

Neuronal ROS-Induced Glial Lipid Droplet Formation is Altered by Loss of Alzheimer's Disease-associated Genes

Matthew J. Moulton^{1,2}, Scott Barish^{1,2}, Isha Ralhan^{3,4}, Jinlan Chang³, Lindsey D. Goodman^{1,2}, Jake G. Harland^{1,2}, Paul C. Marcogliese^{1,2}, Jan O. Johansson⁷, Maria S. Ioannou^{3,4,5,6}, and Hugo J. Bellen^{1,2,8,9,10}

¹Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA

²Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA

³Department of Physiology, University of Alberta, Edmonton, AB, T6G 2R3

⁴Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB, T6G 2R3

⁵Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2R3

⁶Neuroscience and Mental Health Institute, Edmonton, AB, T6G 2R3

⁷Artery Therapeutics, Inc. San Ramon, California, USA

⁸Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA

⁹Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA

¹⁰Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA

1 **Summary**

2 A growing list of Alzheimer's disease (AD) genetic risk factors is being identified, but
3 the contribution of these genetic mutations to disease remains largely unknown. Accumulating
4 data support a role of lipid dysregulation and excessive ROS in the etiology of AD. Here, we
5 identified cell-specific roles for eight AD risk-associated genes in ROS-induced glial lipid
6 droplet (LD) formation. We demonstrate that ROS-induced glial LD formation requires two
7 ABCA transporters (*ABCA1* and *ABCA7*) in neurons, the APOE receptor (*LRP1*), endocytic
8 genes (*PICALM*, *CD2AP*, and *AP2A2*) in glia, and retromer genes (*VPS26* and *VPS35*) in both
9 neurons and glia. Moreover, ROS strongly enhances A β 42-toxicity in flies and A β 42-plaque
10 formation in mice. Finally, an ABCA1-activating peptide restores glial LD formation in the
11 APOE4-associated loss of LD. This study places AD risk factors in a neuron-to-glia lipid transfer
12 pathway with a critical role in protecting neurons from ROS-induced toxicity.

13

14 **Keywords**

15 peroxidated lipid transfer, Alzheimer's disease, GWAS, retromer, *PICALM*, *CD2AP*, *AP2A2*,
16 *ABCA1*, *ABCA7*, and *LRP1*

17

18 **Introduction**

19 Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss
20 and cognitive impairment (Rogaeva et al., 2006). AD affects ~2% of the American population and
21 defines ~70% of dementia cases (Masdeu, 2020). AD is pathologically defined by the aberrant
22 accumulation of Amyloid- β peptides (A β) into extracellular plaques and hyperphosphorylated-Tau
23 into neurofibrillary tangles (NFT). A β -plaques primarily consist of A β 42 fragments formed by the

24 sequential cleavage of neuronally-expressed amyloid precursor protein (APP) (Behl, 1997; Karch
25 and Goate, 2015; LaFerla and Green, 2012; Rogeava et al., 2006). Tau, encoded by *MAPT*, is
26 expressed in neurons, and is required for the assembly and stability of microtubules (MTs). Tau
27 hyperphosphorylation inhibits its normal activity and drives its fibrillization into NFT (Mietelska-
28 Porowska et al., 2014; Wang and Mandelkow, 2016). Both A β -plaques and NFT are neurotoxic in
29 model organisms and the amyloid cascade hypothesis postulates that A β -plaque formation drives
30 NFT formation (Bloom, 2014; Götz et al., 2007, 2011; Hardy et al., 2002). Thus, A β is a major
31 focus in determining how AD is initiated and has been a target of many AD therapeutics (Bloom,
32 2014).

33 AD is currently classified as familial (FAD) or sporadic (SAD). FAD accounts for 2-3%
34 of AD cases and is associated with autosomal dominant mutations in *APP*, *PSEN1*, or *PSEN2*
35 (Giau et al., 2019; Zhu et al., 2015). It is hypothesized that SAD is caused by a combination of
36 genetic and environmental risk factors (De Strooper and Karran, 2016). In fact, A β -plaques can
37 form with age or due to trauma in the absence of cognitive impairment, supporting the hypothesis
38 that a combination of genetic and environmental insults are required to induce disease (De Strooper
39 and Karran, 2016). Of interest, multiple genome-wide association studies (GWAS) have been
40 performed on post-mortem AD tissue, identifying over 40 potential genetic risk factors that are
41 significantly associated with disease (Kunkle et al., 2019; Lambert et al., 2013). Interestingly,
42 some of the SNPs identified in these studies are in or near genes that encode proteins involved in
43 lipid regulation (e.g. TREM2, ABCA7) and clathrin-mediated endocytosis (e.g. *BIN1*, *CD2AP*,
44 *AP2A2*, *PICALM*, and *RIN3*), but the consequences of disrupting these genes/pathways in specific
45 cell types needs further examination. (Karch and Goate, 2015; Wellington, 2004). The well-
46 established AD-risk allele, the E4 allele of *Apolipoprotein E* (*APOE*), *APOE4*, is by far the highest

47 genetic risk factor in these studies. *APOE4* is found in ~40-60% of AD individuals, varying by
48 geographic region, and has a highly significant association with age of AD onset (Karch and Goate,
49 2015; Ward et al., 2012). Homozygous carriers for *APOE4* are 8-12 times more likely to develop
50 AD than non-carriers (Michaelson, 2014). In contrast, individuals carrying the $\epsilon 2$ allele of *APOE*
51 (*APOE2*) have reduced risk of developing AD, supporting that it is neuroprotective against AD
52 development (Conejero-Goldberg et al., 2014; Huang and Mahley, 2014; Huynh et al., 2017; Li et
53 al., 2020). While APOE functions to mediate lipid transfer between cells, the APOE4 variant has
54 reduced lipid transport capacity (Hatters et al., 2006; Liu et al., 2017).

55 In addition to genetic risk factors, environmental insults likely modulate severity and onset
56 of disease, including cellular oxidative stress caused by accumulation of reactive oxygen species
57 (ROS). ROS can oxidize and damage proteins, lipids, and nucleic acids (Butterfield and Mattson,
58 2020; Grimm and Eckert, 2017). When properly regulated, ROS can provide beneficial effects to
59 the cell (Ristow and Schmeisser, 2011; Thapa and Carroll, 2017) but damagingly high levels of
60 ROS can occur with age as cellular control mechanisms become depleted, such as decreased
61 antioxidant enzyme expression (Grimm and Eckert, 2017). Recent studies have found evidence of
62 ROS elevation, specifically lipid peroxidation byproducts, in post-mortem tissue from individuals
63 with pre-AD diagnoses, including preclinical AD and mild cognitive impairment as well as in AD
64 brains (Allan Butterfield and Boyd-Kimball, 2018; Berbée et al., 2017; Bradley-Whitman and
65 Lovell, 2015; Bradley et al., 2012; Butterfield, 2020; Peña-Bautista et al., 2019; Zabel et al., 2018).
66 As AD progresses, ROS production is likely exacerbated by $\text{A}\beta 42$ -mediated neurotoxicity (Allan
67 Butterfield and Boyd-Kimball, 2018; Tönnies and Trushina, 2017) and persistent
68 neuroinflammation (Bisht et al., 2018; Regen et al., 2017), thus creating a vicious cycle that can
69 drive disease progression.

70 The complexity of AD pathogenesis and progression is further expanded by the observation
71 that many AD risk genes are expressed in glia in addition to neurons, suggesting that disruptions
72 of these genes may impact multiple cell types in the brain. There is increasing evidence for an
73 important role of dysregulation of glial lipid metabolism in AD (Kunkle et al., 2019; Marioni et
74 al., 2018; Di Paolo and Kim, 2011; Wong et al., 2017). TREM2 and the phospholipase, PLCG2,
75 control lipid metabolism in microglia and may aid the transition of microglia to a disease-
76 associated state (Andreone et al., 2020; Nugent et al., 2020). Additionally, lipid sensing by TREM2
77 and lipid transport by ABCA7 is linked to the clearance of A β by glial cells (Aikawa et al., 2018;
78 Wang et al., 2015). Glia are also important in the secretion of APOE, which can bind A β and
79 facilitate its clearance (Fan et al., 2009; Robert et al., 2017). Interestingly, Alois Alzheimer
80 repeatedly described “adipose saccules” in glial cells of AD patients over a century ago (A.
81 Alzheimer, 1911; Alzheimer, 1907; Stelzmann et al., 1995) but, the link between
82 neurodegeneration and lipid droplet (LD) accumulation in glia wasn’t described until recently
83 (Van Den Brink et al., 2018; Liu et al., 2015; Zhang and Liu, 2017). In flies, we showed that
84 elevated levels of ROS induces the formation of glial LDs by transferring peroxidated lipids
85 produced in neurons to glia in a process mediated by the apolipoprotein, Glial Lazarillo (Glaz;
86 homolog to human APOD), whose function can be replaced by human APOE (Liu et al., 2017)
87 (Figure 1). The transfer of lipids from cultured vertebrate neurons that are stressed and physically
88 separated from glia in a dish has also been documented to be dependent on APOE (Ioannou et al.,
89 2019a; Liu et al., 2017). Glial LDs provide some neuroprotective capacity when ROS levels are
90 elevated (Van Den Brink et al., 2018; Liu et al., 2017). In the *Drosophila* visual system, pigment
91 glia that surround photoreceptor neurons, transport lactate to neurons through monocarboxylate
92 transporters. Lactate is converted to pyruvate and Acetyl-CoA in order to support the TCA cycle

93 in mitochondria. However, defective mitochondria are unable to optimally utilize this energy
94 source and simultaneously producing ROS, which activates JNK and SREBP transcription factors
95 that drive lipid synthesis using Acetyl-CoA. Newly generated lipids become peroxidated in the
96 presence of ROS and are subsequently transported intracellularly via fatty acid transport proteins
97 (FatP) to a heretofore unknown lipid exporter (Figure 1). After lipid export from neurons, lipids
98 bind to apolipoproteins which allow extracellular lipid transfer and paracrine cellular uptake of
99 lipids. The nearby pigment glia express the apolipoprotein, *Glaz*, allowing for lipid transfer to glia,
100 via an unknown mechanism, for eventual sequestration of peroxidated lipids in LDs (Figure 1).
101 The production and transfer of lipids from neurons to glia is a highly dose dependent process and
102 reducing many of the players involved in the process by 50%, including *Lactate dehydrogenase*,
103 *Pyruvate dehydrogenase*, *fatp*, and *Glaz* causes a very significant reduction in the accumulation of
104 LD in pigment glia (Liu et al., 2015, 2017). Moreover, *APOE2/3* can restore LD formation in a
105 *Glaz* loss-of-function mutant background, but *APOE4* cannot restore this function, leading to
106 accelerated neurodegeneration (Liu et al., 2017). Human *APOE4* has a limited lipid-binding
107 ability, suggesting that lipid clearance may be critical in AD (Hatters et al., 2006). It has been
108 suggested that if the lipid binding affinity of *APOE4* could be enhanced, neurodegeneration could
109 be prevented or delayed. A pharmacological agonist of *ABCA1* has been shown to restore *APOE4*
110 lipidation and ameliorates A β 42/Tau pathologies in a mouse model of human APOE expression
111 (Boehm-Cagan et al., 2016a; Hafiane et al., 2015). Thus, evidence is mounting that lipids are
112 inextricably linked with pathogenic mechanisms in AD and other neurodegenerative diseases
113 (Chung et al., 2020; Griendling et al., 2016; Lin et al., 2019; Reed, 2011).

114 Here, we demonstrate that the fly homologs of multiple genes identified in AD GWAS and
115 other clinical studies (*PICALM*, *CD2AP*, *AP2A2*, *ABCA1*, *ABCA7*, *LRP1*, *VPS26*, and *VPS35*) play

116 a role in the formation of glial LDs, providing a mechanism by which these AD risk genes are
117 involved in neuronal dysfunction. We demonstrate that two ABCA transporters are required in
118 neurons, presumably for the export of lipids, and that six genes, involved in the uptake of APOE,
119 are required in glia for the formation of glial LDs. Our data also show that elevated ROS synergizes
120 with A β production to accelerate neuronal death in flies and exacerbates amyloid plaque formation
121 in mice. Finally, we show that a peptide, previously shown to enhance the lipid-binding properties
122 of *APOE4*, restores glial LD formation in a humanized fly model of *APOE4*. These data place AD-
123 risk genes in a functional pathway that connects ROS with lipid production and A β toxicity, thus
124 providing a possible therapeutic avenue for clinical intervention of AD based on utilization of
125 antioxidants that can cross the blood-brain-barrier (BBB).

126

127 **Results**

128 *ABCA transporters are required in neurons for glial LD formation.*

129 As we have previously shown that apolipoproteins are required for the transfer of
130 peroxidated lipids from neurons to glia, we hypothesized that additional proteins are necessary for
131 the export of lipids from neurons to the extracellular space where they lipidate apolipoproteins.
132 Lipoproteins would then bind to a receptor on glial cells where endocytosis leads to the trafficking
133 of the lipoproteins-rich endosomes to the lysosome for degradation of proteins and subsequent
134 transport of the lipids to the ER for LD formation. We set out to assess the role of AD risk-
135 associated proteins that export lipids from cells that are also expressed in neurons (Abuznait and
136 Kaddoumi, 2012; Pereira et al., 2017).

137 The adenosine triphosphate-binding cassette transporter A1 (*ABCA1*) and A7 (*ABCA7*)
138 encode lipid floppases that transfer lipids from the inner leaflet to the outer leaflet of the cell

139 membrane making them available for export to APOE acceptor particles (Tarling et al., 2013;
140 Turton and Morgan, 2013; Wahrle et al., 2004). Further, nonsense variants in both *ABCA1* and
141 *ABCA7* have been associated with increased risk of developing AD (Bossche et al., 2016; Chang
142 et al., 2019; Chen et al., 2016; Fehér et al., 2018; Teresa et al., 2020). *ABCA7* has also been
143 identified as an AD risk locus in GWAS and is known to facilitate clearance of amyloid- β (Aikawa
144 et al., 2018). Thus, the ABCA transporters are attractive candidates for neuronal export of lipids
145 induced by ROS.

146 We set out to identify the fly homologs of *ABCA1* and *ABCA7* in the fly nervous system.
147 The fly genome contains 10 putative ABCA transporters compared to 13 ABCA transporters in
148 humans, and pairwise analysis of protein sequence does not reveal an obvious 1:1 homology. To
149 identify fly ABCA proteins that share the greatest homology with *ABCA1* and *ABCA7* we
150 assembled a gene tree of human and fly ABCA protein sequences. We found that fly genes
151 *CG34120* and *Eato* grouped with human *ABCA1/2/4/7/12/13* suggesting that these two fly genes
152 may be orthologs of this group of human transporters (Figure 2A).

153 To assess whether ABCA transporters function in glial lipid droplet formation in the
154 presence of neuronal ROS we used RNAi mediated knockdown to reduce ABCA expression in
155 glia and neurons. As in previous studies, we utilized a ROS-induced LD fly model in which ROS
156 production is initiated in photoreceptor neurons via *Rh*-mediated expression of an RNAi targeting
157 the mitochondrial complex I gene, *ND42* (Liu et al., 2015). This induces LD formation in
158 surrounding pigment glia that can be visualized, after staining with Nile Red, via confocal
159 microscopy (Figure 2B). In this background, we induced expression of RNAi targeting all the fly
160 ABCA genes for which RNAi is effective, in either neurons, using *Rh-GAL4*, or glia, using *54C-*
161 *GAL4* and stained for LD. We quantified the efficiency of RNAi-mediated knockdown of each

162 ABCA gene targeted in our analysis. We found that RNAi constructs targeting *Eato*, *CG34120*,
163 *CG8908*, *CG31213*, *CG1494*, and *ABCA3* all efficiently reduced the expression of their respective
164 ABCA transporters (Figure S1A). We observed significantly reduced LD formation when *Eato*
165 and *CG34120*, but not *CG8908*, *CG31213*, *CG1494*, or *ABCA3* were knocked down in
166 photoreceptors with two independent RNAi lines (Figure 2C-E, data not shown) compared to a
167 control RNAi (luciferase RNAi). In contrast, when these genes were downregulated in glia, no
168 obvious reduction in LD formation was observed (Figure 2F-H). These data demonstrate that two
169 fly ABCA transporters, *Eato* and *CG34120*, are required in photoreceptor neurons for glial LD
170 formation.

171 Our previous data showed a neuroprotective role for glial LD formation under ROS (Liu
172 et al., 2015, 2017). Hence, we assessed if loss of LD formation, caused by RNAi targeting *Eato*
173 and *CG34120*, could lead to an age-dependent neurodegeneration. We tested whether neuronal or
174 glial knockdown of *Eato* and *CG34120* leads to increased neuronal dysfunction, under ROS
175 conditions induced by Rh:ND42 IR, using the electroretinogram (ERG) assay. ERGs serve as a
176 functional readout of neuronal function and viability (Jaiswal et al., 2012). ERG amplitudes were
177 quantified in young (5 days post eclosion) and aged (20 days post eclosion) flies expressing
178 RNAi targeting *Eato*, *CG34120*, or a control gene, *Luciferase* (*luc*). We observed a significant
179 reduction in ERG amplitude with age when *Eato* and *CG34120* were targeted by RNAi in
180 neurons (Figure 2 K-L, quantified in M-N) arguing that these two ABCA transporters are
181 required in neurons for the neuroprotective mechanism of glial sequestration of peroxidated
182 lipids in LD.

183 In summary, these data support a role for *Eato* and *CG34120*, orthologs of the AD risk
184 genes *ABCA1* and *ABCA7*, in lipid transfer. Both genes are required in neurons, but not glia, for

185 glial LD formation, supporting that they mediate the export of peroxidated lipids from neurons to
186 glia to protect neurons from the toxic effects of lipid peroxidation.

187

188 *The APOE receptor, LRP1, and the retromer are required for glial LD formation*

189 Previous reports demonstrated that glial LD formation requires the fly apolipoprotein,
190 Glaz, supporting the idea that once lipids are exported across the cell membrane of neurons, they
191 bind to apolipoproteins in the extracellular space and are taken up by glia (Liu et al., 2017). Similar
192 conclusions were derived from experiments with primary cultures of vertebrate neurons and glia
193 showing a requirement for APOE for LD formation in glia (Ioannou et al., 2019b; Liu et al., 2017).
194 In these experiments, the endocytosis inhibitor Pitstop2 completely blocked lipid transfer from
195 neurons to glia. However it remained unclear whether the inhibition of endocytosis acts on neurons
196 or glia. We therefore assessed the effects of reduced neuronal or glial expression of genes involved
197 in receptor-mediated endocytosis on glial LD formation, beginning with the genes encoding
198 previously defined apolipoprotein receptors, *LRP1* and *VLDLR* (fly LpR2) (Herz, 2009; Lane-
199 Donovan and Herz, 2017; Rodríguez-Vázquez et al., 2015). RNAi targeting these genes were
200 expressed in photoreceptor neurons (Rh-GAL4) or pigment glia (54C-GAL4), as before, to assess
201 impacts on glial LD formation when ROS is induced in neurons. Loss of *LRP1* in glia, but not
202 neurons, caused a significant reduction in LD formation (Figure 3A and E). In contrast, neither
203 neuronal nor glial expression of *LpR2* RNAi, altered LD formation (Figure 3B and F). These data
204 argue that lipids produced under neuronal ROS require *LRP1* in glia, specifically.

205 We then performed ERGs to assess if loss of *LRP1* in glia could impact age-dependent
206 photoreceptor loss in animals with elevated levels of ROS in neurons. We found that, compared to
207 control flies, glial, but not neuronal, knockdown of *LRP1* caused reduced ERG amplitudes in an

208 age-dependent manner, indicative of photoreceptor degeneration (Figure 3K-N). These data
209 suggest that the apolipoprotein receptor, *LRP1*, mediates glial import of peroxidated lipids
210 produced in neurons and promotes glial LD formation and neuroprotection. These data also
211 implicate receptor-mediated endocytosis as a critical pathway in glial LD formation. We therefore
212 hypothesized that LRP1 recycling and vesicle endocytosis would similarly be important for LD
213 formation.

