

1 **Optimal BR signalling is required for adequate cell wall orientation in the *Arabidopsis***

2 **root meristem**

3 Running title: BRs control cell wall orientation

4

5 Zhenni Li¹, Ayala Sela^{2,4}, Yulia Fridman^{2,4}, Herman Höfte³, Sigal Savaldi-Goldstein^{2#}, and

6 Sebastian Wolf^{1#}

7 ¹Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University,

8 Im Neuenheimer Feld 230, 69120 Heidelberg, Germany

9 ²Technion-Israel Institute of Technology, Haifa 3200003, Israel

10 ³Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000,

11 Versailles, France

12 ⁴These authors contributed equally

13 [#]corresponding authors

14

15

16

17

18

19

20

21

22

23

24

25

26

27 **Key words:** brassinosteroids, cell wall, cell division, *Arabidopsis*, root, meristem

28 **Summary Statement:** Both increased and reduced BR signalling strength results in altered
29 cell wall orientation in the *Arabidopsis* root, uncoupled from whole-root growth control.

30 **Abstract**

31 The plant steroid hormones brassinosteroids (BRs) regulate growth in part through altering
32 the properties of the cell wall, the extracellular matrix of plant cells. Conversely, cell wall
33 signalling connects the state of cell wall homeostasis to the BR receptor complex and
34 modulates BR activity. Here we report that both pectin-triggered cell wall signalling and
35 impaired BR signalling result in altered cell wall orientation in the *Arabidopsis* root meristem.
36 BR-induced defects in the orientation of newly placed walls are associated with aberrant
37 localization of the cortical division zone but with normal specification of its positioning. Tissue-
38 specific perturbations of BR signalling revealed that the cellular malfunction is unrelated to
39 previously described whole organ growth defects. Thus, tissue type separates the pleiotropic
40 effects of cell wall/BR signals and highlights their importance during cell wall placement.

41

42 **Introduction**

43 The cell wall, a carbohydrate-rich structure surrounding all plant cells fulfils numerous
44 essential functions in growth and development; it provides mechanical support, controls
45 cellular adhesion and forms the interface with the environment (Cosgrove, 2016; Lampugnani
46 et al., 2018; Vauxeur and Hofte, 2016). Notably, since the cell wall prevents cell migration, tight
47 control over the plane of cell wall deposition during cytokinesis is often assumed to be
48 important for plants' patterning and morphogenesis. However, whether there is a direct
49 relationship between cell shape, in part controlled by cell division orientations, and organ
50 shape is not clear (Beemster et al., 2003; Kaplan and Hagemann, 1991; Torres-Ruiz and
51 Jurgens, 1994; Traas et al., 1995). Symmetric divisions add cells within tissues and
52 asymmetric or formative divisions forms new tissue layers. During cytokinesis, the
53 microtubules (MT) of the phragmoplast guide secretory traffic towards the cell plate, a radially

54 expanding disk of membrane-engulfed cell wall material that gains in diameter until it fuses
55 with the parental walls to conclude cell division (Livanos and Muller, 2019). Cell division plane
56 orientation is pre-determined by the position of cortical division zone (CDZ). The MT network
57 forms a transient ring structure known as preprophase band (PPB) at the periphery of the cell,
58 marking the future fusion site of the cell plate and the parental wall during cytokinesis, and
59 thus coincides with the orientation of the new cell wall (Livanos and Muller, 2019; Rasmussen
60 and Bellinger, 2018; Rasmussen et al., 2013; Smith, 2001). While PPBs are at least partially
61 dispensable for oriented cell division (Schaefer et al., 2017; Zhang et al., 2016), mutants in
62 CDZ components like TAN1 and POK1,2 show severely altered division angles, suggesting
63 that the phragmoplast lacks guidance in the absence of these factors (Lipka et al., 2014;
64 Stockle et al., 2016; Walker et al., 2007). In light of the central role of cell wall biosynthesis
65 during cytokinesis (Gu et al., 2016; Miart et al., 2014; Zuo et al., 2000) and a growing list of
66 cell wall-mediated feedback signalling modules affecting a wide range of biological processes
67 (Wolf, 2017), it is conceivable that cell wall state during mitosis/cytokinesis has to be monitored
68 by cell wall surveillance systems (Rui and Dinneny, 2020; Vaahtera et al., 2019; Voxeur and
69 Hofte, 2016).

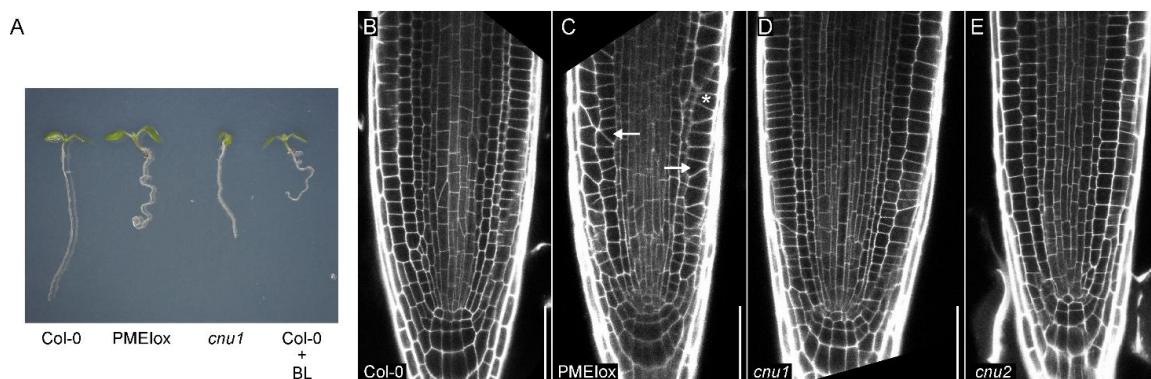
70 Growth itself poses a threat to cell wall integrity and composition and physical properties of
71 the cell wall have to be tightly monitored to ensure cell wall homeostasis and coordinated
72 growth. For example, a compensatory response to cell wall challenge is mediated by
73 RECEPTOR-LIKE PROTEIN 44 (RLP44) which is able to interact with the brassinosteroid
74 (BR) receptor BRI1 (Holzwart et al., 2018) and its co-receptor BRI1-ASSOCIATED KINASE1
75 (BAK1) (Wolf et al., 2014) and promote BR signalling. More specifically, the degree of
76 methylesterification (DM) of homogalacturonan (HG), a pectin component of the cell wall, has
77 a profound impact on cell wall structure and mechanical properties: once secreted into the
78 wall network, HG can be de-methylesterified by pectin methylesterases (PMEs), ubiquitous
79 plant enzymes which are themselves regulated by PME inhibitor proteins (PMEIs). Reduction
80 of PME activity through overexpression of *PECTIN METHYLESTERASE INHIBITOR 5*

81 (PMEI5) activates the BR hormone signalling via RLP44, which in turn leads to a complex
82 directional growth phenotype including organ fusion and root waving (Wolf et al., 2012; Wolf
83 et al., 2014).

84 BR signalling has a context- and cell type-specific effects on plant growth and development
85 (Ackerman-Lavert and Savaldi-Goldstein, 2019; Nolan et al., 2019; Planas-Riverola et al.,
86 2019; Singh and Savaldi-Goldstein, 2015). In addition to the main receptor BRI1, BRs are
87 also perceived by BRI1's two close paralogs, BRL1 and BRL3 (Cano-Delgado et al., 2004;
88 Zhou et al., 2004). *brl1* and *brl3* single and double mutants do not show growth defects and
89 *brl1 brl1 brl3* triple mutant (*brl1-triple* from hereon) resembles *brl1*. However, the absence of
90 *brl1* and *brl3* enhances *brl1*'s select vascular defects (Cano-Delgado et al., 2004; Holzwart et
91 al., 2018; Kang et al., 2017). BR mutants have short meristems and reduced number of cell
92 divisions (i.e. slow cell-cycle duration) in the longitudinal axis of the meristem (Cole et al.,
93 2014; Gonzalez-Garcia et al., 2011; Hacham et al., 2011; Vragovic et al., 2015) and increased
94 number of divisions, referred to as formative divisions, apparent in supernumerary cell files in
95 root tissues (Holzwart et al., 2018; Kang et al., 2017). Tissue-specific BRI1 expression in the
96 background of *brl1* and *brl1-triple* revealed differential effects of the receptor on organ growth.
97 For example, epidermal (non-hair cell) BRI1 largely rescues *brl1*'s root length (Hacham et al.,
98 2011). These roots have longer meristem as compared to the wild type, the cell count of which
99 is enhanced in *brl1-triple* and restrained by BRI1 in the stele (Vragovic et al., 2015).
100 However, formative divisions are promoted by BRI1 in the stele and restrained by epidermal
101 BRI1 (Kang et al., 2017). In addition, BRI1 activity in the protophloem cells of the vasculature
102 can rescue the *brl1-triple* root phenotype (Graeff et al., 2020; Kang et al., 2017). Together,
103 tissue-specific approaches revealed that growth control by BRI1 involves cell autonomous and
104 non-cell autonomous effects.

105 Here, we dissected the phenotype induced by PME15-mediated reduction in PME activity on
106 the root apical meristem and revealed that pectin-triggered cell wall signalling leads to
107 orientation defects of newly placed walls, which are dependent on BR signalling activation.

108 These defects are independent of organ-level growth phenotypes and coincide with aberrant
109 localization of the CDZ component POK1. Conversely, reduced BR signalling in receptors and
110 biosynthetic mutants leads to cell shape defects similar to those observed in PMElox, but
111 unrelated to the enhanced formative division phenotypes. These cell shape defects are also
112 separated from whole root growth defects. Thus, we reveal a role for cell wall and BR signalling
113 in cell wall orientation.


