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Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder whose aetiology is
currently unknown. Although numerous studies have attempted to identify the genetic risk
factor(s) of AD, the interpretability and/or the prediction accuracies achieved by these studies
remained unsatisfactory, reducing their clinical significance. Here, we employ the ensemble of
random-forest and regularized regression model (LASSO) to the AD-associated microarray
datasets from four brain regions - Prefrontal cortex, Middle temporal gyrus, Hippocampus, and
Entorhinal cortex- to discover novel genetic biomarkers through a machine learning-based
feature-selection classification scheme. The proposed scheme unrevealed the most optimum
and biologically significant classifiers within each brain region, which achieved by far the
highest prediction accuracy of AD in 5-fold cross-validation (99% average). Interestingly,
along with the novel and prominent biomarkers including CORO1C, SLC25A46, RAEI,
ANKIB1, CRLF3, PDYN, numerous non-coding RNA genes were also observed as
discriminator, of which AK057435 and BC037880 are uncharacterized long non-coding RNA
genes.

Keywords: Alzheimer's disease, Machine learning, Biomarkers, Gene expression, Feature
Selection, Classification

1. Introduction

Currently, 40-50 million people around the world are living with dementia and this number has
doubled from 1990 to 2016'. Alzheimer's disease being the most common form of dementia is
expected to rise notoriously with the aging population. With the increase in its incidence, the
expenses are also rising. It is estimated that in 2010 alone, Alzheimer's disease had cost the
world $604 billion? and is expected to incur a global AD-associated healthcare cost of $2
trillion by 2030 affecting more than 131 million people by 2050°. Hence, Alzheimer's disease
is rapidly emerging as critical global health and economic challenge that has prompted vigorous
scientific investigations to identify underlying genetic risk factors and regulatory markers, to
suppress the estimated healthcare burden by early detection, especially at pre-symptomatic
stages. Much research is performed on the late occurring hallmarks of AD*® such as
neurofibrillary tangles, amyloid plaques, neuronal tangles, etc. Although these findings hold
some important diagnostic values, the overall therapeutic contributions of these late occurring
hallmarks of AD remain murky*. Moreover, clinical trials indicate that patients with AD show
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a varied pattern of symptoms and varying responses to a particular therapy that substantiates
several pathological causes, making AD even more intricate to investigate’.

In recent years, data generated through high throughput gene expression profiling has opened
new avenues for a better understanding of the complex disease mechanism and pathways at a
molecular level® °. However, the huge dimension, low sample size, and noise in high-
throughput gene expression data make it challenging to identify embedded patterns within the
dataset. Currently, the methods to identify the most explaining gene subsets by data reduction
and feature selection in the context of gene expression profile dataset analysis are broadly
classified into two classes'’: (i) marginal filtering method'" 2 and (ii) wrapper (embedded)
method'> %, The marginal filtering further is subdivided into two types namely, univariate and
multivariate. Some examples of univariate filtering methods are paired t-test (TS), F-test (FT),
and Pearson Correlation coefficient (PC)!!"!*. Some multivariate filtering approaches are
Analysis of variance (ANOVA), F-score, feature selection based on correlation (CFS), and
Max-Relevance-Max-Distance (MRMD)!*!8, Using these methods, weights are assigned to the
features (genes), and the genes with higher weights are considered to be the biologically
important features. Although the filtering methods are computationally less expensive than the
latter approach, they have significant shortcomings i.e. (i) most of the marginal filtering only
accounts for the marginal contribution of a gene candidate while completely ignoring the
interdependencies among the genes, and (i1) the absence of classification process. The filtering
method doesn't corroborate the classification accuracy of the selected features, reducing its
clinical credibility'*. However, the shortcomings of marginal filtering'®?° can be overcome by
wrapper methods. Wrapper methods are a hybrid of learning algorithms and classifiers that
iteratively search for the optimum set of features by corroborating the classification accuracy
of each chosen subset of candidate features'®. Although the wrapper methods are very
computationally intensive for high dimensional gene datasets, the classification accuracies
obtained by the feature subsets identified by these methods are noticeably high'*. In addition
to this, machine learning models are empowered with efficient dimension reduction and feature
selection methodologies to overcome the curse of dimensionality within the gene expression
dataset’!. Over time, many studies have employed machine learning models on microarray
datasets to develop robust predictive models for identifying disease onset and prognosis of
complex diseases such as cancer?>?>.

Several studies have extensively leveraged machine learning models to identify biomarkers of
AD from phenotypic data such as magnetic resonance imaging®. However, the identification
of molecular signature underlying the mechanism of AD through gene expression profiles of
demented patients remains largely unexplored?’. In this direction, few studies have employed
machine learning on gene expression data to delineate the potential differentially expressed
genes (DEGs) within the AD-affected brain®®3!. These studies have successfully used several
state-of-the-art machine learning algorithms such as random forest, decision trees, support
vector machines, and deep learning models to the feature selection and classification
paradigm®?-°. Although highly innovative, these methods had their own shortcomings such as,
(1) the proposed schemes within many of these methods were able to reduce the dimensions
(number of features) but they remained mute on demonstrating the discriminative potential of
the acquired DEGs, thus fails to vindicate the practical biological relevance of the obtained
geneset. (i1) The majority of these studies incorporated only a small set of samples (usually
<30), thus the results remained insufficiently descriptive and have low interpretability™2.

Our objective here is to probe the difference in the gene expression levels within different brain
regions of AD patients and non-demented controls, to identify the highly discriminating and
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biologically relevant gene signatures for AD through the wrapper (embedded) approach. We
exclusively probe the Prefrontal cortex (PFC), Middle temporal gyrus (MTG), Hippocampus
(H), and Entorhinal cortex (EC) as these regions are the most vulnerable to neurodegenerative
diseases*®3¥. To retain the most significant and biologically relevant markers, we
conceptualized a simple feature-selection and classification scheme based on the ensemble of
random forest (RF) and regularized regression model; plugged with the best-configured
classifier to obtain maximum classification accuracy in a 5-fold cross validation test (see Fig
1). In addition to validating our finding by integrating biological knowledge through systematic
literature review, GeneMania®®, and STRING*® network analysis; we also corroborate the
biological relevance of the obtained gene signatures by quantifying their disease discriminative
power for the gene expression data obtained from the Visual Cortex (VC) and the Cerebellum
(CR) of both AD affected and control brains. Through this work, we attempt to determine the
signatures underlying AD and to formulate an efficient disease identification scheme whose
clinical applications could further be extended for other diseases of altered expression.

2. Materials and Methods
2.1 Dataset

We extracted the AD-associated gene expression datasets from the public functional genomics
data repository NCBI-GEO database (http://www.ncbi.nlm.nih.gov/geo/). “Alzheimer’s” was
used as a keyword to query all the experimental studies that have probed the gene expression
profile within the brain tissues of AD patients against that of the non-demented healthy
controls. The brain regions of our interest are the prefrontal cortex (PFC), middle temporal
gyrus (MTGQG), hippocampus (H), and entorhinal cortex (EC). Datasets of only those studies
were used that have performed microarray expression profiling and have a sample size of >15
for each type of brain tissue. This resulted in eight different studies, from which the samples
of four brain tissue types (PFC, MTG, H and EC) were separated and grouped accordingly.
This way we obtained a large sample size for each brain region. Table 1 presents a summary
of the expression datasets that are finally incorporated in this work. Each of these studies vary
in terms of experimental design and measurements, that require special treatment to screen out
definite AD and control samples for which we provided a detailed description of each dataset
in supplementary Table S1.

The computation was carried out on an Intel (R) Core (TM) 15-4310U, 16 GB RAM, and 64-
bit OS Win 10 configuration. Method implementation and experiments were conducted using
R version 4.0.3. The schematic representation of machine learning workflow to identify
potential biomarkers of AD is shown in Fig 1.

Brain Region

Prefrontal Cortex Medial Temporal Gyrus Hippocampus Entorhinal Cortex
Dataset Dataset Dataset Dataset
AD | AD | AD | AD |
(Platform) \Contro (Platform) \Contro (Platform) \Contro (Platform) \Contro
3
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GSE33000 GSE118553 GSE5281 GSE5281
(GPL4372) 310\157 (GPL10558) 52\31 (GPL570) 10\13 (GPL570) 10\13
GSE44770 GSE132903 GSE48350 GSE48350
(GPL4372) 129\101 (GPL10558) 97\98 (GPL570) 19\43 (GPL570) 15\39
GSE28146 GSE4757
(GPL570) 7\8 (GPL570) 20\20

Table 1. The gene expression datasets of Alzheimer's Disease for four different brain regions.

