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49 Abstract

50 Complex structural variants (CSVs) are genomic alterations that have more than two
>l breakpoints and are considered as simultaneous occurrence of simple structural variants.
2 However, detecting the compounded mutational signals of CSVs is challenging through
3 a commonly used model-match strategy. As a result, there has been limited progress for
>4 CSV discovery compared with simple structural variants. We systematically analyzed
>3 the multi-breakpoint connection feature of CSVs, and proposed Mako, utilizing a
56 pottom-up guided model-free strategy, to detect CSVs from paired-end short-read
>7 sequencing. Specifically, we implemented a graph-based pattern growth approach,
58  where the graph depicts potential breakpoint connections and pattern growth enables
9 CSV detection without predefined models. Comprehensive evaluations on both
60 simulated and real datasets revealed that Mako outperformed other algorithms. Notably,
61 validation rates of CSV on real data based on experimental and computational
62 validations as well as manual inspections are around 70%, where the medians of
63 experimental and computational breakpoint shift are 13bp and 26bp, respectively.
64 Moreover, Mako CSV subgraph effectively characterized the breakpoint connections
65 of a CSV event and uncovered a total of 15 CSV types, including two novel types of
66 adjacent segments swap and tandem dispersed duplication. Further analysis of these
67

CSVs also revealed impact of sequence homology in the formation of CSVs. Mako is

68 publicly available at https://github.com/jiadong324/Mako.

69 KEYWORDS: Next-generation sequencing; Complex structural variants; Pattern
70 growth; Graph mining; Formation mechanism
71
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3 Introduction

74 Computational methods based on next-generation-sequencing (NGS) have provided an
7> increasingly comprehensive discovery and catalog of simple structure variants (SVs)
76 that usually have two breakpoints, such as deletions and inversions [1-7]. In general,
7T these approaches follow a model-match strategy, where a specific SV model and its
78 corresponding mutational signal model is proposed. Afterwards, the mutational signal
79 model is used to match observed signals for the detection (Figure 1A). This model-
80 match strategy has been proved effective for detecting simple SVs, providing us with
81 prominent opportunities to study and understand genome evaluation and disease
82 progression [8-11]. However, recent research has revealed that some rearrangements
83 have multiple, compounded mutational signals and usually cannot fit into the simple
84 SV models [8, 12-16] (Figure 1B). For example, in 2015, Sudmant et al. systematically
85 categorized 5 types of complex structural variants (CSVs) and found that a remarkable
86 80% of 229 inversion sites were complex events [8]. Collins et al. used long-insert size
87

whole genome sequencing (liWGS) on autism spectrum disease (ASD) and

88 successfully resolved 16 classes of 9,666 CSVs from 686 patients [17]. In 2019, Lee et

89 al. revealed that 74% of known fusion oncogenes of lung adenocarcinomas were caused

9 by complex genomic rearrangements, including EML4-ALK and CD74-ROSI [16].

91 Though less frequently reported compared with simple SVs, these multiple breakpoint

92 rearrangements were considered as punctuated events, leading to severe genome
93 alterations at once [10, 18-21]. This dramatic change of genome provided distinctive
94

evidence to study formation mechanisms of rearrangement and to understand cancer

9 genome evolution [13, 14, 17, 19, 21-25].

96 However, due to lack of effective CSV detection algorithms, most CSV related
97 studies screen these events from the “sea” of simple SVs through computational
98 expensive contig assembly and realignment, incomplete breakpoints clustering or even
99 targeted manual inspection [8, 12, 16]. In fact, many CSVs have been already neglected
100 or misclassified in this “sea” because of the incompatibility between complicated
101 mutational signals and existing SV models. Although the importance and challenge for
102 CSV detection have been recognized, only a few dedicated algorithms were proposed
103 for CSVs discovery, and they followed two major approaches guided by the model-
104 match strategy. TARDIS and SVelter utilizes the top-down approach, where they
105

attempt to model all the mutational signals of a CSV event instead of modeling specific
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106 parts of signals. In particular, TARDIS [26] proposed sophisticated abnormal alignment
107" models to depict the mutational signals reflected by dispersed duplication and inverted
108 duplication. The pre-defined models were then used to fit observed signals from
109

alignments for the detection of the two specific CSV types. Indeed, this was

10 complicated and greatly limited by the diversity types of CSV. To solve this, SVelter

HT " 127] replaced the modeling process for specific CSVs with a randomly created virtual

12 rearrangement. And CSVs were detected by minimizing the difference between the

113 virtual rearrangement and the observed signals. Whereas GRIDSS [28] represents the

114 assembly-based approach, which detected CSVs through extra breakpoints discovered

15 from contig-assembly and realignment. Though assembly-based approach is sensitive

116 for breakpoint detection, it lacks certain regulations to constrain or classify these

7 breakpoints and leave them as independent events. As a result, these model-match

118 guided approaches would substantially break-up or misinterpret the CSVs because of

19 partially matched signals (Figure 1B). Moreover, graph is another approach that has

120 peen widely used for simple [2, 29] and complex [19, 30] SV detection. Notably, ARC-

121 SV [30] uses clustered discordant read-pairs to construct an adjacency graph and adopts

122 2 maximum likelihood model to detection complex SVs, showing great potential of
123 ysing graph to detect complex SVs. Accordingly, there is an urgent demand of a new
124 strategy, enabling CSV detection without predefined models as well as maintaining the
125 completeness of a CSV event.

126 In this study, we proposed a bottom-up guided model-free strategy, implemented as
127 Mako, to effectively discover CSVs all at once based on short-read sequencing.
128 gpecifically, Mako uses a graph to build connections of mutational signals derived from
129" abnormal alignment, providing the potential breakpoint connections of CSVs.
130 Meanwhile, Mako replaces model fitting with the detection of maximal subgraphs
131 through a pattern growth approach. Pattern growth is a bottom-up approach, which
132 captures the natural features of data without sophisticated model generation, allowing
133 CSV detection without predefined models. We benchmarked Mako against five widely
134 used tools on a series of simulated and real data. The results show that Mako is an
135 effective and efficient algorithm for CSV discovery, which will provide more
136 opportunities to study genome evolution and disease progression from large cohorts.
137 Remarkably, the analysis of subgraphs detected by Mako highlights the unique strength
138 of Mako, where Mako was able to effectively characterize the CSV breakpoint
139

connections, confirming the completeness of a CSV event. Moreover, we
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140 gystematically analyzed the CSVs detected by Mako on three healthy samples,

141 revealing a novel role of sequence homology in CSV formation.

142 Results

143 1In this section, we give an overview of the Mako algorithm, with full details available
144 in the Methods section. For performance comparison, we propose all-breakpoint match
145 and unique-interval match to evaluate Mako against five published methods on both
146 simulated and real data. The detailed explanation of the evaluation measurements, CSV
147

simulation and real data CSV benchmarks are described in the Methods section.
148 Additionally, we describe our observations of Mako’s CSV discovery from HG00514,
149 'HG00733 and NA19240. These samples are sequenced by Human Structural Variants
150" Consortium (HGSVC) and publicly available.

