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Abstract 20 

Aggregation and accumulation of amyloid-β (Aβ) is a defining feature of Alzheimer’s disease (AD) 21 

pathology. To study microglial responses to Aβ, we applied exogenous Aβ peptide, in either oligomeric 22 

or fibrillar conformation, to primary mouse microglial cultures and evaluated system level 23 

transcriptional changes and then compared these to transcriptomic changes in the brains of CRND8 APP 24 

mice. We find that primary microglial cultures have rapid and massive transcriptional change to in 25 

response to Aβ. Transcriptomic responses to oligomeric or fibrillar Aβ in primary microglia, though 26 

partially overlapping, are distinct and are not recapitulated in vivo where Aβ progressively accumulates. 27 

Furthermore, though classic immune mediators show massive transcriptional changes in the primary 28 

microglial cultures, these changes are not observed in the mouse model. Together, these data extend 29 

previous studies which demonstrate that microglia responses ex vivo are poor proxies for in vivo 30 

responses. Finally, these data demonstrate the potential utility of using microglia as biosensors of 31 

different aggregate conformation, as the transcriptional responses to oligomeric and fibrillar Aβ can be 32 

distinguished.   33 
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Introduction 34 

Alzheimer’s disease (AD) is characterized by two hallmark pathologies, senile plaques containing 35 

amyloid-β (Aβ) aggregates and neurofibrillary tangles (NFTs) composed of hyperphosphorylated and 36 

aggregated tau. Amyloid plaques are the earliest manifestations of the disease process and can appear 37 

up to 20 years before the onset of cognitive symptoms (Bateman et al, 2012). Amyloid pathology, in the 38 

absence of tau or neurodegenerative pathology, defines pre-clinical AD and is the first step along the 39 

Alzheimer’s continuum in humans (Cummings, 2019; Jack et al, 2018; Vickers et al, 2016). In longitudinal 40 

studies, amyloid deposition precedes tau accumulation which is more closely tied to cognitive decline 41 

relative to amyloid (Hanseeuw et al, 2019; Villemagne et al, 2013). Furthermore, genetic data strongly 42 

support a causal, triggering role for aggregation and accumulation of Aβ in AD (Kunkle et al, 2019)—43 

including the well-studied APOE4 risk allele in late-onset AD which reduces the clearance of Aβ from the 44 

brain (Liu et al, 2013). Yet, despite intensive study, the precise mechanism by which accumulation of Aβ 45 

aggregates trigger the degenerative phase of the disease is not well understood. 46 

As the primary immune and phagocytic cell in the brain, the role of microglia has been of growing 47 

interest in AD and other neurodegenerative disorders. “Resting” microglia, which constitute up to 10% 48 

of the brain, constantly sample the surrounding brain microenvironment and can rapidly respond to an 49 

insult (Aguzzi et al, 2013). In AD, the presence of increased “reactive” microglial cells both around senile 50 

plaques and in areas of neurodegeneration is a well-established pathological feature (Dickson, 1997; 51 

Dickson et al, 1988; Perlmutter et al, 1992). Notably, Aβ42 fibrils and oligomers cause microglia 52 

activation resulting in the release of pro-inflammatory cytokines which may contribute to neurotoxicity 53 

(Dewapriya et al, 2013; He et al, 2012; Jimenez et al, 2008; Wang et al, 2016). Alterations in microglial 54 

activation states can also impact both amyloid and tau pathology in varying ways that are dependent on 55 

both the stimulus, the model system and the pathology that is being assessed.  56 

Over the last decade, a series of genetic studies has firmly linked microglial function to AD. Genetic 57 

studies of familial and late-onset AD implicate a large number of loci that contain immune genes in 58 

mediating risk for AD (Carrasquillo et al, 2017; Guerreiro et al, 2013; Harold et al, 2009; Jin et al, 2015; 59 

Jonsson et al, 2013; Kunkle et al., 2019; Lambert et al, 2009; Lambert et al, 2013; Sims et al, 2017). 60 

Furthermore, genetic studies identifying coding variants in three microglial-specific genes (PLCG2, ABI3 61 

and TREM2) highlight the important role microglia play during neurodegeneration (Bellenguez et al, 62 

2017; Conway et al, 2018; Guerreiro et al., 2013; Jin et al, 2014; Jonsson et al., 2013; Sims et al., 2017; 63 

Strickland et al, 2020; van der Lee et al, 2019). Additionally, systems level data analysis of spatial, single-64 
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cell, single-nuclei as well as bulk RNA-sequencing (RNA-seq) studies reveal perturbations in immune 65 

transcriptional networks as well as distinct subpopulations of microglia that are perturbed in the AD 66 

brain (Chen et al, 2020; Conway et al., 2018; Friedman et al, 2018; Hammond et al, 2019; Keren-Shaul et 67 

al, 2017; Krasemann et al, 2017; Li et al, 2019; Olah et al, 2020). 68 

The study of microglial cells is challenging in that they are highly responsive to external stimuli and 69 

rapidly alter their phenotype once removed from the brain (Bennett et al, 2016). Indeed, systems level 70 

transcriptomic studies show that primary microglial cells are poor proxies for in vivo microglia (Butovsky 71 

et al, 2014). Even rapid isolation of microglial and subsequent “omic” analyses can be challenging as it is 72 

clear the isolation process is sufficient to induce some transcriptional—and likely functional changes. 73 

Nevertheless, many labs—including our own—study primary microglial cells in culture. In particular, the 74 

application of exogenous Aβ aggregates to microglial is a widely used methodology to study both how 75 

microglial respond to Aβ and how effectively the microglia can phagocytose and degrade Aβ. 76 

Here we used RNA-seq to examine the systems level response of primary microglia in culture to 77 

synthetic Aβ42 aggregates in either oligomeric (oAβ) or fibrillar (fAβ) form. Our analyses of the 78 

transcriptomic data show that microglial cells in culture show massive transcriptional changes when 79 

challenged with Aβ42 aggregates. Though some of the differentially expressed genes in response to the 80 

different forms of Aβ42 are altered similarly, many show differential expression in response to oAβ or 81 

fAβ. We also compared this global transcriptional response to Aβ42 in primary microglial cells in culture 82 

to transcriptomic data from a mouse model of amyloid deposition—the APP transgenic CRND8 mouse—83 

at 3 to 20 months of age (Chishti et al, 2001). Subsequent comparisons of these datasets indicate that 84 

most Aβ transcriptional responses in microglia are largely not replicated in the intact brain. This 85 

comparison demonstrates that the transcriptional response to Aβ in primary cultures poorly reflect the 86 

response to Aβ by microglial cells in the mouse brain. These data amplify the message of several other 87 

recent studies indicating that one must be very cautious when using primary microglial cells cultured in 88 

isolation to infer mechanistic insights about microglial function in vivo.  89 

Results 90 

Large Transcriptomic Changes in primary microglia following Aβ treatment 91 

Pre-formed oligomeric (oAβ) or fibrillar (fAβ) forms of Aβ42 peptide were applied to primary microglia 92 

cultures for 1- or 12-hr (Figure 1A). oAβ and fAβ were characterized by Western blot and a 93 

representative image is shown (Figure 1B) demonstrating differences in the high molecular weight 94 
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species between oligomeric and fibrillar Aβ preparations. Following treatment, RNA was isolated and 95 

sequenced to identify transcriptional changes in primary microglia that are responsive to different 96 

conformations of Aβ42 peptide. As noted in the methods, this data along with the mouse CRND8 RNAseq 97 

data is publicly available and can be viewed using an interactive data portal.  Using cut-off values of a p-98 

value (adjusted for multiple comparisons) ≤ 0.05 and an absolute log2 fold-change of 0.5, we identified 99 

acute transcriptional changes following fAβ application after just 1-hr (versus control) with 997 100 

upregulated and 960 downregulated genes (Figure 2A, Supplemental Data 1). Gene ontology (GO-MF) 101 

and KEGG pathway analysis identified downregulated genes as being enriched in cytoskeletal and 102 

extracellular matrix organization (i.e., tubulin binding, motor activity, extracellular matrix structural 103 

constituent; Figure 2E, Supplemental Data 1) while upregulated genes were involved in immune system 104 

responses (i.e., RAGE receptor binding, chemokine activity) and kinase activity (i.e., MAP kinase 105 

phosphatase activity; Figure 2F, Supplemental Data 1).  106 

After 12-hr of fAβ treatment, we identified 1,755 upregulated and 1,975 downregulated genes when 107 

compared with control (Figure 2B, Supplemental Data 2). GO and KEGG pathway analysis revealed 108 

enrichment of downregulated genes involved in cytoskeletal and extracellular matrix organization (i.e., 109 

tubulin binding, motor activity, extracellular matrix structural constituent) in addition to heparin binding 110 

and glycosaminoglycan binding (Figure 2E, Supplemental Data 2). Genes upregulated after 12-hr fAβ 111 

treatment were enriched in genes involved with antigen processing (TAP binding) and proteolytic 112 

activity (i.e., endopeptidase activator activity, threonine-type peptidase activity; Figure 2F, Supplemental 113 

