shortcomings i.e. (i) most of the marginal filtering only 

accounts for the marginal contribution of a gene candidate while completely ignoring the 

interdependencies among the genes, and (ii) the absence of classification process. The filtering 

method doesn't corroborate the classification accuracy of the selected features, reducing its 

clinical credibility14. However, the shortcomings of marginal filtering19, 20 can be overcome by 

wrapper methods. Wrapper methods are a hybrid of learning algorithms and classifiers that 

iteratively search for the optimum set of features by corroborating the classification accuracy 

of each chosen subset of candidate features10. Although the wrapper methods are very 

computationally intensive for high dimensional gene datasets, the classification accuracies 

obtained by the feature subsets identified by these methods are noticeably high14. In addition 

to this, machine learning models are empowered with efficient dimension reduction and feature 

selection methodologies to overcome the curse of dimensionality within the gene expression 

dataset21. Over time, many studies have employed machine learning models on microarray 

datasets to develop robust predictive models for identifying disease onset and prognosis of 

complex diseases such as cancer22-25. 

 

Several studies have extensively leveraged machine learning models to identify biomarkers of 

AD from phenotypic data such as magnetic resonance imaging26. However, the identification 

of molecular signature underlying the mechanism of AD through gene expression profiles of 

demented patients remains largely unexplored27. In this direction, few studies have employed 

machine learning on gene expression data to delineate the potential differentially expressed 

genes (DEGs) within the AD-affected brain28-31. These studies have successfully used several 

state-of-the-art machine learning algorithms such as random forest, decision trees, support 

vector machines, and deep learning models to the feature selection and classification 

paradigm32-35. Although highly innovative, these methods had their own shortcomings such as, 

(i) the proposed schemes within many of these methods were able to reduce the dimensions 

(number of features) but they remained mute on demonstrating the discriminative potential of 

the acquired DEGs, thus fails to vindicate the practical biological relevance of the obtained 

geneset. (ii) The majority of these studies incorporated only a small set of samples (usually 

<30), thus the results remained insufficiently descriptive and have low interpretability32.  

 

Our objective here is to probe the difference in the gene expression levels within different brain 

regions of AD patients and non-demented controls, to identify the highly discriminating and 
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biologically relevant gene signatures for AD through the wrapper (embedded) approach. We 

exclusively probe the Prefrontal cortex (PFC), Middle temporal gyrus (MTG), Hippocampus 

(H), and Entorhinal cortex (EC) as these regions are the most vulnerable to neurodegenerative 

diseases36-38. To retain the most significant and biologically relevant markers, we 

conceptualized a simple feature-selection and classification scheme based on the ensemble of 

random forest (RF) and regularized regression model; plugged with the best-configured 

classifier to obtain maximum classification accuracy in a 5-fold cross validation test (see Fig 

1). In addition to validating our finding by integrating biological knowledge through systematic 

literature review, GeneMania39, and STRING40 network analysis; we also corroborate the 

biological relevance of the obtained gene signatures by quantifying their disease discriminative 

power for the gene expression data obtained from the Visual Cortex (VC) and the Cerebellum 

(CR) of both AD affected and control brains. Through this work, we attempt to determine the 

signatures underlying AD and to formulate an efficient disease identification scheme whose 

clinical applications could further be extended for other diseases of altered expression.  

 

 

2. Materials and Methods 

 

2.1 Dataset 

 

We extracted the AD-associated gene expression datasets from the public functional genomics 

data repository NCBI-GEO database (http://www.ncbi.nlm.nih.gov/geo/). “Alzheimer’s” was 

used as a keyword to query all the experimental studies that have probed the gene expression 

profile within the brain tissues of AD patients against that of the non-demented healthy 

controls. The brain regions of our interest are the prefrontal cortex (PFC), middle temporal 

gyrus (MTG), hippocampus (H), and entorhinal cortex (EC). Datasets of only those studies 

were used that have performed microarray expression profiling and have a sample size of ≥15 

for each type of brain tissue. This resulted in eight different studies, from which the samples 

of four brain tissue types (PFC, MTG, H and EC) were separated and grouped accordingly. 

This way we obtained a large sample size for each brain region. Table 1 presents a summary 

of the expression datasets that are finally incorporated in this work. Each of these studies vary 

in terms of experimental design and measurements, that require special treatment to screen out 

definite AD and control samples for which we provided a detailed description of each dataset 

in supplementary Table S1.  

 

The computation was carried out on an Intel (R) Core (TM) i5-4310U, 16 GB RAM, and 64-

bit OS Win 10 configuration. Method implementation and experiments were conducted using 

R version 4.0.3. The schematic representation of machine learning workflow to identify 

potential biomarkers of AD is shown in Fig 1.  
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Table 1. The gene expression datasets of Alzheimer's Disease for four different brain regions. 

 
 
2.1.1 Dataset integration and Pre-processing 

 

To increase our sample size for statistically augmented results, we integrated at least two gene 

expression datasets for each brain region. However, the merging of the expression dataset is 

challenging because, (i) the platform over which the datasets were originated varies. Each type 

of platform measures the expression level of a particular set of genes which could be highly 

different from the gene repertoire of the other platforms; (ii) Due to adopting varying protocols, 

platforms and processes, different experiments contain various non-biological technical 

variations in the measurements41. These variations can induce a batch effect to the profiles that 

is potent to confound the true biological variations, thus may indicate misleading conclusions. 

To overcome these challenges, we essentially chose only those datasets to merge that were 

generated over a common platform. To subdue the batch effect, we standardized the expression 

profile of each sample, thus accounting for only the distribution of the gene expression42. For 

each dataset, the probe IDs were mapped to their respective Entrez gene IDs and Genbank 

Accession IDs that are annotated in the dataset’s corresponding platform table. In the case of 

duplicated gene IDs, the candidate with the maximum interquartile range was kept for further 

analysis. It was only after this step, we z-score normalized each sample to capture the 

distribution of the expression. We evaluated the p values for each gene candidate using both 

paired t-test and Mann Whitney U test, followed by its corresponding FDR correction for PFC 

and MTG due to their large sample size (> 200). Finally setting p<0.05 and FDR < 0.01, we 

prune our fully merged and pre-processed datasets for feature selection and classification. 
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Fig 1. Schematic representation of the Machine Learning workflow to identify potential 
biomarkers for AD. The gene expression data for a given brain region is processed in the phase 
I. The features are then identified using wrapper methods (phase II). Subsequently in phase 
III and phase IV, the discriminative power and the biological relevance of the identified 
geneset is quantified and validated.  
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2.2 Feature selection 

 

As aforementioned, the merged gene expression datasets were the compilation of 

measurements from different samples but were generated from the same brain tissue, thus 

capturing the crucial biological basis for such expression within that particular brain region. 

To fetch the important independent players (gene candidates) underlying these expression 

levels, we employed two highly efficient feature selection methods; (i) Variable selection using 

Random forest method43 and (ii) Lasso regression method44. The parent models of these 

methods are probably the most pervasive machine learning algorithms i.e., random forest and 

generalized regression model respectively. The formalisms and the implementations of these 

methods are elaborated in the following sub sections. 

 

2.2.1 Variable Selection Using Random Forest (varSelRF) 

 

The random forest algorithm developed by Breiman L.45, 46 uses the ensemble of regression 

trees for classification. Employing a bootstrap sample of the data, the classification tree is built. 

The candidate set of variables at each split of the tree is a random subset of the variables44, 47. 

In this way, RF incorporates bootstrap aggregation (bagging) and feature selection to build 

trees. To obtain low-bias trees, each tree is grown fully, and then bagging and random selection 

of variables is performed to facilitate low correlation of the individual trees43. For each fitted 

tree, RF registers a measure of error rate (OOB error) based on the out-of-bag cases (samples 

that have no contribution in the tree formation) that have very crucial applications in data 

reduction and feature selection. A detailed description of the algorithm underlying RF is 

provided in the supplementary text. Based on the characteristics of the RF algorithm, Ramón 

et al.43 formularized a feature selection model called varSelRF. This method is available as a 

package “varSelRF” on CRAN repository48. varSelRF iteratively fits random forests and 

selects a set of features (genes) that retains a minimum OOB error rate. Exploiting the 

embedded classification process, varSelRF returns a small subset of important genes while 

augmenting the predictive performance. This approach has already been incorporated in several 

literatures and has shown promising results49-52. The rationale to employ varSelRF in our 

framework is (i) the method returns a small set of gene candidates that has low correlation and 

high predictive power52 and (ii) RF based approach requires a less fine-tuning of parameters as 

the default parameter values often deliver the best performance53. 

 

2.2.2 Regularized regression models 

 

Least Absolute Shrinkage and Selection Operator (LASSO) is a type of regularization 

regression method to fit a generalized linear model. Based on the idea of penalizing the 

regression model (L1-norm), LASSO squashes the regression coefficient to zero for the 

variable that has the least contribution to the model. This way the LASSO regression model 

has an optimal feature selection capability. LASSO regression is an alternative regression 

approach to Ridge regression that too is based on penalizing the model but follows a L2-

norm44.  

For a given population 𝑋, let 𝑥𝑖𝑗 be the 𝑖𝑡ℎ(1 ≤ 𝑖 ≤ 𝑛) observation of the 𝑗𝑡ℎ(1 ≤ 𝑖 ≤ 𝑝) 

variable and let 𝑦𝑖 be the corresponding label of the 𝑖𝑡ℎ  instance. For each 𝑝 variable, the 

regularized regression model estimates the regression coefficient 𝛽𝑗(1 ≤ 𝑖 ≤ 𝑝) by minimizing 

the sum of squared error (eq. 1) along with a constraint on the coefficients ∑ 𝐽(𝛽𝑗) ≤ 𝑡44, 54, 55. 
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𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽 ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 )2𝑁

𝑖=1                                                                          eq. 1 

 

For LASSO the coefficient 𝐽(𝛽𝑗) = |𝛽𝑗| and in the Ridge 𝐽(𝛽𝑗) = 𝛽𝑗
2
 42, 51. This way LASSO 

regression tranculates the coefficient of the non-contributing variable to zero while Ridge 

shrinks the coefficient close to zero, delineating LASSO as an efficient feature selection model. 