2.1.1 Dataset integration and Pre-processing

To increase our sample size for statistically augmented results, we integrated at least two gene
expression datasets for each brain region. However, the merging of the expression dataset is
challenging because, (i) the platform over which the datasets were originated varies. Each type
of platform measures the expression level of a particular set of genes which could be highly
different from the gene repertoire of the other platforms; (ii) Due to adopting varying protocols,
platforms and processes, different experiments contain various non-biological technical
variations in the measurements*!. These variations can induce a batch effect to the profiles that
is potent to confound the true biological variations, thus may indicate misleading conclusions.
To overcome these challenges, we essentially chose only those datasets to merge that were
generated over a common platform. To subdue the batch effect, we standardized the expression
profile of each sample, thus accounting for only the distribution of the gene expression*?. For
each dataset, the probe IDs were mapped to their respective Entrez gene IDs and Genbank
Accession IDs that are annotated in the dataset’s corresponding platform table. In the case of
duplicated gene IDs, the candidate with the maximum interquartile range was kept for further
analysis. It was only after this step, we z-score normalized each sample to capture the
distribution of the expression. We evaluated the p values for each gene candidate using both
paired t-test and Mann Whitney U test, followed by its corresponding FDR correction for PFC
and MTG due to their large sample size (> 200). Finally setting p<0.05 and FDR < 0.01, we
prune our fully merged and pre-processed datasets for feature selection and classification.
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Fig 1. Schematic representation of the Machine Learning workflow to identify potential
biomarkers for AD. The gene expression data for a given brain region is processed in the phase
I. The features are then identified using wrapper methods (phase Il). Subsequently in phase
Il and phase IV, the discriminative power and the biological relevance of the identified
geneset is quantified and validated.
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2.2 Feature selection

As aforementioned, the merged gene expression datasets were the compilation of
measurements from different samples but were generated from the same brain tissue, thus
capturing the crucial biological basis for such expression within that particular brain region.
To fetch the important independent players (gene candidates) underlying these expression
levels, we employed two highly efficient feature selection methods; (i) Variable selection using
Random forest method* and (ii) Lasso regression method**. The parent models of these
methods are probably the most pervasive machine learning algorithms i.e., random forest and
generalized regression model respectively. The formalisms and the implementations of these
methods are elaborated in the following sub sections.

2.2.1 Variable Selection Using Random Forest (varSelRF)

The random forest algorithm developed by Breiman L.*> 4 uses the ensemble of regression
trees for classification. Employing a bootstrap sample of the data, the classification tree is built.
The candidate set of variables at each split of the tree is a random subset of the variables** 4.
In this way, RF incorporates bootstrap aggregation (bagging) and feature selection to build
trees. To obtain low-bias trees, each tree is grown fully, and then bagging and random selection
of variables is performed to facilitate low correlation of the individual trees*’. For each fitted
tree, RF registers a measure of error rate (OOB error) based on the out-of-bag cases (samples
that have no contribution in the tree formation) that have very crucial applications in data
reduction and feature selection. A detailed description of the algorithm underlying RF is
provided in the supplementary text. Based on the characteristics of the RF algorithm, Ramén
et al.** formularized a feature selection model called varSelRF. This method is available as a
package “varSelRF” on CRAN repository*. varSelRF iteratively fits random forests and
selects a set of features (genes) that retains a minimum OOB error rate. Exploiting the
embedded classification process, varSelRF returns a small subset of important genes while
augmenting the predictive performance. This approach has already been incorporated in several
literatures and has shown promising results**->2. The rationale to employ varSelRF in our
framework is (i) the method returns a small set of gene candidates that has low correlation and
high predictive power>? and (ii) RF based approach requires a less fine-tuning of parameters as
the default parameter values often deliver the best performance™.

2.2.2 Regularized regression models

Least Absolute Shrinkage and Selection Operator (LASSO) is a type of regularization
regression method to fit a generalized linear model. Based on the idea of penalizing the
regression model (L1-norm), LASSO squashes the regression coefficient to zero for the
variable that has the least contribution to the model. This way the LASSO regression model
has an optimal feature selection capability. LASSO regression is an alternative regression
approach to Ridge regression that too is based on penalizing the model but follows a L2-
norm™*,

For a given population X, let x;; be the i"(1 < i <n) observation of the j**(1 < i < p)
variable and let y; be the corresponding label of the i*" instance. For each p variable, the
regularized regression model estimates the regression coefticient ;(1 < i < p) by minimizing
the sum of squared error (eq. 1) along with a constraint on the coefficients Y, J(8;) < t*>*>.
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B = argming %L (y; — Bo — Z?zl xi;B)? eq. 1

For LASSO the coefﬁcient](ﬁj) = |B;| and in the Ridge ](ﬁj) = ﬁjz 42.51 This way LASSO
regression tranculates the coefficient of the non-contributing variable to zero while Ridge
shrinks the coefficient close to zero, delineating LASSO as an efficient feature selection model.
The LASSO obtains the ; estimate by minimizing eq. 2.

~ , 1
B195%0 = argming {5 TN, i — Bo — Bhy xiiB)% + AZE_, 161} eq.2

where A is the penalty parameter that determines the shrinkage proportion and is often
determined using cross-validation**, LASSO retains an excellent performance for the situations
when (i) the data has very high dimension and low sample and (ii) few variables explain the
majority of data (have large coefficient) and the remaining variable has very low predictive
potentials**. Moreover, LASSO has some significant advantages such as (i) LASSO efficiently
handles the multicollinearity within the features and returns highly independent features and
(i1) Being computationally less expensive, LASSO retains the optimal gene candidates faster.
These characteristics of LASSO befit the gene expression data as a feature selection model.
LASSO has elucidated excellent performance in numerous studies™%, delineating as a very
promising feature selection model. The variables with relative scaled importance >10 was
considered significantly important.

However, studies have indicated that L1-norm (LASSO) is not universally dominant over the
L2 norm (Ridge). However, to improve computational tractability Zou et al.”® proposed a
relatively new penalty called the Elastic Net, built as an intelligent compromise between
LASSO and Ridge penalty. For Elastic Net, the | (,B j) (coefficient constrain) is:

j(B;) = /125;1(“,3]'2 +(1-a )|,3]|) eq.3

where the new o constant is introduced that regulates the intensity of LASSO and Ridge
penalties. Elastic Net handles multicollinearity more efficiently than LASSO by accounting for
every correlated pair during training** *°. Elastic Net has better performance on many
occasions, however, there are only a few studies that corroborate the same®. Although we have
employed LASSO as a feature selection, we leverage the Elastic Net classifier to test the
determinative power of all the selected features combined due to its high efficiency towards
multicollinearity. The R package “caret” was used to implement LASSO and Elastic Net®'.

2.2.3 Multiplicity Problem

For microarray dataset, the problem of multiplicity can cast a false sense of trust in the genes
identified by wrapper approach. The basis of multiplicity problem has been explained in detail
in the supplementary text. Subscribing to the notion of the studies investigating the problem of
multiplicity®*®°, we lend credence to the combined set of genes that were obtained by both the
methods (varSelRF and LASSO); and exclusively probed the biological significance of the
common and repeatedly selected gene candidates.
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2.3 Classification model

Classification modeling led by feature selection is a crucial phase of the paradigm, that depicts
the clinical application of the selected gene candidates. Although the embedded classifier
within the wrapper method leverages the classification accuracy to quantify the importance of
a gene subset, but in the context of therapeutic application it is very crucial to corroborate the
best suiting classification model that improves the prediction accuracy. In this work, we
employed Support Vector Machines (SVM), Random forest classifier, and Elastic Net classifier
and performed a comparison study. We also probed the classification efficacy of these models
for the gene candidates obtained by (i) varSelRF, (ii) LASSO and (iii) combined gene subsets
retained by both varSelRF and LASSO. An overview of RF and SVM classifiers is provided
in the supplementary text. The R package “random Forest” and “e1071” were used to
implement the RF>* and SVM®® respectively.

2.4 Assessment

2.4.1 Model Assessment

We assess the prediction power of the selected gene candidates through SVM, RF, and Elastic
Net classifiers. Exploiting the relatively large sample size due to the merging of gene datasets,
we perform a 5-fold cross validation method to judge the external prediction power of the gene
set as well as of the classification model with a high level of certainty. To compare the efficacy
of the models we measure the following metrics.

B (TP+TN)
Accuracy = (TN+FN+FP+TP)
Sens1t1v1ty = m

. TN
Specificity = INIFN)
.. TP

Precision =
(TP+FP)

(TPXTN-FPxFN)
(TP+FP)x(TN+FN)X(TN+FP)

Matthew’s Correlation (MCC) = NG

Here TP, TN, FN and FP represent true positive, true negative, false negative and false positive
predictions respectively made by the classification model for each brain region (AD state is
denoted positive and non-demented healthy state is denoted negative). For further comparative
analysis, we plot the receiver operating characteristics (ROC) curve and compared the area
under the curve (AUC) obtained by the model for different brain tissue.

2.4.2 Feature Assessment

We assess the biological significance of the feature set obtained by our framework by
integrating the biological knowledge through a systematic literature review. We have used
GeneMania** and STRING* network analysis to identify the co-expression, genetic and
physical interactions among the obtained biomarkers of AD and also with the previously well-
known AD genes. Using the same, we also delineated the networks (hub genes) associated with
our obtained molecular signatures to deliver deeper insight into the mechanism of AD in
different brain tissues. To further corroborate the biological meaningfulness of the obtained
markers, we tested the discriminative power of these markers to classify AD patients from non-
demented controls for two different brain regions, Visual Cortex (VC) and the Cerebellum
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(CR). This way, not only the biological relevance is unmasked quantitatively, the therapeutic
application of the proposed framework is also depicted.

3. Results

After marginal filtering in the first phase (Phase 1), we obtained 26,593, 13,037, 3,268 and
10,029 genes for PFC, MTG, H and EC respectively, that was further processed to identify
DEGs using the varSelRF and LASSO method (Phase II). In the following section, we shed
light on the obtained features as well as their discriminative power when treated with different
benchmark classifiers.