214 The retromer serves critical functions in endocytosis, receptor recycling, and its loss in
215 both photoreceptors and glia leads to neurodegeneration 20 days (Wang et al., 2014). Moreover,
216 the retromer has been linked to several neurodegenerative diseases including AD (Berman et al.,
217 2015; Muhammad et al., 2008) and deficiency of the retromer complex or its cargo proteins impairs
218 endosomal trafficking of amyloid precursor protein (APP), resulting in the overproduction of β -
219 amyloid (A β) (Qureshi et al., 2020; Zhang et al., 2018).

220 To determine the function of the retromer in LD formation, we targeted the retromer genes
221 *VPS26* and *VPS35* with RNAi to knockdown their expression in our neuronal ROS model. *Vps26*
222 and *Vps35* RNAi were expressed in neurons or glia and we assayed for LD formation and ERG
223 amplitude. We found that loss of *Vps26* and *Vps35* in either neurons or glia leads to a significant
224 reduction in glial LDs suggesting that the retromer is required in both neurons and glia for LD
225 formation (Figure 3C-D and G-H). We assayed for age-dependent photoreceptor degeneration via
226 ERG and found no worsening of photoreceptor function over time when *Vps26* or *Vps35* were
227 knocked down in neurons (Figure 3K and M). In contrast, knockdown of *Vps26* and *Vps35* in glia
228 caused an age-dependent reduction in amplitude indicative of neurodegeneration (Figure 3L and
229 N). These data suggest that the neurodegeneration observed when glial retromer is lost may be
230 caused by reduced uptake of peroxidated lipids in glia due to reduced apolipoprotein receptor

231 recycling (Dhawan et al., 2020). The absence of ERG defects when expression of these genes is
232 reduced in neurons at the time points assayed suggests that ROS production or the response to
233 ROS production in neurons is blunted or delayed as the amplitude is decreased by 20 days, but is
234 not statistically significantly different. However, the severe loss of ERGs documented in Wang *et*
235 *al.* (2014) when either the Vps26 or Vps35 proteins is lost in both photoreceptors and glia suggest
236 and additive or synergistic effect between neurons and glia and argues that the retromer is required
237 in both cell types to maintain neuronal health.

238

239 *Endocytic AD-risk genes are required in glia for glial LD formation*

240 A subset of AD-risk loci contain genes involved in endocytosis, including *BIN1*, *CD2AP*,
241 *PICALM*, *AP2A2*, and *RIN3* (Van Acker et al., 2019; Nelson et al., 2020; Shen et al., 2020). This
242 suggests that disruptions of this process may be important for AD pathogenesis. It is typically
243 thought that these genes contribute to AD pathology through their well characterized function in
244 synaptic transmission in neurons (Gan and Watanabe, 2018; Kaksonen and Roux, 2018; Seto et
245 al., 2002; Takei and Haucke, 2001). However, we hypothesized that these endocytic genes also
246 play a role in LD biogenesis by endocytosing lipids secreted from neurons for LD formation.

247 To examine a role for endocytic AD risk genes in LD formation, we examined LD
248 formation and ERG phenotypes in animals in which homologs of AD-risk genes are targeted, via
249 RNAi, in neurons and glia in the presence of *ND42* knockdown-mediated neuronal ROS induction.
250 We found that knockdown of *cindr* (*CD2AP*), *Ap-2 α* (*AP2A2*), and *lap* (*PICALM*) in glia, but not
251 neurons, caused a reduction in LD formation (Figure 4A-D, G-J), thus implicating these genes as
252 critical components of glial LD production. In contrast, reduced expression of *spri* (*RIN3*) and
253 *amph* (*BIN1*) in neurons or glia did not affect LD production (Figure 4E-F, K-L). We observed an

254 age-dependent decrease in ERG amplitude for the LD-critical genes *Ap-2α*, *lap*, and *cindr* when
255 these were targeted in glia, suggesting that loss of these genes in glia promotes neurodegeneration
256 due to failure to produce neuroprotective LDs in glia (Figure 4O-R). Taken together, these data
257 suggest that loss or reduction of endocytosis in glia inhibits the neuroprotective effects of glial LD
258 formation and implicates endocytosis in the process of neurodegeneration.

259 We next investigated whether clathrin-mediated endocytosis is required for the uptake of
260 neuron-derived fatty acids in a mammalian cell culture system. Since knockdown of *lap* in glia
261 (Figure 4) caused a significant reduction in LD formation, we chose to knockdown the mammalian
262 homologue *PICALM* in astrocytes and test the effects of fatty acid transport. We used lentivirus to
263 deliver three independent shRNAs to reduce *PICALM* protein compared to a non-targeting shRNA
264 control in cultured astrocytes (Figure 5A and B). We incubated neurons with a fluorescently
265 labelled fatty acid analog Red-C12 overnight and then co-cultured the labeled neurons with
266 transduced astrocytes on different coverslips separated by paraffin wax (Figure 5C) (Ioannou et
267 al., 2019b, 2019a). We found a significant reduction in the transfer of fluorescently labelled fatty
268 acids to astrocytes when *PICALM* levels are reduced (Figure 5D and E). Note that even relatively
269 minor reductions of *PICALM* in astrocytes lead to reduced lipid accumulations. These data show
270 that clathrin-mediated endocytosis is critical for the internalization of neuron-derived fatty acids
271 in a mammalian culture system.

272

273 *Amyloid Beta synergizes with ROS in flies and mice*

274 In AD, the plaque protein Amyloid β has lipophilic properties and has been shown to
275 bind to the apolipoprotein receptor, LRP1, suggesting that altered lipid transfer may also alter
276 amyloid deposition (Ermondi et al., 2015; Moreira et al., 2007; Verghese et al., 2013). There is

277 also growing evidence that poorly lipidated APOE aggregates and acts as a seed for A β plaques
278 (Lanfranco et al., 2020; Sharman et al., 2010; Verghese et al., 2013). This is supported by
279 findings that ABCA1 loss-of-function leads to decreased APOE lipidation and increased
280 amyloidogenesis (Koldamova et al., 2005; Wahrle et al., 2008). Further, as ROS-induced glial
281 LD formation seems to be controlled by AD-associated risk genes and that peroxidated lipids
282 accumulate in pre-AD patients (Allan Butterfield and Boyd-Kimball, 2018; Bradley-Whitman
283 and Lovell, 2015; Bradley et al., 2012; Peña-Bautista et al., 2019), we hypothesized that ROS-
284 induced lipid peroxidation may alter the effects of amyloid deposition in our model.

285 To test this hypothesis we expressed a secreted form of human A β 42 in photoreceptor
286 neurons, via *Rh-Gal4* (Chouhan et al., 2016). Low levels of ROS production, that avoids
287 substantial neurotoxicity, was induced in animals by feeding them 25 μ M rotenone. Animals that
288 expressed A β 42 alone, or were fed rotenone alone, do not exhibit obvious signs of neuronal
289 death in the fly retina and only a small number of glial LDs were observed in either condition
290 (Figure 6A-B, D-E). In contrast, when A β 42-expressing animals were fed 25 μ M of rotenone, by
291 10 days robust glial LD accumulation and a severe loss of rhabdomeres and overall PR
292 morphology were observed (Figure 6F). These data demonstrate that extracellular A β 42 strongly
293 synergizes with low levels of ROS to induce premature neuronal death providing a mechanistic
294 link between A β 42 clearing and ROS.

295 We next tested for synergism between ROS and amyloid in a vertebrate model using the
296 well-characterized 5XFAD mouse model (Jackson Labs) that expresses APP and forms A β -
297 plaques by 4 months of age (Oakley et al., 2006). Previous studies have demonstrated that ROS
298 can be induced in mice by rearing animals in a hyperoxic environment (Ferrari et al., 2017). We
299 assembled cohorts of heterozygous 5XFAD mice and wild-type littermate controls and subjected

300 them to either hyperoxia (55% O₂) or normoxia (~21% O₂) conditions for 3 months beginning at
301 the age of 4 weeks. Sagittal brain sections of the mice were probed for A β using established
302 immunohistochemistry techniques (Sillitoe et al., 2008) (Figure 6G-J). We quantified plaque
303 number and size in three regions of the brain, namely the cortex, hippocampus, and hindbrain. In
304 each of these regions, plaque size and number observed in 5XFAD mice was significantly
305 elevated in hyperoxia when compared to normoxia (Figure 6K-L, data not shown). Hence, ROS
306 exacerbates A β -dependent phenotypes in mice similar to A β 42 expressing flies.

307

308 *A pharmacological ABCA agonist peptide rescues APOE4 phenotypes*

309 We previously reported that the AD-associated APOE4 allele was much less capable of
310 mediating the transfer of lipids from neurons to glia (Liu et al., 2017). This work used APOE
311 alleles to replace the fly apolipoprotein *Glaz* by inserting a T2A-GAL4 sequence into the *Glaz*
312 Gene. This allele can drive the expression of any UAS transgene in the same spatiotemporal pattern
313 as *Glaz* (Lee et al., 2018). Because we found that ABCA1 may be a critical lipid exporter in
314 neurons exposed to ROS (see Fig. 2) and ABCA1 agonist peptides can promote APOE4 activity
315 in AD mice (Boehm-Cagan et al., 2016a; Hafiane et al., 2015), we hypothesized that
316 pharmacologically enhancing ABCA1 activity may restore LD formation in APOE4 flies.

317 We generated a fly line that expresses a genetically encoded version of the ABCA1 agonist
318 peptide that was previously identified (Boehm-Cagan et al., 2016a, 2016b; Hafiane et al., 2015).
319 The peptide sequence was cloned downstream of an Argos secretion signal to enable peptide
320 release from the cell. Expression of the peptide was driven by the *Glaz*^{T2A-Gal4} allele. We then
321 elevated ROS levels in these animals by expressing an RNAi against *Marf*, the fly homolog of
322 Mitofusin, under control of the *Rh* promoter, similar to Rh-ND42 IR as above (Liu et al., 2017).

323 We confirmed the previous report that heterozygous *Glaz*^{T2A-Gal4} animals have significantly
324 reduced LD production (Liu et al., 2017) and showed that expression of the peptide does not alter
325 LD formation in this background (Figure 7A and E). We next co-expressed the peptide with
326 *APOE2*, *APOE3* or *APOE4* alleles and compared it with expression of the *APOE* alleles alone
327 (Figure 7B-D and F-J). Peptide expression with either *APOE2* or *APOE3* does not alter LD
328 production in the absence of peptide expression. In contrast, expression of the peptide with *APOE4*
329 restored LD formation, suggesting that the peptide can promote the lipidation of *APOE4* in flies
330 and restore glial LD formation. These data show that this peptide indeed modifies the function of
331 *APOE4* and restore its activity but has no impact on *APOE2* and *APOE3*.

332

333 **Discussion**

334 We show that glia act to buffer against ROS produced in neurons by taking up peroxidated
335 lipids and sequestering them in LDs (Figure 8). We found that glial sequestration of peroxidated
336 lipids into LDs is neuroprotective and requires the function of genes involved in lipid export
337 (*ABCA1* and *ABCA7*), lipid capture and transport (APOE) (Ioannou et al., 2019b; Liu et al., 2017),
338 and receptor-mediated endocytosis (*LRP1*, *VPS26*, *VPS35*, *PICALM*, *CD2AP* and *AP2A2*).
339 Notably, these genes have been implicated in AD and other neurodegenerative disorder risk genes
340 (Hafiane et al., 2015; Kunkle et al., 2019; Lambert et al., 2013; Muhammad et al., 2008; Shinohara
341 et al., 2017). These data suggest that AD risk could be elevated in the presence of partial loss-of-
342 function variants of genetic risk factors by inducing lower efficiency of lipid transfer and
343 peroxidated lipid sequestration in glial LD. This model predicts that the cumulative risk conferred
344 by variants in the process of neuron-to-glia lipid transfer lies in the non-cell autonomous responses
345 to neuronal ROS. Affected glia will be less well equipped to sequester peroxidated lipids, leading

346 to increased levels of peroxidated lipids within and surrounding neurons, thus exacerbating
347 neuronal demise. Although glia are well-equipped to sequester peroxidated lipids, they have a
348 limited capacity to do so. Glia eventually succumb to the adverse effects of peroxidated lipid
349 storage which eventually lead to a subsequent loss of neurons. It has been well documented that
350 ROS levels are elevated with age and in multiple neurodegenerative diseases, including AD, and
351 may be an important underlying cause of disease-associated neurodegeneration (Singh et al.,
352 2019). Neurons have limited antioxidant capacity and innate mechanisms to respond to increased
353 ROS by activating cellular responses (Burnside and Hardingham, 2017). Developing a better
354 understanding of how protection against ROS is carried out should inform us about new ways to
355 protect the nervous system from oxidative insult. Furthermore, understanding how these responses
356 go awry may reveal ways to exogenously potentiate the antioxidant response. The identification
357 of multiple genetic risk factors for AD that mediate glial LD formation (Figures 2-4), in
358 combination with the observations that A β may be exacerbated by low levels of ROS (Figure 6)
359 suggest that ROS-induced neuronal peroxidated lipid production and transfer to glia constitutes an
360 important facet of the antioxidant toolkit (Liu et al., 2015, 2017). These data are also consistent
361 with the previous observation that astrocytes are markedly more robust in handling and detoxifying
362 ROS (Burnside and Hardingham, 2017). Hence, we argue that there is a critical need to reduce
363 ROS in neurons in aging and the context of disease. We previously found that the fatty acid
364 transporter protein, Fatp, is required in LD formation (Liu et al., 2017). However, it is not known
365 to export lipids across membranes. Instead, Fatp may interact with lipid transport proteins such as
366 ABCA transporters, known to transport lipids including cholesterol, phospholipids, fatty acids as
367 well as other lipids across membranes (Neumann et al., 2017; Tarling et al., 2013). ABCA7, has
368 been demonstrated to assemble high-density lipoprotein particles (Abe-Dohmae et al., 2004;

369 Hayashi et al., 2005) and implicated in AD pathogenesis, first in an Icelandic population (Steinberg
370 et al., 2015) and, later, in a larger AD cohort (Kunkle et al., 2019). The ABCA1 N1800H mutation,
371 which has a low prevalence, is increased in frequency in the AD population and is associated with
372 hemorrhagic stroke, consistent with clinical presentations in *APOE4* carriers (Nordestgaard et al.,
373 2015). Interestingly, the sequence of the ABCA1 agonist CS6253 restored LD formation in *APOE4*
374 flies but did not affect *APOE2* or *APOE3* function (Figure 7), supporting the findings of AD
375 prevention in *APOE4* targeted replacement mice (Boehm-Cagan et al., 2016a). This, together with
376 our findings that ABCA transporters in the fly are required in neurons for glial LD formation
377 (likely by mediating the export of peroxidated lipids) suggest a critical role for ABCA genes in
378 proper lipid regulation in disease.

379 The genes implicated in endocytosis studied in this work have often been studied in the
380 context of synaptic transmission and/or neurodegenerative disease. *BIN1* is a membrane fission
381 protein that regulates endocytic vesicle size in vertebrates, but it has been implicated in APP
382 processing as well as Tau degradation (Van Acker et al., 2019; Ramjaun et al., 1997; Takeda et
383 al., 2018). The fly homolog, *Amphiphysin* (*Amph*), regulates transverse tubule formation in
384 muscles, which was also shown to be affected in vertebrate mutants (Lee et al., 2002) but *Amph*
385 has not been implicated in endocytosis in flies to our knowledge (Razzaq et al., 2001; Zelhof et
386 al., 2001). In contrast, *CD2AP* is a scaffolding protein that has been implicated in endocytosis and
387 vesicle trafficking as well as APP sorting and processing in vertebrates (Furusawa et al., 2019;
388 Harrison et al., 2016; Ubelmann et al., 2017). However, severe loss of function alleles of the fly
389 homolog, *cindr*, affects synapse maturation as well as synaptic vesicle recycling and release
390 (Ojelade et al., 2019). *PICALM* is a clathrin assembly protein that has been implicated in the import
391 of γ -secretase and APP processing as well as Tau buildup (Van Acker et al., 2019; Baig et al.,

392 2010). The fly homolog, *like-AP180* (*lap*) acts as a clathrin adaptor to promote clathrin-coated
393 vesicle formation and restrict coated vesicle size as well as the efficacy of synaptic vesicle protein
394 retrieval (Zhang et al., 1998). AP2A2, a member of the AP-2 adaptor protein complex, which aids
395 in assembling endocytic components in flies and vertebrates, has implications in AD risk
396 (González-Gaitán and Jäckle, 1997; Nelson et al., 2020). Finally, *RIN3* is a Rab5 guanine
397 nucleotide exchange factor important for recruiting CD2AP and BIN1 to endosomes and has been
398 implicated in APP accumulation and Tau phosphorylation regulation (Shen et al., 2020). Based on
399 our data, three of these genes (*CD2AP*, *AP2A2*, and *PICALM*) play critical functions in glia for
400 LD formation (Figure 4). Historically, because many of the endocytic AD-risk genes are known
401 to play a critical role in synaptic transmission, it is thought that their role in AD pathology may
402 occur due to loss of function of these genes in neurons. However, single cell RNA sequencing
403 databases provide evidence for enriched expression of many of the endocytic AD risk genes in
404 mouse/human glia, including those targeted in this study (Zhang et al., 2014, 2016) and our data
405 show that glia are highly sensitive to partial loss of these genes as exemplified in Figure 5 for
406 *PICALM*.

407 As endocytic vesicles are processed in the cell, the retromer is critical for protein recycling
408 including cell surface receptors and rhodopsin (Wang et al., 2014). We observed reduced LD
409 formation when retromer function was targeted via RNAi in both neurons and glia (Figure 3).
410 However, neurodegeneration was observed when the retromer was lost in glia, but not neurons.
411 This suggests a different role for the retromer in neurons and glia. In glia, the LRP1 receptor is
412 critical for LD formation and the retromer is required for LRP1 recycling back to the membrane
413 for efficient uptake of lipid particles (Stockinger et al., 2002). It also plays a critical role in Tau
414 spreading (Rauch et al., 2020). Hence, loss of LD due to retromer dysfunction in glia would lead

415 to LD loss and neurodegeneration, consistent with our observations. In mice CS6253 increased
416 LRP1 in the hippocampus of APOE4 mice but it did not affect APOE3 mice which is not
417 inconsistent with our data. Loss of retromer in neurons, may also lead to a progressive
418 neurodegeneration but neurons may be less sensitive to this loss, as knockdown of *Vps26* in both
419 glia and neurons causes more severe neuron loss than does knockdown of *Vps26* in glia alone
420 (Wang et al., 2014; this study). Follow-up studies are needed to distinguish these hypotheses, but
421 it is becoming increasingly evident that the retromer plays critical roles in the maintenance of
422 neurons in AD (Muhammad et al., 2008).

423 Our model predicts that as ROS levels rise with age or other environmental factors, it
424 becomes more difficult for glia to sequester peroxidated lipids, which promotes
425 neurodegeneration. Thus, while approaches to induce uptake of lipids to remove ROS and amyloid
426 from neurons or the extracellular space, it's important to consider additional approaches to
427 neutralize ROS early in disease to prevent glial death and eventual neurodegeneration. Our model
428 also helps explain the non-linear relationship between amyloid burden and clinical severity of
429 disease. Human A β expression induces neurodegeneration in *Drosophila* (Chouhan et al., 2016)
430 and neurological and behavioral phenotypes in mice (Kobayashi and Chen, 2005; Oakley et al.,
431 2006). Notably, production of low levels of ROS or A β alone causes neurotoxicity in a very slow
432 and progressive manner. In flies, overexpression of A β 42 causes neuronal death after
433 approximately 45 days (Chouhan et al., 2016). However, we found that combining low amounts
434 of ROS in A β 42-expressing flies strongly exacerbated neurodegeneration and enhanced A β
435 deposition in 5XFAD mice (Figure 6). It is noteworthy that A β and peroxidated lipids both bind
436 APOE (Allan Butterfield et al., 2002; Lanfranco et al., 2020), providing a possible mechanism of
437 ROS/A β 42 synergy. Importantly, APOE4 is not properly lipidated and lipidation of APOE4 is

438 required for A β 42 binding (Kanekiyo et al., 2014; Namba et al., 1991; Strittmatter et al., 1993).
439 Hence, APOE4 is unable to properly clear peroxidated lipids as well as A β 42, strongly accelerating
440 the demise of neurons. High amyloid burden may induce severe disease only in the presence of
441 genetic or environmental triggers that induce ROS.

