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Abstract 

Objective: Comprehensive denoising is imperative in fMRI analysis to reliably evaluate 

neural activity from the blood oxygenation level dependent signal. In real-time fMRI, 

however, only a minimal denoising process has been applied and the impact of insufficient 

denoising on online brain activity estimation has not been assessed comprehensively. This 

study evaluated the noise reduction performance of online fMRI processes in a real-time 

estimation of regional brain activity and functional connectivity. 

Approach: We performed a series of real-time processing simulations of online fMRI 

processing, including slice-timing correction, motion correction, spatial smoothing, signal 

scaling, and noise regression with high-pass filtering, motion parameters, motion derivatives, 

global signal, white matter/ventricle average signals, and physiological noise models with 

image-based retrospective correction of physiological motion effects (RETROICOR) and 

respiration volume per time (RVT). 

Main results: All the processing was completed in less than 400 ms for whole-brain voxels. 

Most processing had a benefit for noise reduction except for RVT that did not work due to 

the limitation of the online peak detection. The global signal regression, white 

matter/ventricle signal regression, and RETORICOR had a distinctive noise reduction effect, 

depending on the target signal, and could not substitute for each other. Global signal 
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regression could eliminate the noise-associated bias in the mean dynamic functional 

connectivity across time. 

Significance: The results indicate that extensive real-time denoising is possible and highly 

recommended for real-time fMRI applications. 

Keywords 

fMRI real-time processing, denoising, physiological noise, functional connectivity, brain-

computer interface, neurofeedback 

 

1 Introduction 

Real-time functional magnetic resonance imaging (rtfMRI) is a system for evaluating 

online brain activity as soon as an imaging volume is acquired [1, 2]. Applications of rtfMRI 

have expanded from online inspection of signal quality [1] to brain-computer interface for 

manipulating equipment with brain signal [3] and, most significantly, to neurofeedback for 

self-regulating brain activity [4, 5]. The primary challenge of rtfMRI is performing image 

processing in a short time. The processing includes image reconstruction, data processing for 

denoising and extracting the target signal, and displaying the processed signal. All these 

processes need to be done in less than the repetition time (TR) of volume acquisition, usually 

a few seconds or less than 1 s, to keep the pace of real-time data presentation without 

accumulating a delay. Thanks to the advancement of computational hardware, image 

reconstruction and signal presentation times are becoming negligibly short. In contrast, the 

time of data processing for signal denoising is still not negligible and its impact on signal 

quality has not yet been well-examined [6]. 

The blood-oxygen-level-dependent (BOLD) signal in fMRI contains various noise 

and requires many denoising steps to get a reliable estimate of neural activity. Although 

comprehensive denoising is critical to obtain a reliable estimate of brain activity, its 
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execution in a rtfMRI environment is so cumbersome that most rtfMRI applications have 

used minimal denoising steps compared to offline analyses. The real-time estimate of neural 

activity with a limited denoising process cannot have comparable quality to that available in 

offline processing. This could hinder the reproducibility of the result of rtfMRI applications 

like neurofeedback [7]. 

This limitation has been being compensated for through the implementation of a fast 

computation algorithm, the development of a processing method adapted for real-time 

computation, and the improvement of the computational capacity of personal computers and 

graphics processing units (GPU) [8-10]. Several packaged frameworks implementing 

advanced real-time processing have been released as well [11-13]. These improvements in 

real-time signal processing for fMRI have been reducing the gap between offline and real-

time evaluations of neural activity, which should improve the efficacy of rtfMRI applications 

[14]. 

Notwithstanding that these advanced online processing systems could boost the 

reliability of neural activity estimates in rtfMRI, their use has not been considered obligatory 

in rtfMRI applications. Moreover, the impact of real-time denoising steps on the quality of 

the neurofeedback signal has not been well-recognized, demonstrated by the fact that most 

neurofeedback studies do not report real-time denoising steps in detail [6]. The CRED-nf 

checklist [15] is one of the efforts to resolve this undesired state of the field by encouraging 

researchers to report details of the real-time processing steps, while it does not indicate what 

processing is recommended for which rtfMRI application. 

We have not known which type of real-time processing has a benefit in which rtfMRI 

application due to the dearth of studies quantifying the denoising benefit in improving 

neurofeedback signal quality. While a few reports are available about the benefit of fMRI 

real-time processing [8, 16-18], these reports focus on specific parts of the process and do not 
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cover comprehensive denoising steps as employed in offline analysis. Heunis, Lamerichs, 

Zinger, Caballero-Gaudes, Jansen, Aldenkamp and Breeuwer [6] has described this state of 

research and highlighted the need for a methodological study that quantifies the effect of the 

denoising steps on rtfMRI signal quality. 

This study aimed to comprehensively evaluate the benefit of fMRI real-time 

processing (RTP) in improving the quality of online neural activity estimates. Specifically, 

we performed RTP simulation analyses to evaluate how much each stage of RTP reduced the 

noise effect on the online estimate of voxel-wise signal and functional connectivity. The 

evaluated RTPs included slice-timing correction, motion correction, spatial smoothing, signal 

scaling, and regression of low-frequency fluctuations (high-pass filtering), motion 

parameters, motion derivatives, global signal, white matter/ventricle mean signals, and 

physiological noises modeled by the image-based retrospective correction of physiological 

motion effects (RETROICOR) [19] and the respiration volume per time (RVT) [20]. The 

examined noises included motion and physiological noises, which are the most prevalent 

noises in the fMRI signal and functional connectivity [21-25]. 

At evaluating the real-time processing performance, we should also consider the cost 

of computation time. If the benefit of an added process is negligible compared to its 

computational cost, there would be no need to use it in the limited time of rtfMRI. Also, since 

using more regressors in noise regression requires more scans before obtaining a usable 

signal to avoid overfitting [10], we should not include ineffective regressors in the real-time 

process. Thus, we evaluated the computation time of each processing and discussed the 

number of regressors as the cost of RTP. 

In addition, we examined the advantages and disadvantages of different approaches of 

GLM for real-time analysis, such as cumulative GLM (cGLM) and incremental GLM 

(iGLM) [8]. The cGLM performs an ordinary regression at each volume using the whole 
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history of available online data, while iGLM updates only the latest estimation without 

keeping data history. Most rtfMRI applications have used iGLM with its short computation 

time and small memory consumption. However, iGLM cannot update regressor values 

retrospectively. This limitation could be critical when a regressor is created online and can be 

improved by a retrospective update, such as high-pass filtering and physiological noise 

regressors. We demonstrated that this limitation of iGLM hinders real-time physiological 

noise regression performance so that cGLM is preferred in RTP when using physiological 

noise regression. 

This study performed a series of simulation analyses structured as follows. Firstly, we 

compared the incremental and cumulative GLM regarding their quality of online-made 

regressors, such as high-pass filtering and physiological noise models. Since the result 

indicated that cGLM is preferred for RTP, the simulated RTP system implemented cGLM. 

We used this system for the real-time processing simulation with resting-state fMRI data and 

rtfMRI neurofeedback task data targeting the left amygdala activation (LA-NF) [26]. To 

evaluate RTP's benefit in noise reduction, we calculated the amounts of variance explained 

by the motion and physiological noises in the real-time estimate. For the resting-state data, 

evaluation was conducted for voxel-wise signals and dynamic functional connectivity in the 

whole-brain regions. For the LA-NF task data, we conducted the noise analysis on the 

neurofeedback target signal and calculated the signals' correlation between the RTP and 

offline process to measure the integrity of the neurofeedback signal. 

 

2 Materials and Methods 

2.1 Human Data 

We performed the simulation analyses on fMRI resting-state data from 87 healthy 

participants and rtfMRI neurofeedback task data from 22 participants (14 major depressive 
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disorder patients). The Supplementary material, ‘fMRI samples for the simulation analyses’ 

describes the details about the participants. All human neuroimaging data were acquired in 

the studies [27] and [26] approved by the Western Institutional Review Board, Puyallup, 

WA. Human research in this study was conducted according to the principles expressed in 

Declaration of Helsinki. All subjects gave written informed consent to participate in the study 

and received financial compensation. 

2.2 Comparisons between the incremental and cumulative GLM 

Most rtfMRI applications with regression use incremental GLM (iGLM) [8], which 

calculates the latest estimates (beta and residual) without keeping data history. Although this 

has a notable advantage in its short computation time and small memory requirements, iGLM 

cannot update past regressor values because the current estimation is made based on a 

previous estimate. This could be a disadvantage in real-time processing when the regressor 

values are formed online and the regressor model could be improved with increasing sample 

points, such as high-pass filtering and physiological noise regressors. The cumulative GLM 

(cGLM), in contrast, performs an ordinary regression at each sampling, using the whole 

history of available online data [6]. While the cGLM may take a longer computation time 

than iGLM, the online update of the past regressor values could improve the accuracy of the 

online-made regressors. 