The LASSO obtains the 𝛽𝑗 estimate by minimizing eq. 2.  

 

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽 {
1

2
 ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝
𝑗=1 )2𝑁

𝑖=1 + 𝜆 ∑ |𝛽𝑗|𝑝
𝑗=1 }                                              eq.2 

 

where λ is the penalty parameter that determines the shrinkage proportion and is often 

determined using cross-validation44. LASSO retains an excellent performance for the situations 

when (i) the data has very high dimension and low sample and (ii) few variables explain the 

majority of data (have large coefficient) and the remaining variable has very low predictive 

potentials44. Moreover, LASSO has some significant advantages such as (i) LASSO efficiently 

handles the multicollinearity within the features and returns highly independent features and 

(ii) Being computationally less expensive, LASSO retains the optimal gene candidates faster. 

These characteristics of LASSO befit the gene expression data as a feature selection model. 

LASSO has elucidated excellent performance in numerous studies55-58, delineating as a very 

promising feature selection model. The variables with relative scaled importance >10 was 

considered significantly important. 

However, studies have indicated that L1-norm (LASSO) is not universally dominant over the 

L2 norm (Ridge). However, to improve computational tractability Zou et al.59 proposed a 

relatively new penalty called the Elastic Net, built as an intelligent compromise between 

LASSO and Ridge penalty. For Elastic Net, the 𝐽(𝛽𝑗) (coefficient constrain) is: 

 

𝑗(𝛽𝑗) = 𝜆 ∑ (𝛼𝛽𝑗
2 + (1 − 𝛼 )|𝛽𝑗|)𝑝

𝑗=1                                                                                                     eq.3  

 

where the new α constant is introduced that regulates the intensity of LASSO and Ridge 

penalties. Elastic Net handles multicollinearity more efficiently than LASSO by accounting for 

every correlated pair during training44, 59. Elastic Net has better performance on many 

occasions, however, there are only a few studies that corroborate the same60. Although we have 

employed LASSO as a feature selection, we leverage the Elastic Net classifier to test the 

determinative power of all the selected features combined due to its high efficiency towards 

multicollinearity. The R package “caret” was used to implement LASSO and Elastic Net61.  

 

 

2.2.3 Multiplicity Problem  

 

For microarray dataset, the problem of multiplicity can cast a false sense of trust in the genes 

identified by wrapper approach. The basis of multiplicity problem has been explained in detail 

in the supplementary text. Subscribing to the notion of the studies investigating the problem of 

multiplicity62-65, we lend credence to the combined set of genes that were obtained by both the 

methods (varSelRF and LASSO); and exclusively probed the biological significance of the 

common and repeatedly selected gene candidates. 
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2.3 Classification model 

 

Classification modeling led by feature selection is a crucial phase of the paradigm, that depicts 

the clinical application of the selected gene candidates. Although the embedded classifier 

within the wrapper method leverages the classification accuracy to quantify the importance of 

a gene subset, but in the context of therapeutic application it is very crucial to corroborate the 

best suiting classification model that improves the prediction accuracy. In this work, we 

employed Support Vector Machines (SVM), Random forest classifier, and Elastic Net classifier 

and performed a comparison study. We also probed the classification efficacy of these models 

for the gene candidates obtained by (i) varSelRF, (ii) LASSO and (iii) combined gene subsets 

retained by both varSelRF and LASSO. An overview of RF and SVM classifiers is provided 

in the supplementary text. The R package “random Forest” and “e1071” were used to 

implement the RF53 and SVM66 respectively. 

 

2.4 Assessment  

2.4.1 Model Assessment 

 

We assess the prediction power of the selected gene candidates through SVM, RF, and Elastic 

Net classifiers. Exploiting the relatively large sample size due to the merging of gene datasets, 

we perform a 5-fold cross validation method to judge the external prediction power of the gene 

set as well as of the classification model with a high level of certainty. To compare the efficacy 

of the models we measure the following metrics. 

 

Accuracy =  
(TP+TN)

(TN+FN+FP+TP)
 

Sensitivity = 
TP

(TP+FN)
 

Specificity = 
TN

(TN+FN)
 

Precision = 
TP

(TP+FP)
 

Matthew’s Correlation (MCC) = 
(TP×TN−FP×FN)

√(TP+FN)×(TP+FP)×(TN+FN)×(TN+FP)
 

 

Here TP, TN, FN and FP represent true positive, true negative, false negative and false positive 

predictions respectively made by the classification model for each brain region (AD state is 

denoted positive and non-demented healthy state is denoted negative). For further comparative 

analysis, we plot the receiver operating characteristics (ROC) curve and compared the area 

under the curve (AUC) obtained by the model for different brain tissue.    

 

2.4.2 Feature Assessment 

 

We assess the biological significance of the feature set obtained by our framework by 

integrating the biological knowledge through a systematic literature review. We have used 

GeneMania39 and STRING40 network analysis to identify the co-expression, genetic and 

physical interactions among the obtained biomarkers of AD and also with the previously well-

known AD genes. Using the same, we also delineated the networks (hub genes) associated with 

our obtained molecular signatures to deliver deeper insight into the mechanism of AD in 

different brain tissues. To further corroborate the biological meaningfulness of the obtained 

markers, we tested the discriminative power of these markers to classify AD patients from non-

demented controls for two different brain regions, Visual Cortex (VC) and the Cerebellum 
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(CR). This way, not only the biological relevance is unmasked quantitatively, the therapeutic 

application of the proposed framework is also depicted.   

 

3. Results 

 

After marginal filtering in the first phase (Phase I), we obtained 26,593, 13,037, 3,268 and 

10,029 genes for PFC, MTG, H and EC respectively, that was further processed to identify 

DEGs using the varSelRF and LASSO method (Phase II). In the following section, we shed 

light on the obtained features as well as their discriminative power when treated with different 

benchmark classifiers. 

 

3.1 The Obtained Features 

 

For each brain region, we employed varSelRF and LASSO on the gene candidates from phase 

I. varSelRF is based on RF that has the inner nature of being purely random and performs 

random sampling within the algorithm. This leads to slightly varying results when implemented 

multiple times. Therefore, for each brain region, we implemented varSelRF for five times and 

considered each selected candidate as important feature. The tuned hyperparameter sets for 

varSelRF and LASSO are provided in the supplementary Table S2. The features obtained are 

summarized in Table 2. We found that LASSO obtained a higher number of candidates than 

varSelRF for the brain region with a large sample size and vice versa.  

 
Feature 

Selection 
 Method 

Prefrontal Cortex 
Medial Temporal 

Gyrus 
Hippocampus Entorhinal Cortex 

va
rS

el
R

F 

C4B, LINC00507,  
AK098016, BU615728 

ITGA10, ELK1, ANTXR2, CORO1C, CHST6, ITPKB, 
TEAD2, STAG1, 

 NEXN, CALD1, CBLB, HMBOX1, 
 PLCB1, ATXN10, BPTF 

LOC101927151, STOML2, CTD-
2587H24.10,  

ZNF621, RAE1, SLC25A46, ESRP2,  
ANKIB1, CHMP2A 

LOC646588, CSAG2 / CSAG3, ZHX3, C3P1,  
KHSRP, SLC25A46, GIPC3, SYNPO2, 

 ANKFN1, GAS2L2, AL110181 / RP11-390E23.6, 
 RP3-428L16.2, RPLP2P1 / RPLP2P1, RNF123,  

ZNF579, AC017104.6, APLNR, RHCG, 
 NFKB2, LMO1, SNX32, ONECUT3, 

 ST6GAL C4, ZNF621, QRICH2, FBXL14, 
 DUOX1, ANKIB1, KCNK12,  

C1orf50/LOC100129924, RAE1,  
LOC101927151, BYSL, IGLJ3, CAC 1C, 

 KRT86/LOC100509764, MLIP, PCDH12 

LA
SS

O
 

PLEKHA8P1, XM_208773, N40307,  
HELQ, METTL9, PDP2, CA388904,  

CRLF3, TBCCD1, LINC00552, AI187365, 
 AI458218, COL21A1, MTRFR, 

BC021699, 
 AA993171, NM_018543, AK092901, 

 MPC1, MRPL18, WDR48, MTTP,  
QPRT, COL24A1, MYO18B, AK022363,  

PDYN, AI310112, CDYL, PLCH2, 
 FAM181B, XM_208251, AK098016,  

PDGFC, SIM2, NM_145665, XPC,  
EXOSC10, OR7A17, AX750575, ECHDC3,  

SIGLEC12, JMY, FDXR, CDR1, S100A5,  
CES5A, AKR1C2, B3GNT6, AA860882,  
NM_018544, XM_070957, PSTPIP1,  
XM_373660, AF075038, HS3ST3B1 

CORO1C, ZFP161, HOMER3,  
LOC648377, ANKRD19, AIMP2,  

PDPN, LRRCC1, EIF2S3, C1QTNF5,  
PRKCG, DIAPH1, ATP1A3, LOC149069, 

 RNF144A, EEF2K, GPRASP1, HHAT,  
SFRS1, SMARCD3, ATXN10, TTC7B,  

DTNBP1, KIF7, DOLK, ZCCHC6, 
 TPD52, LOC727758, CDK5, GHSR,  
LAMA2, LOC100132324, PI4KAP2, 

 TBX18, DLGAP4, DDR2, LOC407835, 
 BX097335, AK057443, SPAG7, SLC25A14, 

 MGC12982, DA760637, D JC7,  
FTSJD2, DGCR8, KIAA1274, RNF19A,  

SMYD3, MAFF, TSC22D1, XM_499121,  
BHLHB9, HCG4, ZBTB46 

LOC101927151, ESRP2, SHQ1, ZNF621,  
SNORA71B, UBXN2A, PDCD6, AKIRIN2, 

 BC062753, DUSP8/LOC101927562, ZHX1,  
SREK1IP1, RBM10, C1orf110, CAAP1,  

NELFCD, GALNT1, HOXC11, ENY2,  
ZNF302, LYRM5, LOC100996760, 

 U2AF2, SLFN12 

IGLJ3, SYF2, SLMO1, PPP1R1C,  
ZHX3, ISG20, SPOP, HPCA,  

CMIP, GIMAP5, ACAP3, ACACA,  
NPCDR1, CDRT15 

Common 
Gene 

AK098016 CORO1C, ATXN10 LOC101927151, ZNF621, ESRP2 ZHX3, IGLJ3 

 
Table 2. The gene biomarkers obtained for different brain regions using varSelRF and LASSO 

methods. 

