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Abstract 

The ability to process and respond to external input is critical for adaptive behavior. Why, then, 
do neural and behavioral responses vary across repeated presentations of the same sensory 
input? Spontaneous fluctuations of neuronal excitability are currently hypothesized to underlie the 
trial-by-trial variability in sensory processing. To test this, we capitalized on invasive 
electrophysiology in neurosurgical patients performing an auditory discrimination task with visual 
cues: specifically, we examined the interaction between prestimulus alpha oscillations, 
excitability, task performance, and decoded neural stimulus representations. We found that strong 
prestimulus oscillations in the alpha+ band (i.e., alpha and neighboring frequencies), rather than 
the aperiodic signal, correlated with a low excitability state, indexed by reduced broadband high-
frequency activity. This state was related to slower reaction times and reduced neural stimulus 
encoding strength. We propose that the alpha+ rhythm modulates excitability, thereby resulting 
in variability in behavior and sensory representations despite identical input. 
 
Introduction 

When asked to make repeated perceptual decisions, we often respond differently with each 
repetition, even when given the same sensory information (Rahnev & Denison, 2018; Wyart & 
Koechlin, 2016). We addressed the physiological sources of this variability by testing how 
spontaneous fluctuations in neuronal excitability, reflected by alpha oscillations (7–14 Hz), affect 
behavior and neural sensory representations. 

While historically regarded as “noise”, spontaneous neural oscillations strongly predict neural 
dynamics and behavior in health (Busch et al., 2009; Grabot & Kayser, 2020; Lange et al., 2013; 
Romei et al., 2008b; Samaha, Iemi, et al., 2020) and disease (age-related cognitive decline: Tran 
et al., 2020; Voytek et al., 2015; schizophrenia: Uhlhaas & Singer, 2010; autism: Simon & Wallace, 
2016). Here, “spontaneous” oscillations are operationalized as neural activity occurring without 
(“ongoing”) or preceding (“prestimulus”) sensory stimulation, since activity fluctuations during 
these moments are presumed to be endogenously generated. Strong ongoing alpha oscillations 
are related to a state of low excitability, as indexed by a reduction of neuronal firing (Bollimunta 
et al., 2008, 2011; Chapeton et al., 2019; Dougherty et al., 2017; Haegens et al., 2011; Lundqvist 
et al., 2020; van Kerkoerle et al., 2014; Watson et al., 2018), local field potentials (Potes et al., 
2014; Spaak et al., 2012), and hemodynamic activity (Becker et al., 2011; Goldman et al., 2002; 
Mayhew et al., 2013). Further, states of strong prestimulus alpha oscillations predict behavioral 
changes, including longer reaction times (RTs; Zhang et al., 2008; Bollimunta et al., 2008; Kelly 
& O’Connell, 2013; Bompas et al., 2015), lower probability of reporting near-threshold sensory 
stimuli (Ergenoglu et al., 2004; van Dijk et al., 2008; Busch et al., 2009; Mathewson et al., 2009; 
Chaumon & Busch, 2014; Iemi & Busch, 2018; Limbach & Corballis, 2016; Iemi et al., 2017; 
Craddock et al., 2017) or phosphenes (Romei et al., 2008a; Samaha, Gosseries, et al., 2017), 
and reduced subjective perception (i.e., lower confidence: Samaha, Iemi, et al., 2017; Samaha, 
LaRocque, et al., 2020; lower visibility ratings: Benwell et al., 2017). 
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Despite this extensive work on alpha oscillations, the mechanisms supporting their apparent 
interrelation to excitability and behavior remain unclear. One proposal suggests that alpha 
oscillations reflect a mechanism of functional inhibition, regulating the excitability state of the 
neural system and thereby information processing necessary for behavior (Griffiths et al., 2019; 
Jensen & Mazaheri, 2010; Klimesch et al., 2007; Mathewson et al., 2011; Samaha, Iemi, et al., 
2020). At the physiological level, a state of functional inhibition may be achieved, for example, via 
the activation of GABAergic inhibitory interneurons and/or via reduced excitatory drive (e.g., 
downregulation of norepinephrine or acetylcholine). According to this account, the behavioral 
changes associated with alpha oscillations are caused by alpha power influencing neuronal 
excitability. Alternatively, alpha power might affect excitability and behavior via independent 
mechanisms (e.g., Gundlach et al., 2020). As most studies to date report evidence for a link 
between alpha power and either excitability or behavior, it is currently unknown whether the 
relationship between alpha power and behavior is mediated by a direct excitability modulation or 
via an independent mechanism. 

It also remains unknown whether and how the excitability modulation associated with prestimulus 
alpha oscillations shapes the neural representations of sensory stimuli, on which behavior 
depends. Using decoding as a proxy for neural representation, we compared two hypotheses of 
how alpha oscillations may affect how sensory information is represented in the brain. First, low 
excitability during strong alpha oscillations may relate to a state of reduced attentional resources 
(Diepen & Mazaheri, 2017; Van Diepen et al., 2019), associated with decreased neural responses 
(Mehrpour et al., 2020; Treue & Maunsell, 1996) but increased variability/noise (Cohen & 
Maunsell, 2009; Mitchell et al., 2009). The resulting lower signal-to-noise ratio may thus worsen 
the encoding of sensory stimuli (i.e., lower decoder accuracy). Second, low excitability during 
strong alpha oscillations may be related to a decrease in the neural response magnitude and 
variability/noise (Goris et al., 2014; Tomko & Crapper, 1974). The resulting decrease in both 
signal and noise may thus reduce the overall strength of neural representations (i.e., lower 
decoder confidence; see Methods), leaving their encoding accuracy unaffected (Samaha, et al., 
2020).  

Here, we tested the functional inhibition account of alpha oscillations and their effect on behavior 
and neural sensory representations by analyzing intracranial electroencephalography (iEEG) 
recordings in nine patients with medication-resistant epilepsy (N = 1044 electrodes) while they 
performed an auditory discrimination task with visual cues (Figure 1A; Auksztulewicz et al., 2018). 
iEEG enabled us to estimate ongoing neural oscillations and broadband high-frequency activity 
(BHA, 70–150 Hz), which is thought to reflect neuronal ensemble activation patterns, including 
multiunit activity (Manning et al., 2009; Nir et al., 2007; Ray et al., 2008; Rich & Wallis, 2017; Ray 
& Maunsell, 2011; Miller et al., 2014), dendritic processes integral to excitation of neuronal 
ensembles (Leszczyński et al., 2020; Suzuki & Larkum, 2017), as well as additional neuronal 
processes such as synaptic currents (Lachaux et al., 2012). Critical for the present study, BHA 
provides a reliable measure of local neuronal excitability. First, we confirmed a hallmark of the 
functional inhibition account: i.e., a  simultaneous negative relationship between ongoing alpha 
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power and neuronal excitability (as indexed by BHA: Potes et al., 2014; Spaak et al., 2012). We 
tested whether this pattern generalizes across brain areas, other frequency bands (including beta, 
15–30 Hz), and processing windows (i.e., prestimulus and poststimulus), and whether it reflects 
a genuine oscillatory modulation, or a change in the aperiodic 1/f activity. Second, we tested 
whether prestimulus alpha power modulates the neural response to sensory stimuli (as indexed 
by poststimulus BHA), and whether this modulation generalizes across sensory modalities (i.e., 
visual and auditory). Third, we tested whether the effect of prestimulus alpha power on 
poststimulus excitability has consequences for task performance and for decoded neural stimulus 
representations. Specifically, we analyzed how prestimulus alpha power influences subsequent 
RTs, and we used mediation analysis to directly link prestimulus alpha power with RT changes 
via poststimulus excitability modulation. In addition, we used multivariate pattern analysis to test 
whether prestimulus alpha power affects decoder accuracy and/or confidence.  

To preview our results, strong prestimulus oscillations in the alpha+ band (i.e., alpha and 
neighboring frequencies), rather than the aperiodic signal, are correlated with lower BHA, 
reflecting reduced excitability. This effect is observed across the brain and sensory modalities as 
well as before and after sensory input. Further, strong prestimulus alpha oscillations are 
correlated with slower RTs, and with a decrease in decoder confidence, but not accuracy. 
Critically, low excitability during the poststimulus window mediates the relationship between 
prestimulus alpha power and RTs, demonstrating a link between alpha oscillations, behavior, and 
excitability consistent with functional inhibition. We propose that, by modulating neuronal 
excitability, the ongoing alpha+ rhythm affects behavior and the strength of neural stimulus 
representations. 

 

 
 
Figure 1. Experimental paradigm and alpha-band periodic and aperiodic activity. 
A. Schematic overview of the experimental paradigm. In each trial, participants were presented 
with a sequence of sensory stimuli in a fixed order: a noise image, a scene image, a face image, 
and a target syllable. At the end of the trial, participants reported the syllable identity (/ga/ or /pa/) 
via button press. B. Averaged power spectrum of the 1-s window before the noise image, shown 
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separately for sites with alpha oscillations (periodic sites, in blue) and sites without a detectable 
alpha-band peak (aperiodic sites, in green). The inset shows the power spectrum for the 
frequency window of interest. C. Histogram of the alpha-band peak frequencies of the prestimulus 
power spectrum across periodic sites. D. Schematic illustration of the iEEG electrode coverage. 
Direct recordings of brain activity were obtained using intracranial electrodes implanted in 1044 
sites across 9 epilepsy patients. Blue and green dots illustrate periodic and aperiodic sites, 
respectively; the size of blue dots indicates the alpha-band peak frequencies of periodic sites. 
 
 

 
 
Figure 1 supplement. Beta-band periodic and aperiodic activity. 
A. Averaged power spectrum of the 1-s window before the noise image, shown separately for 
sites with beta oscillations (periodic sites, in blue), sites with beta oscillations but no detectable 
alpha-band peaks (beta-only periodic sites, blue dotted line), and sites without a detectable beta-
band peak (aperiodic sites, in green). The power spectrum of periodic (and beta-only periodic) 
sites contains a beta-band peak (15–30 Hz) while the power spectrum of aperiodic sites shows 
only 1/f activity in the beta band. The inset shows the power spectrum for the frequency window 
of interest. B. Histogram of the beta-band peak frequencies of the prestimulus power spectrum 
across periodic sites. C. Schematic illustration of the iEEG electrode coverage. Blue and green 
dots illustrate periodic and aperiodic sites, respectively; the size of blue dots indicates the beta-
band peak frequencies of periodic sites. 
 
 
Results 
Alpha power negatively correlates with simultaneous BHA 

Based on the functional inhibition account of alpha oscillations, we hypothesized that a state of 
low neuronal excitability (here indexed by reduced BHA) would occur specifically during strong 
prestimulus alpha oscillations, rather than the aperiodic 1/f signal in the same frequency range. 
To test this, we sorted 1-s prestimulus epochs (i.e., window before noise image onset) into five 
bins based on single-trial estimates of alpha power (i.e., 7–14 Hz average) and computed the 
average BHA estimated in the same prestimulus window for each bin. We sorted the recording 
sites into “periodic” and “aperiodic” based on the presence or absence of a (local) peak within the 
alpha frequency range of the prestimulus power spectrum, respectively (following the methods in 
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Haegens et al., 2014). To improve the spectral estimates, the peak detection was based on the 
trial-averaged data; therefore, we interpreted the peak in periodic sites as reflecting clear 
oscillatory (periodic) activity across trials, whereas the absence of a peak in aperiodic sites as 
indicating a more prominent 1/f aperiodic signal across trials (though, peaks may be present in 
individual trials, see Discussion). We found 525 periodic sites with alpha-band oscillatory activity 
(mean peak at 9 Hz, SEM=0.10), and 519 aperiodic sites with non-oscillatory 1/f activity in the 
alpha frequency range (Figure 1B–D; Figure 1 supplement shows periodic and aperiodic activity 
relative to the beta band). We hypothesized a negative correlation between prestimulus alpha 
power and BHA specifically for periodic sites, but not in aperiodic sites. 