151 Overview of the Mako algorithm

152 Given the fact that a CSV is a single event with multiple breakpoint connections, we
153 observe that either false positive breakpoints or breakpoints from other events will not
154 have connection with the breakpoints in the current CSV because of weak or non-exist
155 connections. Thus, we formulate the detection of CSVs as maximal subgraph pattern
156 detection in a signal graph. To detect the CSV subgraphs, Mako comprises two major
157" steps (Figure 2). Firstly, it collects abnormal aligned reads clusters as nodes and uses
158 two types of edges to build the so-called signal graph. To build the high-quality graph,
159 we filtered discordance alignments based on procedure described in BreakDancer [4]
160

(Methods). The resulting signal graph is formally defined as follows:
161 G=WV,E) with V={v,v,,.,v,} and E={E

pe

,E.,}, where each node veV is

162 represented as v =(fype, pos,weight), and each edge in E,, and E, is represented

163 aseither e, =(v,.,v,./p) or e, =(v,v,dist), with v,,v, €V In particular, Mako uses

164 weight and the ratio between weight and coverage at pos to filter nodes, which are
165 created separately by clustering discordant read-pairs, clipped reads and split reads
166 (Methods). For the edge set, £, contains the paired edges that represent connections
167 between two signals on the genome derived from paired-reads or split-alignment, while
168 E_consists of adjacency edges that indicate distances between signals along the
169 genome. Afterwards, Mako applies a pattern growth search strategy to efficiently
170

discover these subgraphs as potential CSVs at whole genome scale. Meanwhile, the

171 attributes of the subgraph are used to measure the complexity and to define the types of
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172 CSVs. Specifically, the CSVs types are given by the edge connection types of the
173 corresponding subgraphs (Figure 2).

174 Mako effectively characterizes multiple breakpoints of CSV

175 The most important feature for a CSV is the presence of multiple breakpoints in a single
176

event. Thus, we first examined the performance of breakpoint detection for Mako,

177 Lumpy, Manta, SVelter, TARDIS and GRIDSS. The results were evaluated according

178 to the all-breakpoint match criteria on both reported and randomized CSV type

179 simulations (Methods). For convenience, we used the terms reported CSV and

180 randomized CSV throughout this study. Overall, for the heterozygous (HET) (Figure

181 3A) and homozygous (HOM) (Figure 3B) simulation, Mako was comparable to

182 GRIDSS and they outperformed other algorithms. For example, GRIDSS, Mako and
183 Lumpy detected 50%, 51% and 46% for reported HET CSV breakpoints, while they

184 reported 53%, 54% and 44% for randomized ones. Because the graph encoded both

185 multiple breakpoints and their substantial connections for each CSV, Mako achieved
186 petter performance on randomized events, which included more subcomponents than
187 the reported ones. Indeed, by comparing reported and randomized simulation, the
188

breakpoint detection sensitivity (Figure 3A and Figure 3B) of Mako increased, while

189 that of other algorithms dropped except for GRIDSS. Although the assembly-based

190" method, GRIDSS, is as effective as Mako for breakpoint detection, it lacks a proper

191 procedure to resolve the connections among breakpoints.

192 Mako precisely discovers CSV unique-interval

193 CSV is considered as a single event consisted of connected breakpoints and we have
194 demonstrated that Mako was able to detect CSV breakpoints effectively. However, the
195 breakpoint detection evaluation only assesses the discovery of basic components for a
196 CSV and lacks examination for CSV completeness. We then investigated whether
197" Mako could precisely capture the entire CSV interval even with missing breakpoints.
198 In general, according to the unique-interval match (Methods) criteria, Mako
199

consistently outperformed other algorithms for both reported and randomly created
200 CSVs, while SVelter and GRIDSS ranked second and third, respectively. For the
201 reported CSVs at 30X coverage (Figure 3C and Figure 3D), the recall of Mako was
202 949% and 92%, which was significantly higher than SVelter (49% and 57%) for both

203 reported HET and HOM CSVs, respectively. Due to the model guided top-down

204 approach, SVelter was able to discover some complete CSV events. However, the

205 virtual rearrangement generation may not fully explore all possibilities. Remarkably,
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206 we noted that Mako’s superior sensitivity was most significant for randomized
207 simulation (Figure 3E and Figure 3F), which was consistent with our previous
208

observation (Figure 3A, Figure 3B). In particular, at 30X coverage, Mako’s recall

209 (88%) was much higher than SVelter (29%) for the HET CSVs (Figure 3E). This was

210 dye to the complementary nature of the graph edges (adjacent and paired), from which

211 the subgraph can be expanded alternatively through one or the other, enabling the

212 complete CSVs discovery even with missing breakpoints.
213 performance on real data
214

Since Mako outperformed other methods on simulated data, we further compared Mako
215 with SVelter, GRIDSS and TARDIS on whole genome sequencing data of NA19240
216 and SKBR3. Firstly, we obtained 6,060, 7,733, 6,426 and 15,358 calls for NA19240,
217 and 2,962, 2,468, 3,077 and 4,010 for SKBR3 predicted by Mako, SVelter, GRIDSS

218 and TARDIS, respectively (Methods, Supplementary Figure S1-S2). By comparing

219 their predictions, we found Mako and GRIDSS showed similar performance (Figure
220 4A and 4B) which was consistent with our observation in simulated data (Figure 3).
221

Furthermore, we examined the discovery completeness of 59 (NA19240) and 21

222 (SKBR3) benchmark CSVs (Table 1, Supplementary File 1, Supplementary Table

223 §1). Because Manta and Lumpy contributed to the CSV benchmarks, they were

224 excluded from the comparison. The results showed that Mako performed the best for

225 the two benchmarks with different CXS thresholds, while TARDIS ranked second

226 (Figure 4C). Given that inverted duplication and dispersed duplication dominated the

227 benchmark set and that TARDIS has designed specific models for these two types,

228 TARDIS detected more events of these two duplication types than others did (Table 1).
229 SVelter only detected a few benchmark CSVs for SKBR3, because the procedure of

230 randomly created rearrangement was not optimized, leading to either incorrect events

231 or inaccurate breakpoints. Based on the above observation, we concluded that either
232 randomized model (SVelter) or specific model (TARDIS) was far from comprehensive
233 to cover the large diversity of real CSV types.