 

Both the models largely identified a varying set of markers; however few gene candidates were 

commonly identified by both methods. Of interest, the majority of these commonly identified 

markers are closely associated with neurodegenerative disorders, depicting the biological 

significance of the models. In addition to the common genes identified by the models, there 

were common regulatory gene candidates within the brain regions (see Fig S1). The common 

biomarkers found within the H and EC region are ZNF621, SLC25A46, RAE1, and ANKIB1. 

Among these biomarkers, RAE1, ANKIB1, and SLC25A46 have been reported to be 
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prominently involved in several neurodegenerative disorders. The RAE1 protein is found to be 

the interacting partner of Huntingtin protein aggregates67 and experimental evidence of early 

ageing associated phenotypes is reported in Rae1 haplo-insufficient mice68. ANKIB1 is also 

found to be associated with Cerebral cavernous malformations69. Another potential biomarker 

that has been associated with neurodegenerative disorders is SLC25A46. A study by Abram’s 

et al. has experimentally shown that the mutations in the SLC25A46 genes can lead to the 

degeneration of optic and peripheral nerve fibers70. Also, loss of function in the SLC25A46 

gene leads to lethal congenital and peripheral neuropathy71, 72. Although these genes have been 

extensively studied for different neurological disorders, their role in Alzheimer’s disease is yet 

to be exclusively explored. Our models were also able to unravel the participation of non-

coding RNAs, identifying 9 non-coding RNAs within the brain regions. Among the non-coding 

RNAs, we found two long non-coding RNAs, AK057435 and BC037880 in the prefrontal 

cortex and the hippocampus region respectively that are classified as potential biomarkers. 

Since long non-coding RNAs are known to play an important role in human neurological 

development and cognition, experimental characterization of these biomarkers can help to 

elucidate the role of long non-coding RNAs in Alzheimer’s disease. 

 

3.2 Classification  

 

To determine the classification potential of the obtained gene set for each brain region, we built 

three benchmark classification models (SVM, random forest and Elastic Net). Performing 

extensive machine learning experiments, we made an attempt to identify the best pair of 

feature-selection and classification models in the context of disease class prediction. For each 

of the four brain regions, we applied three different best-configured classification model to the 

gene set obtained through varSelRF, LASSO and finally to the combine pool of gene set 

(varSelRF + LASSO), depicting a total of 9 scenarios to identify the best performing 

combination. The classification performance was assessed through a 5-fold cross validation 

method. Table 3 represents a complete summary of the assessment metrics obtained for each 

possible scenario. In our study, the proposed framework has obtained foremost the highest AD 

prediction accuracy than any previous studies in a similar paradigm to our knowledge to date. 

For the prefrontal cortex and hippocampus, the scheme has even obtained 100% prediction 

accuracy.  

 
 

Feature  
Selection 
 Method 

Model 

Brain Region 

Prefrontal cortex Middle temporal gyrus Hippocampus Entorhinal cortex 

Acc Sen Spe Pre Mcc Acc Sen Spe Pre Mcc Acc Sen Spe Pre Mcc Acc Sen Spe Pre Mcc 

va
rS

el
R

F SVM 0.93 0.95 0.90 0.91 0.85 0.86 0.85 0.87 0.89 0.73 0.90 1.00 0.80 0.84 0.82 0.91 0.95 0.80 0.80 0.75 

RF 0.95 0.95 0.94 0.94 0.89 0.87 0.88 0.87 0.88 0.74 0.94 1.00 0.88 0.91 0.89 0.95 1.00 0.85 0.87 0.84 

ElasticN 0.93 0.97 0.90 0.90 0.87 0.88 0.86 0.89 0.90 0.75 0.93 0.97 0.88 0.91 0.87 0.94 1.00 0.82 0.84 0.81 

LA
SS

O
 SVM 0.99 1.00 0.99 0.99 0.99 0.96 0.96 0.95 0.96 0.91 0.79 0.81 0.77 0.78 0.59 0.91 0.92 0.90 0.95 0.79 

RF 0.97 0.97 0.96 0.96 0.93 0.91 0.91 0.91 0.92 0.81 0.83 0.83 0.83 0.84 0.66 0.92 0.91 0.92 0.88 0.78 

ElasticN 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.86 0.86 0.87 0.87 0.74 0.97 0.98 0.97 0.97 0.93 

va
rS

el
R

F 
 

+ 
 

LA
SS

O
 

SVM 0.99 1.00 0.99 0.99 0.98 0.95 0.95 0.95 0.96 0.91 0.99 1.00 0.97 0.98 0.97 0.92 0.95 0.82 0.84 0.78 

RF 0.97 0.98 0.96 0.96 0.94 0.88 0.87 0.88 0.90 0.75 0.94 0.98 0.91 0.93 0.90 0.95 1.00 0.85 0.87 0.84 

ElasticN 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.98 0.98 0.96 1.00 1.00 1.00 1.00 1.00 0.94 1.00 0.82 0.84 0.81 
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Table 3. Performance comparison of the three different classification models (SVM, RF, 

Elastic Net) applied to the gene set obtained through varSelRF, LASSO and varSelRF + 

LASSO for the four brain regions, namely Prefrontal cortex, Middle Temporal Gyrus, 

Hippocampus and Entorhinal Cortex. 

 

3.3 Performance Evaluation 

 

It was observed that in the majority of the scenarios, the Elastic Net classifier obtained excellent 

performance, followed by the random forest classifier, while SVM performance remained low 

(Fig 2). Substantiating the parent algorithms, both RF and Elastic Net classifier has performed 

higher for the gene sets obtain through their respective allied feature selection model i.e., 

varSelRF and LASSO respectively. Considering the problem of multiplicity, we substantiate 

the combined gene markers of varSelRF and LASSO over the gene set obtained by these 

individual methods.  The ROC-AUC plot elucidates the superiority of Elastic Net over RF and 

SVM for three brain regions (PFC, MTG and H) while remaining slightly lower but highly 

competitive for the EC region (Fig 3). The one explanation of low performance of Elastic Net 

for EC region is possible due to the very small sample to gene ratio.  

 

 

 
 

Fig 2. Prediction accuracy obtained by the SVM, Random Forest, Elastic Net classifier 

employed in the varSelRF, LASSO and varSelRF + LASSO for (A) Prefrontal cortex, (B) 

Middle Temporal Gyrus, (C) Hippocampus and (D) Entorhinal Cortex. The Elastic Net 

classifier obtained excellent performance in the majority of scenarios, followed by the random 

forest classifier and SVM. Genes obtained through LASSO with Elastic net classifier 

performed higher in PFC, MTG and EC region.  
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Fig 3. The classification performances to discover potential biomarkers in four brain regions. 

The ROC-AUC curves of Elastic Net, Random Forest and SVM classifiers for (A) Prefrontal 

cortex, (B) Middle Temporal Gyrus, (C) Hippocampus and (D) Entorhinal Cortex.  

 

In addition to adopting a 5-fold cross validation method, we also took several other measures 

to establish the biological credibility of the identified gene candidates. We hypothesize that the 

gene markers obtained for one brain region hold some biological relevance for the adjacent 

brain region. We therefore evaluated the AD prediction potential of the gene subset of PFC (60 

genes) for the gene expression data obtained from Virtual Cortex (VC) and Cerebellum (CR). 

VC and CR data were extracted from GEO NCBI database (GSE44771 and GSE44768). The 

sample size for VC and CR are both 230 with AD to control ratio of 129:101. We employed 

LASSO feature-selection only for the expression level of those 60 gene candidates that were 

identified as PFC markers on the VC and CR datasets. We find that the biomarkers of PFC 

displayed an excellent AD classification performance (5-fold CV) of 92% and 91% on VC and 

CR datasets respectively (see supplementary Table S3). The complete assessment metric 

obtained for VC and CR is provided in the supplementary Table S4. This quantitatively 

validates the biological meaningfulness of gene candidates obtained in our study.  

      

4. Discussion 

 

The formalism of the proposed framework has two integrated components (i) Identification of 

the AD associated crucial gene markers within each brain region and (ii) the disease class 

prediction. After carrying out an extensive comparative analysis and corroborating the problem 
of multiplicity, it is apparent that Elastic Net classifier has a remarkable potential for disease 

prediction when employed over the gene subset identified by multiple varieties of gene 
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selection models (LASSO and varSelRF in this case). In addition to having outstanding AD 

predictive potentials, the markers identified through this framework are of high calibre in terms 

of explaining the expression level and multicollinearity.  

