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Abstract- Interspecific competition can strongly influence community structure and 24 

shape niche breadth and overlap. One of the main factors that determine the 25 

hummingbird community structure is competition for food. Hummingbirds functional 26 

attributes, such as beak length and body mass, influence nectar acquisition in the 27 

flowers, shaping foraging niches according to hummingbird dominance and foraging 28 

strategy.  This study evaluates how the hummingbirds' functional and behavioral 29 

attributes are related to plants assemblage in rocky outcrops' habitats. We tested the 30 

following hypothesis: H1) Functional traits (beak length and body mass) are related to 31 

the richness and frequency of pollen grain morphotypes carried by hummingbirds; H2) 32 

Dominant and territorial hummingbirds carry a lower richness and frequency of pollen 33 

types when compared to subordinate hummingbirds, and H3) Hummingbird species 34 

carry different types of pollen grains. We conducted the study between September 2018 35 

and March 2019 in a Campo Rupestre (rocky outcrops) in Southeastern Brazil. 36 

Hummingbirds were captured with a trap built based on trapdoors. We recorded their 37 

beak size and body masses, marked with commercial bird rings and ink on parts of the 38 

body, and then released. Behavioral responses to artificial feeders were collected 39 

regarding each visit's time and duration and the outcome of aggressive interactions. The 40 

pollen adhered to the body parts was collected and identified in the laboratory.  Our 41 

results showed that neither body size nor aggressive behaviors influenced pollen 42 

richness and frequency in rocky outcrops. Beak length was the most important 43 

hummingbirds' attribute that influenced pollen richness, but not pollen frequency. Short-44 

billed hummingbirds carried the greatest richness of pollen grains. Pollen grain richness 45 

and frequency were not related to hummingbird body mass or aggressive behavior. The 46 

hummingbird-pollen grain interaction network has shown to be generalized in the pollen 47 

grain transport. We conclude that hummingbirds' beak length is the central 48 
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morphological variable to measure pollen grain transport. It has direct implications for 49 

the pollination of different plant species. 50 

Keywords: interaction network, pollen transportation, territorial behavior, Trochilidae. 51 
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Introduction 53 

 Diet specialization, the use of a subset of available resources, is considered 54 

one of the major mechanisms permitting species co-occurrence through reduced niche 55 

overlap (Chesson 2000; Levine and HilleRisLambers 2009). Diet specialists often have 56 

morphological adaptations that allow them to extract resources more efficiently than 57 

species with generalist feeding morphologies (Forister et al. 2012).  58 

 Morphological attributes of hummingbirds, such as beak and tongue lengths, 59 

and flowers, such as the corolla size, are directly related to the acquisition of nectar by 60 

hummingbirds (Sick 1997, Fogden et al. 2014, Rico-Guevara et al. 2019). When 61 

feeding, hummingbirds can carry a certain amount of pollen grains glued to different 62 

parts of their bodies (Von Matter et al. 2010, Rico-Guevara et al. 2019). Flowers with a 63 

large corolla opening are efficient in depositing pollen grains in the bodies of 64 

hummingbirds (Buzato et al. 2000). Body mass is a morphological variable of great 65 

importance in hummingbirds' interactions (Feinsinger 1976, Araya-Salas et al. 2018). 66 

Short-billed hummingbirds are generally characterized as functionally generalized 67 

pollinators, visiting many flowers with short corollas (Von Matter et al. 2010, Fogden et 68 

al. 2014, Maruyama et al. 2016). On the other hand, hummingbirds with long and 69 

curved beaks are adapted to the exploitation of flowers with long corollas (Collins & 70 

Paton 1989, Buzato et al. 2000, Fogden et al. 2014).  71 

 Body size and body mass have been related to the dominance hierarchy of 72 

hummingbirds in different assemblages. They can influence the composition of 73 

hummingbird species exploring a given food source, explaining in part the niche 74 

specialization observed in this group of birds (Wolf et al. 1976, Feinsinger & Colwell 75 