To test this, we used a repeated-measures mixed-effect ANOVA with BHA as dependent variable, 
periodic/aperiodic sites as between-unit factor (with units referring to recording sites), and alpha 
bins as within-unit factor. We found a significant main effect of alpha bins (F(2.18, 
2274.72)=64.72, p<0.001; all ANOVAs Huynh-Feldt corrected) indicating that, across sites, BHA 
decreased with alpha power (bin 5 vs. bin 1: t=-13.99, p<0.001; all post-hoc comparisons Holm-
Bonferroni corrected). Further, we found a significant main effect of periodic/aperiodic sites (F(1, 
1042)=71.50, p<0.001), with higher BHA in periodic sites (t=8.46, p<0.001). Critically, we found a 
significant interaction effect between periodic/aperiodic sites and alpha bins (F(2.18, 
2274.72)=53.73, p<0.001), indicating that prestimulus BHA decreased with prestimulus alpha 
power in periodic sites (bin 5 vs. bin 1: t=-19.51, p<0.001; Figure 2A), but not in aperiodic sites 
(bin 5 vs. bin 1: t=-0.33, p=1; Figure 2C). An anatomical map of this effect (Figure 2B) in periodic 
sites revealed a widespread BHA reduction during states of strong prestimulus alpha power 
across the brain. Furthermore, we replicated this interaction effect on BHA estimates in which the 
power at each frequency was normalized across trials (i.e., frequency-normalized BHA: F(1.94, 
2021,57)=93.34, p<0.001; bin 5 vs. bin 1 in periodic sites: t=-19.59, p<0.001; in aperiodic sites: 
t=6.20, p<0.001), confirming that prestimulus alpha power suppressed BHA after controlling for 
the 1/f contribution to BHA estimates. 

To determine whether this simultaneous correlation also exists during stimulus processing (i.e., 
window after the onset of the noise image), we sorted epochs based on alpha power estimated 
in the 1-s poststimulus window and computed simultaneous BHA. We found a significant 
interaction effect between periodic/aperiodic sites and poststimulus alpha bins on BHA (F(1.98, 
2061.23)=44.01, p<0.001; bin 5 vs. bin 1 in periodic sites: t=-18.86, p<0.001; in aperiodic sites: 
t=-1.39, p=1), consistent with the results on the prestimulus window. 

In sum, these results suggest that states of strong alpha oscillations—but not the aperiodic signal 
in the same frequency range—are linked to reduced BHA, consistent with functional inhibition. 
Importantly, this inhibitory effect was observed throughout the brain, and during moments of 
endogenous (i.e., prestimulus) as well as exogenous processing (i.e., poststimulus), suggesting 
that this is a general property of alpha oscillations. 
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Figure 2. Correlation between prestimulus alpha power and prestimulus BHA. 
A. Averaged power spectrum computed during the 1-s prestimulus window in noise-locked 
epochs, shown separately for bins of strongest (red) and weakest (blue) prestimulus alpha power 
for periodic sites (spectra normalized with average power). The inset shows the averaged BHA 
(70–150 Hz) separately for five bins sorted from weakest (blue) to strongest (red) prestimulus 
alpha power (normalized with the average across bins) for periodic sites. BHA decreases with 
alpha power in periodic sites, consistent with functional inhibition. B. Anatomical map of the 
relationship between prestimulus alpha power and BHA power in periodic sites, estimated as the 
normalized difference in BHA between bins of strongest and weakest alpha power. The color and 
size of the dots are proportional to the magnitude of this difference. The map shows negative 
effects (BHA in bin 5 < BHA in bin 1). No significant positive effects were found.  C. Same as (A) 
for aperiodic sites, respectively. BHA is unaffected by the aperiodic signal in the alpha frequency 
range. D/E. Time-frequency representations of the difference in low-frequency power between 
bins of strongest and weakest BHA estimated during the prestimulus window in noise-locked 
epochs (normalized by average power across the most extreme bins and masked to show 
significant effects only) in periodic and aperiodic sites, respectively. Negative (blue) and positive 
(red) clusters indicate that low-frequency power is weaker and stronger during states of strong 
BHA, respectively. F/G. Time-frequency representations of the comparison of the low-frequency 
power difference between prestimulus BHA bins across periodic and aperiodic sites (normalized 
by average power across sites and masked to show significant effects only). Panels F and G 
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show the results for all sites and for a subset of periodic and aperiodic sites with matched high-
frequency power difference, respectively. Negative clusters (blue) indicate that low-frequency 
power difference between BHA states is more negative in periodic sites. No positive clusters were 
found. 
 

BHA negatively correlates with power in the alpha and neighboring bands 

Is the inhibitory function specific to alpha oscillations? To address this question, we estimated 
time-frequency representations (TFRs) of low frequency power (2–40 Hz) during a 2-s time 
window centered on the onset of the noise image, separately for each electrode. Then, we sorted 
the epochs into five bins based on the single-trial estimates of BHA computed in the 1-s 
prestimulus window, and compared low frequency power between bins of strongest and weakest 
BHA. We carried out the group-level statistical analysis using cluster-permutation tests across 
sites to determine the frequency and time points of the difference in low-frequency power between 
the most extreme bins. If inhibition is specific to alpha, we expect that BHA sorting would be 
statistically unrelated to oscillatory power outside of the alpha range. 

We ran separate tests for periodic and aperiodic sites. In periodic sites (Figure 2D), we found a 
significant negative cluster (t=-5165.32, p<0.001, from -1 to 0.9 s, 2–26 Hz peaking at 8 Hz), 
indicating that the strongest BHA bin was related to weaker low-frequency power, especially 
within the alpha band. In addition, we found a positive cluster (t=4736.05, p<0.001, from -1 to 0.95 
s, 20–40 Hz), indicating stronger power in the strongest BHA bin. In aperiodic sites (Figure 2E), 
we found a significant negative cluster (t=-1933.54, p<0.001, from -1 to 0.85 s, 2–23 Hz peaking 
at 5 Hz), as well as two significant positive clusters (t=5365.82, p<0.001, from -0.9 to 0.35 s, 6–
40 Hz; t=603.89, p=0.005, from 0.5 to 0.75 s, 15–40 Hz).  

To determine the effects specific to oscillatory activity, we subtracted the effect in aperiodic sites 
from the effect in periodic sites and tested for statistical significance using cluster permutation 
test. We found a significant negative cluster (t=-4787.24, p<0.001, from -0.85 to 0.8 s, 4–40 Hz 
peaking at 15 Hz; Figure 2F), indicating that, compared to aperiodic sites, states of strong BHA 
in periodic sites were associated with a greater power decrease in the alpha as well as theta, and 
beta bands. Note, however, that the difference in high-frequency power between states of strong 
and weak BHA was different between periodic (Figure supplement 2D) and aperiodic sites (Figure 
supplement 2E). Therefore, it is possible that the effects in low-frequency power between periodic 
and aperiodic sites (Figure 2F) may be driven by differences in high-frequency power (Figure 
supplement 2F). To address this issue, we replicated the analysis in a subset of periodic (N=90) 
and aperiodic (N=91) sites, with matched high-frequency power difference between states of 
strong and weak BHA (i.e., within ± 1/6 standard deviation from the median difference across all 
sites; Figure supplement 2G), and found that, compared to aperiodic sites, states of strongest 
BHA in periodic sites were associated with a greater power decrease in the alpha and beta band 
(t=-1411.55, p<0.001; from -0.8 to 0.3 s, 9–40 Hz peaking at 24 Hz; Figure 2G), consistent with 
the results for all sites. Additionally, the results of these analyses were replicated by sorting 
epochs based on frequency-normalized BHA estimates. Taken together, states of strong 
prestimulus BHA were related to lower prestimulus oscillations in the alpha+ band (alpha and 
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neighboring frequencies), suggesting that the functional inhibition account is not exclusive to a 
narrowband alpha rhythm. 

To corroborate these results, we sorted epochs into five bins based on prestimulus power in the 
beta band and then compared BHA across bins. We hypothesized a negative relationship 
between prestimulus beta power and BHA in sites with periodic beta activity (N=144 with mean 
peak at 20 Hz, SEM=0.26; Figure supplement 1) but not in sites with aperiodic activity (N=691). 
Similarly to the analysis of prestimulus alpha oscillations, we found a significant interaction effect 
between periodic/aperiodic sites and beta bins on BHA (F(1.87, 1558.68)=27.13, p<0.001; bin 5 
vs. bin 1 in periodic sites: t=-6.73, p<0.001; Figure supplement 2A/B; in aperiodic sites: t=9.16, 
p<0.001; Figure supplement 2C). To rule out the possibility that these findings were driven by 
alpha-band harmonics, we replicated the analysis of BHA using a subsample of periodic sites 
(N=29) without alpha oscillations (beta-only periodic sites; Figure supplement 1A), and found a 
similar, although weaker, interaction effect (F(1.88, 1351.87)=3.15, p=0.036; bin 5 vs. bin 1 in 
periodic sites: t=-1.65, p=1; in aperiodic sites: t=9.29, p<0.001). 

In sum, we found that states of strong prestimulus beta oscillations—but not the aperiodic signal 
in the same frequency range—are linked to reduced BHA, consistent with the results on alpha 
oscillations. 
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Figure 2 supplement. Correlation between prestimulus beta power and prestimulus BHA. 
A. Averaged power spectrum computed during the 1-s prestimulus window in noise-locked 
epochs, shown separately for bins of strongest (red) and weakest (blue) prestimulus beta power 
for periodic sites (spectra normalized with average power). The inset shows the averaged BHA 
(70–150 Hz) separately for five bins sorted from weakest (blue) to strongest (red) prestimulus 
beta power (normalized with the average across bins) for periodic sites. BHA decreases with beta 
power in periodic sites, consistent with functional inhibition. B. Anatomical map of the relationship 
between prestimulus beta power and BHA power in periodic sites, estimated as the normalized 
difference in BHA between bins of strongest and weakest beta power. The color and size of the 
dots are proportional to the experimental effect. The map shows negative effects (BHA in bin 5 < 
BHA in bin 1). No significant positive effects were found. C. Same as (A) for aperiodic sites, 
respectively. BHA increases with beta power in aperiodic sites, consistent with a broadband signal 
offset. In (A–C) periodic and aperiodic sites were defined relative to the beta band. D/E. Time-
frequency representations of the difference in high-frequency power between bins of strongest 
and weakest BHA estimated during the prestimulus window in noise-locked epochs (normalized 
by average power across the most extreme bins and masked to show significant effects only) in 
periodic and aperiodic sites, respectively. The clusters indicate the spectral and temporal extent 
of the binning based on prestimulus BHA (note that this is a circular analysis for visualization 
purposes). Red clusters indicate the spectral and temporal extent of BHA-based binning. F/G. 
Time-frequency representations of the comparison of the high-frequency power difference 
between prestimulus BHA bins across periodic and aperiodic sites (normalized by average power 
across sites and masked to show significant effects only). Panels F and G show the results for all 
sites and a subset of periodic and aperiodic sites with matched high-frequency power difference 
between states of strong and weak BHA, respectively. Positive clusters (red) indicate that high-
frequency power difference between BHA states is more positive in periodic sites. No negative 
clusters were found. In (D–G) periodic and aperiodic sites were defined relative to the alpha band. 

 
Prestimulus alpha power negatively correlates with poststimulus BHA 
Based on the functional inhibition account, we hypothesized that, by setting the state of neuronal 
excitability, prestimulus alpha oscillations affect the processing of incoming stimulus information. 
To test this hypothesis, we sorted epochs into five bins based on prestimulus alpha power and 
computed the BHA during sensory processing: i.e., in the 1-s poststimulus window. In noise-
locked epochs, we found a significant main effect of alpha bin (F(3.50, 3641.44)=24.87, p<0.001), 
indicating that, across sites, poststimulus BHA (i.e., after noise image onset) (bin 5 vs. bin 1: t=-
9.27, p<0.001) decreased with prestimulus alpha power (i.e., before noise image onset). 
Furthermore, we found a significant main effect of periodic/aperiodic sites (F(1, 1042)=67.67, 
p<0.001), with higher poststimulus BHA in periodic sites (t=8.23, p<0.001). Critically, we found a 
significant interaction effect between periodic/aperiodic sites and prestimulus alpha bins (F(3.562, 
3711.934)=13.38, p<0.001), indicating that, in periodic sites, BHA during the processing of the 
noise image decreased with alpha power estimated during the window preceding the noise image 
(bin 5 vs. bin 1: t=-11.48, p<.001; Figure 3A). By contrast, in aperiodic sites, poststimulus BHA 
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was unrelated to prestimulus alpha power (bin 5 vs. bin 1: t=-1.66, p =0.880). We obtained 
independent evidence for this effect when analyzing syllable-locked epochs. Specifically, we 
found a significant interaction effect between periodic/aperiodic sites and prestimulus alpha bins 
(i.e., before syllable onset) on poststimulus BHA (i.e., after syllable onset) (F(3.56, 
3711.93)=13.38, p<0.001, bin 5 vs. bin 1 in periodic sites: t=-5.15, p<0.001; Figure 3B; in aperiodic 
sites: t=-0.89, p=1), suggesting that this effect generalizes across visual and auditory sensory 
stimulation. 