442 Regardless of the cause of ROS (e.g. age, environmental stress, or genetic perturbations),
443 oxidative stress may initiate disease in an individual with a previous genetic predisposition to
444 disease (APOE4, or other genetic disease risk). This model predicts that a reduction of oxidative
445 stress, regardless of the cause, may help mitigate damage done by peroxidated lipids, and prevent
446 further lipid biogenesis in neurons. Our model also suggest that the risk genes identified in GWAS
447 that are involved in lipid handling and endocytosis may affect transport of peroxidated lipids from
448 neurons into glia. Indeed, antioxidant levels are altered in AD patients and the use of antioxidants
449 as a treatment for AD has been proposed previously, although with mixed outcomes (Frank and
450 Gupta, 2005; Mullan et al., 2017; Vina et al., 2011; Wojtunik-Kulesza et al., 2016). Hence, animal
451 models that better recapitulate AD phenotypes should consider the use of a combination of genetic
452 manipulation and environmental ROS.

453 Numerous mammalian models have been generated to model AD that induce amyloid
454 and/or tau production in the brain. Despite clear differences between the etiology and risk factors
455 associated with the development of FAD and sporadic AD, many research groups model disease
456 in animals using dominant FAD-causing mutations. This is because both forms of AD are
457 histopathologically and clinically similar and because sporadic AD cannot be easily modelled in
458 animals (LaFerla and Green, 2012). One historically common choice for mouse models of AD
459 research is the 5XFAD mouse which harbors three mutations in the APP locus and two mutations
460 in PS1 (Oakley et al., 2006). Each of these five mutations, on their own, are FAD-causing

461 mutations in humans (Jankowsky and Zheng, 2017). Although this mouse line exhibits a very high
462 amyloid burden, it almost certainly does not provide the most relevant model for human disease.
463 While these mammalian models have proven fruitful for understanding many aspects of AD, none
464 of them is adequate in reproducing the entirety of symptoms manifested in AD. We argue that the
465 efficacy in disease modeling in mammals may be improved by the addition of ROS which is largely
466 absent in the AD field currently. We acknowledge that the addition of ROS in mammalian models
467 comes with various challenges including the use of toxic drugs (i.e. rotenone) or bulky and
468 expensive equipment (i.e. hyperoxic animal chambers). Genetic mutations that induce ROS may
469 be a more viable option to include in the background of AD models. A study using a mouse model
470 of Leigh Syndrome in which the gene NDUFS4 is knocked out, thereby reducing activity of
471 Complex I and leading to elevated ROS production results in early death of the *Ndufs4*^{-/-} animals
472 (Assouline et al., 2012; Quintana et al., 2012). These mice have numerous LD in astrocytes and
473 microglia prior to the onset of neuronal loss (Liu et al., 2015). In hypoxia these mice live much
474 longer than when reared in normoxic conditions (Jain et al., 2016). Thus, the addition of ROS via
475 genetic means, by for example removing a copy of *Ndufs4* may prove a viable method to induce
476 ROS in an otherwise monogenic AD mammalian model.

477 Although age and mitochondrial dysfunction are obvious sources of ROS in AD patients,
478 there may be numerous other conditions that induce ROS production and subsequent lipid
479 peroxidation, LD formation, and eventual neurodegeneration. A careful examination of ROS in
480 AD patients and inclusion of ROS in animal models may help begin to provide mechanistic insight
481 into the etiology and progression of this complex disease. We argue that the use of antioxidants
482 that penetrate the blood-brain barrier requires further investigation and that these treatments may
483 aid prevention of neuron loss as observed in flies (Liu et al., 2015).

484 **References**

485

486 A. Alzheimer (1911). On certain peculiar diseases of old age. *Clin. Anat.* 8, 429–431.

487 Abe-Dohmae, S., Ikeda, Y., Matsuo, M., Hayashi, M., Okuhira, K.I., Ueda, K., and Yokoyama, S. (2004). Human ABCA7 Supports Apolipoprotein-mediated Release of Cellular Cholesterol and Phospholipid to Generate High Density Lipoprotein. *J. Biol. Chem.* 279, 604–611.

488

489

490 Abuznait, A.H., and Kaddoumi, A. (2012). Role of ABC transporters in the pathogenesis of

491 Alzheimers disease. *ACS Chem. Neurosci.* 3, 820–831.

492 Van Acker, Z.P., Bretou, M., and Annaert, W. (2019). Endo-lysosomal dysregulations and late-

493 onset Alzheimer's disease: Impact of genetic risk factors. *Mol. Neurodegener.* 14, 1–20.

494 Aikawa, T., Holm, M.L., and Kanekiyo, T. (2018). ABCA7 and pathogenic pathways of

495 Alzheimer's disease. *Brain Sci.* 8, 1–13.

496 Allan Butterfield, D., and Boyd-Kimball, D. (2018). Oxidative Stress, Amyloid- β Peptide, and

497 Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer's Disease. *J.*

498 *Alzheimer's Dis.* 62, 1345–1367.

499 Allan Butterfield, D., Castegna, A., Lauderback, C.M., and Drake, J. (2002). Evidence that

500 amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer's disease brain

501 contribute to neuronal death. *Neurobiol. Aging* 23, 655–664.

502 Alzheimer, A. (1907). Über eine eigenartige Erkrankung der Hirnrinde. *Allg. Zeitschrift*

503 *Rsychiatrie Psych. Medizine* 64, 146–148.

504 Andreone, B.J., Przybyla, L., Llapashtica, C., Rana, A., Davis, S.S., van Lengerich, B., Lin, K.,

505 Shi, J., Mei, Y., Astarita, G., et al. (2020). Alzheimer's-associated PLC γ 2 is a signaling node

506 required for both TREM2 function and the inflammatory response in human microglia. *Nat.*

507 *Neurosci.* 23, 927–938.

508 Assouline, Z., Jambou, M., Rio, M., Bole-Feysot, C., de Lonlay, P., Barnerias, C., Desguerre, I.,

509 Bonnemains, C., Guillermet, C., Steffann, J., et al. (2012). A constant and similar assembly

510 defect of mitochondrial respiratory chain complex I allows rapid identification of NDUFS4

511 mutations in patients with Leigh syndrome. *1822*, 1062–1069.

512 Baig, S., Joseph, S.A., Tayler, H., Abraham, R., Owen, M.J., Williams, J., Kehoe, P.G., and

513 Love, S. (2010). Distribution and expression of picalm in alzheimer disease. *J. Neuropathol. Exp.*

514 *Neurol.* 69, 1071–1077.

515 Barish, S., Nuss, S., Strunilin, I., Bao, S., Mukherjee, S., Jones, C.D., and Volkan, P.C. (2018).

516 Combinations of DIPs and Dprs control organization of olfactory receptor neuron terminals in

517 *Drosophila*. *PLoS Genet.* 14, 1–33.

518 Beaudoin, G.M.J., Lee, S.H., Singh, D., Yuan, Y., Ng, Y.G., Reichardt, L.F., and Arikath, J.

519 (2012). Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex.

520 *Nat. Protoc.* 7, 1741–1754.

521 Behl, C. (1997). Amyloid β -protein toxicity and oxidative stress in Alzheimer's disease. *Cell*

522 *Tissue Res.* 290, 471–480.

523 Berbée, J.F.P., Mol, I.M., Milne, G.L., Pollock, E., Hoeke, G., Lütjohann, D., Monaco, C.,

524 Rensen, P.C.N., van der Ploeg, L.H.T., and Shchepinov, M.S. (2017). Deuterium-reinforced

525 polyunsaturated fatty acids protect against atherosclerosis by lowering lipid peroxidation and

526 hypercholesterolemia. *Atherosclerosis* 264, 100–107.

527 Berman, D.E., Ringe, D., Petsko, G.A., and Small, S.A. (2015). The Use of Pharmacological

528 Retromer Chaperones in Alzheimer's Disease and other Endosomal-related Disorders.

529 *Neurotherapeutics* 12, 12–18.

530 Bielicki, J.K. (2016). ABCA1 agonist peptides for the treatment of disease. *Curr. Opin. Lipidol.*
531 27, 40–46.

532 Bischof, J., Björklund, M., Furger, E., Schertel, C., Taipale, J., and Basler, K. (2012). A versatile
533 platform for creating a comprehensive UAS-ORFeome library in *Drosophila*. *Dev.* 140, 2434–
534 2442.

535 Bisht, K., Sharma, K., and Tremblay, M.È. (2018). Chronic stress as a risk factor for
536 Alzheimer's disease: Roles of microglia-mediated synaptic remodeling, inflammation, and
537 oxidative stress. *Neurobiol. Stress* 9, 9–21.

538 Bloom, G.S. (2014). Amyloid- β and tau: The trigger and bullet in Alzheimer disease
539 pathogenesis. *JAMA Neurol.* 71, 505–508.

540 Boehm-Cagan, A., and Michaelson, D.M. (2014). Reversal of apoE4-Driven Brain Pathology
541 and Behavioral Deficits by Bexarotene. *J. Neurosci.* 34, 7293–7301.

542 Boehm-Cagan, A., Bar, R., Liraz, O., Bielicki, J.K., Johansson, J.O., and Michaelson, D.M.
543 (2016a). ABCA1 Agonist Reverses the ApoE4-Driven Cognitive and Brain Pathologies. *J.*
544 *Alzheimer's Dis.* 54, 1219–1233.

545 Boehm-Cagan, A., Bar, R., Harats, D., Shaish, A., Levkovitz, H., Bielicki, J.K., Johansson, J.O.,
546 and Michaelson, D.M. (2016b). Differential Effects of apoE4 and Activation of ABCA1 on
547 Brain and Plasma Lipoproteins. *PLoS One* 11, 1–17.

548 Bossche, T. Van Den, Sleegers, K., Cuyvers, E., Engelborghs, S., Sieben, A., Roeck, A. De,
549 Cauwenberghs, C. Van, Vermeulen, S., Broeck, M. Van Den, Laureys, A., et al. (2016).
550 Phenotypic characteristics of Alzheimer patients carrying an ABCA7 mutation. *Neurology* 86,
551 2126–2133.

552 Bradley-Whitman, M.A., and Lovell, M.A. (2015). Biomarkers of lipid peroxidation in
553 Alzheimer disease (AD): an update. *Arch. Toxicol.* 89, 1035–1044.

554 Bradley, M.A., Xiong-Fister, S., Markesberry, W.R., and Lovell, M.A. (2012). Elevated 4-
555 hydroxyhexenal in Alzheimer's disease (AD) progression. *Neurobiol. Aging* 33, 1034–1044.

556 Van Den Brink, D.M., Cubizolle, A., Chatelain, G., Davoust, N., Girard, V., Johansen, S.,
557 Napoletano, F., Dourlen, P., Guillou, L., Angebault-Prouteau, C., et al. (2018). Physiological and
558 pathological roles of FATP-mediated lipid droplets in *Drosophila* and mice retina. *PLOS Genet.*
559 14, 1–25.

560 Burnside, S.W., and Hardingham, G.E. (2017). Transcriptional regulators of redox balance and
561 other homeostatic processes with the potential to alter neurodegenerative disease trajectory.

562 Butterfield, D.A. (2020). Brain lipid peroxidation and alzheimer disease: Synergy between the
563 Butterfield and Mattson laboratories. *Ageing Res. Rev.* 64, 1568–1637.

564 Chang, Y.T., Hsu, S.W., Huang, S.H., Huang, C.W., Chang, W.N., Lien, C.Y., Lee, J.J., Lee,
565 C.C., and Chang, C.C. (2019). ABCA7 polymorphisms correlate with memory impairment and
566 default mode network in patients with APOE ϵ 4-associated Alzheimer's disease. *Alzheimer's*
567 *Res. Ther.* 11, 103–113.

568 Chen, Q., Liang, B., Wang, Z., Cheng, X., Huang, Y., Liu, Y., and Huang, Z. (2016). Influence
569 of four polymorphisms in ABCA1 and PTGS2 genes on risk of Alzheimer's disease: a meta-
570 analysis. *Neurol. Sci.* 37, 1209–1220.

571 Chouhan, A.K., Guo, C., Hsieh, Y.-C.C., Ye, H., Senturk, M., Zuo, Z., Li, Y., Chatterjee, S.,
572 Botas, J., Jackson, G.R., et al. (2016). Uncoupling neuronal death and dysfunction in *Drosophila*
573 models of neurodegenerative disease. *Acta Neuropathol. Commun.* 4, 62–76.

574 Chung, H. lok, Wangler, M.F., Marcogliese, P.C., Jo, J., Ravenscroft, T.A., Zuo, Z., Duraine, L.,
575 Sadeghzadeh, S., Li-Kroeger, D., Schmidt, R.E., et al. (2020). Loss- or Gain-of-Function

576 Mutations in ACOX1 Cause Axonal Loss via Different Mechanisms. *Neuron* **106**, 589–606.e6.

577 Conejero-Goldberg, C., Gomar, J.J., Bobes-Bascaran, T., Hyde, T.M., Kleinman, J.E., Herman, M.M., Chen, S., Davies, P., and Goldberg, T.E. (2014). APOE2 enhances neuroprotection against alzheimer's disease through multiple molecular mechanisms. *Mol. Psychiatry* **19**, 1243–1250.

581 Dhawan, K., Naslavsky, N., Caplan, S., and Hanson, P.I. (2020). Sorting nexin 17 (SNX17) links endosomal sorting to Eps15 homology domain protein 1 (EHD1)-mediated fission machinery. *J. Biol. Chem.* **295**, 3837–3850.

584 Ermondi, G., Catalano, F., Vallaro, M., Ermondi, I., Leal, M.P.C., Rinaldi, L., Visentin, S., and Caron, G. (2015). Lipophilicity of amyloid β -peptide 12-28 and 25-35 to unravel their ability to promote hydrophobic and electrostatic interactions. *Int. J. Pharm.* **495**, 179–185.

587 Fan, J., Donkin, J., and Wellington, C. (2009). Greasing the wheels of A β clearance in Alzheimer's Disease: The role of lipids and apolipoprotein e. *BioFactors* **35**, 239–248.

589 Fehér, Á., Giricz, Z., Juhász, A., Pákáski, M., Janka, Z., and Kálmán, J. (2018). ABCA1 rs2230805 and rs2230806 common gene variants are associated with Alzheimer's disease. *Neurosci. Lett.* **664**, 79–83.

592 Ferrari, M., Jain, I.H., Goldberger, O., Rezoagli, E., Thoonen, R., Cheng, K.-H., Sosnovik, D.E., Scherrer-Crosbie, M., Mootha, V.K., and Zapol, W.M. (2017). Hypoxia treatment reverses neurodegenerative disease in a mouse model of Leigh syndrome. *Proc. Natl. Acad. Sci. U. S. A.* **114**, E4241–E4250.

596 Frank, B., and Gupta, S. (2005). A review of antioxidants and Alzheimer's disease. *Ann. Clin. Psychiatry* **17**, 269–286.

598 Furusawa, K., Takasugi, T., Chiu, Y.W., Hori, Y., Tomita, T., Fukuda, M., and Hisanaga, S. ichi (2019). CD2-associated protein (CD2AP) overexpression accelerates amyloid precursor protein (APP) transfer from early endosomes to the lysosomal degradation pathway. *J. Biol. Chem.* **294**, 10886–10899.

602 Gan, Q., and Watanabe, S. (2018). Synaptic vesicle endocytosis in different model systems. *Front. Cell. Neurosci.* **12**, 171–197.

604 Giau, V. Van, Bagyinszky, E., Yang, Y.S., Youn, Y.C., An, S.S.A., and Kim, S.Y. (2019). Genetic analyses of early-onset Alzheimer's disease using next generation sequencing. *Sci. Rep.* **9**, 1–10.

607 González-Gaitán, M., and Jäckle, H. (1997). Role of drosophila α -adaptin in presynaptic vesicle recycling. *Cell* **88**, 767–776.

609 Götz, J., Deters, N., Doldissen, A., Bokhari, L., Ke, Y., Wiesner, A., Schonrock, N., and Ittner, L.M. (2007). A decade of tau transgenic animal models and beyond. In *Brain Pathology*, (John Wiley & Sons, Ltd), pp. 91–103.

612 Götz, J., Eckert, A., Matamales, M., Ittner, L.M., and Liu, X. (2011). Modes of A β toxicity in Alzheimer's disease. *Cell. Mol. Life Sci.* **68**, 3359–3375.

614 Griendling, K.K., Touyz, R.M., Zweier, J.L., Dikalov, S., Chilian, W., Chen, Y.R., Harrison, D.G., and Bhatnagar, A. (2016). Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement from the American Heart Association. *Circ. Res.* **119**, e39–e75.

618 Grimm, A., and Eckert, A. (2017). Brain aging and neurodegeneration: from a mitochondrial point of view. *J. Neurochem.* **143**, 418–431.

620 Hafiane, A., Bielicki, J.K., Johansson, J.O., and Genest, J. (2015). Novel apo E-derived ABCA1 agonist peptide (CS-6253) promotes reverse cholesterol transport and induces formation of pre β -

622 1 HDL in vitro. *PLoS One* *10*, 1–32.

623 Hardy, J., Selkoe, D.J., Ovod, V., Munsell, L., Kasten, T., Morris, J.C., Yarasheski, K.E., and
624 Bateman, R.J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on
625 the road to therapeutics. *Science* *297*, 353–356.

626 Harrison, B.J., Venkat, G., Lamb, J.L., Hutson, T.H., Drury, C., Rau, K.K., Bunge, M.B.,
627 Mendell, L.M., Gage, F.H., Johnson, R.D., et al. (2016). The adaptor protein CD2AP is a
628 coordinator of neurotrophin signaling-mediated axon arbor plasticity. *J. Neurosci.* *36*, 4259–
629 4275.

630 Hatters, D.M., Peters-Libeu, C.A., and Weisgraber, K.H. (2006). Apolipoprotein E structure:
631 insights into function. *Trends Biochem. Sci.* *31*, 445–454.

632 Hayashi, M., Abe-Dohmae, S., Okazaki, M., Ueda, K., and Yokoyama, S. (2005). Heterogeneity
633 of high density lipoprotein generated by ABCA1 and ABCA7. *J. Lipid Res.* *46*, 1703–1711.

634 Heisenberg, M. (1971). Separation of Receptor and Lamina Potentials in the Electroretinogram
635 of Normal and Mutant Drosophila. *J. Exp. Biol.* *55*, 85 LP – 100.

636 Herz, J. (2009). Apolipoprotein E receptors in the nervous system. *Curr. Opin. Lipidol.* *20*, 190–
637 196.

638 Huang, Y., and Mahley, R.W. (2014). Apolipoprotein E: Structure and function in lipid
639 metabolism, neurobiology, and Alzheimer's diseases. *Neurobiol. Dis.* *72*, 3–12.

640 Huynh, T.-P.V.P. V., Davis, A.A., Ulrich, J.D., and Holtzman, D.M. (2017). Apolipoprotein E
641 and Alzheimer's disease: the influence of apolipoprotein E on amyloid-? and other
642 amyloidogenic proteins. *58*, 824–836.

643 Ioannou, M.S., Jackson, J., Sheu, S.-H., Chang, C.-L., Weigel, A. V., Liu, H., Pasolli, H.A., Xu,
644 C.S., Pang, S., Matthies, D., et al. (2019a). Neuron-Astrocyte Metabolic Coupling Protects
645 against Activity-Induced Fatty Acid Toxicity. *Cell* *177*, 1522–1535.e14.

646 Ioannou, M.S., Liu, Z., and Lippincott-Schwartz, J. (2019b). A Neuron-Glia Co-culture System
647 for Studying Intercellular Lipid Transport. *Curr. Protoc. Cell Biol.* *84*, 1–21.