1978, Lopez-Segoviano et al. 2018, Marquez-Luna et al. 2019). Overall, larger 76 

hummingbird species tend to dominate, excluding smaller species from high-quality 77 
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energy resources (Araujo-Silva and Bessa 2010; Justino et al. 2012; Mendiola-Islas et 78 

al. 2016, Marquez-Luna et al. 2019). However, smaller species can also establish and 79 

defend foraging territories against larger contenders (Wolf et al. 1976; Antunes 2003). 80 

Hummingbirds of medium-large body masses are more efficient than… in expelling 81 

smaller species from food resources (Lanna et al. 2017, Lopez -Segoviano et al. 2018). 82 

Generally, medium-sized hummingbirds and small-medium straight beaks are territorial 83 

species, dominant in defense of the food resource (Feinsinger 1976). Thus, it is 84 

expected that medium-large body masses hummingbirds present less richness and less 85 

frequency of pollen adhered to their bodies when compared to small body masses 86 

species. 87 

 Dominance or subordination of hummingbirds can lead them to adopt two 88 

strategies for acquiring their food: 1) territorialism or, 2) trapline (Stiles 1975, 89 

Feinsinger & Colwell 1978). Hummingbirds that are subordinate and do not defend 90 

territories must forage for greater distances, visiting a more significant number of 91 

flower species, which can increase the richness and frequency of pollen grains adhered 92 

to their bodies. Since dominant hummingbirds defend and have exclusive access to 93 

more energetic food resources, they do not need to forage for greater distances, gaining 94 

more benefits than subordinate hummingbirds (Lanna et al. 2017). Dominant and more 95 

aggressive hummingbirds may have, then, less richness and less frequency of pollen 96 

grains adhered to their bodies (Lanna et al. 2017).  97 

 Thus, hummingbirds’ and plants’ morphological attributes can facilitate or 98 

hinder the relationship between them when referring to pollination (Sick 1997), which 99 

may influence the transport and transfer of pollen grain from one flower to another 100 

(Sick 1997, Von Matter et al. 2010). 101 
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 The interaction between plants that provide food to birds (in the form of nectar 102 

or fruits) and birds that provide positive services to the plants (in the way of pollen 103 

transfer or seed dispersal) has attracted the attention of biologists since Darwin's time 104 

(Bascompte and Jordano, 2007, Maruyama et al. 2016, Vizentin-Bugoni et al. 2016). 105 

Studies are now using complex interaction network metrics to describe bird-plant 106 

mutualistic interactions and are contributing to the development of the conceptual 107 

framework of ecological networks (Bascompte and Jordano, 2007; Ings et al., 2009; 108 

Heleno et al., 2014; Gu et al., 2015; Rodríguez -Flores et al. 2019, Simmons et al. 109 

2019). A pattern is emerging from these studies: the interspecific interactions between 110 

plant-hummingbird present an uneven distribution between species (i.e., the degree of 111 

dependence of one species to another), with some hummingbirds interacting with 112 

several plant species and others interacting with few plant species (Rezende et al. 2007). 113 

 In the context presented above, in our study, we investigate whether 114 

morphological traits (beak length and body mass) and behavioral traits (dominance 115 

hierarchy) influence the richness and frequency of pollen grains transported in the 116 

hummingbirds in outcrops in southeastern Brazil. We also investigate the influence of 117 

these traits in metrics of the plants-hummingbird ecological network. We tested the 118 

following hypotheses: H1) The richness and frequency of pollen grains transported in 119 

the hummingbird body are influenced by beak length and body mass. We expected 120 

short-billed hummingbirds to carry more richness and pollen frequency because they 121 

visit more flowers than long-billed hummingbirds.  H2) Dominance behavior will 122 

influence the richness and frequency of pollen grains in the hummingbird body. We 123 

expect that dominant hummingbirds will carry a lower richness and frequency of pollen 124 

grain than subordinate hummingbirds because they spend more time feeding and 125 

defending a single spot of a preferred resource. H3) The hummingbird-plant interactions 126 
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will present specializations with a lower overlap in the composition of morphotypes. 127 

