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24  Abstract- Interspecific competition can strongly influence community structure and
25 shape niche breadth and overlap. One of the main factors that determine the
26 hummingbird community structure is competition for food. Hummingbirds functiona
27  attributes, such as beak length and body mass, influence nectar acquisition in the
28  flowers, shaping foraging niches according to hummingbird dominance and foraging
29 drategy. This study evaluates how the hummingbirds functional and behaviora
30 attributes are related to plants assemblage in rocky outcrops habitats. We tested the
31 following hypothesis: H1) Functional traits (beak length and body mass) are related to
32 therichness and frequency of pollen grain morphotypes carried by hummingbirds; H2)
33  Dominant and territorial hummingbirds carry a lower richness and frequency of pollen
34  types when compared to subordinate hummingbirds, and H3) Hummingbird species
35 carry different types of pollen grains. We conducted the study between September 2018
36 and March 2019 in a Campo Rupestre (rocky outcrops) in Southeastern Brazil.
37  Hummingbirds were captured with a trap built based on trapdoors. We recorded their
38  besk size and body masses, marked with commercia bird rings and ink on parts of the
39 body, and then released. Behavioral responses to artificial feeders were collected
40  regarding each visit's time and duration and the outcome of aggressive interactions. The
41  pollen adhered to the body parts was collected and identified in the laboratory. Our
42  results showed that neither body size nor aggressive behaviors influenced pollen
43  richness and frequency in rocky outcrops. Beak length was the most important
44  hummingbirds' attribute that influenced pollen richness, but not pollen frequency. Short-
45  billed hummingbirds carried the greatest richness of pollen grains. Pollen grain richness
46  and frequency were not related to hummingbird body mass or aggressive behavior. The
47  hummingbird-pollen grain interaction network has shown to be generalized in the pollen

48 grain transport. We conclude that hummingbirds' beak length is the central
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49  morphologica variable to measure pollen grain transport. It has direct implications for
50 the pollination of different plant species.
51  Keywords: interaction network, pollen transportation, territorial behavior, Trochilidae.
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53  Introduction

54 Diet specialization, the use of a subset of available resources, is considered
55 one of the major mechanisms permitting species co-occurrence through reduced niche
56  overlap (Chesson 2000; Levine and HilleRisLambers 2009). Diet specialists often have
57 morphological adaptations that allow them to extract resources more efficiently than
58  specieswith generalist feeding morphologies (Forister et a. 2012).

59 Morphological attributes of hummingbirds, such as beak and tongue lengths,
60 and flowers, such as the corolla size, are directly related to the acquisition of nectar by
61  hummingbirds (Sick 1997, Fogden et al. 2014, Rico-Guevara et a. 2019). When
62 feeding, hummingbirds can carry a certain amount of pollen grains glued to different
63  parts of their bodies (Von Matter et al. 2010, Rico-Guevara et al. 2019). Flowers with a
64 large corolla opening are efficient in depositing pollen grains in the bodies of
65 hummingbirds (Buzato et al. 2000). Body mass is a morphological variable of great
66  importance in hummingbirds' interactions (Feinsinger 1976, Araya-Salas et al. 2018).
67  Short-billed hummingbirds are generaly characterized as functionally generalized
68  pollinators, visiting many flowers with short corollas (Von Matter et al. 2010, Fogden et
69 a. 2014, Maruyama et a. 2016). On the other hand, hummingbirds with long and
70  curved beaks are adapted to the exploitation of flowers with long corollas (Collins &
71 Paton 1989, Buzato et al. 2000, Fogden et al. 2014).