We also compared BHA time-series between bins of strongest and weakest prestimulus alpha 
power separately for three regions of interest (ROI) based on functional and anatomical localizers. 
In the visual ROI (N=37; Figure 3G), we found two significant negative clusters, indicating that 
states of weak prestimulus alpha power (bin 1) coincided with weaker prestimulus BHA (t=-
116.59, p<0.001; from -1 to 0.1 s) and were followed by weaker poststimulus BHA (t=-24.52, 
p=0.013, from 0.35 to 0.6 s) in noise-locked epochs (Figure 3H). These results were replicated 
during scene- (Figure 3A supplement) and face-locked epochs (Figure 3C supplement). In the 
auditory ROI (N=55; Figure 3J), we found two significant negative clusters, indicating that states 
of weak prestimulus alpha power (bin 1) coincided with weaker prestimulus BHA (t=-84.75, 
p<0.001, from -1 to 0.1 s) and were followed by weaker poststimulus BHA (t=-37.89, p<0.001, 
from 0.3 to 0.85 s) in syllable-locked epochs (Figure 3K). In the somatomotor ROI (N=64; Figure 
3M), we found two significant clusters, indicating that states of weak prestimulus alpha power (bin 
1) coincided with weaker prestimulus BHA (t=-59.07, p=0.002; from -1 to -0.45 s) and were 
followed by weaker poststimulus BHA (t=-46.61, p=0.002, from -0.3 to 0.25 s) in syllable-locked 
epochs (Figure 3N). The ROI results suggest that this effect generalizes across visual, auditory 
and somatomotor areas. 

Taken together, these results show that states of strong prestimulus alpha oscillations are 
followed by reduced poststimulus BHA across sensory modalities and brain areas, consistent with 
functional inhibition. 
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Figure 3. Correlation between prestimulus alpha power, poststimulus BHA, and reaction 
times.  

A/B. Averaged poststimulus BHA, shown separately for five bins sorted from weakest (blue) to 
strongest (red) prestimulus alpha power in periodic sites in noise-locked and syllable-locked 
epochs, respectively. In periodic sites, BHA after the onset of the noise image and the syllable 
decreases with prestimulus alpha power, consistent with functional inhibition. C. Anatomical map 
of the relationship between prestimulus alpha power and poststimulus BHA in periodic sites, 
estimated as the normalized difference between bins of strongest and weakest alpha power. The 
color and size of the dots are proportional to the experimental effect. The map shows negative 
effects (BHA in bin 5 < BHA in bin 1) in noise-locked epochs. No significant positive effects were 
found. D/E. Same as in (A) and (B) for RT in noise- and syllable-locked epochs, respectively. RT 
increases with prestimulus alpha power in syllable-locked epochs, but not in noise-locked epochs. 
F. Same as in (C) for RT. The map shows positive effects (RT in bin 5 > RT in bin 1) in syllable-
locked epochs. No significant negative effects were found. G. Anatomical map of the visual ROI, 
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including periodic sites that were functionally and anatomically related to visual cues. H. BHA 
time-course shown separately for bins of weakest (blue) and strongest (red) prestimulus alpha 
power for noise-locked epochs in the visual ROI. Bold horizontal black lines indicate significant 
differences using cluster permutation testing. States of strong prestimulus alpha power are related 
to a BHA reduction during the prestimulus and poststimulus windows, consistent with functional 
inhibition. I. Averaged RT, shown separately for the weakest (blue) and strongest (red) bin of 
prestimulus alpha power in noise-locked epochs in the visual ROI. RT is affected by alpha power 
before the syllable in both auditory and somatomotor areas, but not before the noise image in 
visual areas. J. Same as (G) for the auditory ROI, including periodic sites that were functionally 
and anatomically related to target syllables. K/L. Same as (H), and (I) for syllable-locked epochs 
in the auditory ROI. M. Same as (G) for the somatomotor ROI, including periodic sites that were 
functionally and anatomically related to motor responses. N/O. Same as (H), and (I) for syllable-
locked epochs in the somatomotor ROI. 
 
 

 
 
Figure 3 supplement. Correlation between prestimulus alpha power, poststimulus, and 
reaction times in the visual ROI during scene- and face-locked epochs. 

A. BHA time-course shown separately for bins of weakest (blue) and strongest (red) prestimulus 
alpha power for scene-locked epochs in the visual ROI. Bold horizontal black lines indicate 
significant differences based on cluster permutation testing. We found two significant negative 
clusters, indicating that states of weak prestimulus alpha power (i.e., before scene image onset) 
coincided with weaker prestimulus BHA (t=-33.32, p<0.001; from -0.75 to 0.35 s) and were 
followed by weaker poststimulus BHA (i.e., after scene image onset; t= -9.28, p=0.038, from 0.6 
to 0.7 s), consistent with functional inhibition. B. Averaged RT, shown separately for the weakest 
(blue) and strongest (red) bin of prestimulus alpha power in scene-locked epochs in the visual 
ROI. RT is not affected by alpha power in visual areas estimated before the scene image (p>0.05). 
C. Same as in (A) for face-locked epochs. We found two significant negative clusters, indicating 
that states of weak prestimulus alpha power (i.e., before face image onset) coincided with weaker 
prestimulus BHA (t=-41.84, p<0.001; from -0.75 to 0.30 s) and were followed by weaker 
poststimulus BHA (i.e., after face image onset; t=-33.46, p<0.001, from 0.4 to 0.85 s), consistent 
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with functional inhibition. D. Same as in (B) for face-locked epochs. RT is not affected by alpha 
power in visual areas estimated before the face image (p>0.05). 
 

Prestimulus alpha power positively correlates with reaction times 

Based on the functional inhibition account, we hypothesized that states of strong prestimulus 
alpha oscillations in task-relevant brain regions are followed by behavioral changes (e.g., slower 
RTs). To test this, we compared the RTs of the auditory discrimination task across states of weak 
and strong prestimulus alpha power. 

In syllable-locked epochs, we found a significant main effect of prestimulus alpha bins on RTs 
(F(3.39, 3534.06) t=62.60, p<0.001), indicating that RTs increased with prestimulus alpha power 
in both periodic (bin 5 vs. bin 1: t=11.94, p<0.001; Figure 3E) and aperiodic sites (bin 5 vs. bin 1: 
t=12.92, p<0.001). The mean RT difference between states of strong and weak prestimulus alpha 
power in periodic sites was 0.011 s (SEM= 27) with a maximum of 0.235 s in the caudal division 
of the middle frontal gyrus, while in aperiodic sites it was 0.018 s (SEM= 23) with a maximum of 
0.143 s in the postcentral gyrus. An anatomical map of the RT difference in periodic sites revealed 
that slow RTs were preceded by strong pre-syllable alpha power across the brain (Figure 3F). In 
addition, we found a significant interaction effect (F(3.39, 3534.06)=3.09, p =0.021), suggesting 
a trend for slower RTs in the strongest alpha bin in aperiodic sites (periodic vs. aperiodic sites for 
bin 5: t=-2.95, p=0.067). Note that the effect of prestimulus alpha power on RTs was present 
during syllable-locked epochs in both auditory (bin 5 vs. bin 1: t(54)=3.32, p=0.002) and 
somatomotor ROIs (bin 5 vs. bin 1: t(63)=6.94, p<0.001). By contrast, no significant effects were 
found in noise- (Figure 3I), scene- (Figure 3B supplement) and face-locked epochs (Figure 3D 
supplement) in the visual ROI (p>0.05), indicating that auditory RTs were affected only by alpha 
power right before the target auditory stimulus. 

In sum, these results demonstrate that states of strong prestimulus alpha oscillations—as well as 
the aperiodic signal in the same frequency range—are followed by slower RTs. However, it should 
be noted that this result alone does not constitute evidence for the functional inhibition account of 
alpha oscillations since it is not specific to oscillatory activity. 

 

The correlation between prestimulus alpha power and RT is mediated by poststimulus BHA 

Based on the functional inhibition account, we hypothesized that the RT effect associated with 
prestimulus alpha oscillations (rather than the aperiodic signal) was specifically mediated by a 
modulation of poststimulus BHA. We estimated the mediation effect by analyzing the trial-by-trial 
interrelation between alpha power, RTs, and BHA using a causal step approach based on 
generalized linear model regression (GLM; Judd & Kenny, 1981; Figure 4A/C, see Methods). 
Confirming the results of the binning analysis (Figure 3B), we found that prestimulus alpha was 
negatively correlated with poststimulus BHA in periodic sites (t(524)=-3.569, p<0.001; a<0 in 
Figure 4A), consistent with functional inhibition, whereas it was positively correlated with 
poststimulus BHA in aperiodic sites (t(518)=2.22, p=0.027) (a>0 in Figure 4B), consistent with a 
change in the offset of the power spectrum (i.e., upward shift at all frequencies). In addition, we 
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found that poststimulus BHA was negatively correlated with RT across all sites (periodic: t(524)=-
2.03, p=0.043; aperiodic: t(518)=-5.85, p<0.001) (b>0 in Figure 4B), even after controlling for 
prestimulus alpha power (periodic: t(524)=-1.98, p=0.048; aperiodic: t(518)=-5.92, p<0.001) (b’<0 
in Figure 4B). Moreover, we found that prestimulus alpha was positively correlated with RT in 
periodic (T(524)=7.33, p<0.001) and aperiodic sites (T(518)=11.18, p<0.001) (c in Figure 4B), 
even after controlling for poststimulus BHA (periodic: t(524)=6.77, p<0.001; aperiodic: 
t(518)=10.93, p<0.001; c’>0 in Figure 4B), suggesting partial mediation (see Methods). 

To test for mediation, we estimated the indirect effect by computing the reduction in the effect of 
prestimulus alpha power on RT after accounting for poststimulus BHA. We found a significant 
indirect effect in periodic sites (t(524)=3.41, p<0.001), supporting mediation, but not in aperiodic 
sites (t(518)=0.26, p=0.795; c-c’ in Figure 4D). This effect was indeed larger in sites with periodic 
activity (unpaired t(1042)=3.22, p=0.001). An anatomical map of the indirect effect in periodic sites 
revealed this effect occurred across several sites with maxima in the pars triangularis and the 
rostral division of the middle frontal gyrus (Figure 4E). 

Together, these findings support the functional inhibition account by demonstrating that the 
modulation of poststimulus excitability mediates the behavioral effects of alpha oscillations, rather 
than the aperiodic signal in the same frequency range. 

 

 
Figure 4. Mediation between prestimulus alpha power, poststimulus BHA, and reaction 
time. 
A. Schematic illustration of the causal path mediation analysis using four GLMs, characterizing 
the interrelation between prestimulus alpha oscillations (i.e., the independent variable), RT (i.e., 
the dependent variable), and poststimulus BHA (i.e., the mediator) in syllable-locked epochs: a 
represents the relationship of independent variable to the mediator, b the mediator to dependent 
variable, c  the independent variable to dependent variable, b’ the mediator to dependent variable 
adjusted for independent variable, and c’ the independent variable to dependent variable adjusted 
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for mediator. The variables and the relationships among them are represented by rectangles and 
lines, respectively. B. Averaged effects of the causal path mediation analysis showing the 
interrelation between prestimulus alpha power, poststimulus BHA, and RT, shown separately for 
periodic (blue) and aperiodic sites (green). These effects are estimated using the averaged zero-
order (a–c) and partial GLM coefficients (b’/c’) and their comparison (c-c’) based on causal path 
mediation analysis in (A). C. Theoretical mediation model in which the independent variable leads 
to the dependent variable via an indirect effect through the mediator (red path). D. Averaged 
indirect effect reflecting the mediation between prestimulus alpha power and RT via poststimulus 
BHA, shown separately for periodic (blue) and aperiodic sites (green). In periodic sites, the effect 
of prestimulus alpha power on RT is significantly reduced after accounting for poststimulus BHA 
(c-c’>0), demonstrating an indirect effect, consistent with functional inhibition. In aperiodic sites, 
the relationship between prestimulus alpha power and RTs is unaffected by poststimulus BHA (c-
c‘=0), suggesting no indirect effect. E. Anatomical map of the magnitude of the indirect effect in 
periodic sites. The color and size of the dots are proportional to the experimental effect. 
 