234 CSV subgraph illustrates breakpoints connections

235 CSVs from autosomes were selected from Mako’s callset with more than one edge
236

connection type observed in the subgraph, leading to 403, 609, and 556 events for

237 HG00514, HG00733 and NA19240, respectively (Figure 5A, Supplementary Table

238 §2). We systemically evaluated all CSV events in HG00733 via experimental and

239 computational validation as well as manual inspection. For experimental validation, we
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240 successfully designed primers for 107 CSVs (Supplementary Table S3), where 15 out
241 of 21 (71%, Table 2) successfully amplified were validated by Sanger sequencing
242 (Supplementary Table S4). The computational validation (Supplementary Figure S3)
243 showed up to 87% accuracy, indicating a combination of methods and external data is
244 necessary for comprehensive CSV validation (Table 3, Methods). Further analysis
245 showed that the medians of breakpoint shift were 13bp and 26bp comparing to
246

breakpoints given by experimental and computational evaluation (Supplementary

247 Figure S4). We observed that approximately 54% of CSVs were found in either STR

248 or VNTR regions, contributing to 75% of all events inside the repetitive regions (Figure

249 5A). For the connection types, more than half of the events contains DUP and INS
250 edges in the graph, indicating duplication involved sequence insertion. Moreover,
251 around 40% of the events contain DEL edges (Figure 5A), showing two distant
252 gegment connections derived from either duplication or inversion events. We further
253 examined whether the CSV subgraph depict the connections for each CSV via
254

discordant read-pairs. Interestingly, we observed two representative events with four
255 breakpoints at chr6:128,961,308-128,962,212 (Figure 5B) and chr5:151,511,018-

256 151,516,780 (Figure 5C) from NA19240 and SKBR3, respectively. Both events were

257 correctly detected by Mako, but missed by SVelter and reported more than once by

258 GRIDSS and TARDIS (Supplementary Table S5). In particular, the CSV at
259 chr6:128,961,308-128,962,212 that consists of two deletions and an inverted spacer

260 as reported twice and five times by GRIDSS and TARDIS. The event at chromosome

261 5 that consists of a deletion and dispersed duplication was reported four and three times

262 by GRDISS and TARDIS. These redundant predictions complicate and mislead

263 downstream functional annotations. On the contrary, Mako was able to completely

264 detect the above two CSV events, and also capable of revealing the breakpoint
265 connections of CSVs encoded in the subgraphs. The above observations suggested that
266 the subgraphs detected through pattern growth are interpretable, from which we can
267 characterize the breakpoint connections for a given CSV event.

268 Contribution of homology sequence in CSV formation

269 Ongoing studies have revealed that genome alterations are mainly caused by the
270 jnaccurate DNA repair and the 2-33bp long microhomology sequence at breakpoint
271 junctions plays an important role in CSV formation [18, 31-34]. To further characterize
272 CSVs’ internal structure and examine the impact of homology sequence on CSV
273

formation, we manually reconstructed (Methods) 1,052 high-confident CSV calls
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274 given by Mako (252/403 from HG00514, 440/609 from HG00733 and 360/556 from

275 NA19240) via PacBio HiFi reads (Figure 6A, Supplementary Table S6,

276 Supplementary Figure S5, Supplementary File 2). The percentage of successfully

277 reconstructed events was similar to the orthogonal validation rate, showing CSVs
278 detected by Mako were accurate and the validation method was effective. The high-
279 confident CSV callset contains 816 insDup events with both insertion and duplication
280 edge connections. Further investigation revealed that these events contains irregular
281 repeat sequence expansion, making them different from simple insertion or duplications
282 (Supplementary Figure S6). Besides, we found two novel types, which were named
283 adjacent segments swap and tandem dispersed duplication (Figure 6B, Supplementary
284 Figure S7-S8). We inferred that homology sequence mediated inaccuracy replication
285 was the major cause for these two types. Furthermore, we observed that 134 CSVs
286 contains either inverted or dispersed duplications (Supplementary Table S6). These
287

duplications involved CSVs were mainly caused by Microhomology Mediated Break-

288 Induced Replication (MMBIR) according to previous studies[18, 32, 35]. It was known

289 that different homology patterns cause distinct CSV types (Figure 6C and Figure 6D).

290 Surprisingly, one particular pattern of homology sequence yielded multiple CSV types
291 (Figure 6E). In particular situations of the three different homology patterns, DNA
292

double strand break (DSB) occurred after replication of fragment C. According to the

293 MMBIR mechanism and template switch [23, 32-34], pattern I (Figure 6C) and pattern

294 I (Figure 6D) can only have one output but pattern III (Figure 6E) produces three

295 (different outcomes. The results provided additional evidence for understanding the

296 impact of sequence contents on DNA DSB repair, leading to better understanding of

297 diversity variants produced by CRISPR [36, 37].

298 Discussion

299 Currently, short read sequencing is significantly reduced in cost and has been applied
300t clinical diagnostics and large cohort studies [16, 38, 39]. However, CSVs from short
301 read data are not fully explored due to the methodology limitations. Though long read
302 sequencing technologies bring us promising opportunities to characterize CSVs [13, 14,
303 40], their application is currently limited to small-scale projects and the methods for
304 CSV discovery are also underdeveloped. As far as we know, NGMLR combined with
305 Sniffles is the only pipeline that utilizes the model-match strategy to discover two
306

specific forms of CSVs, namely deletion-inversion and inverted duplication. Therefore,
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307 there is a strong demand in the genomic community to develop effective and efficient

308 algorithms to detect CSV using short read data. It should be noted that CSV breakpoints

309 might come from either single haplotype or different haplotypes, where two simple SVs

310 from different haplotypes lead to false positives (Supplementary Figure S9). This may
311 gubstantially increase the false discoveries because Mako currently is not able to
312 determine the exact haplotype of each breakpoints. However, Mako can be extended to
313 differentiate such false positives by adding additional features to the graph, e.g. phased
314 reads. Given that short read sequencing is not able to span all breakpoints of a CSV,
315 Mako could only infer the CSV types based on the edge connections from the subgraph,
316 while it is difficult to characterize the exact components of CSVs. Therefore, our next
317 work will integrate both short and long reads to the signal graph for CSV discovery and
318 characterization.