648 Jain, I.H., Zazzeron, L., Goli, R., Alexa, K., Schatzman-Bone, S., Dhillon, H., Goldberger, O.,
649 Peng, J., Shalem, O., Sanjana, N.E., et al. (2016). Hypoxia as a therapy for mitochondrial
650 disease. *Science* (80-.). *352*, 54–61.

651 Jaiswal, M., Sandoval, H., Zhang, K., Bayat, V., and Bellen, H.J. (2012). Probing mechanisms
652 that underlie human neurodegenerative diseases in Drosophila. *Annu. Rev. Genet.* *46*, 371–396.

653 Jankowsky, J.L., and Zheng, H. (2017). Practical considerations for choosing a mouse model of
654 Alzheimer's disease. *Mol. Neurodegener.* *12*, 89–110.

655 Kaksonen, M., and Roux, A. (2018). Mechanisms of clathrin-mediated endocytosis. *Nat. Rev.*
656 *Mol. Cell Biol.* *19*, 313–326.

657 Kanekiyo, T., Xu, H., and Bu, G. (2014). ApoE and Aβ in Alzheimer's disease: Accidental
658 encounters or partners? *Neuron* *81*, 740–754.

659 Karch, C.M., and Goate, A.M. (2015). Alzheimer's disease risk genes and mechanisms of
660 disease pathogenesis. *Biol. Psychiatry* *77*, 43–51.

661 Kobayashi, D.T., and Chen, K.S. (2005). Behavioral phenotypes of amyloid-based genetically
662 modified mouse models of Alzheimer's disease. *Genes, Brain Behav.* *4*, 173–196.

663 Koldamova, R., Staufenbiel, M., and Lefterov, I. (2005). Lack of ABCA1 considerably decreases
664 brain ApoE level and increases amyloid deposition in APP23 mice. *J. Biol. Chem.* *280*, 43224–
665 43235.

666 Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: Molecular
667 evolutionary genetics analysis across computing platforms. *Mol. Biol. Evol.* *35*, 1547–1549.

668 Kunkle, B.W., Grenier-Boley, B., Sims, R., Bis, J.C., Damotte, V., Naj, A.C., Boland, A.,
669 Vronskaya, M., van der Lee, S.J., Amlie-Wolf, A., et al. (2019). Genetic meta-analysis of
670 diagnosed Alzheimer's disease identifies new risk loci and implicates A β , tau, immunity and
671 lipid processing. *Nat. Genet.* *51*, 414–430.

672 LaFerla, F.M., and Green, K.N. (2012). Animal models of Alzheimer disease. *Cold Spring Harb.*
673 *Perspect. Med.* *2*, 1–13.

674 Lambert, J.-C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., Bellenguez, C., Jun, G.,
675 DeStefano, A.L., Bis, J.C., Beecham, G.W., et al. (2013). Meta-analysis of 74,046 individuals
676 identifies 11 new susceptibility loci for Alzheimer's disease. *Nat. Genet.* *45*, 1452–1458.

677 Lane-Donovan, C., and Herz, J. (2017). ApoE, ApoE Receptors, and the Synapse in Alzheimer's
678 Disease. *Trends Endocrinol. Metab.* *28*, 273–284.

679 Lanfranco, M.F., Ng, C.A., and Rebeck, G.W. (2020). ApoE lipidation as a therapeutic target in
680 Alzheimer's disease. *Int. J. Mol. Sci.* *21*, 1–19.

681 Lee, E., Marcucci, M., Daniell, L., Pypaert, M., Weisz, O.A., Ochoa, G.C., Farsad, K., Wenk,
682 M.R., and De Camilli, P. (2002). Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle.
683 *Science* (80-). *297*, 1193–1196.

684 Lee, P.T., Zirin, J., Kanca, O., Lin, W.W., Schulze, K.L., Li-Kroeger, D., Tao, R., Devereaux,
685 C., Hu, Y., Chung, V., et al. (2018). A gene-specific T2A-GAL4 library for drosophila. *Elife* *7*.

686 Li, Z., Shue, F., Zhao, N., Shinohara, M., and Bu, G. (2020). APOE2: protective mechanism and
687 therapeutic implications for Alzheimer's disease. *Mol. Neurodegener.* *15*, 63–81.

688 Lin, G., Wang, L., Marcogliese, P.C., and Bellen, H.J. (2019). Sphingolipids in the Pathogenesis
689 of Parkinson's Disease and Parkinsonism. *Trends Endocrinol. Metab.* *30*, 106–117.

690 Liu, L., Zhang, K., Sandoval, H., Yamamoto, S., Jaiswal, M., Sanz, E., Li, Z., Hui, J., Graham,
691 B.H., Quintana, A., et al. (2015). Glial Lipid Droplets and ROS Induced by Mitochondrial
692 Defects Promote Neurodegeneration. *Cell* *160*, 177–190.

693 Liu, L., MacKenzie, K.R., Putluri, N., Maletić-Savatić, M., and Bellen, H.J. (2017). The Glia-
694 Neuron Lactate Shuttle and Elevated ROS Promote Lipid Synthesis in Neurons and Lipid
695 Droplet Accumulation in Glia via APOE/D. *Cell Metab.* *26*, 719-737.e6.

696 Marioni, R.E., Harris, S.E., Zhang, Q., McRae, A.F., Hagenaars, S.P., Hill, W.D., Davies, G.,
697 Ritchie, C.W., Gale, C.R., Starr, J.M., et al. (2018). GWAS on family history of Alzheimer's
698 disease. *Transl. Psychiatry* *8*, 1–7.

699 Masdeu, J.C. (2020). Neuroimaging of Diseases Causing Dementia. *Neurol. Clin.* *38*, 65–94.

700 Michaelson, D.M. (2014). *APOE* ϵ 4: The most prevalent yet understudied risk factor for
701 Alzheimer's disease. *Alzheimer's Dement.* *10*, 861–868.

702 Mietelska-Porowska, A., Wasik, U., Goras, M., Filipek, A., and Niewiadomska, G. (2014). Tau
703 Protein Modifications and Interactions: Their Role in Function and Dysfunction. *Int. J. Mol. Sci.*
704 *15*, 4671–4713.

705 Moreira, P.I., Nunomura, A., Honda, K., Aliev, G., Casadesus, G., Zhu, X., Smith, M.A., and
706 Perry, G. (2007). The key role of oxidative stress in alzheimer's disease. In *Oxidative Stress and*
707 *Neurodegenerative Disorders*, (Elsevier), pp. 267–281.

708 Muhammad, A., Flores, I., Zhang, H., Yu, R., Staniszewski, A., Planell, E., Herman, M., Ho, L.,
709 Kreber, R., Honig, L.S., et al. (2008). Retromer deficiency observed in Alzheimer's disease
710 causes hippocampal dysfunction, neurodegeneration, and A β accumulation. *Proc. Natl. Acad.*
711 *Sci. U. S. A.* *105*, 7327–7332.

712 Mullan, K., Williams, M.A., Cardwell, C.R., McGuinness, B., Passmore, P., Silvestri, G.,
713 Woodside, J. V., and McKay, G.J. (2017). Serum concentrations of vitamin E and carotenoids

714 are altered in Alzheimer's disease: A case-control study. *Alzheimer's Dement. Transl. Res. Clin.*
715 *Interv.* 3, 432–439.

716 Namba, Y., Tomonaga, M., Kawasaki, H., Otomo, E., and Ikeda, K. (1991). Apolipoprotein E
717 immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease
718 and kuru plaque amyloid in Creutzfeldt-Jakob disease. *Brain Res.* 541, 163–166.

719 Nelson, P.T., Fardo, D.W., and Katsumata, Y. (2020). The MUC6/AP2A2 Locus and Its
720 Relevance to Alzheimer's Disease: A Review. *J. Neuropathol. Exp. Neurol.* 79, 568–584.

721 Neumann, J., Rose-Sperling, D., and Hellmich, U.A. (2017). Diverse relations between ABC
722 transporters and lipids: An overview. *Biochim. Biophys. Acta - Biomembr.* 1859, 605–618.

723 Nordestgaard, L.T., Tybjærg-Hansen, A., Nordestgaard, B.G., and Frikke-Schmidt, R. (2015).
724 Loss-of-function mutation in ABCA1 and risk of Alzheimer's disease and cerebrovascular
725 disease. *Alzheimer's Dement.* 11, 1430–1438.

726 Nugent, A.A., Lin, K., van Lengerich, B., Lianoglou, S., Przybyla, L., Davis, S.S., Llapashtica,
727 C., Wang, J., Kim, D.J., Xia, D., et al. (2020). TREM2 Regulates Microglial Cholesterol
728 Metabolism upon Chronic Phagocytic Challenge. *Neuron* 105, 837–854.e9.

729 Oakley, H., Cole, S.L., Logan, S., Maus, E., Shao, P., Craft, J., Guillozet-Bongaarts, A., Ohno,
730 M., Disterhoft, J., Van Eldik, L., et al. (2006). Intraneuronal beta-Amyloid Aggregates,
731 Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer's
732 Disease Mutations: Potential Factors in Amyloid Plaque Formation. *J. Neurosci.* 26, 10129–
733 10140.

734 Ojelade, S.A., Lee, T. V., Giagtzoglou, N., Yu, L., Ugur, B., Li, Y., Duraine, L., Zuo, Z., Petyuk,
735 V., De Jager, P.L., et al. (2019). cindr, the Drosophila Homolog of the CD2AP Alzheimer's
736 Disease Risk Gene, Is Required for Synaptic Transmission and Proteostasis. *Cell Rep.* 28, 1799–
737 1813.e5.

738 Di Paolo, G., and Kim, T.-W. (2011). Linking lipids to Alzheimer's disease: cholesterol and
739 beyond. *Nat. Rev. Neurosci.* 12, 284–296.

740 Peña-Bautista, C., López-Cuevas, R., Cuevas, A., Baquero, M., and Cháfer-Pericás, C. (2019).
741 Lipid peroxidation biomarkers correlation with medial temporal atrophy in early Alzheimer
742 Disease. *Neurochem. Int.* 129, 104519.

743 Pereira, C.D., Martins, F., Wiltfang, J., Da Cruz E Silva, O.A.B., and Rebelo, S. (2017). ABC
744 Transporters Are Key Players in Alzheimer's Disease. *J. Alzheimer's Dis.* 61, 463–485.

745 Quintana, A., Zanella, S., Koch, H., Kruse, S.E., Lee, D., Ramirez, J.M., and Palmiter, R.D.
746 (2012). Fatal breathing dysfunction in a mouse model of Leigh syndrome. *I22*, 2359–2368.

747 Qureshi, Y.H., Baez, P., and Reitz, C. (2020). Endosomal Trafficking in Alzheimer's Disease,
748 Parkinson's Disease, and Neuronal Ceroid Lipofuscinosis. *Mol. Cell. Biol.* 40, 1–12.

749 Ramjaun, A.R., Micheva, K.D., Bouchelet, I., and McPherson, P.S. (1997). Identification and
750 characterization of a nerve terminal-enriched amphiphysin isoform. *J. Biol. Chem.* 272, 16700–
751 16706.

752 Rauch, J.N., Luna, G., Guzman, E., Audouard, M., Challis, C., Sibih, Y.E., Leshuk, C.,
753 Hernandez, I., Wegmann, S., Hyman, B.T., et al. (2020). LRP1 is a master regulator of tau
754 uptake and spread. *Nature* 580, 381–385.

755 Razzaq, A., Robinson, I.M., McMahon, H.T., Skepper, J.N., Su, Y., Zelhof, A.C., Jackson, A.P.,
756 Gay, N.J., and O'Kane, C.J. (2001). Amphiphysin is necessary for organization of the excitation-
757 contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in
758 Drosophila. *Genes Dev.* 15, 2967–2979.

759 Reed, T.T. (2011). Lipid peroxidation and neurodegenerative disease. *Free Radic. Biol. Med.* 51,

760 1302–1319.

761 Regen, F., Hellmann-Regen, J., Costantini, E., and Reale, M. (2017). Neuroinflammation and
762 Alzheimer's Disease: Implications for Microglial Activation. *Curr. Alzheimer Res.* *14*.

763 Ristow, M., and Schmeisser, S. (2011). Extending life span by increasing oxidative stress. *Free
764 Radic. Biol. Med.* *51*, 327–336.

765 Robert, J., Button, E.B., Yuen, B., Gilmour, M., Kang, K., Bahrabadi, A., Stukas, S., Zhao, W.,
766 Kulic, I., and Wellington, C.L. (2017). Clearance of beta-amyloid is facilitated by apolipoprotein
767 E and circulating highdensity lipoproteins in bioengineered human vessels. *Elife* *6*, 1–24.

768 Rodríguez-Vázquez, M., Vaquero, D., Parra-Peralbo, E., Mejía-Morales, J.E., and Culi, J.
769 (2015). *Drosophila* Lipophorin Receptors Recruit the Lipoprotein LTP to the Plasma Membrane
770 to Mediate Lipid Uptake. *PLOS Genet.* *11*, 1–24.

771 Rogaeva, E., Kawarai, T., and St. George-Hyslop, P. (2006). Genetic complexity of Alzheimer's
772 disease: Successes and challenges. *J. Alzheimer's Dis.* *9*, 381–387.

773 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
774 S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: An open-source platform for
775 biological-image analysis. *Nat. Methods* *9*, 676–682.

776 Seto, E.S., Bellen, H.J., and Lloyd, T.E. (2002). When cell biology meets development:
777 Endocytic regulation of signaling pathways. *Genes Dev.* *16*, 1314–1336.

778 Sharman, M.J., Morici, M., Hone, E., Berger, T., Taddei, K., Martins, I.J., Lim, W.L.F., Singh,
779 S., Wenk, M.R., Ghiso, J., et al. (2010). APOE genotype results in differential effects on the
780 peripheral clearance of amyloid- β 42 in APOE knock-in and knock-out mice. *J. Alzheimer's Dis.*
781 *21*, 403–409.

782 Shen, R., Zhao, X., He, L., Ding, Y., Xu, W., Lin, S., Fang, S., Yang, W., Sung, K., Spencer, B.,
783 et al. (2020). Upregulation of RIN3 induces endosomal dysfunction in Alzheimer's disease.
784 *Transl. Neurodegener.* *9*, 26–44.

785 Shinohara, M., Tachibana, M., Kanekiyo, T., and Bu, G. (2017). Role of LRP1 in the
786 pathogenesis of Alzheimer's disease: Evidence from clinical and preclinical studies. *J. Lipid Res.*
787 *58*, 1267–1281.

788 Sillitoe, R. V., Stephen, D., Lao, Z., and Joyner, A.L. (2008). Engrailed homeobox genes
789 determine the organization of Purkinje cell sagittal stripe gene expression in the adult
790 cerebellum. *J. Neurosci.* *28*, 12150–12162.

791 Singh, A., Kukreti, R., Saso, L., and Kukreti, S. (2019). Oxidative stress: A key modulator in
792 neurodegenerative diseases. *Molecules* *24*, 1–20.

793 Steinberg, S., Stefansson, H., Jonsson, T., Johannsdottir, H., Ingason, A., Helgason, H., Sulem,
794 P., Magnusson, O.T., Gudjonsson, S.A., Unnsteinsdottir, U., et al. (2015). Loss-of-function
795 variants in ABCA7 confer risk of Alzheimer's disease. *Nat. Genet.* *47*, 445–447.

796 Stelzmann, R.A., Norman Schnitzlein, H., and Reed Murtagh, F. (1995). An english translation
797 of alzheimer's 1907 paper, "über eine eigenartige erkankung der hirnrinde." *Clin. Anat.* *8*, 429–
798 431.

799 Stockinger, W., Sailler, B., Strasser, V., Recheis, B., Fasching, D., Kahr, L., Schneider, W.J., and
800 Nimpf, J. (2002). The PX-domain protein SNX17 interacts with members of the LDL receptor
801 family and modulates endocytosis of the LDL receptor. *EMBO J.* *21*, 4259–4267.

802 Strittmatter, W.J., Saunders, A.M., Schmeichel, D., Pericak-Vance, M., Enghild, J., Salvesen,
803 G.S., and Roses, A.D. (1993). Apolipoprotein E: High-avidity binding to β -amyloid and
804 increased frequency of type 4 allele in late-onset familial Alzheimer disease. *Proc. Natl. Acad.
805 Sci. U. S. A.* *90*, 1977–1981.

806 De Strooper, B., and Karran, E. (2016). The Cellular Phase of Alzheimer's Disease. *Cell* *164*,
807 603–615.

808 Takeda, T., Kozai, T., Yang, H., Ishikuro, D., Seyama, K., Kumagai, Y., Abe, T., Yamada, H.,
809 Uchihashi, T., Ando, T., et al. (2018). Dynamic clustering of dynamin-amphiphysin helices
810 regulates membrane constriction and fission coupled with GTP hydrolysis. *Elife* *7*, 1–19.

811 Takei, K., and Haucke, V. (2001). Clathrin-mediated endocytosis: Membrane factors pull the
812 trigger. *Trends Cell Biol.* *11*, 385–391.

813 Tarling, E.J., Vallim, T.Q. d. A., and Edwards, P.A. (2013). Role of ABC transporters in lipid
814 transport and human disease. *Trends Endocrinol. Metab.* *24*, 342–350.

815 Teresa, J.C., Fernando, C., Nancy, M.R., Gilberto, V.A., Alberto, C.R., and Roberto, R.R. (2020).
816 Association of genetic variants of ABCA1 with susceptibility to dementia: (SADEM study).
817 *Metab. Brain Dis.* *35*, 915–922.

818 Thapa, A., and Carroll, N.J. (2017). Dietary modulation of oxidative stress in Alzheimer's
819 disease. *Int. J. Mol. Sci.* *18*, 1583–1596.

820 Tönnies, E., and Trushina, E. (2017). Oxidative Stress, Synaptic Dysfunction, and Alzheimer's
821 Disease. *J. Alzheimer's Dis.* *57*, 1105–1121.

822 Turton, J., and Morgan, K. (2013). ATP-binding cassette, subfamily A (ABC1), member 7
823 (ABCA7). In *Genetic Variants in Alzheimer's Disease*, (Springer New York), pp. 135–158.

824 Ubelmann, F., Burrinha, T., Salavessa, L., Gomes, R., Ferreira, C., Moreno, N., and Guimas
825 Almeida, C. (2017). Bin1 and CD 2 AP polarise the endocytic generation of beta-amyloid.
826 *EMBO Rep.* *18*, 102–122.

827 Venken, K.J.T., He, Y., Hoskins, R.A., and Bellen, H.J. (2006). P[acman]: A BAC transgenic
828 platform for targeted insertion of large DNA fragments in *D. melanogaster*. *Science* (80-.). *314*,
829 1747–1751.

830 Verghese, P.B., Castellano, J.M., Garai, K., Wang, Y., Jiang, H., Shah, A., Bu, G., Frieden, C.,
831 and Holtzman, D.M. (2013). ApoE influences amyloid- β (A β) clearance despite minimal
832 apoE/A β association in physiological conditions. *Proc. Natl. Acad. Sci. U. S. A.* *110*, E1807–
833 E1816.

834 Verstreken, P., Koh, T.W., Schulze, K.L., Zhai, R.G., Hiesinger, P.R., Zhou, Y., Mehta, S.Q.,
835 Cao, Y., Roos, J., and Bellen, H.J. (2003). Synaptojanin is recruited by endophilin to promote
836 synaptic vesicle uncoating. *Neuron* *40*, 733–748.

837 Vina, J., LLoret, A., Giraldo, E., C. Badia, M., and D. Alonso, M. (2011). Antioxidant Pathways
838 in Alzheimers Disease: Possibilities of Intervention. *Curr. Pharm. Des.* *17*, 3861–3864.

839 Wahrle, S.E., Jiang, H., Parsadanian, M., Legleiter, J., Han, X., Fryer, J.D., Kowalewski, T., and
840 Holtzman, D.M. (2004). ABCA1 is required for normal central nervous system apoE levels and
841 for lipidation of astrocyte-secreted apoE. *J. Biol. Chem.* *279*, 40987–40993.

842 Wahrle, S.E., Jiang, H., Parsadanian, M., Kim, J., Li, A., Knoten, A., Jain, S., Hirsch-
843 Reinshagen, V., Wellington, C.L., Bales, K.R., et al. (2008). Overexpression of ABCA1 reduces
844 amyloid deposition in the PDAPP mouse model of Alzheimer disease. *J. Clin. Invest.* *118*, 671–
845 682.