Data 2).  114 

We next examined the effect of a 12-hr oAβ treatment (versus control) on primary microglial cultures. 115 

We identified 1,608 upregulated and 1,394 downregulated genes after 12-hr of oAβ (Figure 2C, 116 

Supplemental Data 3). GO and KEGG pathway analysis revealed that downregulated genes are primarily 117 

involved in DNA transcription (i.e., DNA-binding transcriptional repressor activity, transcription cofactor 118 

binding; Figure 2C, 2E, Supplemental Data 3). Genes upregulated by oAβ treatment are enriched with 119 

GO terms suggestive of cell cycle involvement (i.e., anaphase-promoting complex binding, kinetochore 120 

binding; Figure 2F, Supplemental Data 3). A number of the top GO category hits overlap somewhat 121 

between the 1- and 12-hr fAβ treatments; however, many of the changes seen following oAβ treatment 122 

stand in stark contrast to those seen following both fAβ treatments. 123 

To further examine differences and similarities in transcriptional changes between fAβ and oAβ 124 

treatments, we directly compared gene expression at 12-hr of fAβ treatment (numerator) against gene 125 
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expression at 12-hr of oAβ treatment (denominator) to identify differentially expressed genes in these 126 

conditions. This comparison revealed disparate changes in transcriptional responses between the 127 

conformations of Aβ peptide and identified 982 upregulated genes and 1,348 downregulated genes in 128 

fAβ versus oAβ treatments (Figure 2D, Supplemental Data 4). Affected downregulated genes (down in 129 

fAβ while up in oAβ) primarily affected cell cycle and DNA binding activities (i.e., DNA replication origin 130 

binding, kinetochore binding; Figure 2E, Supplemental Data 4) while upregulated genes (up in fAβ 131 

relative to oAβ) were enriched in immune system responses (i.e., TAP binding, T cell receptor binding; 132 

Figure 2F, Supplemental Data 4). 133 

Primary Microglia have unique transcriptional responses to Aβ conformations 134 

To directly identify disparate changes in transcription in response to Aβ conformation, we compared the 135 

log-fold changes for differentially expressed genes in these Aβ treatments (Supplemental Figure 1). We 136 

find a strong correlation (R = 0.74) when comparing treatments of fAβ, 12-hr (versus control) against 137 

oAβ, 12-hr (versus control). The 865 commonly upregulated genes are enriched with GO terms involved 138 

with peptidase and chemokine activity (i.e., threonine-type endopeptidase activity) while the 865 139 

commonly downregulated genes are enriched in terms involving post-translational modifications 140 

(histone demethylase activity, ubiquitin-like protein ligase activity) (Supplemental Figure 1B, 141 

Supplemental Data 5). Interestingly, the 170 genes that are upregulated in oAβ, 12-hr treatment but 142 

downregulated in fAβ, 12-hr treatments are involved in cell cycle (i.e., anaphase-promoting complex) 143 

and microtubule motor activities (i.e., motor activity, ATP-dependent microtubule motor activity). The 51 144 

genes downregulated in oAβ, 12-hr treatment but upregulated in fAβ, 12-hr treatment which are 145 

involved in antigen binding and immune responses (i.e., TAP complex binding, CD8 receptor binding).  146 

An analysis comparing fAβ, 1-hr treatment with oAβ, 12-hr treatment reveals similar results 147 

(Supplemental Figure 1C, D, Supplemental Data 6). Commonly upregulated genes (515 genes) have roles 148 

involving the immune system (RAGE receptor binding, chemokine activity) and kinase activities (MAP 149 

kinase tyrosine/threonine phosphatase activity) while there was no significant enrichment of GO terms 150 

(p-value adjusted for multiple comparisons ≤ 0.1) for the 387 commonly downregulated genes. The 151 

divergently responding 56 genes that are upregulated in oAβ, 12-hr treatment but downregulated in 152 

fAβ, 1-hr treatment are involved in the cell cycle (anaphase-promoting complex binding) and 153 

microtubule motor processes (microtubule motor activity) while the 78 genes upregulated in fAβ, 1-hr 154 

treatment, but downregulated in fAβ, 12-hr treatment are involved in the innate immune response 155 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2021. ; https://doi.org/10.1101/2021.03.02.433544doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433544
http://creativecommons.org/licenses/by-nc-nd/4.0/


(complement component C1q complex binding).  This analysis highlights the upregulation of genes 156 

involved in the cell cycle and microtubule motor pathways following oAβ treatment. 157 

A direct comparison of significant changes in gene expression between acute 1-hr versus longer-term 158 

12-hr fAβ treatments expose 515 commonly upregulated genes involved in cytokine and immune 159 

activity (immunoglobulin receptor binding, chemokine receptor binding) and 507 commonly 160 

downregulated genes involved in microtubule motor activity (microtubule binding, microtubule motor 161 

activity; Supplemental Figure 1E, F, Supplemental Data 7). Longer-term fAβ treatment resulted in an 162 

upregulation of 93 genes that are initially downregulated in 1-hr fAβ treatment that are involved in 163 

adenylation and GTPase activities (adenylyltransferase activity, GTPase activity, nucleoside-164 

triphosphatase activity). Acute fAβ, 1-hr treatment triggered an upregulation of 98 genes that are 165 

downregulated after 12-hr of treatment which are enriched in diverse GO terms including complement 166 

component C1q complex binding, DNA helicase activity, and integrin binding. 167 

For a more comprehensive view of these disparate changes in microglia following the application of 168 

different Aβ species, we examine all genes that were identified as a differentially expressed gene (DEG) 169 

in any of the of the three treatment paradigms versus control and plotted a heatmap of their z-scores 170 

with hierarchical clustering of the genes (Figure 3). Clear patterns of transcriptional changes can be seen 171 

between conditions. To identify the genes within these clusters, we cut the hierarchical tree at a height 172 

of 5.75 which resulted in 13 gene clusters that were then analyzed by GO analysis (Figure 3 and Table 1, 173 

Supplemental Data 8). By this analysis, we identified clusters of genes that have similarities in expression 174 

patterns following treatment with different Aβ conformations. For example, genes in cluster 10 are 175 

involved in transcriptional processes and have decreased expression in all three conditions compared 176 

with controls. However, this analysis also highlights the clusters of genes that have a unique 177 

transcriptional signature in response to specific Aβ conformations. Genes within clusters 11 & 9 have 178 

increased expression levels following acute fAβ treatment and are enriched in terms involving metabolic 179 

processes as well as immune responses and cell signaling. Genes in cluster 7 are increased following 180 

long-term fAβ treatment and encompass functions of the antigen processing and the immune system. 181 

Genes in clusters 1 & 5 are strongly increased in expression after oAβ treatment and are involved in cell 182 

cycle and nucleobase metabolism.  183 
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Gene network changes in microglia highlight specific transcriptional responses to Aβ 184 

conformations 185 

We applied a weighted gene co-expression network analysis (WGCNA) onto the expression data from 186 

Aβ-treated primary microglial cultures. WGCNA is a method to study biological networks by analyzing 187 

pair-wise correlations between the genes within the dataset (Langfelder & Horvath, 2008). We identified 188 

seventy-one co-expression modules (Figure 4, Supplemental Data 9). We correlated the modules with 189 

treatment paradigms (Figure 4A) and annotated these modules using a gene overlap analysis (Shen, 190 

2020) with genes identified with sub-populations of microglial cells identified in prior bulk, single-cell 191 

(sc-), single-nuclear (sn-) RNA-seq or spatial transcriptomic studies (Figure 4B; Supplemental Data 10). 192 

We additionally annotated the modules by KEGG and GO analysis to identify enrichment of pathways 193 

within the modules (Figure 4C, Supplemental Data 11). By relating the modules to each treatment 194 

condition, we observed interesting patterns in module behavior.  195 

Of these modules, seventeen modules are positively correlated with all forms of treatment and indicate 196 

a non-specific response to Aβ treatment. These modules include antiquewhite4, brown, coral1, 197 

darkseagreen4, honeydew1, lavenderblush3, lightcoral, lightcyan, lightcyan1, lightgreen, lightsteelblue1, 198 

orangered3, orangered4, saddlebrown, violet, white and yellow4. GO and KEGG pathway analysis 199 

reveals that genes within these modules are involved in a variety of molecular functions previously 200 

linked with AD including cytokine and chemokine activities (lightgreen) the proteosome (brown and 201 

saddlebrown), the splicesome (lavenderblush3 and saddlebrown) as well as neurodegenerative 202 

pathways including AD, Parkinson’s disease, Huntington’s disease (brown and saddlebrown). Fifteen 203 

modules are negatively correlated with all forms of Aβ treatment—again, indicating a non-specific 204 

response—and include the black, brown4, darkmagenta, darkolivegreen, floralwhite, greenyellow, 205 

magenta, mediumpurple3, midnightblue, navajowhite2, paleturquoise, sienna3, skyblue, skyblue2, 206 

steelblue and yellowgreen modules. The genes within these modules are enriched in genes involved in 207 