319 To sum up, we developed Mako, utilizing the graph-based pattern growth approach,
320 to discover CSVs. Meanwhile, the intensive experimental and computational
321 yalidations as well as manual inspections showed around 70% accuracy and 20bp
322 median breakpoint shift. Besides the improvement of CSV detection performance, the
323 optimized pattern growth algorithm on sequentially constrained subgraph detection is
324 pot restricted to CSV detection and can be generalized to other graph problems with
325 similar constraints. Most importantly, to the best of our knowledge, Mako is the first
326 algorithm that utilizes the bottom-up guided model-free strategy for SV discovery,
327 avoiding the complicated model and match procedures. Given the fact that CSVs are
328 largely unexplored, Mako presents opportunities to broaden our knowledge of genome
329

evolution and disease progression.
330
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331

332 Materials and methods

333 Materials

334 The short read aligned BAM files for NA 19240, HG00514 and HG00733 were obtained
335 from the HGSVC [9] (Supplementary Note). The PacBio HiFi reads were provided
336 py HGSVC and we aligned these reads with pbmm?2
337 (https://github.com/PacificBiosciences/pbmm2) and NGLMR [40] under default

338 settings (Supplementary Note). The haploid assembly of HG00733 were obtained

339 from HGSVC and aligned with pbmm?2 (Supplementary Note). Both short reads and
340 long reads were aligned to the human reference genome GRCh38. The coverage was
341

approximately 70X and 30X for short and long reads, respectively (Supplementary
342 Note). The simple SV callset for NA19240 is publicly available from HGSVC, and was
343 contributed by Manta [7], Lumpy [3], Pindel [1] and etc. Alignment files and SV callset
344 for the SK-BR-3 cell line were obtained from a recent publication [13] (Supplementary
345 Note). The SK-BR-3 callset (Supplementary Note) was merged by SURVIVOR from
346 contributions by Manta [7], Lumpy [3], Delly [2] and Poplns [41], and contains 627
347 inversions (INV), 2,776 deletions (DEL), 483 duplications (DUP) and 1,160

348 translocations (TRA).

349 Building signal graph

350 To create the signal graph G, Mako collects mutational signals satisfying one of the
351 following criteria from the alignment file to create the signal nodes set V of G: 1)
352 clipped portion with minimum 10% size fraction of the overall read length; 2) split
333 reads with high mapping quality; 3) discordant read-pairs. Notice that a discordant
354 alignment will create two nodes correspondingly. Meanwhile, each node is represented
355 by a cluster of mutational signals and is given three attributes type, pos and weight.
356 Mako uses two types of signal clusters. One of the clusters is single-nucleotide
357 resolution cluster created by clipped reads or split reads, namely Mako clusters these
358 reads at the same location to create node. Another cluster is formed by discordant read-
359 pairs, where the clustering distance is set as estimated average insert size minus two
360 times read length. To avoid using randomly occurred discordant alignment clusters, we
361 followed the procedure introduced by Chen [4]. Specifically, it assumed one type of
362 discordant alignment at the gnomic location is uniformly distributed under the null
363

hypothesis of no variant. For locations that have more than one type of discordant
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364 alignment, the number of such alignments at particular location forms a mixture Poisson
365 distribution with each mixture component representing one of the discordant types.
366 Thus, we summarize the statistics of clustering of a particular type i as the probability
367 of having more than observed number of discordant alignments in a given region:
368 P(n; = k)
369 where n; denotes the Poisson random variable with mean equal to A;, and k; is the
370 number of observed type i discordant alignment. The estimation of A; can be
371 calculated based on the uniform assumption:
372 2= sN;

G
373 where s represents the cumulative size of the regions that discordant alignments
374 anchored, N; the total number of type i alignment in the BAM and G the length of
375 reference genome.
376 It should be noted that some discordant read-pairs may contain two types of signals, e.g.
377 abnormal insert size and incorrect mapping orientation, which are clustered separately
378 to create nodes. Moreover, split reads created nodes not only provide precise location
379 but also complement edges for discordant read-pairs. Therefore, Mako’s performance
380 will not be dramatically affected by the skewed insert size distribution because skewed
381 distribution only affects estimation of abnormal insert size. The attribute weight and
382 pos indicate the number of abnormal reads and approximate position on the genome,
383 respectively; and type denotes the type of abnormal alignment, such as MS, indicating
384 the node consists of reads clipped at the right part. Importantly, we consider nodes with
385 the same type as identical nodes. For the edge set £={E,.E,} of signal graph G,
386 the paired edges from E,, are derived from read-pairs or split-reads between two
387 signal nodes, where rp indicates the number of paired reads involved. Adjacency
388 edges from E, measure the distance dist between two adjacent signals. However,
389 adjacent edges are virtual links compared with the paired edges derived from
390 alignments, thus the pattern growth through adjacent edges is constrained by dist to
391 avoid pointless pattern expansion. It should be noted that both types of edges might co-
392 exist between two nodes. To achieve efficient subgraph detection and avoid
393 overlapping subgraphs, we use a linearized database to store the graph and this graph
394 can be built efficiently in linear time by reading the input file once.
395

Detecting CSVs with pattern growth
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396 Ppattern growth is an efficient heuristic approach for frequent pattern discovery in strings
397 and graphs [42], which has been widely used in many areas [43-48], such as INDEL
398 detection in DNA sequences [1, 24]. Compared with statistical methods, pattern growth
399 discloses the intrinsic features of the data without sophisticated model generation.
400 Meanwhile, the output of the pattern growth approach is usually interpretable, which is
401 very important for specific applications [49].

402 1n the CSV detection, the subgraph pattern starts at a single node and grows by adding
403 more nodes until it cannot find a proper node (Algorithm I, Supplementary Figure
404 §10). In addition, to avoid overlapping subgraphs, we only allow the subgraph to grow
405 according to the increasing order of pos value for each node. Meanwhile,
406 packtracking is only allowed for nodes involved in the current subgraph. For example
407 (Figure 2), Mako detects the maximal subgraph by visiting nodes 4, C, B, and D,
408

respectively. Since the edge distances between 4 and B as well as D and E is larger than

409 the distance (minDist) threshold, Mako grows the subgraph through C and backtrack

410 node B to expand the subgraph, whereas edge between D and E is constrained.

411 Given the fact that the signal graph contains millions of nodes at whole genome scale,

412 we use a strategy similar to “seed-and-extension” that has been utilized by sequence
413 alignment algorithms [50, 51] to accelerate the subgraph detection process. Meanwhile,
414 we only keep the index of each node in the database to save memory for subgraph
415 detection (Supplementary Figure S11). Moreover, as we assigned attributes to each
416 node, the discovered subgraphs not only differ in edge connections but also in the type
417 of signal nodes in the subgraph. Therefore, we propose an algorithm that starts at
418 multiple signal nodes of the same type and extends locally for efficient subgraph
419 detection (Algorithm II). It should be noted that sequence alignment usually results in
420 one best alignment [50, 51], whereas our algorithm is also encouraged to discover
421 multiple maximal subgraphs that share the same edge connections but different node
422 attributes. To avoid missing subgraphs or incomplete detection, minFreq =1 is a
423 default parameter for subgraph detection, but this could also be time consuming and
424 affected by graph noise. Thus, Mako allows users to set larger minFreq to avoid
425 random subgraphs and detects the connected components of subgraphs to ensure
426 complete detection. In particular, a larger minFreq value allows multiple identical
427 subgraphs to be discovered, and edges between these subgraphs are kept and used to
428

build connections between subgraphs. These edges can be reliably marked, because the
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429 frequency of the current subgraph becomes smaller than the minFreq value by adding
430 those edges. Then, a local maximal subgraph represented by a connected component
431 can be discovered from the subgraph connection graph. A significant feature of
432 (discovering CSVs from a graph is that it provides the connections between multiple
433 preakpoints of a CSV, so that the attributes of the discovered subgraph can be directly
434 ysed as a measure for CSV. Namely, if the subgraph contains more non-identical nodes
435 and E,. edges, this subgraph is more likely to indicate a complex event. Therefore,
436 Mako defines the boundary of CSVs using the leftmost and rightmost pos value of the
437 nodes involved, and utilizes the number of identical node types multiplied by the
438 pumber of E,. edgesasacomplexity score CXS (default=2). For example (Figure 2),
439 the discovered CSV subgraph has a CXS score of 8, because of four identical nodes
440 and two paired edges.

