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Abstract

The identification of natural allelic variations controlling quantitative traits could contribute to
decipher metabolic adaptation mechanisms within different populations of the same species.
Such variations could result from man-mediated selection pressures and participate to the
domestication. In this study, the genetic causes of the phenotypic variability of the central
carbon metabolism Saccharomyces cerevisiae were investigated in the context of the enological
fermentation. Carbon dioxide and glycerol production as well as malic acid consumption
modulate the fermentation yield revealing a high level of genetic complexity. Their genetic
determinism was found out by a multi environment QTL mapping approach allowing the
identification of 14 quantitative trait loci from which 8 of them were validated down to the gene
level by genetic engineering. Most of the validated genes had allelic variations involving flor
yeast specific alleles. Those alleles were brought in the offspring by one parental strain that is
closely related to the flor yeast genetic group while the second parental strain is part of the wine
group. The causative genes identified are functionally linked to quantitative proteomic
variations that would explain divergent metabolic features of wine and flor yeasts involving the
tricarboxylic acid cycle (TCA), the glyoxylate shunt and the homeostasis of proton and redox
cofactors. Overall, this work led to the identification of genetic factors that are hallmarks of
adaptive divergence between flor yeast and wine yeast in the wine biotope. These alleles can
also be used in the context of yeast selection to improve oenological traits linked to fermentation

yield.
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Introduction

Deciphering how the considerable phenotypic diversity observed at the species level is
controlled by genetic variation is an important and non-trivial goal in biology. Improving
knowledge regarding genotype-phenotype relationship provides information on evolution and
adaptation mechanisms (Olson-Manning, Wagner, and Mitchell-Olds 2012) and is precious in
many biological fields like medicine (Minikel et al. 2020) or food industry (McCouch 2004;
Marullo et al. 2006; Sharmaa et al. 2015). Unravelling the genetic basis of adaptation highlights
how organisms adapt to new selection pressure like climate change, new pathogens or drugs
and vaccines (Olson-Manning, Wagner, and Mitchell-Olds 2012; Alf6ldi and Lindblad-Toh
2013). Domestication is a specific case of adaptation with important phenotypic change
emerging from human artificial selection. Domesticated organisms are a great opportunity to
study adaptation as there is a better knowledge of their adaptive history through their well-
characterized phenotypic properties and selective environments (Ross-Ibarra, Morrell, and Gaut
2007; Gladieux et al. 2014). The identification of genes and molecular mechanisms leading to
adaptation against domestication is also very useful in genetic selection in order to improve
traits of economic interest and bringing phenotypic novelty to domesticated species (McCouch

2004).

The yeast Saccharomyces cerevisiae rapidly emerged as an excellent model to study genotype-
phenotype relationship (Steinmetz et al. 2002; Brem et al. 2002) and plenty of quantitative
genetic studies were carried out in this species to study epistasis (Sinha et al. 2006), missing
heritability (Bloom et al. 2013), gene-environment interaction (Smith and Kruglyak 2008;
Bhatia et al. 2014; Yadav, Dhole, and Sinha 2016; Peltier et al. 2018) or impact of rare variants
(Fournier et al. 2019; Bloom et al. 2019). S. cerevisiae was subjected to multiple domestication
events in association with a large number of human associated environments (wine, beer, bread
etc.) leading to distinct phylogenetic groups (Peter et al. 2018; Sicard and Legras 2011; J. L.
Legras et al. 2018). Several genetic marks of adaptation were identified such as gene loss of
function (Will et al. 2010), translocations (Zimmer et al. 2014; Pérez-Ortin et al. 2002),
introgressions (Novo et al. 2009; Marsit et al. 2015), and SNPs (Peltier et al. 2019) (see for
review : (Giannakou, Cotterrell, and Delneri 2020). Flor and wine yeasts are both associated
with wine making environment and form two distinct but closely related phylogenetic groups
(J. L. Legras et al. 2018). While both groups are able to efficiently perform wine fermentation,

flor yeasts used in Sherry-like wines have the specific ability to shift to oxidative metabolism
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and form a velum covering wine surface after fermentation (J. Legras et al. 2016). Differences
in genomic content between wine and flor yeast were observed and the impact of allelic
variations involved in biofilm formation were proposed as a feature of genetic adaptation
(Fidalgo et al. 2006; Coi et al. 2017). Other functional adaptation hallmarks related to active
gluconeogenesis, response to osmotic pressure and metal transport were predicted by a
population genomic approach but have not been demonstrated yet at the gene level (Coi et al.

2017).

Recent global warming caused the steady increase of sugar content in grape juices leading to
higher ethanol concentration in wine with several issues regarding consumer health and wine
quality (Dariusz R. Kutyna et al. 2010). Therefore, there is a growing demand for the
development of new technologies to reduce alcohol content in wine. In this context, several
institutions have attempted a biological approach in order to select new strains of S. cerevisiae
with a lower fermentation yield. Various strategies were implemented such as adaptive
evolution (Tilloy et al. 2015; D. R. Kutyna et al. 2012), interspecific breeding (da Silva et al.
2015), and genetic engineering (Rossouw et al. 2013; Ehsani et al. 2009). Here, we aim at
finding out undescribed natural genetic variations controlling the central carbon metabolism in
order to modulate the efficiency of sugar into ethanol conversion (Fermentation yield). By
applying a Quantitative Trait Loci (QTL) mapping approach, we investigated the genetic
determinism of three traits (glycerol production, CO, production and malic acid consumption)

that shape the carbon balance in enological conditions.

Our study is based on the analysis of a progeny obtained by crossing two strains derived from
wine starters. A deeper analysis of parental genomes showed that, unexpectedly, one of the
parental strains results to have a mosaic genome inherited from both wine and flor yeasts while
the second parental strain belongs to the wine group. This admixture has promoted an important
phenotypic variability impacting the central carbon metabolism of the F1 progeny. A total of
14 QTLs were identified and the effect of eight of them were experimentally validated down to
the gene level. Six genes (PMAI, PNC1,PYC2,SDH2, MAEI, and MSB2), among which three
are directly involved in central carbon metabolism (SDH?2 in tricarboxylic acid cycle (TCA)),
MAE] in pyruvate metabolism and PYC2 in gluconeogenesis pathways, show allelic variations
highly specific to flor yeasts group. Linked to these validated genes, further proteomic analyses
highlighted different metabolic regulations between the parental strains for TCA and glyoxylate

shunt. Altogether, these results support the hypothesis that allelic variations between wine and
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103 flor yeasts generate important phenotypic differences and could be considered as hallmarks of
104  adaptation for different growth strategies on the wine biotope. These results also show that flor
105 yeasts constitute a great reservoir of genetic variation to bring phenotypic novelty in
106  commercial yeast starter to cope for new challenges as global warming (Mira de Ordufa 2010)

107  and new viticultural practices (Kontoudakis et al. 2011).