 

 

 
 
Fig 4. (A) The correlation heatmap (n x n, where n is number of biomarkers) for the expression 

level of the biomarkers obtained by LASSO and varSelRF method for each brain region. Every 
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block in a heatmap plot represents correlation between the gene on each axis. Correlation 

ranges from -1 to +1. The shade corresponding to the values closer to zero indicate low linear 

trend between the two markers. The red labelled markers are the one that are obtained by 

varSelRF. The black labelled markers are the one that are obtained by LASSO. The orange 

labelled are the markers that were identified by both the models. (B) The density plot for the 

correlation values among the gene subset obtained by each type of feature selection model 

within different brain region. Density plot of correlation value for the markers obtained through 

varSelRF is shown in red. Density plot of correlation value for the markers obtained through 

LASSO is shown in blue. The density for the correlation value near to zero remained higher 

for LASSO comparative to varSelRF in every brain region. 

 

Fig 4A illustrates the correlation heatmap for the expression level of the biomarkers obtained 

by LASSO and varSelRF for each brain region. We see that the biomarkers elucidated very 

low correlation, thus together they are of great relevance in the context of depicting the 

biological basis for the observed expression level. Although both feature selection models are 

immune to multicollinearity, the LASSO obtained significantly lower correlated markers than 

that of varSelRF, especially for the EC region. This is also apparent in the correlation density 

plot for the regions, where the density remained high near the centre for the geneset obtained 

through LASSO, while it remains inflated on the tails for the varSelRF obtained geneset (Fig 

4B). 

 

 

4.1 Biological Insight 

 

We performed a combination of biological network analysis and a comprehensive literature 

review to validate the biomarkers obtained in our study. We started with bioinformatics 

analysis of all the biomarkers obtained from our models and are listed in supplementary Table 

S5. We find the presence of potential biomarkers in all the chromosomes, except Chromosome 

Y. This may point towards the higher prevalence of AD in woman than in man73. The 

Chromosomes 1, 6, 17, 19 are found to contain the maximum number of biomarkers (Fig S2). 

Although most of the genes that are classified as biomarkers in our study are protein coding 

genes, some non-coding genes, such as LINC00552, LINC00507, MGC12982, HCG4, 

LOC101927151, NPCDR1, LOC646588 are also found to be the biomarkers of AD. These 

non-coding genes are novel and mostly uncharacterised.  

Moreover, we identified 7 up-regulated and 6 down-regulated genes in the AD samples with 

respect to the normal ones by employing the GSE5281 expression data due to the availability 

of raw count. We considered p < 0.01 and |log2FC| ≥ 0.6 (FC, fold change) as cut-off criterion 

on different samples of H and EC brain regions from the GSE5281 dataset. Using this 

information, we identified the biomarkers that are up and down regulated (Fig S3). We find 

that some of the biomarkers are significantly downregulated in AD such as MLIP and 

STOML2. While the down regulation of STOML2 gene has been reported previously in AD 

patient’s samples74, the EC biomarker, MLIP can be clinically tested as a novel possible 

biomarker of AD.   

 

We also performed GeneMania network analysis for all the biomarkers of each brain region 

(Fig. S4-7) and found that the biomarkers are not only co-expressed but share both physical 

and genetic interactions. Some of the highly interacting genes in the PFC are ECHDC3, 

PDGFC, MPC1, CRLF3, CDYL, FDXR that are also found to be co-expressed (Fig S4). 

Among these genes, the expression of ECHDC3 is found to be significantly higher in AD 

patients than non-AD patients from genome-wide association studies of more than 200,000 
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individuals75. Also, CRLF3 has been studied in neuronal aging rates in human brain regions76. 

In the EC region, we see that the biomarkers interact with each other by largely physical and 

genetic interactions (Fig S5). In particular, ZNF621 and ISG20 are found to genetically interact 

with many of the other biomarkers. The ZNF621 gene has been recently reported as an 

upregulated gene in AD patients77. From the network analysis of the H region, we find 

extensive interactions of the biomarkers with each other, where the biomarkers not only are 

involved in physical and genetic interactions as well as co-expression and co-localization (Fig 

S6). Some of the highly interacting biomarkers of the H region are RBM10, SLC25A46, 

STOML2. It is interesting to note that both the SLC25A46, STOML2 protein are involved in 

mitochondrial dynamics and it has been proposed that mitochondrial dysfunction due to 

oxidative stress may be one of the earliest and prominent features of AD; and it has been 

experimentally shown that slower mitochondrial dynamics is correlated with reduced 

expression of STOML2 and MFN274. The network analysis of MTG region shows that most of 

the biomarkers in the region genetically interact with each other, however, co-expression is 

also seen for some of the biomarkers such as CALD1, DNAJC7, TSC22D1, CMTR1, CORO1C 

(Fig S7). TSC22D1 is one of the most studied transcription factors that has also been reported 

as the potential new target for treating AD78. Hence, the biomarkers found by our models have 

not only been studied for different neuropathies but some of them are also reported as potential 

targets against AD. Also, we see that our biomarkers extensively interact with each other and 

thus, careful targeting of a potential biomarker can also help to regulate the biological functions 

of other biomarkers involved in various neuropathies. 

 
4.2 Relationship between the biomarkers and AD genes 

 

The most well-known genes that have the largest effect on the risk of developing AD are 

APOE, APP, PSEN1, and PSEN279. Although we have not identified these genes in our study, 

the relationship between these AD genes and our biomarkers is worth analysing. To seek the 

potential interactions between the biomarker genes and the AD genes according to different 

brain regions, the STRING40 (Search Tool for the Retrieval of Interacting Genes/Proteins) tool 

was employed. Active interaction sources such as experimental data, public databases, text 

mining, computational prediction methods, and species limited to “Homo sapiens” are applied 

to construct the protein-protein interaction (PPI) networks. From the interaction networks 

shown in Fig 5, we see that the biomarkers of all the brain regions, except the hippocampus 

have interactions with the AD genes. In the prefrontal cortex, the biomarkers showing 

significant interactions with the AD genes are C4A, SIM2 and PDYN (Fig 5A). The 

complement pathway protein, C4A is found to be present in higher levels in patients with AD 

and represents the inflammation generally associated with neurodegenerative diseases80. The 

biomarker SIM2 is also supposed to serve as a noble target for Down’s Syndrome-related AD81. 

Although the PDYN gene is extensively studied in Huntington's Disease82, its role in AD is yet 

to be explored. The interacting biomarkers with AD genes in the MTG region are CDK5, 

GHSR, PLCB1, ITPKB, HOMER3 (Fig 5B). CDK5 is gradually emerging as an obvious 

therapeutic target for AD because Cdk5/p25 is involved in two most important pathological 

hallmarks of AD, the formation of Aβ plaques and NFTs83. Also, in the current scenario, we 

see GHSR, PLCB1, ITPKB genes are considered to be promising therapeutic targets for AD84-

87. Similarly, in the EC region, the interacting biomarkers are NFKB2, CACNA1C, APLNR 

(Fig 5D) . The transcription factor NFKB2 has emerged as a potential target for AD prevention 

by targeted anti-inflammatory treatment to increase the time of disease onset88. Moreover, by 

targeting the calcium voltage-gated channel subunit alpha-1 C gene, CACNA1C by miRNA, 

studies have reported the inhibition of tau protein hyperphosphorylation in AD89. The apelin 

receptor protein, APLNR is also been recently studied as a potential target for several 
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neurodegenerative diseases including AD as expression level alterations in apelin significantly 

affects the neuronal structure, calcium signalling, apoptosis, and autophagy etc90. From the 

analysis, we see that some of our biomarkers that closely interact with the well-known AD 

genes are also closely associated with various neurological disorders including AD. Future 

work requires the experimental testing of these gene biomarkers found in our study to identify 

the potential signature biomarker for efficient early diagnosis and treatment of AD.  

 

 

 

 
 
Fig 5. Protein-protein interaction (PPI) networks of the gene biomarkers for (A) Prefrontal 

cortex, (B) Middle Temporal Gyrus, (C) Hippocampus and (D) Entorhinal Cortex. The 

coloured nodes represent the proteins with first shell of interactions whereas the white nodes 

represent second shell of interactions. The proteins whose 3D structure are not known is shown 

by empty nodes. The coloured edges represent protein-protein interactions40. 

 

 

5. Conclusion 

 

The use of comprehensive machine learning models to identify potential gene biomarkers for 

Alzheimer’s disease is a significant step to determine the early treatment of AD patients. In 

this work, we propose a simple and robust framework to identify biologically important genes 

in the context of AD. There are three crucial aspects that corroborate the strength of the 
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framework, (i) To identify the potential genetic markers of AD, probing the gene expression 

data from different brain tissue is more effective than analysing the combined profiles of 

expression level from all the regions together. In addition to that, incorporating a large sample 

size augments the credibility of the findings. (ii) The use of the best configured benchmark 

machine learning based feature selection model (wrapper approach) provided the most 

explaining gene subsets with the highest AD predictive power. (iii)  To explain the biological 

significance, a strong validation is a must. Alongside conducting an extensive literature survey, 

the biological relevance is elucidated quantitatively by testing the biological significance of the 

obtained gene for two independent brain regions (Visual Cortex and Cerebellum). By 

employing the gene expression data of diseased vs. normal patients for four different brain 

regions to identify the biomarkers and incorporating them, our study has achieved, by far the 

highest prediction accuracy through optimally configured classification models.  