846 Wang, Y., and Mandelkow, E. (2016). Tau in physiology and pathology. *Nat. Rev. Neurosci.* *17*,
847 5–21.

848 Wang, S., Tan, K.L., Agosto, M.A., Xiong, B., Yamamoto, S., Sandoval, H., Jaiswal, M., Bayat,
849 V., Zhang, K., Charng, W.L., et al. (2014). The Retromer Complex Is Required for Rhodopsin
850 Recycling and Its Loss Leads to Photoreceptor Degeneration. *PLoS Biol.* *12*, 1–20.

851 Wang, Y., Cella, M., Mallinson, K., Ulrich, J.D., Young, K.L., Robinette, M.L., Gilfillan, S.,

852 Krishnan, G.M., Sudhakar, S., Zinselmeyer, B.H., et al. (2015). TREM2 lipid sensing sustains
853 the microglial response in an Alzheimer's disease model. *Cell* *160*, 1061–1071.

854 Ward, A., Crean, S., Mercaldi, C.J., Collins, J.M., Boyd, D., Cook, M.N., and Arrighi, H.M.
855 (2012). Prevalence of Apolipoprotein E4 Genotype and Homozygotes (APOE e4/e4) among
856 Patients Diagnosed with Alzheimer's Disease: A Systematic Review and Meta-Analysis.
857 *Neuroepidemiology* *38*, 1–17.

858 Wellington, C. (2004). Cholesterol at the crossroads: Alzheimer's disease and lipid metabolism.
859 *Clin. Genet.* *66*, 1–16.

860 Wojtunik-Kulesza, K.A., Oniszcuk, A., Oniszcuk, T., and Waksmanzka-Hajnos, M. (2016).
861 The influence of common free radicals and antioxidants on development of Alzheimer's Disease.
862 *Biomed. Pharmacother.* *78*, 39–49.

863 Wong, M.W., Braidy, N., Poljak, A., Pickford, R., Thambisetty, M., and Sachdev, P.S. (2017).
864 Dysregulation of lipids in Alzheimer's disease and their role as potential biomarkers.
865 *Alzheimer's Dement.* *13*, 810–827.

866 Zabel, M., Nackenoff, A., Kirsch, W.M., Harrison, F.E., Perry, G., and Schrag, M. (2018).
867 Markers of oxidative damage to lipids, nucleic acids and proteins and antioxidant enzymes
868 activities in Alzheimer's disease brain: A meta-analysis in human pathological specimens. *Free*
869 *Radic. Biol. Med.* *115*, 351–360.

870 Zelhof, A.C., Bao, H., Hardy, R.W., Razzaq, A., Zhang, B., and Doe, C.Q. (2001). *Drosophila*
871 *Amphiphysin* is implicated in protein localization and membrane morphogenesis but not in
872 synaptic vesicle endocytosis. *Development* *128*, 5005–5015.

873 Zhang, C., and Liu, P. (2017). The lipid droplet: A conserved cellular organelle. *Protein Cell* 1–
874 5.

875 Zhang, B., Koh, Y.H., Beckstead, R.B., Budnik, V., Ganetzky, B., and Bellen, H.J. (1998).
876 Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for
877 endocytosis. *Neuron* *21*, 1465–1475.

878 Zhang, H., Huang, T., Hong, Y., Yang, W., Zhang, X., Luo, H., Xu, H., and Wang, X. (2018).
879 The retromer complex and sorting nexins in neurodegenerative diseases. *Front. Aging Neurosci.*
880 *10*, 1–11.

881 Zhang, Y., Chen, K., Sloan, S.A., Bennett, M.L., Scholze, A.R., O'Keeffe, S., Phatnani, H.P.,
882 Guarnieri, P., Caneda, C., Ruderisch, N., et al. (2014). An RNA-sequencing transcriptome and
883 splicing database of glia, neurons, and vascular cells of the cerebral cortex. *J. Neurosci.* *34*,
884 11929–11947.

885 Zhang, Y., Sloan, S.A., Clarke, L.E., Caneda, C., Plaza, C.A., Blumenthal, P.D., Vogel, H.,
886 Steinberg, G.K., Edwards, M.S.B.B., Li, G., et al. (2016). Purification and Characterization of
887 Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences
888 with Mouse Highlights. *Neuron* *89*, 37–53.

889 Zhu, X.C., Tan, L., Wang, H.F., Jiang, T., Cao, L., Wang, C., Wang, J., Tan, C.C., Meng, X.F.,
890 and Yu, J.T. (2015). Rate of early onset Alzheimer's disease: A systematic review and meta-
891 analysis. *Ann. Transl. Med.* *3*, 38–43.

892

893 **Acknowledgements**

894 We are grateful to the Bloomington Drosophila Stock Center and the Vienna Drosophila
895 Resource Center for providing reagents. 5XFAD mice were provided to us through a gift of
896 Huda Zoghbi. Mouse pathological studies were carried out by the Cell and Tissue Pathogenesis
897 Core which is supported by the Eunice Kennedy Shriver National Institute of Child Health &
898 Human Development of the National Institutes of Health (NIH) under the award number
899 P50HD103555. Confocal images were captured in the Neurovisualization Core of the Intellectual
900 and Developmental Disabilities Research Center (IDRRC), which is supported by the NIH under
901 the award number U54HD083092. This work was supported by a grant from the Texas
902 Alzheimer's Research and Care Consortium under the award number 2018-05-11-II, to H.J.B.
903 M.J.M. was supported by the Medical Genetics Research Fellowship Training Grant from the
904 NIH under the award number T32 GM07526-41. L.D.G. was supported by the Brain Disorders &
905 Development Fellowship Training Grant from the NIH under the award number T32 NS043124-
906 18. P.C.M. is supported by a grant from Canadian Institutes of Health Research under the award
907 number MFE-164712. M.S.I. is supported by the Canadian Institutes of Health Research under
908 the award number 173321, and the Heart & Stroke Foundation of Canada under the award
909 number 170722. I.R. is supported by the Alberta Synergies in Alzheimer's and Related Disorders
910 (SynAD) program funded by the Alzheimer Society of Alberta and Northwest Territories
911 through their Hope for Tomorrow program and the University Hospital Foundation. SynAD
912 operates in partnership with the Neuroscience and Mental Health Institute at the University of
913 Alberta. H.J.B. is an investigator of the Howard Hughes Medical Institute (HHMI) and thanks
914 HHMI for support.

915

916 **Author Contributions**

917 Conceptualization, M.J.M., J.O.J., M.S.I. and H.J.B.; Investigation, M.J.M., S.B., J.G.H.,
918 P.C.M., I.R., J.C., and M.S.I.; Resources, J.O.J. and H.J.B.; Writing – Original Draft, M.J.M.,
919 J.G.H., and H.B.; Writing – Review & Editing, M.J.M., S.B., L.D.G., P.C.M., J.G.H., M.S.I., and
920 H.J.B.; Supervision, H.J.B.; Funding Acquisition, H.J.B.

921

922 **Declaration of Interests**

923 J.O.J. is the President and CEO of Artery Therapeutics, Inc.

924

925 **Star Methods**

926 **Resource Availability**

927 *Lead Contact*

928 Further information and requests for resources and reagents should be directed to and will
929 be fulfilled by the Lead Contact, Hugo Bellen (hbellen@bcm.edu).

930 *Materials Availability*

931 The peptide-expressing fly stock generated in this study was generated with permission
932 through a collaboration with J.O.J and Artery Therapeutics, Inc. All stocks and reagents are
933 freely available upon request to H.J.B.

934 *Data and Code Availability*

935 This study did not generate/analyze datasets.

936

937 **Experimental Model and Subject Details**

938 **Animals**

939 *Drosophila melanogaster* were raised on standard molasses-based lab diet at 22°C under
940 constant light conditions unless otherwise indicated. Stock genotypes and availability is listed in
941 the Key Resources Table. Female flies were used for all experiments.

942 Experiments using mice, *Mus musculus*, were carried out under the approval of the
943 Animal Care and Use Committee at Baylor College of Medicine. Mice were housed under 12-
944 hour light/dark conditions at 22°C with standard chow diet (5053; Picolab) and water available
945 ad libitum. Stock genotypes and availability is listed in the Key Resources Table. Hyperoxia
946 experiments were carried using the A-Chamber animal cage enclosure (BioSpherix) with oxygen
947 levels regulated using the ProOx360 High Infusion Rate O2 Controller (BioSpherix).

948

949 **Method Details**

950 **Gene Tree Assembly**

951 Protein sequences of all human and fly ABCA genes were downloaded from the National
952 Center for Biotechnology Information (NCBI) website. Sequences were aligned using ClustalW
953 algorithm within MEGA X (Kumar et al., 2018). Aligned sequences were used to build the
954 neighbor-joining tree within MEGA X.

955

956 **Generation of Transgenic Flies**

957 UAS-ArgosSS::Peptide transgenic flies were generated by ORF synthesis in pUC57
958 using Drosophila codon-optimized sequence (Integrated DNA Technologies) of the argos
959 secretion signal (MPTTMLLPCMLLLLTAAGAVGG) (Chouhan et al., 2016) upstream of
960 the peptide sequence, where citrulline residues were replaced with arginine residues,
961 (EVRSKLEEWLAALRELAEELLARAKS) (Bielicki, 2016; Boehm-Cagan and Michaelson,
962 2014). The ORF was shuttled to the Gateway pDONR221 entry vector (ThermoFisher) by BP
963 clonase II reaction (ThermoFisher) using Argos_attB primers. Fully sequence verified clones
964 were shuttled to the pGW-attB-HA destination vector (Bischof et al., 2012) by LR clonase II
965 (ThermoFisher). The UAS construct was inserted into the VK37 (PBac{y[+]-attP}VK00037)
966 docking site by φC31 mediated transgenesis (Venken et al., 2006).

967

968 **Lipid Droplet Analysis**

969 Whole-mount staining of fly retinas with Nile Red to visualize lipids was performed as in
970 Liu, et al. (2015). In brief, fly heads were isolated under PBS and fixed in 3.7% formaldehyde
971 overnight. Retinas were then dissected under PBS and rinsed three times with 1X PBS and
972 incubated for 20 minutes at 1:1,000 dilution of PBS with 1 mg/mL Nile Red (Millipore Sigma).
973 Retinas were subsequently rinsed five times with 1X PBS and mounted in Vectashield (Vector
974 Labs) for imaging on a Leica SP8 confocal microscope. Images were obtained using a 63X
975 glycerol submersion lens with 3X zoom.

976

977 **Electroretinogram Assay**

978 Electroretinogram (ERG) assays (Heisenberg, 1971) were performed as previously
979 described (Verstreken et al., 2003). In brief, live flies were immobilized with Elmer's school
980 glue on a microscope slide. Glass electrodes, filled with 3 M NaCl, were placed in the thorax for
981 reference and on the center part of the eye for recording. Prior to recording, flies were
982 maintained in the dark for at least one minute. Approximately one-second light flashes were

983 manually delivered using a halogen lamp. At least three recordings from at least 10 flies per
984 genotype were obtained for analysis using LabChart 8.

985

986 *Immunohistochemistry*

987 Animal perfusion, sectioning and immunohistochemistry was performed as in Sillitoe, et
988 al. (2008). In brief, mice were anesthetized with and sacrificed by intracardiac perfusion, initially
989 with saline, followed by 4% paraformaldehyde in PBS. Mice brains were removed and bisected
990 down the midline with one hemibrain utilized for histopathological analysis, which was
991 immersed again in paraformaldehyde for 24 hours at 4°C. Hemibrains were then dehydrated and
992 preserved in paraffin. Serial sagittal sections were cut and 6 µM sections were mounted on glass
993 slides. After sections were blocked in 10% normal goat serum and rinsed with PBS, sections
994 were stained with the anti-Aβ42 antibody (Covance, 1:1,000) and a biotinylated anti-mouse IgG
995 antibody (Jackson, 1:200). Slides were then incubated in DAB solution, monitored by eye, and
996 the reaction stopped with distilled water. Finally, slides were counterstained using Mayer's
997 hematoxylin and dehydrated prior to imaging.

998

999 *qRT-PCR Analysis*

1000 RNA extraction, cDNA synthesis, and qRT-PCR were performed as in Barish et al. (1000
1001 2018). In brief, 10 larvae ubiquitously expressing RNAi (via Daugtherless-Gal4) were isolated.
1002 RNA extraction was carried out using the RNeasy Mini Kit (Qiagen) followed by reverse
1003 transcription into cDNA using iScript Reverse Transcription Supermix (BioRad). Quantitative
1004 PCR reactions were performed using iTaq Universal SYBR Green Supermix (BioRad) on a
1005 BioRad CFX96 Touch Real-Time PCR Detection System. Three biological and technical
1006 replicates were performed for each genotype. Expression (Ct) values were obtained and used to
1007 calculate differential expression (ΔCt) and normalized to GAPDH expression.

1008

1009 *Primary culture of hippocampal neurons and astrocytes*

1010 Hippocampal cultures were generated from P0-P1 Sprague-Dawley rats obtained from
1011 Charles River Laboratories that arrived at our facility one week prior to birth. These experiments
1012 were approved by the Canadian Council of Animal Care at the University of Alberta (AUP#3358).
1013 Cultures were prepared as previously described (Beaudoin et al., 2012; Ioannou et al., 2019a). In
1014 brief, tissue was digested with papain, gently triturated, and filtered with a cell strainer and plated
1015 on poly-D-lysine coated coverslips for the transfer assay or plastic tissue culture dishes for Western
1016 blot analysis. Neurons were grown in Neurobasal medium containing B-27 supplement, 2 mM
1017 Glutamax and antibiotic-antimycotic. Astrocytes were grown in Basal Eagle Media containing
1018 10% fetal bovine serum, 0.45% glycose, 1 mM sodium pyruvate, 2 mM Glutamax, and antibiotic-
1019 antimycotic. All cells were grown at 37°C in 5% CO₂.

1020

1021 *Lentivirus transduction*

1022 Astrocytes at DIV 2 were transduced with SMARTVector lentiviral shRNA (Dharmacon)
1023 at an MOI of 3. Three independent shRNA sequences targeting PICALM or a non-targeting control
1024 shRNA was used. The media was replaced with fresh culture media after 24 hrs. and the cells were
1025 used for protein validation or in the transfer assay 5 days later (DIV 7). To validate protein
1026 knockdown, astrocytes were lysed in lysis buffer [20 mM HEPES pH 7.4, 100 mM NaCl, 1%
1027 Triton X-100, 5 mM EDTA, 1× Halt Protease & Phosphatase Inhibitor Cocktail (Thermo
1028 Scientific)], resolved by SDS-PAGE and processed for Western blotting using anti-PICALM

1029 rabbit polyclonal (Millipore Sigma) and anti-GAPDH mouse monoclonal (ThermoFisher) as a
1030 loading control. Lysates were run in duplicate and statistics were performed on the average of
1031 these duplicates for each experiment.

1032

1033 *Fatty acid transfer assay*

1034 Neurons (DIV 7) were incubated with 2 μ M BODIPY 558/568 (Red-C12) for 16 hours in
1035 neuronal growth media. Neurons were washed twice with warm phosphate-buffered saline (PBS)
1036 and incubated with fresh media for 1 hour. Red-C12 labelled neurons and unlabeled astrocytes
1037 transduced with lentivirus as described above were washed twice with warm PBS and the
1038 coverslips were cultured together (facing each other), separated by paraffin wax and incubated in
1039 Hanks' Balanced Salt solution containing calcium and magnesium for 4 hours at 37°C (Ioannou et
1040 al., 2019b, 2019a). Astrocytes were fixed in 4% paraformaldehyde, stained with DAPI, and
1041 mounted using DAKO fluorescence mounting media. Images were acquired using a Zeiss 710
1042 Laser Scanning Confocal Microscope equipped with a plan-apochromat 63x oil objective (Zeiss,
1043 NA = 1.4). Maximum intensity projections of three-dimensional image stacks (0.5 μ m sections) of
1044 Red-C12 staining were obtained and analyzed using ImageJ. Only astrocytes expressing the
1045 lentiviral reporter turboGFP were quantified. Images were thresholded and the number of particles
1046 with a pixel size greater than 2 was detected. 10 cells per coverslip were averaged. Schematic of
1047 fatty acid transfer assay was created with BioRender.com.

1048

1049 **Quantification and Statistical Analysis**

1050 FIJI (Schindelin et al., 2012) was utilized to view fly retinal and mouse brain images and
1051 all genotypes were blinded prior to quantification. Lipid droplets with diameter \geq 0.5 μ M were
1052 manually quantified from fly retinal images. Amyloid plaque number from mouse brain images
1053 was manually quantified and amyloid size measurements were taken using the 'Measure' tool in
1054 FIJI. LabChart 8 (AD Instruments) was used to view and measure the amplitude of ERG traces.
1055 Quantification datasets were assembled in Microsoft Excel 365 for comparison and statistical
1056 analysis. For quantification, \geq 10 animals per genotype were used. Mean +/- SEM were plotted
1057 and pair-wise T-tests were performed with a statistical significance cutoff at * p <0.05, and
1058 ** p <0.01. Statistical analysis of knockdown efficiency in rat cells used the Kruskal-Wallis test
1059 with Dunn's posttest using a significance cutoff at * p <0.05. Analysis of lipid transfer utilized
1060 One-way ANOVA with Dunnett's posttest using a significance cutoff at *** p < 0.001.

1030 rabbit polyclonal (Millipore Sigma) and anti-GAPDH mouse monoclonal (ThermoFisher) as a
1031 loading control. Lysates were run in duplicate and statistics were performed on the average of
1032 these duplicates for each experiment.

1033

1034 *Fatty acid transfer assay*

1035 Neurons (DIV 7) were incubated with 2 μ M BODIPY 558/568 (Red-C12) for 16 hours in
1036 neuronal growth media. Neurons were washed twice with warm phosphate-buffered saline (PBS)
1037 and incubated with fresh media for 1 hour. Red-C12 labelled neurons and unlabeled astrocytes
1038 transduced with lentivirus as described above were washed twice with warm PBS and the
1039 coverslips were cultured together (facing each other), separated by paraffin wax and incubated in
1040 Hanks' Balanced Salt solution containing calcium and magnesium for 4 hours at 37°C (Ioannou et
1041 al., 2019b, 2019a). Astrocytes were fixed in 4% paraformaldehyde, stained with DAPI, and
1042 mounted using DAKO fluorescence mounting media. Images were acquired using a Zeiss 710
1043 Laser Scanning Confocal Microscope equipped with a plan-apochromat 63x oil objective (Zeiss,
1044 NA = 1.4). Maximum intensity projections of three-dimensional image stacks (0.5 μ m sections) of
1045 Red-C12 staining were obtained and analyzed using ImageJ. Only astrocytes expressing the
1046 lentiviral reporter turboGFP were quantified. Images were thresholded and the number of particles
1047 with a pixel size greater than 2 was detected. 10 cells per coverslip were averaged. Schematic of
1048 fatty acid transfer assay was created with BioRender.com.

1049

1050 **Quantification and Statistical Analysis**

1051 FIJI (Schindelin et al., 2012) was utilized to view fly retinal and mouse brain images and
1052 all genotypes were blinded prior to quantification. Lipid droplets with diameter \geq 0.5 μ M were
1053 manually quantified from fly retinal images. Amyloid plaque number from mouse brain images
1054 was manually quantified and amyloid size measurements were taken using the 'Measure' tool in
1055 FIJI. LabChart 8 (AD Instruments) was used to view and measure the amplitude of ERG traces.
1056 Quantification datasets were assembled in Microsoft Excel 365 for comparison and statistical
1057 analysis. For quantification, \geq 10 animals per genotype were used. Mean +/- SEM were plotted
1058 and pair-wise T-tests were performed with a statistical significance cutoff at * p <0.05, and
1059 ** p <0.01. Statistical analysis of knockdown efficiency in rat cells used the Kruskal-Wallis test
1060 with Dunn's posttest using a significance cutoff at * p <0.05. Analysis of lipid transfer utilized
1061 One-way ANOVA with Dunnett's posttest using a significance cutoff at *** p < 0.001.