108 Results

109 Biometric study of the glycerol, CO; and malic acid

110 In order to explore the genetic determinism of central carbon metabolism during wine alcoholic
111  fermentation, the previous dataset of fermentation traits measured within a QTL mapping
112 population was used (Peltier, Sharma, et al. 2018). This population was obtained by mating two
113 fully homozygous strains (SB and GN) derived from the sporulation of wine starters. A total of
114 94 meiotic segregants were obtained though sporulation of a single hybrid (SBxGN) (Figl) and
115  phenotyped in three environmental conditions using a small-scale fermentation dispositive and
116  enzymatic assays to measure fermentation kinetics traits and endpoint concentration of several
117  metabolites, including glycerol and CO, production. All segregants were sequenced and a
118  genetic map of 3433 biallelic markers was built in order to identify the genetic factors
119  controlling these phenotypes (Table S1). In the present study, an additional phenotyping effort

120 was achieved by measuring malic acid consumption in the same conditions.
121

122 Carbon balance was evaluated by measuring the main organic compounds assimilated and/or
123 produced for each of the 94 segregants at the end of the alcoholic fermentation (Table S2).
124 According to the must, the fermentation yield computed ranged between 0.45 and 0.48 which
125 is close to values observed in other studies (Tilloy, Ortiz-Julien, and Dequin 2014)
126 (Supplementary file S1). An analysis of variance demonstrated a significant genetic (strain)
127  impact on the fermentation yield (17% of the total variance explained). This integrative trait is
128  mostly shaped by the quantitative variation of three metabolites: glycerol, malic acid, and CO,
129  that were partially correlated (Figure S1). Glycerol and CO, (which is stoichiometrically linked
130  to ethanol) are de novo synthetized by yeast catabolism; their concentrations are expressed in
131  g/L. The final concentration of CO, produced is expressed hereafter as CO.,max. The final

132 concentration of malic acid depends on its initial amount in grape must which differs according
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133 to the grape juice. Since this organic acid is partially metabolized by yeast, the strain
134 contribution was normalized by computing the percentage of Malic Acid Consumed (MAC%).
135  For each trait, parental strains SB and GN are significantly different with important gaps for
136  glycerol and MAC% (Wilcoxon test, pval <0.05). Indeed, SB produces 1.6 g/L. more glycerol
137  (+30%) and consumes 28% more malic acid than GN. Since malic consumption and glycerol
138  production have an opposite effect on CO, and ethanol production, the phenotypic differences
139  for CO, are sharper. These differences are consistent with previous results showing that SB is
140  the top strain for glycerol production and malic acid consumption compared to a panel of

141  commercial starters (Peltier, Bernard, et al. 2018).

142 Each trait had a high overall heritability (Table S3) and displayed a bell-shaped distribution
143 with number of segregants showing transgressive values respect to parental strains (Fig S2).
144  These broad biometric observations highlighted a polygenetic control of each trait with a

145  positive contribution of both parental strains.

146  Linkage analysis brings out a linkage hotspot with pleiotropic effect

147  Inaprevious work that explored QTL interaction with environment, five QTLs were associated
148  with CO,max and glycerol production in the SBXxGN offspring (Peltier et al., 2018). Here, we
149  aimed at identifying supplemental QTL controlling MAC% that was newly phenotyped. A
150  linkage analysis was performed and significantly associated nine QTLs to this trait. Therefore,
151  a total of 14 QTL are involved in CO.max, glycerol and MAC% (Fig 2 and Table S4). The
152  effects of parental alleles are shown in the Fig S3. Intriguingly, a large region of the
153  chromosome VII (387 kb to 716 kb) was associated with all the considered traits. This linkage
154  hotspot is almost entirely above the significance threshold for at least one trait and four distinct
155 linkage peaks can be distinguished. This hotspot encompasses one major QTL, the locus
156  VII_415 (Chr VII, position 415,719), influencing the glycerol production (LOD score >10)
157  which explains more than 10 % of total variance. Interestingly, for this cross, a sharper region
158  of chromosome VII (50 kb) was previously associated with kinetic traits during second
159  fermentation of sparkling wines (Marti-Raga et al. 2017). Three genes of this large QTL (PDRI,
160  PMAI and MSB2) were demonstrated to have an important phenotypic impact in this condition.
161  Here, the QTL VII_482 linked to MAC% is located in the PMAI coding sequence (479,910
162 482,666).
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163  Multiple Quantitative Trait Genes control glycerol production and malic acid

164  consumption.

165  Candidate genes neighboring the QTL peak within a 20 kb window were considered through
166  their functional annotation and by checking for ns-SNPs within parental strains sequences using
167  the algorithm SnpEff (Table S5) (Sherman and Salzberg 2020). We selected also the three genes
168  (PDRI, PMAI and MSB?2) previously validated for second fermentation traits that are located
169  near the major hotspot of chromosome VII in the present work. This leads to consider 11
170  candidate genes that could impact the traits investigated. Their effects were interrogated by a
171  Reciprocal Hemizygosity Analysis (RHA) (Steinmetz et al. 2002). The impact of parental
172 alleles was compared in alcoholic fermentation test using the same fermentation protocol. In
173 addition, ethanol content (% Vol) was estimated by infrared reflectance rather than enzymatic
174  assay (see methods). The effect of four candidate genes impacting CO,max and/or glycerol was
175  tested. They belong to the two major QTLs found in term of variance explained: ADE6
176  (VII_616), MSB2 (VII_512), PDRI (VII_482), PNC1 (VII_415). The RHA was carried out in
177  the M15_sk condition with two sugar concentration levels (219 and 265 g/L) using at least five
178  biological replicates for each condition. Sugar spiking would emphasize the phenotypic
179  differences related to CO, and ethanol production. The most obvious effects were obtained for
180  glycerol production for genes ADE6, MSB2, and PCNI for which hemizygous hybrids are
181  significantly different (Wilcoxon test, pval <0.1) (Fig 3, panel A). These three genes are located
182  in a region of 200 kb along the chromosome VII hotspot demonstrating that distinct genetic

183  factors in this region control the glycerol production.