114

115 **Results**

116 **Pectin-triggered cell wall signalling leads to cell division defects that are RLP44 and** 117 **BRI1 dependent**

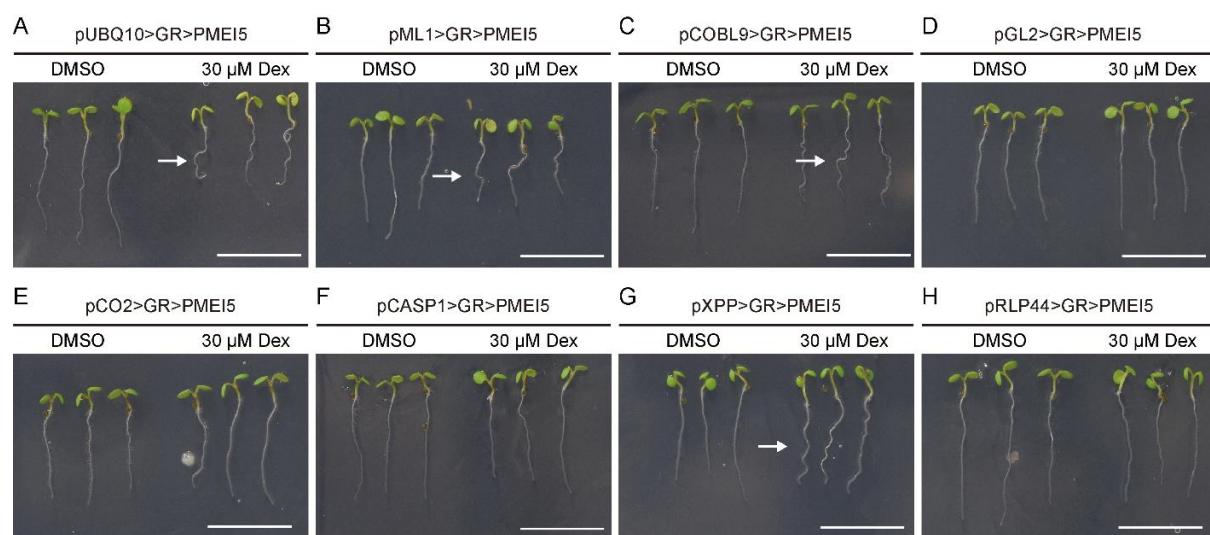
118 We have previously demonstrated that cell wall signalling connects the state of the cell wall to
119 the BR pathway (Wolf et al., 2012). When de-methylesterified pectin becomes limiting, such
120 as in PMElox plants overexpressing *PMEI5*, elevated BR signalling counteracts loss of cell
121 wall integrity and leads to BRI1-dependent macroscopic growth defects such as reduced root
122 length and root waving ((Wolf et al., 2012); Figure 1A, Supplemental Figure 1A). To shed light
123 on the cellular phenotype of PMElox roots and to assess whether root waving is associated
124 with meristematic defects, we analysed PMElox root tips 5 days after germination (DAG) and
125 found that the reduced root length of PMElox was accompanied by an even stronger reduction
126 in size and cell number of the RAM (Supplemental Figure 1A-C). Interestingly, we also
127 revealed that in contrast to the stereotypical pattern of cellular morphology and tissue
128 organization in wild type root tips ((Dolan et al., 1993), Figure 1B), PMElox roots displayed a
129 substantial amount of obliquely orientated transverse cell walls apparent in epidermis, cortex
130 and endodermis (Figure 1C). This caused an irregular tissue organization and, in some severe
131 cases, almost indiscernible tissue boundaries. We next asked whether these cell shape
132 defects in PMElox are also the result of elevated BR signalling mediated by RLP44 (Wolf et
133 al., 2014). Consistent with this hypothesis, PMElox suppressor mutants with lesions in *BRI1*

134 (*cnu1*, (Wolf et al., 2012)) and *RLP44* (*cnu2*, (Wolf et al., 2014)), respectively, showed to a

135

136 **Figure 1.** Cell wall signalling triggered by PMElox alters root growth and cell wall orientation
137 (A) PMElox seedlings have a root waving phenotype caused by enhanced BR signalling. 5-
138 day-old seedlings of Col-0, PMElox, the PMElox *bri1* suppressor mutant *cnu1*, and Col-0
139 seedlings grown on plates containing 5 nM of brassinolide (BL) are shown. (B-E). PMElox
140 plants show oblique cell walls in the root apical meristem dependent on BRI1 and RLP44. Cell
141 division defects in PMElox (C, arrows) are dependent on BRI1, mutated in the PMElox
142 suppressor mutant *cnu1* (D) and RLP44, mutated in the PMElox suppressor mutant *cnu2* (E).
143 Cells walls The root apical meristems are visualized using mPS-PI staining (Truernit et al.,
144 2008). Bars = 50 μ m.

145

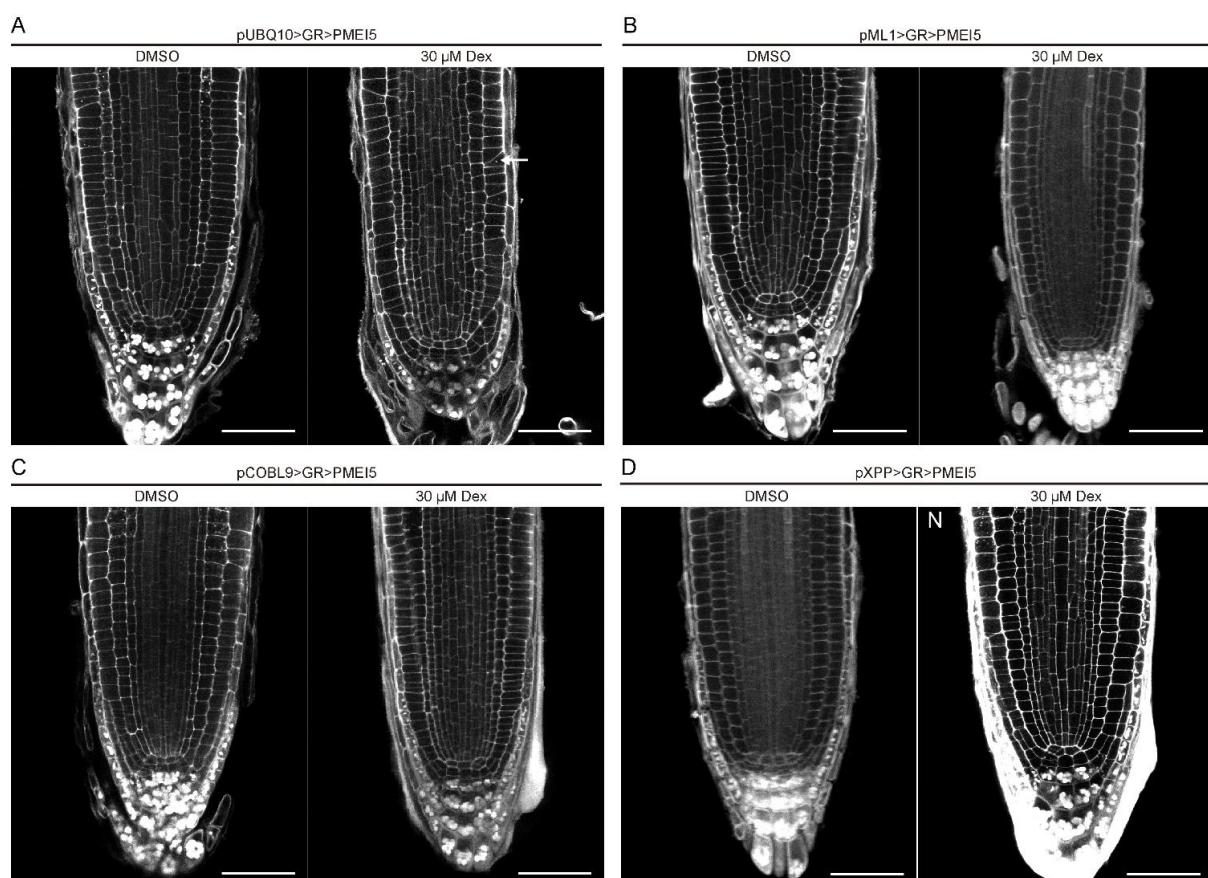

146 large extent normal cross wall orientations (Figure 1D, E) in line with the suppression of the
147 macroscopic PMElox defects, such a root waving and organ fusion (Figure 1A, (Wolf et al.,
148 2012; Wolf et al., 2014). Moreover, as previously observed with the macroscopic phenotypes
149 of PMElox, expression of a GFP-tagged version of RLP44 under control of the CaMV35S
150 promoter (RLP44-GFP) in *cnu2* resulted in oblique cell walls, indicating complementation
151 (Supplemental Figure 2). Together, these results suggest that cell wall signalling-triggered
152 elevation of BR signalling is causative for the oblique cell wall phenotype in PMElox.

153 **Cell wall perturbation in diverse cell types separates aberrant cell division, root
154 waviness and root growth**

155 Thus far, our results indicate that pectin-triggered cell wall signalling leads to root waving, root
156 growth inhibition, and aberrant wall orientation that are BRI1-dependent. These pleiotropic
157 phenotypes could be all linked or could result from unrelated processes. Since BR signalling
158 is context-dependent, we employed a cell type-specific expression system to alter cell wall

159 properties locally and followed the phenotypic consequences on the organ, tissue, and cellular
160 level. We selected a number of tissue-specific promoters to drive expression of the chimeric
161 transcription factor GR-LhG4 (Craft et al., 2005; Moore et al., 1998; Schurholz et al., 2018) in
162 both cell types of the epidermis and in each of its cell types alone (i.e. hair cells and non-hair
163 cells), cortex, endodermis, and xylem pole pericycle cells, complemented by ubiquitous
164 expression (Supplemental Figure 3). GR-LhG4, in turn, triggers transcription of *PMEI5* under
165 control of the synthetic pOp promoter in the presence of dexamethasone (DEX). Expression
166 of *PMEI5* in the epidermis, driven by the *ML1* promoter (pML1>GR>PMEI5), or in hair cells
167 (pCOBL9>GR>PMEI5) was sufficient to trigger root waving, similar to ubiquitous expression
168 (pUBQ10>GR>PMEI5) (Figure 2A-C). In contrast, expression of *PMEI5* in non-hair cells,
169 cortex, or differentiating endodermis cells did not affect directional root growth (Figure 2D-F).