In summary, we found several potential biomarkers, some of which are previously linked to 

AD such as ECHDC3, ZNF621, STOML2, TSC22D1, SIM2, CDK5, C4A, GHSR, PLCB1, 

ITPKB, NFKB2, CACNA1C, etc. and some novel biomarkers such as CORO1C, SLC25A46, 

RAE1, ANKIB1 CRLF3, PDYN, AK057435, and BC037880. Future work requires clinical 

and experimental testing of these gene candidates to identify potential prognostic biomarkers 

that can support the early diagnosis of Alzheimer’s disease or can be targeted at the gene level 

to prevent the disease. We will also extend the application of the proposed paradigm to discover 

novel potential markers for other complex diseases in future. 
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Machine Learning Model descriptions: 

 

Random Forest (RF) 

Given a training dataset, 𝐿 = {(𝑋𝑖 , 𝑌𝑖)𝑖=1
𝑁  | 𝑋𝑖  ∈  R𝑀 , 𝑌 ∈ {1,2, … , 𝑐}}, where 𝑋𝑖 represents the 

variables or the feature set and 𝑌 denotes the corresponding label (class response variable). The 

number of training samples and features are denoted as 𝑁 and 𝑀 respectively. The random 

forest model (RF) is delineated below. For a given input 𝑋 , let the prediction of the tree 𝑇𝑘 is 

denoted by 𝑌𝑘̂ . The random forest amalgamating 𝐾 trees have the prediction given as: 

𝑌̂ = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 {𝑌𝑘̂}1
𝐾  

Algorithm [1] 

Input: The training dataset 𝐿 = {(𝑋𝑖, 𝑌𝑖)𝑖=1
𝑁  | 𝑋𝑖  ∈  R𝑀 , 𝑌 ∈ {1,2, … , 𝑐}} 

𝐾: 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑠𝑠, 
𝑚𝑡𝑟𝑦: 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 
Output: A random Forest 

 

a) For 𝑘 → 1 𝑡𝑜 𝐾 𝑑𝑜 

b) L𝑘 samples as a bagged subset are drawn from L 

c) While (stopping condition is not met) do 
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d) 𝑚𝑡𝑟𝑦 features are randomly selected. 

e) For 𝑚 → 1 𝑡𝑜 ‖𝑚𝑡𝑟𝑦‖ do 

f) The decline in the node impurity is computed 

g) The features that contribute the most in decreasing the impurity is chosen. 

h) The node is then branched/divided into two children nodes 

i) 𝐾 trees are combined to produce a random forest 

 

As the trees are grown from a bagged sample set, only a proportion of samples were leveraged 

to grow the tree also called in-bag samples. A small proportion of instance that is left out is 

called out-of-bag (OOB) samples that are employed to estimate the rate of prediction error 

called OOB error rate. 

 

The OOB predicted value is given as: 

 𝑌̂𝑂𝑂𝐵 = (
1

‖𝜃𝑖′‖
) ∑ 𝑌̂𝑘

𝑘𝜖𝜃𝑖′
 , where 𝜃𝑖′ =

L

𝜃𝑖
, i’ and i denotes the out-of-bag and in-bag sampled 

instances, ‖𝜃𝑖′‖ is the cardinality/size of OOB instances, and the OOB prediction error is 

 

𝐸𝑟𝑟̂𝑂𝑂𝐵 =
1

𝑁𝑂𝑂𝐵
∑ Ψ(Y, 𝑌̂𝑂𝑂𝐵)

𝑁𝑂𝑂𝐵

𝑖=1

 

 

Here Ψ(. ) is the error function and 𝑁𝑂𝑂𝐵  is OOB sample’s size. 

 

 

Support Vector Machine (SVM) 

 

An SVM classifier identifies and maximizes the most optimal hyperplane that separates the 

data points of each type of label (category). In a simple SVM model, the optimal hyperplane is 

evaluated on the basis of the distance between the support vectors [8]–[10] Once the hyperplane 

is evaluated using train data points, SVM allocates the new instances to a class based on its 

relative nearness from the trained data points [11]. For a given set of data points (𝑥𝑖, 𝑦𝑖), 𝑖 =
1,2, … . , 𝑚 where 𝑥 𝜖 R𝑛, 𝑦 𝜖 R. Given a set of weight 𝒘, The optimal hyperplane H is: 

 

(𝒘. 𝑥) + 𝑏 = 0 
 

SVM classifier follows the constraints: 

 

𝑦𝑖 [𝒘. 𝑥𝑖 + 𝑏] ≥ 1 
 

The optimization problem to minimize 𝒘 (or maximize 2/‖𝒘‖) is solved using a Lagrange 

function eq3: 

 

L(𝒘, 𝑏, 𝑎) =  
1

2‖𝒘‖
− 𝜆(𝑦((𝒘. 𝑥) + 𝑏) − 1); 𝜆𝑖 > 0 

 

Here the λ is a Lagrange multiplier. Solving the partial derivatives for w and b to 0, the optimal 

hyperplane is built as: 
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𝑦(𝑥) = 𝑠𝑖𝑔𝑛 [∑ 𝜆𝑖𝑦𝑖𝑥𝑖
𝑇𝑥

𝑚

𝑖=1

+ 𝑏] 

 

Several genomics studies have employed variations of SVM models as a classifier and retained 

excellent performance [12][13]. 

 

 

Multiplicity Problem 

For microarray dataset, different wrapper feature selection models identify a varying set of 

candidate genes as the important signature based on the prediction accuracy attained by the 

gene subset [2][3] This leads to the problem of multiplicity, especially for the case when the 

motivation is not only the prediction but also the identification of biologically relevant gene 

signatures[4][5] . This variation or the lack of uniqueness could be reasoned as different in the 

patient batch, differing analysis and varying technologies. Studies indicate that the difference 

in the gene subset is strongly influenced by the cohort that have been used for gene selection[3]. 

This problem has also been elaborated and discussed extensively in recent studies that too 

indicated the extremely small ratio of samples to genes in the microarray dataset is the most 

likely cause of this problem[6][7]. Unfortunately, this issue casts a false sense of trust in the 

results obtained by most studies falling under this paradigm of gene identification through 

wrapper approach. Subscribing to the notion of the studies investigating the problem of 

multiplicity, we lend credence to the combined set of genes that were obtained by both the 

methods (varSelRF and LASSO); and exclusively probed the biological significance of the 

common and repeatedly selected gene candidates. 

 

Figures 
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Figure S1. The common genes identified by the machine learning models within the different 

brain regions. 

 

 

Figure S2. The number of biomarkers found in all the human chromosomes by our models. 

 

 

 
 

 

Figure S3. The up and down regulated biomarkers in the AD samples with respect to the 

normal ones identified from the GSE5281 expression data. 
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 5 

 
Figure S4. The GeneMania network analysis for all the biomarkers of PFC brain region. The 

biomarkers are shown by the stripped black circles. The solid-coloured lines represent the type 

of interactions in the biomarkers. 

 

 
 

Figure S5. The GeneMania network analysis for all the biomarkers of EC brain region. The 

biomarkers are shown by the stripped black circles. The solid-coloured lines represent the type 

of interactions found within the biomarkers.  
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Figure S6. The GeneMania network analysis for all the biomarkers of H brain region. The 

biomarkers are shown by the stripped black circles. The solid-coloured lines represent the type 

of interactions found in the biomarkers.  
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Figure S7. The GeneMania network analysis for all the biomarkers of MTG brain region. The 

biomarkers are shown by the stripped black circles. The solid-coloured lines represent the type 

of interactions found in the biomarkers. 
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Tables 

 

 

 

Dataset Dataset 

GSE5281 The signal value calculated by MAS 5 or GCOS software. 

GSE48350 GC-RMA normalized expression values 

GSE4757 The signal value calculated by MAS 5 or GCOS software. 

GSE28146 MAS5-calculated Signal intensity 

GSE118553 Normalized signal 

GSE132903 Normalized (log2 scale) with the lumiExpresso function (R-package Lumi) 

GSE33000 Normalized log10 ratio (Cy5/Cy3) representing test/reference 

GSE44770 Normalized log10 ratio (Cy5/Cy3) representing test/reference 

GSE44771 Normalized log10 ratio (Cy5/Cy3) representing test/reference 

GSE44768 Normalized log10 ratio (Cy5/Cy3) representing test/reference 

 

Table S1: Summary of experimental designs and measurements of the gene expression 

datasets used in our study. 

 

 

 

 

Model Critical Parameters Note 

varSelRF 

ntree = 5000,  

ntreeIterat = 2000, 

vars.drop.frac = 0.2 

After tuning the default values  

remained the best value  

LASSO 
method = "glmnet",  

lambda= seq(0.0001, 1, length = 5) 

The alpha is not declared, setting 0 

 by default thus performing LASSO 

RandomForest 
ntree=500, 
mtry= max( (number of gene) / 3 , 1) 

ntree employed here is the default value  
which was tested against 250, 300 and 400. 

Elastic Net 

method = "glmnet",  

alpha= seq(0,1,length=10),  

lambda= seq(0.0001, 1, length = 5) 

Both aplha and beta were  

searched within the given possible set 

SVM 
kernel= "radial", 

degree = 7 

Degree of 7 is compared against 2 to 6 and  

remained the best suiting for the profiles 

 

 

Table S2: The tuned hyperparameter sets for the different models used in our machine 

learning workflow. 
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 9 

 

 

Table S3: Alzheimer’s disease classification performance of the PFC biomarkers on VC and 
CR gene expression datasets. 
 
 

 

 

Visual Cortex Cerebellum 

N40307, NM_015986, 

 AA860882 

CRLF3, LINC00552, AI458218,  

AA993171, AK092901, MPC1,  

MRPL18, WDR48, AK022363, 

 PDYN, AI310112, CDYL, XM_208251,  

AK098016, PDGFC, SIM2, NM_145665, 

 XPC, JMY, AKR1C2, AA860882,  

XM_070957, PSTPIP1, XM_373660,  

HS3ST3B1, C4B, LINC00507 

Common Marker CRLF3, AA860882 

   

 

Table S4: The assessment metric obtained for VC and CR validating the AD prediction 

potential of the gene biomarker subset of PFC. 