72 Body size and body mass have been related to the dominance hierarchy of
73 hummingbirds in different assemblages. They can influence the composition of
74 hummingbird species exploring a given food source, explaining in part the niche
75  specialization observed in this group of birds (Wolf et al. 1976, Feinsinger & Colwell
76 1978, Lopez-Segoviano et al. 2018, Marquez-Luna et al. 2019). Overdl, larger

77 hummingbird species tend to dominate, excluding smaller species from high-quality
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78  energy resources (Araujo-Silva and Bessa 2010; Justino et al. 2012; Mendiola-Islas et
79  a. 2016, Marquez-Luna et al. 2019). However, smaller species can also establish and
80  defend foraging territories against larger contenders (Wolf et al. 1976; Antunes 2003).
81  Hummingbirds of medium-large body masses are more efficient than... in expelling
82  smaller species from food resources (Lanna et al. 2017, Lopez -Segoviano et al. 2018).
83  Generally, medium-sized hummingbirds and small-medium straight beaks are territorial
84  species, dominant in defense of the food resource (Feinsinger 1976). Thus, it is
85  expected that medium-large body masses hummingbirds present less richness and less
86 frequency of pollen adhered to their bodies when compared to small body masses
87  Species.
88 Dominance or subordination of hummingbirds can lead them to adopt two
89 dtrategies for acquiring their food: 1) territorialism or, 2) trapline (Stiles 1975,
90 Feinsinger & Colwell 1978). Hummingbirds that are subordinate and do not defend
91 teritories must forage for greater distances, visiting a more significant number of
92  flower species, which can increase the richness and frequency of pollen grains adhered
93 to their bodies. Since dominant hummingbirds defend and have exclusive access to
94  more energetic food resources, they do not need to forage for greater distances, gaining
95  more benefits than subordinate hummingbirds (Lanna et a. 2017). Dominant and more
96 aggressive hummingbirds may have, then, less richness and less frequency of pollen
97 grains adhered to their bodies (Lannaet a. 2017).
98 Thus, hummingbirds' and plants’ morphological attributes can facilitate or
99  hinder the relationship between them when referring to pollination (Sick 1997), which
100 may influence the transport and transfer of pollen grain from one flower to another

101 (Sick 1997, Von Matter et a. 2010).
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102 The interaction between plants that provide food to birds (in the form of nectar
103  or fruits) and birds that provide positive services to the plants (in the way of pollen
104  transfer or seed dispersal) has attracted the attention of biologists since Darwin's time
105  (Bascompte and Jordano, 2007, Maruyama et al. 2016, Vizentin-Bugoni et al. 2016).
106  Studies are now using complex interaction network metrics to describe bird-plant
107  mutualistic interactions and are contributing to the development of the conceptua
108  framework of ecological networks (Bascompte and Jordano, 2007; Ings et a., 2009;
109 Heleno et al., 2014; Gu et a., 2015; Rodriguez -Flores et a. 2019, Simmons et al.
110  2019). A pattern is emerging from these studies: the interspecific interactions between
111 plant-hummingbird present an uneven distribution between species (i.e., the degree of
112 dependence of one species to another), with some hummingbirds interacting with
113 severa plant species and othersinteracting with few plant species (Rezende et al. 2007).
114 In the context presented above, in our study, we investigate whether
115  morphological traits (beak length and body mass) and behavioral traits (dominance
116  hierarchy) influence the richness and frequency of pollen grains transported in the
117 hummingbirds in outcrops in southeastern Brazil. We also investigate the influence of
118  these traits in metrics of the plants-hummingbird ecological network. We tested the
119  following hypotheses: H1) The richness and frequency of pollen grains transported in
120  the hummingbird body are influenced by beak length and body mass. We expected
121 short-billed hummingbirds to carry more richness and pollen frequency because they
122 visit more flowers than long-billed hummingbirds. H2) Dominance behavior will
123 influence the richness and frequency of pollen grains in the hummingbird body. We
124  expect that dominant hummingbirds will carry alower richness and frequency of pollen
125 grain than subordinate hummingbirds because they spend more time feeding and

126  defending asingle spot of a preferred resource. H3) The hummingbird-plant interactions
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127 will present specializations with a lower overlap in the composition of morphotypes.
128  We expect hummingbirds' morphological and behavioral characteristics to influence the
129  richness and frequency of pollen carried by the birds with a lower overlap in the pollen
130  typescomposition.

