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Abstract

Most tumors are heterogeneous mixtures of normal cells and cancer cells, with individual cancer cells
distinguished by somatic mutations that accumulated during the evolution of the tumor. The fundamental
quantity used to measure tumor heterogeneity from somatic single-nucleotide variants (SNVs) is the
Cancer Cell Fraction (CCF), or proportion of cancer cells that contain the SNV. However, in tumors
containing copy-number aberrations (CNAs) – e.g. most solid tumors – the estimation of CCFs from
DNA sequencing data is challenging because a CNA may alter the mutation multiplicity, or number
of copies of an SNV. Existing methods to estimate CCFs rely on the restrictive Constant Mutation
Multiplicity (CMM) assumption that the mutation multiplicity is constant across all tumor cells containing
the mutation. However, the CMM assumption is commonly violated in tumors containing CNAs, and thus
CCFs computed under the CMM assumption may yield unrealistic conclusions about tumor heterogeneity
and evolution. The CCF also has a second limitation for phylogenetic analysis: the CCF measures the
presence of a mutation at the present time, but SNVs may be lost during the evolution of a tumor due to
deletions of chromosomal segments. Thus, SNVs that co-occur on the same phylogenetic branch may
have different CCFs.

In this work, we address these limitations of the CCF in two ways. First, we show how to compute
the CCF of an SNV under a less restrictive and more realistic assumption called the Single Split Copy
Number (SSCN) assumption. Second, we introduce a novel statistic, the descendant cell fraction (DCF),
that quantifies both the prevalence of an SNV and the past evolutionary history of SNVs under an
evolutionary model that allows for mutation losses. That is, SNVs that co-occur on the same phylogenetic
branch will have the same DCF. We implement these ideas in an algorithm named DeCiFer. DeCiFer
computes the DCFs of SNVs from read counts and copy-number proportions and also infers clusters
of mutations that are suitable for phylogenetic analysis. We show that DeCiFer clusters SNVs more
accurately than existing methods on simulated data containing mutation losses. We apply DeCiFer to
sequencing data from 49 metastatic prostate cancer samples and show that DeCiFer produces more
parsimonious and reasonable reconstructions of tumor evolution compared to previous approaches. Thus,
DeCiFer enables more accurate quantification of intra-tumor heterogeneity and improves downstream
inference of tumor evolution.

Code availability: Software is available at https://github.com/raphael-group/decifer
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1 Introduction
Cancer arises from an evolutionary process during which somatic mutations accumulate in the genome of
different cells, yielding a heterogeneous tumor composed of different subpopulations of cells, or clones,
that have distinct complements of mutations1. Quantifying the heterogeneity within a tumor is essential for
understanding carcinogenesis and devising personalized treatment strategies2–4. While recent single-cell DNA
sequencing technologies enable high-resolution measurements of tumor heterogeneity5–11, the vast majority
of cancer studies in research and clinical settings12–14 rely on DNA sequencing of bulk tumor samples,
where an individual sample comprises a mixture of thousands of different tumor cells. To quantify tumor
heterogeneity using bulk sequencing data, most cancer sequencing studies analyze somatic single-nucleotide
variants (SNVs) as these mutations are ubiquitous in cancer. The fundamental quantity used to quantify tumor
heterogeneity from SNVs is the Cancer Cell Fraction (CCF) – also known as the cellular prevalence or the
mutation cellularity – which is the proportion of cancer cells that contain the SNV. CCFs form the basis for
many cancer analyses including: studying tumor heterogeneity13, 15, 16, reconstructing clonal evolution and
metastatic progression13, 17–19, identifying selection20–22, and analyzing changes in mutational processes over
time23–25. In these and other studies, the underlying assumption is that groups of SNVs with the same CCF
are likely to be present in the same cancer cells and thus occurred on the same branch of the phylogenetic
tree that describes the evolution of the tumor (Figure 1a).