Prestimulus alpha power negatively correlates with neural stimulus feature encoding 

Based on the functional inhibition account, we hypothesized that the effect of prestimulus alpha 
power on poststimulus neuronal excitability may affect how stimulus features are encoded in BHA 
estimates. Specifically, we tested whether prestimulus alpha power affects (1) decoding accuracy, 
which reflects sensory precision or (2) decoding confidence, which reflects the strength of sensory 
encoding. To test this, we used “spatial decoding” (Gwilliams & King, 2020): separately for each 
electrode, we predicted syllable identity (labels: /ga/ vs. /pa/) by fitting logistic regression decoders 
on the single-trial temporal BHA patterns as input (see Figure 5 supplement for a comparison with 
the low-passed signal). First, decoder accuracy was estimated as the similarity between the 
probabilistic prediction (normalized distance from the hyperplane) and true labels using the area 
under the curve (AUC). Second, stimulus encoding strength or decoder confidence was estimated 
as the maximum probabilistic prediction, regardless of its accuracy (i.e., whether or not it matched 
the true label).  Across sites there was a significant positive correlation between decoder accuracy 
and confidence averaged over trials (Spearman rho=0.15, p<0.001), demonstrating that sites 
which encode syllable identity more reliably also tend to exhibit higher confidence in those 
predictions. Moreover, to understand how these decoder metrics were related to the participant’s 
behavior on a trial-by-trial basis, we correlated RTs with single-trial accuracy (binarized into 
correct and incorrect) and confidence of the decoder predictions using GLM for each site. Across 
sites there was a significant negative correlation between RTs and both decoder accuracy 
(t(1043)=-2.75, p=0.006) and confidence (t(1043)= -3.45, p<0.001), indicating that higher decoder 
accuracy and confidence were related to faster RTs. 

Next, we compared decoder accuracy (AUC) across alpha bins in periodic and aperiodic sites 
and found no significant effects (p>0.05; Figure 5A/B), suggesting that the precision of neural 
stimulus representation/encoding was unlikely affected by prestimulus alpha power. We also 
compared decoder confidence across alpha bins in periodic and aperiodic sites and found a 
significant interaction effect (F(3.96, 4125.61)=2.59, p=0.036), such that stimulus encoding 
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strength nominally decreased with alpha power in periodic sites (bin 5 vs. bin 1: t=-1.89, p=1; 
Figure 5C), while it nominally increased in aperiodic sites (bin 5 vs. bin 1: t=0.87, p=1; Figure 5D), 
although these post-hoc effects were not significant after correcting for multiple comparisons. 
Additionally, this interaction effect was significant in trials with correct predictions (F(4.00, 
4166.49)=3.54, p=0.007) and trending toward significance in trials with incorrect predictions 
(F(3.99, 4148.44)=2.06, p=0.084), suggesting that strong prestimulus alpha power in periodic 
sites decreased stimulus encoding strength (and vice versa in aperiodic sites) regardless of the 
accuracy of stimulus encoding. An anatomical map of the effect on confidence in periodic sites 
revealed a widespread reduction following states of strong prestimulus alpha power across the 
brain (Figure 5E). 
 
We also tested whether, in periodic sites, the effects of alpha power on decoder accuracy and 
confidence (i.e., bin 5 vs. bin 1) were dependent on two site-specific characteristics: the negative 
relationship between ongoing alpha power and BHA (i.e., index of functional inhibition), and 
overall decoder accuracy. We found no across-site correlation (p>0.05) between overall decoder 
accuracy and the effects of alpha power on decoder accuracy and confidence, or between the 
alpha-BHA relationship and the effect on decoder accuracy, indicating that decoder accuracy was 
unrelated to the confidence effect and to prestimulus power. By contrast, we found a significant 
positive across-site correlation between the alpha-BHA relationship and the effect of alpha power 
on decoder confidence (Spearman rho=0.103, p=0.019; Figure 5F), suggesting that, during states 
of strong prestimulus alpha power, the stronger the inhibition associated with alpha power, the 
lower the decoder confidence. We corroborated this finding in sites with a negative alpha-BHA 
relationship, reflecting functional inhibition: we found a significant effect of alpha bins on decoder 
confidence (F(3.891, 1338.467)=3.69, p=0.006), indicating that decoder confidence decreased 
with prestimulus alpha power (bin 5 vs. bin 1: t=-2.86, p=0.039). 

In sum, these findings extend the functional inhibition account by demonstrating that states of 
strong prestimulus alpha power reduce the strength, but not the precision, of neural stimulus 
representations. 
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Figure 5. Correlation between prestimulus alpha power and neural stimulus decoding. 
A. Averaged normalized decoder accuracy (AUC) for decoding syllable identity from BHA shown 
separately for five bins sorted from weakest (blue) to strongest (red) prestimulus alpha power in 
periodic sites. B. Same as (A) in aperiodic sites. Decoder accuracy is affected by prestimulus 
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alpha power in neither periodic nor aperiodic sites. C. Same as (A) for decoder confidence. D. 
Same as (C) for aperiodic sites. Decoder confidence decreases with prestimulus alpha power in 
periodic sites whereas it increases in aperiodic sites. E. Anatomical map of the magnitude of the 
effect of the decoder confidence in periodic sites. The color and size of the dots are proportional 
to the experimental effect. The map shows negative effects (confidence in bin 5 < confidence in 
bin 1). No significant positive effects were found. F. Across-site correlation between the effect of 
prestimulus alpha power on decoder confidence and the relationship between ongoing alpha 
power and BHA (i.e., index of functional inhibition). The dots represent the magnitude of the 
functional inhibition index (on y axis) and the effect of prestimulus alpha power on confidence (on 
x axis) for each electrode. Sites that show a negative relationship between ongoing alpha power 
and BHA, reflecting functional inhibition, are represented in blue. The grey line indicates the least-
squares fit. A positive correlation indicates that, during states of strong prestimulus alpha power, 
sites with stronger alpha-related BHA suppression also show lower decoder confidence. G. Model 
of the relationship between alpha oscillations and decoding performance. In a two-dimensional 
activation space, each trial is characterized by the activity values estimated at two time points 
from a single electrode (i.e., activation point). Response distributions are shown by purple (for 
stimulus A) and orange circles (for stimulus B) with center and radius representing response mean 
and variability, respectively. Learning a linear classifier (A vs B) is equivalent to learning the 
hyperplane (diagonal line) that best separates the two distributions: if distance between an 
activation point and the hyperplane > 0, then the classifier predicts “A”, otherwise “B”. This model 
assumes that states of low excitability indexed by strong alpha oscillations are related to reduced 
distributions’ mean (arrow), and variability, resulting in a decrease of the absolute distance of the 
activation points from the hyperplane (i.e., lower decoder confidence), while leaving the 
distributions’ overlap (i.e., decoder accuracy) unaffected. 
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Figure 5 supplement. Relationship between prestimulus alpha power and neural stimulus 
decoding using BHA or low-passed signal. 
A. Anatomical map of decoder accuracy (AUC) indicating where syllable identity can be linearly 
decoded from BHA temporal patterns. We found 117 sites with an AUC significantly higher than 
chance (p<0.05): 23 sites belonged to our functional-anatomical auditory ROI, including the 
superior temporal gyrus, supramarginal gyrus, banks of the superior-temporal sulcus, and 15 sites 
belonged to our somatomotor ROI, including postcentral and precentral areas. Overall, the 
probability that the AUC was greater than chance (p-value AUC) did not differ between periodic 
and aperiodic sites (unpaired t(1042)=1.12, p=0.264). This demonstrates that syllable identity can 
be decoded using BHA temporal patterns, consistent with previous studies using other metrics of 
decoder accuracy (mutual information: Belitski et al., 2008; Peters et al., 2017), and using other 
decoding input (low-passed signal: King et al., 2016; Gwilliams & King, 2020). Note that, because 
the response mapping used in this study was fixed across trials, it is possible that decoding 
performance was based on the syllable-specific motor plan, rather than on stimulus information 
per se. However, we found significant AUC in both the somato-motor and auditory ROIs, 
suggesting that the decoder was successful in using not only motor but also sensory information. 
In the figure, red dots illustrate sites where the classifier successfully predicted syllable identity 
(AUC>0.5). The size and color intensity proportionally reflect the AUC magnitude. (A) includes 
only periodic sites with AUC>0.5. B. Across-site correlation between the AUCs obtained using 
low-passed signal and BHA temporal patterns. In addition to BHA, we estimated AUC using the 
low-passed signal (<30 Hz) as an input to the decoder and found a significant positive correlation 
with the estimates obtained using BHA (Spearman rho=0.12 p<0.001), suggesting that stimulus 
information contained in BHA was comparable to that obtained using a brain signal that has been 
commonly used in previous studies (Gwilliams & King, 2020; King et al., 2016; Salti et al., 2015). 
In the figure, each dot represents the AUC values obtained from spatial decoding based on BHA 
(on the x axis) and on the low-passed signal (on the y axis). The dotted lines at 0.5 represents 
theoretical chance AUC, while the bold lines represent the empirical chance AUC based on 
permutation test. The grey line indicates the least-squares fit. (B) includes both periodic and 
aperiodic sites. 

 

Baseline shift of alpha oscillations affects ERPs but not BHA 

Finally, we assessed if the observed relationship between alpha oscillations and BHA is 
determined by mechanisms other than functional inhibition (i.e., baseline shift of non-zero-mean 
oscillations) that affect event-related potentials (ERP; Nikulin et al., 2007; Mazaheri & Jensen, 
2008; Iemi et al., 2019). Baseline shift predicts that the relationship between alpha power and 
neural signals depends on the direction of the baseline shift (which can also be viewed as polarity) 
of non-zero-mean oscillations (Figure 6A/B), whereas functional inhibition predicts a negative 
relationship between alpha power and neural signals (reflecting excitability) regardless of 
oscillatory polarity. To test for these mechanisms, we identified 323 sites with a negative 
oscillatory mean (Figure 6C/E) and 202 sites with a positive oscillatory mean (Figure 6D/F) using 
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the baseline shift index (BSI), and analyzed how prestimulus oscillations with different polarities 
affect ERP and BHA. 

We found a significant interaction effect between polarity (i.e., sites with positive or negative 
mean) and prestimulus alpha bin on the prestimulus (F(1.79, 935.91)=120.45, p<0.001) and 
poststimulus ERP (F(1.67, 873.44)=139.55, p<0.001; Figure 6G/H). Compared to the weakest 
alpha bin, the prestimulus ERP baseline of the strongest alpha bin was characterized by a more 
negative voltage in sites with a negative mean (bin 5 vs. bin 1: t=-19.48, p<0.001), and more 
positive voltage in sites with a positive mean (bin 5 vs. bin 1: t=10.09, p<0.001). Furthermore, 
compared to the weakest alpha bin, the ERP averaged over the poststimulus window of the 
strongest alpha bin was characterized by a more positive voltage shift in sites with a negative 
mean (bin 5 vs. bin 1: t=23.99, p<0.001; Figure 6G), and more negative voltage shift in sites with 
a positive mean (bin 5 vs. bin 1: t=-8.39, p<0.001; Figure 6H). In other words, states of strong 
prestimulus alpha power are related to a stronger non-zero ERP baseline, which is followed by 
an ERP amplification in the poststimulus window, consistent with a baseline shift of non-zero-
mean alpha oscillations. 