131 Methods

132 Study area

133 The study was conducted between September 2018 and March 2019 in a
134  Campo Rupestre (rocky outcrops) site located in Ouro Preto city, Minas Gerais,
135  Southeastern Brazil (20°22'16.62" S, 43°3023.43" W). The dltitude is 1,397m, and the
136  climate is humid-mesothermal (humid temperate, with dry winters and hot and rainy
137  summers; Alvares et al. 2013).

138  Hummingbird capture

139 The study was divided into two stages: 1) capture of hummingbirds, held in
140  September and November 2018, and 2) sampling of hummingbirds' dominance
141  behaviors, which were carried out in January and February 2019, in two periods
142 (morning and afternoon), totaling 195 hours in 30 non-consecutive days. The study
143 summed a sampling effort of 438 hours.

144 Hummingbirds were captured with a trap built based on trapdoors used in
145  hunting wild birds. It consists of a crate 50-60cm wide and 50cm high. All sides of the
146 box were closed with a fine screen (green net). On one side of 60cm, a door was kept
147  open with a 30cm bamboo rod. A string was attached to the door's support rod, which,
148  when pulled, caused the door to close, trapping the hummingbirds inside.

149 Hummingbirds were attracted to the trap's interior with artificial drinking
150 fountains filled with a 25% sugar concentration solution (Lanna et al. 2017). The

151  drinkers were offered from 6:00 am to 6:00 pm, two days before data collection. In the
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152  following three days, the hummingbirds were captured from 2:00 pm to 6:00 pm to
153  ensure that these individuals had visited natural flowers during the morning. The
154  sampled individuals were marked with commercial bird rings and ink on three parts of
155  the body (chest, tail, and back). This method was preferred to minimize possible loss of
156  pollen due to the manipulation of hummingbirds in ornithological nets traditionally used
157 in this type of work (Borgella et al. 2001, Avalos e al. 2011). The capture of
158  hummingbirds was authorized by the Brazilian Agency of Environment and Renewable
159  Sources (SISBIO license number 51082-1). We measure each bird's beak length using a
160  digital caliper (model ZAAS 1.004®) and body mass, using a Pesola precision scale
161  (LogNature®).

162 The pollen adhered to the body, forehead, throat, and beak of the individuals
163  was removed using small portions of glycerin gelatin stained with fuchsin (Bedttie
164 1971) and stored in Eppendorf for subsequent preparation of the slides for
165 identification. Identification of morphotypes was performed considering the
166  ornamentation, shape, and size of the pollen grains (Murcia & Feinsinger 1996, Fonseca
167  etal. 2016).

168

169  Hummingbird behavior

170 We documented the interactions among hummingbirds by conducting
171  behavioral observations at a distance using an artificial drinking fountain to attract
172 hummingbirds (following Lannaet al., 2017). The artificial drinker contained three 200
173 ml (Mr. Pet®) artificial flowers and was filled with a 25% sugar solution. The fountain
174  was remained available throughout the day, and the mixture was always replaced every

175  morning (Lannaet al. 2016, Lanna et al. 2017).
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176 Dominance behaviors were recorded from 6 am to 10 am and from 2 pm to 4
177 pm on five consecutive days. Birds were observed a a distance of 8m, using a 10x50
178  binocular (Nikon TX Extreme), and the hummingbirds were identified according to
179  Sigrist (2009). For each observation, we recorded the hummingbird species, the time
180  and duration of each visit, and the outcome of aggressive interactions. The aggressive
181 interactions were characterized by a hummingbird chasing (without contact) and/or
182  attacking other hummingbirds (Cotton 1998, Camfield 2006). The winner was identified
183  as the hummingbird that returned to feed or perch nearby after it had successfully
184  defended and/or chased off another hummingbird from the feeder. For behavioral data
185  collection, the focal sampling was used to record al agonistic behavior occurrences
186  (Altmann 1974).