184  Intriguingly, the sugar content modulated the phenotypic responses of hemizygous hybrids.
185  Indeed, in sugar-spiked grape must (M15_265), alleles ADE6SN enhanced glycerol production
186  of 12 %, while the allele MSB2¢" has an enhancer effect only in the original M15 grape must
187  (219g/L of initial sugar). The allelic forms ADE6Y, PNCI8 promote the glycerol production
188  and their effects are those observed in the SBxGN progeny (Table S4, Fig S3). In contrast, the
189  MSB2¢ allele produced more glycerol which is not observed in the segregating progeny (Fig
190  S4). This opposite effect has been previously described for the same gene for another phenotype
191  and could be due to the complex genetic architecture of chromosome VII (Marti-Raga et al.
192 2017). The difference observed in glycerol production for ADE6, PNCI and MSB2 did not

193 impact either the CO,max or the ethanol content.
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194  In the same way, seven candidate genes belonging to six QTLs affecting MAC% were
195  evaluated: MAEI (XI_381), MCHI and GPM2 (IV_356), PYC2 (1I_669), PMAI (VII_482),
196  SDH2 (XII_53) and YBL0O36¢ (I1_152). Fermentations were carried out in both M15 and SB14.
197  RHA revealed a significant effect for the genes MAEI, PMAI, PYC2 and YBL036¢ (Fig 3, panel
198  B) (Wilcoxon test, pval < 0.05). The alleles of MAEI, PYC2 and YBL0O36¢ inherited from the
199  parental strain SB consumed respectively 25%, 19%, and 45% more malic acid than those
200  inherited from GN. In contrast, the PMAI®" allele consumed 18% more malic acid than
201  PMAI%8. This gene, encoding for the plasma membrane ATPase, has been previously linked to
202  the maintenance of pH homeostasis during wine fermentation and is located in the center of
203  chromosome VII hotspot (Marti-Raga et al. 2017). Unexpectedly, a significant effect of PNC1
204  on MAC% was also observed and the hemizygote hybrid harboring the PNC1%® allele consumes
205 15 % more malic acid than PNCI°N (Fig 3, panel B) (Wilcoxon test, pval < 0.05). The genomic
206  position of PNCI is about 50 kb from the nearest QTL peak for MAC% VII_482), however the
207  other causative genes (PMAI, MSB2, ADEG6) associated with the chromosome VII hotspot may

208  have altered the precision of our linkage analysis.

209  Beside the validation of these five genes on MAC%, reciprocal hemizygous analysis of SDH2
210  suggested its potential contribution on malic acid consumption. Although the hemizygous are
211  not statistically different, a strong haploinsufficiency effect in both hemizygous hybrids was
212 observed affecting either MAC% (-14%) and fermentation kinetics by doubling the
213  fermentation duration (Fig S5). Intriguingly, this haploinsufficiency was only present in M15
214  grape juice. Two factors suspected to have an impact on this haploinsufficiency were tested
215  (initial malic concentration and pH) in synthetic grape juice (SGJ) by adjusting these two initial
216  values to either M15 or SB14 levels. An haploinsufficiency similar to that in M15 was found
217  in all four conditions even in the one mimicking SB14 conditions (Fig S5). No significant
218  interaction between the level of haploinsufficiency and pH and malic acid was found (Anova,
219  pval > 0.1). These findings suggest that SDH2 has a great impact on fermentation rate and
220 MAC% during grape juice fermentation. However, since the RHA test was limited by the
221  haploinsufficiency effect our experiments failed to clearly demonstrate the impact of parental

222  allelic variations.
223

224 Altogether, these functional analyses validated the role of eight Quantitative Trait Gene (QTG).

225  Four of them play a direct role in the central metabolism encoding enzymes involved in

8
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226  oxidoreductive reactions of carbohydrate metabolism (MAEI, PYC2, PNCI, SDH2). Two
227  others are key regulators of osmotic (MSB2) and pH (PMAI) homeostasis. The RHA also
228  revealed that ADE6 and YBLO36¢ contribute to the phenotypic difference between the parental
229  strains for glycerol production and malic acid consumption, respectively (Fig 3). However, their
230  functional connection with the metabolic pathway of glycerol and malic acid is more difficult

231  to address at this stage.

232 SB is a mosaic strain derived from flor and wine yeasts

233 QTL mapping is a useful strategy for identifying natural genetic variations that shape
234  phenotypic diversity between two strains. However, in most of the cases, the causative
235  mutations identified are rare and specific to one parental strain (Bloom et al. 2019; Fournier et
236  al.2019; Peltier et al. 2019) due to the clonal structure of S. cerevisiae population (Peter et al.
237  2018). This impairs the identification of more general mechanisms of adaptation resulting to
238  natural selection. In order to have a more precise idea of the evolutive relevance of QTL
239  identified, SB and GN genomes were compared to those of 403 wine related strains previously
240  released (Peter et al. 2018; Legras et al. 2018). A phylogenetic tree was generated using 385,678
241  SNPs discriminating the 403 wine strains plus the parental strains SB and GN. This collection
242 of strains encompasses wine (n=358) and flor (n=47) strains that form distinct groups as
243  previously described (Coi et al. 2017; Legras et al. 2018) (Table S6). Interestingly, SB is
244  genetically close to the flor group while GN is quite similar to the wine group (Fig 4, panel A).
245  Consequently, the two parental strains used in this study are quite distant with a sequence
246  divergence of 0.19 % (~22,000 SNPs). The relatedness of SB genome with the flor group was
247  deeply investigated by selecting a subset of 5,086 SNPs highly specific to the flor yeast group.
248  Those SNPs have a frequency difference higher than 90 % between flor and wine yeast groups.
249  The strain SB harbors 44.3 % of flor yeast specific alleles while GN only has 1.7 % of them.
250  Their distribution across the SB genome is not uniform (Fig 4, panel B). Indeed, long portions
251  of chromosomes have inherited 100 % flor-specific alleles (Chr II) while other portions are
252  totally exempt of them (Chr VIII). This analysis demonstrated that SB is a mosaic strain
253  between wine yeast and flor yeast, a feature shared with some others wine starters (Coi et al.,

254 2017).

255
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256  Intriguingly, nine of the fourteen QTLs mapped are located in flor specific chromosomic
257  portions. This is the case of a large stretch within chromosome VII encompassing four causative
258  genes (PNC1,MSB2,PMAI,ADE®6) that displays the genomic signature of flor yeasts. A similar
259  observation can be made for chromosome II in which three QTLs were identified (Fig 4, panel
260  B). During their domestication, flor yeasts accumulated numerous mutations leading to an
261  adaptation to grow on wine surface (Coi et al. 2017). In order to narrow such natural genetic
262  variations, we listed the pool of ns-SNP discriminating SB and GN in the sequence of causative
263  genes. For those SNPs, allelic frequencies of flor and wine groups were computed (Table 1). In
264  ADEG6,ns-SNPs listed are scarcely found whatever the group. The low allelic frequency of such
265  polymorphisms would reflect recent mutations which is a common feature of the S. cerevisiae
266  population. In contrast, for the other genes PMAI, PNC1, PYC2,SDH2, MAEI, and MSB2, the
267  SB alleles are highly specific to flor yeast group while GN alleles are specific to the wine group.
268  Therefore, these flor-specific alleles would have promoted the wide phenotypic variability of
269  carbon metabolism observed in SBXGN progeny and more broadly are explaining phenotypic

270  differences between flor and wine yeasts.

271  SB proteome reveals peculiar metabolic regulations functionally connected with

272  some causative genes.