Algorithm I: Detect maximal subgraphs

Input: Signal graph ¢ = (V,E), parameters minFreq, minDist

Output: A set of CSV subgraphs 0 = {g1, g2, ---, gn}, With freq(g;) =

minFreq

1: procedure findMaximalSubgraph(G, minFreq, minDist)

2: Initialize freq_types equals to type frequency of node in V;

3: Build index-projection G|y of G;
441 4: for a in freq_types do:

5: Build index-projection G| ;

6: gi=a;

7 if freq(g;) > minFreq then

8: multiLocPatternGrowth (0, g;, G|, minFreq, minDist);

9: end if

10: end for

11: end procedure
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Algorithm II: Multi-location subgraph growth

1: procedure multiLocPatternGrowth(0, g, G| 4, minFreq, minDist)
2: Initialize adj_list with adjacent node direct after g through E;

3: for node in adj_list do:

4. if nodeInRange(g,node) then

5: g' = g +node;

6: 0.append(g");

7 multiLocPatternGrowth(0, g', G| 7, minFreq, minDist);
8: endif

9: end for

10: end procedure
11: procedure nodelnRange(g, v)

442 12:  Setthe nodes in g with respect increasing order of pos value:
Vg, V1 ooes Uns

13:  Setv' =vy;
14: if freq(v) > minFreq then

15: if dist(v',v) < minDist then

16: return True

17: else:

18: fori =nto 0do

19: if 3 e, between v and v; then
20: return True

21: end if

22: endif

23: return False
24: end procedure

443 Design of simulation studies

444 To create CSVs, we follow the simulation strategy introduced by the Sniffles[40]. In

445 general, simple SVs generated by VISOR[52] are randomly selected and combined to

446 make CSVs (Supplementary Figure S12). In this study, we first create deletion,

447 inversion, inverted tandem duplication, tandem duplication and translocation copy-

448 paste with 5000bp average size and 500bp standard deviation (Supplementary Note).

449 We only consider focal translocations, where the distance between source sequence and

4350 insert position is smaller than 100Kbp. These events are created using reference genome

451 GRCh38 and collected as basic operations for further random combination usage. For

432 example, suppose segments on the reference genome are ABCDE and the following

453 (riteria are considered for CSV simulation:

434 1) The deletion (C) associated with inversion (D’) ABD’DE can be generated by first

455 creating a deletion event and adding the inversion to a flanking region of the

456 deletion.
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457 2) The dispersed duplication and inverted duplication are produced through
458 translocation copy-paste, and the orientations at the paste position distinguish these
459 two types of duplication. For example, if we copy-paste segment B and insert it
460 after D, a dispersed duplication ABCDBE will be created.

461 3)  Additionally, to create translocation copy-paste involved CSVs, we only

462 manipulate segments adjacent to the insert position of the source segment. For

463 instance, a deletion can be associated with the dispersed duplication ABCDBE by
464 removing D or E, leading to ABCBE or ABCDB.

465 To produce homozygous or heterozygous CSVs, we use the purity parameter
466 jntroduced by VISOR to control the ratio of reads sequenced from variation genome
467

and reference genome. After the variation genome is created, VISOR used wgsim

468 (https://github.com/lh3/wgsim) to simulate paired-end reads and applied BWA-MEM

469 [51] to align the simulated reads to the reference genome (Supplementary Note).

470 Qverall, VISOR has efficient functions for creating basic operations, building variation
471 genome with simulated CSVs, simulating reads and alignment. We add the random
472 gelection and combination step as part of VISOR.

473 We first evaluate whether Mako is able to capture reported CSV types published by
474 previous studies [8, 17], such as deletion flanked by inversion, inverted duplication,
475 dispersed duplication and etc. This was termed as reported CSV. For the reported CSV,
476 we only randomly select and combine deletion, inversion, inverted tandem duplication
477 and tandem duplication, but leave translocation copy-paste unchanged
478 (Supplementary Note). In total, we simulated 300 reported CSV types on chromosome
479 1. The reported CSVs usually have four to six breakpoints, which are still feasible to be
480 detected by model-based methods. However, we emphasize that limited knowledge of
481 CSV variety and the complex mutational signals produced by breakpoint connections
482 are the major challenges for CSV discovery. From this perspective, we made another
483 set of randomly simulated CSV types on autosomes, termed as randomized CSV, where
484 we created 4,500 CSVs with 4~10 breakpoints through random combinations of at least
485 two basic operations including translocation copy-paste (Supplementary Note).

486 Creating CSV benchmark from real data

487 It has been recognized that the most significant feature of CSVs is simultaneous
488 appearance of multiple breakpoints[8, 12, 27, 53, 54]. However, the development of
489 robust tools for screening complex events is a difficult and unsolved problem because
490

there are currently no well-defined rules for constraining the expected breakpoint
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491 patterns[12]. In order to study CSVs, researchers follow four major steps[12, 20] to
492 resolve CSVs from an enormous number of simple SVs: 1) breakpoint clustering; 2)
493 clustered breakpoints enrichment test; 3) contig assembly and realignment; 4) manually
494 inspection from visualization. Fortunately, PacBio reads provide us with the direct
495 evidence to validate and categorize CSVs, which can be used to screen each simple SV
496 site for CSVs. But to avoid the intensive manually investigation of each simple SV, we
497 first cluster simple SVs and only inspect clusters with at least two SVs. In particular,
498 we treat each SV as an interval and apply the hierarchical clustering to find interval
499 clusters. The distance measure for clustering is defined as follows:
rnin(|l terl.start —
500 Iterl .center = (Iterl .start + Iterl .end) /2
Iter2.center = (Iter2.start + Iter2.end) / 2
501 where Iter is an SV breakpoint interval, and Iter.start, Iter.end and Iter.center
02 indicate the start, end and center of the interval, respectively. We then use the average
503 method to calculate distance between intervals in two clusters u and v, which is
04 assigned by:
505 ", v) = z d(“
IVI)
306 To select a proper threshold for merging clusters from the hierarchical clustering results,
307 we use the threshold from a set of values that could produce the most clusters for each
08 chromosome independently (Supplementary Table S7, Supplementary Note,
09 Supplementary Figure S13-S16).
210 We further utilize the sequence dot-plot to resolve CSVs based on PacBio long reads.
SI1 Sequence dot-plot is a classic way to investigate genome rearrangement between
12 gpecies or chromosomes[55]. It applies a k-mer match approach between sequences and
13 Kkeeps matches in a similarity matrix. Thus, we can define the breakpoints and type of a
>14 €SV by visualizing the similarity matrix. We use the publicly available interactive
15 sequence dot-plot tool Gepard[56] for this process. Since CSVs are rare and might
516 appear at the minor allele, we create a dot-plot for each long read that spans the
S17 corresponding SV cluster. Afterwards, we manually inspect all these dot-plots to
18 jdentify CSVs, and their breakpoints can be easily obtained from Gepard’s interactive
19 yser interface (Supplementary Figure S$17).
520