187  Statistical analysis

188 We determined pollen grain frequency in the hummingbirds bodies by
189 summarizing the abundance of pollen morphotypes in each hummingbird species
190  divided by the number of individuals of each hummingbird species. M orphotypes with a
191  frequency lower than 3% were removed because these types could represent possible
192  contamination of pollen grains from a plant species deposited on the flower by any
193  other floral visitor (Talaveraet al. 2001).

194 Pearson's correlation analysis was performed to verify whether the
195  hummingbird's beak length was correlated with its body mass. Subsequently,
196  Generalized Linear Models were built, and, in the case of non-significant variables, the
197  models were reduced to the minimum ideal model (Zuur et al. 2009). We created four
198  models, two related to the hummingbird's morphology, and the other two related to the
199  hummingbird behavior. To analyze if the hummingbird's morphology affected the

200 pollen richness and the frequency of pollen morphotypes (as response variables) and the
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201  beak length and body mass as explanatory variables (the error distributions were
202  Poisson and Gaussian, respectively). And, to analyze if the hummingbird behavior
203  affected the pollen richness and the frequency of pollen morphotypes (the response
204  variables), the models had the number of victories in agonistic combats and the time the
205  species spent feeding as explanatory variables (the error distribution were negative
206  binomial and Gaussian, respectively).

207 A mutualistic network was built to evaluate the relationship between the
208  frequency of each pollen grain morphotype transported by the hummingbird. We used a
209  quantitative matrix with hummingbirds in the columns and pollen morphotypes in the
210 lines (Bluthgen et al. 2006). The indexes used were: complementary specialization (H2')
211 and modularity (Q). The H2 index is derived from Shannon entropy, which describes
212 the diversity of interactions (distribution of the interactions' weight in the interaction
213 network). It is suggested to be robust for differences in the sampling effort and the size
214  of the analyzed network (Frind et a. 2016). Vaues close to O indicate high
215  specialization, and values relative to 1 indicate high generaization (Newman 2006,
216  Blithgen et al. 2007). The Q index shows the most related species within the network,
217 ranging from O to 1. Values close to O indicate no connection between individuals, and
218 close to 1 indicates individuals high connected in the network (Dormann and Strauss
219  2014). We used the bipartite package to calculate and analyze the interaction network
220 (Dormann et al. 2009) of the software R version 3.1.0 (R Development Core Team
221 2017).

222 Results

223 Eight species of hummingbirds were recorded (Table 1)in the study. Of these,
224  only Phaethornis eurynome was not observed during behavioral sampling. Pearson's

225  correlation analysis showed that the length of the beak (mm) and body mass (g) of

10
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226  hummingbirds were not correlated variables. In our study, the highest richness of pollen
227  grain morphotypes was recorded in Amazilia lactea (s = 8), and the lowest richness was
228  recorded in Phaethornis pretrel (s = 1) (Table 1). The highest frequency of pollen grain
229  morphotypes was found in Phaethornis pretrel (n = 96.02%), and the lowest frequency
230 in Heliodoxa rubricauda (n = 27.02%) (Table 1). The hummingbird species with the
231 highest body mass was Eupetomena macroura (8.5g), and the lowest was Chlorostilbon
232 lucidus (4.0g) (Table 1). The species with the longest beak was Phaethornis pretrei
233 (33.5mm), and the shortest beak was Amazilia lactea (14.3mm) (Table 1).