The aim of the present simulation analysis was to compare the quality of online-made 

regressors between the iGLM and cGLM approaches for high-pass filtering and physiological 

noise models. Specifically, we evaluated the frequency filtering performance of the high-pass 

filtering regressors and the accuracy of online-made physiological noise regressors of 

RETROICOR and RVT. 
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2.2.1 High-pass filtering regression 

The Legendre polynomial regressors and discrete cosine transform (DCT) basis sets 

have been used for high-pass filtering in AFNI (https://afni.nimh.nih.gov/) and SPM 

(https://www.fil.ion.ucl.ac.uk/spm/), respectively. We evaluated the frequency filtering 

performance of these regressors in iGLM and cGLM. We generated a random white-noise 

signal with a length of 250 samples, at a 2-s sampling interval and unit absolute power for all 

frequencies. GLM was applied to this signal with the Legendre polynomial or DCT 

regressors at 50, 100, 150, 200, and 250 lengths to simulate the real-time evaluation with a 

limited number of samples. Regressors in iGLM were made for the length of 250 TRs, and 

then the first part of them was extracted. This simulated that iGLM cannot update past 

regressor values—the same approach used in Bagarinao, Matsuo, Nakai and Sato [8]. In 

contrast, regressors in cGLM were updated at each length with the order adjustment (e.g., 

order of the Legendre polynomials or the cycles of DCT) for a designed pass frequency in 

each sampling length. The order of Legendre polynomials was calculated as 1 + floor(d/150), 

where d is the scan duration in seconds (default in AFNI). The threshold frequency of DCT 

was 1/128 Hz (default in SPM). The simulation was repeated 1,000 times with different 

random white noise signals. The frequency filtering performance was examined with the 

absolute power spectra of the residual signal. 

We also performed the same simulation for resting-state fMRI signals to examine the 

difference of GLM approaches in frequency-filtering performance. The resting-state images 

of 87 participants (see Supplementary material ‘fMRI samples for the simulation analyses’) 

were applied slice-timing correction, motion alignment, and spatial smoothing using the RTP 

simulation system (Supplementary material ‘RTP simulation system implementation’). Then, 

the high-pass filtering regression was applied to the signal time-course of voxels within the 

intersection of the brain mask and a signal mask (3dAutomask in AFNI was applied to the 
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functional images to make the signal mask). The signal in each voxel was normalized to z-

score before applying the GLM. The average result of the whole-brain voxels for all 

participants is reported. 

2.2.2 Physiological noise model 

RETROICOR and RVT regressors were evaluated in the online GLM comparison. 

We used AFNI's RetroTS.py with the default parameters to make the regressors. 

RETROICOR regressors were Fourier basis sets with the phase synchronized to cardiac or 

respiration signal time-course [19]. A basis set of four regressors was made for each of the 

cardiac and respiration signals. RVT is a respiration volume per time calculated by detecting 

the top and bottom peaks of the respiration time-course to measure respiration volume [20]. 

The five time-shifted regressors were made. 

The simulation examined how the online calculation of the RETROICOR and RVT 

regressors diverged from that in the offline calculation. We used respiration and cardiac 

signals recorded with resting-state fMRI (Supplementary material 'fMRI samples for the 

simulation analyses'). The simulation was initiated at the time equal to 70 s in order to wait to 

obtain enough samples to create the regressors. In both GLM approaches, the regressors were 

recalculated at every TR (= 2 s) using the accumulated history of cardiac and respiration 

signals from the start of the scan until the current TR. There was no difference in the 

regressor calculation between the two GLM approaches. The only difference was the update 

method of regressor values at GLM; in the cumulative approach (cGLM), all values were 

replaced in the updated regressor values, while in the incremental approach (iGLM), only the 

latest TR value was updated, which is an inevitable limitation of iGLM. We used Pearson 

correlation between the online and offline regressors to evaluate the quality of the online 

regressor. Mean correlation across participants was calculated by applying Fisher's z-
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transformation, averaging the transformed values, and then transforming back to the 

correlation coefficient. 

2.3 Implementation of fMRI real-time processing simulation system 

Figure 1 shows an overview of the simulation system. The WATCH module monitors 

a directory where a new fMRI volume file is created in real-time and loads it to send the data 

to the processing modules. In the simulation, we copied a pre-scanned image file volume-by-

volume to the monitored directory. The RTP sequence included slice-timing correction with a 

temporal shifting of sampling time (TSHIFT), motion correction with volume registration 

(VOLREG), spatial smoothing by convolving Gaussian kernel within a mask (SMOOTH), 

and noise regression (REGRESS) with cGLM. Signal scaling is done within the REGRESS 

module. Details of each process are in the Supplementary material (RTP simulation system 

implementation). The code for the simulation system is available on GitHub 

(https://github.com/mamisaki/fMRI_RTP_Simulation). 

2.4 Real-time processing simulation and offline analysis 

The simulation was performed on a Linux computer (Ubuntu 16.04 LTS) with dual 

Intel Xeon CPUs (Gold 6126, 2.6 GHz, 12 cores for each), 256 GB RAM, and an NVIDIA 

TITAN V GPU (5120 CUDA cores with 12 GB memory). The simulation was started by 

copying an fMRI volume file in the directory monitored by the WATCH module. The 

resting-state fMRI data of 87 participants and the rtfMRI neurofeedback task data of 22 

participants were used in the simulation. Their details are described in the Supplementary 

material, 'fMRI samples for the simulation analyses.' 

We tested ten types of RTP pipelines to evaluate the benefit of each processing step 

and regressor. Table 1 shows the process and regressors included in each pipeline. RTP0 

included only the volume registration (VOLREG) for motion correction, a conventional 

minimum RTP, used as a baseline of the evaluation. RTP1 added slice-timing correction 
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(TSHIFT) before VOLREG, and RTP2 added spatial smoothing (SMOOTH) to RTP1. From 

RTP3 to RTP9, noise models were regressed out. The regressors added at each RTP were 

high-pass filtering (HPF) with Legendre polynomials in RTP3, motion parameters (Mot) of 

three shifts and three rotations in RTP4, temporal derivatives of the motion parameters 

(dMot) in RTP5, global signal (GS, mean signal within a brain mask) in RTP6, white 

matter/ventricle mean signals (WM, Vent) in RTP7, RETROICOR (four cardiac and four 

respiration basis sets) in RTP8, and RVT (respiration volume per time with five time-shifted 

regressors) in RTP9. Details of each process and regressor are described in the 

Supplementary material (RTP simulation system implementation). The regression was done 

with cGLM. Residual volumes of the regression were used as the processed signal [17]. We 

also ran offline processing using AFNI (details are shown in the Supplementary material, 

‘Offline fMRI processing’). 

The computation time of each RTP was measured by the time from receiving a 

volume from the previous step to sending the processed volume to the next step in the 

simulation system. The start time of the WATCH module was the file creation time. 
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Table 1.  Real-time processing (RTP) pipelines. 

    REGRESS 

RTP pipeline TSHIFT VOLREG SMOOTH 
High-pass 

filtering 
Motion 

Motion 

derivative 

Global 

signal 

WM/Vent 

means 
RICOR RVT 

RTP0: VOLREG  ✓         

RTP1: +TSHIFT ✓ ✓         

RTP2: +SMOOTH ✓ ✓ ✓        

RTP3: +REG[HPF] ✓ ✓ ✓ ✓       

RTP4: +REG[Mot] ✓ ✓ ✓ ✓ ✓      

RTP5: +REG[dMot] ✓ ✓ ✓ ✓ ✓ ✓     

RTP6: +REG[GS] ✓ ✓ ✓ ✓ ✓ ✓ ✓    

RTP7: +REG[WM, Vent] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   

RTP8: +REG[RETROICOR] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

RTP9: +REG[RVT] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

VOLREG, volume registration for motion correction; TSHIFT, slice-timing correction; SMOOTH, spatial smoothing with convolving Gaussian kernel 

(FWHM=6mm); REGRESS (REG), regressing out a noise time-course; WM, white matter; Vent, ventricle; RVT, respiration volume per time.
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2.5 Noise amount in the real-time processed signals 

2.5.1 Evaluated signals 

For the resting-state data, we evaluated the noise amount in an RTP voxel-wise signal 

and dynamic functional connectivity (FC) time-course. A linear trend was removed from the 

voxel-wise signals of RTP0, RTP1, and RTP2. Dynamic FC was calculated for the detrended 

signal. For the RTP3 and the later pipelines, detrending was included in the high-pass 

filtering regression. Dynamic FC was calculated for all combinations of the 264 functional 

ROIs (6mm-radius spheres) defined by Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, 

Laumann, Miezin, Schlaggar and Petersen [28]. The ROIs in the MNI template space were 

warped into the participant’s native image space using the Advanced Normalization Tools 

(ANTs, http://stnava.github.io/ANTs/). 

We used two methods to calculate the dynamic FC; sliding-window correlation [29] 

and two-point algorithm [30]. The sliding-window correlation is a z-transformed Pearson 

correlation between ROIs within a time window [31]. A rectangular window of 5-TR width 

was used in the simulation. The window was moved at each TR to calculate the time-course 

of dynamic FC. The two-point algorithm assesses the agreement of change directions 

between ROIs. The feedback signal was given a binary value with positive reinforcement 

feedback (+1) when the two regions had the same change direction and no reinforcement 

feedback (0) when the change directions were different (if we wanted to train a participant to 

increase the connectivity). While the original introduction of the two-point method [30] used 

another ROI as a control to cancel a signal change unspecific to the target connectivity, we 

did not use a control ROI in the current simulation because another study [32] showed a 

control ROI is unnecessary when comprehensive noise reduction is applied. 