We expect hummingbirds' morphological and behavioral characteristics to influence the 128 

richness and frequency of pollen carried by the birds with a lower overlap in the pollen 129 

types composition. 130 

Methods 131 

Study area 132 

 The study was conducted between September 2018 and March 2019 in a 133 

Campo Rupestre (rocky outcrops) site located in Ouro Preto city, Minas Gerais, 134 

Southeastern Brazil (20°22'16.62” S, 43°30'23.43” W). The altitude is 1,397m, and the 135 

climate is humid-mesothermal (humid temperate, with dry winters and hot and rainy 136 

summers; Álvares et al. 2013).  137 

Hummingbird capture 138 

 The study was divided into two stages: 1) capture of hummingbirds, held in 139 

September and November 2018, and 2) sampling of hummingbirds' dominance 140 

behaviors, which were carried out in January and February 2019, in two periods 141 

(morning and afternoon), totaling 195 hours in 30 non-consecutive days. The study 142 

summed a sampling effort of 438 hours. 143 

 Hummingbirds were captured with a trap built based on trapdoors used in 144 

hunting wild birds. It consists of a crate 50-60cm wide and 50cm high. All sides of the 145 

box were closed with a fine screen (green net). On one side of 60cm, a door was kept 146 

open with a 30cm bamboo rod. A string was attached to the door's support rod, which, 147 

when pulled, caused the door to close, trapping the hummingbirds inside. 148 

 Hummingbirds were attracted to the trap's interior with artificial drinking 149 

fountains filled with a 25% sugar concentration solution (Lanna et al. 2017). The 150 

drinkers were offered from 6:00 am to 6:00 pm, two days before data collection. In the 151 
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following three days, the hummingbirds were captured from 2:00 pm to 6:00 pm to 152 

ensure that these individuals had visited natural flowers during the morning. The 153 

sampled individuals were marked with commercial bird rings and ink on three parts of 154 

the body (chest, tail, and back). This method was preferred to minimize possible loss of 155 

pollen due to the manipulation of hummingbirds in ornithological nets traditionally used 156 

in this type of work (Borgella et al. 2001, Avalos et al. 2011). The capture of 157 

hummingbirds was authorized by the Brazilian Agency of Environment and Renewable 158 

Sources (SISBIO license number 51082-1). We measure each bird's beak length using a 159 

digital caliper (model ZAAS 1.004®) and body mass, using a Pesola precision scale 160 

(LogNature®).  161 

 The pollen adhered to the body, forehead, throat, and beak of the individuals 162 

was removed using small portions of glycerin gelatin stained with fuchsin (Beattie 163 

1971) and stored in Eppendorf for subsequent preparation of the slides for 164 

identification. Identification of morphotypes was performed considering the 165 

ornamentation, shape, and size of the pollen grains (Murcia & Feinsinger 1996, Fonseca 166 

et al. 2016).  167 

 168 

Hummingbird behavior 169 

 We documented the interactions among hummingbirds by conducting 170 

behavioral observations at a distance using an artificial drinking fountain to attract 171 

hummingbirds (following Lanna et al., 2017). The artificial drinker contained three 200 172 

ml (Mr. Pet®) artificial flowers and was filled with a 25% sugar solution. The fountain 173 

was remained available throughout the day, and the mixture was always replaced every 174 

morning (Lanna et al. 2016, Lanna et al. 2017). 175 
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 Dominance behaviors were recorded from 6 am to 10 am and from 2 pm to 4 176 

pm on five consecutive days. Birds were observed at a distance of 8m, using a 10x50 177 

binocular (Nikon TX Extreme), and the hummingbirds were identified according to 178 

Sigrist (2009). For each observation, we recorded the hummingbird species, the time 179 

and duration of each visit, and the outcome of aggressive interactions. The aggressive 180 

interactions were characterized by a hummingbird chasing (without contact) and/or 181 

attacking other hummingbirds (Cotton 1998, Camfield 2006). The winner was identified 182 

as the hummingbird that returned to feed or perch nearby after it had successfully 183 

defended and/or chased off another hummingbird from the feeder. For behavioral data 184 

collection, the focal sampling was used to record all agonistic behavior occurrences 185 