234 Insert Table 1

235 Forty-seven morphotypes of pollen-grains adhered to the hummingbirds'
236  bodies were identified. With the remova of the morphotypes that had a frequency
237  below 3%, the final richness was 15 pollen grains morphotypes. In this study, the
238  species that obtained the highest number of victories in interspecific and intraspecific
239  agonistic combats was Heliodoxa rubricauda (n = 840), and the least amount was
240  Chlorostilbon lucidus (n = 1) (Table 1). The species that spent the longest time feeding
241 was Chlorostilbon lucidus (35 sec), and the shortest time was Eupetomena macroura
242 (1.3sec) (Table 1).

243 The richness of pollen grain morphotypes was inversely related to the length
244 of the hummingbird beak (Fy 63218 = 25.755, p <0.004) (Figure 1; Table 2) and did not
245  vary with hummingbirds' body mass (Fy, 000s = 0.0287, p <0.873). The frequency of
246  pollen grain morphotypes did not vary significantly depending on the length of the beak
247  (F1, 82807 = 0.8126, p <0.409) and on the body mass of hummingbirds (F1, s21.35 = 0.4560,
248  p<0.536) (Table 2).

249 Insert Figure 1 and Table 2

11
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250 Dominance behaviorsin the artificial feeder did not vary with the richness and
251 frequency of pollen grain morphotypes found in hummingbirds (Table 3).
252 Hummingbirds body mass aso did not change concerning the number of victories in
253  agonistic interactions on artificial feeders (Table 3).

254 Insert Table 3

255 The interaction network between hummingbirds and pollen grain morphotypes
256  showed median values of modularity (Q= 0.533) (Figure 2) and the complementary
257  specialization index H2'(0.675) (Figure 3), indicating medium connectivity between
258  hummingbirds and plants and atendency for generalization of these relations.

259 Insert Figures 2 and 3

260

261  Discussion

262 Our results showed that neither body size nor aggressive behaviors influenced
263  pollen richness and frequency in rocky outcrops. Beak length was the most crucial
264  hummingbirds' attribute that influenced pollen richness, but not pollen frequency. We
265  expected short-billed hummingbirds to carry a higher richness of pollen morphotypes
266 with higher frequency because they need to visit more flowers than long-billed
267  hummingbirds. We found that the length of the beak of hummingbird species proved to
268  be the most important morphological trait related to the richness of plants visited
269  (measured by the pollen grains richness) and less important to explain the frequency of
270  pollen grains transported. This greater richness of pollen grains is probably the result of
271 an adjustment of the hummingbirds' beak with the flowers they feed on (Sick 1997,
272 Fogden et a. 2014, Rico-Guevara et al. 2019). Due to that adjustment, the interaction
273 network between hummingbirds and pollen grains was moderately specialized,

274  reflecting the importance of hummingbirds in different plants' pollination process.

12
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275 The short-billed hummingbird species in our study (A. lactea, T. glaucopis,
276  and C. lucidus) carried a higher pollen grain richness. These species are considered
277  functional generalists because they can visit a great diversity of native and exotic plants
278  (Maruyama et al. 2016), mainly plants with short corollas (Maruyama et a. 2016).). At
279  the other extreme, the longest, curved-billed hummingbird species (P. eurynome and P.
280 petrel) carried a lower richness of pollen grains when compared to the intermediate-
281  billed species (A. cirrochloris, H. rubricauda, and E. macroura) and to the short-billed
282  (A. lactea, T. glaucopis, and C. lucidus). These two Phaethornis hummingbirds are
283  considered specialized in feeding nectar from long tube bromeliad flowers found in the
284  Atlantic forest, restricting access to nectar for short-billed species hummingbirds
285 (Buzato et al. 2000, Maruyama et a. 2016, Sonne et a. 2019). The morphological
286 match and phenological overlap are important factors predicting plant—-hummingbird
287  interactions, showing the role of these characteristics in organizing plant—-hummingbird
288  communities (Brown & Bowers 1985, Vizentin-Bugoni et al. 2014). Thus, the lowest
289  richness of pollen grains found in Phaethornis species may reflect the lack of long,
290 tubular flowers in the study area, remembering that our study was conducted in the
291  Campo Rupestre area where more plant species have open and narrow corollas (Giulietti
292 etal. 1997).