For the neurofeedback task data, the mean signal in the left amygdala region, which 

was the target signal in the self-regulation task [26], was extracted for the noise evaluation. 
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We applied the same procedures as for the voxel-wise signals of the resting-state data. The 

left amygdala mask was defined in the MNI template brain with FreeSurfer 

(https://surfer.nmr.mgh.harvard.edu/) segmentation and warped into an individual brain space 

using ANTs. 

2.5.2 Noise variance ratio 

The motion and physiological noise amounts in the RTP signal were measured by a 

variance ratio explained by motion, cardiac, and respiration noise time-courses. Specifically, 

we performed a multiple regression analysis for the RTP voxel-wise and dynamic FC signals 

with noise regressors to calculate the coefficient of determination. The coefficient of 

determination with noise regressors, Rn
2, indicates the variance ratio explained by noises. We 

used this measure as the noise amount in the RTP signal. The first 65 TRs (62 TRs plus three 

TRs before the steady state) were excluded from the regression analysis because the output of 

real-time regression with a small number of samples is unreliable due to overfitting [10]. 

The effect of the motion, cardiac, and respiration noises were evaluated 

independently. Noise regressors were calculated in an offline process. The motion noise 

regressor was a time-course of frame-wise displacement, calculated by the root sum of 

squared motion temporal derivatives. The cardiac noise regressors included heart rate (HR) 

[33] and the RETROICOR model [19]. The HR time-course was calculated using BioSPPy 

library in python (https://biosppy.readthedocs.io/en/stable/) from a pulse oximetry 

measurement, resampled at each TR, and convolved with the cardiac response function 

presented in Chang, Cunningham and Glover [33]. The RETROICOR regressors were 

calculated offline using AFNI’s RetroTS.py. The four basis regressors for the cardiac signal 

were extracted. 

The respiration noise regressors included the respiration variance (RV) [33, 34], the 

RETROICOR model, and RVT. The RV is a variance of respiration signal within a 3s-
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window centered at each TR [33]. The RV time-course was convolved with the respiration 

response function shown in Chang, Cunningham and Glover [33] and provided by Power, 

Lynch, Dubin, Silver, Martin and Jones [34]. The RETROICOR and RVT regressors were 

calculated offline using AFNI's RetroTS.py. The four basis regressors for the respiration 

signal and the five RVT regressors were used. 

In the noise regression for dynamic FC, the windowed calculation could obscure the 

temporal association between the noise regressors and the dynamic FC. For example, in the 

sliding-window dynamic FC, any motions within the time window could affect the current 

neurofeedback signal. However, if we evaluated only the immediate association between the 

noise and RTP signal, we could miss a delayed effect of the motion within a window. 

Therefore, we added windowed regressors, the mean and standard deviation of the noise 

regressors within the connectivity calculation window, to the noise regressors. For example, 

the motion noise regressors for the dynamic FC were composed of the frame-wise 

displacement (FD) at each TR and the sliding-window mean and standard deviation of the FD 

within the FC calculation window (five TRs for the sliding-window and two TRs for the two-

point method). If the node ROI signals were both affected by the same noise, their dynamic 

FC could increase when the standard deviation of the noise within the window was high. 

When the noise regressor is a variance measure (e.g., respiration variance), dynamic FC 

could associate with the mean noise regressor value within the window. We included these 

possible delayed noise effects in the present noise analysis. 

We also investigated the group-level association for participant-wise mean 

connectivity with the motion and physiological noises. Weiss, Zamoscik, Schmidt, Halli, 

Kirsch and Gerchen [18] indicated that subject-wise mean FC feedback signal could be 

correlated with breath rate. To investigate how RTP could eliminate this confounding effect, 

we calculated the mean dynamic FC across time and ROIs, and examined its association with 
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each participant's mean framewise displacement, standard deviation of heart rate, and 

standard deviation of respiration rate. Heart rate and respiration rate were calculated for each 

TR using the BioSPPy library, and then their standard deviations in a scan run were 

calculated for each participant. 

2.6 Integrity of the neurofeedback signal 

For the neurofeedback task data, we evaluated the benefit of RTP in improving the 

integrity of the neurofeedback signal. Integrity, in this case, refers to how well the signal 

reflects neural activation, free from noises. Although the signal amplitude relative to a rest 

block or the temporal contrast to noise ratio (TCNR) could be considered a measure of signal 

quality, we argue that these do not necessarily indicate the RTP benefit. For example, if the 

motion or physiological noise correlated with a self-regulation task, the task-related signal 

change could be larger for an RTP without noise corrections. Indeed, such a task-noise 

association has been reported in Weiss, Zamoscik, Schmidt, Halli, Kirsch and Gerchen [18]. 

TCNR could also be higher for an RTP with fewer noise corrections if a noise changed with 

the task time course. Such noise could reduce random signal fluctuation and increase the 

TCNR. 

Since the size of task-related signal change cannot be a reliable measure of 

neurofeedback signal integrity, we used the signal correlation between RTP and offline 

processing to evaluate the RTP benefit. Assuming that the offline processed signal has the 

best available quality, the RTP signal with a higher correlation with the offline processed one 

should have better neurofeedback signal integrity. We calculated the Pearson correlation 

between the RTP and offline processed signals in the left amygdala for each participant, 

applied Fisher's z-transformation and averaged across the participants for each RTP pipeline. 

2.7 Statistical analysis 
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Participant-wise average Rn
2 across the brain voxels or connectivity was compared 

between the RTP pipelines. Linear mixed-effect model analysis was applied to the average 

Rn
2 with a fixed effect of the pipeline and a random effect of the participant on the intercept. 

We used the lme4 [35] with the lmerTest package [36] in R language and statistical 

computing [37]. The ad-hoc comparison between pipelines was performed in a sequential 

way to test the individual effect of the real-time process and regressor (e.g., RTP1-RTP0 for 

evaluating the TSHIFT effect, RTP2-RTP1 for evaluating the SMOOTH effect, RTP3-RTP2 

for evaluating the high-pass filtering regressor effect). The comparison was performed with 

the lsmeans package [38] on R with multiple testing correction through the multivariate t-

distribution method. 

We also tested the noise effect in each voxel and connectivity. Since the BOLD 

signal, as well as the physiological signals, includes an autocorrelation component, a 

statistical test with a null hypothesis assuming the Gaussian noise could underestimate the 

false positive rate [39]. Thus, we used the phase randomization test [39, 40] to evaluate the 

statistical significance of the Rn
2 value. Phase-randomization was applied to the noise 

regressors. For the dynamic FC, the windowed average and standard deviation regressors 

were calculated after the phase-randomization. The randomized regressors were made 5,000 

times for each participant. 

All the noise calculation was done in the participant's native space because 

resampling in spatial normalization could affect the signal time series and change the noise 

contribution [23]. For the group analysis of the voxel-wise signal, the individual participant's 

Rn
2 values were warped into the MNI template brain to calculate the mean Rn

2 across 

participants in each voxel. Rn
2 maps of phase-randomized regressors were also warped into 

the MNI to make a null distribution of the mean Rn
2 for calculating p-value. The false 
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discovery rate (FDR) correction with the Benjamini-Hochberg procedure was applied to the 

p-values. The maps were thresholded with FDR < 0.05. 

For the neurofeedback task data, we used a permutation test to evaluate the statistical 

significance of the Rn
2 value for each pipeline and comparisons between the pipelines, and 

FDR correction was applied to p-values. We used the same linear mixed-effect model as for 

the resting-state data to test the correlation between RTP and offline processed signals. 

 

3 Results 

3.1 Comparisons between the incremental and cumulative GLM 

Figure 2 shows the high-pass filtering performance of Legendre polynomial and DCT 

regressors for the white noise signal (Fig. 2A) and the resting-state fMRI signal (Fig. 2B). 

Figure 2A indicates that frequencies higher than the designed threshold (vertical dotted line) 

decreased more with iGLM than with cGLM, especially when the number of TRs was short, 

demonstrating that iGLM had a less accurate high-pass filtering property. Figure 2B shows a 

similar tendency for the BOLD signal, while the difference between the GLM approaches 

was less prominent than for white noise. 

Figure 3 shows the correlation between the online and offline calculations of the 

RETROICOR and RVT regressors for the incremental (iGLM) and cumulative (cGLM) 

approaches. No difference between iGLM and cGLM was observed for the cardiac regressors 

(Card). For the respiration regressors (Resp), cGLM had a higher correlation with the offline 

calculation. For the RVT regressors, iGLM had considerably lower correlations with the 

offline calculation. This indicates that online-made physiological noise regressors were 

inaccurate in iGLM without retrospective correction, especially for the respiration and RVT 

regressors. These results suggest that cGLM is preferred to iGLM in real-time processing, as 

far as computation time permits. 
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3.2 Computation time 

Figure 4 shows the average computation time across participants for each processing 

module at each TR. The processing was applied to whole-brain voxels (149082 voxels on 

average). The REGRESS process used the cumulative approach and included all the 

regressors implemented in the system. The REGRESS process started at the 42nd TR to 

allow for the acquisition of enough samples for the regression (the initial three volumes were 

excluded from the process to ensure the fMRI signal reached the steady state; thus, 39 

samples were available at the 42nd TR). 