273  Flor yeasts are able to grow on the wine surface at the end of the alcoholic fermentation. By
274  creating biofilm rafts, they are able to resist to high ethanol content in harsh conditions (Legras
275  etal.2016). For ensuring their development, they activate particular metabolic pathways (active
276  neoglucogenesis and respiration metabolism) that are the opposite of those developed by wine
277  yeasts during the alcoholic fermentation. Such metabolic differences have been previously
278  reported at the metabolomic and the proteomic levels (Moreno-Garcia, Garcia-Martinez,
279  Moreno, et al. 2015; Moreno-Garcia, Garcia-Martinez, Millan, et al. 2015; Alexandre 2013;
280  David-Vaizant and Alexandre 2018). In order to have a broad overview of the metabolic
281  peculiarities of the SB strain, we reanalyzed a proteomic dataset previously generated in our
282  laboratory (Albertin, Marullo, et al., 2013; Blein-Nicolas et al., 2013, 2015). Data explored
283  were obtained by quantifying the proteome of 25 §. cerevisiae strains, including SB and GN,
284  during the fermentation of a sauvignon blanc grape juice by a shotgun proteomics approach.
285  Samples were collected at mid-point in triplicate allowing the quantification of 1110 proteins
286  commonly expressed (Table S7). A global Principal Component Analysis (PCA) demonstrates
287  that SB is strongly discriminated by the two principal axes accounting for 34 % of the total
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288  inertia suggesting an outlier protein abundance respect to 24 other strains (Fig. 5, panel A).
289  Indeed, the Abundance Fold Change Ratio (AFCR) of SB and GN vs the 24 other strains were
290  compared for each of the 1100 proteins quantified. SB displays a much distinct profile since
291 129 % of its proteome reach a 2 folds change abundance (10g2arcg) +/- 1.0) while only 2.9 %
292  of GN proteins reach this threshold (Fig S6). Thus, proteome variance of SB and GN are 0.504
293 vs0.143, respectively (variance F test, pvalue <1.10%). This analysis demonstrated that SB has

294 a particular proteome compared to GN and even to other S. cerevisiae strains.
295

296  In order to analyze the origin of this discrepancy, we deeply compared SB and GN using the
297 1264 proteins quantified in both strains (Table S7). This comparative analysis reveals a set of
298 207 proteins with an ACFR higher than 2 (Table S8). Within this set, a significative enrichment
299  was found for mitochondrial proteins which represent 33% of the pool (x?test=2.10"%). We
300  sought functional interactions between the eight causative genes identified and the set of 207
301  differentially expressed proteins by performing a STRING analysis (Szklarczyk et al. 2019)
302  (see methods). Three of the six interaction networks computed clearly linked four QTG with
303  proteins differentially expressed (Fig 5, panel B). The main cluster, linked to the causative
304  genes PYC2 and MAE], encompassed 31 proteins including many enzymes related to pyruvate
305  and citrate metabolism (Mlslp, Leu9p, Achlp, Mdh3p, DId1p, DId2p, Ald5p, Cyb2p, Citlp,
306 Cit2p). The fold change abundance of such proteins suggests the existence of differential
307  metabolic regulations between SB and GN. For instance, three of the four S. cerevisiae enzymes
308 (Dldlp, DId2p and Cyb2p) involved in the lactate metabolism are at least 2.5 less abundant in
309  SB. These proteins are supposed to be repressed by glucose and anaerobiosis and participate to
310  the oxidation of lactate into pyruvate (Bekker-Kettern, 2016). Other proteins, belonging to the
311  glyoxylate shunt and TCA, were differentially quantified (2-fold change ratio). Interestingly,
312  the oxidative branch of TCA and the glyoxylate shunt (i.e. Mls1p, Dal7p, Citlp, Cit2p, Aco2p)
313  are broadly more abundant in SB while proteins participating to the reductive branch of TCA
314 (i.e. Fumlp, Mdhl, Sdh2p) are more abundant in GN (Fig S7, panel A). These metabolic
315  pathways are directly connected with two causative genes identified in this study MAE! and
316  PYC2 that controls MAC%. Strikingly, the cytosolic malate synthase Mlslp catalyzing the
317  condensation of glyoxylate and acetyl CoA in L-malate is 7 folds more abundant in SB
318  (log,(AFCR)>2.8) and would directly enhance its cytosolic pool of malic acid. These

319  noteworthy variations of proteins abundance are not due to a singular contrast between SB and
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320  GN proteomes but reflect a clear specificity of SB central metabolism regulation. Indeed, the
321  AFCR computed between SB and the 24 other S cerevisiae strains (average value) is very
322  similar to the AFCR of SB vs GN (Pearson cor. test <10-13) (Fig S7 panel B). This analysis
323  suggests that the peculiar proteome of SB would be due to its unusual mosaic origin

324  encompassing large stretches of flor yeast genome.

325

326 Discussion

327 The flor yeast origin of the parental strain SB is likely involved in the diversity of
328 carbon catabolism in the SBXGN progeny.

329  This work aimed to identify natural genetic variations that possibly modulate the catabolism of
330  carbon sources during wine fermentation. From an applied point of view, this goal is
331  particularly relevant for wine industry in order to cope with two main negative effects of global
332 warming: (i) the rise of ethanol content and (ii) the reduction of the total acidity of wines. This
333  general trend is due to the increasing concentration of sugars coupled with a drop of malic acid
334  content in grape juices around the world (van Leeuwen and Darriet 2016). By applying a QTL
335  mapping strategy, eight Quantitative Trait Genes (QTG) impacting the carbon balance during
336 the wine fermentation were identified. Although, reciprocal hemizygosity assay fails to identify
337  candidate genes that significantly decrease the final ethanol content of wine, this study allows
338  the identification of natural allelic variations controlling two remarkable phenotypes: the
339  glycerol production and the percentage of malic acid consumed (MAC%). The schematic

340  relationships of their respective proteins in the yeast metabolism map are shown on Fig 6.

341  This study was carried out using two meiotic segregants (SB and GN) derived from commercial
342  starters widely used in wine industry (Actiflore BO213 and Zymaflore VL1, Laffort, France).
343  Such commercial starters have been selected in the past for their technological properties by
344  sampling spontaneous wine fermentations (P Marullo, pers com). Unexpectedly, we find out
345  that the SB genome has a mosaic structure inherited from two distinct groups of S. cerevisiae
346  population: the wine and the flor yeasts (Peter et al. 2018). Around 40 % of the SB genome is
347  flor specific suggesting that BO213, the parental strain of SB, would be an F1-hybrid resulting
348  from the cross of a flor yeast and a wine yeast, as previously observed for others wine