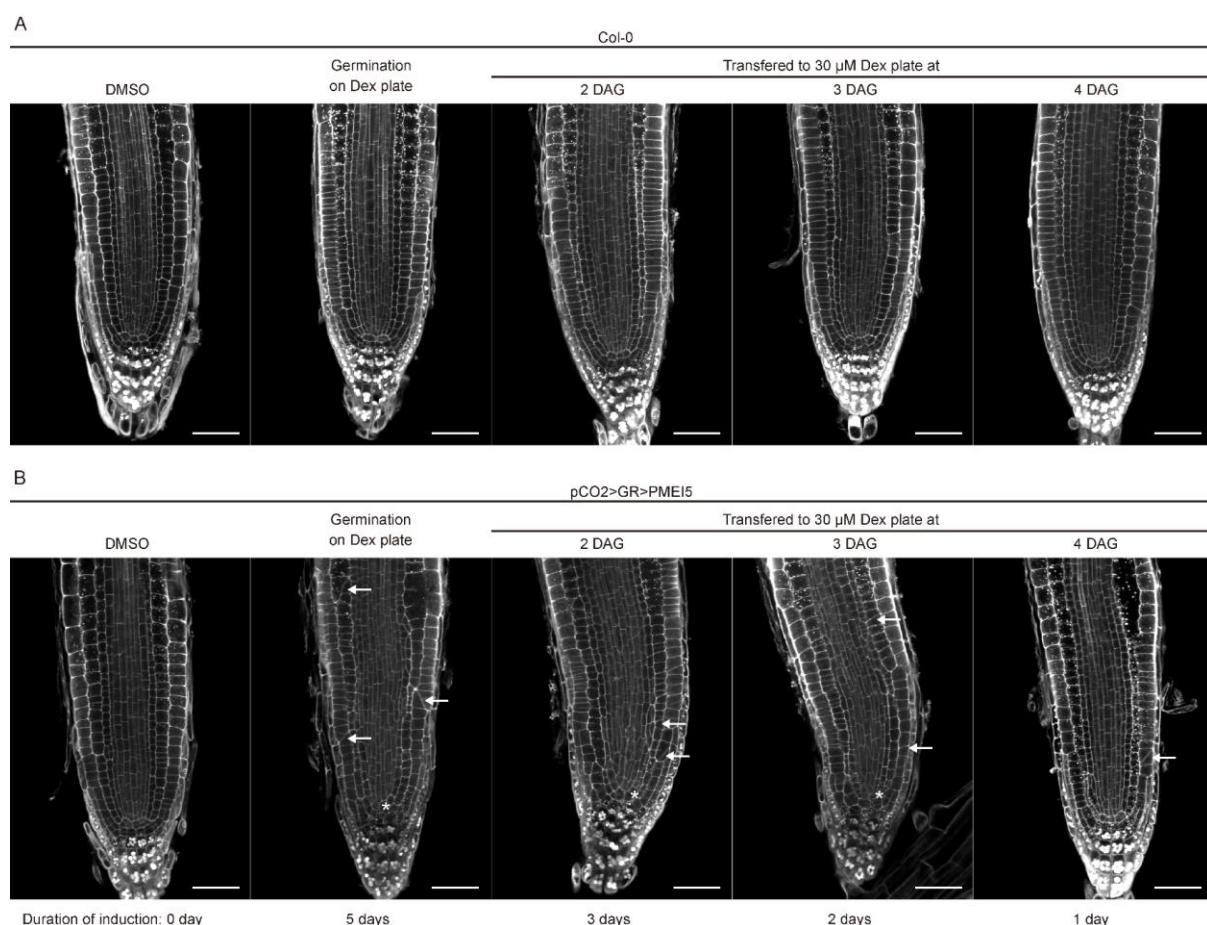
170


171

172 **Figure 2.** Cell wall perturbation in diverse cell types can lead to similar organ-level responses.
173 Induction of PME_{ox} trans-activation ubiquitously (A), in the epidermis (B), hair cells (C), non-
174 hair cells (D), meristematic cortex cells (E), differentiating endodermis (F), xylem pole
175 pericycle cells (G), and in the RLP44 expression domain (H). Plants were germinated and
176 grown on plates containing 30 μM Dexamethasone (Dex) or an equal volume of DMSO for
177 five days. Bars = 1 cm.

178

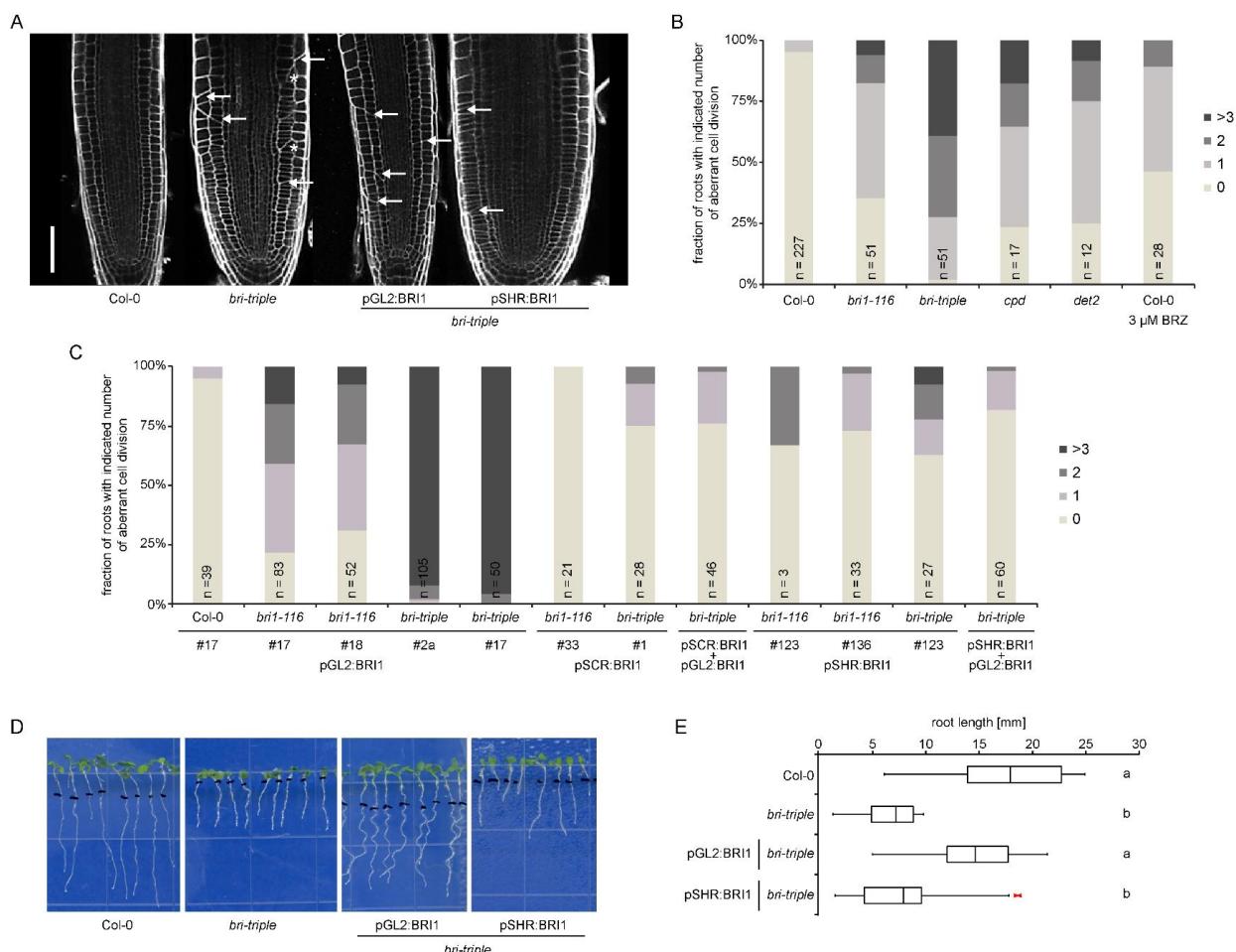
179 Interestingly, expression in the xylem pole pericycle cells of the stele (pXPP>GR>PMEI5) also
180 led to root waving (Figure 2G). This suggests that cell wall-induced BR signalling in these cells


181 causes organ-level responses, with the caveat that PMEI5 might be mobile in the cell wall. We
182 then assessed the occurrence of oblique cell walls in the trans-activation lines. Notably, tissue-
183 specific expression lines that displayed root waving, namely pML1>GR>PMEI5,
184 pCOBL9>GR>PMEI5, and pXPP>GR>PMEI5, had normal cell wall angles in the RAM (Figure
185 3B-D), in contrast to ubiquitous *PMEI5* expression (Figure 3A), suggesting that root waving is
186 independent from meristematic cell shape defects.

187
188 **Figure 3.** Tissue-specific expression of PMElox reveals that root waving is independent from
189 cell wall orientation defects. (A) Ubiquitous trans-activation of *PMEI5* recapitulates the PMElox
190 cell wall phenotype (arrow). (B-D) In lines with tissue-specific PMEI5 expression in epidermis,
191 hair cells, or xylem pole pericycle cells, cell wall orientation in the RAM is normal. Bars = 50
192 μM. Cell walls are counterstained with mPS-PI.

193
194 Interestingly, trans-activation of *PMEI5* in cortex cells (pCO2>GR>PMEI5), which did not lead
195 to root waving (Figure 2E), triggered PMElox-like oblique cell walls cell autonomously in cortex
196 cells and non-cell autonomously in epidermal cells (Figure 4). In addition, PMEI5 expression

197 in cortex cells leads to a disrupted organization of the stem cell niche (Figure 4B). Moreover,
198 and in contrast to PME^{lox} (Supplemental Figure 1), the profound effect on cell shape in
199 pCO₂>GR>PME¹⁵ plants was accompanied by only mild effects on root length, RAM size,
200 and RAM cell number (Supplemental Figure 4).


202 **Figure 4.** Induction of *PME¹⁵* expression in meristematic cortex cells leads to oblique cell walls
203 in cortex and epidermis (arrows) and a disrupted stem cell region (asterisk). Plant were imaged
204 at five days after germination on Dex-containing medium or after germination on DMSO-
205 containing plates and transfer to induction medium at the indicated time points.