(Altmann 1974). 186 

Statistical analysis 187 

 We determined pollen grain frequency in the hummingbirds' bodies by 188 

summarizing the abundance of pollen morphotypes in each hummingbird species 189 

divided by the number of individuals of each hummingbird species. Morphotypes with a 190 

frequency lower than 3% were removed because these types could represent possible 191 

contamination of pollen grains from a plant species deposited on the flower by any 192 

other floral visitor (Talavera et al. 2001). 193 

 Pearson's correlation analysis was performed to verify whether the 194 

hummingbird's beak length was correlated with its body mass. Subsequently, 195 

Generalized Linear Models were built, and, in the case of non-significant variables, the 196 

models were reduced to the minimum ideal model (Zuur et al. 2009). We created four 197 

models, two related to the hummingbird's morphology, and the other two related to the 198 

hummingbird behavior. To analyze if the hummingbird's morphology affected the 199 

pollen richness and the frequency of pollen morphotypes (as response variables) and the 200 
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beak length and body mass as explanatory variables (the error distributions were 201 

Poisson and Gaussian, respectively). And, to analyze if the hummingbird behavior 202 

affected the pollen richness and the frequency of pollen morphotypes (the response 203 

variables), the models had the number of victories in agonistic combats and the time the 204 

species spent feeding as explanatory variables (the error distribution were negative 205 

binomial and Gaussian, respectively).  206 

 A mutualistic network was built to evaluate the relationship between the 207 

frequency of each pollen grain morphotype transported by the hummingbird. We used a 208 

quantitative matrix with hummingbirds in the columns and pollen morphotypes in the 209 

lines (Blüthgen et al. 2006). The indexes used were: complementary specialization (H2') 210 

and modularity (Q). The H2’index is derived from Shannon entropy, which describes 211 

the diversity of interactions (distribution of the interactions' weight in the interaction 212 

network). It is suggested to be robust for differences in the sampling effort and the size 213 

of the analyzed network (Fründ et al. 2016). Values close to 0 indicate high 214 

specialization, and values relative to 1 indicate high generalization (Newman 2006, 215 

Blüthgen et al. 2007). The Q index shows the most related species within the network, 216 

ranging from 0 to 1. Values close to 0 indicate no connection between individuals, and 217 

close to 1 indicates individuals high connected in the network (Dormann and Strauss 218 

2014). We used the bipartite package to calculate and analyze the interaction network 219 

(Dormann et al. 2009) of the software R version 3.1.0 (R Development Core Team 220 

2017). 221 

Results 222 

 Eight species of hummingbirds were recorded (Table 1)in the study. Of these, 223 

only Phaethornis eurynome was not observed during behavioral sampling. Pearson's 224 

correlation analysis showed that the length of the beak (mm) and body mass (g) of 225 
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hummingbirds were not correlated variables. In our study, the highest richness of pollen 226 

grain morphotypes was recorded in Amazilia lactea (s = 8), and the lowest richness was 227 

recorded in Phaethornis pretrei (s = 1) (Table 1). The highest frequency of pollen grain 228 

morphotypes was found in Phaethornis pretrei (n = 96.02%), and the lowest frequency 229 

in Heliodoxa rubricauda (n = 27.02%) (Table 1). The hummingbird species with the 230 

highest body mass was Eupetomena macroura (8.5g), and the lowest was Chlorostilbon 231 

lucidus (4.0g) (Table 1). The species with the longest beak was Phaethornis pretrei 232 

(33.5mm), and the shortest beak was Amazilia lactea (14.3mm) (Table 1).  233 

________________________Insert Table 1_______________________________ 234 

 Forty-seven morphotypes of pollen-grains adhered to the hummingbirds' 235 

bodies were identified. With the removal of the morphotypes that had a frequency 236 

below 3%, the final richness was 15 pollen grains morphotypes. In this study, the 237 

species that obtained the highest number of victories in interspecific and intraspecific 238 

agonistic combats was Heliodoxa rubricauda (n = 840), and the least amount was 239 