Importantly, the CCF of an SNV is not directly measured in bulk DNA sequencing data of a tumor sample.
Rather, the CCF must be inferred from the DNA sequencing reads that align to the locus containing the SNV.
Specifically, the CCF is calculated from the variant allele frequency (VAF), or proportion of copies of the
locus in the sample that contain the SNV. The VAF in turn is estimated as the proportion of variant reads
at the SNV locus (Figure 1b). For a heterozygous SNV in a diploid genomic region, the CCF is twice the
VAF. However, copy-number aberrations (CNAs) or loss-of-heterozygosity (LOH) events that overlap at an
SNV locus can alter the number of copies of the SNV in a cell, and these events substantially complicate the
estimation of the CCF. The reason for this added complexity is because the calculation of the CCF from the
VAF depends on the mutation multiplicity, or the number of copies of the SNV in a tumor sample or clone.
However, in bulk sequencing data only estimates of the total number of copies of a locus can be obtained26–32.
Knowledge of the copy numbers at a locus – even allele-specific copy numbers and subclonal copy-number
proportions – is insufficient to determine mutation multiplicities. Indeed, there are often multiple possible
values for the unobserved mutation multiplicities that provide equally plausible explanations for the observed
read counts and copy numbers at an SNV locus. In statistical terms, the CCF is not identifiable from DNA
sequencing data (Figure S1a). Since CNAs and LOH events that amplify or delete large genomic segments,
chromosomal arms, and even the whole genome33–36 are frequent in cancer – particularly in solid tumors
where up to ⇠90% of tumors37 may contain CNAs – it is imperative to have robust methods to calculate
CCFs from bulk sequencing data.

Multiple computational methods have been developed in recent years to estimate CCFs in bulk sequencing
data. These methods can be categorized into two different strategies. The first strategy is to severely restrict
the possible mutation multiplicities of SNVs; specifically, many methods13, 16, 21, 35, 38–45 assume that all cells
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harboring an SNV have the same mutation multiplicity. We refer to this assumption as the Constant Mutation

Multiplicity (CMM) assumption (Figures 1c and S1b). Many methods rely on the CMM assumption, as well
as additional heuristics, to select a single value of the CCF for each SNV. These methods either calculate
the CCF for each SNV separately13, 16, 35, 40, 41, 43 or simultaneously infer CCFs and cluster SNVs across
one or multiple samples, as done by PyClone38, Ccube46, and others39, 44, 47. While the CMM assumption
reduces the ambiguity in the calculation of the CCF, the assumption alone is insufficient to fully resolve
such ambiguity (Figures 1c and S1a). Moreover, the heuristics used to select the mutation multiplicity of an
SNV – e.g., rounding the estimated average mutation multiplicity to the nearest integer41 – may introduce
unexpected biases into the resulting analyses. More importantly, the CMM assumption is often violated in
practice (Figure S1b). For example, an SNV occurring before an amplification may result in cancer cells
with different mutation multiplicities: a group of cells without the amplification and with a single copy of the
SNV, and another group of cells with the amplification and multiple copies of the SNV. Scenarios such as this
are frequent in solid tumors that often have subclonal CNAs12, 27, 33, 36. Thus, the CMM assumption is both
too restrictive to model many real tumors and also too weak to overcome the issue of non-identifiability.

The second strategy to estimate CCFs is a phylogenetic approach using an evolutionary model that
includes both SNVs and CNAs. Methods that use this strategy include PhyloWGS48, SPRUCE49 and
Canopy50. The evolutionary models employed in these methods do not make the CMM assumption and
thus allow more realistic scenarios such as mutation losses. However, this flexibility comes at a cost of
computational efficiency: none of the current methods scale to the large numbers of SNVs measured in
current cancer sequencing studies, and these methods may take days or weeks to run even samples with
a relatively small number of mutations (⇡1000). To address scalability, these methods group mutations
into clusters where all mutations in a cluster are assumed to occur on the same branch of the phylogenetic
tree describing the evolution of the tumor. Specifically, PhyloWGS48 simultaneously clusters mutations
and reconstructs a phylogeny, while Canopy50 and SPRUCE49 require mutation clusters in input. However,
this pre-clustering approach is difficult because the CCFs of the mutations are not known in advance. If
one clusters mutations using CCFs derived under the CMM assumption then the restriction on mutation
multiplicities imposed by the CMM assumption reduces or eliminates the advantage of the phylogenetic
approach. Because of these limitations, phylogenetic methods are not as widely used as methods that rely on
the CMM assumption.