Rab and Ras GTPase activities (mediumpurple3) and with fatty acid metabolism (darkolivegreen). 208 

Six modules are positively correlated with acute, 1-hr fAβ treatment and are either negatively correlated 209 

or not significantly correlated with the other treatments. These modules characterize the acute 210 

response to fAβ treatment and include the tan, salmon, skyblue3, maroon, plum2 and cyan modules. 211 

These modules represent genes with functions involved with ion channel activities (cyan), histone 212 

modification activity (plum2), RNA processing and splicing, protein ubiquitination and acetylation 213 

(skyblue3). 214 
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There are five modules that are positively correlated to long-term, 12-hr fAβ and include the 215 

darkslateblue, lightpink4, palevioletred3, blue and coral2 modules. Genes within these modules are 216 

enriched with genes with immune/inflammatory/cytokine functions (blue), RNA binding (darkslateblue), 217 

GTPase activity (palevioletred and coral2) and transcriptional regulation (lightpink4). Additionally, it is 218 

within the blue module that the majority of reactive and responsive microglial markers reside (Figure 219 

4C). 220 

Five other modules are positively correlated with long-term, 12-hr oAβ treatment and include bisque4, 221 

thistle2, mediumorchid, turquoise and salmon4. These modules are enriched with genes which are 222 

involved with extracellular matrix structural components (bisque4) and DNA replication and repair and 223 

the cell cycle (turquoise). These analyses further support our original observation that indicate unique 224 

microglia transcriptional responses to different species of Aβ peptides. 225 

Interestingly, sub-populations of microglia previously identified in sc-, sn-RNA-seq or spatial 226 

transcriptomic studies did not fall within any single module (Figure 4B). For example, plaque-induced 227 

genes (PIGs) which are found in microglia surrounding Aβ plaques (Chen et al., 2020) fall across multiple 228 

modules and those modules do not fit any pattern of being correlated or not with any treatment 229 

paradigm including being both negatively and positively correlated with various treatments. This pattern 230 

also holds for genes found within the neurodegenerative disease-associated phagocytic microglia cells 231 

(DAMs) (Keren-Shaul et al., 2017) as well as microglia associated with a neurodegenerative phenotype 232 

(MGnD) (Krasemann et al., 2017). As noted in these prior studies, the microglia sub-populations share a 233 

number of genes in common. 234 

To examine the strength of gene-gene connections with these networks, we chose representative 235 

modules that were positively correlated in only one treatment type and examined the networks across 236 

all treatments (Figure 5). We plotted edge weights to represent gene-gene connection strengths in an 237 

ordered heatmap to visualize the overall network strength more easily between the various treatment 238 

paradigms. Given that the salmon module has the strongest correlation value with the 1-hr fAβ 239 

treatment, we used this as a representative network for acute, 1-hr fAβ treatment. We find the genes 240 

within the salmon module have a stronger overall connection as compared with long-term, 12-hr fAβ or 241 

oAβ treatments (Figure 5A). Similar enhancements in gene-gene network strength were seen for the 242 

blue module which is positively correlated with long-term, 12-hr fAβ treatment (Figure 5B). Though this 243 

module does not have the strongest correlation value of the five modules highly correlated with the 12-244 

hr fAβ treatments, we chose to examine this module as its member genes are enriched in interferon and 245 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2021. ; https://doi.org/10.1101/2021.03.02.433544doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433544
http://creativecommons.org/licenses/by-nc-nd/4.0/


immune signaling pathways. Finally, the turquoise module, which has the highest correlation value of 246 

the five modules highly correlated with oAβ treatment, was chosen as the representative module for 247 

positive correlation with long-term, 12-hr oAβ treatment (Figure 5C). This module also shows a striking 248 

increase in network connection strength as compared with the other two conditions. Genes within this 249 

module show enrichment in cell cycle, DNA replication and repair pathways. The top hub genes for 250 

these three modules are listed in Table 2. 251 

Transcriptional changes in primary microglia do not mimic those seen in the transgenic 252 

CRND8 mouse brain 253 

To understand how well ex vivo changes in primary microglia cultures recapitulate in vivo processes, we 254 

examined transcriptional changes in the brains of transgenic amyloid mouse model CRND8 at 3, 6, 12 255 

and 20 months of age by bulk RNA-seq. Using the same cut-off values to identify differentially expressed 256 

genes as above, we find that at 3 months of age there are few transcriptional changes between the 257 

transgenic CRND8 and their non-transgenic littermate controls (11 upregulated, 4 downregulated, Figure 258 

6A, Supplemental Data 12). By 6 months of age, the number of transcriptional changes increases to 187 259 

upregulated and 105 downregulated genes (Figure 6B). At 12 months of age, the number of 260 

differentially expressed genes is higher than at previous timepoints and is dominated by changes in 261 

upregulated genes (493 upregulated genes) over those that are downregulated (103 downregulated 262 

genes, Figure 6C, Supplemental Data 14). At 20 months, more genes continue to be upregulated (746 263 

genes) than downregulated (115 genes, Figure 6D, Supplemental Data 15). Trends for GO term 264 

enrichment in downregulated genes was not evident until 12 months with enriched terms including a 265 

variety of receptor binding activities (i.e., glucocorticoid receptor binding, steroid hormone receptor 266 

activity) and involvement of core promoter activity (core promoter sequence-specific DNA binding; 267 

Figure 6E).  Upregulated genes are enriched primarily with immune responses (immunoglobulin receptor 268 

activity, IgG binding) that are consistent as the mice age (Figure 6F, Supplemental Data 13).  269 

Not surprisingly, direct comparisons of the microglial-specific genes in Aβ-treated primary microglia with 270 

transgenic CRND8 mice are poorly correlated (Figure 7). Correlation values are low between either 271 

differentially expressed microglial genes in transgenic CRND8 mice at 20 months versus Aβ-treated 272 

primary microglia for any treatment paradigm, oAβ 12-hr (Figure 7A), fAβ 12-hr (Supplemental Figure 273 

3A) or fAβ 1-hr (Supplemental Figure 3B). In the transgenic CRND8, these genes are nearly universally 274 

upregulated, but are both up- and down-regulated in the primary microglia. We examined 275 

representative genes that are highly differentially expressed in Aβ-treated microglia (Figure 7D) which 276 

reveal little (Vim) to no (Sod2, Sgk1) corresponding changes in the transgenic CRND8 mice over time—277 
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indeed some changes were opposite of those observed in CRND8 (Fcgr2b). Conversely, examining a 278 

selection of genes that are consistently and significantly changed in transgenic CRND8 mice over time 279 

(Figure 7E; Cst7, Irf8 and Plek) exposes variable responses in microglia after the application of either fAβ 280 

or oAβ peptide. Additionally, a panel of Alzheimer’s-disease relevant genes, which are consistently 281 

upregulated in the transgenic CRND8 mouse brain over time, also reveals variable (Abi3 vs Plcg2)—and 282 

sometimes unexpected (Trem2)—responses to Aβ peptides in microglia (Figure 7F). This pattern is also 283 

seen in a selection of cytokines (Figure 7G; Ccl3, Ccl4 and Tnf) and cytokine receptor (Figure 7H; Ccr5, 284 

Csf3r and Tnfrsf1a) genes. 285 

We then examined the transcriptional profile of microglial cell subsets that have been identified in past 286 

sc-, sn-RNA-seq or spatial transcriptomic studies of microglia (Figure 8). As evidenced by the increase in 287 

the transgenic CRND8 brains, the expression of these genes within these subpopulations is increased in 288 

AD. A general transcriptomic signature of microglial-enriched genes (Zhang et al, 2014) is increased 289 

following all Aβ treatments in microglia primary cultures—a signal that mimics increases seen in 290 

transgenic CRND8 mice over time (Figure 8A).  A homeostatic microglia (H2M) signature (Sala Frigerio et 291 

al, 2019) increases over time in transgenic CRND8 mice, but this increase is seen only in microglial 292 

cultures treated for 12-hr fAβ (Figure 8B). We examined the transcriptional signature associated with 293 

cycling and proliferative microglia (Sala Frigerio et al., 2019) (Figure 8C). There is a large increase in the 294 