 

5Fold CV 
Visual Cortex Cerebellum 

Acc Sen Spe Pre Mcc Acc Sen Spe Pre Mcc 

Fold1_SVM 0.92 0.91 0.94 0.95 0.84 0.87 0.75 1.00 1.00 0.77 

Fold1_RF 0.97 1.00 0.94 0.96 0.95 0.79 0.80 0.79 0.80 0.59 

Fold1_EN 0.97 1.00 0.94 0.96 0.95 0.92 0.85 1.00 1.00 0.86 

Fold2_SVM 0.97 1.00 0.94 0.96 0.95 0.92 0.95 0.88 0.91 0.84 

Fold2_RF 0.92 0.95 0.88 0.91 0.84 0.90 0.91 0.88 0.91 0.79 

Fold2_EN 0.97 0.95 1.00 1.00 0.95 0.97 0.95 1.00 1.00 0.95 

Fold3_SVM 0.95 0.91 1.00 1.00 0.90 0.90 0.94 0.86 0.85 0.80 

Fold3_RF 0.95 0.91 1.00 1.00 0.90 0.79 0.89 0.71 0.73 0.61 

Fold3_EN 0.95 0.91 1.00 1.00 0.90 0.92 0.89 0.95 0.94 0.85 

Fold4_SVM 0.85 0.87 0.81 0.87 0.68 0.90 0.90 0.89 0.90 0.79 

Fold4_RF 0.85 0.87 0.81 0.87 0.68 0.85 0.86 0.83 0.86 0.69 

Fold4_EN 0.85 0.87 0.81 0.87 0.68 0.92 0.95 0.89 0.91 0.85 

Fold5_SVM 0.87 0.94 0.81 0.81 0.75 0.85 0.85 0.84 0.85 0.69 

Fold5_RF 0.90 0.94 0.86 0.85 0.80 0.82 0.90 0.74 0.78 0.65 

Fold5_EN 0.87 0.94 0.81 0.81 0.75 0.79 0.80 0.79 0.80 0.59 

Avg_SVM 0.91 0.93 0.90 0.92 0.83 0.89 0.88 0.89 0.90 0.78 

Avg_RF 0.92 0.94 0.90 0.92 0.83 0.83 0.87 0.79 0.82 0.66 

Avg_EN 0.92 0.94 0.91 0.93 0.85 0.91 0.89 0.93 0.93 0.82 
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GeneBank 
Accession No 

Gene Symbol Gene name Genomic Sequence Region Gene type 

NM_015899 PLEKHA8P1 pleckstrin homology domain containing 
A8 pseudogene 1 

Chromosome 12 - NC_000012.12 pseudo 

XM_208773 LOC283664    

N40307     

AL359211 METTL9 methyltransferase like 9 Chromosome 16 - NC_000016.10 protein coding 

AB037769 PDP2 pyruvate dehyrogenase phosphatase 
catalytic subunit 2 

Chromosome 16 - NC_000016.10 protein coding 
 

CA388904     

NM_015986 CRLF3 cytokine receptor like factor 3 Chromosome 17 - NC_000017.11 protein coding 

NM_018138 TBCCD1 TBCC domain containing 1 Chromosome 3 - NC_000003.12 protein coding 

AK057435 LINC00552 long intergenic non-protein coding RNA 
552 

Chromosome 13 - NC_000013.11 ncRNA 
 

AI187365     

AI458218     

NM_030820 COL21A1 collagen type XXI alpha 1 chain Chromosome 6 - NC_000006.12 protein coding 

NM_152269 MTRFR mitochondrial translation release factor 
in rescue 

Chromosome 12 - NC_000012.12 
 

protein coding 
 

BC021699     

AA993171     

NM_018543     

AK092901     

NM_016098 MPC1 mitochondrial pyruvate carrier 1 Chromosome 6 - NC_000006.12 
 

protein coding 
 

NM_014161 MRPL18 mitochondrial ribosomal protein L18 Chromosome 6 - NC_000006.12 
 

protein coding 
 

NM_020839 WDR48 WD repeat domain 48 
 

Chromosome 3 - NC_000003.12 
 

protein coding 
 

NM_000253 MTTP microsomal triglyceride transfer 
protein 

 

Chromosome 4 - NC_000004.12 
 

protein coding 
 

NM_014298 QPRT quinolinate phosphoribosyltransferase 
 

Chromosome 16 - NC_000016.10 
 

protein coding 
 

NM_152890 COL24A1 collagen type XXIV alpha 1 chain 
 

Chromosome 1 - NC_000001.11 
 

protein coding 
 

NM_032608 MYO18B myosin XVIIIB 
 

Chromosome 22 - NC_000022.11 
 

protein coding 
 

AK022363     

NM_024411 PDYN prodynorphin 
 

Chromosome 20 - NC_000020.11 
 

protein coding 
 

AI310112     

NM_004824 CDYL chromodomain Y like 
 

Chromosome 6 - NC_000006.12 
 

protein coding 
 

NM_014638 PLCH2 phospholipase C eta 2 Chromosome 1 - NC_000001.11 
 

protein coding 
 

NM_175885 FAM181B family with sequence similarity 181 
member B 

Chromosome 11 - NC_000011.10 protein coding 

XM_208251     

AK098016     

NM_016205 PDGFC platelet derived growth factor C Chromosome 4 - NC_000004.12 
 

protein coding 
 

NM_005069 SIM2 SIM bHLH transcription factor 2 
 

Chromosome 21 - NC_000021.9 
 

protein coding 
 

NM_145665     

NM_004628 XPC XPC complex subunit, DNA damage 
recognition and repair factor 

Chromosome 3 - NC_000003.12 
 

protein coding 
 

NM_002685 EXOSC10 exosome component 10 Chromosome 1 - NC_000001.11 
 

protein coding 
 

NM_030901 OR7A17 olfactory receptor family 7 subfamily A 
member 17 

 

Chromosome 19 - NC_000019.10 
 

protein coding 
 

AX750575     

NM_024693 ECHDC3 enoyl-CoA hydratase domain 
containing 3 

Chromosome 10 - NC_000010.11 
 

protein coding 
 

NM_053003 SIGLEC12 sialic acid binding Ig like lectin 12 
 

Chromosome 19 - NC_000019.10 
 

protein coding 
 

NM_152405 JMY junction mediating and regulatory 
protein, p53 cofactor 

Chromosome 5 - NC_000005.10 
 

protein coding 
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NM_004110 FDXR ferredoxin reductase Chromosome 17 - NC_000017.11 protein coding 

NM_004065 CDR1 cerebellar degeneration related protein 
1 

Chromosome X - NC_000023.11 
 

protein coding 
 

NM_002962 S100A5 S100 calcium binding protein A5 Chromosome 1 - NC_000001.11 
 

protein coding 

NM_145024 CES5A carboxylesterase 5A Chromosome 16 - NC_000016.10 protein coding 

NM_001354 AKR1C2 aldo-keto reductase family 1 member 
C2 

Chromosome 10 - NC_000010.11 protein coding 

NM_138706 B3GNT6 UDP-GlcNAc:betaGal beta-1,3-N-
acetylglucosaminyltransferase 6 

Chromosome 11 - NC_000011.10 
 

protein coding 
 

AA860882     

NM_018544     

XM_070957     

NM_003978 PSTPIP1 proline-serine-threonine phosphatase 
interacting protein 1 

Chromosome 15 - NC_000015.10 
 

protein coding 
 

XM_373660     

AF075038     

NM_006041 HS3ST3B1 heparan sulfate-glucosamine 3-
sulfotransferase 3B1 

Chromosome 17 - NC_000017.11 
 

protein coding 
 

NM_000592 C4A complement C4A (Rodgers blood 
group) 

Chromosome 6 - NC_000006.12 
 

protein coding 
 

BC037880 LINC00507 long intergenic non-protein coding RNA 
507 

Chromosome 12 - NC_000012.12 ncRNA 
 

AK098016     

BU615728     

     

NM_014325.2 CORO1C coronin 1C 
 

Chromosome 12 - NC_000012.12 
 

protein coding 
 

NM_003409.2 ZFP161 zinc finger and BTB domain containing 
14 

Chromosome 18 - NC_000018.10 
 

protein coding 
 

NM_004838.2 HOMER3 homer scaffold protein 3 
 

Chromosome 19 - NC_000019.10 
 

protein coding 
 

XM_937430.2 LOC648377 TERF1 pseudogene 3 
 

Chromosome 4 - NC_000004.12 
 

protein coding 
 

NM_001010925.2 ANKRD19 ankyrin repeat domain 19, pseudogene Chromosome 9 - NC_000009.12 
 

pseudo 
 

NM_006303.3 AIMP2 aminoacyl tRNA synthetase complex 
interacting multifunctional protein 2 

Chromosome 7 - NC_000007.14 
 

protein coding 
 

NM_001006625.1 PDPN podoplanin Chromosome 1 - NC_000001.11 
 

protein coding 
 

NM_033402.3 LRRCC1 leucine rich repeat and coiled-coil 
centrosomal protein 1 

Chromosome 8 - NC_000008.11 
 

protein coding 
 

NM_001415.3 EIF2S3 eukaryotic translation initiation factor 2 
subunit gamma 

Chromosome X - NC_000023.11 
 

protein coding 
 

NM_015645.2 C1QTNF5 C1q and TNF related 5 Chromosome 11 - NC_000011.10 protein coding 