3.1 The Obtained Features

For each brain region, we employed varSelRF and LASSO on the gene candidates from phase
I. varSelRF is based on RF that has the inner nature of being purely random and performs
random sampling within the algorithm. This leads to slightly varying results when implemented
multiple times. Therefore, for each brain region, we implemented varSelRF for five times and
considered each selected candidate as important feature. The tuned hyperparameter sets for
varSelRF and LASSO are provided in the supplementary Table S2. The features obtained are
summarized in Table 2. We found that LASSO obtained a higher number of candidates than
varSelRF for the brain region with a large sample size and vice versa.

Feature Medial Temporal . .
selection | Prefrontal Cortex Hippocampus Entorhinal Cortex
Method Gyrus
LOC646588, CSAG2 / CSAG3, ZHX3, C3P1,
KHSRP, SLC25A46, GIPC3, SYNPO2,
[T ANKFN1, GAS2L2, AL110181 / RP11-390E23.6,
E ITGA10, ELK1, ANTXR2, CORO1C, CHSTS, ITPKB, LOC101927151, STOML2, CTD- RP3-428L16.2, RPLP2P1/RPLP2P1, RNF123,
ZNF579, AC017104.6, APLNR, RHCG,
[)) C4B, LINC00507, TEAD2, STAG1, 2587H24.10, NFKB2, LMO1, SNX32, ONECUT3,
(7,) AK098016, BU615728 NEXN, CALD1, CBLB, HMBOX1, ZNF621, RAE1, SLC25A46, ESRP2, ’ ’ ’ .
S PLCB1, ATXN10, BPTF ANKIB1, CHMP2A STEGAL C4, ZNF621, QRICH2, FBXL14,
© ’ 4 ’ DUOX1, ANKIB1, KCNK12,
> C10rf50/LOC100129924, RAEL,

LOC101927151, BYSL, IGLJ3, CAC 1C,
KRT86/LOC100509764, MLIP, PCDH12

PLEKHA8P1, XM_208773, N40307,
HELQ, METTLY, PDP2, CA388904,
CRLF3, TBCCD, LINC00552, Al187365,
Al458218, COL21A1, MTRFR,

CORO1C, ZFP161, HOMER3,
LOC648377, ANKRD19, AIMP2,
PDPN, LRRCC1, EIF2S3, CIQTNFS,

BC021699, PRKCG, DIAPH1, ATP1A3, LOC149069,

RNF144A, EEF2K, GPRASP1, HHAT, LOC101927151, ESRP2, SHQ1, ZNF621,
o AA993171, NM_018543, AK092901, SFRS1, SMARCD3, ATXN10, TTC7B, SNORA71B, UBXN2A, PDCD6, AKIRIN2,
m MPCL, MRPLL8, WDR48, MTTP, DTNBP1, KIF7, DOLK, ZCCHCS, BC062753, DUSP8/LOC101927562, ZHX1 1GL3, SYF2, SLMOL, PPPIRIC,
(7] Qpigfﬁigﬁtl’\f;octsﬁ /:'525‘22363’ TPD52, LOC727758, CDKS, GHSR, SREK1IP1, RBM10, Clorf110, CAAP1, cwﬁﬁxz”{/‘si;so ZE/OA::SHApxa
FAMlBllB XM 20’8251 /’KKOSSO’]G LAMA?2, LOC100132324, PI4KAP2, NELFCD, GALNT1, HOXC11, ENY2, ’ NPCDRl’ CDRTl’S .
PDGFC é\MZ_NM 14;665 XPC. ' TBX18, DLGAP4, DDR2, LOC407835, ZNF302, LYRMS5, LOC100996760, !
! g o ' . BX097335, AK057443, SPAG7, SLC25A14, U2AF2, SLFN12
EXOSC10, OR7A17, AX750575, ECHDC3, MGC12982, DA760637, D JC7
SIGLEC12, JMY, FDXR, CDR1, S100A5, ’ ’ ’
FTSID2, DGCR8, KIAA1274, RNF19A,
CESS5A, AKR1C2, B3GNT6, AA860882, SMYD3, MAFF, TSC22D1, XM 499121
NM_018544, XM_070957, PSTPIP1, éHLHB’S HCG4 Z’BTB476 ’
XM_373660, AF075038, HS3ST3B1 ! '
Common
G AK098016 CORO1C, ATXN10 LOC101927151, ZNF621, ESRP2 ZHX3, IGU3
ene

Table 2. The gene biomarkers obtained for different brain regions using varSelRF and LASSO
methods.

Both the models largely identified a varying set of markers; however few gene candidates were
commonly identified by both methods. Of interest, the majority of these commonly identified
markers are closely associated with neurodegenerative disorders, depicting the biological
significance of the models. In addition to the common genes identified by the models, there
were common regulatory gene candidates within the brain regions (see Fig S1). The common
biomarkers found within the H and EC region are ZNF621, SLC25A46, RAE1, and ANKIBI.
Among these biomarkers, RAEI, ANKIBI, and SLC25A46 have been reported to be
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prominently involved in several neurodegenerative disorders. The RAE1 protein is found to be

1 the interacting partner of Huntingtin protein aggregates®’ and experimental evidence of earl

5 gp gun p ggreg p y

3 ageing associated phenotypes is reported in Rael haplo-insufficient mice®®. ANKIBI is also

4 found to be associated with Cerebral cavernous malformations®®. Another potential biomarker

5 that has been associated with neurodegenerative disorders is SLC25A46. A study by Abram’s

6 et al. has experimentally shown that the mutations in the SLC25A46 genes can lead to the

; degeneration of optic and peripheral nerve fibers’’. Also, loss of function in the SLC25A46

9 gene leads to lethal congenital and peripheral neuropathy’!: 2. Although these genes have been
10 extensively studied for different neurological disorders, their role in Alzheimer’s disease is yet
11 to be exclusively explored. Our models were also able to unravel the participation of non-
12 coding RNAs, identifying 9 non-coding RNAs within the brain regions. Among the non-coding
ii RNAs, we found two long non-coding RNAs, AK057435 and BC037880 in the prefrontal
15 cortex and the hippocampus region respectively that are classified as potential biomarkers.
16 Since long non-coding RNAs are known to play an important role in human neurological
17 development and cognition, experimental characterization of these biomarkers can help to
ig elucidate the role of long non-coding RNAs in Alzheimer’s disease.
20 . .
21 3.2 Classification
22
23 To determine the classification potential of the obtained gene set for each brain region, we built
5‘51 three benchmark classification models (SVM, random forest and Elastic Net). Performing
26 extensive machine learning experiments, we made an attempt to identify the best pair of

feature-selection and classification models in the context of disease class prediction. For each
27 p
28 of the four brain regions, we applied three different best-configured classification model to the
g pp g
29 gene set obtained through varSelRF, LASSO and finally to the combine pool of gene set
28 (varSelRF + LASSO), depicting a total of 9 scenarios to identify the best performing
32 combination. The classification performance was assessed through a 5-fold cross validation
33 method. Table 3 represents a complete summary of the assessment metrics obtained for each
P P y

34 possible scenario. In our study, the proposed framework has obtained foremost the highest AD
gg prediction accuracy than any previous studies in a similar paradigm to our knowledge to date.
37 For the prefrontal cortex and hippocampus, the scheme has even obtained 100% prediction
38 accuracy.
39
40
4% ; -
42 Brain Region
444.:0: Model Prefrontal cortex Middle temporal gyrus Hippocampus Entorhinal cortex
45 Acc Sen | Spe | Pre | Mcc | Acc | Sen | Spe | Pre | Mcc | Acc | Sen | Spe | Pre | Mcc | Acc | Sen | Spe | Pre | Mcc
4% svm | 093 | 095 | 090 [ 0.91 | 0.85 | 0.86 | 0.85 | 0.87 | 0.89 | 0.73 | 0.90 | 1.00 | 0.80 | 0.84 | 0.82 | 0.91 | 0.95 | 0.80 | 0.80 | 0.75
ja;_," RF | 0.95 | 0.95 | 0.94 | 0.94 | 0.89 | 0.87 | 0.88 | 0.87 | 0.88 | 0.74 | 0.94 | 1.00 | 0.88 | 0.91 | 0.89 | 0.95 | 1.00 | 0.85 | 0.87 | 0.84
AL | elastion | 093 | 0.97 | 090 | 0.90 | 0.87 | 0.88 | 0.86 | 0.89 | 0.90 | 0.75 | 0.93 | 0.97 | 0.88 | 0.91 | 0.87 | 0.94 | 1.00 | 0.82 | 084 | 0.81
;L svm | 0.99 | 1.00 | 0.99 | 0.99 | 0.99 | 0.96 | 0.96 | 0.95 | 0.96 | 0.91 | 0.79 | 0.81 | 0.77 | 0.78 | 059 | 0.91 | 0.92 | 0.90 | 0.95 | 0.79
5% RF | 097 | 097 | 0.96 | 0.96 | 0.93 | 091 | 091 | 091 | 0.92 | 0.81 | 0.83 | 0.83 | 0.83 | 0.84 | 0.66 | 0.92 | 0.91 | 0.92 | 0.88 | 0.78
g 2 ElasticN | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.86 | 0.86 | 0.87 | 0.87 | 0.74 | 0.97 | 0.98 | 0.97 | 0.97 | 0.93
55 svm | 099 | 1.00 | 0.99 | 0.99 | 0.98 | 0.95 | 0.95 | 0.95 | 0.96 | 0.91 | 0.99 | 1.00 | 0.97 | 0.98 | 0.97 | 0.92 | 0.95 | 0.82 | 0.84 | 0.78
%@ RF | 097 | 098 | 0.96 | 0.96 | 0.94 | 0.88 | 0.87 | 0.88 | 0.90 | 0.75 | 0.94 | 0.98 | 0.91 | 0.93 | 0.90 | 0.95 | 1.00 | 0.85 | 0.87 | 0.84
58 ElasticN | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.99 | 0.98 | 0.98 | 0.96 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.94 | 1.00 | 0.82 | 0.84 | 0.81
59
60
61
2 o
64
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Table 3. Performance comparison of the three different classification models (SVM, RF,
Elastic Net) applied to the gene set obtained through varSelRF, LASSO and varSeIRF +
LASSO for the four brain regions, namely Prefrontal cortex, Middle Temporal Gyrus,
Hippocampus and Entorhinal Cortex.