206

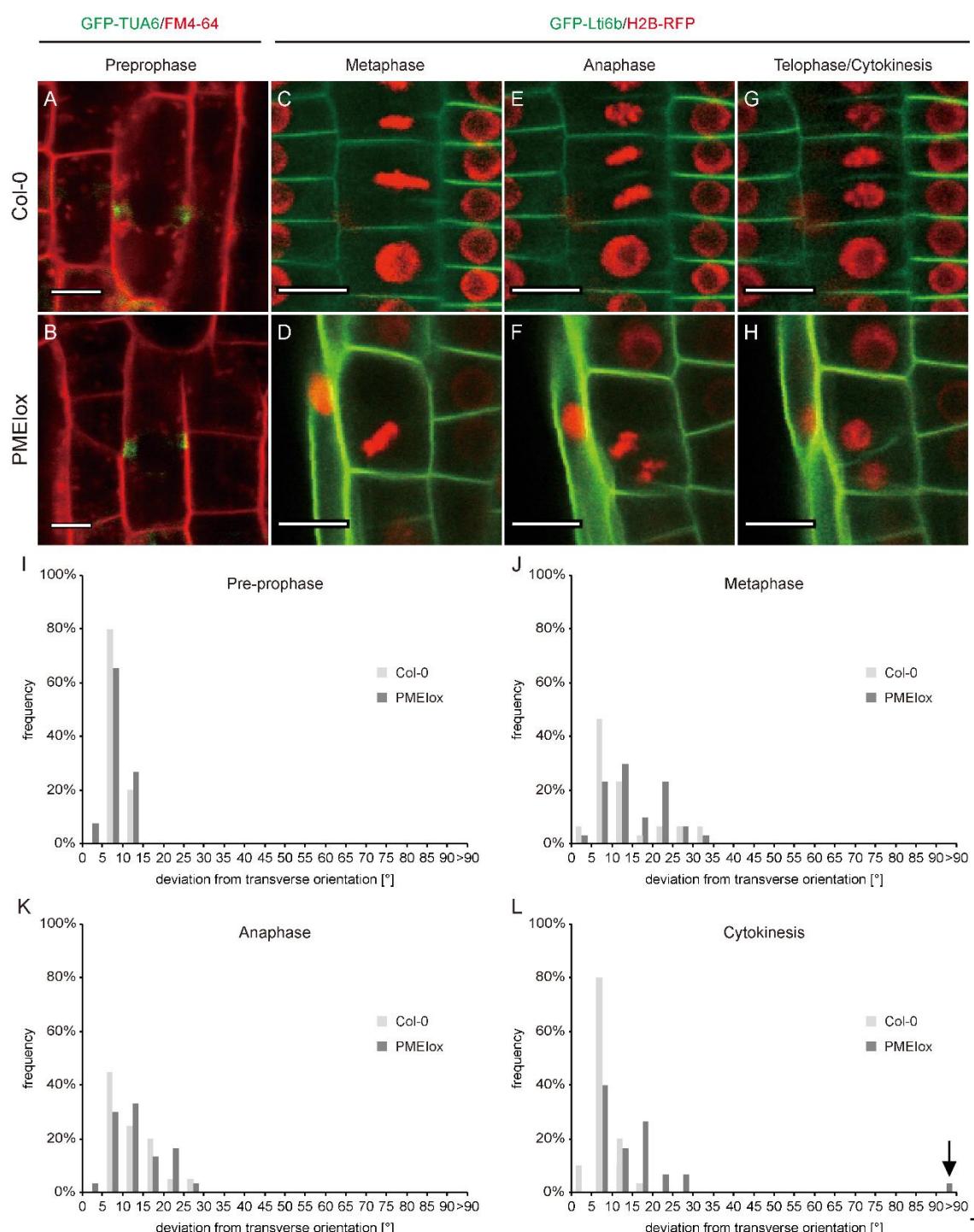
207 Taken together, these results reveal that triggering cell wall modification in either the epidermis
208 or in XPP cells of the stele can lead to similar organ level responses and confirm that cell wall
209 orientation alterations are independent of directional growth processes. In addition,
210 meristematic cell shape defects did not affect organ level growth.

211 **Reduced BR signalling leads to an oblique newly wall orientation defects that can be**
212 **separated from root growth**

213 We next characterized the cross wall orientation in lines with reduced BR signalling and
214 observed aberrant wall angles in *bri1* that were enhanced in *bri1-triple* mutants. The
215 occurrence of oblique transversal walls within the cell files of the root meristem resulted in
216 random perturbation of the cell files (Figure 5A), and thus unrelated to formative divisions

217
218 **Figure 5.** BR signalling is required for the maintenance of cell wall orientation. (A) Propidium
219 iodide-stained meristems of Col-0, *bri-triple* mutants and two *bri-triple* lines expressing BRI1
220 from cells of the epidermis (pGL2:BRI1) or stele (pSHR:BRI1). Note oblique transversal walls
221 in epidermis, cortex, and endodermis (arrows), as well as random perturbation of cell files
222 (asterisk). (B) Quantification of the fraction of cortex cells with oblique transversal walls in
223 cortex cells from confocal section as in (A) for the indicated genotypes and wild type roots in
224 which BRs were depleted by treatment with brassinazole. (C) Quantification of the fraction of
225 cortex cells with altered cell shape of lines expressing BRI1 from the epidermis (pGL2-BRI1),
226 endodermis (pSCR-BRI1), and stele (pSHR-BRI1) as well as their combinations in various
227 backgrounds. (D) Growth phenotype of seven day old Col-0, *bri-triple*, and *bri-triple* plants
228 expressing BRI1 from cells of the epidermis (pGL2:BRI1) or stele (pSHR:BRI1). (E)

229 Quantification of root length as depicted in (D). n= 21-25. Letters indicate statistically
230 significant difference after one factor ANOVA followed by Tukey's post-hoc test.


231

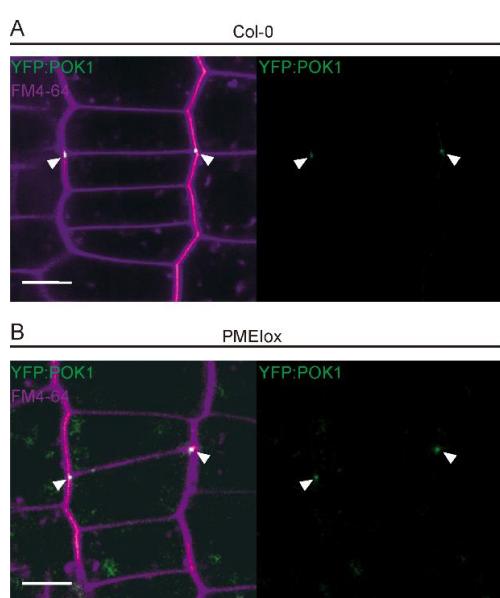
232 (Holzwart et al., 2018; Kang et al., 2017). Together, optimal BR signalling strength is required
233 for the maintenance of cell wall orientation (Figure 5). Quantification of aberrant cell walls in
234 cortex cells revealed that the majority of *bri1-116* meristems had a least one oblique cortex
235 cross wall per median confocal section, a phenotype which was enhanced in *bri-triple* mutants
236 (Figure 5B). We recently reported that some functions of BRI1 are independent of classical
237 BR signalling outputs (Holzwart et al., 2018; Holzwart et al., 2019). However, cell shape
238 defects in *bri1* mutants seem to be caused by reduced BRI1/ligand dependent signalling, as
239 the biosynthetic mutants *cpd* (Szekeres et al., 1996) and *det2* (Chory et al., 1991), as well as
240 plants in which endogenous BRs were depleted by the application of brassinazole (BRZ)
241 (Asami et al., 2000), displayed phenotypes comparable to *bri1* mutants (Figure 5B). To
242 address the spatiotemporal impact of BR activity on the cell wall orientation, we used a
243 previously reported collection of lines conferring tissue-specific BRI1 expression in *bri1* and
244 *bri-triple* mutant backgrounds (Fridman et al., 2014; Hacham et al., 2011; Vragovic et al.,
245 2015). Expression of BRI1 in non-hair cells (pGL2-BRI1) did not affect cortex cell wall
246 orientation in the wild type, but slightly enhanced both the *bri1-116* and *bri-triple* phenotype
247 (Figure 5C). In contrast, expression of BRI1 from the endodermis (pSCR-BRI1) or stele
248 (pSHR-BRI1) largely rescued cell wall orientation in the cortex of *bri1-116* and *bri1-triple*
249 (Figure 5C). Interestingly, the extent of BRI1's effect on the aberrant wall angles did not
250 correlate with its effect on meristem size and root length ((Hacham et al., 2011; Vragovic et
251 al., 2015), Figure 5 D, E, Supplemental Figure 5). Specifically, GL2-BRI1 roots are longer than
252 pSCR-BRI1 and pSHR-BRI1 and can have almost wild type length, in both *bri1* and *bri1-triple*
253 backgrounds ((Hacham et al., 2011), Figure 5D, E). BRI1 activity in non-hair cells limits cell
254 elongation in the elongation zone of the root, unless BRI1 in the neighbouring hair cells is also
255 present (Fridman et al., 2014). High BRI1 in non-hair cells results in strong and mild waviness
256 in a mutant and wild type background, respectively ((Fridman et al., 2014), Figure 5D). Thus,

257 aberrant wall orientation is not correlated with root waviness. Together, as with PMElox, the
258 control of cell wall orientation is separated from other growth processes controlled by BRI1.

259

260 **Cell wall perturbation by PMElox leads to cytokinesis defects after specification of the**
261 **CDZ**

262
263 **Figure 6. Cell wall perturbation by PMElox leads to cell division defects after specification of**
264 **the cortical division zone. (A, B) Orientation of pre-prophase bands labelled by GFP-TUA6 is**


To

265 transverse in both Col-0 (A) and PMElox (B); see (I) for quantification. (C-F) Metaphase plate
266 orientation (C, D; see J for quantification) and sister chromatid orientation during anaphase
267 (E, F; see K for quantification) deviates from a 90°C angle in both the Col-0 wild type (C, E)
268 and PMElox (D, F). (G, H) Orientation of the cell plate in the Col-0 wild type stabilized at
269 around 90 °C relative to the cell long axis (G), while PMElox cell plates showed a wide range
270 of orientations (H, see L for quantification). (I-L) Quantification of division plane orientation
271 during mitosis and cytokinesis. Bars in histograms denote fraction of cells in bins bordered by
272 angles indicated on the x-axis. n = 30 - 50. Bars = 20 μ m in (A-H), = 10 μ m in (I, J).