Chlorostilbon lucidus (n = 1) (Table 1). The species that spent the longest time feeding 240 

was Chlorostilbon lucidus (35 sec), and the shortest time was Eupetomena macroura 241 

(1.3 sec) (Table 1). 242 

 The richness of pollen grain morphotypes was inversely related to the length 243 

of the hummingbird beak (F1, 6.3218 = 25.755, p <0.004) (Figure 1; Table 2) and did not 244 

vary with hummingbirds’ body mass (F1, 0.008 = 0.0287, p <0.873). The frequency of 245 

pollen grain morphotypes did not vary significantly depending on the length of the beak 246 

(F1, 828.07 = 0.8126, p <0.409) and on the body mass of hummingbirds (F1, 521.35 = 0.4560, 247 

p <0.536) (Table 2). 248 

________________________Insert Figure 1 and Table 2_____________________  249 
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 Dominance behaviors in the artificial feeder did not vary with the richness and 250 

frequency of pollen grain morphotypes found in hummingbirds (Table 3). 251 

Hummingbirds' body mass also did not change concerning the number of victories in 252 

agonistic interactions on artificial feeders (Table 3).  253 

___________________________Insert Table 3_______________________________ 254 

 The interaction network between hummingbirds and pollen grain morphotypes 255 

showed median values of modularity (Q= 0.533) (Figure 2) and the complementary 256 

specialization index H2’(0.675) (Figure 3), indicating medium connectivity between 257 

hummingbirds and plants and a tendency for generalization of these relations. 258 

______________________Insert Figures 2 and 3_____________________________ 259 

 260 

Discussion 261 

 Our results showed that neither body size nor aggressive behaviors influenced 262 

pollen richness and frequency in rocky outcrops. Beak length was the most crucial 263 

hummingbirds' attribute that influenced pollen richness, but not pollen frequency. We 264 

expected short-billed hummingbirds to carry a higher richness of pollen morphotypes 265 

with higher frequency because they need to visit more flowers than long-billed 266 

hummingbirds. We found that the length of the beak of hummingbird species proved to 267 

be the most important morphological trait related to the richness of plants visited 268 

(measured by the pollen grains richness) and less important to explain the frequency of 269 

pollen grains transported. This greater richness of pollen grains is probably the result of 270 

an adjustment of the hummingbirds' beak with the flowers they feed on (Sick 1997, 271 

Fogden et al. 2014, Rico-Guevara et al. 2019). Due to that adjustment, the interaction 272 

network between hummingbirds and pollen grains was moderately specialized, 273 

reflecting the importance of hummingbirds in different plants' pollination process. 274 
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 The short-billed hummingbird species in our study (A. lactea, T. glaucopis, 275 

and C. lucidus) carried a higher pollen grain richness. These species are considered 276 

functional generalists because they can visit a great diversity of native and exotic plants 277 

(Maruyama et al. 2016), mainly plants with short corollas (Maruyama et al. 2016).). At 278 

the other extreme, the longest, curved-billed hummingbird species (P. eurynome and P. 279 

petrei) carried a lower richness of pollen grains when compared to the intermediate-280 

billed species (A. cirrochloris, H. rubricauda, and E. macroura) and to the short-billed 281 

(A. lactea, T. glaucopis, and C. lucidus). These two Phaethornis hummingbirds are 282 

considered specialized in feeding nectar from long tube bromeliad flowers found in the 283 

Atlantic forest, restricting access to nectar for short-billed species hummingbirds 284 

(Buzato et al. 2000, Maruyama et al. 2016, Sonne et al. 2019). The morphological 285 

match and phenological overlap are important factors predicting plant–hummingbird 286 

interactions, showing the role of these characteristics in organizing plant–hummingbird 287 

communities (Brown & Bowers 1985, Vizentin-Bugoni et al. 2014). Thus, the lowest 288 

richness of pollen grains found in Phaethornis species may reflect the lack of long, 289 

tubular flowers in the study area, remembering that our study was conducted in the 290 