293 On the other hand, the frequency of pollen grains was not significantly related
294  to the beak length. Our results indicate that the potential pollinators' effectiveness may
295  be mediated more closely by the abundance of pollinators (hummingbirds) than the
296  trait-matching compatibility. The potential pollinators are the pollinator's total
297  contribution to the plant's fitness, measure, for example, by the number of pollen grains
298  deposited (Schupp et al. 2017, Missagia and Alves 2018). Although hummingbirds'

299  beak was not a good predictor to explain a higher frequency of pollen grains in our

13
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300 study, the result points to a tendency for long, curved-billed species to carry a higher
301  frequency of pollen grains than short-billed species. However, it is crucial to consider
302  the environment where the present study was carried out. A rocky outcrop is a less
303 complex and more unpredictable habitat; although deemed a megadiverse, it presents
304 less flower diversity than forest habitats (Silveira et al. 2016). Maybe, more complex,
305 flower-diverse habitats, like forests and urban environments, could increase the
306 frequency of pollen carried by short-billed hummingbirds, due mainly to differences in
307 plant (flower) composition (Maglianesi et al. 2014).

308 The richness and frequency of pollen grain morphotypes were not influenced
309 by the hummingbirds' body masses, as expected. Lighter hummingbirds, such as the
310 Phaethornithinae (P. eurynome and P. pretrei) and the Trochilinae (C. lucidus, A.
311 lactea, and T. glaucopis), were expected to carry more morphotypes and more pollen
312 grains. Species that are subordinate avoid combats with more dominant species.
313  Therefore, they need to visit more plant species, which would increase the chances of
314  having more pollen of different plant speciesin their bodies. Thus, hummingbirds' body
315 mass and dominance behavior were not variables that explained the differences in the
316  number of pollen grains transported. In contrast, some authors cite that the behavior and
317 the body mass are the most important variables for structuring the hummingbird
318  assembly in aresource spot (Sick 1997, Forgden et al. 2014, Lanna et al. 2017). More
319 aggressive and dominant species can share the territory with more peaceful and less
320 hodtile species (Stiles 2008, Lanna et al. 2017, Lopez-Segoviano et al. 2018). Marques-
321  Lunaet al. (2019) found that the dominant species of hummingbirds in the assemblage
322 (L. clemenciae and C. thalassinus) weigh more than 6 g, representing the largest
323  hummingbird species in the community. The higher rank within the dominance

324  hierarchy was associated with large body size species, which coincides with that
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325 reported by different authors (Dearborn 1998; Justino et al. 2012). However, the bigger
326  species are not always the most aggressive and dominant, observed by Martin and
327 Ghalambor (2014) and Mé&rquez-Luna et al. (2019), where smaller species of
328  hummingbirds dominated bigger ones in some of the interactions.

329 The interaction network between hummingbirds and pollen grain morphotypes
330 tended to be generalized, with an overlap of pollen grain morphotypes carried by each
331 hummingbird species. Most of the hummingbirds recorded in the present study
332  belonged to the Emerald clade (Chlorostilbon, Eupetomena, Amazilia, Thalurania, and
333  Aphantochroa), formed by evolutionarily recent and more generalist hummingbirds.
334  The Phaetornis genus belongs to the Hermit clade, formed by evolutionarily older and
335 more specialized hummingbirds (Rodrigues-Flores et a. 2019). Because of the
336 hummingbird species involved, we expected and observed in this study a heterogeneous
337  connectivity distribution, with a tendency to generalize the species interaction in the
338  network, because most hummingbirds visited more plant species and few hummingbirds
339 visited few of the plants.