273
274 test whether the aberrant cell wall placement in PMElox was associated with defects in cell
275 division plane orientation, we quantified the orientation of this plane at the different mitotic
276 stages (Figure 6). The PPB transiently indicates positioning of the CDZ (Rasmussen et al.,
277 2013). Hence, to determine whether cell wall perturbations affects this positioning, we used a
278 fluorescently labelled tubulin (GFP-TUA6) that allows visualizing the PPB (Figure 6A and B).
279 Quantitative analysis of PPB orientation in wild type cells revealed only minimal deviations
280 from a position perpendicular to the cell long axis (<10°, Figure 6I). PMElox displayed a very
281 similar distribution, indicating that division plane orientation defects are independent of PPB
282 positioning (Figure 6I). As the PPB disappears in pro-metaphase, we used a transgenic line
283 expressing an RFP-fused Histone 2B to label chromatin and a GFP-fused plasma membrane
284 protein Lti6b (Maizel et al., 2011) to visualize cell outlines and the forming cell plate. We
285 quantified the orientation of the metaphase plate, the midline between sister chromatids, and
286 the cell plate in metaphase, anaphase, and telophase, respectively. Interestingly, the
287 orientation of both the Col-0 wild-type and PMElox metaphase plates deviated considerably
288 from a 90° angle relative to the cell long axis (Figure 6C, D, and J). A similar observation was
289 made during anaphase (Figure 6E, F, and K). However, the forming cell plate during telophase
290 was largely aligned with the expected division plane in Col-0, and deviation angles showed a
291 very similar distribution to what was previously observed with the PPB (Figure 6G and L). In
292 contrast, telophase cell plate orientation in PMElox showed a distribution similar to what was
293 observed in meta- and anaphase, suggesting defective re-alignment to the ~90° angle
294 observed in Col-0 (Figure 6H and L). In summary, the PPB orientation in wild type and PMElox
295 were indistinguishable from each other, suggesting that the oblique cell walls in PMElox are

296 not caused by MT misalignment. While both, wild type and PMElox virtual division planes
297 defined by the H2B marker, deviated markedly from the perpendicular PPB orientation during
298 metaphase and anaphase, wild type cell plates during telophase aligned with the PPB position,
299 whereas PMElox cell plates did not.

300 These observations are consistent with two hypotheses that could explain the aberrant cell
301 wall angles in PMElox. First, PMElox cell plates might fail to find the CDZ initially marked by
302 the PPB and occupied by POK1 and other components (Livanos and Muller, 2019). Second,

303 **Figure 7.** Cell plate fusion in PMElox coincides with POK1 localization at aberrant positions.
304 (A, B) Cell plate fusion site position and YFP-POK1 localization at the end of cytokinesis in
305 Col-0 (A) and PMElox (B). Note that the cell plate fusion at POK1-positive sites in the parental
306 walls deviates from the normal position in PMElox. White arrow heads indicated YPF-POK1-
307 marked cell plate fusion sites. Membranes are labelled with FM4-64. Bars = 20 μ m.

309
310 the position of the cortical division zone might be mobile relative to the cell walls in PMElox,
311 while guidance is unaffected. To differentiate between the two possibilities, we introduced a
312 fluorescently tagged version of POK1, YFP-POK1 (Lipka et al., 2014) into PMElox and
313 determined whether the cell plate fusion site coincided with the location of POK1 (Lipka et al.,
314 2014; Muller et al., 2006). Cell plate fusion sites were marked by YFP-POK1, even when the
315 cell plate fused at an angle deviating from 90° relative to the parental walls, suggesting that

316 phragmoplast guidance towards CDZ components is unaffected in PMElox (Figure 7). Instead,
317 YFP-POK1, and thus presumably CDZ localization, seems to diverge from the position of the
318 PPB. Together, cell plate fusion in PMElox coincides with POK1 localization at aberrant
319 positions, after specification of the CDZ. Our results show that optimal BR signalling strength
320 is required to maintain the orientation of newly placed cell walls.

321 **Discussion**

322 Here, we report that cell wall integrity and BR signalling are involved in the control of cell wall
323 orientation in the *Arabidopsis* root. Both pectin-triggered cell wall signalling, as in PMElox
324 plants, and impaired BR signalling resulted in cross walls in the *Arabidopsis* root meristem.

325 In PMElox plants, pectin modification triggers an RLP44-mediated activation of BR signalling
326 which, in turn, prevents loss of cell wall integrity, but results in a wide variety of growth related
327 phenotypes ((Holzwart et al., 2018; Wolf et al., 2012; Wolf et al., 2014), this study). Aberrant
328 cell wall orientation due to an altered cell wall in PMElox seems to occur downstream of BR
329 signalling, as mutation of *BRI1* or *RLP44* in the *cnu1* and *cnu2* mutants respectively, largely
330 suppressed the oblique cell wall phenotype of PMElox. Analysis of PMElox cell divisions at
331 the subcellular level revealed that the virtual cell division plane between meta- and telophase,
332 marked by the midline between chromatin structures (metaphase plate and segregating sister
333 chromatids), showed deviations from the 90° angle in both wild type and PMElox cells. Wild
334 type cell plates later returned to the previous position of the PPB, whereas PMElox cell plates
335 frequently did not. Our use of metaphase plate and sister chromatids as a read-out for the
336 “virtual” cell division plane can be questioned as, for example, mitotic features like spindle
337 orientation do not always correlate with division plane orientation (Cleary and Smith, 1998;
338 Galatis et al., 1984; Marcus et al., 2003; Oud and Nanninga, 1992; Rasmussen et al., 2011;
339 Rasmussen et al., 2013). However, that wild type cell division plane orientations show
340 considerable variation and noise, but are later harmonized by interaction with CDZ
341 components is in agreement with the phenotype of CDZ mutants such as *tan1*, *pok1pok2*, and
342 *phgap1 phgap2* (Lipka et al., 2014; Muller et al., 2006; Smith et al., 1996; Stockle et al., 2016;

343 Walker et al., 2007), in which oblique cell walls are presumably the result of a lack of
344 phragmoplast guidance. Our analysis shows that PMElox and WT behave similarly with
345 respect to all aspects analysed up until the very last steps of cell division, during which PMElox
346 cell plates fail to re-align with the former orientation of the PPB. Notably, oblique cell walls in
347 PMElox seem to occur through a mechanism different from that in the aforementioned CDZ
348 mutants, as the CDZ itself appears to have shifted from the position of the PPB, based on
349 YFP-POK1 localization. This raises the question how the relative position of the CDZ is
350 maintained in wild type cells and whether this could involve interactions with the cell wall as
351 previously suggested (Smertenko et al., 2017). Supporting an involvement of the cell wall in
352 CDZ maintenance is the observation that four way-junctions comprised by cross walls of
353 adjacent cells fusing at a similar position of their shared longitudinal wall are actively avoided
354 (Flanders et al., 1990; Martinez et al., 2018). PPBs are placed with an offset from the predicted
355 division plane if a cross wall or PPB from an adjacent cell is found at this position and it is
356 conceivable that the necessary signal to trigger this response involves the cell wall. In addition,
357 cell wall attachment of the CDZ is a plausible way to maintain its relative position in the plasma
358 membrane, in line with the observation that the cell wall is required for the maintenance of PIN
359 polarity (Feraru et al., 2011) and for restricting the mobility of plasma membrane proteins in
360 general (Martiniere et al., 2012; McKenna et al., 2019).

361 Whether there is a direct relationship between cell shape, in part controlled by cell division
362 orientations and organ shape is a long standing question (Beemster et al., 2003; Hong et al.,
363 2018; Kaplan and Hagemann, 1991; Martinez et al., 2017). Both, continuous pectin-triggered
364 cell wall signaling activation and exogenous application of BRs results root growth alterations
365 such as waviness and a reduction in root length ((Lanza et al., 2012; Wolf et al., 2012), this
366 study). Here, we observed that cell type-specific induction of cell wall signaling separated root
367 growth, its directionality, and cell wall orientation defects based on which cell type expressed
368 PME15. Furthermore, pectin-triggered cell wall signaling and reduced BR signaling in *bri1*
369 mutants led to similar cell wall orientation defects in the meristem, but only PMElox roots

370 showed directional growth phenotype at the organ level. In addition, plants expressing *PMEI5*
371 in cortex cells showed pronounced cell division orientation defects without influencing organ
372 morphology, growth, meristem size, or meristematic cell number, whereas epidermal
373 expression of *BRI1* in *bri1*-triple mutants rescued organ level growth but enhanced cell division
374 orientation defects. These results demonstrate that aberrant cell shape are compatible with
375 normal organ growth.

376 Reminiscent of previous findings demonstrating non-cell autonomous effects of BR signalling,
377 cortical *PMEI5* expression led to oblique cell divisions in both epidermal and cortex cells.
378 Unfortunately, potential mobility of the protein in the cell wall could not directly be addressed
379 as all attempts to express a tagged version of *PMEI5* failed, therefore we cannot determine
380 whether the non-cell autonomous effect is directly linked to *PMEI5* or to downstream signalling
381 components. However, it is noteworthy that expression of *PMEI5* in two spatially separated
382 cell types, hair cells in the epidermis and the XPP cells in the stele led to similar organ level
383 responses (root waving). Future work needs to address how these organ level responses are
384 connected to cellular effects of BR signalling and how the cell wall is connected to cell division
385 orientation maintenance, taking into account potential mechanical feedbacks and the
386 contribution of cell geometry and developmental signalling (Besson and Dumais, 2011;
387 Besson and Dumais, 2014; Chakrabortty et al., 2018; Lintilhac and Vesecky, 1984; Louveaux
388 et al., 2016; Martinez et al., 2018; Moukhtar et al., 2019; Yoshida et al., 2014).

389 The defects in cell wall orientation described here for BR receptor mutants appear random
390 and it is unclear if these cell division defects are related to previously described disturbed cell
391 files and altered tissue organization in rice *bri1* mutants (Nakamura et al., 2006). The use of
392 a tissue-specific approach to perturb the BR signalling was an instrumental tool to disentangle
393 the pleiotropic effects of the BR pathway. Hence, despite a ubiquitous expression of *BRI1*, it
394 enabled to uncover tissue-specific effects on shoot growth, root meristem size, final cell size,
395 root length and gene expression that were otherwise masked by alternative overexpression
396 or loss-of-function studies (Singh and Savaldi-Goldstein, 2015). Here, we show that aberrant

397 cell wall orientation can be largely rescued in both *bri1* and *bri1-triple* mutant backgrounds
398 while other growth parameters are poorly rescued, and vice versa. For example, *pGL2-BRI1*
399 in *bri1-triple* has long root meristems and almost wild type-like root length, but harbours severe
400 wall orientation defects. However, *pSHR-BRI1* has a shorter root and wide meristem that
401 largely rescued these defects. A tissue-specific approach also assisted in separating BRI1
402 control of phloem differentiation from that of growth (Graeff et al., 2020). Since BRI1 is not
403 expressed in the phloem in the lines analysed here, restoration of BR signalling in diverse cell
404 types is sufficient to control root length and orientation of transversal walls.
405 Taken together, our results demonstrate that cell wall integrity and optimal BR signaling levels
406 are required for a correct cell wall placement. This control of cell wall orientation occurs both
407 cell autonomously and non-cell autonomously and is uncoupled from organ level growth
408 control.