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Anti Aβ42 (6E10)	Covance	RRID:AB_662798
Biotinylated anti-mouse IgG	Jackson Immuno Research Laboratories, Inc.	RRID:AB_2338557
Anti-PICALM rabbit polyclonal	Millipore Sigma	RRID:AB_1855361
Anti-GAPDH mouse monoclonal	ThermoFisher	RRID:AB_2536381
HRP- AffiniPure donkey anti-rabbit	Jackson Immuno Research Laboratories, Inc.	RRID:AB_2340770
HRP- AffiniPure donkey anti-mouse	Jackson Immuno Research Laboratories, Inc.	RRID:AB_2340770
Bacterial and Virus Strains		
SMARTvector hCMV-TurboGFP non-targeting control particles	Dharmacon Inc.	Cat# S-005000-01
SMARTvector Lentiviral Human PICALM hCMV-TurboGFP shRNA (shRNA1)	Dharmacon Inc.	Cat# V3SH7590-225194030
SMARTvector Lentiviral Human PICALM hCMV-TurboGFP shRNA (shRNA2)	Dharmacon Inc.	Cat# V3SH7590-225390149
SMARTvector Lentiviral Human PICALM hCMV-TurboGFP shRNA (shRNA3)	Dharmacon Inc.	Cat# V3SH7590-225119184
Chemicals, Peptides, and Recombinant Proteins		
Nile Red	Millipore Sigma	Cat # 72485
Rotenone	Millipore Sigma	Cat # R8875
BODIPY 558/568 C12 (4,4-Difluoro-5-(2-Thienyl)-4-Bora-3a,4a-Diaza-s-Indacene-3-Dodecanoic Acid) (Red-C12)	ThermoFisher Scientific	Cat # D3835
Vectashield	Vector Labs	Cat # H-1000-10
4% paraformaldehyde	ThermoFisher	Cat # J61899-AK
BP clonase II	ThermoFisher	Cat # 11789020
LR clonase II	ThermoFisher	Cat # 11791020
RNeasy Mini Kit	Qiagen	Cat # 74104
iScript Reverse Transcription Supermix	BioRad	Cat # 1708840
iTaq Universal SYBR Green Supermix	BioRad	Cat # 1725120
DAPI	Abcam	Cat# ab228549
Halt protease & phosphatase inhibitor cocktail	ThermoFisher	Cat# 78446
DAKO fluorescence mounting media	Agilent Technologies Canada Inc.	Cat# S302380-2
Neurobasal medium	Gibco	Cat# LS21103049
Basal medium Eagle	Gibco	Cat# LS21010046
Fetal bovine serum	VWR International Ltd	Cat# MP97068-085
Sodium pyruvate	Gibco	Cat# LS11360070
Glutamax	Gibco	Cat# LS17504044
Antibiotic-antimycotic	Gibco	Cat# LS15240062
Poly-D-lysine	Millipore Sigma	Cat# P6407
Papain dissociation enzyme	Worthington Biochemical	Cat# LK003178
Hanks' Balanced Salt solution	Cytiva Life Sciences	Cat# SH3026801

Experimental Models: Organisms/Strains		
<i>y1 w*; P{w[+m*]} = GAL4}54C</i>	<i>Drosophila melanogaster</i>	BDSC_27328
<i>P{NinaE-GD6220} (Rh-ND42 RNAi)</i>	<i>Drosophila melanogaster</i>	BDSC_76598
<i>P{NinaE-GD11094} (Rh-Marf RNAi)</i>	<i>Drosophila melanogaster</i>	BDSC_76597
<i>y1 w*; PBac{UAS-hAPOE.2.C112.C158}VK00037</i>	<i>Drosophila melanogaster</i>	BDSC_76604
<i>y1 w*; PBac{UAS-APOE3.C112, R158}VK00037</i>	<i>Drosophila melanogaster</i>	BDSC_76605
<i>y1 w*; PBac{UAS-APOE4.R112, R158}VK00037</i>	<i>Drosophila melanogaster</i>	BDSC_76607
<i>y1 sc* v1 sev21; P{TRiP.HMS00653}attP2</i>	<i>Drosophila melanogaster</i>	BDSC_32866
<i>y1 v1; P{TRiP.HMC02373}attP2</i>	<i>Drosophila melanogaster</i>	BDSC_55241
<i>y1 v1; P{TRiP.HMS01939}attP40</i>	<i>Drosophila melanogaster</i>	BDSC_39021
<i>y1 v1; P{TRiP.HMJ21356}attP40</i>	<i>Drosophila melanogaster</i>	BDSC_53971
<i>y1 v1; P{TRiP.JF02883}attP2</i>	<i>Drosophila melanogaster</i>	BDSC_28048
<i>y1 sc* v1 sev21; P{TRiP.HMS01795}attP2</i>	<i>Drosophila melanogaster</i>	BDSC_38328
<i>y1 sc* v1 sev21; P{TRiP.HMS01892}attP40</i>	<i>Drosophila melanogaster</i>	BDSC_38976
<i>y1 v1; P{TRiP.JF01627}attP2</i>	<i>Drosophila melanogaster</i>	BDSC_31150
<i>y1 sc* v1 sev21; P{TRiP.HMS03722}attP2</i>	<i>Drosophila melanogaster</i>	BDSC_54461
<i>y1 v1; P{TRiP.JF01628}attP2</i>	<i>Drosophila melanogaster</i>	BDSC_31151
<i>y1 sc* v1 sev21; P{TRiP.HMS02875}attP2</i>	<i>Drosophila melanogaster</i>	BDSC_44579
<i>P{KK105547}VIE-260B</i>	<i>Drosophila melanogaster</i>	VDRC_v106127,
<i>P{KK102631}VIE-260B</i>	<i>Drosophila melanogaster</i>	VDRC_v101164,
<i>y1 sc* v1 sev21; P{TRiP.HMS01858}attP40</i>	<i>Drosophila melanogaster</i>	BDSC_38944
<i>w1118 P{GD11710}v22180</i>	<i>Drosophila melanogaster</i>	VDRC_v22180
<i>w1118; P{GD8448}v18396</i>	<i>Drosophila melanogaster</i>	VDRC_v18396
<i>y1 sc* v1 sev21; P{TRiP.GL01873}attP40</i>	<i>Drosophila melanogaster</i>	BDSC_67937
<i>y1 sc* v1 sev21; P{TRiP.HMC06027}attP40</i>	<i>Drosophila melanogaster</i>	BDSC_65080
<i>y1 v1; P{TRiP.HMS01824}attP40</i>	<i>Drosophila melanogaster</i>	BDSC_38356
<i>y1 sc* v1 sev21; P{TRiP.HMS01070}attP2</i>	<i>Drosophila melanogaster</i>	BDSC_34596
<i>y1 v1; P{TRiP.GL01278}attP2/TM3, Sb1</i>	<i>Drosophila melanogaster</i>	BDSC_41850
<i>y1 sc* v1 sev21; P{TRiP.HMC04934}attP40</i>	<i>Drosophila melanogaster</i>	BDSC_58190
<i>y1 sc* v1 sev21; P{TRiP.HMC04971}attP40</i>	<i>Drosophila melanogaster</i>	BDSC_57777
<i>y1 v1; P{TRiP.HMS01821}attP40</i>	<i>Drosophila melanogaster</i>	BDSC_38353
<i>y1 sc* v1 sev21; P{TRiP.HMC05641}attP40</i>	<i>Drosophila melanogaster</i>	BDSC_64606
<i>SJL/J</i>	<i>Mus musculus</i>	RRID:IMSR_JAX:000686
<i>B6S JL- Tg(APPSwFLon, PSEN1* M146L * L286V)6799 Vas/Mmjx</i>	<i>Mus musculus</i>	RRID:IMSR_JAX:033247
<i>y1 w1118; PBac{y+-attP-3B}VK00037</i>	<i>Drosophila melanogaster</i>	BDSC_9752
Oligonucleotides		
cindr_Exon3-4_F	CCTATGACTGGTAACCTTTG	
cindr_Exon4_R	GCTGCTCCAGATTAGGTAGT	
Ap-2a_Exon2-3_R	CCTCTTGCTTTGCAGTA	
Ap-2a_Exon2_F	AGCTGAAGGGTGTGAAGTCG	
lap_Exon8-9_F	TACGCAGTCATCAAGCTCGG	
lap_Exon9_R	TCATAGCGGCTTCCTCTTCG	
amph_Exon2-3_F	CATAAGATGTGTCGCGCCG	
amph_Exon3_R	CCACAGACTTCCGAGGCAC	

spri_Exon12-13_F	CCCTGGACTGGCGCTCCA	
spri_Exon13_R	ACTTCACGGGTGGTGGTGT	
lrp1_Exon5-6_R	GCTGGACAAGGACCTTATCG	
lrp1_Exon5_F	CAGCGGGCGCATCAATAGT	
lpr2_Exon9-10_F	GTAGCAAGCGTCATCTATG	
lpr2_Exon10_R	TGTGGCGTCCCATTCTTCTC	
Argos_T6_attB1_F	GGGGACAAGTTGTACAAAAAA AGCAGGCTTCACCATGCCCA CCACTTTAATGCTGCTGC	
Argos_T6_attB1_R	GGGGACCACTTGTACAAGAA AGCTGGGTCCCTAGCTTTGG CGCGGGCCAGCAACTCC	
CG34120_F	ATGGTCCTGGGTCTGATTGT	
CG34120_R	AACACAGGCGAAGCTAAAGG	
CG31731_F	TTCCTAGATCCCAAGACTTAC ATGA	
CG31731_R	GTTCAAGTTGTCCGAAATTAG CG	
ABCA_F	GTTATAGAGCTGGTGCTGCC	
ABCA_R	GCAACGAATGTTGCAGCAGA	
CG1494_F	AACAGGATCCACTGATGGGT	
CG1494_R	AGATACCACTGCCAGACGA	
CG8908_F	AAGAAGTCGAGGACCAGTCG	
CG8908_R	GTACTTCTCGCTGACAGTGC	
CG31213_F	CGTGCAAACCTGAACGTACT	
CG31213_R	CGGTTGGATAGCTTGGCTT	
CG42816_F	TCTGAAACCGAGTCATTGCG	
CG42816_R	TTCCGTTCATCCTCATGCTG	
CG43672_F	TTACCCAAAGTCGTGATGCG	
CG43672_R	TCCTCAACGATCAGCGTAGT	
VPS26_Exon1-2_F	CGGTATCCGGCAAGGTGAAC	
VPS26_Exon2_R	CGTGGTGGTTACCCGGTCG	
VPS35_Exon2-3_F	GCGAAGTGGCAAGACAAGTG	
VPS35_Exon3_R	TGTCCATTGGGTCTGCACG	
Recombinant DNA		
UAS-ArgosSS::Peptide	This study	
pDONR221 entry vector	ThermoFisher	Cat # 12536017
pGW-attB-HA	Bischof et al., 2012	
Software and Algorithms		
FIJI	Schindelin, <i>et al.</i> , 2012	
Microsoft Excel 365	Microsoft Corporation	
Adobe Illustrator 2020	Adobe	
Adobe Photoshop 2020	Adobe	
GraphPad Prism 8	GraphPad	
Other		
A-Chamber Animal Cage Enclosure	BioSpherix	Cat # A66274P
ProOx 360 High Infusion Rate O2 Controller	BioSpherix	Cat # P360

Figure 1

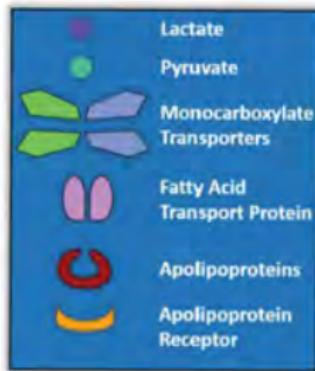
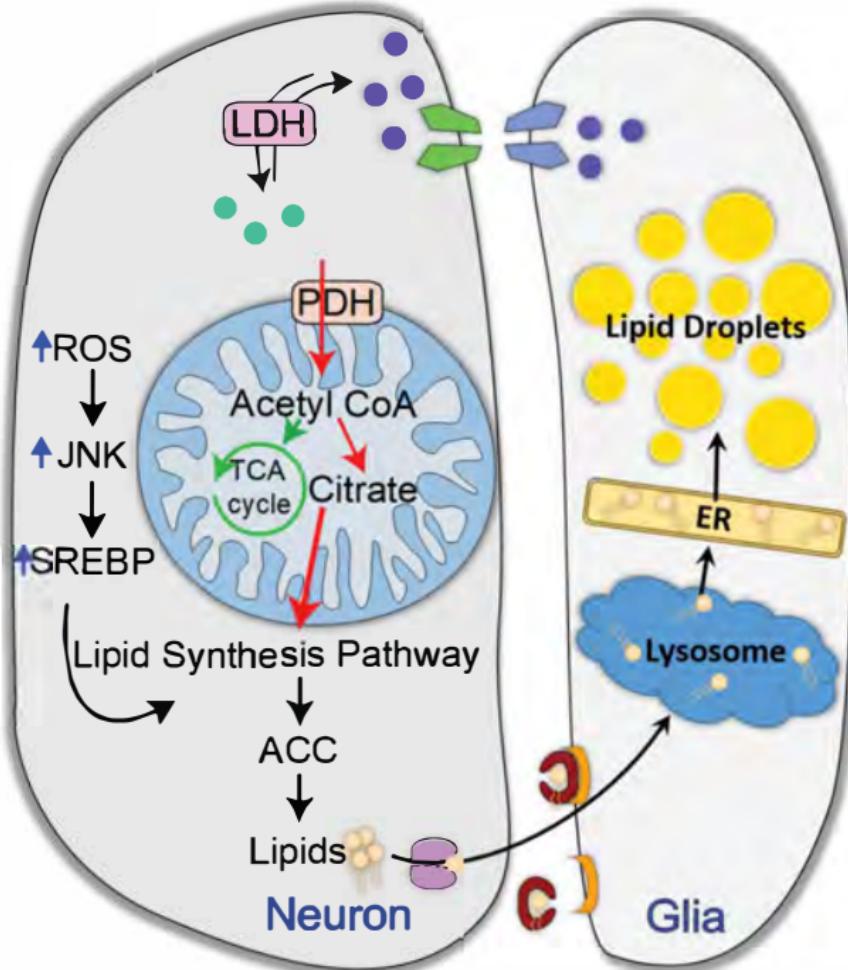
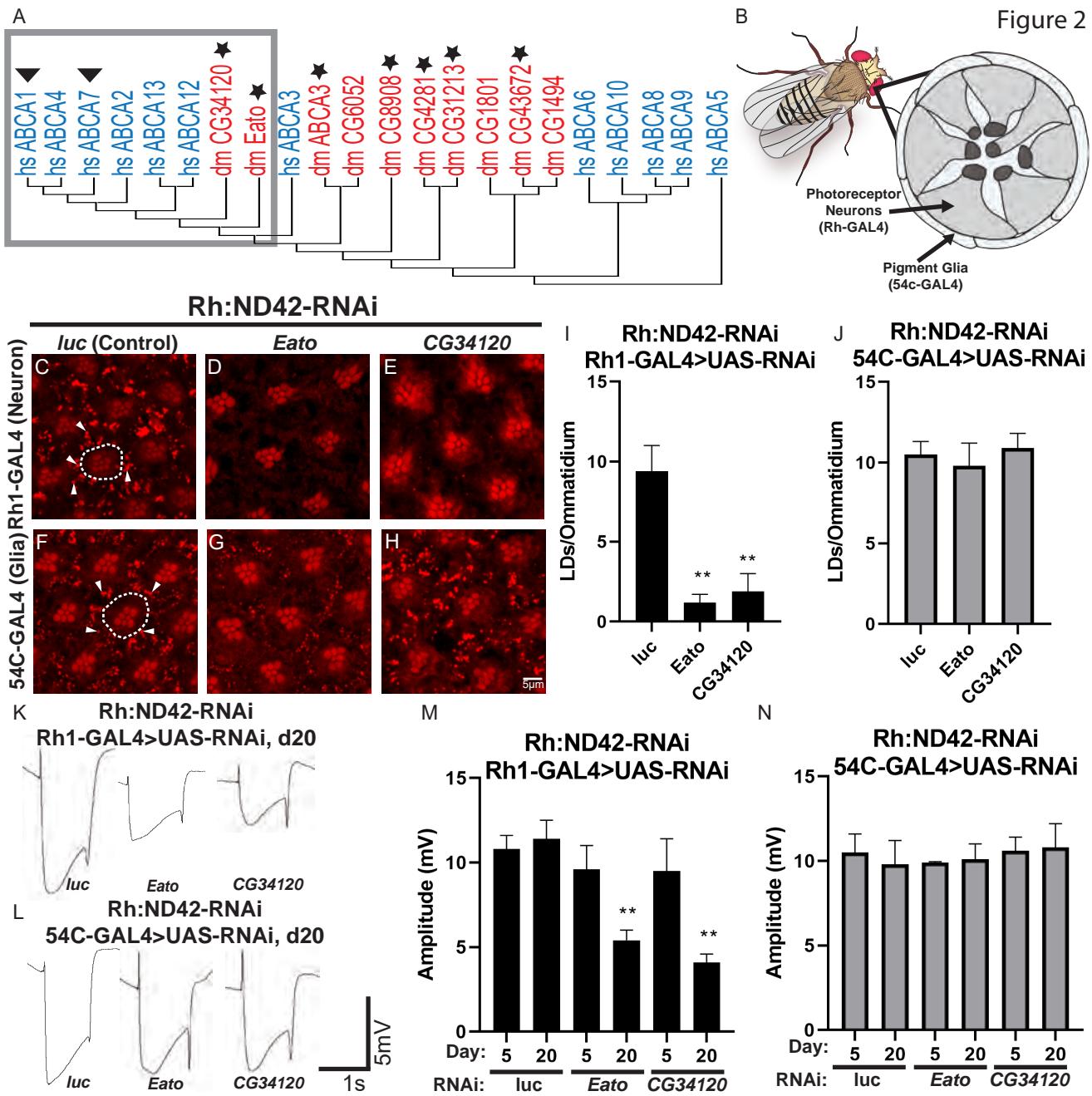
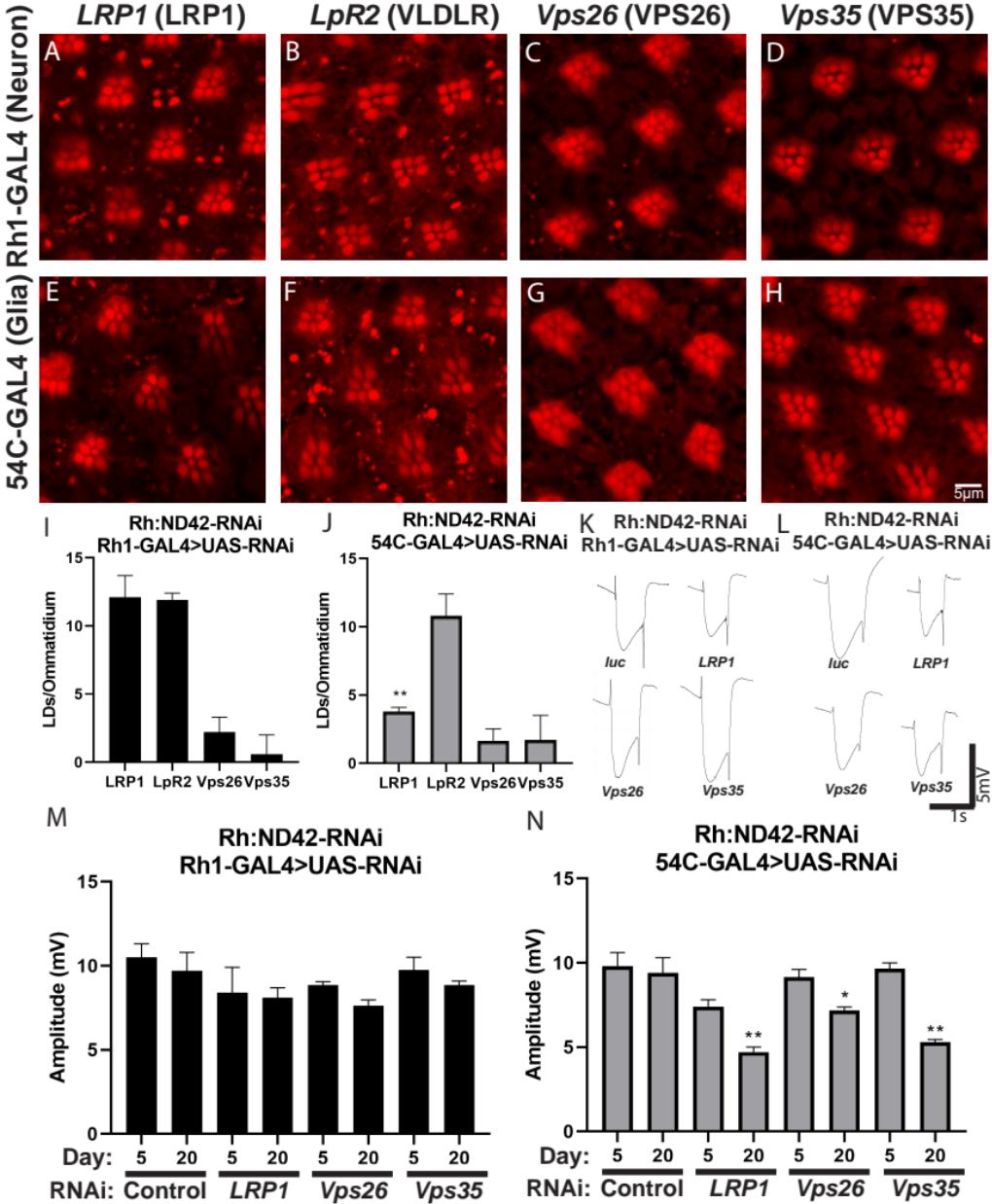