Parameter selection for Mako and other methods

21 Mako run with minAf= 0.2, minFreq =1, minWeight = 10 for real data


https://doi.org/10.1101/2021.03.01.433465
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.01.433465; this version posted March 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

22 (NA19240, HG00514, HG00733) and all simulated data (Supplementary Note). The

23 minFreq was set to 1 to detect rare events. The minDist is set four times the

524 estimated library fragment average size. And these values are all default settings for
25 Mako. For the cancer cell line (SKBR3), considering the coverage and highly
526 rearranged nature compared with the normal genome, we reduce the cutoff from 0.2 to
27 0.1 and 10 to 5 for minAf and minWeight, respectively, so that the graph could
28 involve more nodes. Signal nodes satisfying either the minAf or minWeight
529 threshold will be included to create the graph. The other selected tools are run under
530

default settings for both simulated and real data (Supplementary Note). We use the
331 Jatest version of TARDIS [26] and the SVelter callset for NA19240 is provided by

32 HGSVC [9] (Supplementary Note). For the CSV detection evaluation, all predictions

333 larger than 50p are involved and additional filtering has been done according to the

34 recommended procedures [26-28]. In particular, GRIDSS’s callset is filtered by a filter

335 field in VCF header such as ASSEMBLY TOO FEW READ and SVs with

336 coordinates like [57] and [p2,p1] are kept only once. The prediction of SVelter is

37 filtered by a validation score of -1 (Supplementary Note).

338 Performance evaluation

39 Typically, a correct discovery is defined as a best match between benchmark and
240 predictions, and thus the closest event to the benchmark CSVs with similar size is
41 considered as true positive [58]. However, performance comparison of CSVs is less
342 straightforward than that of simple SV because of multiple breakpoints involved [27].
343 To address the demand of detecting CSVs as a single event and avoiding redundant
244 predictions [12], the performance is evaluated from two aspects. For example, a CSV
45 with inversion flanked by two deletions is evaluated as three components. Correct
46 prediction of all breakpoints for the three components is considered as all-breakpoint
47 match. Meanwhile, if only one prediction is close to the leftmost and rightmost
48 preakpoints of the CSV with similar size, this prediction is treated as unique-interval
49 match. In the evaluation, the closeness bpDist and size similarity sim between
330 prediction and benchmark are 500bp and 0.7. For example, assume a benchmark
531 b, start, b.end, b.size], and a prediction [p.start, p.end, p.size]; then a correct
32 prediction will satisfy the following equations:

553 min(|b.start — p.start|,|b.end — p.end |) < bpDist

b.sizex sim < p.size < b.size x (2 — sim)
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>34 For simulated data, true positive (TP) is defined as the nearest prediction with similar
>33 size to the benchmark, while predictions not in the benchmark are treated as false
336 positives (FP). False negatives (FN) are events in the benchmark set that are not
337 matched by predictions (Supplementary Note). Then, the usual measurements can be
38 calculated as follows:
recall =TP /(TP + FN)

559 precision =TP | (TP + FP)

F1=(recall x precision) / (recall + precision)
360 Since it is usually hard to measure the false positives of each tool for real data, we only
61 consider the number of correct discoveries. To fully characterize Mako’s performance,
62 we further evaluate it on NA19240 based on PacBio reads by using sensitivity and
563 gpecificity (Supplementary Note) Additionally, because the breakpoints are not as
364 precise as that in the simulation, we relax the size similarity threshold sim to 0.5 for
565

real data sensitivity evaluation. To examine Mako’s CSV breakpoint offset, we first

66 manually labeled the breakpoints of each CSV from HGO00514, HG00733 and

567 NA19240 based on PacBio reads create sequence Doplot (Supplementary Note).

68 Secondly, we compare manually labeled breakpoints to Mako reported ones to calculate

569 the offset.

70 QOrthogonal validation of Mako detected CSVs

S71 To evaluate detected CSVs, we used experimental and computational validation as well

72 as manual inspections of HG00733. The raw CSV calls from HG00733 was obtained

373 by selecting events with more than one link types observed in the subgraph, resulting

374 in 609 CSVs. To design primers, Primer3 (https://github.com/primer3-org/primer3)
75 was used in conjunction with internal software to design and select PCR primers, where
76 the optimal primer size was set to 23bp. In particular, we extend Mako detected
>77 breakpoints by 500bp to select primers with average GC contents close to 50% and a
578

predicted melting temperature 60 °C. Primers were then selected within the extended

79 distance but 200bp outside of the boundaries of the breakpoints defined by Mako

>80 (Supplementary Figure S18). If duplication and inversion like edges were found in

581 the subgraph, primers were also designed on the reverse complementary strand. All

82 primer pairs were tested for their uniqueness across the human genome using In Silico

583 PCR from UCSC Genome Browser. BLAT (https://users.soe.ucsc.edu/~kent/) search
584

was also performed at the same time to make sure all primer candidates have only one

585 hit in the human genome. If the above procedure does not result in a valid primer pair,
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386 the size of the regions for which primers are designed was increased from 500bp to
587 650bp and all process were repeated to search for primers (primers are in
88 Supplementary Table S3). PCR amplifications were performed in a volume of 25 ul
589

concentration of reagents, consisting of 1) 1x of 10x Ex Tag Buffer (Mg*" Plus); 2) 0.4

290 mM of NTP mix, 0.4 uM for each primer; 3) 0.75 units of Ex Taq DNA polymerase

91 (TakaRa, Japan) and 4) 30 ng of DNA. The amplification cycle was performed in

92 Mastercycler® nexus gradient (Eppendorf, Germany), including 1) 5 minutes’ pre-
393 denaturation at 94°C; 2) 35 cycles of denaturation at 94°C for 45 seconds, annealing 45
94 seconds according to different TM value of each primer and elongation at 72°C for 90
95 seconds; 3) followed by 10 minutes’ extension at 72°C. The amplification products were
596

separated by electrophoresis in 1.5% agarose gels with CellPro"DNA-Red

97 (InCellGene LLC, USA) and bands were visualized under the UV light. Then, we

298 selected products with the expected product size and bright electrophoretic bands