Campo Rupestre area where more plant species have open and narrow corollas (Giulietti 291 

et al. 1997). 292 

 On the other hand, the frequency of pollen grains was not significantly related 293 

to the beak length. Our results indicate that the potential pollinators' effectiveness may 294 

be mediated more closely by the abundance of pollinators (hummingbirds) than the 295 

trait-matching compatibility. The potential pollinators are the pollinator's total 296 

contribution to the plant's fitness, measure, for example, by the number of pollen grains 297 

deposited (Schupp et al. 2017, Missagia and Alves 2018). Although hummingbirds' 298 

beak was not a good predictor to explain a higher frequency of pollen grains in our 299 
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study, the result points to a tendency for long, curved-billed species to carry a higher 300 

frequency of pollen grains than short-billed species. However, it is crucial to consider 301 

the environment where the present study was carried out. A rocky outcrop is a less 302 

complex and more unpredictable habitat; although deemed a megadiverse, it presents 303 

less flower diversity than forest habitats (Silveira et al. 2016). Maybe, more complex, 304 

flower-diverse habitats, like forests and urban environments, could increase the 305 

frequency of pollen carried by short-billed hummingbirds, due mainly to differences in 306 

plant (flower) composition (Maglianesi et al. 2014). 307 

 The richness and frequency of pollen grain morphotypes were not influenced 308 

by the hummingbirds' body masses, as expected. Lighter hummingbirds, such as the 309 

Phaethornithinae (P. eurynome and P. pretrei) and the Trochilinae (C. lucidus, A. 310 

lactea, and T. glaucopis), were expected to carry more morphotypes and more pollen 311 

grains. Species that are subordinate avoid combats with more dominant species. 312 

Therefore, they need to visit more plant species, which would increase the chances of 313 

having more pollen of different plant species in their bodies. Thus, hummingbirds' body 314 

mass and dominance behavior were not variables that explained the differences in the 315 

number of pollen grains transported. In contrast, some authors cite that the behavior and 316 

the body mass are the most important variables for structuring the hummingbird 317 

assembly in a resource spot (Sick 1997, Forgden et al. 2014, Lanna et al. 2017). More 318 

aggressive and dominant species can share the territory with more peaceful and less 319 

hostile species (Stiles 2008, Lanna et al. 2017, Lopez-Segoviano et al. 2018). Marques-320 

Luna et al. (2019) found that the dominant species of hummingbirds in the assemblage 321 

(L. clemenciae and C. thalassinus) weigh more than 6 g, representing the largest 322 

hummingbird species in the community. The higher rank within the dominance 323 

hierarchy was associated with large body size species, which coincides with that 324 
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reported by different authors (Dearborn 1998; Justino et al. 2012). However, the bigger 325 

species are not always the most aggressive and dominant, observed by Martin and 326 

Ghalambor (2014) and Márquez-Luna et al. (2019), where smaller species of 327 

hummingbirds dominated bigger ones in some of the interactions.  328 

 The interaction network between hummingbirds and pollen grain morphotypes 329 

tended to be generalized, with an overlap of pollen grain morphotypes carried by each 330 

hummingbird species. Most of the hummingbirds recorded in the present study 331 

belonged to the Emerald clade (Chlorostilbon, Eupetomena, Amazilia, Thalurania, and 332 

Aphantochroa), formed by evolutionarily recent and more generalist hummingbirds. 333 

The Phaetornis genus belongs to the Hermit clade, formed by evolutionarily older and 334 

more specialized hummingbirds (Rodrigues-Flores et al. 2019). Because of the 335 

hummingbird species involved, we expected and observed in this study a heterogeneous 336 

connectivity distribution, with a tendency to generalize the species interaction in the 337 

network, because most hummingbirds visited more plant species and few hummingbirds 338 

visited few of the plants.  339 

 Hummingbirds present a preference in selecting their food resource (Stiles 340 

1975, Feinsinger et al. 1979, Maruyama et al. 2014, Lanna et al. 2017). This 341 

specialization can be related to the flower morphology (Maglianesi et al. 2014, Fonseca 342 

et al. 2016) and to hummingbird morphology (beak length) (Maglianesi et al. 2014). 343 