340 Hummingbirds present a preference in selecting their food resource (Stiles
341 1975, Feinsinger et al. 1979, Maruyama et al. 2014, Lanna et a. 2017). This
342  specialization can be related to the flower morphology (Maglianesi et al. 2014, Fonseca
343 et a. 2016) and to hummingbird morphology (beak length) (Maglianesi et al. 2014).
344  However, it was shown that hummingbirds relaxed their specialized relationships and
345 became less specific in their interactions in non-forested areas (Morrison and
346 Mendenhall, 2020). Our research was conducted in a Campo Rupestre area, where trees
347  are rare, reinforcing our result of a lower specialization in our interaction network.
348  Thus, most hummingbirds explored many flowers, ornithophilous or not, while the

349  hermits remained to explore few plant species.
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350 We conclude that the hummingbirds' beak's length is the most important
351  variable to explain the richness, specialization, and segregation in the transport of pollen
352 grains by hummingbirds in rocky outcrops. As suggested by Maglianesi et al. (2014),
353  hummingbird species morphological traits influence ecological specialization patterns.
354  The beak's morphology seems to be more important than body mass in determining the
355  niche partition within the community. In this way, the beak of hummingbirds is of great
356  importance for the pollination process of many species of plants.
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547  Table 1: Physical attributes of the recorded hummingbirds, average time spent feeding,
548  and the number of victories in the agonistic interactions while serving in the drinking
549  fountain. Richness and frequency of pollen grains morphotypes transported by each

550  hummingbird species.

Hummingbird species Number of Pollen Pollen Victories in Time  Beak Body

individuals morphotype mor photype agonistic spent  length  mass

richness frequency interactions feeding (mm) (9)
(%) (sec)
Amazilia lactea 11 8 41.68 73 94 14.3 4.3
Aphantochroa 3 4 95.00 453 7.3 17.0 6.5
cirrochloris
Chlorostilbon lucidus 2 5 38.89 1 35.0 153 4.0
Eupetomena macroura 1 4 40.06 37 12 210 85
Heliodoxa rubricauda 8 4 27.02 840 6.7 174 7.0
Phaethor nis eurynome 2 2 95.97 - - 335 53
Phaethornis pretrei 8 1 96.02 14 3.7 28.8 57
Thalurania glaucopis 14 7 94.01 225 8.5 15.7 48
551
552
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553 Table 2. Results of the GLM models for richness and abundance of pollen grains
554  morphotypes collected in hummingbirds according to the functional attributes body

555  mass plus beak length.

Responsevariable Explanatory DF  Devianc F Estimativ. P

variable e e

Pollen richness Beak length 1 6.322 2575 -0.126 0.004*

5 *
Pollen richness Body mass 1 0.009 0.029 0.014 0.873
Pollen frequency Beak length 1 828.07 0.813 2338 0.408

Pollen frequency Body mass 1 521.35 0456 -6.208 0.536

556  ** Statistical significance; DF = degrees of freedom

557
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558  Table 3: Richness and frequency of pollen grain morphotypes as a function of the total

559 time spent in feeding and the number of victories in agonistic interactions.

Response Explanatory DF Deviance F Estimative P
variable variable

Pollen frequency  Timespent feeding 1  446.17 0.407 2410 0.551
Pollen frequency  Victories 1 13183 0.106 -0.033 0.760
Pollen richness Timespent feeding 1  8.696 1913 0.336 0.225
Pollen richness Victories 1 0105 0.021 -0.002 0.890

560 DF = degrees of freedom

561
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573  Figure 1. Relationship between richness of pollen grains morphotypes carried by
574  hummingbirds and the length of the beak.
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576

577  Figure 2: Interaction network (modules) formed by the hummingbird species and the
578 pollen grains morphotypes concerning their beak lengths. The most vibrant colors
579  represent the highest frequency of pollen carried by them.
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581

582 Figure 3: Interaction network representing the overlapping trophic niche of
583  hummingbirds based on the frequency of pollen grain transported by them.
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