By contrast, we found a significant main effect of prestimulus alpha bins on both prestimulus 
(F(2.11, 1104.11)=99.79, p<0.001) and poststimulus BHA (F(3.51, 1834.91)=28.93, p<0.001), 
indicating that BHA decreased with prestimulus alpha power in sites with both a negative (bin 5 
vs. bin 1 for prestimulus BHA: t=-12.78, p<0.001; poststimulus BHA: t=-7.85, p<0.001; Figure 6I), 
and positive mean (prestimulus BHA: t=-12.86, p<0.001; poststimulus BHA: t=-6.40, p<0.001; 
Figure 6L), consistent with functional inhibition. Indeed, there was no significant interaction effect 
between polarity and prestimulus alpha bin on prestimulus or poststimulus BHA (p>0.05). In 
addition, we found a significant main effect of polarity on both prestimulus (F(1, 523)=8.48, 
p=0.004) and poststimulus BHA (F(1, 523)=7.30,p=0.007), indicating that sites with a negative 
oscillatory mean were characterized by overall greater BHA (prestimulus BHA: t=2.91, p=0.004; 
poststimulus BHA: t=2.70, p=0.007). We replicated these effects in a control analysis using the 
Amplitude Fluctuation Asymmetry Index (AFAI: Mazaheri & Jensen, 2008) to identify sites with a 
negative and positive asymmetries in oscillatory peaks (Figure 6 supplement). In sum, these 
results demonstrate that the negative relationship between alpha power and BHA is consistent 
with functional inhibition, rather than baseline shift of non-zero mean alpha oscillations. 
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Figure 6. Correlation between alpha power and prestimulus BHA accounting for baseline 
shift of non-zero-mean oscillations 
A/B. Neural oscillations are modelled as sinusoidal waveforms (opaque lines) varying 
asymmetrically around a non-zero mean. Unlike zero-mean oscillation, trial averaging of non-
zero-mean oscillations does not eliminate non-phase-locked oscillations in the prestimulus 
window, resulting in an ERP prestimulus baseline with an offset (dotted lines). During event-
related desynchronization (ERD) by stimulus onset (vertical line), the averaged signal gradually 
approaches the zero line of the signal. When the poststimulus signal is corrected with the 
prestimulus non-zero baseline, a slow shift of the ERP signal appears (thick lines), mirroring the 
ERD. The baseline-shift mechanism predicts that: (1) the polarity of the non-zero mean baseline 
determines the directionality of the effect of prestimulus oscillations on the ERP signal (in raw 
values); (2) the poststimulus ERP signal is amplified (in absolute values) during states of strong 
prestimulus alpha power. C/D. Anatomical map of the magnitude of the baseline-shift-index (BSI) 
averaged across the alpha band shown separately for periodic sites with negative- and positive-
mean alpha oscillations, respectively. E/F. Magnitude of the baseline-shift-index (BSI) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.01.433450doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433450
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

represented for frequencies between 1 and 50 Hz, separately for sites with negative- and positive-
mean alpha oscillations, respectively. G/H. ERP magnitude averaged across the 1-s poststimulus 
window, shown separately for five bins sorted from weakest (blue) to strongest (red) prestimulus 
alpha power in periodic sites with negative and positive mean oscillations, respectively. The 
estimates were normalized, first, with the average across bins and, second, with the magnitude 
of the weakest bin, which is assumed to best reflect the zero line of the signal. The relationship 
between prestimulus alpha power and poststimulus ERP (in raw values) depends on the non-
zero-mean property of alpha oscillations. States of strong prestimulus alpha power results in ERP 
amplification (in absolute values), consistent with baseline shift. I/J. Averaged poststimulus BHA 
shown separately for five bins sorted from weakest (blue) to strongest (red) prestimulus alpha 
power in periodic sites with negative and positive mean oscillations, respectively (normalized with 
the average across bins). There is a negative relationship between prestimulus alpha power and 
poststimulus BHA regardless of the polarity of the oscillatory mean, consistent with functional 
inhibition. 
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Figure 6 Supplement. Correlation between alpha power and prestimulus BHA accounting 
for amplitude asymmetry. 
A. Relationship between the magnitude of the baseline-shift-index (BSI; y axis) and amplitude 
fluctuation asymmetry index (AFAI; x axis). There is a moderate positive correlation between BSI 
and AFAI across sites (Spearman rho = 0.54 p<0.001). B–I. Same as in Figure 6 (C–J) but the 
split between sites is based on the polarity of the amplitude asymmetry, indexed by AFAI, which 
is correlated with the polarity of the oscillatory mean. The AFAI-based analysis replicates the BSI-
based analysis reported in the main text. 
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Discussion 
 
Simultaneous relationship between alpha oscillations and excitability 

We hypothesized that alpha oscillations reflect functional inhibition, regulating the excitability state 
of the neural system. To test this, we analyzed the relationship between alpha power and BHA 
(often referred to as “high gamma”) which is considered a proxy for neuronal ensemble 
excitability. Initially thought to reflect net local neuronal firing—i.e., multiunit activity (Manning et 
al., 2009; Nir et al., 2007; Ray et al., 2008; Ray & Maunsell, 2011; Rich & Wallis, 2017; 
Whittingstall & Logothetis, 2009), it was shown more recently that BHA mainly indexes calcium-
dependent dendritic processes that, albeit correlated with firing probability, are separable from it 
(Leszczyński et al., 2020). This suggests that in relative terms, BHA is a more direct measure of 
neuronal excitability. There is also indication that BHA signals may volume-conduct over greater 
distances than multiunit activity signals (Leszczyński et al., 2020), making BHA a more useful 
measure of neuronal ensemble excitability. Our findings confirmed the functional inhibition 
account by showing that states of strong ongoing oscillations in the alpha+ band (i.e., alpha and 
neighboring frequencies) were related to reduced BHA, indicating a state of low neuronal 
excitability. 

These findings corroborate studies reporting that strong alpha oscillations are related to reduced 
neuronal firing in animal models (Haegens et al., 2011; Watson et al., 2018) and reduced fMRI 
BOLD signal in humans (Chapeton et al., 2019; Mayhew et al., 2013). Additionally, they are also 
consistent with numerous studies suggesting a negative relationship between low-frequency 
power, including the alpha band, and high-frequency power, including BHA, during sensory, motor 
and task processing. Specifically, increased high-frequency power co-occured with decreased 
low-frequency power after the presentation of visual (Lachaux et al., 2005; Martin et al., 2019; Nir 
et al., 2007, 2017; Rodriguez et al., 2004; Fisch et al., 2009; Miller et al., 2014; Podvalny et al., 
2015; Fries et al., 2001; Scheeringa et al., 2011; Hwang & Andersen, 2011; Rickert et al., 2005; 
Lundqvist et al., 2020), auditory (de Pesters et al., 2016; Potes et al., 2014), and somatosensory 
stimuli (Fontolan et al., 2014), and during motor responses (Crone et al., 1998; de Pesters et al., 
2016; Jiang et al., 2020; Miller et al., 2007) and task/cognitive processing (Asher et al., 2007; 
Hwang & Andersen, 2011). Several M/EEG studies observed a negative relationship between 
low-frequency power decrease and, what is reported as, narrowband gamma increase (Bauer et 
al., 2006; Kloosterman et al., 2019; van Ede et al., 2014; Wyart & Tallon-Baudry, 2009); though it 
remains unclear whether this high-frequency signal reflects genuine oscillatory activity or 
broadband power. Importantly, the negative relationship between low- and high-frequency power 
was recently linked to changes in cognitive function (Nir et al., 2007; Proskovec et al., 2019; Tran 
et al., 2020; Voytek et al., 2015). 

In this study, rather than analyzing how BHA and alpha power change as a function of 
sensory/task processing, we systematically estimated the trial-by-trial correlation between these 
signals. We analyzed, first, a wide range of brain areas spanning from primary sensory cortices 
to frontal regions, and second, time windows of endogenous (prestimulus) and exogenous 
(poststimulus) processing. In this way, we overcome some limitations in previous studies 
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estimating neural signals in a limited set of brain regions (e.g., Barne et al., 2020; Haegens et al., 
2011), and/or following experimental events (e.g., saccades: Barczak et al., 2019), which cause 
phase-reset and thereby impact ongoing oscillatory estimates. Our findings show a negative 
relationship between alpha power and BHA occurring across the whole brain and both during the 
prestimulus and poststimulus window, consistent with the idea that functional inhibition reflects a 
general property of alpha oscillations. 

Third, some investigators have questioned whether the negative correlation between low- and 
high-frequency power reflects an oscillatory modulation driven by the alpha rhythm or whether it 
is due to a change of the aperiodic signal (McNair et al., 2019; Podvalny et al., 2015; Voytek et 
al., 2015), since the power spectrum contains not only oscillatory/periodic activity, but also an 
aperiodic signal (1/f background noise), parametrized by an offset and a slope (Donoghue et al., 
2020). While an increase in the offset of the aperiodic signal may boost power at all frequencies, 
an increase in aperiodic slope may manifest as a simultaneous increase in low-frequency power 
and a decrease in high-frequency power. Critically, sorting trials by the power in a predefined 
frequency band (e.g., alpha) in different bins has been shown to affect both the slope and offset 
of the aperiodic signal (Iemi et al., 2019). Therefore, it is possible that the reduced BHA during 
states of strong alpha power can be explained by a steeper slope of the aperiodic signal. 
Moreover, the aperiodic signal is thought to reflect a physiological function (Voytek et al., 2015) 
that is, at least partially, independent from the periodic signal. Accordingly, distinguishing between 
an oscillatory or aperiodic modulation driving the alpha-BHA relationship is critical for 
understanding the underlying neural mechanisms. In periodic sites, containing both 
periodic/oscillatory and aperiodic activity, it is not possible to distinguish between the oscillatory 
and aperiodic modulations because we expect the same negative relationship between alpha 
power and BHA, regardless of the underlying modulation. By contrast, in aperiodic sites, we can 
make separate predictions for the oscillatory and aperiodic modulations. If, on the one hand, the 
alpha-BHA relationship reflects an aperiodic modulation (i.e., change of the aperiodic slope), then 
we expect a negative relationship in aperiodic sites: namely, states of strong aperiodic power in 
the alpha range may be related to a steeper aperiodic slope, resulting in lower BHA. If, on the 
other hand, the alpha-BHA relationship reflects an oscillatory modulation, then we expect a 
positive relationship in aperiodic sites: namely, states of strong aperiodic power in the alpha range 
may be related to a higher offset of the power spectrum (i.e., upward shift at all frequencies), 
resulting in higher BHA. Our results are consistent with an oscillatory modulation, showing a 
negative relationship between BHA and low-frequency power in periodic sites, and a positive 
relationship in aperiodic sites (alpha: Figure 4B; beta: Figure supplement 2A/C). It should be noted 
that the distinction between periodic and aperiodic sites was based on the peak detection in the 
trial-averaged prestimulus power spectrum because it provides a more accurate spectral estimate 
than individual trials. In fact, due to low signal-to-noise ratio, it is difficult to distinguish whether a 
peak detected in a single trial reflects spurious or genuine oscillatory activity. Note that, even if 
some trials in aperiodic sites contain genuine peaks, this would work against the hypothesis of 
oscillatory modulation. 

Fourth, we analyzed the relationship between BHA and power in a range of low frequencies (2–
40 Hz). Thus, we overcome a limitation of some previous studies which only focused on a 
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predefined frequency-band (e.g., alpha: Potes et al., 2014). We found that strong BHA occurred 
during states of weak power in the alpha+ band (i.e., alpha and neighboring frequencies including 
beta and theta), suggesting that the functional inhibition account is not exclusive to a narrowband 
alpha rhythm. Additionally, we found that BHA was decreased in states of strong beta power in 
sites with periodic activity, consistent with numerous reports of a negative correlation between 
beta and high-frequency power (Bauer et al., 2006; Fisch et al., 2009; Fontolan et al., 2014; 
Kloosterman et al., 2019; Watson et al., 2018). While it is possible that frequencies around the 
alpha band may reflect a similar function, it is important to highlight that the relationship between 
ongoing power and BHA was more prominent and sustained in time within the alpha band (Figure 
2). Additionally, it is possible that analysis techniques such as frequency smoothing may have 
contributed to the spreading of the effect beyond the alpha band. Finally, we found that ongoing 
delta-band power (<4 Hz) was unrelated to BHA (Figure 2F/G), suggesting that the relationship 
between BHA and low-frequency power was unlikely determined by a change of the slope of the 
aperiodic signal affecting all low frequencies (including delta). This finding is particularly important 
as it further demonstrates that the relationship between alpha oscillations and BHA reflects a true 
oscillatory modulation. 

In sum, these findings confirm the functional inhibition account and extend previous work by 
establishing the anatomical, temporal, and spectral characteristics of the relationship between 
alpha oscillations and neuronal excitability. 