The REGRESS's initial processing TR took a long time due to the initialization 

process (see Supplementary material, 'RTP simulation system implementation'). Other than 

the initial TR of REGRESS, the most time-consuming processing was the VOLREG, volume 

registration for motion correction. We found resampling the volume image in the aligned grid 

took a long time in VOLREG. The time for REGRESS with CPU increased with TR, which 

was because cumulative calculation used more data in a later TR. The slope of the increase 

was less steep with GPU computation. Other processes took less than 100 ms each, and the 

total process time was less than 400 ms with GPU and less than 500 ms with CPU, which 

would be short enough for a majority of rtfMRI applications. 

3.3 Noise evaluation in the real-time processed signal for resting-state data 

3.3.1 RTP effects on the noise variance ratio (Rn
2) in the voxel-wise signal 

Figure 5A shows distributions of the mean noise variance ratio (Rn
2) explained by the 

motion and physiological noises for the voxel-wise signal. The plot shows the distribution of 

the participant mean values in the brain. The voxels in the white matter and the ventricle 

areas were excluded from the mean calculation (the masks for the white matter/ventricles 

signal regression in RTP were used). Significant decreases or increases of the mean noise 
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variance ratio by adding an RTP component were summarized in Table 2 (statistical values 

for each comparison are shown in Supplementary Table S1). 

The cardiac and respiration noise ratios increased with spatial smoothing (SMOOTH, 

△ in Table 2). While high-pass filtering regression (REG[HPF]) also increased the cardiac 

noise ratio, it significantly reduced the motion and respiration noise ratios ( in Table 2). 

Further reduction of the mean noise variance ratio was seen with the regression of motion 

parameters (REG[Mot]) for the motion and respiration noises, the regression of mean white 

matter/ventricle signals (REG[WM, Vent]) for the cardiac noise, and RETROICOR 

(REG[RICOR]) for the cardiac and respiration noises. Global signal regression (REG[GS]) 

increased the mean cardiac noise ratio. Interestingly, no reduction of respiration noise was 

observed with the RVT regressor (REG[RVT]) despite the RVT model included in the 

respiration noise regression analysis. 

 

Table 2.  Summary of the RTP noise reduction performance for voxel-wise signals 

 Noise 

RTP Motion Cardiac Respiration 

VOLREG+TSHIFT - - - 

+SMOOTH - △** △** 

+REG[HPF] *** △*** *** 

+REG[Mot] *** - *** 

+REG[dMot] - - - 

+REG[GS] - △** - 

+REG[WM, Vent] - ** - 

+REG[RETROICOR] - *** ** 

+REG[RVT] - - - 

-, no significant effect; △, significant increase of the mean noise variance ratio; , significant 

decrease of the mean noise variance ratio. **, p < 0.01; ***, p < 0.001. Detailed statistical 

values are shown in Supplementary Table S1. 

 

Voxel-wise analysis results are shown in figures 6, 7, and 8. Figure 6 shows maps of 

the voxel-wise significant motion noise Rn
2. Adding the motion parameter regression 
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removed most of the significant voxels (RTP4), and adding the motion derivative regression 

(RTP5) eliminated a significant motion noise ratio in all voxels. Supplementary Figure S1 

shows significant differences in the motion noise Rn
2 at each sequential contrast. TSHIFT and 

SMOOTH increased the motion noise ratio in many voxels, especially around the white 

matter and the ventricle areas. A significant decrease was seen when adding the regressions 

of high-pass filtering (REG[HPF]), motion parameters (REG[Mot]), motion derivatives 

(REG[dMot]), and the mean white matter/ventricle signals (REG[WM, Vent]). 

Figure 7 shows maps of the voxel-wise significant cardiac noise Rn
2. Without 

RETROICOR, a significant cardiac noise ratio was seen in the whole-brain area and was 

especially high in the medial to anterior temporal and the anterior cingulate areas, overlapped 

with the large cerebral blood vessels. Adding the RETROICOR regression (RTP8) removed 

most of the significant voxels, although a significant effect remained in the large blood vessel 

areas. Supplementary Figure S2 shows significant differences in the cardiac noise Rn
2 (FDR < 

0.05) at each sequential contrast. Spatial smoothing (SMOOTH), high-pass filtering 

regression (REG[HPF]), and global signal regression (REG[GS]) significantly increased the 

cardiac noise ratio in many voxels. In contrast, significant decreases were seen by adding the 

regressors of motion derivatives (REG[dMot]), white matter/ventricle signals (REG[WM, 

Vent]), and the RETROICOR (REG[RICOR]). The RETROICOR regression had the most 

substantial effect among them. 

Figure 8 shows maps of the voxel-wise significant respiration noise Rn
2. Without 

RETROICOR, a significant respiration noise ratio was seen in the whole-brain region, and 

most of the significant voxels disappeared by adding RETROICOR. Supplementary Figure 

S3 shows significant differences of the respiration noise Rn
2 at each sequential contrast. 

Spatial smoothing (SMOOTH) and high-pass filtering regression (REG[HPF]) increased the 

respiration noise ratio in the white matter and around the ventricle areas. A significant 
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decrease was seen when adding the regressors of motion parameters (REG[Mot]), motion 

derivatives (REG[dMot]), white matter/ventricle signals (REG[WM, Vent]), and the 

RETROICOR (REG[RICOR]). Interestingly, adding the RVT regression increased the 

respiration noise ratio significantly in many voxels. 

3.3.2 RTP effects on the noise variance ratio (Rn
2) in the sliding-window connectivity 

Figure 5B shows distributions of the mean noise variance ratio (Rn
2) explained by the 

motion and physiological noises for the 5-TR sliding-window dynamic FC time-series. The 

plot shows the distribution of participant mean values of all pairwise connectivity between 

the 264 functional ROIs. A significant decrease in the noise ratio by adding an RTP 

component is summarized in Table 3 (statistical values for each comparison are shown in 

Supplementary Table S2). The motion derivative regression (REG[dMot]) significantly 

reduced the mean motion and respiration noise ratios. Global signal regression (REG[GS]) 

reduced the mean motion noise ratio, and RETROICOR (REG[RICOR]) reduced the mean 

cardiac noise ratio. 

 

Table 3.  Summary of the RTP noise reduction performance for the sliding-window 

connectivity time-course 

 Noise 

RTP Motion Cardiac Respiration 

VOLREG+TSHIFT - - - 

+SMOOTH - - - 

+REG[HPF] - - - 

+REG[Mot] - - - 

+REG[dMot] ** - ** 

+REG[GS] * - - 

+REG[WM, Vent] - - - 

+REG[RETROICOR] - ** - 

+REG[RVT] - - - 

-, no significant effect; , significant decrease of the mean noise variance ratio. *, p < 0.05; 

**, p < 0.01. Detailed statistical values are shown in Supplementary Table S2. 
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Connectivity-wise analysis results are shown in figures 9 and 10. Figure 9 shows 

maps of the connectivity-wise significant motion noise Rn
2. A significant motion noise was 

seen across whole-brain connectivity before adding the motion derivative regressor 

(REG[dMot]). After adding REG[dMot] (RTP5), no significant motion noise ratio was seen 

in any connectivity. No connectivity-wise significant difference of the motion noise Rn
2 was 

seen in any connectivity at any sequential contrast. 

Figure 10 shows maps of the connectivity-wise significant cardiac noise Rn
2. A 

significant cardiac noise was seen in the connectivity across the anterior to medial temporal 

and the anterior cingulate areas. Connectivity in the inferior occipital area also showed a 

significant cardiac noise ratio. The significant cardiac noise ratio gradually decreased with 

adding the regressors of motion parameters (REG[Mot]), motion derivatives (REG[dMot]), 

and global signal (REG[GS]). After adding the white matter/ventricle signal regression 

(REG[WM, Vent] at RTP7), no connectivity showed a significant cardiac noise ratio. No 

connectivity-wise significant difference of the cardiac noise Rn
2 was seen in any connectivity 

at any sequential contrast. 

For the respiration noise, the connectivity-wise analysis showed no significant Rn
2 and 

Rn
2 differences between pipelines in any connectivity. 

3.3.3 RTP effects on the noise variance ratio (Rn
2) in the two-point connectivity 

Figure 5C shows distributions of the mean noise variance ratio (Rn
2) explained by the 

motion and physiological noises for the two-point dynamic FC time-series. The plot shows 

the distribution of the participant mean values of all pairwise connectivity between the 264 

functional ROIs. Any significant decrease or increase of the noise ratio when adding an RTP 

component is summarized in Table 4 (the statistical values for each comparison are shown in 

Supplementary Table S3). Slice-timing correction (TSHIFT) significantly reduced the mean 

cardiac and respiration noise ratios. Spatial smoothing (SMOOTH) increased the cardiac 
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noise ratio. The mean cardiac noise ratio was also decreased by the regressions of motion 

parameters (REG[Mot]), motion derivatives (REG[dMot]), white matter/ventricle signals 

(REG[WM, Vent]), and RETROICOR (REG[RICOR]). The motion derivative regression 

also reduced the mean respiration noise ratio. 