349  commercial strains related to the Champagne group (Coi et al. 2017).
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350  Wine yeasts are adapted to a fast development on grape must in competition with numerous
351  other species in a sugar rich environment and many natural allelic variations related to their
352  adaptation to grape juice have been described in the past (Peltier et al. 2019). In contrast, flor
353  yeasts are adapted to survive in wine, a sugar-depleted environment containing high ethanol
354  degree and low oxygen. Thus, flor yeasts would have accumulated specific genetic variations
355  for coping with this harsh environment. Many efforts have been made for identifying such
356  adaptation signatures especially concerning the development of the flor velum. This biofilm-
357  like growth is essential for reaching the wine surface and to get oxygen which is mandatory for
358  catabolizing ethanol and producing energy (Legras et al. 2016). Allelic variations specific to
359 flor yeasts have been detected by using comparative genomics and the role of two genes (SFLI
360 and RGA?2) participating in the regulation of FLOI1 has been demonstrated (Coi et al. 2017).
361  Inthe SBXGN cross, wine and flor specific alleles segregate providing the opportunity to study
362  the phenotypic impact of gene pools that have undergone parallel evolutionary routes with
363  different selective pressures. Indeed, nine of the fourteen QTL identified are located in flor
364  specific regions allowing the molecular validation of six genes (PMAI, PNCI1, PYC2, SDH2,
365 MAEI, and MSB2) characterized by flor specific alleles. This suggest that part of the allelic

366  variations involved in the adaptive divergence between wine and flor yeast had been captured.

367  Functionally, these genes are involved in key pathways discriminating flor yeast and wine yeast
368  metabolisms. First, MSB2 encodes a signaling mucin protein acting as a stress or nutrient
369  deprivation receptor (Cullen and Sprague 2012). Msb2p is associated with the transmembrane
370  osmosensor Sholp and transmits the signal to the downstream components of the monomeric
371  G-proteins Rho involved in both filamentous growth (FG) and the high osmolarity glycerol
372  (HOG) pathways (Tatebayashi et al. 2007). HOG pathway plays a key role for adaptation
373  against high osmolarity levels by increasing the production of glycerol (Hohmann, 2009), the
374  second more abundant metabolite of fermenting yeast after ethanol. The comparative analysis
375  of MSB2 sequence reveals a unique ns-SNP between the parental strains (Table 1). The SB
376  allele S529F is specific to flor yeasts and lowers the glycerol production respect to the GN
377  allele. The MSB2%%F allele has a predicted deleterious effect that would impact the signal
378  transduction of both HOG and FG MAPK pathways. Such pathways share common
379  components but are induced by different stimuli and provides specific responses (Pitoniak et al.
380  2009). The essential Rho protein Cdc42p has been described to stimulate glycerol production
381 Dby triggering the MAPK Hoglp (Hohmann, 2009). Cdc42p is threefold less abundant in SB

13


https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.27.433177; this version posted February 27, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

382  which is consistent with the hypothesis of a low Msb2p activity in this background. In contrast
383  the non-essential GTPase Rho3p also involved in cell polarity is three times more abundant in
384  SB. Interestingly, the abundance fold ratio of Rho3p and Cdc42p are specific to SB (compared
385  to others S cerevisiae strains) and might be related to the filamentous growth specificities of

386  flor yeast required for the velum formation.

387 A flor-specific allele was also found in the sequence of PNCI which encodes for a
388  nicotinamidase that converts nicotinamide to nicotinic acid. Pnclp, which is induced by the
389  osmotic stress, restores redox balance by regenerating NAD* from nicotinamide via the NAD*
390  salvage pathway (Effelsberg et al. 2015; Ghislain, Talla, and Frangois 2002). RHA reveals that
391  the allele PNCI%8 enhances both the glycerol production and the MAC%. A direct functional
392  link exists between PNCI and glycerol biosynthesis since this protein is co-imported in the
393  peroxisome with Gpdlp, a major controlling enzyme of glycerol biosynthesis (Nevoigt and
394  Stahl 1997). Under osmotic stress, their overexpression saturates the peroxisome importation
395  system and therefore this protein became cytosolic and active (Effelsberg et al.,2015). The role
396  of Pnclp in MAC% is more complex to explain and might be linked to the NAD*/NADH*
397  homeostasis itself that is tightly controlled (Bakker et al. 2001). This organic acid can be
398 oxidized in pyruvate (by the malic enzyme Maelp) or in oxaloacetate (by malate
399  dehydrogenases). Thus, an active malic acid consumption would increase the intracellular

400 levels of NADH" requiring an increase of glycerol production for regenerating the NAD* pool.
401

402  Another flor yeast specific allele impacting MAC% is MAE] that encodes for the mitochondrial
403  malic enzyme that catalyzes the oxidative decarboxylation of malate to pyruvate (Boles, de
404  Jong-Gubbels and Pronk, 1998) achieving the malo-ethanolic fermentation (Volschenk,
405  Vuuren and Viljoen—-Bloom, 2003). Interestingly, MAE1 was also reported to influence the
406  formation of higher alcohols, fusel acids, and acetate esters in another mapping population
407  where the same SNP is segregating (MAE1'%V) (Eder et al., 2018). These data suggest that this
408 allelic variation would have pleiotropic consequences in an enological context, affecting the

409  malic acid consumption as well as the biosynthesis of relevant wine volatile compounds.
410

411 A second pleiotropic gene to be discussed is PMAI which encodes for a membrane ATPase the

412 major regulator of cytoplasmic pH and plasma membrane potential. During wine fermentation,
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413  pH has a great impact on intracellular malic acid diffusion and consumption (Salmon, 1987;
414  Delcourt et al., 1995; Saayman and Viljoen-Bloom, 2006). Indeed, malic acid charge is strongly
415  dependent of the wine pH since the pkal of this diacid is 3.54. Bellow a pH value of 3.4, the
416  entry of a malic acid molecule in the cytoplasm result to a net proton influx that must be pumped
417  over for maintaining pH homoeostasis with an energy cost of 1 ATP per molecule. In the present
418  work, the QTL VII_482 related to PMAI has the strongest effect observed with a positive
419  impact of the GN allele on malic acid consumption. Previously, we demonstrated that PMAI
420  inheritance influences fermentation kinetics with a strong interaction with the pH of the
421  medium. Indeed the GN and SB alleles increase the fermentation rate when the pH are 3.3 and
422 2.8, respectively (Marti-Raga et al., 2017). These fine grain gene-environment interactions

423 might result from the consumption level of malic acid in relation with the pH of wine.

424  Two other genes with a direct connection with malic acid metabolism were shed on light. The
425 gene PYC2 involved in gluconeogenesis pathway encodes for a pyruvate carboxylase that
426  converts pyruvate to oxaloacetate (Stucka et al., 1991; Walker et al., 1991). During
427  fermentation, pyruvate carboxylase is the sole source of oxaloacetate playing an essential role
428  in aspartate biosynthesis, TCA turnover, and malic acid biosynthesis (Huet e al.,2000). Indeed,
429  PYC2 overexpression enhances malic acid production in a bioengineering context (Bauer et al.,
430  1999). We hypothesized that the allelic variants of SB may have reduced the Pyc2p activity
431  reducing the biosynthetic flux of malic acid from pyruvate. To cope with this reduction, a first
432 metabolic alternative would be the de novo synthesis of malic acid from the glyoxylate shunt.
433  This is consistent with the high abundance of the malate synthase (more than 7 folds) observed
434  in SB respect to GN. A second metabolic alternative would be a strongest uptake from the

435 external media which is the hallmark of the SB strain.