NM_002739.3 PRKCG protein kinase C gamma Chromosome 19 - NC_000019.10 
 

protein coding 
 

NM_005219.3 DIAPH1 diaphanous related formin 1 Chromosome 5 - NC_000005.10 
 

protein coding 
 

NM_152296.3 ATP1A3 ATPase Na+/K+ transporting subunit 
alpha 3 

Chromosome 19 - NC_000019.10 
 

protein coding 
 

XM_940631.1 LOC149069 doublecortin domain containing 2B Chromosome 1 - NC_000001.11 
 

protein coding 
 

NM_014746.3 RNF144A ring finger protein 144A Chromosome 2 - NC_000002.12 protein coding 
 

NM_013302.3 EEF2K eukaryotic elongation factor 2 kinase Chromosome 16 - NC_000016.10 
 

protein coding 
 

NM_001099411.1 GPRASP1 G protein-coupled receptor associated 
sorting protein 1 

Chromosome X - NC_000023.11 
 

protein coding 
 

NM_018194.2 HHAT hedgehog acyltransferase Chromosome 1 - NC_000001.11 
 

protein coding 
 

NM_001078166.1 SFRS1 serine and arginine rich splicing factor 1 Chromosome 17 - NC_000017.11 
 

protein coding 
 

NM_001003802.1 SMARCD3 SWI/SNF related, matrix associated, 
actin dependent regulator of 

chromatin, subfamily d, member 3 

Chromosome 7 - NC_000007.14 
 

protein coding 
 

NM_013236.2 ATXN10 ataxin 10 Chromosome 22 - NC_000022.11 
 

protein coding 
 

NM_001010854.1 TTC7B tetratricopeptide repeat domain 7B Chromosome 14 - NC_000014.9 protein coding 
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NM_183041.1 DTNBP1 dystrobrevin binding protein 1 Chromosome 6 - NC_000006.12 
 

protein coding 
 

NM_198525.1 KIF7 kinesin family member 7 Chromosome 15 - NC_000015.10 
 

protein coding 

NM_014908.3 DOLK dolichol kinase Chromosome 9 - NC_000009.12 
 

protein coding 
 

NM_024617.2 ZCCHC6 terminal uridylyl transferase 7 Chromosome 9 - NC_000009.12 
 

protein coding 
 

NM_001025253.1 TPD52 tumor protein D52 Chromosome 8 - NC_000008.11 
 

protein coding 
 

XM_001125808.2 LOC727758 Rho associated coiled-coil containing 
protein kinase 1 pseudogene 1 

 

Chromosome 18 - NC_000018.10 
 

pseudo 
 

NM_004935.2 CDK5 cyclin dependent kinase 5 Chromosome 7 - NC_000007.14 
 

protein coding 
 

NM_004122.1 GHSR growth hormone secretagogue 
receptor 

 

Chromosome 3 - NC_000003.12 
 

protein coding 
 

NM_001079823.1 LAMA2 laminin subunit alpha 2 Chromosome 6 - NC_000006.12 
 

protein coding 
 

XR_039314.1 LOC100132324 hypothetical LOC100132324 Chromosome: 20; NC_000020.10  
 

pseudo 
 

NM_199345.3 PI4KAP2 phosphatidylinositol 4-kinase alpha 
pseudogene 2 

 

Chromosome 22 - NC_000022.11 
 

pseudo 
 

NM_001080508.1 TBX18 T-box transcription factor 18 Chromosome 6 - NC_000006.12 
 

protein coding 

NM_183006.2 DLGAP4 DLG associated protein 4 
 

Chromosome 20 - NC_000020.11 
 

protein coding 
 

NM_006182.2 DDR2 discoidin domain receptor tyrosine 
kinase 2 

Chromosome 1 - NC_000001.11 
 

protein coding 
 

NR_002144.1 LOC407835 mitogen-activated protein kinase 
kinase 2 pseudogene 

Chromosome 7 - NC_000007.14 
 

pseudo 
 

BX097335     

AK057443     

NM_004890.2 SPAG7 sperm associated antigen 7 Chromosome 17 - NC_000017.11 protein coding 

NM_003951.2 SLC25A14 solute carrier family 25 member 14 Chromosome X - NC_000023.11 
 

protein coding 
 

NR_026878.1 MGC12982 FOXD2 adjacent opposite strand RNA 1 Chromosome 1 - NC_000001.11 
 

ncRNA 
 

DA760637     

NM_003315.1 DNAJC7 DnaJ heat shock protein family (Hsp40) 
member C7 

Chromosome 17 - NC_000017.11 protein coding 

NM_015050.2 FTSJD2 cap methyltransferase 1 Chromosome 6 - NC_000006.12 
 

protein coding 
 

NM_022720.5 DGCR8 DGCR8 microprocessor complex 
subunit 

 

Chromosome 22 - NC_000022.11 
 

protein coding 
 

NM_014431.1 KIAA1274 phosphatase domain containing 
paladin 1 

 

Chromosome 10 - NC_000010.11 
 

protein coding 
 

NM_183419.1 RNF19A ring finger protein 19A, RBR E3 
ubiquitin protein ligase 

Chromosome 8 - NC_000008.11 
 

protein coding 
 

NM_022743.1 SMYD3 SET and MYND domain containing 3 
 

Chromosome 1 - NC_000001.11 
 

protein coding 
 

NM_012323.2 MAFF MAF bZIP transcription factor F Chromosome 22 - NC_000022.11 
 

protein coding 
 

NM_183422.1 TSC22D1 TSC22 domain family member 1 Chromosome 13 - NC_000013.11 
 

protein coding 
 

XM_499121     

NM_030639.1 BHLHB9 basic helix-loop-helix family member 
b9 

Chromosome X - NC_000023.11 
 

protein coding 
 

NR_002139.1 HCG4 HLA complex group 4 
 

Chromosome 6 - NC_000006.12 
 

ncRNA 
 

NM_025224.2 ZBTB46 zinc finger and BTB domain containing 
46 

 

Chromosome 20 - NC_000020.11 
 

protein coding 
 

NM_003637.3 ITGA10 integrin subunit alpha 10 Chromosome 1 - NC_000001.11 protein coding 
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NM_005229.2 ELK1 ETS transcription factor ELK1 Chromosome X - NC_000023.11 
 

protein coding 
 

NM_058172.3 ANTXR2 ANTXR cell adhesion molecule 2 
 

Chromosome 4 - NC_000004.12 
 

protein coding 
 

NM_014325.2 CORO1C coronin 1C 
 

Chromosome 12 - NC_000012.12 
 

protein coding 
 

NM_021615.4 CHST6 carbohydrate sulfotransferase 6 
 

Chromosome 16 - NC_000016.10 
 

protein coding 
 

NM_002221.2 ITPKB inositol-trisphosphate 3-kinase B 
 

Chromosome 1 - NC_000001.11 
 

protein coding 
 

NM_003598.1 TEAD2 TEA domain transcription factor 2 
 

Chromosome 19 - NC_000019.10 
 

protein coding 
 

NM_005862.2 STAG1 stromal antigen 1 
 

Chromosome 3 - NC_000003.12 
 

protein coding 
 

NM_144573.3 NEXN nexilin F-actin binding protein 
 

Chromosome 1 - NC_000001.11 
 

protein coding 
 

NM_033157.2 CALD1 caldesmon 1 
 

Chromosome 7 - NC_000007.14 
 

protein coding 
 

NM_170662.3 CBLB Cbl proto-oncogene B 
 

Chromosome 3 - NC_000003.12 
 

protein coding 
 

NM_024567.2 HMBOX1 homeobox containing 1 
 

Chromosome 8 - NC_000008.11 
 

protein coding 
 

NM_015192.2 PLCB1 phospholipase C beta 1 
 

Chromosome 20 - NC_000020.11 
 

protein coding 
 

NM_013236.2 ATXN10 ataxin 10 
 

Chromosome 22 - NC_000022.11 
 

protein coding 
 

NM_004459.6 BPTF bromodomain PHD finger transcription 
factor 

 

Chromosome 17 - NC_000017.11 
 

protein coding 
 

     

BC024732 LOC101927151 uncharacterized LOC101927151 
 

Chromosome 19 - NC_000019.10 
 

ncRNA 
 

NM_024939 ESRP2 epithelial splicing regulatory protein 2 
 

Chromosome 16 - NC_000016.10 
 

protein coding 
 

NM_018130 SHQ1 SHQ1, H/ACA ribonucleoprotein 
assembly factor 

 

Chromosome 3 - NC_000003.12 
 

protein coding 
 

AK074366 ZNF621 zinc finger protein 621 
 

Chromosome 3 - NC_000003.12 
 

protein coding 
 

Y11166 SNORA71B small nucleolar RNA, H/ACA box 71B 
 

Chromosome 20 - NC_000020.11 
 

snoRNA 
 

BG111015 UBXN2A UBX domain protein 2A 
 

Chromosome 2 - NC_000002.12 
 

protein coding 
 

AI907083 PDCD6 programmed cell death 6 
 

Chromosome 5 - NC_000005.10 
 

protein coding 
 

BC000764 AKIRIN2 akirin 2 
 

Chromosome 6 - NC_000006.12 
 

protein coding 
 

BE968576 BC062753    

NM_004420 DUSP8 dual specificity phosphatase 8 
 

Chromosome 11 - NC_000011.10 
 

protein coding 
 

AI123518 ZHX1 zinc fingers and homeoboxes 1 
 

Chromosome 8 - NC_000008.11 
 

protein coding 
 

NM_173829 SREK1IP1 SREK1 interacting protein 1 
 

Chromosome 5 - NC_000005.10 
 

protein coding 
 

AW409974 RBM10 RNA binding motif protein 10 
 

Chromosome X - NC_000023.11 
 

protein coding 
 

BC040018 C1orf110 coiled-coil domain containing 190 
 

Chromosome 1 - NC_000001.11 
 

protein coding 
 

NM_024828 CAAP1 caspase activity and apoptosis inhibitor 
1 

 