3.3 Performance Evaluation

It was observed that in the majority of the scenarios, the Elastic Net classifier obtained excellent
performance, followed by the random forest classifier, while SVM performance remained low
(Fig 2). Substantiating the parent algorithms, both RF and Elastic Net classifier has performed
higher for the gene sets obtain through their respective allied feature selection model i.e.,
varSelRF and LASSO respectively. Considering the problem of multiplicity, we substantiate
the combined gene markers of varSelRF and LASSO over the gene set obtained by these
individual methods. The ROC-AUC plot elucidates the superiority of Elastic Net over RF and
SVM for three brain regions (PFC, MTG and H) while remaining slightly lower but highly
competitive for the EC region (Fig 3). The one explanation of low performance of Elastic Net
for EC region is possible due to the very small sample to gene ratio.

Prefrontal cortex Middle Temporal Gyrus
1 1 [
RandomFo 1 RandemForest
> 0.95 ElasticNet >, 0.95 B EiesrieNer

o o

S o9 T g9
3 3

Q g5 Q 0.85
é Qo

0.8 < 0.8

0.75 0.75

varSelRF LASSO varSelRF+LASSO varSelRF LASSO varSelRF+LASSO
C Hippocampus D Entorhinal Cortex
1 - STM 1 -
‘RandomForest RandemForest
= 0.95 ElasticNet = 0.95 ElasticNet

o o

O 40 T o9
= 3

O pss O 0.85
o 3]

< 0.8 < 0.8

0.75 0.75

varSelRF LASSO varSelRF+LASSO varSelRF LASSO varSelRF+LASSO

Fig 2. Prediction accuracy obtained by the SVM, Random Forest, Elastic Net classifier
employed in the varSelRF, LASSO and varSelRF + LASSO for (A) Prefrontal cortex, (B)
Middle Temporal Gyrus, (C) Hippocampus and (D) Entorhinal Cortex. The Elastic Net
classifier obtained excellent performance in the majority of scenarios, followed by the random
forest classifier and SVM. Genes obtained through LASSO with Elastic net classifier
performed higher in PFC, MTG and EC region.
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Fig 3. The classification performances to discover potential biomarkers in four brain regions.
The ROC-AUC curves of Elastic Net, Random Forest and SVM classifiers for (A) Prefrontal
cortex, (B) Middle Temporal Gyrus, (C) Hippocampus and (D) Entorhinal Cortex.

In addition to adopting a 5-fold cross validation method, we also took several other measures
to establish the biological credibility of the identified gene candidates. We hypothesize that the
gene markers obtained for one brain region hold some biological relevance for the adjacent
brain region. We therefore evaluated the AD prediction potential of the gene subset of PFC (60
genes) for the gene expression data obtained from Virtual Cortex (VC) and Cerebellum (CR).
VC and CR data were extracted from GEO NCBI database (GSE44771 and GSE44768). The
sample size for VC and CR are both 230 with AD to control ratio of 129:101. We employed
LASSO feature-selection only for the expression level of those 60 gene candidates that were
identified as PFC markers on the VC and CR datasets. We find that the biomarkers of PFC
displayed an excellent AD classification performance (5-fold CV) of 92% and 91% on VC and
CR datasets respectively (see supplementary Table S3). The complete assessment metric
obtained for VC and CR is provided in the supplementary Table S4. This quantitatively
validates the biological meaningfulness of gene candidates obtained in our study.

4. Discussion

The formalism of the proposed framework has two integrated components (i) Identification of
the AD associated crucial gene markers within each brain region and (ii) the disease class
prediction. After carrying out an extensive comparative analysis and corroborating the problem
of multiplicity, it is apparent that Elastic Net classifier has a remarkable potential for disease
prediction when employed over the gene subset identified by multiple varieties of gene
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selection models (LASSO and varSelRF in this case). In addition to having outstanding AD
predictive potentials, the markers identified through this framework are of high calibre in terms

O©COoO~NOOOUOITAWNPE

of explaining the expression level and multicollinearity.
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Fig 4. (A) The correlation heatmap (n x n, where n is number of biomarkers) for the expression
level of the biomarkers obtained by LASSO and varSelRF method for each brain region. Every
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block in a heatmap plot represents correlation between the gene on each axis. Correlation
ranges from -1 to +1. The shade corresponding to the values closer to zero indicate low linear
trend between the two markers. The red labelled markers are the one that are obtained by
varSelRF. The black labelled markers are the one that are obtained by LASSO. The orange
labelled are the markers that were identified by both the models. (B) The density plot for the
correlation values among the gene subset obtained by each type of feature selection model
within different brain region. Density plot of correlation value for the markers obtained through
varSelRF is shown in red. Density plot of correlation value for the markers obtained through
LASSO is shown in blue. The density for the correlation value near to zero remained higher
for LASSO comparative to varSelRF in every brain region.

Fig 4A illustrates the correlation heatmap for the expression level of the biomarkers obtained
by LASSO and varSelRF for each brain region. We see that the biomarkers elucidated very
low correlation, thus together they are of great relevance in the context of depicting the
biological basis for the observed expression level. Although both feature selection models are
immune to multicollinearity, the LASSO obtained significantly lower correlated markers than
that of varSelRF, especially for the EC region. This is also apparent in the correlation density
plot for the regions, where the density remained high near the centre for the geneset obtained
through LASSO, while it remains inflated on the tails for the varSeIRF obtained geneset (Fig
4B).

4.1 Biological Insight

We performed a combination of biological network analysis and a comprehensive literature
review to validate the biomarkers obtained in our study. We started with bioinformatics
analysis of all the biomarkers obtained from our models and are listed in supplementary Table
S5. We find the presence of potential biomarkers in all the chromosomes, except Chromosome
Y. This may point towards the higher prevalence of AD in woman than in man’®. The
Chromosomes 1, 6, 17, 19 are found to contain the maximum number of biomarkers (Fig S2).
Although most of the genes that are classified as biomarkers in our study are protein coding
genes, some non-coding genes, such as LINC00552, LINC00507, MGC12982, HCG4,
LOC101927151, NPCDR1, LOC646588 are also found to be the biomarkers of AD. These
non-coding genes are novel and mostly uncharacterised.

Moreover, we identified 7 up-regulated and 6 down-regulated genes in the AD samples with
respect to the normal ones by employing the GSE5281 expression data due to the availability
of raw count. We considered p <0.01 and |log2FC| > 0.6 (FC, fold change) as cut-off criterion
on different samples of H and EC brain regions from the GSE5281 dataset. Using this
information, we identified the biomarkers that are up and down regulated (Fig S3). We find
that some of the biomarkers are significantly downregulated in AD such as MLIP and
STOML2. While the down regulation of STOML2 gene has been reported previously in AD
patient’s samples’, the EC biomarker, MLIP can be clinically tested as a novel possible
biomarker of AD.

We also performed GeneMania network analysis for all the biomarkers of each brain region
(Fig. S4-7) and found that the biomarkers are not only co-expressed but share both physical
and genetic interactions. Some of the highly interacting genes in the PFC are ECHDC3,
PDGFC, MPC1, CRLF3, CDYL, FDXR that are also found to be co-expressed (Fig S4).
Among these genes, the expression of ECHDC3 is found to be significantly higher in AD
patients than non-AD patients from genome-wide association studies of more than 200,000

14


https://doi.org/10.1101/2021.03.03.433689
http://creativecommons.org/licenses/by-nc-nd/4.0/

O©CO~NOOOITA~AWNPE

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.433689; this version posted March 3, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

individuals”. Also, CRLF3 has been studied in neuronal aging rates in human brain regions’®.
In the EC region, we see that the biomarkers interact with each other by largely physical and
genetic interactions (Fig S5). In particular, ZNF621 and ISG20 are found to genetically interact
with many of the other biomarkers. The ZNF621 gene has been recently reported as an
upregulated gene in AD patients’’. From the network analysis of the H region, we find
extensive interactions of the biomarkers with each other, where the biomarkers not only are
involved in physical and genetic interactions as well as co-expression and co-localization (Fig
S6). Some of the highly interacting biomarkers of the H region are RBM10, SLC25A46,
STOML2. 1t is interesting to note that both the SLC25A46, STOML2 protein are involved in
mitochondrial dynamics and it has been proposed that mitochondrial dysfunction due to
oxidative stress may be one of the earliest and prominent features of AD; and it has been
experimentally shown that slower mitochondrial dynamics is correlated with reduced
expression of STOML2 and MFN2"#, The network analysis of MTG region shows that most of
the biomarkers in the region genetically interact with each other, however, co-expression is
also seen for some of the biomarkers such as CALD1, DNAJC7, TSC22D1, CMTR1, COROI1C
(Fig S7). TSC22D1 is one of the most studied transcription factors that has also been reported
as the potential new target for treating AD’®. Hence, the biomarkers found by our models have
not only been studied for different neuropathies but some of them are also reported as potential
targets against AD. Also, we see that our biomarkers extensively interact with each other and
thus, careful targeting of a potential biomarker can also help to regulate the biological functions
of other biomarkers involved in various neuropathies.