CPM signature in oAβ treated microglia, but no difference is seen in the transgenic CRND8—which 295 

stands as a contrast to the general trend in the other microglial subtypes. This likely reflects that this 296 

population represents a very small percentage of microglial cells within the brain (Sala Frigerio et al., 297 

2019) and its signature is lost within the larger milieu of other cell types within the brain. We also 298 

examine interferon-responsive microglia (IRMs; Figure 8D) (Sala Frigerio et al., 2019). This 299 

transcriptional signature increased over time in transgenic CRND8 but a large change is seen only in 300 

response to long-term fAβ treatment.  Interestingly, an increased transcriptional response in the disease 301 

associated microglia profile (DAMs, found in the microglia surrounding Aβ plaques (Keren-Shaul et al., 302 

2017)) is seen in response to fAβ, but not oAβ treatment, while a steady increase is seen in the 303 

transgenic CRND8 (Figure 8E). Intriguingly, transcriptional responses linked to both activated response 304 

microglia (ARMs, (Sala Frigerio et al., 2019) which are responsive to Aβ deposition) as well are plaque-305 

induced genes (PIGs; (Chen et al., 2020) are decreased or unchanged in all treatment paradigms in 306 

primary microglia while these genes steadily increase over time in transgenic CRND8. Genes linked to 307 

the microglial neurodegenerative phenotype (MGnD) (Krasemann et al., 2017) appear as a likely reliable 308 
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indicator of transcriptional changes for all Aβ treatment paradigms as well as in transgenic CRND8 309 

brains. 310 

Discussion 311 

Acute exposure of cultured primary microglia to oAβ or fAβ elicits a robust and rapid transcriptional 312 

response. Both forms of Aβ induce significant increases and decreases in RNA levels for hundreds of 313 

genes. Nevertheless, transcriptomic responses to oAβ and fAβ at 12-hr are distinguishable. Of note, the 314 

finding that oAβ increases RNAs associated primarily with cell cycle whereas fAβ increases RNAs 315 

associated primarily with phagocytic processes is intriguing.   316 

As there are numerous validated and candidate Aβ receptors expressed on microglia (Jarosz-Griffiths et 317 

al, 2016), such studies indicate that acute exposure to Aβ aggregates induces robust cellular events that 318 

can be assessed at the systems level using transcriptomic approaches. Based on the studies of fAβ there 319 

is a clear temporality to the response with varying clusters of genes changing in both similar and 320 

different directions at the various time points. These data are reminiscent of studies examining acute 321 

effects of LPS on primary microglia, though given numerous experimental differences with historical 322 

data sets a much more systematic, side by side, comparison would be needed to evaluate the overall 323 

similarity in response to classic proinflammatory mediators such as LPS and Aβ. 324 

As we and others have used primary microglia to study uptake and clearance of Aβ and Aβ aggregates, a 325 

primary objective of this study was to determine if the response to Aβ in such acute studies is indicative 326 

of system levels changes in mouse models of Aβ deposition, where Aβ accumulates over time. In this 327 

case, we have compared the transcriptomic changes in CRND8 transgenic model (compared to non-328 

transgenic controls) with our acute transcriptomic signatures of the primary microglia exposed to Aβ. 329 

These data reveal that acute transcriptional responses of primary microglia to Aβ poorly reflect the in 330 

vivo responses of genes to chronic progressive Aβ accumulation. Like a number of other recent studies, 331 

these data suggest that though primary microglial studies may have utility in some settings, 332 

extrapolating results from these studies to the in vivo setting is problematic.   333 

Many laboratories in the field, including our own, have focused on responses of microglia to classic 334 

cytokines including but not limited to TNFα, IL1α, IL1β, IL10, IL6 and IFNγ (Chakrabarty et al, 2010; 335 

Chakrabarty et al, 2011; Chakrabarty et al, 2015; Colon-Perez et al, 2019; Webers et al, 2020). Though 336 

these cytokines show massive changes in transcript in primary culture, in vivo transcript levels in the 337 

brain are very low throughout the lifespan of the non-Tg and Tg mice. Though some cytokines show 338 
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small increases over time in the presence of amyloid deposition, the magnitude of this increase is 339 

nowhere near the scale of increase observed in the primary culture. The massive increases in transcript 340 

levels observed in primary microglial cultures of many of these cytokines and other immune factors have 341 

likely contributed to the field’s focus on these as key mediators of the microglial responses to Aβ and 342 

other insults. However, data presented here, as well as other studies (Butovsky et al., 2014), highlight 343 

differences between the ex vivo and in vivo microglial responses and indicate that the focus on some of 344 

these cytokine and other immune factors may be misleading.   345 

Notably, microglia—at least at the transcript level—express moderate to high levels of many classic 346 

cytokine receptors in vivo. Perhaps, the low level of ligand expression compared to relatively high levels 347 

of receptor would suggest that these receptors on microglia serve primarily to sense non-CNS changes in 348 

the cytokine levels following peripheral insults. In any case, these data along with numerous other 349 

studies demonstrating the heterogeneity of microglia in vivo (Butovsky et al., 2014; Chen et al., 2020; 350 

Friedman et al., 2018; Hammond et al., 2019; Keren-Shaul et al., 2017; Krasemann et al., 2017; Olah et 351 

al., 2020), highlight the notion that primary isolated microglia cells are poor proxies for in vivo 352 

responses. As study of microglial cells in the brain has many limitations, additional efforts to develop 353 

better ex vivo models of microglial responses would benefit the field. Although several reports of such 354 

efforts exist (Arber et al, 2017; Croft et al, 2019), further evaluation and “stress-testing” of these and 355 

other ex vivo methods will be needed before they are likely to be widely adopted. 356 

Previous studies have focused on the functional consequences of treating various primary CNS cells with 357 

oAβ or fAβ. oAβ species have been conceptualized by some in the field as the proximal neurotoxin in AD 358 

(Cline et al, 2018; Haass & Selkoe, 2007; Li & Selkoe, 2020; Wang et al., 2016), as they disrupt synaptic 359 

transmission in neurons at very low, picomolar concentrations (Rammes et al, 2011; Waters, 2010). 360 

However, the evidence that oAβ species are overtly toxic with respect to inducing neuronal death is 361 

lacking; further there is debate as to whether appreciable concentrations of intrinsically soluble 362 

oligomers exists in the AD brain or mouse models of amyloid deposition (Jan et al, 2011; Jan et al, 2008; 363 

Tseng et al, 1999; van Helmond et al, 2010). In contrast, at least in primary neuronal cultures higher 364 

concentrations of various aggregates have been linked to induction of neuronal death via apoptotic 365 

mechanisms (Deshpande et al, 2006). Both direct toxicity of the aggregates, or aggregate growth and 366 

indirect toxicity via activation of glial cells that results in neurotoxicity have been invoked as 367 

mechanisms underlying Aβ induced neuronal death (Kayed & Lasagna-Reeves, 2013). Clearly, the 368 

massive alterations in microglial cells observed here in response to synthetic Aβ aggregates reinforces 369 
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the potential for neurotoxicity in mixed primary cultures. However, we would note that both oAβ and 370 

fAβ induce massive changes in the transcriptome of microglia, and certainly lend little credence to 371 

claims by some in the field that fAβ is inert. Indeed, our results suggest that microglial transcriptional 372 

responses to fAβ more closely mimic in vivo responses to amyloid accumulation as evidenced by the 373 

behavior of the “blue” module genes in our study which positively correlated with fAβ treatment are 374 

paralleled in the transgenic CRND8 brain and the microglial sub-type analysis. 375 

As suggested above, the concept that microglial cells might make exquisitely sensitive biosensors that 376 

can be used to distinguish between various aggregate forms is intriguing. Microglial do appear at the 377 

transcript level to respond in partially overlapping, but distinct ways to oAβ or fAβ. Much more 378 

extensive studies will be needed to follow up on this intriguing observation. However, from a 379 

teleological point of view this concept makes quite a bit of sense. Microglial cells with a plethora of 380 

damage associated and pathogen associated receptors are designed to respond rapidly to potentially 381 

harmful proteins and other stimuli (Deshpande et al., 2006). One would predict that overlapping but 382 

distinct binding interactions could result in partially overlapping but distinct responses that might 383 

essentially provide a type of integration of signals to distinguish various aggregates.  384 