 

Table 4.  Summary of the RTP noise reduction performance for the two-point connectivity 

time-course 

 Noise 

RTP Motion Cardiac Respiration 

VOLREG+TSHIFT - * *** 

+SMOOTH - △** - 

+REG[HPF] - - - 

+REG[Mot] - * - 

+REG[dMot] - * ** 

+REG[GS] - - - 

+REG[WM, Vent] - * - 

+REG[RETROICOR] - *** - 

+REG[RVT] - - - 

 

-, no significant effect; △, significant increase of the mean noise variance ratio; , decreased 

of the mean noise variance ratio. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Detailed statistical 

values are shown in Supplementary Table S3. 
 

Connectivity-wise analysis results are shown in figures 11 and 12. For the motion 

noise, the connectivity-wise analysis showed no significant Rn
2 and Rn

2 differences between 

pipelines in any connectivity. Figure 11 shows maps of the connectivity-wise significant 

cardiac noise Rn
2. Without RETROICOR, a significant cardiac noise ratio was seen in the 

whole-brain connectivity, and the effect was large in the connectivity between the ROIs with 

a significant cardiac noise ratio in the voxel-wise analysis (Fig. 7). The significant cardiac 

noise effect disappeared after adding the RETROICOR regressor (REG[RICOR] at RTP8). 

Supplementary figure S4 shows connectivity-wise significant differences in the cardiac noise 

Rn
2 at each sequential contrast. A significant increase was seen when adding the spatial 

smoothing (SMOOTH) in the areas affected by the cardiac noise in the voxel-wise analysis 
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(Figure 7). A significant decrease was seen when adding the RETROICOR (REG[RICOR] at 

RTP8) in the whole brain with a substantial effect in the areas affected by the cardiac noise in 

the voxel-wise analysis. 

Figure 12 shows maps of the connectivity-wise significant respiration noise Rn
2. A 

significant respiration noise ratio was seen only for the RTP0 (only the motion correction) in 

the whole-brain area. No connectivity-wise significant difference of the respiration noise Rn
2 

was seen in any connectivity at any sequential contrast. 

3.3.4 Group-level association of the mean connectivity with the motion and 

physiological noises 

Figure 13A shows the association of the participant-wise mean sliding-window 

connectivity with the mean motion (frame-wise displacement), the standard deviation of heart 

rate, and the standard deviation of the respiration rate for RTP0 (only the motion correction) 

and RTP6 (added the global signal regression). Plots for all pipelines are shown in 

Supplementary figures S5, S6, and S7. The figures indicate that the mean connectivity was 

shifted to a positive value for many participants and the size of the shift was correlated with 

the participant’s amplitude of motion, heart rate, and respiration measures for RTP0. Adding 

the global signal regression (RTP6) eliminated this bias. However, the correlations 

(Spearman's rank-order correlation) were still statistically significant even after the global 

signal regression, although the effect size (slope of the regression) became small. 

Figure 13B shows the same association for the two-point connectivity. Figures for all 

pipelines are shown in Supplementary figures S8, S9, and S10. Like the sliding-window 

connectivity, the mean two-point connectivity was correlated with the participant’s amplitude 

of motion, heart rate, and respiration measures for RTP0. With the global signal regression 

(RTP6), the mean connectivity became nearly equal to 0.5 for all participants, while the 

associations remained statistically significant with a small effect size. 
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3.4 Noise evaluation in the real-time processed signal and signal integrity for 

neurofeedback task data 

Figure 14A shows distributions of the noise variance ratio (Rn
2) explained by the 

motion and physiological noises for the left amygdala signal in the neurofeedback task run. 

The RTP labels with boldface indicate Rn
2 was significantly high with permutation test. The 

result was similar to the voxel-wise analysis of the resting-state data in the amygdala region. 

No significant motion Rn
2 was observed. The cardiac Rn

2 was significant in all pipelines and 

was significantly decreased with RETROICOR regression (RTP8). The respiration Rn
2 was 

significant until RTP3, and motion regression (RTP4) significantly reduced it. 

Figure 14B shows the mean and 95% confidence interval of the signal correlation (z-

transformed) between the RTP and offline-processed signals. The RTP labels with boldface 

indicate that the correlation was significantly higher than RTP0. For the neurofeedback task 

run, the left amygdala signal with RTP8 had the highest mean correlation with the offline-

processed signal. 

 

4 Discussion 

The simulation results indicated that 1) cumulative GLM compared to incremental 

GLM could substantially improve the accuracy of online-formed regressors with a 

retrospective correction, 2) extensive RTP with the cumulative GLM could be completed in a 

short enough time for real-time processing, and 3) significant noise reduction was seen for 

many tested RTP steps, though its benefit differs among the voxel-wise and online dynamic 

FC signals. 

4.1 Cumulative GLM is preferred in RTP 

The high-pass filtering regression with iGLM filtered higher frequency than the 

designed threshold at early TRs (Fig. 2). This deficit of filtering property is because a piece 
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of high-pass filtering regressors made for a full-length scan could fit higher frequency 

components than the designed threshold. cGLM avoids this problem by updating the 

regressors to adjust to the designed pass frequency at each length of data. 

However, the difference between the GLM approaches was not large for the BOLD 

signal compared to the white noise signal. This is because most of the BOLD signal power is 

in a low-frequency range, resulting in relatively small differences in the high-frequency 

range. This result suggests that the iGLM drawback of high-pass-filtering may not be a 

substantial problem in a practical rtfMRI application. Also, the drawback of high-pass 

filtering regression in iGLM may be avoided by using another online frequency filtering 

method, such as the FIR filter [13]. However, we should remember that we must apply the 

same filter to the regressors if we use noise regression other than the high-pass filtering; 

otherwise, an artifact in the residual signal could result [41]. 

In an online creation of physiological noise regressors, respiration and RVT noise 

models were not accurate with the incremental approach (Fig. 3). To detect a low-frequency 

fluctuation and its phase we need a certain length of observation (at least one cycle of 

fluctuation). Since the cycle of respiration is usually longer than a TR, the respiration phase 

estimation can be made only retrospectively. Also, the RVT regressor depends on the peak 

detection in the respiration signal time-series, but the peak can be identified only 

retrospectively. Thus, the phase estimation and peak detection cannot be accurate in an online 

process. As the defect of an inaccurate noise regressor was accumulated with iGLM, the 

correlation between the online and offline regressors continued decreasing in iGLM. In 

contrast, cGLM could compensate for this problem by updating the regressors retrospectively 

at every TR. 

The iGLM has been popular in rtfMRI applications thanks to its low computer 

memory consumption and short computation time. However, the present simulation indicates 
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that the cumulative approach has a notable advantage when an online refinement of the 

regressor is required. The simulation also demonstrated that the cost of computation time for 

cGLM is not so high. Consequently, we should use the cumulative GLM in RTP, especially 

when using online-made physiological noise regressors. 

4.2 Computation time does not limit the extensive RTP 

The computation time was short enough for real-time processing in our RTP 

simulation system. The total processing time was less than 400 ms with GPU and less than 

500 ms with CPU only (Fig. 4). The most time-consuming part of the present system was 

motion correction (VOLREG). We found that resampling a data volume in a registered space 

took long in this process. While we used a compiled C library of AFNI implementation using 

CPU only, a GPU implementation, like Scheinost, Hampson, Qiu, Bhawnani, Constable and 

Papademetris [9], might further shorten the computation time of this process. 

The REGRESS took more time in later TRs than in earlier TRs since the number of 

samples included in the cGLM increased with time. The slope of the processing time increase 

was less steep with GPU than CPU only, indicating that a cumulative GLM computation with 

a more extended scan is possible with GPU, as far as the memory space allows. In the current 

simulation, we used a relatively large matrix size (128 x 128 x 34) as fMRI and the number 

of voxels was 149,082 (about 600 kB with single-precision float) per volume on average after 

applying the brain mask. This demonstrates that the data size would not limit the cumulative 

computation with a recent GPU’s large gigabyte memory. Even if the computational capacity 

is limited compared to the present simulation, we can reduce the burden by limiting the 

processing regions (e.g., in the gray matter or in a target region). Thus, the computation time 

should not limit the application of comprehensive real-time fMRI processing. 

The simulation result shows that we can almost ignore the cost of computation time in 

RTP with current computer hardware. However, we still need to consider another cost of 
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RTP, the number of regressors. The more regressors we use, the longer burn-in time we need 

before utilizing the regression in order to wait for a sufficient number of samples. Hinds, 

Ghosh, Thompson, Yoo, Whitfield-Gabrieli, Triantafyllou and Gabrieli [17] showed that 25 

TRs were required to make a reliable regression result. Our previous investigation [10] 

indicated that the required TRs depended on the number of regressors and the output of real-

time regression with many regressors was unreliable in the early TRs because of overfitting. 

The long burn-in time could cost scan time and limit experimental design in some 

applications of rtfMRI. Hence, we should refrain from including a regressor without a 

significant effect on reducing noise. 