436  Finally, a surprising effect of SDH2 deletion was observed. This gene encodes for a subunit of
437  the succinate dehydrogenase complex (complex II) ensuring electron transfer from succinate to
438  ubiquinone. This TCA cycle step is involved in the mitochondrial respiratory chain and is
439  mostly inactive during the alcoholic fermentation (Camarasa, Grivet and Dequin, 2003) due to
440  oxygen depletion and catabolic repression (Klein, Olsson and Nielsen, 1998; Kwast, Burke and
441  Poyton, 1998). Indeed, under sake brewing conditions, the CO, production rate was not
442  impacted in double mutants Asdhl, Asdh2 (Kubo, Takagi and Nakamori, 2000). These
443  commonly admitted results contrasted with the strong haploinsufficiency effect of SDH2
444  deletion observed for MAC% and fermentation kinetics in M 15 medium (Fig S5). Although we
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445  could not measure a significant difference between hemizygous hybrids, the strong
446  haploinsufficiency observed suggests that the succinate dehydrogenase complex would play an
447  unsuspected physiological role in this specific background. Interestingly STRING analysis
448  reveals that five proteins functionally associated to SDH?2 are differentially synthetized between
449  SB and GN. These proteins belong to the respiratory complexes II, III and IV. Thus, complex
450  II (Sdhlp and Sdh2p) is less abundant in SB while proteins belonging to complex III (Qcr10p)
451  and IV (Cox2p and Cox12p) are more abundant. Due to the functional importance of protein
452  stoichiometry in such complexes, abundance change in few proteins would impact the residual
453  activity of the respiratory chain. Therefore, the functional understanding of the succinate
454  dehydrogenase complex during alcoholic fermentation will require further analyses that are not

455  the purpose on the present paper.
456

457  Flor yeasts exhibit an active gluconeogenesis and respiration catabolism during velum
458  development that impact their proteomics response (Legras et al. 2016; Alexandre 2013)
459  (Moreno-Garcia, Garcia-Martinez, Moreno, et al. 2015). However, to our knowledge, a
460  comparative proteomic study between flor and wine yeast was never achieved. Since the SB
461  strain harbor 40% of the genomic signature of a flor yeast, we supposed that this strain could
462  exhibit particular flor yeast features at the proteomic level. This prompted us to compare the
463  fermentation proteome of SB with other S cerevisiae strains including the parental strain GN
464  used in this study. A large comparative proteomics study between strains of the same species
465  carried out in our laboratory was reanalyzed for this purpose (Blein et al. 2015). The abundance
466  of 1100 proteins commonly quantified in 25 §. cerevisiae strains clearly demonstrated that SB
467  exhibit a peculiar proteomic regulation (Fig 5, panel A) during wine fermentation (Table S7).
468  Strikingly most of the proteins differentially regulated between SB and GN are due to the
469  specific proteomic patterns of SB discarding the fact that the SB vs GN proteomic variations
470  would be due to the GN strain (Fig S6, panel B). Several proteins involved in pyruvate and
471  gluconeogenesis were differentially quantified. Many of them have been previously described
472  as specific signature of velum development (Moreno-Garcia, Garcia-Martinez, Moreno, et al.

473 2015).

474 By implementing a STRING analysis, we attempted to retrace a functional link between the
475  eight QTG identified and the proteomic variations observed between parental strains. This

476  indirect analysis would bridge the gap between specific flor yeast variations and the overall
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477  proteomic discrepancy of the SB strain. Three causative genes (MSB2, SDH2 and PYC2)
478  harboring flor specific alleles were functionally connected with three protein clusters (Fig 5,
479  panel B). PYC2 and SDH?2 are directly involved in central carbon metabolism playing an
480  essential role in gluconeogenesis and respiration, respectively. The first controls the unique way
481  for producing glucose from ethanol since the pyruvate kinase catalyzed an irreversible reaction
482  (Pronk, Steensma, and Van Dijken 1996). The second belongs to the succinate dehydrogenase
483  which is inactivated during the fermentation and that constitutes the first step of respiration
484  chain (complex II) which is essential for producing energy in aerobic conditions. A contrasted
485  regulation between the oxidative and reductive branch of TCA was observed in the strain SB
486  (Fig STA) promoting the idea that succinate dehydrogenase activity would participate to the
487  regulation of TCA proteome. Although this hypothesis remains to be validated by further
488  experiments, we hypothesized that the specific flor alleles Sdh2%'>8¢ and Pyc2%373X carried by
489  SB strain might impact the overall proteomic response of this strain by controlling key steps of

490  gluconeogenesis and TCA cycle.

491 Materials and Methods

492  Yeast strains and culture media

493  All the strains used in this study belong to the yeast species Saccharomyces cerevisiae. SB and
494  GN strains are monosporic clones derived from industrial wine starters, VL1 and Actiflore
495  BO213, respectively. Generation of the SBxGN and segregant populations were described by
496  (Peltier, Sharma, et al., 2018). Briefly, F1-hybrids were obtained by manual crossing with
497  micromanipulator. After sporulation on ACK (2 % potassium-acetate, 2% agar) media,
498  monosporic clones were isolated by micromanipulation. Yeast was cultured at 30 °c in yeast
499  YPD media (10 g/L yeast extract, 20 g/L peptone and 20 g/L glucose) and solidified with 2 %

500 agar when required. The strains were stored long term in YPD with 50% of glycerol at - 80 °C.

501

502 Phenotyping

503  The two grape juices used, Merlot of vintage 2015 (M15) and Sauvignon Blanc of vintage 2014
504  (SB14), were provided by Vignobles Ducourt (Ladaux, France) and stored at - 20 ° C. Before
505 fermentation, grape juices were sterilized by membrane filtration (cellulose acetate 0.45 um
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506  Sartorius Stedim Biotech, Aubagne, France). Fermentations were carried out as previously
507  described (Peltier, Bernard, et al. 2018). Briefly, fermentations were run at 24 °C in 10 mL
508  screw vials (Fisher Scientific, Hampton, New Hampshire, USA) with 5 mL of grape must.
509  Hypodermic needles (G 26—0.45 x 13 mm, Terumo, Shibuya, Tokyo, Japan) were inserted
510  through the septum for CO; release. Two micro-oxygenation conditions were used by applying
511  ornot constant orbital shaking at 175 rpm during the overall fermentation. For this data, three
512  fermentation conditions were used: SB14 with shaking (SB14_Sk), M15 with shaking (M15_Sk)
513 and M15 without shaking (M15). Fermentation progress was estimated by regularly
514  monitoring the weight loss caused by CO; release using a precision balance. The amount of
515 CO; released over time was modeled by local polynomial regression fitting with the R-loess
516  function setting the span parameter to 0.45. From this model CO.max parameter was
517  extracted: maximal amount of CO; released (g.L!) and the end of the fermentation.
518  Fermentation conditions were described by (Peltier, Sharma, et al. 2018). Glycerol and malic
519  acid concentration were determined by enzymatic assay (Peltier et al. 2018) using K-GCROLGK
520  and K-LMAL-116A enzymatic kits (Megazyme, Bray, Ireland), following the instructions of the

521 manufacturer.