Chromosome 9 - NC_000009.12 
 

protein coding 
 

AJ238379 NELFCD negative elongation factor complex 
member C/D 

 

Chromosome 20 - NC_000020.11 
 

protein coding 
 

BC038440 GALNT1 polypeptide N-
acetylgalactosaminyltransferase 1 

 

Chromosome 18 - NC_000018.10 
 

protein coding 
 

NM_014212 HOXC11 homeobox C11 Chromosome 12 - NC_000012.12 protein coding 
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NM_020189 ENY2 ENY2 transcription and export complex 
2 subunit 

 

Chromosome 8 - NC_000008.11 
 

protein coding 
 

BF508739 ZNF302 zinc finger protein 302 
 

Chromosome 19 - NC_000019.10 
 

protein coding 
 

AA015609 LYRM5    

BC029890 LOC100996760 uncharacterized LOC100996760 
 

Chromosome 10 protein coding 
 

NM_007279 U2AF2 U2 small nuclear RNA auxiliary factor 2 
 

Chromosome 19 - NC_000019.10 
 

protein coding 
 

NM_018042 SLFN12 schlafen family member 12 
 

Chromosome 17 - NC_000017.11 
 

protein coding 
 

BC024732 LOC101927151 uncharacterized LOC101927151 
 

Chromosome 19 - NC_000019.10 
 

ncRNA 
 

AC004472 STOML2 stomatin like 2 
 

Chromosome 9 - NC_000009.12 
 

protein coding 
 

AW207712 CTD-
2587H24.10 

   

AK074366 ZNF621 zinc finger protein 621 
 

Chromosome 3 - NC_000003.12 
 

protein coding 
 

U85943 RAE1 ribonucleic acid export 1 
 

Chromosome 20 - NC_000020.11 
 

protein coding 
 

M74089 SLC25A46 solute carrier family 25 member 46 
 

Chromosome 5 - NC_000005.10 
 

protein coding 
 

NM_024939 ESRP2 epithelial splicing regulatory protein 2 Chromosome 16 - NC_000016.10 
 

protein coding 
 

AB037807 ANKIB1 ankyrin repeat and IBR domain 
containing 1 

 

Chromosome 7 - NC_000007.14 
 

protein coding 
 

NM_014453 CHMP2A charged multivesicular body protein 2A 
 

Chromosome 19 - NC_000019.10 
 

protein coding 
 

     

AF234255 IGLJ3 immunoglobulin lambda joining 3 
 

Chromosome 22 - NC_000022.11 
 

 

NM_015484 SYF2 SYF2 pre-mRNA splicing factor 
 

Chromosome 1 - NC_000001.11 
 

protein coding 
 

NM_006553 SLMO1 PRELI domain containing 3A 
 

Chromosome 18 - NC_000018.10 
 

protein coding 
 

AI806944 PPP1R1C protein phosphatase 1 regulatory 
inhibitor subunit 1C 

 

Chromosome 2 - NC_000002.12 
 

protein coding 
 

AB007855 ZHX3 zinc fingers and homeoboxes 3 
 

Chromosome 20 - NC_000020.11 
 

protein coding 
 

U88964 ISG20 interferon stimulated exonuclease 
gene 20 

 

Chromosome 15 - NC_000015.10 
 

protein coding 
 

NM_003563 SPOP speckle type BTB/POZ protein 
 

Chromosome 17 - NC_000017.11 
 

protein coding 
 

BC001777 HPCA hippocalcin 
 

Chromosome 1 - NC_000001.11 
 

protein coding 
 

AI363061 CMIP c-Maf inducing protein 
 

Chromosome 16 - NC_000016.10 
 

protein coding 
 

AI435089 GIMAP1 GTPase, IMAP family member 1 
 

Chromosome 7 - NC_000007.14 
 

protein coding 
 

AI492175 ACAP3 ArfGAP with coiled-coil, ankyrin repeat 
and PH domains 3 

 

Chromosome 1 - NC_000001.11 
 

protein coding 
 

BE855983 ACACA acetyl-CoA carboxylase alpha 
 

Chromosome 17 - NC_000017.11 
 

protein coding 
 

AF134979 NPCDR1 nasopharyngeal carcinoma, down-
regulated 1 

 

Chromosome: 3; NC_000003.11  
 

ncRNA 
 

AW183187 CDRT15 CMT1A duplicated region transcript 15 
 

Chromosome 17 - NC_000017.11 
 

protein coding 
 

AW026465 LOC646588 uncharacterized LOC646588 
 

Chromosome 7 - NC_000007.14 
 

ncRNA 
 

NM_004909 CSAG2 CSAG family member 2 
 

Chromosome X - NC_000023.11 
 

protein coding 
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AB007855 ZHX3 zinc fingers and homeoboxes 3 
 

Chromosome 20 - NC_000020.11 
 

protein coding 
 

AV700829 C3P1 complement component 3 precursor 
pseudogene 

 

Chromosome 19 - NC_000019.10 
 

pseudo 
 

BF594164 KHSRP KH-type splicing regulatory protein 
 

Chromosome 19 - NC_000019.10 
 

protein coding 
 

M74089 SLC25A46 solute carrier family 25 member 46 
 

Chromosome 5 - NC_000005.10 
 

protein coding 
 

BF510709 GIPC3 GIPC PDZ domain containing family 
member 3 

 

Chromosome 19 - NC_000019.10 
 

protein coding 
 

AA541622 SYNPO2 synaptopodin 2 
 

Chromosome 4 - NC_000004.12 
 

protein coding 
 

AW593028 ANKFN1 ankyrin repeat and fibronectin type III 
domain containing 1 

 

Chromosome 17 - NC_000017.11 
 

protein coding 
 

NM_139285 GAS2L2 growth arrest specific 2 like 2 
 

Chromosome 17 - NC_000017.11 
 

protein coding 
 

BF438330 AL110181    

AI633559 RP3-428L16.2    

AL133267 RPLP2P1 ribosomal protein lateral stalk subunit 
P2 pseudogene 1 

 

Chromosome 6 - NC_000006.12 
 

pseudo 
 

AL136729 RNF123 ring finger protein 123 
 

Chromosome 3 - NC_000003.12 
 

protein coding 
 

AI689676 ZNF579 zinc finger protein 579 
 

Chromosome 19 - NC_000019.10 
 

protein coding 
 

BC014149 AC017104.6    

X89271 APLNR apelin receptor 
 

Chromosome 11 - NC_000011.10 
 

protein coding 
 

NM_016321 RHCG Rh family C glycoprotein 
 

Chromosome 15 - NC_000015.10 
 

protein coding 
 

BC002844 NFKB2 nuclear factor kappa B subunit 2 
 

Chromosome 10 - NC_000010.11 
 

protein coding 
 

NM_002315 LMO1 LIM domain only 1 
 

Chromosome 11 - NC_000011.10 
 

protein coding 
 

BC040981 SNX32 sorting nexin 32 
 

Chromosome 11 - NC_000011.10 
 

protein coding 
 

BE259137 ONECUT3 one cut homeobox 3 
 

Chromosome 19 - NC_000019.10 
 

protein coding 
 

BE858453 ST6GALNAC4 ST6 N-acetylgalactosaminide alpha-2,6-
sialyltransferase 4 

 

Chromosome 9 - NC_000009.12 
 

protein coding 
 

AK074366 ZNF621 zinc finger protein 621 
 

Chromosome 3 - NC_000003.12 
 

protein coding 
 

AL136774 QRICH2 glutamine rich 2 
 

Chromosome 17 - NC_000017.11 
 

protein coding 
 

NM_152441 FBXL14 F-box and leucine rich repeat protein 
14 

 

Chromosome 12 - NC_000012.12 
 

protein coding 
 

BI768821 DUOX1 dual oxidase 1 
 

Chromosome 15 - NC_000015.10 
 

protein coding 
 

AB037807 ANKIB1 ankyrin repeat and IBR domain 
containing 1 

 

Chromosome 7 - NC_000007.14 
 

protein coding 
 

NM_022055 KCNK12 potassium two pore domain channel 
subfamily K member 12 

 

Chromosome 2 - NC_000002.12 
 

protein coding 
 

W37846 C1orf50 chromosome 1 open reading frame 50 
 

Chromosome 1 - NC_000001.11 
 

protein coding 
 

U85943 RAE1 ribonucleic acid export 1 
 

Chromosome 20 - NC_000020.11 
 

protein coding 
 

BC024732 LOC101927151 uncharacterized LOC101927151 
 

Chromosome 19 - NC_000019.10 
 

ncRNA 
 

NM_004053 BYSL bystin like 
 

Chromosome 6 - NC_000006.12 
 

protein coding 
 

AF234255 IGLJ3 immunoglobulin lambda joining 3 
 

Chromosome 22 - NC_000022.11 
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BG430061 CACNA1C calcium voltage-gated channel subunit 
alpha1 C 

 

Chromosome 12 - NC_000012.12 
 

protein coding 
 

X99142 KRT86 keratin 86 
 

Chromosome 12 - NC_000012.12 
 

protein coding 
 

AI242549 MLIP muscular LMNA interacting protein 
 

Chromosome 6 - NC_000006.12 
 

protein coding 
 

NM_016580 PCDH12 protocadherin 12 
 

Chromosome 5 - NC_000005.10 
 

protein coding 
 

     

 

Table S5: Bioinformatics analysis of the biomarkers found by the machine learning models. 
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