4.3 RTP noise reduction for the voxel-wise signal 

Spatial smoothing (SMOOTH) increased the mean noise variance ratio for the cardiac 

and respiration noises, and high-pass filtering (REG[HPF]) increased the mean noise variance 

ratio for the cardiac noise. The increased noise ratio with smoothing was partly due to the 

spread of the noise effect in the voxels neighboring the noise-contaminated areas (e.g., 

Supplementary figures S2 and S3). The increased noise variance ratio is also attributable to 

the decreased total variance. Since the smoothing did not specifically reduce the 

physiological noises, the decrease of the total variance by smoothing could increase the 

relative ratio of the physiological noise variance. The same logic could be applied to high-

pass filtering. As the BOLD signal is dominated by low-frequency components (Fig. 2B), 

high-pass filtering could reduce a large amount of total variance. If the cardiac noise was not 

included in the removed low-frequency range, the ratio of cardiac noise variance to the total 

variance could increase. 

We consider that these increases in noise variance ratio are not problematic. These are 

the results of removing different kinds of noise variance, such as high-spatial-frequency noise 

and low-temporal-frequency signal fluctuation. Indeed, high-pass filtering regression 
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significantly reduced the mean motion and respiration noise ratios, indicating that this 

regression is beneficial in removing a low-frequency noise. Also, the slice-timing correction 

has indicated a significant benefit in a reliable estimation of brain activity [42], and a 

noticeable effect of spatial smoothing on activation detection has been demonstrated [43]. 

Regardless of the motion and physiological noise variance ratios, we consider that TSHIFT, 

VOLREG, SMOOTH, and REG[HPF] should always be included in RTP because these 

remove known noise components other than the motion and physiological noises. 

A significant reduction of the mean noise variance ratio in any of the motion and 

physiological noises for the voxel-wise signal was seen with regressions of high-pass filtering 

(REG[HPF]), motion parameters (REG[Mot]), white matter/ventricle signals (REG[WM, 

Vent]), and RETROICOR (REG[RICOR]). In the voxel-wise evaluation, the motion 

derivatives also had a significant effect on reducing the noise in many voxels (Supplementary 

figure S1, S2, and S3) while not significant in the whole-brain average. 

The global signal regression significantly increased the cardiac noise ratio 

(Supplementary figure S2) and the RVT regression increased the respiration noise ratio 

(Supplementary figure S3) in many voxels in the voxel-wise evaluation. The increase with 

global signal regression might be attributable to a reduction of the total signal variance. The 

increase with RVT regression could be due to the inaccuracy of the online-made RVT 

regressor. Although the retrospective update with cGLM was better than iGLM, the online-

made regressor still showed a reduced correlation with the offline one (Fig3). The error in the 

online-made RVT regressor might have synchronized with the respiration signal, which could 

recall the respiration-correlated signal fluctuation in the residual of the RTP regression. 

Similar recall of noise has been demonstrated by Hallquist, Hwang and Luna [41] for the 

high-pass filtering regression; when a high-pass filtered signal was regressed with a regressor 
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without high-pass filtering, the residual could include the filtered low-frequency component. 

This harmful effect indicates that RVT regression should not be used in RTP. 

Adding the white matter/ventricle signal regression (REG[WM, Vent]) after the 

global signal regression (REG[GS]) showed a significant reduction of the cardiac noise 

(RTP7-RT6 in table S1 and figure S2 in Supplementary materials), indicating that the mean 

white matter/ventricle signals were distinct from the global signal. This result is consistent 

with the evidence that gray matter had the largest effect on the global signal and the effect of 

the white matter and cerebrospinal fluid was small except for the partial-volume effects [44, 

45]. Also, a significant cardiac noise reduction was seen when adding RETROICOR 

(REG[RICOR]) after adding the global signal and white matter/ventricle signal regressors 

(RTP8-RTP7 in table S1 and figure S2 in Supplementary materials), indicating that the global 

signal and the tissue-wise average signals cannot substitute for the RETROICOR regressor. 

Since the cardiac noise effect was concentrated on the voxels around the large blood vessels, 

the global and tissue-wise averages could not match such a spatially localized noise. This 

indicates that each of the global signal regression, white matter/ventricle signal regression, 

and RETROICOR regression have a distinctive contribution to noise reduction, and they 

cannot substitute for each other. 

A potential risk of physiological noise effect on fMRI results has been indicated in the 

regions prone to cardiac noise [46]. The regions with significant cardiac noise (Figure 7) also 

overlap with the salience network area [47] and are a clinically meaningful target for 

intervening emotion-regulation function [48, 49]. RETORICOR regression should be vital for 

getting a robust neurofeedback signal from these areas. Global signal regression and mean 

white matter/ventricle signal regression cannot substitute for it. We also note that the cardiac 

noise ratio remained significant even after RETROICOR in the voxels around the large 

cerebral blood vessels (Figure 7, RTP8). Although the remaining noise ratio was small (< 
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0.1), we should be cautious of the cardiac noise when using the signal in these areas for 

neurofeedback. 

In summary, for the online voxel-wise signal evaluation, regression with motion 

parameters (REG[Mot]), mean white matter/ventricle signals (REG[WM, Vent]), and 

RETROICOR (REG[RICOR]) significantly reduced the motion or physiological noises on 

average across the brain, while the effect of RTP was different across voxels. Motion 

derivative regressor (REG[dMot]) also reduced the noise at several voxels. While TSHIFT, 

VOLREG, SMOOTH, and REG[HPF] had no significant effect or increased the noise ratios 

due to a reduced total variance, they should be applied in RTP as they could reduce other 

kinds of noise. No significant contribution was found with the global signal regression 

(REG[GS]), and the online-made RVT regressor introduced a respiration noise artifact; thus, 

these regressors should not be used in RTP for the voxel-wise signals. 

4.4 RTP noise reduction for the sliding-window connectivity 

A significant reduction of the mean noise variance ratio in any of the motion and 

physiological noises was seen with regressions of motion derivatives (REG[dMot]), global 

signal (REG[GS]), and RETROICOR (REG[RICOR]) for the sliding-window dynamic FC. 

Global signal regression had a significant effect on reducing the motion noise variance ratio. 

This is consistent with the report by Parkes, Fulcher, Yucel and Fornito [50], showing the 

benefit of global signal regression in reducing motion noise for an offline resting-state fMRI 

analysis. The significant reduction of the cardiac noise with RETROICOR indicates that the 

global signal and the tissue-wise average signals cannot substitute for the RETROICOR 

regressor, which was the same as in the voxel-wise signal. 

With the connectivity-wise evaluation, significant motion noise was seen in the 

whole-brain area, that was disappeared after adding the motion derivative regression (RTP5 

in Fig. 9). A significant cardiac noise ratio was localized in the deep brain regions, including 
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the inferior occipital, medial to anterior temporal, and the anterior cingulate areas (Fig. 10), 

which overlap with large cerebral blood vessels. The connectivity in these areas was often 

implicated in emotion-regulation functions [48, 49]. The present result demonstrates the 

importance of extensive real-time denoising when we target these connectivities in a 

neurofeedback application. 

Regarding the group-level association (Fig. 13A and Supplementary figures S5, S6, 

and S7), only the global signal regression could eliminate the noise-associated bias of the 

mean connectivity, consistent with the observation by Weiss, Zamoscik, Schmidt, Halli, 

Kirsch and Gerchen [18]. We will discuss the effect of global signal regression in RTP in a 

later independent section. 

In summary, for the online sliding-window dynamic FC evaluation, regression with 

motion derivative (REG[dMot]), global signal (REG[GS]), and RETROICOR 

(REG[RICOR]) significantly reduced the motion or physiological noises on average across 

the brain, while the effect was different across regions. REG[GS] also removed the bias of 

average connectivity across time and brain regions. While TSHIFT, VOLREG, SMOOTH, 

and REG[HPF] had no significant effect, we think that they should be applied in RTP as they 

could reduce other kinds of noise, as we discussed above. Although no significant 

contribution was found with the motion parameter regression (REG[Mot]), when we removed 

this regressor from the pipeline, we observed a significant increase in the mean motion noise 

variance ratio compared to the best-performed pipeline (RTP8; t = 3.114, p = 0.002). This 

suggests that global signal regression cannot substitute for the motion parameter regression 

and that these regressors had distinctive contributions to motion noise reduction. Mean white 

matter/ventricle signals (REG[WM, Vent]) and RVT regressions had no significant 

contribution to the noise reduction. 

4.5 RTP noise reduction for the two-point connectivity 
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Overall, the mean noise variance ratio for the two-point connectivity was less than 

that for the 5-TR sliding-window connectivity (the vertical axis scale in Fig. 5C is smaller 

than that in Figs. 5B), which could be due to the narrow window width preventing from 

spreading the noise effect. A significant reduction of the mean noise variance ratio in any of 

the motion and physiological noises was seen with TSHIFT and regressions of motion 

parameters (REG[Mot]), motion derivatives (REG[dMot]), white matter/ventricle signal 

(REG[WM, Vent]), and RETROICOR (REG[RICOR]). With the connectivity-wise 

evaluation, no significant effect of motion was seen in any connectivity. This is consistent 

with our previous investigation, demonstrating that the two-point method was less prone to 

motion than the sliding-window methods [32]. 