4.2 Relationship between the biomarkers and AD genes

The most well-known genes that have the largest effect on the risk of developing AD are
APOE, APP, PSEN1, and PSEN2”. Although we have not identified these genes in our study,
the relationship between these AD genes and our biomarkers is worth analysing. To seek the
potential interactions between the biomarker genes and the AD genes according to different
brain regions, the STRING*® (Search Tool for the Retrieval of Interacting Genes/Proteins) tool
was employed. Active interaction sources such as experimental data, public databases, text
mining, computational prediction methods, and species limited to “Homo sapiens” are applied
to construct the protein-protein interaction (PPI) networks. From the interaction networks
shown in Fig 5, we see that the biomarkers of all the brain regions, except the hippocampus
have interactions with the AD genes. In the prefrontal cortex, the biomarkers showing
significant interactions with the AD genes are C4A, SIM2 and PDYN (Fig 5A). The
complement pathway protein, C4A is found to be present in higher levels in patients with AD
and represents the inflammation generally associated with neurodegenerative diseases®’. The
biomarker SIM2 is also supposed to serve as a noble target for Down’s Syndrome-related AD3!.
Although the PDYN gene is extensively studied in Huntington's Disease®?, its role in AD is yet
to be explored. The interacting biomarkers with AD genes in the MTG region are CDKS,
GHSR, PLCBI, ITPKB, HOMER3 (Fig 5B). CDKS is gradually emerging as an obvious
therapeutic target for AD because Cdk5/p25 is involved in two most important pathological
hallmarks of AD, the formation of AB plaques and NFTs®. Also, in the current scenario, we
see GHSR, PLCBI1, ITPKB genes are considered to be promising therapeutic targets for AD%
87 Similarly, in the EC region, the interacting biomarkers are NFKB2, CACNA1C, APLNR
(Fig 5D) . The transcription factor NFKB2 has emerged as a potential target for AD prevention
by targeted anti-inflammatory treatment to increase the time of disease onset®®. Moreover, by
targeting the calcium voltage-gated channel subunit alpha-1 C gene, CACNA1C by miRNA,
studies have reported the inhibition of tau protein hyperphosphorylation in AD¥. The apelin
receptor protein, APLNR is also been recently studied as a potential target for several
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neurodegenerative diseases including AD as expression level alterations in apelin significantly
affects the neuronal structure, calcium signalling, apoptosis, and autophagy etc®®. From the
analysis, we see that some of our biomarkers that closely interact with the well-known AD
genes are also closely associated with various neurological disorders including AD. Future
work requires the experimental testing of these gene biomarkers found in our study to identify
the potential signature biomarker for efficient early diagnosis and treatment of AD.
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Fig 5. Protein-protein interaction (PPI) networks of the gene biomarkers for (A) Prefrontal
cortex, (B) Middle Temporal Gyrus, (C) Hippocampus and (D) Entorhinal Cortex. The
coloured nodes represent the proteins with first shell of interactions whereas the white nodes
represent second shell of interactions. The proteins whose 3D structure are not known is shown
by empty nodes. The coloured edges represent protein-protein interactions™.

5. Conclusion

The use of comprehensive machine learning models to identify potential gene biomarkers for
Alzheimer’s disease is a significant step to determine the early treatment of AD patients. In
this work, we propose a simple and robust framework to identify biologically important genes
in the context of AD. There are three crucial aspects that corroborate the strength of the
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framework, (i) To identify the potential genetic markers of AD, probing the gene expression
data from different brain tissue is more effective than analysing the combined profiles of
expression level from all the regions together. In addition to that, incorporating a large sample
size augments the credibility of the findings. (i1) The use of the best configured benchmark
machine learning based feature selection model (wrapper approach) provided the most
explaining gene subsets with the highest AD predictive power. (iii) To explain the biological
significance, a strong validation is a must. Alongside conducting an extensive literature survey,
the biological relevance is elucidated quantitatively by testing the biological significance of the
obtained gene for two independent brain regions (Visual Cortex and Cerebellum). By
employing the gene expression data of diseased vs. normal patients for four different brain
regions to identify the biomarkers and incorporating them, our study has achieved, by far the
highest prediction accuracy through optimally configured classification models.

In summary, we found several potential biomarkers, some of which are previously linked to
AD such as ECHDC3, ZNF621, STOML2, TSC22D1, SIM2, CDKS5, C4A, GHSR, PLCBI,
ITPKB, NFKB2, CACNAIC, etc. and some novel biomarkers such as CORO1C, SLC25A46,
RAEI1, ANKIB1 CRLF3, PDYN, AK057435, and BC037880. Future work requires clinical
and experimental testing of these gene candidates to identify potential prognostic biomarkers
that can support the early diagnosis of Alzheimer’s disease or can be targeted at the gene level
to prevent the disease. We will also extend the application of the proposed paradigm to discover
novel potential markers for other complex diseases in future.
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Machine Learning Model descriptions:

Random Forest (RF)
Given a training dataset, L = {(X;, ;)N | X; € RMY € {1,2,...,c}}, where X; represents the
variables or the feature set and Y denotes the corresponding label (class response variable). The
number of training samples and features are denoted as N and M respectively. The random
forest model (RF) is delineated below. For a given input X , let the prediction of the tree T}, is
denoted by Y. The random forest amalgamating K trees have the prediction given as:
¥ = majority vote {Y¥}¥

Algorithm [1]

Input: The training dataset L = {(X;, Y,), | X; € RMY €{1,2,..,c}}

K:the number of tress,

mtry: the size of the subspace
Output: A random Forest

a) Fork - 1toK do
b) Lj samples as a bagged subset are drawn from L
c) While (stopping condition is not met) do
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d) mtry features are randomly selected.

e) Form — 1to |lmtry|l do

f) The decline in the node impurity is computed

g) The features that contribute the most in decreasing the impurity is chosen.
h) The node is then branched/divided into two children nodes

1) K trees are combined to produce a random forest

As the trees are grown from a bagged sample set, only a proportion of samples were leveraged
to grow the tree also called in-bag samples. A small proportion of instance that is left out is
called out-of-bag (OOB) samples that are employed to estimate the rate of prediction error
called OOB error rate.

The OOB predicted value is given as:

yooB = (ﬁ) Ykeo, V¥, where 6;, = ei' i’ and i denotes the out-of-bag and in-bag sampled
i’ i

instances, ||0;,| is the cardinality/size of OOB instances, and the OOB prediction error is

1 Noos
E7r00B — = Z ‘P(Y, ?003)
0O0B =1

Here W(.) is the error function and Nypg is OOB sample’s size.

Support Vector Machine (SVM)

An SVM classifier identifies and maximizes the most optimal hyperplane that separates the
data points of each type of label (category). In a simple SVM model, the optimal hyperplane is
evaluated on the basis of the distance between the support vectors [8]—[10] Once the hyperplane
is evaluated using train data points, SVM allocates the new instances to a class based on its
relative nearness from the trained data points [11]. For a given set of data points (x;,y;),i =
1,2,....,m where x € R", y € R. Given a set of weight w, The optimal hyperplane H is:

wx)+b=0
SVM classifier follows the constraints:
yilw.x; + b] = 1

The optimization problem to minimize w (or maximize 2/||lw||) is solved using a Lagrange
function eq3:

1
L(w,b,a) = STl ™ AMy(w.x) +b) —1); ;>0

Here the A is a Lagrange multiplier. Solving the partial derivatives for w and b to 0, the optimal
hyperplane is built as:
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m
y(x) = sign Z ALyixIx+b

=1

Several genomics studies have employed variations of SVM models as a classifier and retained
excellent performance [12][13].