In addition to the difficulties in estimating the CCF, there is another important limitation of the CCF
itself: in many cases, the CCF is not the correct quantity to use for phylogenetic analysis. Specifically, the
CCF measures only the prevalence of a mutation in the tumor at the present time and does not necessarily
provide complete information about the past history of the mutation. Two mutations that occurred during
the same cell division may have very different CCF values if one of these mutations is later lost due to a
deletion45 (Figure S1c). In this case, one mutation may have a high CCF – suggesting that the mutation
occurred early in the evolution of the tumor – while the other mutation has a low CCF value, misleadingly
suggesting that the mutation occurred late during evolution. In fact, mutation losses are common in cancers
that contain many CNAs34, 51, 52. Jamal-Hanjani et al.13 described this issue in the TRACERx sequencing
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Figure 1: DeCiFer accurately groups SNVs into clusters with shared evolutionary history, accounting for the
occurrence of copy number aberrations and mutation loss. a, During tumor evolution, SNVs in the same clone
prior to a clonal expansion result in clusters of SNVs that are present in the same cells. Deriving these SNV clusters
aids in identifying the clones in the tumor at the present time and in inferring the past evolutionary history of the tumor.
CNAs may overlap SNVs and change their mutation multiplicities including losses of SNVs. The genotype of an SNV
in a cell is composed of the copy number at the locus and the mutation multiplicity of the SNV. b, DNA sequencing of a
bulk tumor sample yields two signals: (Right) the number of total and variant sequencing reads per SNV locus, which
can be used to deduce the variant allele frequency (VAF) of the SNV, and (Bottom) the read depth across genomics
regions which can be used to infer copy numbers and their proportions at SNV loci. c, The CMM assumption is used by
nearly all existing methods to enumerate potential genotypes. The CMM assumption produces genotype sets where all
cell genotypes that contain the mutation have the same number M of copies of the mutation (highlighted in green). d,
DeCiFer uses a less restrictive assumption on genotypes, the SSCN assumption, as well as evolutionary constraints to
enumerate potential genotype sets. DeCiFer excludes CMM genotype sets that are biologically unlikely (red crosses)
but includes additional genotype sets (green star) that do not have constant mutation multiplicities. DeCiFer also
computes the Descendant Cell Fraction (DCF) of each SNV, a statistic that summarizes both the prevalence of the SNV
and its evolutionary history, and allows for mutation losses. DeCiFer simultaneously selects a genotype set for each
SNV and clusters all SNVs using a probabilistic model of the DCF (or CCF).

study of non-small-cell lung cancer patients and proposed the “phyloCCF”, an ad hoc correction of the
inferred CCF for SNVs in genomic regions affected by subclonal deletions. However, the phyloCCF still
relies on the CMM assumption and thus models only some of the effects of CNAs on CCFs.