The two-point connectivity showed more statistically significant cardiac noise than in 

the sliding-window connectivity. The connectivity-wise evaluation showed a significant 

cardiac noise variance ratio across the whole brain (Fig. 11). Because the two-point 

connectivity evaluates the change direction between the two consecutive time points, it could 

be more sensitive to a high-temporal-frequency noise than the sliding-window method. The 

cardiac noise effect was still significant after REG[GS] and REG[WM, Vent], but 

disappeared after adding the RETROICOR regression (Fig. 11, RTP8). This demonstrates 

that the RETROICOR benefit cannot be replaced by global signal and tissue-wise average 

signals. Significant respiration noise was removed by adding slice-timing correction 

(TSHIFT, Fig. 12), suggesting that the two-point connectivity is sensitive to a small temporal 

shift by the slice-timing difference. The slice-timing difference has been known to make a 

deviation from true connectivity [51]. 

Regarding the group-level association (Fig. 13B, Supplementary figures S8, S9, S10), 

only the global signal regression could eliminate the noise-associated bias of the mean 
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connectivity. This was the same as for the sliding-window connectivity and consistent with 

the observation by Weiss, Zamoscik, Schmidt, Halli, Kirsch and Gerchen [18]. 

In summary, for the online two-point dynamic FC evaluation, slice-timing correction 

(TSHIFT) and regression with motion parameters (REG[Mot]), motion derivatives 

(REG[dMot]), white matter/ventricle signal (REG[WM, Vent]), and RETROICOR 

(REG[RICOR]) significantly reduced the physiological noises on average across the brain, 

while the effect was different across regions. Global signal regression (REG[GS]) removed 

the bias of average connectivity across time and brain regions. While VOLREG, SMOOTH, 

and REG[HPF] had no significant effect or increased the noise ratios due to a reduced total 

variance, we think that they should be applied in RTP as they could reduce other kinds of 

noise. Regression with mean white matter/ventricle signals (REG[WM, Vent]) and RVT had 

no significant contribution to the noise reduction. 

4.6 Global signal regression in RTP 

The global signal regression had a significant effect on reducing the motion noise in 

the 5-TR sliding-window dynamic FC (Table 3). It also had a notable effect on reducing the 

average connectivity bias across time and brain regions in the group-level analysis for both 

the sliding-window and the two-point connectivity (Fig. 13 and Supplementary figures S5 to 

S10). This result is consistent with the reports for offline resting-state functional connectivity 

analysis [22] and the neurofeedback study with dynamic FC [18]. The neurofeedback study 

showed that global signal regression could remove the correlation between the participant-

wise average dynamic FC and respiration measures. They also indicated that regression with 

the physiological noise models, including RETROICOR, could not remove this bias. 

However, the present results showed that the RETROICOR regression had an 

additional benefit in reducing the cardiac noise after the global signal regression in the 

individual participant’s signal time-course. Also, even with the global signal regression, 
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excluding the motion parameters significantly increased the motion noise variance ratio for 

the sliding-window connectivity (Section 4.4), indicating that the distinctive effect of motion 

parameter regression from the global signal regression. Thus, the global signal regression is 

not the all-around solution for noise reduction in functional connectivity, and the motion 

parameter and RETROICOR regressors significantly contributed to noise reduction even 

when accompanied by the global signal regression. 

The discrepancy between the group-level association and the individual noise 

regression analysis suggests that the global signal regression removed a signal component 

distinct from the motion and RETROICOR regressors. The noise component inducing the 

average connectivity bias and being removed by the global signal regression might be a 

BOLD signal fluctuation having a loose temporal association with the noise time-course. 

Indeed, Power, Schlaggar and Petersen [22] reported that the increase of the functional 

connectivity by motion could be seen even in 8 to 10 s delays, which might be due to a spin-

history noise [21]. 

The global signal regression is the most controversial processing used in resting-state 

fMRI. Many studies have investigated the source of the global signal and its association with 

noise and functional neural activations [45, 52-56]. The side effects of the global signal 

regression, such as an artifactual negative correlation, have also been demonstrated [57-59]. 

Although we refrain from further considering the source of the global signal, which is out of 

the scope of the present study, we consider a practical suggestion in using the global signal 

regression for a rtfMRI application. 

In a rtfMRI application, a signal fluctuation with a tight temporal association with a 

motion or physiological noise should be more apparent for a participant, and such a noise 

could increase the risk of inducing spurious training with noise regulation. Thus, regardless 

of using global signal regression, we should use the motion and RETROICOR regressions in 
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RTP. When we use a voxel-wise or an ROI-based neurofeedback signal, the present result 

indicates that the global signal regression is not needed in RTP. The global average signal 

was not useful in removing a voxel-wise noise. 

When we use dynamic FC as a neurofeedback signal, we should include the global 

signal regression as it has a notable benefit in reducing the bias in the average connectivity 

across time. However, we should also be careful about a possible artifact due to the global 

signal regression. Once we determine the target connectivity, we should perform an RTP 

simulation analysis, like Ramot and Gonzalez-Castillo [60] and Misaki, Tsuchiyagaito, Al 

Zoubi, Paulus, Bodurka and Tulsa [32], to confirm that the global signal regression does not 

make a spurious shift of the connectivity neurofeedback signal. If a notable artifact is seen, 

we might have to refrain from using the global signal regression in RTP and admit the 

reduced signal-to-noise ratio in the neurofeedback signal or consider another target. 

The group-level association for the mean connectivity with the motion and 

physiological noises remained statistically significant even after the global signal regression 

(Figs. 8 and 9). However, we consider that this statistical significance would not matter in the 

practice of neurofeedback training because the effect size of the noise (slope of the regression 

line) was minimal after the global signal regression. In the neurofeedback context, we can 

ignore the noise effect if its effect size was much smaller than that by self-regulation. 

4.7 RTP noise reduction for the neurofeedback target signal 

To confirm that the simulation results for the resting-state data could be applied to a 

neurofeedback task run, we performed the same simulation analysis for the neurofeedback 

task data [26]. The result was parallel to the resting-state data's voxel-wise analysis. In this 

neurofeedback experiment, participants were trained to increase the left amygdala (LA) 

activation by recalling a positive autobiographical memory. Hence, the LA signal should 

include a self-regulated change so that the noise variance ratios could be less dominant than 
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in a resting state. However, we still observed significant noise variance ratios. While the 

motion noise was not significant in any pipelines, the respiration noise was significant before 

adding the motion parameter regression, and the cardiac noise was significant in all RTPs 

with a significant reduction by RETROICOR regression (Fig. 14A). This was consistent with 

the resting-state data analysis result in Fig. 7, showing that the cardiac noise ratio was 

significantly reduced with RETROICOR, while it was still significant in the amygdala 

region. The signal integrity analysis (Fig. 14B) also demonstrated that the signal correlation 

between RTP and the offline process improved with the inclusion of additional noise 

regressors. 

We should note that the noise amount and the RTP effect in a neurofeedback signal 

could vary depending on the target region, the applied regulation strategy, and the 

individual’s self-regulation performance. Thus, we used resting-state data to evaluate the 

general effect of noise and RTPs. Nevertheless, the results for the neurofeedback task data 

demonstrated that the noise effect could be significant even with a task-related signal change 

and RTP noise reduction is beneficial in the neurofeedback application. 

4.8 Limitations 

Several limitations of the current study should be acknowledged. Since we used 

similar regressors in RTP and the noise regression analysis, it may look trivial that including 

these regressors in RTP could reduce the noises. However, we should point out that the RTP 

regressors and offline-made noise regressors used in the noise regression analysis cannot be 

identical. Online real-time processing can use limited samples of the current and past time 

points. Indeed, we found the deficit of the RVT regression in RTP. Furthermore, the 

physiological noise variance extracted in the noise regression analysis was not specific to the 

RETROICOR model. The RETROICOR regressor has a general form of the Fourier basis set 

that can fit any temporal fluctuation synchronized with the cardiac and respiration 
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fluctuations. We also included the heart rate and respiration variance convolved with their 

hemodynamic response functions in the noise regression analysis. Thus, the benefit of 

RETROICOR regressors in RTP is never a trivial result. 

The present result is limited to the noise measures used for the evaluation. We used 

the motion (frame-wise displacement), heart rate, respiration variance, RETORICOR, and 

RVT in the noise evaluation. Although these are major noise sources for the BOLD signal, 

there are yet other sources that could have a significant effect on the signal change. For 

example, Power, Lynch, Dubin, Silver, Martin and Jones [34] indicated that deep breath had 

a large effect on the fMRI signal changes and that that cannot be captured by the respiration 

envelope, respiration variance, and RVT measures. In a rtfMRI application, complete noise-

cleaning may be too costly since using more RTP regressors increases the initial burn-in time 

further. However, at the offline analysis in evaluating the neurofeedback effect, we should 

examine the noise effect that has not been removed at RTP. The apparent training effect 

could result from a change in motion or physiological noise pattern [18]. 

Using resting-state data in the simulation might also limit the implication of the 

present results. When there was a task-induced signal change, the noise variance ratio may be 

less significant than in the present results. However, a substantial signal change is not always 

guaranteed, especially in the early phase of the training when self-regulation ability is not 

high. Even if a participant could regulate the brain activation, a task-induced fMRI signal 

change is often smaller than the noise variance; temporal contrast to noise ratio is usually 

lower than 1.0 [61, 62]. For detecting such a low contrast signal change, noise reduction 

should be applied as much as possible. Indeed, the simulation for the neurofeedback task data 

demonstrated that the noise variance ratio was still significant with a self-regulation task. 