Figure 2

Rh-ND42 RNAi

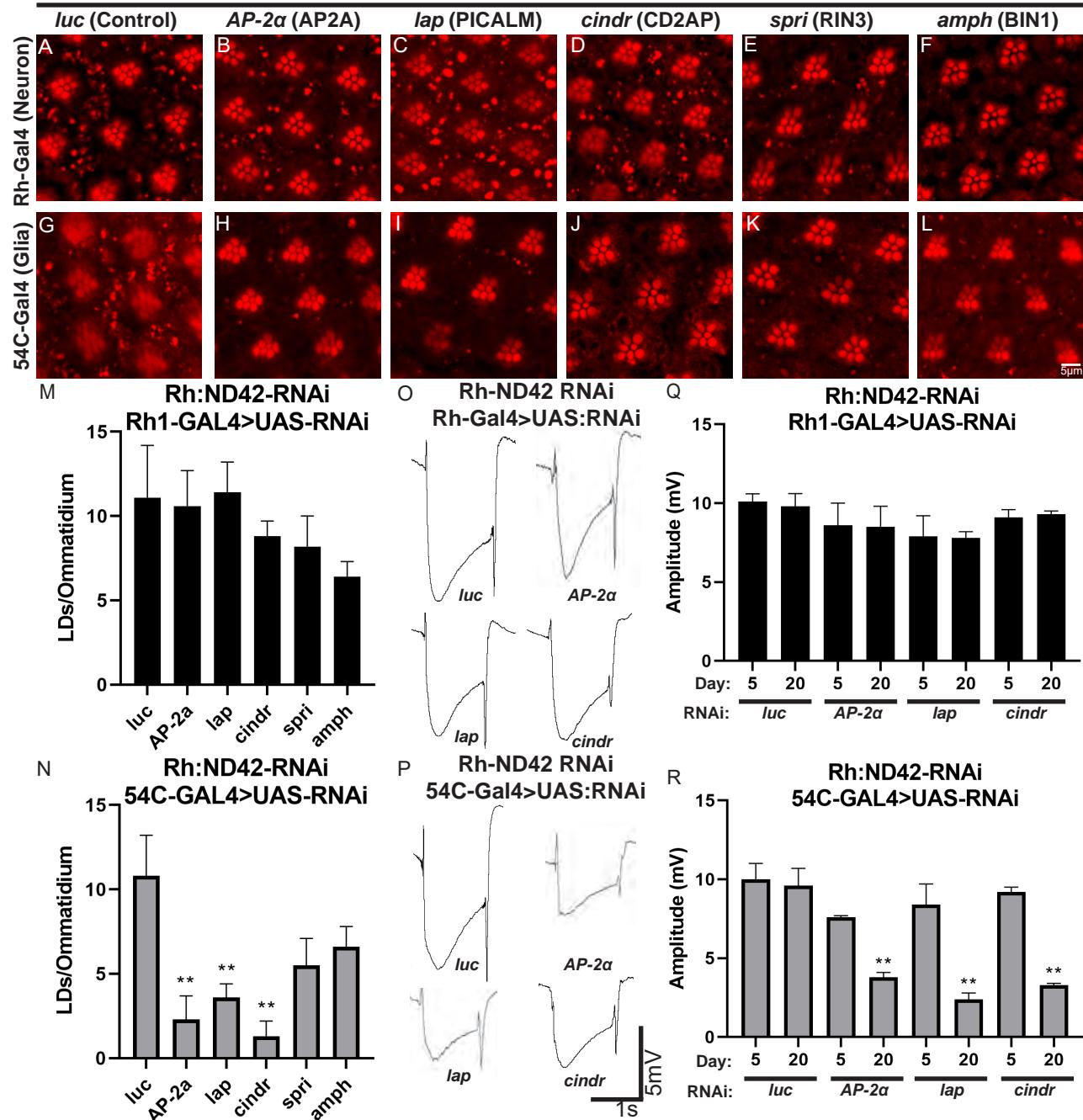
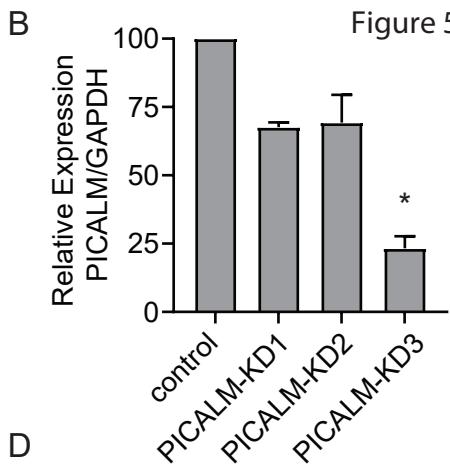
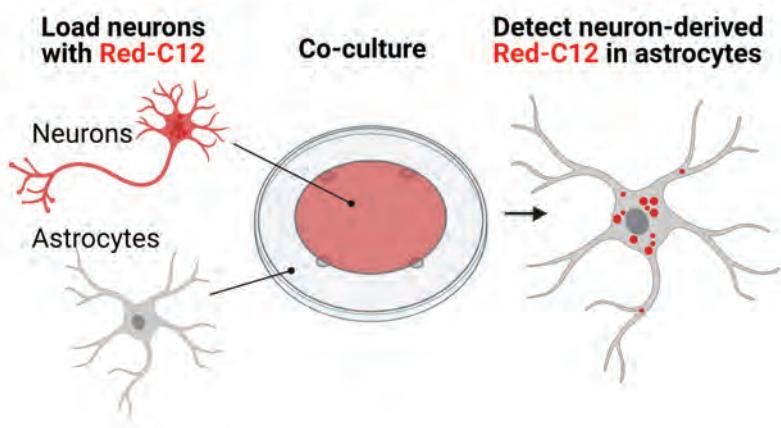
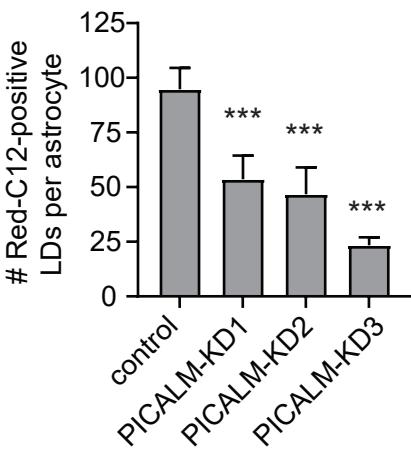
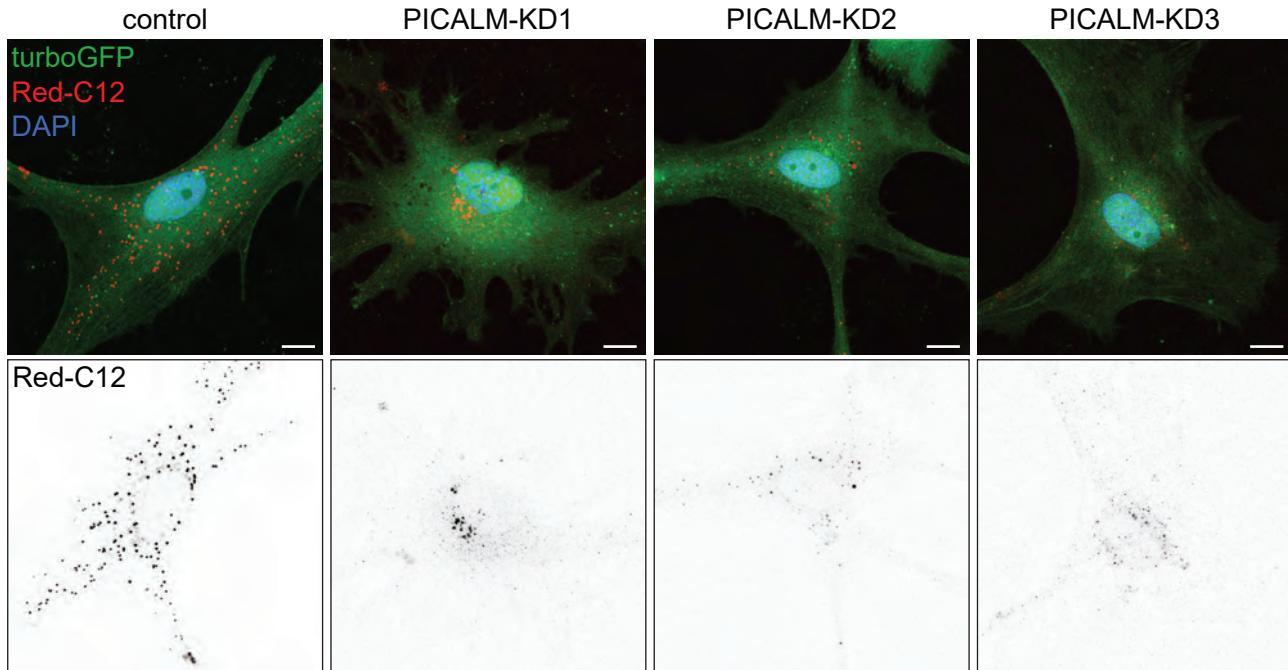
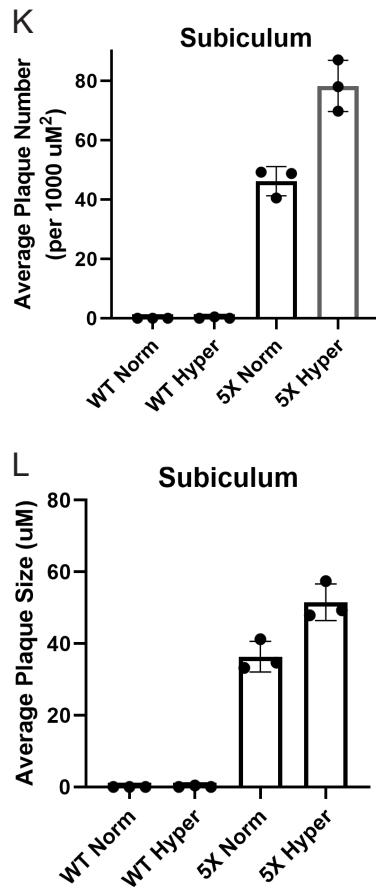
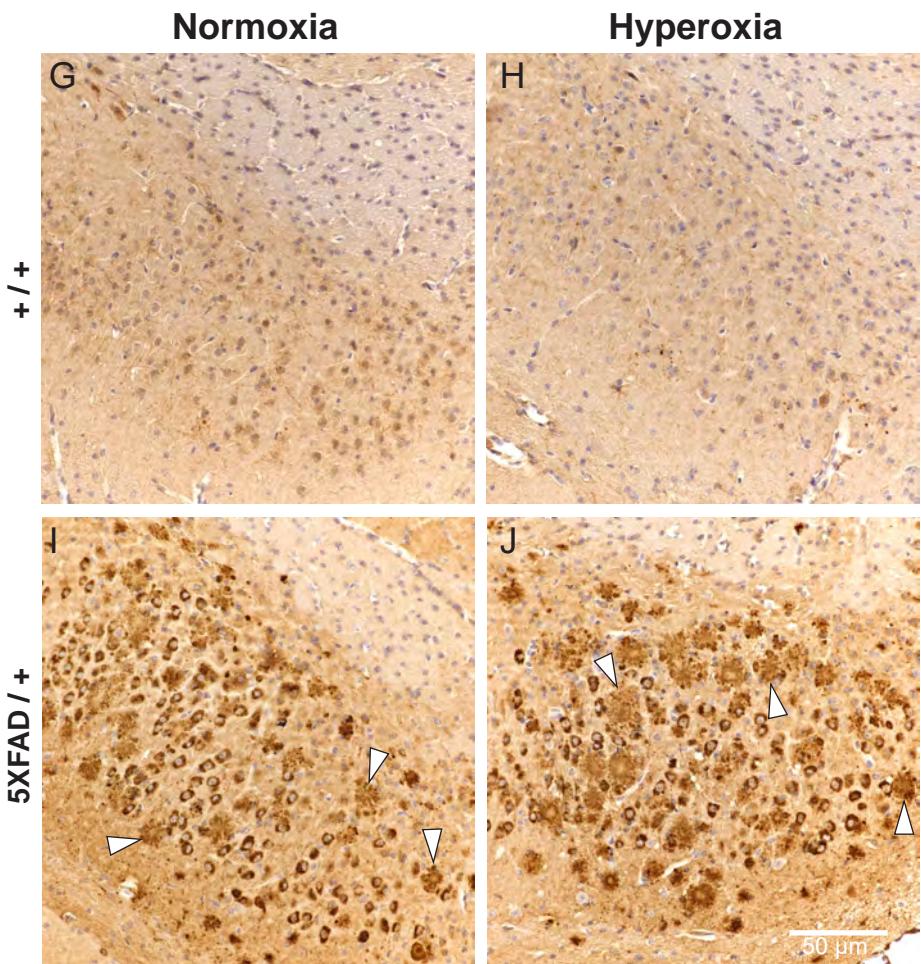
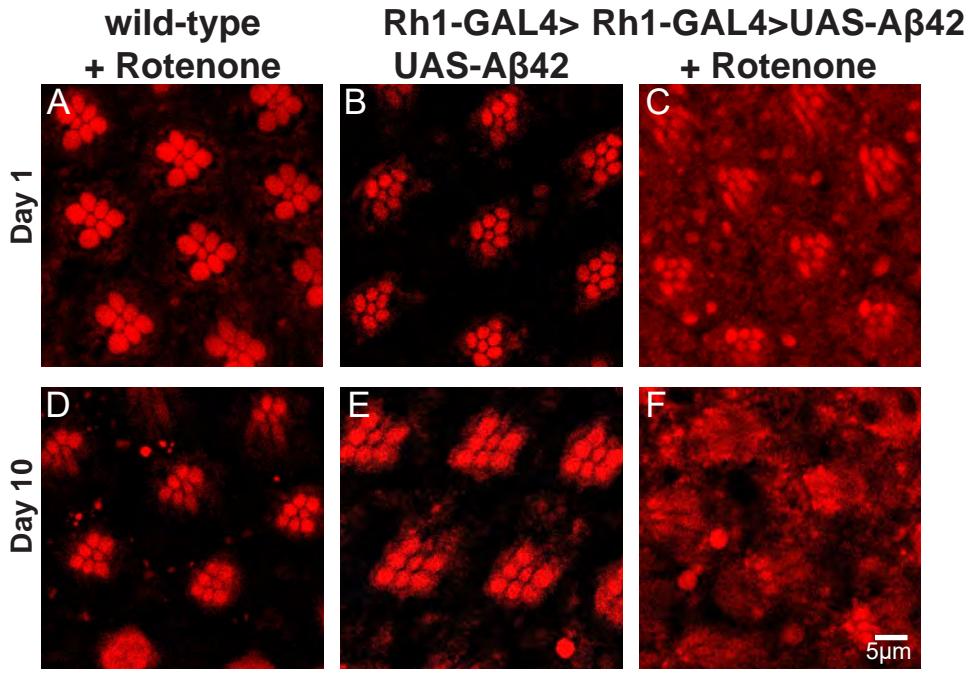
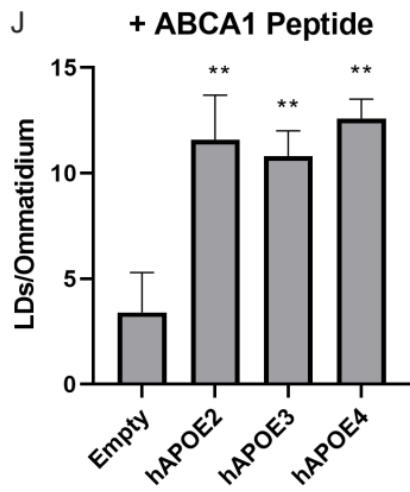
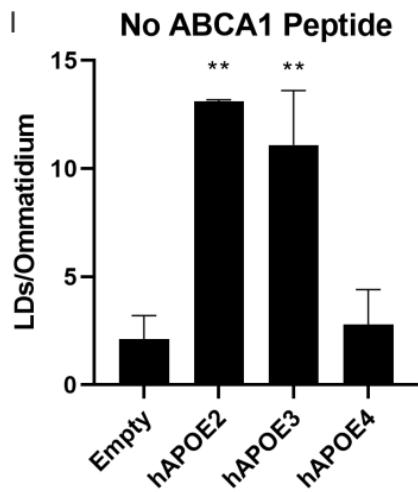
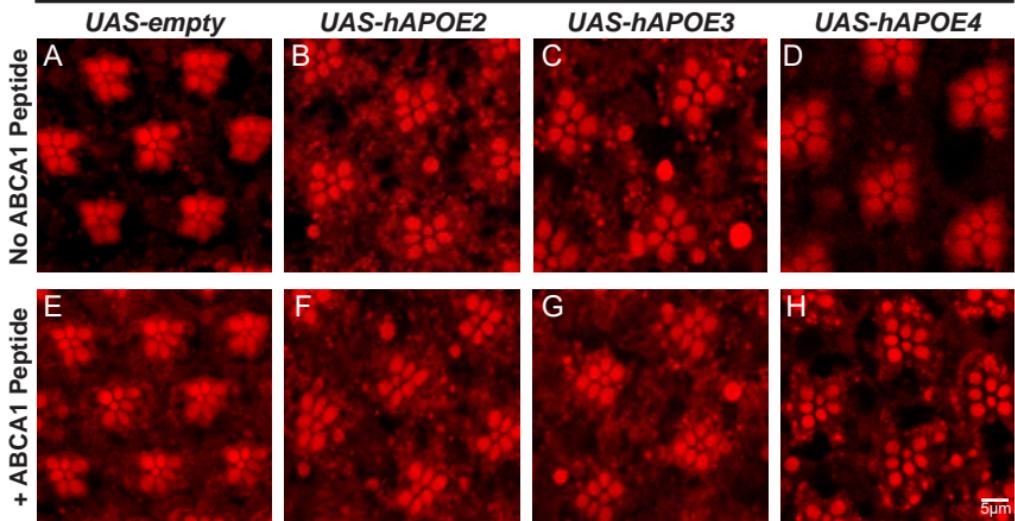
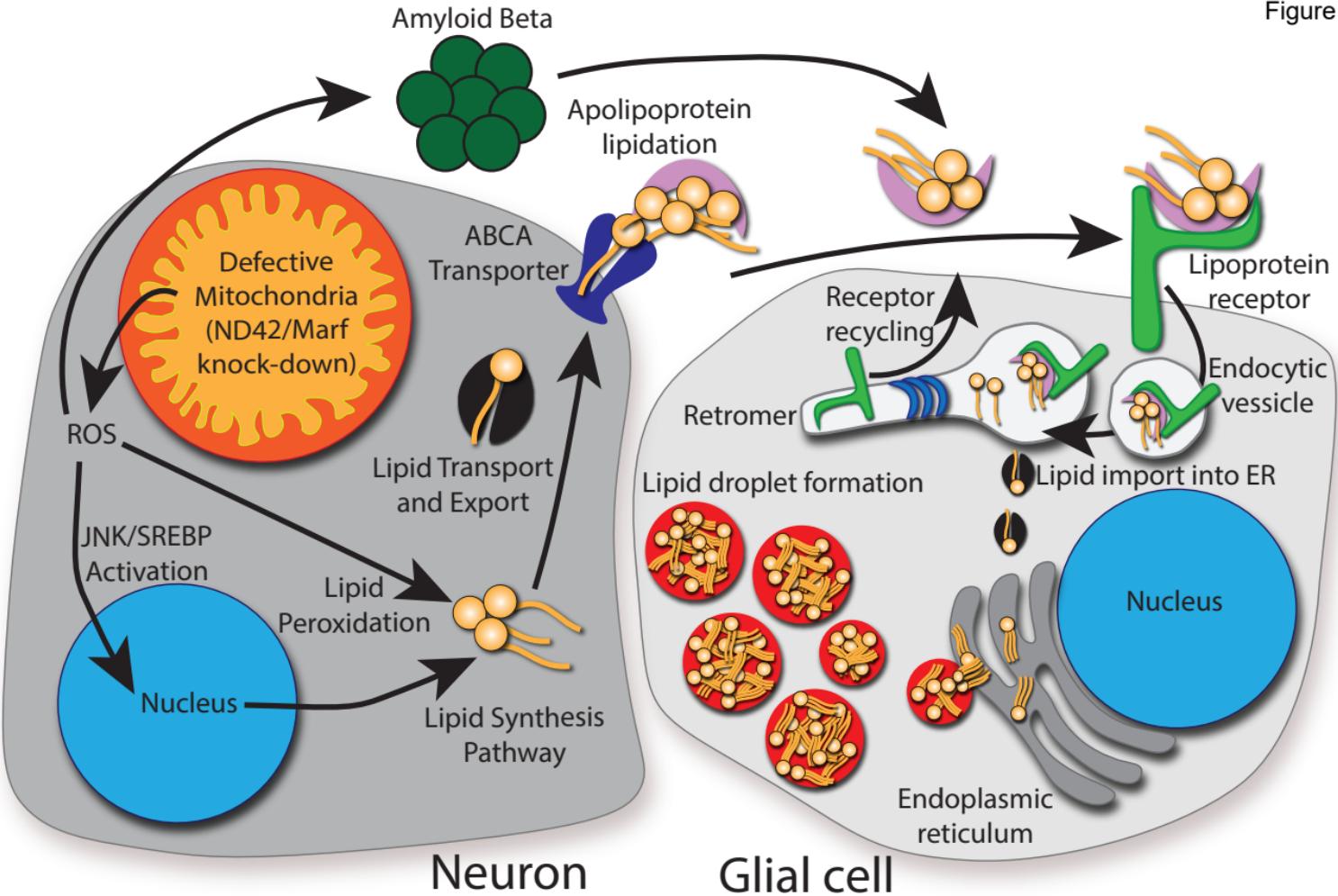
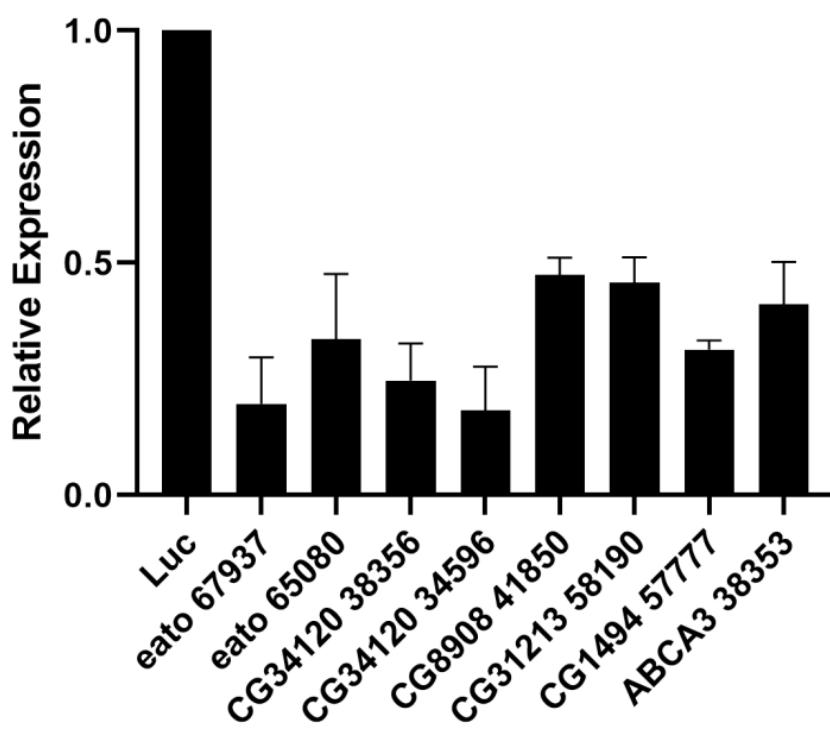
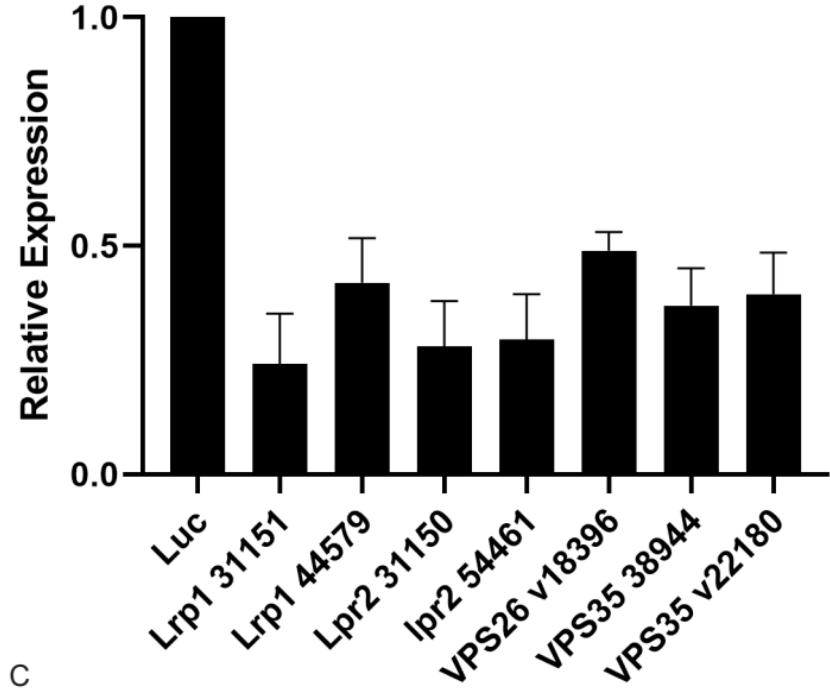