 

Relationship between prestimulus alpha power and poststimulus excitability 

Based on the functional inhibition account, we hypothesized that states of strong prestimulus 
alpha oscillations are followed by low neuronal excitability during stimulus processing (i.e., in the 
poststimulus window). We found that states of strong alpha power were followed by a reduction 
in BHA during both the processing of visual and auditory stimuli, as well as across sensory and 
non-sensory regions, suggesting that this phenomenon reflects a general property of alpha 
oscillations. These results are consistent with functional inhibition and with previous studies 
showing that ongoing alpha power is negatively correlated with the BOLD signal in sensory and 
non-sensory areas (Becker et al., 2008; Scheeringa et al., 2011; Walz et al., 2015) and early ERP 
components (Baslar & Stampfer, 1985; Becker et al., 2008; Iemi et al., 2019; Jasiukaitis & 
Hakerem, 1988; Rahn & Başar, 1993; Roberts et al., 2014). It is important to note the inhibitory 
effect of alpha oscillations was somewhat weaker during the early peak of the poststimulus BHA 
response in sensory ROIs. This is possibly due to a ceiling effect on BHA estimates driven by 
supra-threshold stimulation, or to the sparse electrode coverage of primary visual and auditory 
areas, preventing us from observing potential effects on early sensory responses. 

By contrast, several previous studies have revealed a mixed pattern of results, showing a positive 
(Barry et al., 2000; Baslar & Stampfer, 1985; Becker et al., 2008; Dockree et al., 2007; Jasiukaitis 
& Hakerem, 1988; Mo et al., 2011; Roberts et al., 2014) or non-linear relationship (Kloosterman 
et al., 2019) between ongoing alpha power and other measures of poststimulus excitability (e.g., 
neuronal firing, non-invasive high-frequency power, and late ERP components). One possible 
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explanation for these mixed results is that this relationship may depend on mechanisms other 
than functional inhibition. For example, ERPs are thought to reflect (1) stimulus-related neural 
activation, which is presumably suppressed during functional inhibition, and (2) baseline shift of 
non-zero-mean oscillations (Vadim V. Nikulin et al., 2007; Mazaheri & Jensen, 2008), which 
results in ERP amplification during states of strong prestimulus alpha power (Iemi et al., 2019). 
Accordingly, to rule out the possibility that the observed relationship between alpha oscillations 
and BHA was due to baseline shift, we estimated how BHA and ERPs were related to prestimulus 
alpha power separately for periodic sites with positive and negative oscillatory mean within the 
alpha band. We found that states of strong prestimulus negative-mean alpha oscillations were 
related to a more negative prestimulus ERP baseline and, in turn, a more positive poststimulus 
ERP signal. By contrast, states of strong prestimulus positive-mean alpha oscillations were 
related to a more positive prestimulus ERP baseline and, in turn, a more negative poststimulus 
ERP signal. In other words, states of strong prestimulus power were associated with a non-zero 
prestimulus ERP baseline, resulting in an amplification of the poststimulus ERP (in absolute 
value), consistent with baseline shift and with previous studies using non-invasive 
electrophysiology (Becker et al., 2008; Iemi et al., 2019). These results demonstrate that baseline 
shift contributes to the generation of the ERP (Vadim V. Nikulin et al., 2007). By contrast, BHA 
decreased with prestimulus alpha power regardless of the polarity of the oscillatory mean. 
Therefore, we conclude that the alpha-BHA relationship reflects an interaction between oscillatory 
activity and excitability consistent with functional inhibition, rather than a consequence of baseline 
shift. 

Finally, it should be noted that, to maximize the number of trials for within-subject analysis, we 
used all trials regardless of whether or not the stimulus onset or content could be predicted based 
on the preceding cues (see Methods). While ongoing fluctuations in prestimulus activity before 
the (task-irrelevant) noise image reflect spontaneous changes in internal processes including 
attention, arousal, or motivation, fluctuations before the other (task-relevant) visual cues and the 
target syllable may also reflect changes in predictability. Future studies are necessary to 
differentiate how these different endogenous processes modulate ongoing neural activity and 
behavior. 

 

Relationship between prestimulus alpha power and behavior 

Based on the functional inhibition account, we hypothesized that prestimulus alpha oscillations 
modulate task performance (e.g., RT in the auditory discrimination task). We found slower RTs 
following states of strong prestimulus alpha power estimated in the window before the task-
relevant target stimulus (i.e., in syllable-locked epochs) across both periodic and aperiodic sites, 
including auditory and somatomotor regions. It is important to note that previous studies reported 
both positive (Bollimunta et al., 2008; Bompas et al., 2015; Kelly & O’Connell, 2013; Kirschfeld, 
2008; Lou et al., 2014, 2014; Mazaheri et al., 2014; Min & Herrmann, 2007; Paoletti et al., 2019; 
van den Berg et al., 2016; Zhang et al., 2008), negative (Bollimunta et al., 2008; Del Percio et al., 
2007; Zhang et al., 2008), and null relationships (Andino et al., 2005; van Dijk et al., 2008; Bays 
et al., 2015) between prestimulus alpha power and RT. This mixed evidence may be due to 
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whether power is estimated in a brain region processing task-relevant or -irrelevant information, 
as well as to task differences (e.g., whether accuracy or speed is emphasized), different laminar 
organization across regions (Bollimunta et al., 2008, 2011; Mo et al., 2011), or to long-range 
temporal dependencies in both alpha power and RT estimates, resulting in spurious positive and 
negative correlations (Schaworonkow et al., 2015). 

Interestingly, we observed that RT was positively related to alpha power in periodic sites, but also 
to the aperiodic signal in the same frequency band (i.e., alpha power in aperiodic sites). This may 
be explained by residual periodic activity in individual trials in aperiodic sites, or by a recent 
proposal (Donoghue et al., 2020; Peterson et al., 2018) suggesting that, in addition to alpha 
oscillations, the aperiodic signal modulates information processing and thus behavior (e.g., RT: 
Zhang et al., 2008). 

 

Interrelation between prestimulus alpha power, behavior, and excitability 

Based on the functional inhibition account, we hypothesized that prestimulus alpha oscillations 
influence behavior by modulating excitability during stimulus processing. Therefore, key to our 
analysis was the mediation between prestimulus alpha power and behavior via poststimulus BHA 
(Judd & Kenny, 1981). We found that in periodic sites (1) single-trial prestimulus alpha power was 
negatively correlated with poststimulus BHA, and (2) positively correlated with RT (consistent with 
our binning analysis), (3) even after controlling for poststimulus BHA; and (4) that single-trial 
poststimulus BHA was negatively correlated with RT, (5) even after controlling for prestimulus 
alpha power. Critically, controlling for poststimulus BHA reduced the correlation between 
prestimulus alpha power and RT (i.e., indirect effect) in periodic sites (but not in aperiodic sites), 
suggesting that alpha oscillations and BHA explained a similar portion of RT variability. This is 
consistent with mediation and indicates that the behavioral changes associated with alpha 
oscillations (rather than the aperiodic signal in the same band) are related to the influence of alpha 
on excitability. 

Notably, some previous studies attempted to examine the interrelation between alpha oscillations, 
excitability, and behavior (e.g., Hartmann et al., 2015; Kayser et al., 2016; Vugt et al., 2018). 
Some analyzed concurrent neural and behavioral changes as a function of ongoing/prestimulus 
alpha power, without directly assessing their interrelation (Bollimunta et al., 2008; Haegens et al., 
2011; Min & Herrmann, 2007; Mo et al., 2011; Vugt et al., 2018). Other studies used statistical 
methods to directly test for said interrelation, but the results were null or inconclusive, possibly 
because excitability was estimated with indirect/non-invasive measures (stimulus-evoked 
response: Wöstmann et al., 2019; decoding metric: Kayser et al., 2016; McNair et al., 2019). 
Accordingly, to the best of our knowledge, our study is the first to show that a modulation of 
poststimulus excitability mediates the relationship between prestimulus alpha oscillations and 
behavior, consistent with functional inhibition. However, it is important to note that our results do 
not allow us to distinguish whether the mediation reflects a direct effect of alpha oscillations, or a 
consequence of an additional process affecting all variables in parallel. Future research should 
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address this question by testing whether alpha oscillations directly cause the mediation effect, 
ideally by using neuromodulation techniques (Helfrich et al., 2014; Romei et al., 2010). 

Relationship between prestimulus alpha power and neural stimulus feature encoding 

Based on the functional inhibition account, we hypothesized that prestimulus alpha oscillations 
affect how stimulus information is encoded in excitability measures (i.e., poststimulus BHA). Using 
BHA temporal patterns, we estimated decoder accuracy and confidence across different states 
of prestimulus alpha power and between periodic and aperiodic sites. We found that decoder 
confidence decreased with alpha power most prominently in periodic sites with a negative alpha-
BHA relationship. This is consistent with the functional inhibition account and suggests that the 
BHA reduction during states of strong alpha power may underlie the decrease in decoder 
confidence. By contrast, across all sites, decoder accuracy was unaffected by prestimulus alpha 
power, even after controlling for overall decoder accuracy and for the alpha-BHA relationship. 

How could the decoder indicate higher confidence without becoming more accurate during states 
of increased excitability? We speculate that weak prestimulus alpha power is associated with 
higher BHA responses, but also with proportionally more variability, leaving the signal-to-noise 
ratio (i.e., mean-to-variance ratio, or Fano factor) unchanged (Goris et al., 2014; Tolhurst et al., 
1981; Tomko & Crapper, 1974). However, as mean and variance of the neural response increase, 
the neural stimulus representations fall farther from the classifier’s discriminant boundary or 
hyperplane (see model in Figure 5G). This modulation is expected to affect the overall strength 
of neural stimulus representations (i.e., decoder confidence) for both correct, but also incorrect 
trials, without affecting their precision (i.e., decoder accuracy). Future work is necessary to 
determine whether the effects of alpha oscillations on the magnitude of neuronal excitability are 
multiplicative (as assumed in our model) or additive, and whether they are proportional to changes 
in response variability, ideally by using single-unit recordings which enable an estimation of spike 
mean and variability. 

Our findings that prestimulus alpha oscillations affect decoder confidence, not accuracy, are 
consistent with a growing number of studies reporting that strong prestimulus alpha oscillations 
are related to reduced subjective, rather than objective measures of perceptual decision-making 
in both detection (less liberal criterion: Iemi et al., 2017; Limbach & Corballis, 2016) and 
discrimination tasks (lower visibility: Benwell et al., 2017; lower confidence: Samaha, Iemi, et al., 
2017). Future research is necessary to establish whether lower decoder confidence, reflecting 
decreased stimulus encoding strength, underlies the perceptual effects in these studies.  

Previous studies have analyzed how decoding performance is related to alpha oscillations, though 
the results were inconsistent, showing positive (Kayser et al., 2016; McNair et al., 2019), negative 
(Barne et al., 2020; van Ede et al., 2018), and null relationships (Griffiths et al., 2019). In the 
studies reporting a positive relationship, stimulus features were decoded using low-frequency 
EEG activity (1–70 Hz), which includes alpha oscillations. Therefore, it is possible that high signal-
to-noise ratio may result in strong alpha power estimates as well as higher decoding performance, 
potentially leading to a spurious positive correlation. To avoid such circularity, in other previous 
studies stimulus identity was decoded using the hemodynamic fMRI BOLD signal (Griffiths et al., 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.01.433450doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433450
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

2019) or the low-frequency activity after removing alpha-band activity (van Ede et al., 2018). In 
our study, we addressed this issue by applying decoding analysis on poststimulus BHA, which 
does not include the alpha band, and reflects a more direct excitability measure than the fMRI 
signal. We reasoned that any relationship between alpha oscillations and decoding performance 
would reflect a genuine modulation of stimulus encoding, rather than a consequence of a 
potentially circular analysis. 