As the main goal of these studies was to assess the system level responses of microglial cells in culture 385 

to Aβ aggregates and compare that to a longitudinal transcriptomic study in APP mice, there are a 386 

number of limitations that are worth noting. First, both dose response and more extended time courses 387 

were not conducted. Second, we did not include monomeric Aβ42, as it would likely aggregate at these 388 

concentrations during incubation; nor did we include a short-term oAβ42 timepoint. Third, we did not 389 

extensively purify oligomeric assemblies to a more defined species. Finally, we have not pursued studies 390 

to determine whether fAβ and oAβ induce different functional states in the cultured microglia cells. It is 391 

almost certain such studies would yield interesting data, but it is unlikely that it would alter the 392 

relevance of the work with respect to disease implications in AD. 393 

A recent elegant study exploring in vivo microglial responses to LPS using translational profiling 394 

approaches to assess both ribosome-associated transcripts and proteins, showed major discrepancies 395 

between the proinflammatory transcriptomic signature and a more immune modulatory and 396 

homeostatic protein signature (Boutej et al, 2017). Given the massive upregulation of proinflammatory 397 

transcripts in cultured microglia exposed to Aβ and the large number of upregulated microglial 398 

transcripts in APP mouse models and human AD, it will be important to integrate proteomic and 399 

transcriptomic studies of microglia in the future. Indeed, at least in the Boutej study, the biologic 400 
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inferences derived from evaluating the proteome or transcriptome are disparate and only when the two 401 

are compared directly does the concept of widespread translation repression emerge. Additional studies 402 

also show that even the process of rapid isolation of microglial cells from the brain changes their 403 

transcriptome (He et al, 2018; Lin et al, 2017; Tham et al, 2003). Thus, even though single cell 404 

transcriptomic and proteomic studies of isolated microglia cells potentially provide new insights into 405 

their roles in health and disease, additional validation using in situ methodologies is needed to confirm 406 

that changes observed reflect changes in situ and are not induced during the isolation.  407 

The number of studies focusing on microglia cells and their impact on AD and other neurodegenerative 408 

disorders is rapidly expanding. This study and many others highlight that traditional methods to study 409 

them, such as in primary cultures, are highly artificial and may lead to inappropriate conclusions. 410 

Current efforts to develop strategies to harness microglial function in a therapeutically beneficial 411 

fashion, must by necessity study the effect of that therapy in vivo. However, given the large number of 412 

immune factors that are emerging as modulators of neurodegenerative pathologies, and the limitations 413 

of only studying these cells in vivo, additional efforts to validate ex vivo systems that better approximate 414 

microglial functions in vivo ware warranted.  415 

  416 
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Figure Legends 417 

Figure 1 Aβ treatments of primary microglial cultures.  418 

A) Experimental paradigm for the applications of Aβ conformational species onto primary microglia cell 419 

cultures. B) Western blot analysis with anti-Aβ antibody (6E10) of representative oAβ and fAβ 420 

preparations. The oAβ preparation shows a smear with characteristic banding patterns while the fAβ 421 

preparation contains a significant amount of Aβ that do not enter the gel (arrow). 422 

Figure 2 Differential gene expression in primary microglia following treatment with Aβ42 423 

oligomers (oAβ) or fibrils (fAβ).  424 

A) Total changes in down- (blue) and up- (red) regulated genes in primary microglia following 1-hr of fAβ 425 

treatment versus control. B) Volcano plot of DEGs after 12-hr of fAβ42 treatment versus control in 426 

primary microglial cultures. C) Volcano plot of DEGs after 12-hr of oAβ42 treatment in primary microglial 427 

cultures. D) Volcano plot of DEGs after 12-hr of Aβ42 fibrils treatment in primary microglial cultures. E) 428 

Bubble plots of GO category enrichment results for downregulated genes. F) Bubble plots of GO 429 

category enrichment results for upregulated genes. Plots for GO category over-enrichment analyses 430 

show the top 10 hits for each comparison by enrichment score following a filter step by a p-value 431 

adjusted for multiple comparisons of ≤ 0.05 and keeping GO categories with greater than 5 genes within 432 

the category.  433 

Supplemental Figure 1: Comparison of gene expression changes in Aβ42-treated 434 

microglia.   435 

Comparisons of significantly changed genes between each Ab treatment paradigm are plotted by log2 436 

fold change. Genes with congruent changes (blue) are in the upper, right (commonly upregulated) and 437 

lower, left (commonly downregulated) quadrants.  Disparate changes in gene expression (orange) are 438 

seen in the upper, left quadrant (upregulated in the first but downregulated in the second condition) 439 

and in the lower, right quadrant (downregulated in the first but upregulated in the second condition). A 440 

Spearman’s correlation analysis was performed, and results are indicated by the blue line with R and p-441 

values as indicated. A) oAβ-treated microglia at 12-hr (versus control) compared against changes seen in 442 

fAβ-treated microglia at 12-hr (versus control). B) Bubble plot of GO category over-enrichment analysis 443 

of genes in each plot quadrant in A. C) oAβ-treated microglia at 12-hr (versus control) compared with 444 

changes seen in fAβ-treated microglia at 1-hr (versus control). D) Bubble plot of GO category over-445 

enrichment analysis of genes in each plot quadrant in C. E) fAβ-treated microglia at 12-hr (versus 446 

control) compared with changes seen in fAβ-treated microglia at 1-hr (versus control). G) Bubble plot of 447 
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GO category over-enrichment analysis results for genes in all four plot quadrants in E. Plots of GO 448 

category over-enrichment analysis show the top 10 categories by enrichment score following a filtering 449 

step by a p-value adjusted for multiple comparisons testing of ≤ 0.1 and removing GO categories with 450 

less than 5 genes within the category. 451 

Figure 3: Hierarchical clustering of differentially expressed genes in Aβ42-treated 452 

microglia reveal unique gene signatures.  453 

Hierarchical clustering Z-scores of gene expression data. A cut height of h = 5.75 was applied to identify 454 

clusters of genes with similar expression patterns which produced 13 clusters.  455 

Figure 4: Weighted Gene Correlation Network Analysis (WGCNA).   456 

Gene modules found by WGCNA in Aβ-treated primary microglia. A) Modules are colored in a heatmap 457 

by their correlation value with the different Aβ treatments. Modules with non-significant p-values 458 

associated or with an absolute correlation value or less than 0.5 are indicated in grey. B) Bubble plot of a 459 

gene overlap analysis to identify shared genes between the module and previously identified microglial 460 

sub-types. Modules with significant (p ≤ 0.05) odds-ratios of overlapping genes are colored as in the 461 

scale to the right. The number of overlapping genes is indicated by the dot size. C) KEGG pathway over-462 

enrichment analysis for genes within each module. Pathways with an over-represent p-value ≤ 0.05, the 463 

number of module genes within the pathway > 5 and an enrichment score > 1.5 are depicted. P-value is 464 

indicated by the color scare and the enrichment score by the dot size.  465 

Figure 5: Gene networks are strongest in the modules that are positively correlated with 466 

Aβ treatments.  467 

Gene networks are shown as heatmaps of the edge weight. A greater edge weight (darker blue shades) 468 

indicates a strong gene-gene connection. The order of genes within each heatmap is preserved for the 469 

comparisons across Aβ treatment types. A) The gene network for the salmon module, a representative 470 

module positively correlated with acute, 1-hr fAβ treatment, is strongest than in 12-hr fAβ or 12-hr oAβ 471 

treatments. B) The gene network for the blue module, a representative module positively correlated 472 

with long-term, 12hr fAβ treatment is stronger than in 1-hr fAβ or 12-hr oAβ conditions. C) The gene 473 

network for the turquoise modules, which represent a module positively correlated with long-term, 12-474 

hr oAβ treatment is strongest in oAβ treatments.  475 
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Table 2: Top hub genes and network statistics for the salmon, blue and turquoise 476 

modules.  477 

The top 10 hub genes are listed with the module membership statistics and associated p-values, their 478 

gene significance to the Aβ condition and the associated p-value as well as the intramodular connectivity 479 

score (kWithin) for modules presented in Figure 5. 480 

Figure 6: Differential gene expression in transgenic CRND8 mice.   481 

A) Total changes in down- (blue) and up- (red) regulated genes in transgnic CRND8 mouse brains versus 482 

non-transgenic controls at 3 months. B) Total changes in down- and upregulated genes in transgenic 483 

CRND8 mouse brains versus non-transgenic controls at 6 months. C) Total changes in down- and 484 

upregulated genes in transgenic CRND8 mouse brains versus non-transgenic controls at 12 months. D) 485 

Total changes in down- and upregulated genes in transgenic CRND8 mouse brains versus non-transgenic 486 

controls at 20 months. E) Bubble plots of GO category enrichment results for downregulated genes. F) 487 

Bubble plots of GO category enrichment results for upregulated genes. Plots for GO category over-488 

enrichment analysis show the top 10 hits for each comparison by enrichment score following a filter 489 

step by a p-value adjusted for multiple comparisons of ≤ 0.1 and keeping GO categories with greater 490 

than 5 genes within the category.  491 

Figure 7: Microglia transcriptional responses at the individual gene level are not reflective 492 

of changes seen in the CRND8 model.  493 

A) Comparisons of log2 fold change values for microglial genes (Zhang et al., 2014) in transgenic CRND8 494 

versus oAβ-treatment in primary microglia show little correlation. Geometric means of FPKM data of 495 

representative genes differentially expressed in Ab-treated primary microglia is shown for Aβ-treated 496 

microglia (top row) and CRND8 mouse brains (bottom row) (B). Similar plots are shown for 497 

representative differentially expressed genes identified in CRND8 mice (C), AD-relevant genes (D), 498 

representative cytokine genes (E) and representative cytokine receptor genes (F). 499 