409

410 **Materials and Methods**

411 **Plant Material**

412 All genotypes used in this study were in the Col-0 background and are listed in Table S1. For
413 PMEox related experiments, seeds were sterilized with 1.3% (v/v) sodium hypochlorite
414 (NaOCl) diluted in 70% ethanol for 3 minutes, then washed twice with 100% ethanol and dried
415 in laminar flow hood. Seeds were sowed out on plate with growth medium containing half-
416 strength (1/2) Murashige & Skoog (MS) medium (Duchefa), 1% D-sucrose (Car Roth) and
417 0.9% phytoagar (Duchefa) with pH adjusted to 5.8 with KOH. After 2 days stratification at 4°C
418 in darkness, plates were placed vertically in long day conditions (16h light/ 8h dark cycles)
419 with equal light conditions (approximately 100 µE m-2s-1) for 5 days. All analyses have been
420 carried out on seedling of 5-dayold. For dexamethasone (Dex) induction on plate, desired
421 amount of Dex (Signam-Aldrich #D4902) was added to the growth medium, equal volume of
422 dimethyl sulfoxide (DMSO) has been added to the control plate. For Dex induction on soil, 30

423 μ M Dex has been used to spray the aerial part of the plant and to water every other day
424 starting from 3 days after transfer of seedling on soil. All plants are grown on soil under long
425 day conditions (16h light/ 8h dark cycles) at 23°C with 65% humidity. For BRI1 related
426 experiment (i.e. Figure 5), seeds were sterilized and grown as described in Fridman et al.

427 Microscopy

428 Microscopic analyses have been carried out with Zeiss LSM 510 Meta, a Zeiss LSM710, and
429 Leica TCS SP5 laser scanning confocal microscopes. For mTurquoise2, excitation
430 wavelength of 458 nm was used and emission was collected between 460 and 520 nm. GFP
431 was excited with a 488 nm laser line and fluorescence was collected between 490 and 530
432 nm, mVenus was excited with a 514 nm laser line and fluorescence was collected between
433 520 and 560 nm. For propidium iodide fluorescence, an excitation wavelength of 488 nm was
434 used, whereas emission was collected between 600 and 670 nm. RFP and FM4-64
435 fluorescence was excited at 561 nm and emission was collected between 560 and 620 nm
436 (RFP) or between 675 and 790 nm (FM4-64).

437

438 Plasmid construction

439 All constructs were produced using GreenGate cloning (Lampropoulos et al., 2013) with
440 modules and primers listed in Table S2. PCR products were generated using Q5® High-
441 Fidelity DNA Polymerase (NEB) and column-purified by using GeneJET PCR Purification Kit
442 (ThermoFisher), followed by restriction digest with *Eco*31I FD restriction enzyme
443 (ThermoFisher) at 37°C for 15 minutes. Products were column-purified as described above.
444 Empty entry vectors (pGGA000, pGGC000 (Lampropoulos et al., 2013) were digested and
445 purified separately. Digested and purified insert and vector were ligated using Instant Sticky-
446 end Ligase Master Mix (NEB) following instructions by the manufacturer. The ligation products
447 were then used to transform chemically competent *E.coli* strain DH5 α or XL1-blue and
448 cultivated in LB medium supplied with Ampicillin. Plasmid sequences were verified by Sanger
449 sequencing. Confirmed entry modules are ligated into intermediate vector by running

450 GreenGate reaction (Lampropoulos et al., 2013). The generation of expression plasmids
451 involved the creation of two intermediate constructs, one in pGGM000 carrying the GR-LhG4
452 expression cassette, and one in pGGN000, carrying the PMEI5 coding sequence under control
453 of the pOp6 promoter. The assembly of two expression cassettes each carried by one
454 intermediate vector was achieved by running the same GreenGate reaction and simply
455 replacing the entry module and empty intermediate vector by intermediate module and empty
456 pGGZ001 destination vector, respectively. Final plasmids were verified by colony PCR and
457 restriction digest, and then used to transform *Agrobacterium tumefaciens* strain ASE
458 (pSOUP+) carrying resistance to chloramphenicol, kanamycin and tetracycline. All constructs
459 were transformed by the floral dip method as described in (Clough and Bent, 1998; Zhang et
460 al., 2006).

461

462 *mPS-PI staining.*

463 Staining of cell outline with propidium iodide (PI, Sigma-Aldrich #P4170) with modified
464 pseudo-PI staining method has been performed as described in (Truernit et al., 2008) with
465 modifications. Seedlings at 5 DAG were fixed in solution containing 50% methanol and 10%
466 acetic acid for 3 days at 4 °C. Samples were then washed twice with H₂O and incubated in
467 1% periodic acid (Sigma-Aldrich #P0430) at room temperature for 40 minutes. Samples were
468 washed twice with H₂O and then stained with 100 µg/mL PI freshly diluted in Schiff's reagent
469 (100 mM sodium metabisulphite, 75 mM HCl). Stained samples were transferred onto
470 microscope slides covered by chlorohydrate solution (4 g chloral hydrate, 1 mL glycerol, 2 mL
471 H₂O) and incubated overnight at room temperature in a closed environment. Excess of
472 chlorohydrate solution was removed and several drops of Hoyer's solution (3 g gum arabic,
473 20 g chloral hydrate, 2 g glycerol, 5 mL H₂O) was added to the samples, which were at the
474 end covered gently by cover slips and stayed at room temperature for 3 days before imaging.

475 Orientation of mitotic structures, RAM length, and meristematic cell number were measured
476 using ImageJ. The meristem was defined as the region between the quiescent centre and the
477 first cortex cells with twice the length of the previous cell.

478 **Acknowledgements**

479 The authors thank Sabine Müller for the YFP-POK1 line.

480 **Competing Interests**

481 The authors declare no competing interest.

482 **Funding**

483 This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research
484 Foundation) through grant WO 1660/6-1 and through the DFG's Emmy Noether Programme
485 (WO 1660/2 to SW). This work in the Savaldi-Goldstein lab was supported by the Israel
486 Science Foundation (grant No. 1725/18).

487

488 **References**

489 **Ackerman-Lavert, M. and Savaldi-Goldstein, S.** (2019). Growth models from a
490 brassinosteroid perspective. *Curr Opin Plant Biol* **53**, 90-97.
491 **Asami, T., Min, Y. K., Nagata, N., Yamagishi, K., Takatsuto, S., Fujioka, S., Murofushi,
492 N., Yamaguchi, I. and Yoshida, S.** (2000). Characterization of brassinazole, a
493 triazole-type brassinosteroid biosynthesis inhibitor. *Plant Physiol* **123**, 93-100.
494 **Beemster, G. T., Fiorani, F. and Inze, D.** (2003). Cell cycle: the key to plant growth control?
495 *Trends Plant Sci* **8**, 154-158.
496 **Besson, S. and Dumais, J.** (2011). Universal rule for the symmetric division of plant cells.
497 *Proc Natl Acad Sci U S A* **108**, 6294-6299.
498 ---- (2014). Stochasticity in the symmetric division of plant cells: when the exceptions are the
499 rule. *Frontiers in plant science* **5**, 538.
500 **Cano-Delgado, A., Yin, Y., Yu, C., Vafeados, D., Mora-Garcia, S., Cheng, J. C., Nam, K.
501 H., Li, J. and Chory, J.** (2004). BRL1 and BRL3 are novel brassinosteroid receptors
502 that function in vascular differentiation in *Arabidopsis*. *Development* **131**, 5341-5351.
503 **Chakrabortty, B., Willemsen, V., de Zeeuw, T., Liao, C. Y., Weijers, D., Mulder, B. and
504 Scheres, B.** (2018). A Plausible Microtubule-Based Mechanism for Cell Division
505 Orientation in Plant Embryogenesis. *Curr Biol* **28**, 3031-3043 e3032.
506 **Chory, J., Nagpal, P. and Peto, C. A.** (1991). Phenotypic and Genetic Analysis of *det2*, a
507 New Mutant That Affects Light-Regulated Seedling Development in *Arabidopsis*. *Plant
508 Cell* **3**, 445-459.

509 **Cleary, A. L. and Smith, L. G.** (1998). The Tangled1 gene is required for spatial control of
510 cytoskeletal arrays associated with cell division during maize leaf development. *Plant
511 Cell* **10**, 1875-1888.

512 **Clough, S. J. and Bent, A. F.** (1998). Floral dip: a simplified method for Agrobacterium-
513 mediated transformation of *Arabidopsis thaliana*. *Plant J* **16**, 735-743.

514 **Cole, R. A., McInally, S. A. and Fowler, J. E.** (2014). Developmentally distinct activities of
515 the exocyst enable rapid cell elongation and determine meristem size during primary
516 root growth in *Arabidopsis*. *BMC Plant Biol* **14**, 386.

517 **Cosgrove, D. J.** (2016). Plant cell wall extensibility: connecting plant cell growth with cell wall
518 structure, mechanics, and the action of wall-modifying enzymes. *J Exp Bot* **67**, 463-
519 476.

520 **Craft, J., Samalova, M., Baroux, C., Townley, H., Martinez, A., Jepson, I., Tsiantis, M. and
521 Moore, I.** (2005). New pOp/LhG4 vectors for stringent glucocorticoid-dependent
522 transgene expression in *Arabidopsis*. *Plant J* **41**, 899-918.

523 **Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poethig, S., Roberts, K. and Scheres, B.** (1993). Cellular organisation of the *Arabidopsis thaliana* root. *Development* **119**, 71-
525 84.

526 **Feraru, E., Feraru, M. I., Kleine-Vehn, J., Martiniere, A., Mouille, G., Vanneste, S.,
527 Vernhettes, S., Runions, J. and Friml, J.** (2011). PIN polarity maintenance by the
528 cell wall in *Arabidopsis*. *Curr Biol* **21**, 338-343.

529 **Flanders, D. J., Rawlins, D. J., Shaw, P. J. and Lloyd, C. W.** (1990). Nucleus-associated
530 microtubules help determine the division plane of plant epidermal cells: avoidance of
531 four-way junctions and the role of cell geometry. *J Cell Biol* **110**, 1111-1122.

532 **Fridman, Y., Elkouby, L., Holland, N., Vragovic, K., Elbaum, R. and Savaldi-Goldstein, S.**
533 (2014). Root growth is modulated by differential hormonal sensitivity in neighboring
534 cells. *Genes Dev* **28**, 912-920.