It is important to note that we found no significant effect of prestimulus alpha power on decoder 
accuracy, consistent with one previous report using representational similarity analysis (Griffiths 
et al., 2019). By contrast, one previous study (van Ede et al., 2018) found that lower decoder 
accuracy (i.e., Mahalanobis distance) was related to strong prestimulus alpha power in posterior 
EEG, specifically in the presence of poststimulus distractors. When distractors were absent (as 
in our paradigm), decoder accuracy was no longer related to prestimulus alpha power, suggesting 
that the effect on decoder accuracy might emerge when the task requires the suppression of task-
irrelevant information, which is believed to be supported by alpha oscillations (Haegens et al., 
2010). Moreover, in another study (Barne et al., 2020), lower decoder accuracy (i.e., AUC) was 
related to strong prestimulus alpha power in parieto-occipital EEG electrodes when attention was 
cued to the spatial location of the to-be-decoded sensory stimuli. Therefore, it is possible that 
decoder accuracy may be affected by attention-induced/local (as opposed to spontaneous/global) 
fluctuations of alpha oscillations. Accordingly, future studies are necessary to determine whether 
decoder accuracy is influenced by a top-down modulation of alpha oscillations, ideally by using 
paradigms manipulating distractors and spatial attention. 

 

Conclusions 

In sum, we demonstrate that strong prestimulus oscillations in the alpha+ band (i.e., alpha and 
neighboring frequencies), rather than the aperiodic signal, are associated with (1) decreased BHA 
(i.e., low neuronal excitability) before and after sensory input. Furthermore, we show that strong 
prestimulus alpha oscillations result in (2) slower perceptual decisions, and (3) reduced sensory 
encoding strength. These results provide a link between neural oscillations, excitability, and task 
performance, consistent with functional inhibition: we propose that, by modulating neuronal 
excitability, ongoing alpha+ oscillations affect behavior and neural stimulus representations. 

 

Methods 

Participants 
This study involved nine individuals with medication-resistant epilepsy (5 females; mean age, 29 
years, SEM=4). All patients had intracranial electrodes implanted as part of presurgical diagnosis 
of epilepsy. Data collection was performed at the Comprehensive Epilepsy Center of New York 
University Langone Health, and was approved by the Institutional Review Board at New York 
University Langone Health. Verbal and written informed consent were collected from all patients 
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before participation in the study in accordance with the Declaration of Helsinki. Results from six 
individuals have been previously reported (Auksztulewicz et al., 2018). 

Experimental design 
Each trial started with the presentation of a fixation cross (1.5 to 2 s), followed by a sequence of 
visual and auditory stimuli: a noise image, a picture of a scene, a picture of a face, and an auditory 
syllable (Figure 1A). The order of the sequence was fixed across trials. Each of the visual stimuli 
and the auditory stimulus were presented for a duration of 0.210 and 0.250 s, respectively. Visual 
stimuli were displayed at the center of a laptop screen placed at the bedside at approximately a 
70-cm distance. The noise image consisted of grayscale random horizontal and vertical lines and 
was identical in all trials. For the other stimuli, different exemplars were presented across trials, 
selected from four different scene images (e.g., the White House or Taj Mahal), eight different 
face images (e.g., Barack Obama, George W Bush), and two different syllables (/ga/ vs. /pa/) The 
target syllables were produced by a male speaker; during the experiment, they were played with 
speakers at 70 dB or levels comfortable for the patient. The participants were asked to perform a 
2-alternative-forced-choice discrimination of the target syllable (“which syllable did you hear: “/ga/ 
vs. /pa/?”) with a speeded button press using the index and middle fingers of the right hand. The 
experiment was implemented in Presentation (Neurobehavioral Systems; 
https://www.neurobs.com/). 

The behavioral paradigm was based on a 2 × 2 factorial design with factors “when” predictability 
and “what” predictability, resulting in four different conditions, each of which was recorded in a 
separate run, and randomized across participants (for more information see Auksztulewicz et al., 
2018). In brief, “when” predictability was manipulated by varying the timing between visual and 
auditory stimuli across trials: the four stimuli comprising a trial were presented with either a fixed 
inter-stimulus interval (ISI) of 1 s in the temporally predictable runs or with a randomly jittered ISI 
(mean 1 ± 0 to 0.5 s random jitter) across trials in the temporally unpredictable runs. In addition, 
“what” predictability was manipulated by using contingencies between the visual stimuli and the 
target syllable. In the content-predictable runs, specific sequences of scene/face images 
predicted the identity of the target syllable (75% probability), while in the content-unpredictable 
runs, the two target syllables were equiprobable across trials. To increase statistical power of 
single-trial analyses, we combined trials from all predictability conditions with a sufficient 
prestimulus window (i.e., trials with ISI >= 1s). 

Neural recordings 
The electrodes consisted of 8 × 8 grids of subdural platinum-iridium electrodes embedded in 
Silastic sheets (2.3-mm-diameter contacts, Ad-Tech Medical Instruments) with a minimum 10-
mm center-to-center distance implanted over the temporal/frontal cortices, with additional linear 
strips of electrodes and/or depth electrodes. In this dataset, grid, strip and depth-electrodes were 
used at 41, 43, 16% of the sites, respectively (total N = 1044 electrodes). Recordings were 
obtained using the Nicolet ONE clinical amplifier (Natus). During recording, the signal was 
bandpass filtered from 0.5 to 250 Hz, digitized at 512 Hz, and online referenced to a screw bolted 
to the skull. 
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We performed electrode localization using previously described procedures (Yang et al., 2012). 
In brief, for each patient, we obtained preoperative and postoperative T1-weighted MRIs, which 
were subsequently co-registered and normalized to an MNI-152 template, allowing the extraction 
of the electrode location in MNI space. We assigned anatomical labels to each electrode using 
FreeSurfer cortical parcellation (Fischl et al., 2004) based on the Desikan-Killiany atlas (Desikan 
et al., 2006), resulting in 983 localized electrodes out of 1044. The Freesurfer suite provides an 
automated labeling of the cerebral cortex into units based on gyral and sulcal structure. 

Electrophysiological data analysis was performed using custom-built MATLAB code (version 
R2019a; The MathWorks; RRID:SCR_001622) and the Fieldtrip toolbox (version 2018.08.01; 
www.ru.nl/neuroimaging/fieldtrip). Continuous signals were notch-filtered at 58–62 Hz and 
harmonics using zero-phase Butterworth filters. The data were re-referenced to a common 
average and segmented into epochs from -1.5 to 1 s relative to the onset of each visual and 
auditory stimulus (stimulus-locked) and relative to the motor response (response-locked epochs). 
In total, we obtained 96(trials)*5(epochs)*4(runs) = 1920 epochs per patient. 
We rejected artifactual electrodes in which the BHA time-course during the 1-s prestimulus 
window exceed 5 standard deviations from the mean in at least 50 trials. We corroborated this 
automatic procedure with visual inspection and removed a total of 76 artifactual electrodes across 
9 patients. 

We discarded 48 epochs per patient with an ISI <1s. Additionally, we rejected artifactual epochs 
in which either the raw signal or the BHA time-course (at any electrode) from -1 to 1 s relative to 
stimulus onset exceeded 25 standard deviations from the mean. We corroborated this automatic 
procedure with visual inspection and removed 136 artifactual epochs per patient. We analyzed 
1595 epochs per patient (i.e., 344 noise-locked, 278 scene-locked, 281 face-locked; 356 syllable-
locked; 334 response-locked epochs). For RT and single-trial analysis (mediation and decoding), 
we further discarded noise- and syllable-locked epochs with premature (RT<0.1 s; 10 epochs per 
patient), and late (i.e. RT > 0.8 s; 37 epochs per patient) RTs. 

Spectral Analysis 
We computed power spectra for time windows before and after stimulus onset, separately for 
each electrode and for noise-, scene-, face, and syllable-locked epochs. The duration of the 
prestimulus window was 1 s for noise- and syllable-locked epochs, and 0.5 s (zero-padded to 1 
s) for scene- and face-locked epochs to diminish the contamination due to event-related activity 
of previous visual stimuli. The duration of the poststimulus window was 1 s in all epochs. We 
multiplied these epochs with a Hanning taper, and estimated the spectra between 1 and 150 Hz 
(1-Hz frequency resolution) using a fast Fourier transform (FFT) approach.  

We computed a single-trial estimate of the power in the alpha (7–14 Hz), beta (15–30 Hz), and 
BHA range (70–150 Hz). To avoid disproportionally representing power at the lower-bound 
frequencies (~70 Hz) due to the 1/f property of the neural signal, we computed a frequency-
normalized BHA by z-scoring the power spectra across trials per frequency. This normalization 
ensures that frequencies between 70 and 150 Hz equally contribute to the BHA estimates. 
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In addition, to inspect the time course of the spectral dynamics, we computed time-frequency 
representations (TFRs) of power. We estimated the low-frequency TFR (2–40 Hz; 1-Hz step size) 
using an adaptive sliding time window of three cycles length (∆t = 3/f), and the high-frequency 
TFR (70–150 Hz; 5-Hz step size) using a fixed window of 0.2 s, and applied a Hanning taper 
before estimating power using an FFT approach. The BHA time-course was computed by 
averaging the high-frequency TFR across frequencies. 

Spectral peak detection 
To determine the individual alpha peak frequency, we detected the highest local maximum within 
the alpha range of the power spectra (using 1-s prestimulus noise-locked epochs) separately for 
each electrode (following the methods in Haegens et al., 2014). We refer to electrodes with and 
without alpha-band peaks as “periodic” and “aperiodic” sites, respectively. Note that the alpha 
range was set between 7 and 14 Hz in line with previous literature and to account for slower alpha 
oscillations previously reported in epilepsy patients (Stoller, 1949; Abela et al., 2019). 
We used two complimentary methods to estimate beta-band peaks, both aimed to remove the 1/f 
(aperiodic) component of the power spectrum, as this obscures the smaller peaks in the beta 
band by strongly biasing lower frequencies. First, we used linear regression (least-squares fit) to 
fit a linear model to the log-transformed power spectra in the beta range. We subtracted the linear 
trend from the log-transformed power spectra and detected the beta-band peak as the highest 
local maximum within the beta range of the flattened power spectrum (Haegens et al., 2014; 
Nikulin & Brismar, 2006). Second, we detected beta-band peaks by estimating frequency regions 
within the beta range with power over and above the aperiodic 1/f signal using the fooof algorithm 
(Voytek et al., 2015; Donoghue et al., 2020) (modeled frequencies: 3–40 Hz, maximum number 
of peaks: 8, peak widths: 1–8, minimum peak height: 0.4 arbitrary units of power, peak threshold: 
2 standard deviations; fixed approach). We refer to sites with and without beta-band peaks in both 
methods as “periodic” and “aperiodic” sites, respectively. Additionally, we identified a subset of 
beta-periodic sites without alpha-band peaks, which we refer to as “beta-only periodic” sites. 

Power-based binning analysis 
To analyze the across-trial relationship between low-frequency oscillations and BHA, for each site 
we sorted trials into five bins (e.g., Linkenkaer-Hansen et al., 2004; Iemi et al., 2019) based on 
either alpha or beta power, separately for the pre- and poststimulus windows. For each bin we 
computed the average BHA for each time window. Similarly, we binned trials based on BHA, and 
computed the average TFRs of low- and high-frequency power spectra per bin. For group-level 
statistical analysis and visualization, the power spectra were normalized by the average power 
across all frequencies and bins, while the TFRs and BHA time-courses were normalized by the 
average power across time and bins per frequency. 

Statistical analysis 
We used non-parametric cluster-based permutation tests (Maris & Oostenveld, 2007) for 
contrasts involving a temporal dimension. By clustering neighboring samples (i.e., time-frequency 
points) that show the same effect, this test controls for the multiple comparison problem while 
taking into account the dependency of the data. For each sample, a dependent-sample t-value 
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was computed across sites for the relevant contrast (e.g., power difference between bins). We 
selected all samples for which this t-value exceeded an a priori threshold (p < 0.05), clustered 
these samples on the basis of temporal-spectral adjacency, and computed the sum of t-values 
within each cluster. By randomly permuting the data across the most extreme bins (bin 1 and 5) 
1,000 times and determining the maximum t-sum on each iteration, we obtained a reference 
distribution of t-sums. A final p-value was calculated as the proportion of t-sums under the null 
hypothesis larger than the sum of t-values within clusters in the observed data. We adjusted the 
final alpha thresholds using Bonferroni correction for multiple comparisons (i.e., for multiple 
contrasts). 