Multiplicity Problem

For microarray dataset, different wrapper feature selection models identify a varying set of
candidate genes as the important signature based on the prediction accuracy attained by the
gene subset [2][3] This leads to the problem of multiplicity, especially for the case when the
motivation is not only the prediction but also the identification of biologically relevant gene
signatures[4][5] . This variation or the lack of uniqueness could be reasoned as different in the
patient batch, differing analysis and varying technologies. Studies indicate that the difference
in the gene subset is strongly influenced by the cohort that have been used for gene selection[3].
This problem has also been elaborated and discussed extensively in recent studies that too
indicated the extremely small ratio of samples to genes in the microarray dataset is the most
likely cause of this problem[6][7]. Unfortunately, this issue casts a false sense of trust in the
results obtained by most studies falling under this paradigm of gene identification through
wrapper approach. Subscribing to the notion of the studies investigating the problem of
multiplicity, we lend credence to the combined set of genes that were obtained by both the
methods (varSelRF and LASSO); and exclusively probed the biological significance of the
common and repeatedly selected gene candidates.
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Figure S1. The common genes identified by the machine learning models within the different
brain regions.
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Figure S2. The number of biomarkers found in all the human chromosomes by our models.
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Figure S3. The up and down regulated biomarkers in the AD samples with respect to the

normal ones identified from the GSE5281 expression data.
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Figure S7. The GeneMania network analysis for all the biomarkers of MTG brain region. The
biomarkers are shown by the stripped black circles. The solid-coloured lines represent the type
of interactions found in the biomarkers.
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Tables

Dataset Dataset

GSES5281 The signal value calculated by MAS 5 or GCOS software.
GSE48350 GC-RMA normalized expression values

GSE4757 The signal value calculated by MAS 5 or GCOS software.
GSE28146 MASS5-calculated Signal intensity
GSE118553 Normalized signal
GSE132903 Normalized (log2 scale) with the lumiExpresso function (R-package Lumi)
GSE33000 Normalized log10 ratio (Cy5/Cy3) representing test/reference
GSE44770 Normalized log10 ratio (Cy5/Cy3) representing test/reference
GSE44771 Normalized log10 ratio (Cy5/Cy3) representing test/reference
GSE44768 Normalized log10 ratio (Cy5/Cy3) representing test/reference

Table S1: Summary of experimental designs and measurements of the gene expression
datasets used in our study.

Model Critical Parameters Note
ntree = 5000, .
varSelRF ntreelterat = 2000, After’ tuning the default values
_ remained the best value
vars.drop.frac = 0.2
LASSO method = "glmnet", The alpha is not declared, setting 0
lambda= seq(0.0001, 1, length = 5) by default thus performing LASSO
RandomForest ntree=500, ntree employed here is the default value
mtry= max( (number of gene) /3, 1) which was tested against 250, 300 and 400.
method = "glmnet",
Elastic Net alpha=seq(0, 1, length=10), iziiﬁgéh;iiﬁilﬁ? V;]\E::l ossible set
lambda= seq(0.0001, 1, length = 5) gvenp
SVM kernel= "radial", Degree of 7 is compared against 2 to 6 and

degree =7

remained the best suiting for the profiles

Table S2: The tuned hyperparameter sets for the different models used in our machine
learning workflow.
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Visual Cortex Cerebellum

Acc Sen Spe Pre Mcc Acc Sen Spe Pre Mce
Fold1_SVM | 0.92 0.91 0.94 0.95 0.84 0.87 0.75 1.00 1.00 0.77
Fold1_RF 0.97 1.00 0.94 0.96 0.95 0.79 0.80 0.79 0.80 0.59
Fold1_EN 0.97 1.00 0.94 0.96 0.95 0.92 0.85 1.00 1.00 0.86
Fold2_ SVM | 0.97 1.00 0.94 0.96 0.95 0.92 0.95 0.88 0.91 0.84
Fold2_RF 0.92 0.95 0.88 0.91 0.84 0.90 0.91 0.88 0.91 0.79
Fold2_EN 0.97 0.95 1.00 1.00 0.95 0.97 0.95 1.00 1.00 0.95
Fold3_SVM | 0.95 0.91 1.00 1.00 0.90 0.90 0.94 0.86 0.85 0.80
Fold3_RF 0.95 0.91 1.00 1.00 0.90 0.79 0.89 0.71 0.73 0.61
Fold3_EN 0.95 0.91 1.00 1.00 0.90 0.92 0.89 0.95 0.94 0.85
Fold4 SVM | 0.85 0.87 0.81 0.87 0.68 0.90 0.90 0.89 0.90 0.79
Fold4 RF 0.85 0.87 0.81 0.87 0.68 0.85 0.86 0.83 0.86 0.69
Fold4 EN 0.85 0.87 0.81 0.87 0.68 0.92 0.95 0.89 0.91 0.85
Fold5 SVM | 0.87 0.94 0.81 0.81 0.75 0.85 0.85 0.84 0.85 0.69
Fold5_RF 0.90 0.94 0.86 0.85 0.80 0.82 0.90 0.74 0.78 0.65
Fold5_EN 0.87 0.94 0.81 0.81 0.75 0.79 0.80 0.79 0.80 0.59
Avg SVM | 091 0.93 0.90 0.92 0.83 0.89 0.88 0.89 0.90 0.78
Avg RF 0.92 0.94 0.90 0.92 0.83 0.83 0.87 0.79 0.82 0.66
Avg EN 0.92 0.94 0.91 0.93 0.85 0.91 0.89 0.93 0.93 0.82

SFold CV

Table S3: Alzheimer’s disease classification performance of the PFC biomarkers on VC and
CR gene expression datasets.

Visual Cortex Cerebellum

CRLEF3, LINC00552, AI458218,
AA993171, AK092901, MPCl,
MRPL18, WDR48, AK022363,
N40307, NM_015986, PDYN, AI310112, CDYL, XM 208251,
AAB60882 AKO098016, PDGFC, SIM2, NM 145665,
XPC, IMY, AKRIC2, AA860882,
XM 070957, PSTPIP1, XM 373660,
HS3ST3BI1, C4B, LINC00507

Common Marker CRLF3, AA860882

Table S4: The assessment metric obtained for VC and CR validating the AD prediction
potential of the gene biomarker subset of PFC.
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GeneBank Gene Symbol Gene name Genomic Sequence Region Gene type
Accession No
NM_015899 PLEKHA8P1 pleckstrin homology domain containing | Chromosome 12 - NC_000012.12 pseudo

A8 pseudogene 1
XM_208773 LOC283664
N40307
AL359211 METTL9 methyltransferase like 9 Chromosome 16 - NC_000016.10 protein coding
AB037769 PDP2 pyruvate dehyrogenase phosphatase Chromosome 16 - NC_000016.10 protein coding
catalytic subunit 2

CA388904
NM_015986 CRLF3 cytokine receptor like factor 3 Chromosome 17 - NC_000017.11 protein coding
NM_018138 TBCCD1 TBCC domain containing 1 Chromosome 3 - NC_000003.12 protein coding

AK057435 LINC00552 long intergenic non-protein coding RNA | Chromosome 13 - NC_000013.11 ncRNA

552

Al187365

Al458218
NM_030820 COL21A1 collagen type XXl alpha 1 chain Chromosome 6 - NC_000006.12 protein coding
NM_152269 MTRFR mitochondrial translation release factor | Chromosome 12 - NC_000012.12 protein coding

in rescue

BC021699

AA993171
NM_018543

AK092901
NM_016098 MPC1 mitochondrial pyruvate carrier 1 Chromosome 6 - NC_000006.12 protein coding
NM_014161 MRPL18 mitochondrial ribosomal protein L18 Chromosome 6 - NC_000006.12 protein coding
NM_020839 WDR48 WD repeat domain 48 Chromosome 3 - NC_000003.12 protein coding
NM_000253 MTTP microsomal triglyceride transfer Chromosome 4 - NC_000004.12 protein coding

protein

NM_014298 QPRT quinolinate phosphoribosyltransferase Chromosome 16 - NC_000016.10 protein coding
NM_152890 coL24A1 collagen type XXIV alpha 1 chain Chromosome 1 - NC_000001.11 protein coding
NM_032608 MYO18B myosin XVIIIB Chromosome 22 - NC_000022.11 protein coding

AK022363
NM_024411 PDYN prodynorphin Chromosome 20 - NC_000020.11 protein coding

Al310112
NM_004824 CDYL chromodomain Y like Chromosome 6 - NC_000006.12 protein coding
NM_014638 PLCH2 phospholipase C eta 2 Chromosome 1 - NC_000001.11 protein coding
NM_175885 FAM181B family with sequence similarity 181 Chromosome 11 - NC_000011.10 protein coding

member B

XM_208251

AK098016
NM_016205 PDGFC platelet derived growth factor C Chromosome 4 - NC_000004.12 protein coding
NM_005069 SIM2 SIM bHLH transcription factor 2 Chromosome 21 - NC_000021.9 protein coding
NM_145665
NM_004628 XPC XPC complex subunit, DNA damage Chromosome 3 - NC_000003.12 protein coding

recognition and repair factor
NM_002685 EXOSC10 exosome component 10 Chromosome 1 - NC_000001.11 protein coding
NM_030901 OR7A17 olfactory receptor family 7 subfamily A Chromosome 19 - NC_000019.10 protein coding
member 17

AX750575

NM_024693 ECHDC3 enoyl-CoA hydratase domain Chromosome 10 - NC_000010.11 protein coding
containing 3
NM_053003 SIGLEC12 sialic acid binding Ig like lectin 12 Chromosome 19 - NC_000019.10 protein coding
NM_152405 My junction mediating and regulatory Chromosome 5 - NC_000005.10 protein coding
protein, p53 cofactor