299 (Supplementary Figure S19, all results in Supplementary File 3), which were further
600 murified and cloned into the expression vector pEASY-T1 (Transgene, China). The
601 positive clones containing the targeted fragments were send to TsingKe Biological
602 Technology Company for Sanger sequencing. The Sanger sequencing data were aligned
603 against the reference allele of the CSV site and visualized with Gepard for breakpoint
604

inspection.
605 We used HiFi reads from HGSVC to manually reconstruct each CSVs. Similar to the

606 procedure of creating the benchmark CSV for NA19240 and SKBR3, SAMtools was

607 ysed to get the HiFi reads spanning the breakpoints. Afterwards, Gepard was applied to

608 create the sequence dotplot between each read and the reference genome. We than go
609 through all the sequence dotpot to validate CSV's detected by Mako (Supplementary
610 Figure S17, Supplementary Note, Supplementary File 2). The validation rate
611 measured whether Mako detected subgraphs contained different types of breakpoint
612 connection edges. For dotplots with ‘messy’ regions, they could produce duplication
613 and insertion like breakpoint connections based on short-read sequencing. Therefore, it
614 was difficult or even impossible for short reads to distinguish between distinct complex
615 events and those detected at repeat regions. To characterize these events based on long-
616 read sequencing, we introduced a three steps workflow as follows:

617 Step 1. Identifying event breakpoints inside the ‘messy’ regions in the dotplots.
618

Those outside the ‘messy’ regions were considered as distinct complex events.
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619 Step 2.  We defined 3 dotplot patterns (Supplementary Figure S20) to classify
620 ‘messy’ events to CSVs, where the x-axis and y-axis are REF and ALT sequence,
621 respectively. Region 1, 2 and 3 indicates regions where extra segments could be
622 found. Especially, region 2 in each case indicates the ‘messy’ region caused by
623 repeats.

624 o Case A: Blue segments indicate an insertion event with single
625 breakpoint on the reference. A CSV should contain at least one
626 duplicated segments (purple) in region 1, 2 or 3. Example events include
627 chr1:206,924,211-206,924,525 (Supplementary File 2, page 89) and
628 etc.

629 o Case B: Blue segments indicate repeat expansion on the ALT sequence.
630 A CSV should contain extra segments in region 1, 2 or 3. Example
631 events include chrl:1,382,295-1,382,470 (Supplementary File 2, page
632 145) and etc.

633 o Case C: Blue segments overlap on the REF, but have a gap on the ALT
634 sequence. This type of events could be interpreted as insertion with
635 duplications, which is considered as complex event. We also observed
636 some CSV contained segments (purple) in region 1, 2 or 3. Example
637 events include chr3:50,311,835-50,312,092 (Supplementary File 2,
638 page 226) and etc.

639 Step 3. We further investigate events that failed the examination in Step 2
640 according to 2 dotplot patterns (Supplementary Figure S21).

641 o Case A: A simple insertion event, where the breakpoint locates
642 inside tandem repeats (region 2) and other segments cannot be found.
643 o Case B: Regular repeat expansion (purple segments) in ALT
644

sequence.

645 For computational validation, we obtained ONT reads of HG00733 from HGSVC and

646 applied VaPoR [59], an independent structural variants validation method, to validate

647 these CSVs (Supplementary Note). VaPoR is able to validate calls based predicted
648 region and types with a confidence score. VaPoR labeled NAs and 0 to some of the
649 inconclusive events due to highly repetitive sequence and unclear recurrent pattern that
650

can be observed (Supplementary Figure S22). We termed the above procedure as

651 ONT validation. Besides, we obtained HiFi assemblies from HGSVC and applied a K-

652 mer based breakpoint examination and calculate the breakpoint shifts. Specifically,
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653 CSV spanning H1 or H2 contig sequence (ALT) and reference (REF) sequence were
654 extracted from alignment and GRCh38, respectively. We first identified the matched
655 segments between ATL and REF through K-mer (k=32bp) realignment as well as sorted
656 these segments according to their position on reference. Afterwards, we marked the
657 unmatched or gap regions, from which, we calculated the breakpoints and size
658 similarity. A CSV was considered valid if both left and right breakpoint difference are
659 smaller  than  500bp. This  constrain  was  used by  Truvari
660 (https://github.com/spiralgenetics/truvari/), a standard benchmarking tool used by
661 Genome In A Bottle (GIAB). The implementation of K-mer validation is available at
662 Mako GitHub site. Breakpoint comparison of experimental and K-mer validation were
663 listed in Supplementary Table S8, which was used to calculate the breakpoint
664

resolution. Because VaPoR is able to report Valid, NA and 0 events but not to report

665 the breakpoint based on ONT (Supplementary Table S9), we did not include VaPoR’s

666 results in the breakpoint shift analysis.

667 Code availability

668  Mako is implemented in Java 1.8, and it is available at

669 https://github.com/jiadong324/Mako. It is free for non-commercial use by academic,

670 government, andnon-profit/not-for-profit institutions. A commercial version of the
671 software is available and licensed through Xi’an Jiao-tong University. All scripts used
672 in this study are also included in the Github repository, and a detailed description of
673 using these scripts and other tools is provided in Supplementary Note.

674 Data availability

675 All materials or datasets used in this study are publicly available and their links are
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877 (A) Three common simple SV and their corresponding abnormal read pair alignment
878 on the reference genome, representing by red, blue and green arrows. (B) The alignment
879 signature of two CSVs, each of them involves two types of signature that can be
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matched by simple SV alignment model.
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Mako first builds a signal graph by collecting abnormal aligned reads as nodes and their

edge connections are provided by paired-end alignment and split alignment. Afterwards,

Mako utilizes the pattern growth approach to find a maximal subgraph as potential CSV

site. In the example output, the maximal subgraph contains A, B, C, D, whereas F is not

able to appended because of none existing edge (dashed line). The CSV is derived from

this subgraph with estimate breakpoints and CXS score, where the discovered CSV

subgraph contains four different nodes, one E,, edge andtwo E,. edges of type DEL
and INV, thus CXS = 8.
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894 All-breakpoint match (A and B) and unique-interval match (C-F) evaluation of selected
895 tools on simulated CSVs. (A) The sensitivity of detecting heterozygous CSVs
896 preakpoints. (B) The sensitivity of detecting homozygous CSVs breakpoints. The red
897 and purple curve indicate randomized and reported CSVs, respectively. (C) Evaluation
898 of reported heterozygous CSV simulation. (D) Evaluation of reported homozygous
899 CSV simulation. (E) Evaluation of randomized heterozygous CSV simulation. (F)
900 Evaluation of randomized homozygous CSV simulation. From (C) to (F), the
901 performance is evaluated by recall (y-axis), precision (x-axis) and Fl-score (dotted
902 lines). The right top corner of the plot indicates better performance. The c5-c30
903 jndicates coverage, e.g. c5 indicates 5X coverage.
A NA19240 B SKBR3
C NA19240 SKBR3
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%05 Figure4. Overview of performance on NA19240 and SKBR3 for Mako, GRIDSS,
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906 SVelter and TARDIS.