In this paper, we propose a new approach to analyze tumor heterogeneity and evolution in tumors that
contain both SNVs and CNAs, addressing both limitations in current approaches to estimate CCF and
limitations in the CCF quantity itself for phylogenetic analysis (Figures 1d and S1d-f). We first show how
to compute the CCF under the Single-Split Copy Number (SSCN) assumption, an assumption that relies on
standard evolutionary models for SNVs and CNAs and is less restrictive than the CMM assumption. We
then introduce a novel statistic, the descendant cell fraction (DCF), that generalizes the CCF to account
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for mutation losses. The DCF provides an elegant mapping between the quantities measured in bulk DNA
sequencing data – CNAs and read counts of SNVs – and the evolutionary history of SNVs. Specifically,
SNVs that co-occur on the same branch of the phylogenetic tree will have the same DCF. We utilize this
mapping to derive a probabilistic model to estimate the CCF or DCF while accounting for uncertainties in
DNA sequencing data. Finally, we address the issue of non-identifiability in the CCF and DCF by sharing
information across multiple SNVs and samples. We implement our approach in an algorithm named DeCiFer.
DeCiFer can be viewed as an intermediate between scalable approaches that compute CCFs using the
restrictive CMM assumption without an evolutionary model and phylogenetic approaches that simultaneously
model the evolution of all SNVs and CNAs but do not scale to large numbers of mutations. DeCiFer combines
the advantages of both approaches (e.g., clustering of mutations and joint evolution of SNVs and CNAs)
while avoiding some of their major limitations (e.g., CMM assumption and scalability). We show that that
DeCiFer outperforms existing methods on simulated data. Finally, we use DeCiFer to analyze 49 metastatic
prostate cancer samples17, and we show that DeCiFer infers DCFs that result in more realistic and more
parsimonious evolutionary histories for these tumors compared to existing approaches.

2 Methods

2.1 The Cancer Cell Fraction: Current Approaches

The cancer cell fraction (CCF) c of an SNV is defined as the fraction of cancer cells in a sample that contain
at least one copy of the SNV. The CCF is not directly observed from bulk data; rather, one observes the total
number t of reads that align to the SNV locus and the corresponding number a of reads with the variant
allele (Figure 1b). If the SNV locus is diploid (i.e., no CNAs), the standard approach13, 16, 19, 21, 35, 38–45, 47

estimates the CCF c from the fraction v̂ = a/t of variant reads as c ⇡ 1
⇢2v̂, where ⇢ is the tumor purity – i.e.,

fraction of cancer cells in the sample – which also may be inferred from bulk data26–32. Note that v̂ is the
maximum likelihood estimate (MLE) estimate of the variant allele frequency (VAF) v – i.e., the proportion
of copies of the locus in the sample that contain the SNV. More generally, if the SNV locus is aneuploid due
to CNAs, nearly all existing methods13, 16, 21, 35, 38–45 estimate the CCF by using the following generalization
of the equation for diploid case:

c ⇡ 1

⇢

✓
⇢Ntot + (1� ⇢) 2

M

◆
v̂, (1)

where Ntot is the average total copy number in cancer cells and M is the number of copies of the SNV in
cancer cells that contain the SNV.

While Eq. (1) has become the standard in the field, this equation incorporates strong assumptions about
tumor composition and evolution. To describe these assumptions, we define the genotype of an SNV locus in
a cell as a triple (x, y,m) of non-negative integers, where the copy numbers (x, y) correspond to the number
of maternal and paternal copies of the locus and the mutation multiplicity m  x+ y is the number of copies
with the SNV. The CCF c is then the fraction of cancer cells that have genotypes (x, y,m) with m � 1. Thus,
we see that Eq. (1) assumes that m = M is fixed across all the cancer cells that contain the SNV (Figure 1c),
which we state formally as follows.
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Constant Mutation Multiplicity (CMM) Assumption. At every SNV locus, there exists an integer M � 1

such that all genotypes at the locus have the form (x, y,m) where either m = 0 or m = M .