522

523  Linkage analysis

524  The QTL mapping analysis was performed with the R/qtl package (Broman et al. 2003) on the
525  data collected in the three environmental conditions by using the Haley-Knott regression
526  model that provides a fast approximation of standard interval mapping (Haley and Knott
527  1992).The analysis is taking in account environment and cross as an additive covariate, aiming

528 toidentify QTL robust to environment and cross factor:
529 yi=p+By +A, e

530  Wherey; is the phenotype for individual i, u the average value, 8, the QTL genotype for
531 individual i, A, the matrix of environment covariates (y = M15_Sk, SB14_Sk, M15) and € the
532  residual error. For each phenotype, a permutation test of 1000 permutations tested the

533  significance of the LOD score obtained, and a 5% FDR threshold was fixed for determining the
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534  presence of QTLs (Churchill and Doerge 1994). The QTL position was estimated as the marker

535  position with the highest LOD score among all markers above the threshold in a 30 kb window.

536 Hemizygous hybrids construction

537  For each QTL, candidate genes were sought in a 30 kb windows around the QTL position with
538 the maximal LOD score. Genes with non-synonymous SNPs and/or with a function related to
539 thetrait of interest were retained. Candidate genes were validated by reciprocal hemizygosity
540  analysis according to (Steinmetz et al., 2002) using SBXGN hybrid. Deletion cassettes were
541  obtained by PCR amplification of the disruption cassette plus 500 pb of the flanking regions
542  using as genomic template the genomic DNA of the strains Y04691, YO3717, YO4878, YO3751,
543 Y04405, Y01529, Y03062 of the EUROSCARF collection (http://euroscarf.de), which contain
544  disruption cassettes for the following genes: ADE6, GPM2, MAE1, MCH1, PNC1, PYC2, SDH2,
545  YBLO36C, respectively. Primers used for strains construction are listed in File S2. Reciprocal
546  hemizygotes for MSB2, PDR1 and PMA1 were previously constructed with the same strategy
547 by (Marti-Raga et al., 2017).

548 Phylogenic analysis

549  Publicly available sequences of yeasts from wine and flor genetic groups were retrieved from
550  (Peter et al. 2018; Legras et al. 2018) and are listed in table S6. A matrix of 385,678 SNPs was
551  generated with GenotypeGVCFs from GATK after gvcf files were constructed as detailed in
552 (Peter et al. 2018). This matrix was used to build a neighbor-joining tree using the ape and
553  SNPrelate R packages. Flor and wine yeast genetic groups were determined according to (Peter
554  etal.2018; Legras et al. 2018) and correspond to the flor genetic group and the Wine/European
555  (subclade 4), respectively. Flor yeast specific alleles were defined as alleles with a frequency

556  difference of 90 % between flor and wine genetic groups.

557 Proteomic data reanalysis

558  The dataset used for reanalyzing proteome specificities of the strain SB correspond to the
559  supplementary fable S5 published by Blein et al. (2015). This dataset compassed the proteomes
560  of 66 Saccharomyces strains quantified during the alcoholic fermentation of a Sauvignon blanc
561  grape juice at two temperatures. Among those strains, 28 S cerevisiae strains constituting a half-

562  diallel design of 7 parental strains of different origins and 21 F1-hybrids. In that study the
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563  parental strains SB and GN were referenced as E2 and E3, respectively. A subset portion of this
564  large data set was reanalyzed for narrowing down the proteomic specificities of the strain SB.
565  Only the proteome corresponding to S cerevisiae strains measure at 26°C were kept. Indeed,
566  proteomic data for the strain E2 (SB) at 18°C were not available. In addition, we removed the
567  proteomes of the strains W1, EW21 and EW31 due to the lower number of proteins quantified
568  (<900) respect to the other strains. By applying these filters, we analyzed the abundance of 1100
569  proteins commonly quantified in 25 S. cerevisiae strains including GN and SB. In addition, the
570  list of the 1264 proteins specifically detected between SB and GN was listed in the table S7.
571  The abundance values indicated in are the average of three biological replicates where 90% of
572 the data points have a CV% lower than 5.37. The Abundance Fold Change Ratio (AFCR) of
573  the strains SB and GN were expressed in log2 for an easier comparison. An arbitrary AFCR
574  threshold of +/-1 was used for selected proteins having a relevant abundance change, this basic
575  threshold is widely used in the proteomics literature. The table S8 provides the list of the 207
576  proteins selected in the set of the 1264 proteins common to SB and GN. Proteins with a
577  differential abundance between SB and GN were used for computing a STRING analysis in
578  order to find out functional connections with the eight genes validated in this study. The

579  permanent link of such analysis is the following https://version-11-0.string-

580  db.org/cgi/network.pl?networkld=pEeV1h8dPgJJ. The interaction classes interrogated were

581  “experiments” and “databases” with the highest confidence score.

582  Statistical analyses
583  Allthe statistical and graphical analyses were carried out using R software (R Core Team 2018).

584 The lato sensu heritability h? was estimated for each phenotype as follows:

585  h2=2toE

oP?

586  where oP? is the variance of progeny population in each environmental conditions, explaining
587  both the genetic and environmental variance of the phenotype measured, whereas oE* is the
588  median of the variance of replicates in each environmental conditions, explaining only the

589  environmental fraction of phenotypic variance.

590
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598 Figure 1. Experimental design.
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600 Figure 2. Linkage analysis leads to the identification of 14 QTLs.
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Figure 3. Results of the reciprocal hemizygosity analysis
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604 Figure 4. SB is closely related to flor yeasts
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606 Figure 5. Proteomic analysis reveals the outlier behavior of the SB strain
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Figure Legends

Figure 1. Experimental design.

Panel A. Overview of yeast central carbon metabolism during fermentation with the main
carbon input and output. Panel B. Segregant population, genetic map and phenotypic

conditions used for QTL mapping.

Figure 2. Linkage analysis leads to the identification of 14 QTLs.

Linkage analysis results for the CO,max, Glycerol and MAC% for chromosome with at least
one QTL. Horizontal lines represent the threshold of significance according to permutation test
(FDR =5 %). Vertical lines highlight QTL peaks. Grey shadow encompasses the previously
identified QTL hotspot containing PDRI, MSB2 and PMAI (Marti-Raga et al., 2017).