535 **Galatis, B., Apostolakos, P. and Katsaros, C.** (1984). Positional inconsistency between
536 preprophase microtubule band and final cell plate arrangement during triangular
537 subsidiary cell and atypical hair cell formation in two *Triticum* species. *Canadian
538 Journal of Botany* **62**, 343-359.

539 **Gonzalez-Garcia, M. P., Vilarrasa-Blasi, J., Zhiponova, M., Divol, F., Mora-Garcia, S.,
540 Russinova, E. and Cano-Delgado, A. I.** (2011). Brassinosteroids control meristem
541 size by promoting cell cycle progression in *Arabidopsis* roots. *Development* **138**, 849-
542 859.

543 **Graeff, M., Rana, S., Marhava, P., Moret, B. and Hardtke, C. S.** (2020). Local and Systemic
544 Effects of Brassinosteroid Perception in Developing Phloem. *Curr Biol* **30**, 1626-1638
545 e1623.

546 **Gu, F., Bringmann, M., Combs, J. R., Yang, J., Bergmann, D. C. and Nielsen, E.** (2016).
547 *Arabidopsis* CSLD5 Functions in Cell Plate Formation in a Cell Cycle-Dependent
548 Manner. *Plant Cell* **28**, 1722-1737.

549 **Hacham, Y., Holland, N., Butterfield, C., Ubeda-Tomas, S., Bennett, M. J., Chory, J. and
550 Savaldi-Goldstein, S.** (2011). Brassinosteroid perception in the epidermis controls
551 root meristem size. *Development* **138**, 839-848.

552 **Holzwart, E., Huerta, A. I., Glockner, N., Garnelo Gomez, B., Wanke, F., Augustin, S.,
553 Askani, J. C., Schurholz, A. K., Harter, K. and Wolf, S.** (2018). BRI1 controls
554 vascular cell fate in the *Arabidopsis* root through RLP44 and phytosulfokine signaling.
555 *Proc Natl Acad Sci U S A*.

556 **Holzwart, E., Wanke, F., Glockner, N., Hofte, H., Harter, K. and Wolf, S.** (2019). A mutant
557 allele uncouples the brassinosteroid-dependent and independent functions of
558 BRASSINOSTEROID INSENSITIVE 1. *Plant Physiol*.

559 **Hong, L., Dumond, M., Zhu, M., Tsugawa, S., Li, C. B., Boudaoud, A., Hamant, O. and
560 Roeder, A. H. K.** (2018). Heterogeneity and Robustness in Plant Morphogenesis:
561 From Cells to Organs. *Annu Rev Plant Biol* **69**, 469-495.

562 **Kang, Y. H., Breda, A. and Hardtke, C. S.** (2017). Brassinosteroid signaling directs formative
563 cell divisions and protophloem differentiation in *Arabidopsis* root meristems.
564 *Development* **144**, 272-280.

565 **Kaplan, D. R. and Hagemann, W.** (1991). The relationship of cell and organism in vascular
566 plants. *Bioscience* **41**, 693-703.

567 **Lampropoulos, A., Sutikovic, Z., Wenzl, C., Maegele, I., Lohmann, J. U. and Forner, J.**
568 (2013). GreenGate---a novel, versatile, and efficient cloning system for plant
569 transgenesis. *PLoS One* **8**, e83043.

570 **Lampugnani, E. R., Khan, G. A., Somssich, M. and Persson, S.** (2018). Building a plant
571 cell wall at a glance. *J Cell Sci* **131**.

572 **Lanza, M., Garcia-Ponce, B., Castrillo, G., Catarecha, P., Sauer, M., Rodriguez-Serrano,
573 M., Paez-Garcia, A., Sanchez-Bermejo, E., T, C. M., Leo del Puerto, Y., et al.**
574 (2012). Role of actin cytoskeleton in brassinosteroid signaling and in its integration with
575 the auxin response in plants. *Dev Cell* **22**, 1275-1285.

576 **Lintilhac, P. M. and Vesecky, T. B.** (1984). Stress-induced alignment of division plane in
577 plant tissues grown in vitro. *Nature* **307**, 363-364.

578 **Lipka, E., Gadeyne, A., Stockle, D., Zimmermann, S., De Jaeger, G., Ehrhardt, D. W.,
579 Kirik, V., Van Damme, D. and Muller, S.** (2014). The Phragmoplast-Orienting Kinesin-
580 12 Class Proteins Translate the Positional Information of the Preprophase Band to
581 Establish the Cortical Division Zone in *Arabidopsis thaliana*. *Plant Cell* **26**, 2617-2632.

582 **Livanos, P. and Muller, S.** (2019). Division Plane Establishment and Cytokinesis. *Annu Rev
583 Plant Biol* **70**, 239-267.

584 **Louveaux, M., Julien, J. D., Mirabet, V., Boudaoud, A. and Hamant, O.** (2016). Cell division
585 plane orientation based on tensile stress in *Arabidopsis thaliana*. *Proc Natl Acad Sci
586 U S A* **113**, E4294-4303.

587 **Maizel, A., von Wangenheim, D., Federici, F., Haseloff, J. and Stelzer, E. H.** (2011). High-
588 resolution live imaging of plant growth in near physiological bright conditions using light
589 sheet fluorescence microscopy. *Plant J* **68**, 377-385.

590 **Marcus, A. I., Li, W., Ma, H. and Cyr, R. J.** (2003). A kinesin mutant with an atypical bipolar
591 spindle undergoes normal mitosis. *Mol Biol Cell* **14**, 1717-1726.

592 **Martinez, P., Allsman, L. A., Brakke, K. A., Hoyt, C., Hayes, J., Liang, H., Neher, W., Rui,
593 Y., Roberts, A. M., Moradifam, A., et al.** (2018). Predicting Division Planes of Three-
594 Dimensional Cells by Soap-Film Minimization. *Plant Cell* **30**, 2255-2266.

595 **Martinez, P., Luo, A., Sylvester, A. and Rasmussen, C. G.** (2017). Proper division plane
596 orientation and mitotic progression together allow normal growth of maize. *Proc Natl
597 Acad Sci U S A* **114**, 2759-2764.

598 **Martiniere, A., Lavagi, I., Nageswaran, G., Rolfe, D. J., Maneta-Peyret, L., Luu, D. T.,
599 Botchway, S. W., Webb, S. E., Mongrand, S., Maurel, C., et al.** (2012). Cell wall
600 constrains lateral diffusion of plant plasma-membrane proteins. *Proc Natl Acad Sci U
601 S A* **109**, 12805-12810.

602 **McKenna, J. F., Rolfe, D. J., Webb, S. E. D., Tolmie, A. F., Botchway, S. W., Martin-
603 Fernandez, M. L., Hawes, C. and Runions, J.** (2019). The cell wall regulates
604 dynamics and size of plasma-membrane nanodomains in *Arabidopsis*. *Proc Natl Acad
605 Sci U S A*.

606 **Miart, F., Desprez, T., Biot, E., Morin, H., Belcram, K., Hofte, H., Gonneau, M. and
607 Vernhettes, S.** (2014). Spatio-temporal analysis of cellulose synthesis during cell plate
608 formation in *Arabidopsis*. *Plant J* **77**, 71-84.

609 **Moore, I., Galweiler, L., Grosskopf, D., Schell, J. and Palme, K.** (1998). A transcription
610 activation system for regulated gene expression in transgenic plants. *Proc Natl Acad
611 Sci U S A* **95**, 376-381.

612 **Moukhtar, J., Trubuil, A., Belcram, K., Legland, D., Khadir, Z., Urbain, A., Palauqui, J. C.
613 and Andrey, P.** (2019). Cell geometry determines symmetric and asymmetric division
614 plane selection in *Arabidopsis* early embryos. *PLoS computational biology* **15**,
615 e1006771.

616 **Muller, S., Han, S. and Smith, L. G.** (2006). Two kinesins are involved in the spatial control
617 of cytokinesis in *Arabidopsis thaliana*. *Curr Biol* **16**, 888-894.

618 **Nakamura, A., Fujioka, S., Sunohara, H., Kamiya, N., Hong, Z., Inukai, Y., Miura, K.,**
619 **Takatsuto, S., Yoshida, S., Ueguchi-Tanaka, M., et al.** (2006). The role of OsBRI1
620 and its homologous genes, OsBRL1 and OsBRL3, in rice. *Plant Physiol* **140**, 580-590.

621 **Nolan, T., Vukasinovic, N., Liu, D., Russinova, E. and Yin, Y.** (2019). Brassinosteroids:
622 Multi-Dimensional Regulators of Plant Growth, Development, and Stress Responses.
623 *Plant Cell*.

624 **Oud, J. L. and Nanninga, N.** (1992). Cell shape, chromosome orientation and the position of
625 the plane of division in *Vicia faba* root cortex cells. *Journal of Cell Science* **103**, 847.

626 **Planas-Riverola, A., Gupta, A., Betegon-Putze, I., Bosch, N., Ibanes, M. and Cano-**
627 **Delgado, A. I.** (2019). Brassinosteroid signaling in plant development and adaptation
628 to stress. *Development* **146**.

629 **Rasmussen, C. G. and Bellinger, M.** (2018). An overview of plant division-plane orientation.
630 *New Phytol* **219**, 505-512.

631 **Rasmussen, C. G., Sun, B. and Smith, L. G.** (2011). Tangled localization at the cortical
632 division site of plant cells occurs by several mechanisms. *J Cell Sci* **124**, 270-279.

633 **Rasmussen, C. G., Wright, A. J. and Muller, S.** (2013). The role of the cytoskeleton and
634 associated proteins in determination of the plant cell division plane. *Plant J* **75**, 258-
635 269.

636 **Rui, Y. and Dinneny, J. R.** (2020). A wall with integrity: surveillance and maintenance of the
637 plant cell wall under stress. *New Phytol* **225**, 1428-1439.

638 **Schaefer, E., Belcram, K., Uyttewaal, M., Duroc, Y., Goussot, M., Legland, D., Laruelle,**
639 **E., de Tauzia-Moreau, M. L., Pastuglia, M. and Bouchez, D.** (2017). The
640 preprophase band of microtubules controls the robustness of division orientation in
641 plants. *Science* **356**, 186-189.

642 **Schurholz, A. K., Lopez-Salmeron, V., Li, Z., Forner, J., Wenzl, C., Gaillochet, C.,**
643 **Augustin, S., Barro, A. V., Fuchs, M., Gebert, M., et al.** (2018). A Comprehensive
644 Toolkit for Inducible, Cell Type-Specific Gene Expression in *Arabidopsis*. *Plant Physiol*
645 **178**, 40-53.