Figure 8: Microglia sub-type transcriptional signatures in primary microglia do not reflect 500 

changes seen in the CRND8 model.  501 

Gene signatures for microglia genes and sub-populations of microglia are shown for primary microglia 502 

cultures (left) and CRND8 mouse brains (right). A) Microglia expression signature identified in Zhang et 503 

al., 2014. B) Activated microglia expression signature in Aβ-treated microglia. B) Disease-associated 504 

microglia (DAM) gene expression signature identified in Keren Shaul et al., 2017. C) Homeostatic (H2M) 505 

microglial gene expression signature as in Sala Frigerio et al., 2016. D) Activated response microglia 506 

(ARM) gene expression signature as in Sala Frigerio et al., 2016. E) Cycling and proliferating microglia 507 
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(CPM) gene expression signature as in Sala Frigerio et al., 2016. F) Plaque-induced microglia (PIG) gene 508 

expression signature as in Chen et al., 2020. G) Interferon-responsive microglia (IRM) gene expression 509 

signature as in Sala Frigerio et al., 2016. H) Neurodegenerative microglia phenotype (MGnD) gene 510 

expression signature as in Karesmann, et al., 2017.  *, p-adj < 0.05; **, p-adj < 0.01; ***, p-adj < 0.001. 511 

Methods 512 

Animal Research 513 

All animal research was performed under protocols approved by the Institute for Animal Care and Use 514 

Committee (IACUC) at the University of Florida.  515 

Microglial primary cultures and Aβ42 treatment 516 

Mouse pups for primary microglial cultures are obtained from matings of B6/C3HF1 mice (Envigo). Mice 517 

are given ad libitum access to food and water and are maintained on a 12-hr light/12-hr dark cycle. 518 

Primary microglia cultures were isolated following described protocols (Rosario et al, 2016). Briefly, 519 

cortices were isolated at post-natal day P2-P3. The mixed microglial/astrocyte cultures were maintained 520 

in 75cm2 flasks with 20 ml of DMEM containing 10% fetal bovine serum.  After 10 days, the flasks were 521 

shaken for 30 minutes at 37°C at 150 rpm to dislodge the microglia from the adherent astrocyte layer. 522 

The microglia were plated into 6-well plates and maintained at 37°C. One day after plating, microglia 523 

were treated with 5 μM Aβ42 fibrils or oligomers for 1- or 12-hr as noted. Cell were washed with PBS 524 

prior to harvest. Three replicates for each condition were done. 525 

Fibrillar and oligomeric Aβ preparation 526 

Fibrillar and oligomeric forms of Aβ were prepared as previously described (Chakrabarty et al, 2018; 527 

Stine et al, 2003). Aliquots (10, 100 and 1000 ng) were separated on SDS-PAGE page run using Biorad 528 

Criterion 10% bis-tris gel and XT running buffer/sample buffer for 60m at 180V (constant).  Gel 529 

transferred onto 0.2micron PVDF in Towbin transfer buffer for 45m at 150V (constant). 6E10 (Biolegend, 530 

San Diego, CA) primary antibody diluted at 1:1000 and applied for 1.5h at 37°. Primary antibody was 531 

detected with goat anti-mouse IR700 and scanned on LiCor Odyssey 700mm channel. 532 

RNA extraction and sequencing 533 

Microglial RNA was extracted using the RNeasy mini extraction kit with on-column DNase treatment 534 

(Qiagen). RNA quality was determined with the Qubit RNA HS assay. RNA quality was checked via RIN on 535 

an Agilent Bioanalyzer 2100 with the Eukaryote Total RNA Nano chip. Libraries were generated with the 536 

Illumina RNA-seq library prep for low input RNA. Libraries were sequenced on paired-end, 75 bp runs on 537 
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the Nextseq 500 (Illumina). RNA QC, library preparation and sequencing were performed at the 538 

University of Florida’s Interdisciplinary Center for Biotechnology Research (ICBR) sequencing core.  539 

Transgenic CRND8 RNA-sequencing data 540 

Data for the transgenic CRND8 mice was obtained from the AMP-AD Knowledge Portal (doi: 541 

10.7303/syn3157182). Experimental details are located within the data portal’s website. BAM files 542 

were downloaded from the AD Knowledge portal and used with the analysis method described 543 

below. Animal numbers are as follows: 3-month, nTg-F: 6; 3-month, nTg-M: 6; 3-month, Tg-F: 6; 3-544 

month, Tg-M: 6; 6-month, nTg-F: 5; 6-month, nTg-M: 7; 6-month, Tg-F: 5; 6-month, Tg-M: 6; 12-month,  545 

nTg-F: 5; 12-month,  nTg-M: 5; 12-month,  Tg-F: 7; 12-month,  Tg-M: 7; 20-month, nTg-F:11; 20-month, 546 

nTg-M: 5; 20-month, Tg-F: 5; 20-month, Tg-M: 3. Male and female mice of the same age and genotype 547 

were grouped together for this analysis. 548 

RNA-seq analysis 549 

FASTQ alignment, gene counts and differential expression analysis 550 

Resulting FASTQ files were aligned against the mouse genome (GRCm38) and GRCm38.94 annotation 551 

using STAR v2.6.1a (Dobin et al, 2013) to generate BAM files. BAM files were used to generate gene 552 

counts were generated using Rsamtools (Morgan et al, 2018) and the summarizeOverlaps function with 553 

the GenomicAlignments package (Lawrence et al, 2013). Differential gene expression analysis was 554 

performed with DESeq2 package using the “DESeq” function with default settings (Love et al, 2014) 555 

which fits a generalized linear model for each gene. Subsequent Wald test p-values are adjusted for 556 

multiple comparisons using the Benjamini-Hochberg method (adjusted p-value). Pair-wise changes in 557 

gene expression levels were examined between groups to identify differentially expressed genes (DEGs). 558 

DEGs were defined as an absolute log2Fold Change ≥ 0.5 and an adjusted p-value ≤0.05.  559 

WGCNA  560 

The WGCNA package in R (Langfelder & Horvath, 2008, 2012) was used to construct gene correlation 561 

networks from the expression data after filtering and removing genes with zero variance. For the 562 

microglia dataset, a soft power setting of 9 was chosen using the “pickSoftThreshold” function within 563 

the WGCNA package. The network was constructed using all microglial samples. Adjacency matrices 564 

were constructed using expression data and these power setting with the “adjacency” function and a 565 

signed hybrid network. Module identification was performed using the “cutreeDynamic” function and a 566 

deepSplit setting of 2 with a minimum module size of 30 for all analyses.  567 
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Functional annotation of DEGs, heatmap clusters and WGCNA modules 568 

Gene ontology enrichment analysis was performed with goseq v1.42.0 (Young et al, 2010) to identify 569 

gene ontology categories—focusing on the molecular function (MF) category—and KEGG pathways that 570 

are affected between the various conditions. For DEGs, up- and down-regulated gene lists were 571 

analyzed separately. For WGCNA, gene lists from each module were used as input. Over-represented p-572 

values were adjusted for multiple comparisons using the Benjamini-Hochberg adjustments for 573 

controlling false-discovery rates. An enrichment score was calculated by an observed-over-expected 574 

ratio of  575 

(𝐷𝐸𝐺/𝑡𝑜𝑡𝑎𝑙𝐷𝐸𝐺)/(𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑇𝑜𝑡𝑎𝑙/𝐺𝑒𝑛𝑒𝑇𝑜𝑡𝑎𝑙) 

Where DEG represents the total number of DEGs or module genes within the GO or KEGG category, 576 

totalDEG represents the total number of DEGs or module genes; CategoryTotal represents the total 577 

number of genes within the GO or KEGG category and GeneTotal represents the total number of genes 578 

examined. GO terms and KEGG pathways are filtered for p-values adjusted for multiple comparisons 579 

(BHadjust) < 0.05 (Aβ-treated microglia) or 0.1 (CRND8 mice), enrichment scores > 1 and total number of 580 

genes within the category > 5. 581 

Z-scores for genes identified as a DEG for any Aβ-treatment comparison versus control were plotted in a 582 

heatmap using pheatmap v1.0.12. Clusters were identified using the cutree function with h = 5.75. 583 

goseq was used for GO and KEGG pathway analysis on genes within each cluster. GO terms and KEGG 584 

pathways are filtered for p-values < 0.05, enrichment scores > 1 and total number of genes within the 585 

category > 5. 586 

Gene lists to annotate WGCNA modules and identify microglia subtype signatures were identified from 587 

previously published studies (Chen et al., 2020; Friedman et al., 2018; Hammond et al., 2019; Keren-588 