Figure 3. Results of the reciprocal hemizygosity analysis

Boxplot are colored according to the allele present in the hemizygous hybrids (blue = both, red
= GN and green = SB) and represented the dispersion of at least five biological replicates. A
Wilcoxon—Mann—Whitney test was applied to assess the significance of the phenotypic
difference between hemizygotes. The level of significance is indicated as follows: * p <0.1, **
p <0.05, ** p <0.01 and p < 0.001**** Panel A. RHA result for glycerol. Panel B. RHA
result for MAC%.

Figure 4. SB is closely related to flor yeasts

Panel A. Dendrogram using 385,678 SNPs from 405 wine strains. Flor yeasts group is
highlighted. Panel B. Percentage of specific allele own by SB along the genome is represented
by a gradient from dark blue (0 %) to light blue (100 %). Grey portions represent genome tracks
without any flor yeast specific allele. SB is aneuploid for chromosome IX and therefore is not
considered in this analysis. The 20 QTLs mapped are shown with red dots (some of them are

overlapping) and validated genes are shown in green.

Figure 5. Proteomic analysis reveals the outlier behavior of the SB strain

Panel A. We reanalyzed a proteomic dataset previously obtained by shotgun quantitative
proteomics (Blein et al. 2015). Yeast samples of 25 S. cerevisiae strains including SB and GN)
were collected at mid fermentation of a Sauvignon blanc grape juice. A set of 1110 proteins

common to all the strain was selected for analyzing strain relationships by a principal
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649
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651
652

653

654

component analysis. The first two components representing 34% of the total inertia illustrate
that the proteome of the strain SB (blue point) is quite divergent from the other S. cerevisae
strains including GN (red point). Panel B The functional interactions between 207 differentially
expressed proteins and the eight QTG validated in this study was interrogated by using STRING
algorithm. The three clusters encompassed 2, 4 and 31 proteins showing a strong functional
interaction with the four causative genes PYC2, MAEI, MSB2 and SDH2, (black crosses).
Active interactions were computed using the STRING algorithm on the base of experimental
data and annotated database with a minimal interaction score of 0.8. Proteins were colored
according to their mitochondrial origin (red), their involvement in pyruvate metabolism (blue)

or in neo glucogenesis (green).

Figure 6. Relative position of the eight QTG in the metabolic map of S cerevisiae
The metabolic relationships between the eight causative genes identified in this study is
presented. Genes impacting glycerol production are represented in green while genes impacting

MAC% are presented in blue.

Tables

Table 1. ns-SNPs in validated genes according to genetic group

ns-SNP Frequency in deleterious
ORF Gene Protein size Trait impacted effect®
Protein allele Inheritance wine group flor group
F181L SB 1.7 12.8 no
V5701 SB 1.8 3.2 no
YGR061C ADE6 1359 Glycerol
P745S GN 0.4 0 no
V1238A SB 2 4.3 yes
P74L GN 96.3 0 yes
L176M SB 0.6 27.7 no
D200E SB 0.6 10.6 yes
E283R SB 2.7 100 no
YGL0O08C PMA1 919 MAC% L290v SB 0.6 27.7 no
K431l SB 0 0 no
Q432E SB 0 0 no
D718N SB 3.5 100 no
E875Q SB 2.7 97.9 yes
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YGL0O37C PNC1 217 Glycerol. MAC% | V112A SB 1.7 100 no
Q373K SB 1.7 no

YBR218C PYC2 1181 MAC%
E722K SB 0.1 0 no
YLLO41C SDH2 267 MAC%. kinetics K158E SB 13 100 no
YGRO14W MSB2 1306 Glycerol S529F SB 1.7 98.9 yes
YKLO29C MAE1 669 MAC% 1605V GN 64.9 0 no

a ns-SNP have been predicted to be to have a deleterious effect on protein according to

PROVEAN algorithm

Supplementary Figure

Fig S1. Correlation between traits.

Correlation between traits. Data is normalized according to environment. Each dot represents
the average value of an individual in one of the three phenotypic condition. Correlation
coefficient and P value of Spearman’s correlation test is indicated. CO,max is negatively
correlated with glycerol and positively correlated with MAC% (Spearman test, pval < 0.01).
However, rho values observed are quite low (<0.2) because the variation in CO, production is

balanced by glycerol production and malic acid consumption.

Fig S2. Distribution of traits.

Left. Distribution of the progeny according to trait and media is represented. Dashed vertical
line represent parental average value. Right. Data is normalized according to environment.
Distribution of the progeny in all media, according to trait and cross. Dashed vertical line

represent parental average value.

Fig S3. QTL effect in population.
Effect of each QTL according to parental inheritance. Each dot represents the phenotypic value
of one individual and are colored according to their marker inheritance. Bigger points

represent the mean of the population.

Fig S4. Discrepancy for MSB2

Panel A. Effect of the marker associated to MSB2 in the offspring. Each dot represents the

phenotypic value of one individual and are colored according to their marker inheritance.
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Panel B. Result of RHA test for MSB2. The represented value is from at least 5 biological
replicates. The level of significance is indicated as follows: * p < 0.1. ** p <0.05. *** p < 0.01.

Solid lines of kinetic curves represent the mean and the shadow the standard error.

Fig SS. SDH2 hemizygotes show a substantial haploinsufficiency according to
media.

The represented value is from at least 5 biological replicates. A Wilcoxon—Mann—Whitney test
was applied to assess the significance of the phenotypic difference between wild type and
hemizygote. The level of significance is indicated as follows: * p <0.1. ** p <0.05. *** p<0.01.

Solid lines of kinetic curves represent the mean and the shadow the standard error.

Fig S6. SB proteome exhibit a strongest variability than GN respect to 24 others S
cerevisiae proteomes.

The plot represents the distribution of the Abundance Fold Change Ratio (expressed in log2) of
the strains SB and GN respect to the average values of 24 other strains. The variance of SB and
GN computed for the 1110 proteins indicated a highest variability of the SB proteome (F-test

analysis <1.107).

Fig S7. Abundance of proteins belonging to the oxidative and reductive branches
of TCA in SB respect to GN and others S cerevisiae strains

Panel A. Abundance fold ratio of quantified proteins belonging to the TCA and the glyoxylate
shunt; red and green colors indicated over and under expressed proteins in the SB strain vs GN
(left box) or vs the average value of 24 § cerevisiae strains (right box). Panel B. correlation
between the AFCR (log2) of SB vs GN and SB vs 24 S. cerevisiae strains for the commonly

expressed proteins.

Supplementary file

File S1. Assessment of the alcoholic fermentation yield and variability of carbon
use in wine fermentation

File S2. Hemizygotes construction
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Supplementary tables

Table S1. Genotype data of offspring

Table S2. Phenotype data of offspring

Table S3. Heritability

Table S4. QTL list

Table S5. Candidate genes

Table S6. Strains used for phylogeny analysis
Table S7. Protein dataset

Table S8. Protein difference SB vs GN

Data Availability Statement
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