Functional-anatomical regions of interest  
We defined three experimentally relevant ROIs using a combination of functional and anatomical 
localizers. The functional localizer identified recording sites that were active during the 
presentation of the experimental stimuli (noise, scene, face, and syllable in stimulus-locked data) 
and during the behavioral response (in response-locked data). For each site we averaged the 
BHA time-course over the prestimulus window across stimulus-locked (-1.1 to -0.1 s) and 
response-locked epochs (-1.35 to -0.35 s). Then, for each site, we calculated the threshold as 2 
standard deviations above the prestimulus BHA signal averaged across time points and trials. We 
identified stimulus-related and response-related sites as those sites whose poststimulus BHA 
time-course exceeded the site-specific threshold in stimulus-locked (0 to 0.5 s) and response-
locked epochs (-0.25 to 0.25 s). Using this functional localizer, we identified 95 noise-related, 95 
scene-related, 137 face-related, 300 syllable-related, and 565 response-related sites across 9 
patients. 

We complemented the functional localizer with an anatomical localizer. Specifically, we identified 
regions based on anatomical labels classically related to sensory processing and motor 
planning/response. Our visual localizer included the cuneus, lateral-occipital areas, lingual area, 
pericalcarine, fusiform gyrus, and inferior-temporal areas (N=123 sites). Our auditory localizer 
included transverse-temporal area, middle-temporal, superior-temporal, banks of the superior-
temporal sulcus, supramarginal areas, pars opercularis, pars triangularis, superior-temporal gyrus 
(N=309). Our somatomotor localizer included precentral and postcentral areas (N=191). 

Finally, we combined the functional and anatomical localizers to obtain the visual, auditory and 
somatomotor ROIs. Specifically, the overlap between visual anatomical sites and the combination 
of noise-, scene-, face-related functional sites yielded the visual ROIs (N=68). The overlap 
between the auditory anatomical sites and the syllable-related functional sites yielded the syllable-
selective ROI (N=103), while the overlap between the somatomotor anatomical sites and the 
response-related functional sites yielded the somatomotor ROI (N=129). 

Baseline shift analysis 
To determine whether baseline shift of non-zero-mean alpha oscillations contributes to the 
observed alpha-BHA relationship in periodic sites, we estimated the non-zero-mean property of 
alpha oscillations using the Baseline Shift Index (BSI: Vadim V. Nikulin et al., 2007, 2010) and 
the Amplitude Fluctuation Asymmetry Index (AFAI: Mazaheri & Jensen, 2008, 2010; van Dijk et 
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al., 2010). In each patient and for each site, BSI and AFAI were estimated on the continuous (i.e., 
non-epoched) data and averaged across experimental runs. We classified periodic sites in two 
groups depending on whether BSI (or AFAI) within the alpha range was positive or negative. 

To quantify BSI, the raw EEG data was first band-pass filtered using a 4th-order Butterworth filter 
centered at each frequency of interest ±1 Hz. Then, the Hilbert transform was used to extract a 
time-resolved power envelope. In addition, the raw EEG data was low-pass filtered using a 4th-
order Butterworth filter with a 3-Hz cut-off frequency. We computed BSI as the Spearman 
correlation (ρ) between the power envelope and the low-pass EEG signal (i.e., slowly varying DC-
like component) separately for each frequency and site (Iemi et al., 2019). When the low-pass 
signal is unaffected by power fluctuations, resulting in BSI = 0, there is evidence for zero-mean 
oscillations. Instead, when states of strong power result in positive (BSI>0) or negative (BSI<0) 
shifts of the low-pass signal, there is evidence for positive and negative oscillatory mean, 
respectively. 

AFAI is based on the assumption that power fluctuations of non-zero-mean oscillations affect the 
peaks and troughs of the EEG signal differently. To quantify AFAI, we identified the time points of 
peaks and troughs as those data samples in the band-passed data which were larger (peaks) and 
smaller (troughs) than the two neighboring samples, respectively, and then estimated the 
magnitude of the raw EEG signal at these time points. We computed AFAI as the normalized 
difference between the variance at the time points of the peaks and troughs in the raw EEG signal 
separately for each frequency and site. Amplitude symmetry (i.e. AFAI = 0, power fluctuations 
equally modulate peaks and troughs) indicates a zero oscillatory mean. Amplitude asymmetry 
indicates a non-zero-mean: specifically, AFAI>0 indicates a stronger modulation of the peaks 
relative to the troughs, or a positive oscillatory mean; AFAI<0 indicates a stronger modulation of 
the troughs relative to the peaks or a negative oscillatory mean (see Nikulin et al., 2010 for a 
comparison between BSI and AFAI). 

We used a binning approach to analyze how BHA in the prestimulus and poststimulus window 
changes as a function of prestimulus alpha power separately for the negative- and positive-mean 
sites. We repeated this analysis for ERPs: single-trial ERPs were computed on low-pass filtered 
data (<30 Hz) and baseline-corrected with the 1-s prestimulus signal.  

Behavioral analysis 
We estimated behavioral performance using reaction times (RTs). Note that discrimination 
accuracy was at ceiling (~90%) with only 36 incorrect responses per patient, thus preventing an 
analysis of trial-by-trial fluctuations. We used a binning approach to analyze how RTs on correct 
trials change as a function of prestimulus alpha power in periodic and aperiodic sites. We log-
transformed RTs to correct for the skewness of their distribution. We averaged RTs across epochs 
for each bin, and normalized these estimates by the average RT across all epochs, separately for 
each patient. This analysis was run for noise- and syllable-locked epochs. 

To understand the interrelation between prestimulus oscillations, behavior, and poststimulus 
excitability in syllable-locked epochs, we tested a mediation model in which prestimulus alpha 
oscillations (independent variable X) may affect RT on correct trials (dependent variable Y) via a 
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modulation of poststimulus BHA (mediator, M). To this end, we used a causal step approach 
(Baron & Kenny, 1986; MacKinnon et al., 2000, 2007; Judd & Kenny, 1981) characterized by 
analyzing the correlation coefficients of four generalized linear models (GLMs). 

The first GLM consists of a simple regression with independent variable predicting the mediator: 
M = i + aX +e, where X is prestimulus alpha power, M is poststimulus BHA, and a is the zero-
order correlation coefficient reflecting the direct effect between X and M. In all GLMs, i refers to 
the intercept and e to the residual error of the model. Mediation requires that prestimulus alpha 
power is negatively correlated with poststimulus BHA (c < 0). 

The second GLM consists of a simple regression with the mediator variable predicting the 
dependent variable: Y = i + bM +e, where Y is RT, M is poststimulus BHA, and b is the zero-order 
correlation coefficient reflecting the direct effect between Y and M. Mediation requires that 
poststimulus BHA is positively correlated with RT (b < 0). 

The third GLM consists of a simple regression with the independent variable predicting the 
dependent variable: Y = i + cX + e, where X is prestimulus alpha power, Y is RT, and c is the 
zero-order correlation coefficient reflecting the direct effect between X and Y. Mediation requires 
that prestimulus alpha power is positively correlated with RT (c > 0). 

The fourth GLM consists of a multiple regression with the independent variable and the mediator 
predicting the dependent variable: Y = i + c’X + b’M + e, where X is prestimulus alpha power, Y 
is RT, M is poststimulus BHA, and c’ and b’ are the partial correlation coefficients reflecting the 
indirect effect between X and Y adjusted for M, and between M and Y adjusted for X, respectively. 
Mediation requires that poststimulus BHA is positively correlated with RT after controlling for 
prestimulus alpha power (b’ < 0). 

In addition, mediation requires a significant reduction in the effect of the independent variable on 
the dependent variable after accounting for the mediator, which can be estimated by the 
difference between zero-order and partial coefficients (c - c’): c > c’ (in absolute values) indicates 
partial mediation (or full mediation if c’ = 0). Note that mediation assumes that the independent 
variable X causes the mediator M (second GLM), and thus that the two variables are correlated. 
This correlation results in multicollinearity when the effects of independent variable and mediator 
on the dependent variable are estimated in a multiple regression model, yielding reduced 
coefficients in the fourth GLM. 

We ran these four GLMs separately for each site, using single-trial FFT estimates of prestimulus 
alpha power, frequency-normalized poststimulus BHA, and RTs. Direct effects were estimated 
using variables that were normalized by z-scoring across trials, whereas the indirect effect was 
estimated using the original variables (i.e., not normalized). Note that, to compute unstandardized 
coefficients of the first and fourth GLM, we used RTs expressed in ms. 

Decoding analysis 
We used multivariate pattern analysis (or “decoding”) to examine the relationship between 
prestimulus alpha oscillations and neural stimulus representations encoded in BHA. First, we 
tested whether stimulus features (i.e., syllable identity) could be decoded from the recorded neural 
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activity; next we tested whether prestimulus alpha power modulates decoder accuracy and/or 
confidence. 

We evaluated stimulus encoding in the time-course of neural activity using spatial decoding 
(similar to Gwilliams & King, 2020): we used l2-regularized logistic regression, under a stratified 
k-fold (k=4) cross validation scheme. Input features were normalized by the mean and the 
standard deviation of the training set. All decoding analyses were performed using the Python 
package scikit-learn (version 0.22.1: Pedregosa et al., 2011). The optimal regularization 
parameter was selected for each fold separately, by finding which of 10 log-spaced regularization 
strengths from 1e-4 to 1e+4 led to best model performance on the test set (using the 
LogisticRegressionCV scikit-learn function with default parameters). We used 1,000 maximum 
iterations of the ‘lbfgs’ optimization algorithm. The input features to the classifier were 17 time-
samples (0 to 0.8 s relative to syllable onset) of either BHA (frequency-normalized estimate) or 
the low-passed signal (< 30 Hz; e.g., Gwilliams & King, 2020; King et al., 2016; Salti et al., 2015). 
We down-sampled the low-passed signal to match the temporal resolution of BHA. The 
categorical class labels corresponded to syllable identity (/ga/ vs. /pa/). We analyzed 310 trials 
for each patient, with 233 trials used for each training set and 76 for each test set. The model was 
trained and tested within each recording site separately, providing a prediction for each trial at 
each location over space, based on the multivariate pattern of activity over time.  

We derived two decoding performance metrics from the classifier predictions: (1) AUC (i.e., 
decoder accuracy) and (2) the maximum probabilistic prediction (i.e., decoder confidence). For 
AUC, we evaluated the similarity between the true label categories of the test set and the 
probabilistic class labels (normalized distance from the fit hyperplane: “predict_proba” in scikit-
learn) of the same trials. We computed the AUC under the null hypothesis by randomly shuffling 
the label categories to the classifier and obtained a p-value as the proportion of the null AUC 
estimates (across sites) that exceeded the true AUC independently for each site. We considered 
the AUC as significantly greater than chance if its p-value < 0.05. This analysis resulted in a 
decoding anatomical map indicating where syllable identity can be linearly decoded from temporal 
patterns of either BHA or low-passed signal (Figure 5 supplement). The maximum probabilistic 
prediction indicates the strength of the neural stimulus representation, regardless of whether or 
not it matches the ground truth; in other words, it is a measure of the classifier’s “confidence” 
about the true class label of a given trial, regardless of accuracy. When the probability = 0.5, the 
classifier’s predictions for the two class labels are identical (i.e., low confidence); when probability 
> 0.5, the classifier prediction for one class label is stronger than for the other class label (i.e., 
higher confidence). 

We asked whether prestimulus oscillatory state shapes neural stimulus representations as 
reflected by decoding performance metrics. To test this, we evaluated how decoder accuracy and 
confidence based on BHA was related to trial-by-trial fluctuations of prestimulus alpha power. We 
used the classification procedure explained above, replacing the k-fold cross validation with a 
leave-one-out cross-validation (LOOCV) procedure. In LOOCV, the classifier is fit on all trials but 
one, evaluating model performance on the remaining “left-out” trial as a single-item test set. This 
is advantageous because: (1) it allows a maximal amount of data to be used for training, thus 
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reducing noise in the model fit; (2) it provides a single-trial decoding estimate which can be 
analyzed by a binning approach. For each site and test trial, we computed the probabilistic 
estimates of the logistic regression for each syllable, grouping the results into five bins relative to 
prestimulus alpha power. Then, for each bin we estimated the AUC using the classifiers’ 
probabilistic estimates of the test trials and the vector of true class labels. Additionally, we 
normalized the maximum probabilistic estimates by z-scoring across trials, and computed 
decoder confidence by averaging these estimates within each bin. 
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