10
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NM_004110 FDXR ferredoxin reductase Chromosome 17 - NC_000017.11 protein coding
NM_004065 CDR1 cerebellar degeneration related protein Chromosome X - NC_000023.11 protein coding
1
NM_002962 S100A5 $100 calcium binding protein A5 Chromosome 1 - NC_000001.11 protein coding
NM_145024 CES5A carboxylesterase 5A Chromosome 16 - NC_000016.10 protein coding
NM_001354 AKR1C2 aldo-keto reductase family 1 member Chromosome 10 - NC_000010.11 protein coding
C2
NM_138706 B3GNT6 UDP-GIcNAc:betaGal beta-1,3-N- Chromosome 11 - NC_000011.10 protein coding
acetylglucosaminyltransferase 6
AA860882
NM_018544
XM_070957
NM_003978 PSTPIP1 proline-serine-threonine phosphatase Chromosome 15 - NC_000015.10 protein coding
interacting protein 1
XM_373660
AF075038
NM_006041 HS3ST3B1 heparan sulfate-glucosamine 3- Chromosome 17 - NC_000017.11 protein coding
sulfotransferase 3B1
NM_000592 C4A complement C4A (Rodgers blood Chromosome 6 - NC_000006.12 protein coding
group)
BC037880 LINCO0507 long intergenic non-protein coding RNA Chromosome 12 - NC_000012.12 ncRNA
507
AK098016
BU615728
NM_014325.2 CORO1C coronin 1C Chromosome 12 - NC_000012.12 protein coding
NM_003409.2 ZFP161 zinc finger and BTB domain containing Chromosome 18 - NC_000018.10 protein coding
14
NM_004838.2 HOMER3 homer scaffold protein 3 Chromosome 19 - NC_000019.10 protein coding
XM_937430.2 LOC648377 TERF1 pseudogene 3 Chromosome 4 - NC_000004.12 protein coding
NM_001010925.2 ANKRD19 ankyrin repeat domain 19, pseudogene | Chromosome 9 - NC_000009.12 pseudo
NM_006303.3 AIMP2 aminoacyl tRNA synthetase complex Chromosome 7 - NC_000007.14 protein coding
interacting multifunctional protein 2
NM_001006625.1 PDPN podoplanin Chromosome 1 - NC_000001.11 protein coding
NM_033402.3 LRRCC1 leucine rich repeat and coiled-coil Chromosome 8 - NC_000008.11 protein coding
centrosomal protein 1
NM_001415.3 EIF2S3 eukaryotic translation initiation factor 2 | Chromosome X - NC_000023.11 protein coding
subunit gamma
NM_015645.2 C1QTNF5 Clqgand TNF related 5 Chromosome 11 - NC_000011.10 protein coding
NM_002739.3 PRKCG protein kinase C gamma Chromosome 19 - NC_000019.10 protein coding
NM_005219.3 DIAPH1 diaphanous related formin 1 Chromosome 5 - NC_000005.10 protein coding
NM_152296.3 ATP1A3 ATPase Na+/K+ transporting subunit Chromosome 19 - NC_000019.10 protein coding
alpha 3
XM_940631.1 LOC149069 doublecortin domain containing 2B Chromosome 1 - NC_000001.11 protein coding
NM_014746.3 RNF144A ring finger protein 144A Chromosome 2 - NC_000002.12 protein coding
NM_013302.3 EEF2K eukaryotic elongation factor 2 kinase Chromosome 16 - NC_000016.10 protein coding
NM_001099411.1 GPRASP1 G protein-coupled receptor associated Chromosome X - NC_000023.11 protein coding
sorting protein 1
NM_018194.2 HHAT hedgehog acyltransferase Chromosome 1 - NC_000001.11 protein coding
NM_001078166.1 SFRS1 serine and arginine rich splicing factor 1 | Chromosome 17 - NC_000017.11 protein coding
NM_001003802.1 SMARCD3 SWI/SNF related, matrix associated, Chromosome 7 - NC_000007.14 protein coding
actin dependent regulator of
chromatin, subfamily d, member 3
NM_013236.2 ATXN10 ataxin 10 Chromosome 22 - NC_000022.11 protein coding
NM_001010854.1 TTC7B tetratricopeptide repeat domain 7B Chromosome 14 - NC_000014.9 protein coding

11
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NM_183041.1 DTNBP1 dystrobrevin binding protein 1 Chromosome 6 - NC_000006.12 protein coding
NM_198525.1 KIF7 kinesin family member 7 Chromosome 15 - NC_000015.10 protein coding
NM_014908.3 DOLK dolichol kinase Chromosome 9 - NC_000009.12 protein coding
NM_024617.2 ZCCHC6 terminal uridylyl transferase 7 Chromosome 9 - NC_000009.12 protein coding
NM_001025253.1 TPD52 tumor protein D52 Chromosome 8 - NC_000008.11 protein coding
XM_001125808.2 LOC727758 Rho associated coiled-coil containing Chromosome 18 - NC_000018.10 pseudo
protein kinase 1 pseudogene 1
NM_004935.2 CDK5 cyclin dependent kinase 5 Chromosome 7 - NC_000007.14 protein coding
NM_004122.1 GHSR growth hormone secretagogue Chromosome 3 - NC_000003.12 protein coding
receptor
NM_001079823.1 LAMA2 laminin subunit alpha 2 Chromosome 6 - NC_000006.12 protein coding
XR_039314.1 LOC100132324 hypothetical LOC100132324 Chromosome: 20; NC_000020.10 pseudo
NM_199345.3 PI4KAP2 phosphatidylinositol 4-kinase alpha Chromosome 22 - NC_000022.11 pseudo
pseudogene 2
NM_001080508.1 TBX18 T-box transcription factor 18 Chromosome 6 - NC_000006.12 protein coding
NM_183006.2 DLGAP4 DLG associated protein 4 Chromosome 20 - NC_000020.11 protein coding
NM_006182.2 DDR2 discoidin domain receptor tyrosine Chromosome 1 - NC_000001.11 protein coding
kinase 2
NR_002144.1 LOC407835 mitogen-activated protein kinase Chromosome 7 - NC_000007.14 pseudo
kinase 2 pseudogene
BX097335
AK057443
NM_004890.2 SPAG7 sperm associated antigen 7 Chromosome 17 - NC_000017.11 protein coding
NM_003951.2 SLC25A14 solute carrier family 25 member 14 Chromosome X - NC_000023.11 protein coding
NR_026878.1 MGC12982 FOXD2 adjacent opposite strand RNA1 | Chromosome 1 - NC_000001.11 ncRNA
DA760637
NM_003315.1 DNAJC7 Dnal heat shock protein family (Hsp40) | Chromosome 17 - NC_000017.11 protein coding
member C7
NM_015050.2 FTSJD2 cap methyltransferase 1 Chromosome 6 - NC_000006.12 protein coding
NM_022720.5 DGCR8 DGCR8 microprocessor complex Chromosome 22 - NC_000022.11 protein coding
subunit
NM_014431.1 KIAA1274 phosphatase domain containing Chromosome 10 - NC_000010.11 protein coding
paladin 1
NM_183419.1 RNF19A ring finger protein 19A, RBR E3 Chromosome 8 - NC_000008.11 protein coding
ubiquitin protein ligase
NM_022743.1 SMYD3 SET and MYND domain containing 3 Chromosome 1 - NC_000001.11 protein coding
NM_012323.2 MAFF MAF bZIP transcription factor F Chromosome 22 - NC_000022.11 protein coding
NM_183422.1 TSC22D1 TSC22 domain family member 1 Chromosome 13 - NC_000013.11 protein coding
XM_499121
NM_030639.1 BHLHB9 basic helix-loop-helix family member Chromosome X - NC_000023.11 protein coding
b9
NR_002139.1 HCG4 HLA complex group 4 Chromosome 6 - NC_000006.12 ncRNA
NM_025224.2 ZBTB46 zinc finger and BTB domain containing Chromosome 20 - NC_000020.11 protein coding
46
NM_003637.3 ITGA10 integrin subunit alpha 10 Chromosome 1 - NC_000001.11 protein coding
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NM_005229.2 ELK1 ETS transcription factor ELK1 Chromosome X - NC_000023.11 protein coding
NM_058172.3 ANTXR2 ANTXR cell adhesion molecule 2 Chromosome 4 - NC_000004.12 protein coding
NM_014325.2 CORO1C coronin 1C Chromosome 12 - NC_000012.12 protein coding
NM_021615.4 CHST6 carbohydrate sulfotransferase 6 Chromosome 16 - NC_000016.10 protein coding
NM_002221.2 ITPKB inositol-trisphosphate 3-kinase B Chromosome 1 - NC_000001.11 protein coding
NM_003598.1 TEAD2 TEA domain transcription factor 2 Chromosome 19 - NC_000019.10 protein coding
NM_005862.2 STAG1 stromal antigen 1 Chromosome 3 - NC_000003.12 protein coding
NM_144573.3 NEXN nexilin F-actin binding protein Chromosome 1 - NC_000001.11 protein coding
NM_033157.2 CALD1 caldesmon 1 Chromosome 7 - NC_000007.14 protein coding
NM_170662.3 CBLB Cbl proto-oncogene B Chromosome 3 - NC_000003.12 protein coding
NM_024567.2 HMBOX1 homeobox containing 1 Chromosome 8 - NC_000008.11 protein coding
NM_015192.2 PLCB1 phospholipase C beta 1 Chromosome 20 - NC_000020.11 protein coding
NM_013236.2 ATXN10 ataxin 10 Chromosome 22 - NC_000022.11 protein coding
NM_004459.6 BPTF bromodomain PHD finger transcription Chromosome 17 - NC_000017.11 protein coding
factor
BC024732 LOC101927151 | uncharacterized LOC101927151 Chromosome 19 - NC_000019.10 ncRNA
NM_024939 ESRP2 epithelial splicing regulatory protein 2 Chromosome 16 - NC_000016.10 protein coding
NM_018130 SHQ1 SHQ1, H/ACA ribonucleoprotein Chromosome 3 - NC_000003.12 protein coding
assembly factor
AK074366 ZNF621 zinc finger protein 621 Chromosome 3 - NC_000003.12 protein coding
Y11166 SNORA71B small nucleolar RNA, H/ACA box 71B Chromosome 20 - NC_000020.11 snoRNA
BG111015 UBXN2A UBX domain protein 2A Chromosome 2 - NC_000002.12 protein coding
Al907083 PDCD6 programmed cell death 6 Chromosome 5 - NC_000005.10 protein coding
BC000764 AKIRIN2 akirin 2 Chromosome 6 - NC_000006.12 protein coding
BE968576 BC062753
NM_004420 DUSP8 dual specificity phosphatase 8 Chromosome 11 - NC_000011.10 protein coding
Al123518 ZHX1 zinc fingers and homeoboxes 1 Chromosome 8 - NC_000008.11 protein coding
NM_173829 SREK1IP1 SREK1 interacting protein 1 Chromosome 5 - NC_000005.10 protein coding
AW409974 RBM10 RNA binding motif protein 10 Chromosome X - NC_000023.11 protein coding
BC040018 Clorfl10 coiled-coil domain containing 190 Chromosome 1 - NC_000001.11 protein coding
NM_024828 CAAP1 caspase activity and apoptosis inhibitor | Chromosome 9 - NC_000009.12 protein coding
1
AJ238379 NELFCD negative elongation factor complex Chromosome 20 - NC_000020.11 protein coding
member C/D
BC038440 GALNT1 polypeptide N- Chromosome 18 - NC_000018.10 protein coding
acetylgalactosaminyltransferase 1
NM_014212 HOXC11 homeobox C11 Chromosome 12 - NC_000012.12 protein coding
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NM_020189 ENY2 ENY2 transcription and export complex Chromosome 8 - NC_000008.11 protein coding
2 subunit
BF508739 ZNF302 zinc finger protein 302 Chromosome 19 - NC_000019.10 protein coding
AA015609 LYRM5
BC029890 LOC100996760 | uncharacterized LOC100996760 Chromosome 10 protein coding
NM_007279 U2AF2 U2 small nuclear RNA auxiliary factor 2 Chromosome 19 - NC_000019.10 protein coding
NM_018042 SLFN12 schlafen family member 12 Chromosome 17 - NC_000017.11 protein coding
BC024732 LOC101927151 | uncharacterized LOC101927151 Chromosome 19 - NC_000019.10 ncRNA
AC004472 STOML2 stomatin like 2 Chromosome 9 - NC_000009.12 protein coding
AW207712 CTD-
2587H24.10
AK074366 ZNF621 zinc finger protein 621 Chromosome 3 - NC_000003.12 protein coding
u85943 RAE1 ribonucleic acid export 1 Chromosome 20 - NC_000020.11 protein coding
M74089 SLC25A46 solute carrier family 25 member 46 Chromosome 5 - NC_000005.10 protein coding
NM_024939 ESRP2 epithelial splicing regulatory protein 2 Chromosome 16 - NC_000016.10 protein coding
AB037807 ANKIB1 ankyrin repeat and IBR domain Chromosome 7 - NC_000007.14 protein coding
containing 1
NM_014453 CHMP2A charged multivesicular body protein 2A | Chromosome 19 - NC_000019.10 protein coding