907 (A) and (B) are the Venn diagram of 50% reciprocal overlap between callsets for both

908 NA19240 and SKBR3. They are created by a publicly available tool Intervene with —

909 pedtools-options enabled. (B) The MergedSet is the callset provided by the publication.

910 (C) The percentage of completely and uniquely discovered CSVs from the NA19240
911 and SKBR3. The results of Mako (bottom panel) are shown according to different CXS

912 threshold.
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FigureS. Repeatannotation and types of CSVs with two representative examples

915 jdentified by Mako.

916 (A)is repeat annotation and (B) is detected connection types of CSVs, respectively. The
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917 top panel of (C) and (D) are IGV view of the two events and the alignments are grouped
918 by pair orientation. The dark blue shows reverse-reverse alignments, light blue is the
919 forward-forward alignments, green is the reverse-forward alignments and the red
920 indicates alignment of large insert size. The bottom panel of (C) and (D) are sub-graph
921 structure discovered by Mako. The colored circles and solid lines are nodes and edges
922 in the sub-graph. (E) The alignment model of deletions with inverted spacer. (F) The
923 alignment model of deletion associated with dispersed duplication. In (E) and (F), short
924 arrows are paired-end reads that span breakpoint junctions, and their alignment are
925 shown on the reference genome with corresponding ID in circle. Noted that a single ID
926 may have more than one corresponding abnormal alignment types on the reference.
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928 Figure 6. Overview of Mako’s CSV discoveries from three healthy samples and
929 proposed CSV formation mechanisms.
930 (A) Summary of discovered CSV types, these types are reconstructed by HiFi PacBio
931 reads, where a type with less than 10 events was summarized as rareType. (B) Diagrams
932 of two novel and rare CSV types discovered by Mako. In particular, Mako finds three
933

events of adjacent segments swap and only one tandem dispersed duplication. (C-E)


https://doi.org/10.1101/2021.03.01.433465
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.01.433465; this version posted March 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

934 Replication diagram explains the impact of homology pattern for MMBIR produced

935 CSVs. In these diagrams, sequence 4BC has been replicated before the replication fork

936 collapse (flash symbol). The single strand DNA at the DNA double strand break (DSB)

937 starts searching for homology sequence (purple and green triangle) to repair. The above

938 procedure is explicitly explained as a replication graph, from which, nodes are
939 homology sequences and edges keep track of the template switch (dotted arrow lines)
940 a5 well as the normal replication at different strand (red lines). If there are two red lines
941

between two nodes, the sequence between these two nodes will be replicate twice as

942 shown in (D).
943
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Tables

Table 1. Summary of benchmark CSVs. The CSV type abbreviations and their

corresponding descriptions are also listed.

Benchmark summaries

Type Description
NA19240 SKBR3
Disdup 15 12 Dispersed duplication
Invdup 18 - Inverted duplication
Dellnv 7 5 Deletion associated with inversion
DelDisdup 5 1 Deletion associated with dispersed duplication
Dellnvdup 1 - Deletion associated with inverted duplication
DisdupInvdup 2 2 Dispersed duplication with inverted duplication
InsInv 1 - Insertion associated with inversion
Tantrans 1 - Adjacent segments swap
DelSpaDel 8 1 Two deletions with inverted or non-inverted spacer
TanDisdup 1 - Tandem dispersed duplications

Table 2. Summary of experimentally validated CSVs.

Chromosome Start End Mako Type
Chrl 81,194,398 81,195,874 DEL, INV
Chr2 119,659,504 119,661,322 DUP, INS
Chr3 146,667,093 146,667,284 DEL, DUP
Chr5 141,480,327 141,483,116 DEL, DUP
Chr7 1,940,931 1,941,009 DUP, INS
Chr9 29,591,409 29,593,057 DEL, INV
Chrl10 14,568,488 14,568,677 DUP, INS
Chr12 71,315,482 71,316,928 DEL, INV
Chr12 77,989,900 77,994,324 DEL, INV
Chr13 74,340,759 74,342,810 DEL, DUP
Chrl6 78,004,459 78,007,456 DEL, DUP
Chrl7 34,854,438 34,855,851 DEL, INV
Chrl7 48,538,270 48,540,171 DEL, DUP
Chrl8 72,044,575 72,045,937 DEL, DUP
Chr21 26,001,844 26,001,844 DEL, INV
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955 Table 3. Summary of experimental and computational validation as well as manual
956 inspection for CSVs.

Validation Strategy Total Valid Invalid Inconclusive

Experimental (PCR succeeded) 21 15 (71%) 6 (29%) -

ONT reads 256 (42%) - 353 (58%)
Computational HiFi contig 609 414 (68%) 191 (32%) -
ONT reads or HiFi contig 544 (87%) 76 (13%) -
Manual HiFi reads 609 440 (72%) 169 (28%) -

957
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938 Supplementary material

959 Supplementary Note contains supplementary information for MATERIALS and

960  METHODS.

91 Supplementary Figures contains the supplementary figures for this study.
962 Supplementary Table S1 provides the benchmark CSVs, SV clustering summary and
963

examples used to illustrate Mako CSV subgraph.
964 Supplementary Table S2 provides Mako detected CSVs for HG00733, HG00514 and
965 NA19240.

966 Supplementary Table S3 provides events with successfully designed primers.

97 Supplementary Table S4 provides the summary of experimental and computational
968 validation as well as manual inspections of HG00733.

969

Supplementary Table S5 provides the details of breakpoints for the two examples in

970 Figure 5C to 5F.

971 Supplementary Table S6 provides the results of manual inspections of HG00733,

972 HG00514 and NA19240 based on PacBio HiFi reads.

973 Supplementary Table S7 provides parameters used for creating the CSV benchmarks

974 for NA19240 and SKBR3.

975 Supplementary Table S8 provides experimental and computational evaluated

976 preakpoints, which was used for breakpoint shift analysis.

977 Supplementary Table S9 provides the details of VaPoR results of HG00733.

978 Supplementary File 1 provides the IGV view and PacBio reads dotplot of each

979 benchmark CSVs.

980 Supplementary File 2 provides the PacBio HiFi reads dotplots for manual inspections

981 5fHG00733.

982 Supplementary File 3 provides the PCR results and visualization of CSV breakpoint
983 validated through Sanger sequencing.
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