Shaul et al., 2017; Krasemann et al., 2017; Sala Frigerio et al., 2019; Zhang et al., 2014) (see also 589 

Supplemental Data 10). Gene overlap analysis was conducted with the GeneOverlap package in R (Shen, 590 

2020). GeneOverlap uses Fisher’s exact test to calculate the p-value for significance testing as well as 591 

calculating the odds ratio. goseq was used for GO and KEGG pathway analysis of genes within each 592 

module filtering for those terms with p-values < 0.05, enrichment scores > 1 and total number of genes 593 

within the category > 5. 594 
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Direct comparisons of DEGs between treatment types 595 

DEG datasets for each treatment paradigm against control were filtered for significant gene changes 596 

using criteria described above. The distribution of resulting log2FoldChange was tested for a normal 597 

distribution using the Shapiro-Wilk Normality Test. The correlation value for the log2FoldChange value in 598 

each pair-wise comparison was calculated using Spearman’s rank-order correlation test at a confidence 599 

level set to 0.95 in R and graphs were drawn using the ggpubr package in R (Kassambara, 2020). 600 

Statistical analysis and data visualizations 601 

ANOVA with Tukey’s post-hoc multiple comparisons test was performed in R. Data visualizations were 602 

generated in R using the ggplot2 package (Wickham, 2016) unless otherwise noted. Bar plots show 603 

mean ± SD. For boxplots, upper, middle and lower hinges correspond to first quartile, median and third 604 

quartiles, respectively. Upper (or lower) whiskers correspond to the largest (or smallest) observation 605 

beyond the upper hinge up to 1.5 times the inter-quartile range. Outliers beyond the upper and lower 606 

whiskers are plotted independently.  607 

Data Availability 608 

FASTQ files for the Aβ-treated primary microglia samples are available via the AD Knowledge Portal 609 

(https://adknowledgeportal.org). The AD Knowledge Portal is a platform for accessing data, 610 

analyses, and tools generated by the Accelerating Medicines Partnership (AMP-AD) Target Discovery 611 

Program and other National Institute on Aging (NIA)-supported programs to enable open-science 612 

practices and accelerate translational learning. The data, analyses and tools are shared early in the 613 

research cycle without a publication embargo on secondary use. Data is available for general research 614 

use according to the following requirements for data access and data attribution 615 

(https://adknowledgeportal.org/DataAccess/Instructions). 616 

For access to content described in this manuscript see: http://doi.org/10.7303/syn25006578 617 

Interactive data portals are available for viewing at the following: 618 

Aβ-treated microglial DEG data: https://tinyurl.com/y3q3kaoe  619 

CRND8 DEG data: https://tinyurl.com/y5evwkuw 620 

cross-treatment comparisons of DEG data: https://tinyurl.com/yyph68vc  621 
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Supplemental Data 625 

Supplemental Data 1 626 

DEG results from primary microglia treated with fAβ, 1-hr vs Control. 627 

Tab 1: Results from DESeq2 from the comparison of fAβ, 1-hr vs Control. 628 
Tab 2: GOseq results from GO analysis on upregulated genes in fAβ, 1-hr vs Control. Categories are  629 
Tab 3: GOseq results from GO analysis on downregulated genes in fAβ, 1-hr vs Control. 630 
Tab 4: GOseq results from KEGG pathway analysis on upregulated genes in fAβ, 1-hr vs Control. 631 
Tab 5: GOseq results from KEGG pathway analysis on downregulated genes in fAβ, 1-hr vs Control. 632 

Supplemental Data 2 633 

DEG results from primary microglia treated with fAβ, 12-hr vs Control. 634 

Tab 1: Results from DESeq2 from the comparison of fAβ, 12-hr vs Control. 635 
Tab 2: GOseq results from GO analysis on upregulated genes in fAβ, 12-hr vs Control. 636 
Tab 3: GOseq results from GO analysis on downregulated genes in fAβ, 12-hr vs Control. 637 
Tab 4: GOseq results from KEGG pathway analysis on upregulated genes in fAβ, 12-hr vs Control. 638 
Tab 5: GOseq results from KEGG pathway analysis on downregulated genes in fAβ, 12-hr vs Control. 639 

Supplemental Data 3 640 

DEG results from primary microglia treated with oAβ, 12-hr vs Control. 641 

Tab 1: Results from DESeq2 from the comparison of oAβ, 12-hr vs Control. 642 
Tab 2: GOseq results from GO analysis on upregulated genes in oAβ, 12-hr vs Control. 643 
Tab 3: GOseq results from GO analysis on downregulated genes in oAβ, 12-hr vs Control. 644 
Tab 4: GOseq results from KEGG pathway analysis on upregulated genes in oAβ, 12-hr vs Control. 645 
Tab 5: GOseq results from KEGG pathway analysis on downregulated genes in oAβ, 12-hr vs Control. 646 

Supplemental Data 4 647 

DEG results from primary microglia treated with fAβ, 12-hr vs oAβ, 12-hr. 648 

Tab 1: Results from DESeq2 from the comparison of fAβ, 12-hr vs oAβ, 12-hr. 649 
Tab 2: GOseq results from GO analysis on upregulated genes in fAβ, 12-hr vs oAβ, 12-hr. 650 
Tab 3: GOseq results from GO analysis on downregulated genes in fAβ, 12-hr vs oAβ, 12-hr. 651 
Tab 4: GOseq results from KEGG pathway analysis on upregulated genes in fAβ, 12-hr vs oAβ, 12-hr. 652 
Tab 5: GOseq results from KEGG pathway analysis on downregulated genes in fAβ, 12-hr vs oAβ, 12-hr. 653 

Supplemental Data 5 654 

Cross-treatment comparison of DEGs in fAβ, 12h-hr (vs control) against oAβ, 12-hr (vs control). 655 

Tab 1: GOseq results from GO analysis on genes found in each graph quadrant in Supplemental Figure 656 
1A. 657 
Tab 2: GOseq results from KEGG pathway on genes found in each graph quadrant in Supplemental 658 
Figure 1A. 659 

Supplemental Data 6 660 

Cross-treatment comparison of DEGs in oAβ, 12h-hr (vs control) against fAβ, 1-hr (vs control). 661 

Tab 1: GOseq results from GO analysis on genes found in each graph quadrant in Supplemental Figure 662 
1B. 663 
Tab 2: GOseq results from KEGG pathway on genes found in each graph quadrant in Supplemental 664 
Figure 1B. 665 
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Supplemental Data 7 666 

Cross-treatment comparison of DEGs in fAβ, 12h-hr (vs control) against fAβ, 1-hr (vs control). 667 

Tab 1: GOseq results from GO analysis on genes found in each graph quadrant in Supplemental Figure 668 

1C. 669 

Tab 2: GOseq results from KEGG pathway on genes found in each graph quadrant in Supplemental 670 

Figure 1C. 671 

Supplemental Data 8 672 

Analysis of gene clusters in Figure 3. 673 

Tab 1: List of genes identified in each cluster. Genes that are significant in any treatment comparison 674 
versus control were plotted. 675 
Tab 2: GOseq results from GO analysis on genes found within each cluster. 676 
Tab 3: GOseq results from KEGG pathway analysis on genes found within teach cluster 677 

Supplemental Data 9  678 

WGCNA results. 679 

Tab 1: Gene-Module membership following WGCNA. 680 
Tab 2: GOseq GO category analysis of genes with each module. 681 
Tab 3: GOseq KEGG pathway analysis of genes within each module. 682 

Supplemental Data 10  683 

Correlation of WGCNA modules with treatment paradigms 684 

Correlation and associated p-values for relationships between WGCNA modules and Aβ treatments. Also 685 

included are the number of genes within each module and the top hub gene as identified by the 686 

“chooseTopHubInEachModule” function within the WGCNA package. 687 

Supplemental Data 11 688 

Listing of published studies of single-cell, single-nuclear RNA-seq or spatial transcriptomic studies. 689 

Supplemental Data 12 690 

DEG results from CRND8 mice, transgenic (Tg) versus non-transgenic (nTg), at 3 months. 691 

Tab 1: DESeq2 results from transgenic (Tg) versus non-transgenic (nTg) mice at 3 months. 692 
Tab 2: GOseq results from GO analysis on upregulated genes in Tg versus nTg, 3 months. 693 
Tab 3: GOseq results from GO analysis on downregulated genes in Tg versus nTg, 3 months. 694 
Tab 4: GOseq results from KEGG pathway analysis on upregulated genes in Tg versus nTg, 3 months. 695 
Tab 5: GOseq results from KEGG pathway analysis on downregulated genes in Tg versus nTg, 3 months. 696 