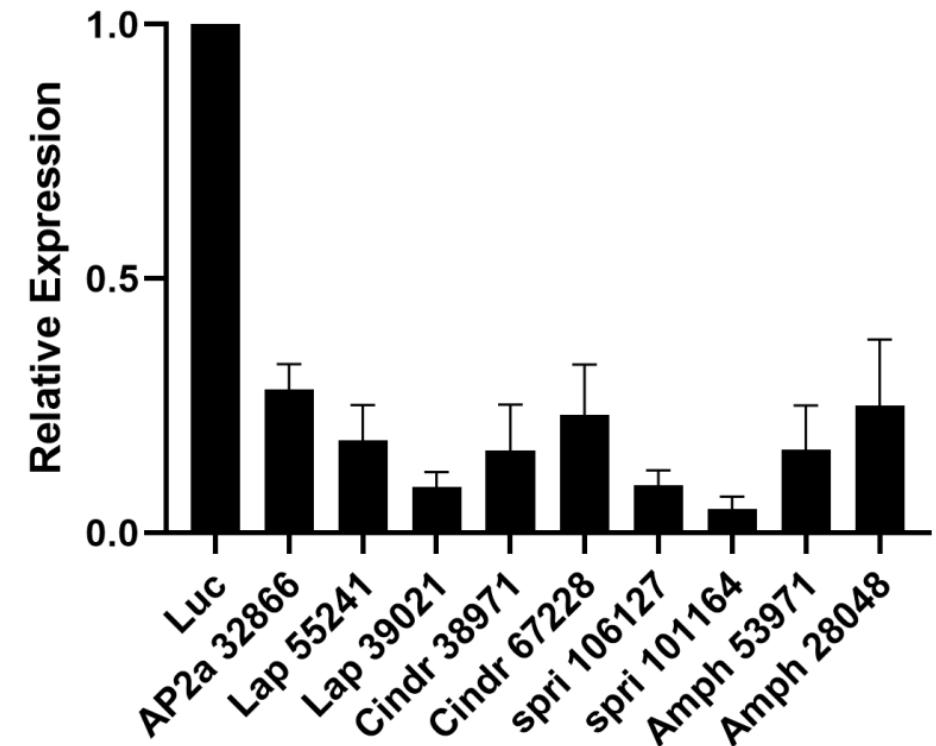
Figure 5

C**D****E**

Figure 6


Figure 8


A

B

C

1 **Figure Legends**

2 *Figure 1. Neuron-to-glia lipid transfer for lipid droplet formation.*

3 Neurons and glia in the *Drosophila* visual system have a tightly regulated method of lipid
4 production, transfer, and lipid droplet (LD) formation. Glia produce and transfer lactate
5 through monocarboxylate transporters into neurons. Neurons convert lactate into
6 pyruvate which feeds the TCA cycle in well-functioning mitochondrial. In defective
7 mitochondria, ROS and citrate is produced which drives the synthesis of lipids by using
8 Acetyl-CoA. Lipids are transported intracellularly via FatP and extracellularly via
9 apolipoproteins where they are taken up in surrounding glia and incorporated into LDs.

10 Adapted from Liu *et al.* (2017)

11 *Figure 2. Two ABCA transporters are required in neurons for LD formation in glia.*

12 (A) Gene tree of fly (red) and human (blue) ABCA transporter protein sequences. Human
13 ABCA1 and ABCA7 (triangles) have been implicated as AD risk genes. Stars indicate
14 the fly genes that were assayed in this study. Grey box indicates monophyletic grouping
15 of closest-related fly genes to AD risk genes and their paralogs. *Eato* and *CG34120* are
16 the closest homologs to the risk genes *ABCA1* and *ABCA7*.

17 (B) The *Drosophila* eye was utilized in this study as a model of lipid transfer between
18 neurons and glia. There are 7 visible photoreceptor neurons (with central rhabdomeres) in
19 each optical section through a fly ommatidium, which are surrounded by pigment glia.

20 (C-J) Lipid droplet analysis in fly retina. To induce ROS specifically in photoreceptor
21 neurons, an RNAi against *ND42*, a mitochondrial complex I subunit is expressed under
22 the control of the Rhodopsin (Rh)-GAL4 driver. Animals are reared at 29°C under 12-
23 hour light/dark conditions. ROS in neurons induces glial LD formation in control animals
24 (C and F). The photoreceptor rhabdomeres stain positive with Nile red but photoreceptors
25 (dashed lines) do not accumulate LD. In contrast, pigment glia accumulate LD
26 (arrowheads). Knockdown of *Eato* and *CG34120* in neurons (D-E), but not in glia (G-H),
27 suppress LD formation, quantified in (I-J), demonstrating a critical role for these genes in
28 neurons for LD formation.

29 (K-N) To assess the functional consequences of the lack of LD formation we performed
30 electroretinograms (ERGs) at day 5 and day 20. Animals were housed at 29°C under 12-
31 hour light/dark conditions, $n \geq 10$ animals per genotype. Representative ERG traces from
32 animals with genotypes indicated. ERG amplitude quantification (K and L) show that
33 glial knock down of either *Eato* or *CG34120* gene tested does not affect ERG amplitude.
34 However, neuronal knock-down of these genes lead to a dramatic reduction of ERG
35 amplitude over time, showing a progressive neurodegeneration. Hence, ROS induced LD
36 formation in glia provide a protection against neurodegeneration.

37
38 *Figure 3. The APOE receptor, LRP1, and retromer components Vps26 and Vps35 are required
39 for LD formation.*

40 (A-J) LD analysis in fly retina. ROS is induced in neurons and RNAi directed against the
41 apolipoprotein receptors (*LRP1* and *LpR2*) or genes critical for retromer function (*Vps26*
42 and *Vps35*) are expressed in neurons (Rh-Gal4, A-D) and pigment glia (54c-Gal4, E-H).
43 Animals were reared at 29°C under 12-hour light/dark conditions. *LRP1* is required in
44 glia (E) but not in neurons (A) to form LD whereas *LpR2* is not required in either cell (B),

46 F). In contrast, the retromer proteins are required in both neurons and glia to form LD (C-
47 D, G-H). LD number per ommatidium is quantified (I-J).

48 (K-L) ERG assays were performed, as above, to assess neurodegeneration. Representative
49 traces from animals with genotypes are shown (K-L). Quantification of ERG amplitude
50 (M-N). Glial knockdown of *LRP1*, *VPS26*, or *VPS35* inhibits LD formation and is
51 associated with an age-dependent neurodegeneration, consistent with a neuroprotective
52 role of glial LD. In contrast, despite LD formation defects when *VPS26* or *VPS35* were
53 knocked down in neurons, no or a mild neurodegeneration occurs suggesting ROS
54 production or its effects are abrogated.

55

56 *Figure 4. Alzheimer's disease-associated GWAS genes are required in glia for LD formation*
57 *upon neuronal ROS induction.*

58 (A-N) Lipid droplet analysis in fly retina. ROS is induced in neurons and RNAi directed
59 against homologs of 5 GWAS genes in photoreceptor neurons (A-F) or glia (G-L).
60 Animals are housed at 29°C under 12-hour light/dark conditions. Expression of RNAi
61 against any genes tested in neurons do not affect the formation of LD in glia significantly
62 (A-F). In contrast, RNAi targeting *AP-2a*, *lap*, and *cindr* (but not in a statistically
63 significant manner in *spri* and *amph*) in glia reduced LD formation significantly (G-L) as
64 quantified (M-N).

65 (O-R) ERG assays were performed to assess neurodegeneration. Animals are housed at 29°C
66 under 12-hour light/dark conditions, $n \geq 10$ animals per genotype. Representative traces
67 (O-P) and amplitude quantification (Q-R) demonstrate that neuronal knock down of any
68 gene tested does not affect ERG amplitude. In contrast, glial knock-down of the genes
69 lead to a reduction in LD formation (*AP-2a*, *lap*, and *cindr*) led to a significant reduction
70 of ERG amplitude over time, showing a progressive neurodegeneration. Hence, these
71 genes are required in glia to take up peroxidated lipids and their loss promotes
72 neurodegeneration.

73

74 *Figure 5. Lipid transfer between neurons and astrocytes is blunted by knockdown of PICALM.*

75 (A) Astrocytes were transduced with lentivirus expressing non-targeting shRNA (control), or
76 three independent PICALM targeting shRNAs (KD1-3). Cell lysates were analyzed by
77 Western blot for PICALM levels and GAPDH as a loading control.

78 (B) Levels of PICALM from transduced astrocytes were quantified and normalized to
79 GAPDH control. Mean \pm SEM, Kruskal-Wallis test with Dunn's posttest * $p = 0.05$
80 compared to control, $n = 3$ from three independent experiments.

81 (C) Schematic of Red-C12 transfer assay.

82 (D) Quantification of Red-C12-positive lipid droplets (LDs) in astrocytes. Mean \pm SEM,
83 One-way ANOVA with Dunnett's posttest *** $p < 0.001$ compared to control, $n = 6$ from
84 three independent experiments.

85 (E) Representative maximum intensity projections of confocal images of transduced
86 astrocytes following the assay. TurboGFP reporter expression marks transduced cells.
87 Scale bars are 10 μ m.

88

89 *Figure 6. Elevated ROS and the presence of A β 42 synergize to induce neurodegeneration in flies*
90 *and mice.*

91 (A-F) Lipid droplet analysis in fly retina. Animals are housed at 29°C under 12-hour
92 light/dark conditions with food changed daily; representative images of ≥10 animals per
93 genotype. Wild-type flies exposed to 25 μM rotenone food at (A) 1 day or (D) 10 days
94 post eclosion were compared with Aβ42-expressing flies at (B) 1 day post eclosion or
95 (E) 10 days post eclosion and with Aβ42-expressing flies exposed to 25 μM rotenone
96 food at (C) 1 day post eclosion and (F) 10 days post eclosion. Note the absence of LD
97 formation with either treatment but the dramatic increase in diffuse Nile red staining and
98 the demise of PR by day 10 showing that ROS and Aβ42 synergize to cause the demise
99 of neurons.

100 (G-L) Aβ42 immunohistochemical analysis of 4 mo. old mouse brain sections from wild-
101 type mice reared in normoxic (G) or hyperoxic (H) conditions compared to 5XFAD
102 mice reared in normoxic (I) or hyperoxic (J) conditions for 3 mos. prior to sacrifice.
103 Arrowheads indicate plaques, n=3/genotype and treatment condition. Quantification of
104 average plaque number (K) or plaque size (L) in the subiculum of mice from G-J is
105 elevated in Aβ-expressing mice exposed to hyperoxia, showing that ROS induction
106 enhances plaque formation.

107

108 *Figure 7. An ABCA1 agonist peptide rescues LD formation in the presence of APOE4.*

109 (A-J) LD analysis in fly retina. ROS was induced in photoreceptor neurons, as previously
110 reported (Liu et al., 2015, 2017), using an RNAi against *marf*, the fly ortholog of
111 mitofusin, under the control of Rh-GAL4. Animals are reared at 29°C under 12-hour
112 light/dark conditions; representative images of ≥10 animals per genotype. We utilized a
113 previously characterized allele of *Glial Lazarillo* (Glaz-T2A:Gal4). LD formation is
114 inhibited in Glaz-T2A-Gal4/+ flies but can be restored by expressing human APOE2 or
115 APOE3, but not APOE4. An ABCA1 agonist peptide was genetically encoded in the fly
116 and expressed in the human APOE variant flies to assess LD formation. Expression of
117 the peptide does not affect LD formation in the presence of APOE2 or APOE3, but fully
118 restores LD formation in the APOE4 expressing flies (E-H) and quantified (I-J) showing
119 that LD formation is strongly enhanced by this peptide.

120

121 *Figure 8. Model of lipid droplet accumulation and players identified in this study.*

122 We propose a model in which genetic (loss of ABCA, endocytic, or retromer genes)
123 together with environmental insults (ROS) sensitize neurons to the presence of Amyloid
124 accumulation to induce neurodegeneration. It is likely that this synergy between
125 multiple insults severely exacerbates neuronal loss in disease. We demonstrated that
126 lipid transfer between neurons and glia requires neuronal ABCA transporters, glial
127 apolipoprotein receptors, and the retromer, which is required for LRP1 recycling. We
128 propose that endocytosis of lipid particles are processed through lysosomes upon
129 endocytosis. Lysosomes degrade Aβ42 and the lipids are shuttled to the ER to form LD.
130 Hence, this transport of peroxidated lipids and Aβ42 provide dual protective effects.

131

132 *Supplemental Figure 1. Analysis of RNA expression of genes targeted in this study.*

133 (A-C) Quantitation of mRNA expression of the genes assayed after RNAi induction in fly heads.
134 Animals are housed at 29°C under 12-hour light/dark conditions. In each assay, a luciferase

135 RNAi is used as a negative control. RNAi induces at least a 50% reduction of the mRNA of all
136 genes assayed.