646 **Singh, A. P. and Savaldi-Goldstein, S.** (2015). Growth control: brassinosteroid activity gets
647 context. *J Exp Bot* **66**, 1123-1132.

648 **Smertenko, A., Assaad, F., Baluska, F., Bezanilla, M., Buschmann, H., Drakakaki, G.,**
649 **Hauser, M. T., Janson, M., Mineyuki, Y., Moore, I., et al.** (2017). Plant Cytokinesis:
650 Terminology for Structures and Processes. *Trends Cell Biol* **27**, 885-894.

651 **Smith, L. G.** (2001). Plant cell division: building walls in the right places. *Nat Rev Mol Cell Biol*
652 **2**, 33-39.

653 **Smith, L. G., Hake, S. and Sylvester, A. W.** (1996). The tangled-1 mutation alters cell division
654 orientations throughout maize leaf development without altering leaf shape.
655 *Development* **122**, 481-489.

656 **Stockle, D., Herrmann, A., Lipka, E., Lauster, T., Gavidia, R., Zimmermann, S. and Muller,**
657 **S.** (2016). Putative RopGAPs impact division plane selection and interact with kinesin-
658 12 POK1. *Nat Plants* **2**, 16120.

659 **Szekeres, M., Nemeth, K., Koncz-Kalman, Z., Mathur, J., Kauschmann, A., Altmann, T.,**
660 **Redei, G. P., Nagy, F., Schell, J. and Koncz, C.** (1996). Brassinosteroids rescue the
661 deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation
662 in *Arabidopsis*. *Cell* **85**, 171-182.

663 **Torres-Ruiz, R. A. and Jurgens, G.** (1994). Mutations in the FASS gene uncouple pattern
664 formation and morphogenesis in *Arabidopsis* development. *Development* **120**, 2967-
665 2978.

666 **Traas, J., Bellini, C., Nacry, P., Kronenberger, J., Bouchez, D. and Caboche, M.** (1995).
667 Normal differentiation patterns in plants lacking microtubular preprophase bands.
668 *Nature* **375**, 676-677.

669 **Truernit, E., Bauby, H., Dubreucq, B., Grandjean, O., Runions, J., Barthelemy, J. and**
670 **Palauqui, J. C.** (2008). High-resolution whole-mount imaging of three-dimensional

671 tissue organization and gene expression enables the study of Phloem development
672 and structure in Arabidopsis. *Plant Cell* **20**, 1494-1503.

673 **Vaahtera, L., Schulz, J. and Hamann, T.** (2019). Cell wall integrity maintenance during plant
674 development and interaction with the environment. *Nat Plants* **5**, 924-932.

675 **Voxeur, A. and Hofte, H.** (2016). Cell wall integrity signaling in plants: "To grow or not to grow
676 that's the question". *Glycobiology*.

677 **Vragovic, K., Sela, A., Friedlander-Shani, L., Fridman, Y., Hacham, Y., Holland, N.,**
678 **Bartom, E., Mockler, T. C. and Savaldi-Goldstein, S.** (2015). Translatome analyses
679 capture of opposing tissue-specific brassinosteroid signals orchestrating root meristem
680 differentiation. *Proc Natl Acad Sci U S A* **112**, 923-928.

681 **Walker, K. L., Muller, S., Moss, D., Ehrhardt, D. W. and Smith, L. G.** (2007). Arabidopsis
682 TANGLED identifies the division plane throughout mitosis and cytokinesis. *Curr Biol*
683 **17**, 1827-1836.

684 **Wolf, S.** (2017). Plant cell wall signalling and receptor-like kinases. *The Biochemical journal*
685 **474**, 471-492.

686 **Wolf, S., Mravec, J., Greiner, S., Mouille, G. and Hofte, H.** (2012). Plant cell wall
687 homeostasis is mediated by brassinosteroid feedback signaling. *Curr Biol* **22**, 1732-
688 1737.

689 **Wolf, S., van der Does, D., Ladwig, F., Sticht, C., Kolbeck, A., Schurholz, A. K., Augustin,**
690 **S., Keinath, N., Rausch, T., Greiner, S., et al.** (2014). A receptor-like protein mediates
691 the response to pectin modification by activating brassinosteroid signaling. *Proc Natl*
692 *Acad Sci U S A*.

693 **Yoshida, S., Barbier de Reuille, P., Lane, B., Bassel, G. W., Prusinkiewicz, P., Smith, R.**
694 **S. and Weijers, D.** (2014). Genetic control of plant development by overriding a
695 geometric division rule. *Dev Cell* **29**, 75-87.

696 **Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W. and Chua, N. H.** (2006). Agrobacterium-
697 mediated transformation of Arabidopsis thaliana using the floral dip method. *Nature*
698 *protocols* **1**, 641-646.

699 **Zhang, Y., Iakovidis, M. and Costa, S.** (2016). Control of patterns of symmetric cell division
700 in the epidermal and cortical tissues of the Arabidopsis root. *Development* **143**, 978-
701 982.

702 **Zhou, A., Wang, H., Walker, J. C. and Li, J.** (2004). BRL1, a leucine-rich repeat receptor-
703 like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis
704 brassinosteroid signaling. *Plant J* **40**, 399-409.

705 **Zuo, J., Niu, Q. W., Nishizawa, N., Wu, Y., Kost, B. and Chua, N. H.** (2000). KORRIGAN,
706 an Arabidopsis endo-1,4-beta-glucanase, localizes to the cell plate by polarized
707 targeting and is essential for cytokinesis. *Plant Cell* **12**, 1137-1152.

708

709

710 **Figure Legends**

711 **Figure 1.** Cell wall signalling triggered by PMElox alters root growth and cell wall orientation
712 (A) PMElox seedlings have a root waving phenotype caused by enhanced BR signalling. 5-
713 day-old seedlings of Col-0, PMElox, the PMElox *bri1* suppressor mutant *cnu1*, and Col-0
714 seedlings grown on plates containing 5 nM of brassinolide (BL) are shown. (B-E). PMElox
715 plants show oblique cell walls in the root apical meristem dependent on BRI1 and RLP44. Cell
716 division defects in PMElox (C, arrows) are dependent on BRI1, mutated in the PMElox
717 suppressor mutant *cnu1* (D) and RLP44, mutated in the PMElox suppressor mutant *cnu2* (E).
718 Cells walls The root apical meristems are visualized using mPS-PI staining (Truernit et al.,
719 2008). Bars = 50 μ m.

720

721 **Figure 2.** Cell wall perturbation in diverse cell types can lead to similar organ-level responses.
722 Induction of PMElox trans-activation ubiquitously (A), in the epidermis (B), hair cells (C), non-
723 hair cells (D), meristematic cortex cells (E), differentiating endodermis (F), xylem pole
724 pericycle cells (G), and in the *RLP44* expression domain (H). Plants were germinated and
725 grown on plates containing 30 μ M Dexamethasone (Dex) or an equal volume of DMSO for
726 five days. Bars = 1 cm.

727

728 **Figure 3.** Tissue-specific expression of PMElox reveals that root waving is independent from
729 cell wall orientation defects. (A) Ubiquitous trans-activation of *PMEI5* recapitulates the PMElox
730 cell wall phenotype (arrow). (B-D) In lines with tissue-specific PMEI5 expression in epidermis,
731 hair cells, or xylem pole pericycle cells, cell wall orientation in the RAM is normal. Bars = 50
732 μ M. Cell walls are counterstained with mPS-PI.

733

734 **Figure 4.** Induction of *PME15* expression in meristematic cortex cells leads to oblique cell walls
735 in cortex and epidermis (arrows) and a disrupted stem cell region (asterisk). Plant were imaged
736 at five days after germination on Dex-containing medium or after germination on DMSO-
737 containing plates and transfer to induction medium at the indicated time points.

738

739 **Figure 5.** BR signalling is required for the maintenance of cell wall orientation. (A) Propidium
740 Iodide-stained meristems of Col-0, *bri-triple* mutants and two *bri-triple* lines expressing BRI1
741 from cells of the epidermis (pGL2:BRI1) or stele (pSHR:BRI1). Note oblique transversal walls
742 in epidermis, cortex, and endodermis (arrows), as well as random perturbation of cell files
743 (asterisk). (B) Quantification of the fraction of cortex cells with oblique transversal walls in
744 cortex cells from confocal section as in (A) for the indicated genotypes and wild type roots in
745 which BRs were depleted by treatment with brassinazole. (C) Quantification of the fraction of
746 cortex cells with altered cell shape of lines expressing BRI1 from the epidermis (pGL2-BRI1),
747 endodermis (pSCR-BRI1), and stele (pSHR-BRI1) as well as their combinations in various
748 backgrounds. (D) Growth phenotype of seven day old Col-0, *bri-triple*, and *bri-triple* plants
749 expressing BRI1 from cells of the epidermis (pGL2:BRI1) or stele (pSHR:BRI1). (E)
750 Quantification of root length as depicted in (D). n= 21-25. Letters indicate statistically
751 significant difference after one factor ANOVA followed by Tukey's post-hoc test.

752

753 **Figure 6.** Cell wall perturbation by PMElox leads to cell division defects after specification of
754 the cortical division zone. (A, B) Orientation of pre-prophase bands labelled by GFP-TUA6 is
755 transverse in both Col-0 (A) and PMElox (B); see (I) for quantification. (C-F) Metaphase plate
756 orientation (C, D; see J for quantification) and sister chromatid orientation during anaphase
757 (E, F; see K for quantification) deviates from a 90°C angle in both the Col-0 wild type (C, E)
758 and PMElox (D, F). (G, H) Orientation of the cell plate in the Col-0 wild type stabilized at
759 around 90 °C relative to the cell long axis (G), while PMElox cell plates showed a wide range

760 of orientations (H, see L for quantification). (I-L) Quantification of division plane orientation
761 during mitosis and cytokinesis. Bars in histograms denote fraction of cells in bins bordered by
762 angles indicated on the x-axis. n = 30 - 50. Bars = 20 μ m in (A-H), = 10 μ m in (I, J).

763

764 **Figure 7.** Cell plate fusion in PMElox coincides with POK1 localization at aberrant positions.
765 (A, B) Cell plate fusion site position and YFP-POK1 localization at the end of cytokinesis in
766 Col-0 (A) and PMElox (B). Note that the cell plate fusion at POK1-positive sites in the parental
767 walls deviates from the normal position in PMElox. White arrowheads indicated YPF-POK1-
768 marked cell plate fusion sites. Membranes are labelled with FM4-64. Bars = 20 μ m.