AF234255 IGLJ3 immunoglobulin lambda joining 3 Chromosome 22 - NC_000022.11
NM_015484 SYF2 SYF2 pre-mRNA splicing factor Chromosome 1 - NC_000001.11 protein coding
NM_006553 SLMO1 PRELI domain containing 3A Chromosome 18 - NC_000018.10 protein coding
AI806944 PPP1R1C protein phosphatase 1 regulatory Chromosome 2 - NC_000002.12 protein coding
inhibitor subunit 1C
AB007855 ZHX3 zinc fingers and homeoboxes 3 Chromosome 20 - NC_000020.11 protein coding
u88964 1SG20 interferon stimulated exonuclease Chromosome 15 - NC_000015.10 protein coding
gene 20
NM_003563 SPOP speckle type BTB/POZ protein Chromosome 17 - NC_000017.11 protein coding
BC001777 HPCA hippocalcin Chromosome 1 - NC_000001.11 protein coding
Al363061 CMIP c-Maf inducing protein Chromosome 16 - NC_000016.10 protein coding
Al435089 GIMAP1 GTPase, IMAP family member 1 Chromosome 7 - NC_000007.14 protein coding
Al492175 ACAP3 ArfGAP with coiled-coil, ankyrin repeat Chromosome 1 - NC_000001.11 protein coding
and PH domains 3
BE855983 ACACA acetyl-CoA carboxylase alpha Chromosome 17 - NC_000017.11 protein coding
AF134979 NPCDR1 nasopharyngeal carcinoma, down- Chromosome: 3; NC_000003.11 ncRNA
regulated 1
AW183187 CDRT15 CMT1A duplicated region transcript 15 Chromosome 17 - NC_000017.11 protein coding
AW026465 LOC646588 uncharacterized LOC646588 Chromosome 7 - NC_000007.14 ncRNA
NM_004909 CSAG2 CSAG family member 2 Chromosome X - NC_000023.11 protein coding
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AB007855 ZHX3 zinc fingers and homeoboxes 3 Chromosome 20 - NC_000020.11 protein coding
AV700829 C3P1 complement component 3 precursor Chromosome 19 - NC_000019.10 pseudo
pseudogene
BF594164 KHSRP KH-type splicing regulatory protein Chromosome 19 - NC_000019.10 protein coding
M74089 SLC25A46 solute carrier family 25 member 46 Chromosome 5 - NC_000005.10 protein coding
BF510709 GIPC3 GIPC PDZ domain containing family Chromosome 19 - NC_000019.10 protein coding
member 3
AA541622 SYNPO2 synaptopodin 2 Chromosome 4 - NC_000004.12 protein coding
AW593028 ANKFN1 ankyrin repeat and fibronectin type Il Chromosome 17 - NC_000017.11 protein coding
domain containing 1
NM_139285 GAS2L2 growth arrest specific 2 like 2 Chromosome 17 - NC_000017.11 protein coding
BF438330 AL110181
Al633559 RP3-428L16.2
AL133267 RPLP2P1 ribosomal protein lateral stalk subunit Chromosome 6 - NC_000006.12 pseudo
P2 pseudogene 1
AL136729 RNF123 ring finger protein 123 Chromosome 3 - NC_000003.12 protein coding
Al689676 ZNF579 zinc finger protein 579 Chromosome 19 - NC_000019.10 protein coding
BC014149 AC017104.6
X89271 APLNR apelin receptor Chromosome 11 - NC_000011.10 protein coding
NM_016321 RHCG Rh family C glycoprotein Chromosome 15 - NC_000015.10 protein coding
BC002844 NFKB2 nuclear factor kappa B subunit 2 Chromosome 10 - NC_000010.11 protein coding
NM_002315 LMO1 LIM domain only 1 Chromosome 11 - NC_000011.10 protein coding
BC040981 SNX32 sorting nexin 32 Chromosome 11 - NC_000011.10 protein coding
BE259137 ONECUT3 one cut homeobox 3 Chromosome 19 - NC_000019.10 protein coding
BE858453 ST6GALNAC4 ST6 N-acetylgalactosaminide alpha-2,6- | Chromosome 9 - NC_000009.12 protein coding
sialyltransferase 4
AK074366 ZNF621 zinc finger protein 621 Chromosome 3 - NC_000003.12 protein coding
AL136774 QRICH2 glutamine rich 2 Chromosome 17 - NC_000017.11 protein coding
NM_152441 FBXL14 F-box and leucine rich repeat protein Chromosome 12 - NC_000012.12 protein coding
14
BI768821 DUOX1 dual oxidase 1 Chromosome 15 - NC_000015.10 protein coding
AB037807 ANKIB1 ankyrin repeat and IBR domain Chromosome 7 - NC_000007.14 protein coding
containing 1
NM_022055 KCNK12 potassium two pore domain channel Chromosome 2 - NC_000002.12 protein coding
subfamily K member 12
W37846 Clorf50 chromosome 1 open reading frame 50 Chromosome 1 - NC_000001.11 protein coding
U85943 RAE1 ribonucleic acid export 1 Chromosome 20 - NC_000020.11 protein coding
BC024732 LOC101927151 | uncharacterized LOC101927151 Chromosome 19 - NC_000019.10 ncRNA
NM_004053 BYSL bystin like Chromosome 6 - NC_000006.12 protein coding
AF234255 IGLI3 immunoglobulin lambda joining 3 Chromosome 22 - NC_000022.11
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BG430061 CACNA1C calcium voltage-gated channel subunit Chromosome 12 - NC_000012.12 protein coding
alphalcC

X99142 KRT86 keratin 86 Chromosome 12 - NC_000012.12 protein coding

Al242549 MLIP muscular LMNA interacting protein Chromosome 6 - NC_000006.12 protein coding

NM_016580 PCDH12 protocadherin 12 Chromosome 5 - NC_000005.10 protein coding

Table S5: Bioinformatics analysis of the biomarkers found by the machine learning models.
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