Furthermore, if a noise-contaminated neurofeedback signal was used, the training could 
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depend on the regulation of noise-associated motion or physiological states. Thus, the caveat 

of the present results could be applied to general neurofeedback training. 

While we presented beneficial RTP components for the voxel-wise and dynamic FC 

signals on average across the brain regions, the optimal combination with minimum 

regressors will depend on the target regions. For example, the cardiac noise effect 

concentrated on the areas overlapping with large cerebral blood vessels (Fig. 7), which was 

removed by RETROICOR regression. If the target is out of these regions, RETORICOR 

might not be needed. Although the present results help consider which kinds of noise could 

affect which brain areas and what RTP helps reduce it, the optimal RTP pipeline needs to be 

designed for each RTP application with a simulation analysis [60, 63]. 

Regarding the sliding-window dynamic FC, the RTP effect could be different 

depending on window width. The previous study [32] indicated that the correlation between 

motion and dynamic FC increased with the window width so that a narrow window was more 

robust to noise. Also, a narrow window could be preferred in a neurofeedback application to 

provide a timely feedback signal; a wide-window dynamic FC reflects less current brain 

activation and depends more on the long history of past brain states. However, several studies 

with an offline analysis have shown that a wide window is required to evaluate dynamic FC 

robustly [64], and that even with a wide window (e.g., 2 min), dynamic FC is challenging to 

detect with a single session measurement [65]. Thus, in choosing the window width for a 

dynamic FC neurofeedback, we need to consider the trade-off between the robust evaluation 

of brain state and timely and less noisy feedback. While the optimal choice could be different 

between individual applications, we consider that a narrow window can be approved in a 

neurofeedback application. We should also note that a TR-wise estimate of regional brain 

activation is not so robust compared to an offline evaluation with many time points, and 

many studies have proven that even such a fragile estimate helped participants learn brain 
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self-regulation. Thus, even a less robust estimate of brain activation could be useful in 

training participants to self-regulate their brain state. Indeed, studies with the two-point 

dynamic FC neurofeedback, which is one extreme window width focusing on feedback 

timeliness, demonstrated successful training in self-regulating functional connectivity [30, 

66]. 

While using a control ROI or control connectivity was not considered in the present 

study, it could be an economical noise reduction regressor. However, we should remember 

that the control selection should be specific to the target region and is not a trivial task. The 

present simulation demonstrated that the global signal and the white matter/ventricle average 

signals could not be a substitute for the RETROICOR, suggesting that just taking the average 

of the regions apart from the target would not be enough to suppress the noise. Also, if the 

selected control area had a unique functional response, subtracting the control signal from the 

target could induce an artifactual signal fluctuation. The self-regulation task usually invites 

brain activations in many regions, not limited to the target [67-71]. Thus, we must be very 

cautious in choosing an appropriate control signal, which needs an extensive independent 

evaluation to optimize noise reduction performance. 

5 Conclusions 

The present study demonstrated that extensive real-time noise reduction had a 

minimal cost of computation time with significant benefit in reducing motion and 

physiological noises for rtfMRI. We believe our comprehensive evaluation will promote a 

widespread utilization of extensive real-time noise reduction for neurofeedback applications. 

The high-quality real-time estimate of brain activity would pave the way for robust and 

replicable neurofeedback training, as well as the urgently needed development of novel and 

robust interventions for several mental and neurological disorders, as well as a potential 

application in presurgical mapping. 
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Figure 1.  Overview of the fMRI real-time processing simulation system. The system monitors 

a directory where an fMRI data volume file is created in real-time. The WATCH module 

detects new file creation and reads the data to send it to a process sequence of TSHIFT (slice-

timing correction), VOLREG (motion alignment), SMOOTH (spatial smoothing) and 

REGRESS (scaling and general linear model analysis). The output (residual of the noise 

regression as a noise-removed fMRI signal) can be sent to an independent application of 

neurofeedback or a brain-computer interface. The simulation was performed by copying a 

volume image of a pre-scanned fMRI data into a monitored directory. 
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Figure 2.  Comparisons between the incremental and cumulative GLM in high-pass filtering. 

The absolute frequency powers of filtered signal with incremental GLM (iGLM) and 

cumulative GLM (cGLM) are shown. The red line is the power spectrum of the source signal 

and the orange and blue lines are power spectrums of the filtered signals with high-pass filtering 

regression using iGLM and cGLM, respectively. The vertical dotted line is the designed pass-

frequency threshold. A. Random white noise signal was regressed with Legendre polynomial 

regressors and discrete cosine transformation basis sets (DCT). The plots are the average of 

1,000 times of simulation. B. BOLD signals in resting-state fMRI were regressed with 

Legendre polynomial regressors and discrete cosine transformation basis sets (DCT). The plots 

are the average of the whole brain voxels for 87 participants. 
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Figure 3.  Comparisons between the incremental and cumulative GLM’s online-made 

physiological noise regressors for their correlation with the offline-made regressors. 

Correlations are shown for RETROICOR (respiration [Resp] and cardiac [Card] basis sets) and 

RVT regressors. The lines are the average for 87 participants. 
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Figure 4.  Computation times of each RTP module. The mean computation time across 

participants at each TR is shown for each processing module with a 95% confidence interval 

(band around the line). The time was between receiving a volume from the previous step and 

sending the processed volume to the next step. The start time of the WATCH module was the 

file creation time in the monitored directory. REGRESS performed cumulative GLM and 

included all the regressors implemented in the system (Legendre polynomials, motion 

parameters, motion derivatives, global signal, white matter/ventricle mean signals, 

RETROICOR, and RVT). 
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Figure 5.  Box plot of the mean Rn
2 of noise regression on voxel-wise signals (A), sliding-

window (5-TR width) connectivity (B), and two-point connectivity (C). The lines with stars 

indicate the significant difference in the mean R2
n between the pipelines; thin lines indicate 

increased and thick lines indicate decreased noise variance ratio. HPF, high-pass filtering 

regressor; Mot, motion regressor; dMot, motion derivative regressor; GS, global signal 

regressor; WM, Vent, white matter/ventricle mean signals regressors; RICOR, RETROIOCR 

regressor; RVT, respiration volume time-course regressor; *, p < 0.05; **, p < 0.01; ***, p < 

0.001. 
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Figure 6.  Significant Rn
2 of motion noise in the voxel-wise signal for each real-time processing 

pipeline. The maps were thresholded by FDR < 0.05 with a randomization test. 
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Figure 7.  Significant Rn
2 of cardiac noise in the voxel-wise signal for each real-time processing 

pipeline. The maps were thresholded by FDR < 0.05 with a randomization test. 
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Figure 8.  Significant Rn
2 of respiration noise in the voxel-wise signal for each real-time 

processing pipeline. The maps were thresholded by FDR < 0.05 with a randomization test. 
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Figure 9.  Connectivity plots of significant Rn
2 of motion noise in sliding-window (5-TR width) 

connectivity time-course for each real-time processing pipeline. The plots were thresholded by 

FDR < 0.05 with randomization test. 
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Figure 10.  Connectivity plots of significant Rn
2 of cardiac noise in sliding-window (5TR-

width) connectivity time-course for each real-time processing pipeline. The plots were 

thresholded by FDR < 0.05 with a randomization test. 
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Figure 11.  Connectivity plots of significant Rn
2 of cardiac noise in two-point connectivity 

time-course for each real-time processing pipeline. The plots were thresholded by FDR < 0.05 

with a randomization test. 
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Figure 12.  Connectivity plots of significant Rn
2 of respiration noise in two-point connectivity 

time-course for each real-time processing pipeline. The plots were thresholded by FDR < 0.05 

with a randomization test. 
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Figure 13.  Associations between the mean connectivity (A, sliding-window [5-TR width]; B, 

two-point) and the mean motion (frame-wise displacement, FD), the standard deviation (SD) 

of heart rate and the standard deviation of respiration rate. Each point indicates a participant. 

The shadow around the line indicates a 95% confidence interval. The slope is a fitted 

coefficient of the motion in linear regression analysis, and rho is Spearman's rank-order 

correlation.  
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Figure 14.  A. Box plot of the Rn
2 of noise regression on the left amygdala signal during a 

neurofeedback training run. The lines with starts indicate the significant difference between 

the pipelines; thin lines indicate increased and thick lines indicate decreased noise variance 

ratio. Boldface labels in the horizontal axis indicate a significant amount of Rn
2 by permutation 

test. B. The mean z-transformed correlation between the real-time and the offline processed 

left amygdala signal during a neurofeedback training run. The lines with starts indicate the 

significant difference between the pipelines; thin lines indicate increased and thick lines 

indicate decreased correlation. Boldface label in the horizontal axis indicates a significant 

increase in the correlation compared to RTP0. HPF, high-pass filtering regressor; Mot, motion 

regressor; dMot, motion derivative regressor; GS, global signal regressor; WM, Vent, white 

matter/ventricle mean signals regressors; RICOR, RETROIOCR regressor; RVT, respiration 

volume time-course regressor; *, p < 0.05; **, p < 0.01; ***, p < 0.001. P-values were corrected 

with false discovery rate. 
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