However, it was shown that hummingbirds relaxed their specialized relationships and 344 

became less specific in their interactions in non-forested areas (Morrison and 345 

Mendenhall, 2020). Our research was conducted in a Campo Rupestre area, where trees 346 

are rare, reinforcing our result of a lower specialization in our interaction network. 347 

Thus, most hummingbirds explored many flowers, ornithophilous or not, while the 348 

hermits remained to explore few plant species.  349 
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 We conclude that the hummingbirds' beak's length is the most important 350 

variable to explain the richness, specialization, and segregation in the transport of pollen 351 

grains by hummingbirds in rocky outcrops. As suggested by Maglianesi et al. (2014), 352 

hummingbird species' morphological traits influence ecological specialization patterns. 353 

The beak's morphology seems to be more important than body mass in determining the 354 

niche partition within the community. In this way, the beak of hummingbirds is of great 355 

importance for the pollination process of many species of plants. 356 
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Table 1: Physical attributes of the recorded hummingbirds, average time spent feeding, 547 

and the number of victories in the agonistic interactions while serving in the drinking 548 

fountain. Richness and frequency of pollen grains morphotypes transported by each 549 

hummingbird species.  550 

Hummingbird species Number of 

individuals 

Pollen 

morphotype 

richness 

Pollen 

morphotype 

frequency 

(%) 

Victories in 

agonistic 

interactions 

Time 

spent 

feeding 

(sec) 

Beak 

length 

(mm) 

Body 

mass 

(g) 

Amazilia lactea 11 8 41.68 73 9.4 14.3 4.3 

Aphantochroa 

cirrochloris 

3 4 95.00 453 7.3 17.0 6.5 

Chlorostilbon lucidus 2 5 38.89 1 35.0 15.3 4.0 

Eupetomena macroura 1 4 40.06 37 1.2 21.0 8.5 

Heliodoxa rubricauda 8 4 27.02 840 6.7 17.4 7.0 

Phaethornis eurynome 2 2 95.97 - - 33.5 5.3 

Phaethornis pretrei 8 1 96.02 14 3.7 28.8 5.7 

Thalurania glaucopis 14 7 94.01 225 8.5 15.7 4.8 

 551 

  552 
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Table 2: Results of the GLM models for richness and abundance of pollen grains 553 

morphotypes collected in hummingbirds according to the functional attributes body 554 

mass plus beak length. 555 

Response variable Explanatory 

variable 

DF Devianc

e 

F Estimativ

e 

P 

Pollen richness Beak length 1 6.322 25.75

5 

-0.126 0.004*

* 

Pollen richness Body mass 1 0.009 0.029 0.014 0.873 

 

Pollen frequency Beak length 1 828.07 0.813 2.338 0.408 

 

Pollen frequency Body mass 1 521.35 0.456 -6.208 0.536 

** Statistical significance; DF = degrees of freedom 556 

  557 
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Table 3: Richness and frequency of pollen grain morphotypes as a function of the total 558 

time spent in feeding and the number of victories in agonistic interactions. 559 

Response 

variable 

Explanatory 

variable 

DF Deviance F Estimative P 

Pollen frequency Time spent feeding 1 446.17 

 

0.407 2.410 

 

0.551 

 

Pollen frequency Victories 1 131.83 

 

0.106 -0.033 

 

0.760 

 

Pollen richness Time spent feeding 1 8.696 

 

1.913 0.336 

 

0.225 

 

Pollen richness Victories 1 0.105 

 

0.021 -0.002 

 

0.890 

 

DF = degrees of freedom 560 
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 568 
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 571 

 572 

Figure 1: Relationship between richness of pollen grains morphotypes carried by 573 

hummingbirds and the length of the beak. 574 
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 576 

Figure 2: Interaction network (modules) formed by the hummingbird species and the 577 

pollen grains morphotypes concerning their beak lengths. The most vibrant colors 578 

represent the highest frequency of pollen carried by them. 579 
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 581 

Figure 3: Interaction network representing the overlapping trophic niche of 582 

hummingbirds based on the frequency of pollen grain transported by them. 583 
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