Supplemental Data 13 697 

DEG results from CRND8 mice, Tg versus nTg, at 6 months. 698 

Tab 1: DESeq2 results from transgenic (Tg) versus non-transgenic (nTg) mice at 6 months. 699 
Tab 2: GOseq results from GO analysis on upregulated genes in Tg versus nTg, 6 months. 700 
Tab 3: GOseq results from GO analysis on downregulated genes in Tg versus nTg, 6 months. 701 
Tab 4: GOseq results from KEGG pathway analysis on upregulated genes in Tg versus nTg, 6 months. 702 
Tab 5: GOseq results from KEGG pathway analysis on downregulated genes in Tg versus nTg, 6 months. 703 
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Supplemental Data 14 704 

DEG results from CRND8 mice, Tg versus nTg, at 12 months. 705 

Tab 1: DESeq2 results from transgenic (Tg) versus non-transgenic (nTg) mice at 12 months. 706 
Tab 2: GOseq results from GO analysis on upregulated genes in Tg versus nTg, 12 months. 707 
Tab 3: GOseq results from GO analysis on downregulated genes in Tg versus nTg, 12 months. 708 
Tab 4: GOseq results from KEGG pathway analysis on upregulated genes in Tg versus nTg, 12 months. 709 
Tab 5: GOseq results from KEGG pathway analysis on downregulated genes in Tg versus nTg, 12 months. 710 

Supplemental Data 15 711 

DEG results from CRND8 mice, Tg versus nTg, at 20 months. 712 

Tab 1: DESeq2 results from transgenic (Tg) versus non-transgenic (nTg) mice at 20 months. 713 
Tab 2: GOseq results from GO analysis on upregulated genes in Tg versus nTg, 20 months. 714 
Tab 3: GOseq results from GO analysis on downregulated genes in Tg versus nTg, 20 months. 715 
Tab 4: GOseq results from KEGG pathway analysis on upregulated genes in Tg versus nTg, 20 months. 716 
Tab 5: GOseq results from KEGG pathway analysis on downregulated genes in Tg versus nTg, 20 months.717 
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Table 1: GO analysis of differentially expressed gene clusters in Aβ-treated microglia  

GOseq analysis to analyze GO category over-enrichment was applied to these clusters identified in 

Figure 3. The top 3 categories are shown after ranking by enrichment score and filtering for genes with a 

p-value of less than 0.05 and to remove categories with less than 5 genes within the category.  
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13 ↑ mix mix mix 
carbohydrate:proton symporter activity 24.95 9.15E-03 

JUN kinase kinase kinase activity 22.46 1.02E-02 

neurexin family protein binding 17.28 1.32E-02 

12 ↑ ↓ ↓ ↑ 
kainate selective glutamate receptor activity 5.44 4.14E-02 

testosterone dehydrogenase (NAD+) activity 5.44 4.24E-02 

alpha-adrenergic receptor activity 5.44 4.26E-02 

4 ↑ ↓ ↑ ↓ 
ATPase inhibitor activity 4.66 3.16E-04 

RNA polymerase II transcription cofactor binding 3.11 9.28E-03 

LBD domain binding 2.66 1.26E-02 

10 ↑ ↓ ↓ ↓ 
histone demethylase activity (H3-K9 specific) 8.02 3.99E-06 

leucine binding 8.02 1.64E-03 

insulin binding 8.02 2.14E-03 

8 ↑ ↑ ↓ ↓ 
DNA insertion or deletion binding 8.09 1.49E-03 

MutLalpha complex binding 8.09 1.52E-03 

sphingosine N-acyltransferase activity 6.94 2.06E-03 

2 ↑ ↓ ↑ ↓ 

3-hydroxyacyl-CoA dehydrogenase activity 2.08 4.12E-03 

co-receptor binding 1.85 1.52E-03 

dolichyl-phosphate-mannose-protein mannosyltransferase 
activity 

1.85 6.07E-03 

11 ~ ↓ ↑ ↓ 
STAT family protein binding 1.39 7.17E-03 

complement component C1q binding 1.39 7.36E-03 

TAP complex binding 1.24 9.57E-03 

9 ↓ ~ ↑ ↓ 
stearoyl-CoA 9-desaturase activity 7.39 1.72E-03 

MAP kinase tyrosine/serine/threonine phosphatase activity 6.83 8.84E-06 

acyl-CoA desaturase activity 6.34 2.39E-03 

3 ↓ ↑ ↓ ↑ 
threonine-type endopeptidase activity 3.25 4.46E-14 

threonine-type peptidase activity 3.25 4.46E-14 

proteasome-activating ATPase activity 3.25 7.92E-05 

7 ↓ ↓ mix ↑ 
TAP binding 6.99 7.76E-10 

TAP complex binding 6.10 6.10E-07 

CD8 receptor binding 5.99 4.93E-08 

6 mix mix ↓ ↑ 

platelet-derived growth factor binding 6.51 6.36E-07 

extracellular matrix structural constituent conferring 
compression resistance 

5.58 1.57E-06 

cobalt ion binding 4.69 4.11E-04 

1 ~ ↑ ↓ ↓ 

single-stranded DNA-dependent ATPase activity 7.97 3.77E-18 

kinetochore binding 7.76 3.05E-06 

single-stranded DNA-dependent ATP-dependent DNA helicase 
activity 

7.28 2.24E-07 
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5 ↓ ↑ ~ ~ 

G protein-coupled adenosine receptor activity 5.31 3.35E-03 

structural constituent of presynapse 4.13 5.78E-03 

low-density lipoprotein particle receptor activity 3.71 6.96E-03 
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Table 2: WGCNA module statistics 

Top 10 hub genes within the modules depicted in Figure 5 following WGCNA. Results are sorted by Gene 

Significance to each treatment type. Module statistics including gene significance value (to treatment), 

p-values corresponding to the gene significance (GS p-value), module membership value (of gene to 

module), module membership p-value (MM p-value) and gene connectivity within the module (kWithin) 

are shown.  

Hub Gene 

Gene 
Significance 

(GS) GS p-value 

Module 
Membership 

(MM) MM p-value kWithin 

salmon to fAβ42, 1-hr 

Gabbr2 0.9984 8.34E-14 0.9854 5.17E-09 167.213 

Vegfa 0.9980 2.47E-13 0.9927 1.58E-10 166.033 

Cyth1 0.9977 4.60E-13 0.9953 1.79E-11 164.974 

Rab7b 0.9976 5.71E-13 0.9903 6.51E-10 159.731 

Tnfrsf21 0.9971 1.72E-12 0.9929 1.42E-10 164.391 

Gpcpd1 0.9965 3.83E-12 0.9920 2.47E-10 157.545 

Usp2 0.9962 6.38E-12 0.9498 2.32E-06 155.563 

Folr2 0.9961 6.94E-12 0.9800 2.46E-08 167.461 

Picalm 0.9961 7.20E-12 0.9726 1.16E-07 159.591 

Plek 0.9959 8.80E-12 0.9896 9.34E-10 159.217 

blue to fAβ42, 12-hr 

Tmem176a 0.9997 3.13E-17 0.9513 1.98E-06 468.954 

Acp2 0.9996 4.65E-17 0.9321 1.02E-05 462.765 

Gpr18 0.9996 5.40E-17 0.9432 4.24E-06 450.890 

Fnbp1l 0.9995 1.77E-16 0.9736 9.61E-08 452.921 

Tmem176b 0.9995 2.50E-16 0.9316 1.05E-05 479.564 

Adgre1 0.9994 5.13E-16 0.9676 2.65E-07 485.170 

Slc11a2 0.9994 5.51E-16 0.9240 1.76E-05 487.036 

Cep85 0.9991 5.73E-15 0.9440 3.94E-06 463.008 

Cd82 0.9989 1.12E-14 0.9493 2.43E-06 462.487 

Nr1h3 0.9989 1.34E-14 0.9719 1.33E-07 466.064 

turquoise to oAβ42, 12-hr 

Asf1b 0.9998 6.09E-19 0.991 3.71E-10 400.289 

Alox5 0.9998 2.49E-18 0.933 9.27E-06 402.563 

S100a4 0.9998 3.79E-18 0.973 1.18E-07 400.107 

Klf2 0.9996 4.53E-17 0.952 1.89E-06 402.789 

Hal 0.9996 7.56E-17 0.868 2.49E-04 401.621 

Top2a 0.9996 7.82E-17 0.996 6.24E-12 401.975 

Cks1b 0.9996 8.13E-17 0.950 2.16E-06 403.304 

Pygl 0.9991 3.81E-15 0.961 6.31E-07 403.646 

E2f1 0.9991 5.78E-15 0.965 3.66E-07 402.021 

Mcm7 0.9989 1.35E-14 0.958 9.81E-07 400.930 
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