2.2 The Cancer Cell Fraction: Single Split Copy Number Assumption

The CMM assumption severely limits the genotypes at a locus and is often violated in tumors with CNAs,
as we will demonstrate in Results. Here, we define a less restrictive assumption on genotypes, the Single
Split Copy Number (SSCN) Assumption, that facilitates the computation of CCFs from bulk sequencing data
under commonly used evolutionary models. Formally, we define a genotype set � as the set of genotypes at
an SNV locus. Each genotype (x, y,m) in � has a corresponding genotype proportion g(x,y,m) that gives
the prevalence of the genotype in the sample. Let g =

⇥
g(x,y,m)

⇤
(x,y,m)2� denote the genotype proportions

for genotypes in �, and note that the genotype proportions satisfy g(x,y,m) � 0 and
P

(x,y,m)2� g(x,y,m) = 1.
Given tumor purity ⇢ and a pair (�,g) of a genotype set and genotype proportions the CCF c is uniquely

determined by the following equation:

c =
1

⇢

X

(x,y,m)2�CCF

g(x,y,m), (2)

where �CCF = {(x, y,m) 2 � | m � 1} ✓ � is the set of genotypes that contain the SNV.
Unfortunately, Eq. (2) is not directly applicable to bulk DNA sequencing data because neither the

genotype set � nor the genotype proportions g are directly measured in bulk data. Rather from the aligned
sequencing reads, one can estimate the VAF v of an SNV as well as the proportions µ(x,y) of cells with
copy number (x, y) at the locus. The copy-number proportions µ = [µ(x,y)] may be inferred using current
tools for copy number deconvolution26–32. The key question is: what genotypes and genotype proportions
are consistent with the estimated copy number proportions µ and VAF v? The relationship between these
quantities is given by the following equations.

µ(x,y) =
X

(x,y,m)2�

g(x,y,m) for all copy numbers (x, y). (3)

v =
1

F

X

(x,y,m)2�

m · g(x,y,m), (4)

where F is the fractional copy number defined as
P

(x,y)(x + y) · µ(x,y). Note that F is the average copy
number over all cells, including both cancer and normal cells; in contrast Ntot in Eq. (1) is the average copy
number in cancer cells only. Thus, we have that F = ⇢Ntot+2(1�⇢) for SNVs in autosomal chromosomes.

Given copy-number proportions µ and VAF v, there are often many pairs (�,g) that satisfy Eqs. (3) and
(4); i.e., these equations are severely underdetermined. Thus, it is necessary to impose additional constraints
on the pairs (�,g) that are considered. We make the following assumption.

Single Split Copy Number (SSCN) Assumption. At every mutation locus, there is exactly one copy number

(x⇤, y⇤) with two distinct genotypes (x⇤, y⇤, 0) and (x⇤, y⇤,m⇤).

We call a genotype set �⇤ adhering to the SSCN Assumption an SSCN genotype set. SSCN genotype sets
�⇤ have two desirable properties: (1) They arise from standard evolutionary models for SNVs and CNAs
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(see Section 2.5 for details); (2) If genotype proportions g satisfying equations Eqs. (3) and (4) exist, then
they are unique (see Appendix Eq. (S5)). Note that these properties are not necessarily true for genotype
sets derived from the CMM assumption. We say that a genotype set � is consistent with v and µ provided
there exist corresponding genotype proportions g satisfying Eqs. (3) and (4). In Appendix B.1 we describe
necessary and sufficient conditions for consistency.

As the genotype proportions g for an SSCN genotype set �⇤ are uniquely determined given VAF v and
copy-number proportions µ, the CCF c is uniquely determined as well (by Eq. (2)). Thus, we have the
following relationship between CCF c and VAF v for an SSCN genotype set �⇤.

Theorem 1. Given tumor purity ⇢, VAF v, copy-number proportions µ, and an SSCN genotype set �⇤

consistent with v and µ, the CCF c is uniquely determined by

c =
1

⇢m⇤

2

664vF �
X

(x,y,m)2�CCF
(x,y) 6=(x⇤,y⇤)

(m�m⇤) · µ(x,y)

3

775 , (5)

where �CCF = {(x, y,m) 2 �⇤ | m � 1} ✓ �⇤
is the set of genotypes containing the mutation.

Further details and the proof for Theorem 1 are in Appendix B.1. Note that similar to the CMM
Assumption, the CCF is non-identifiable under the SSCN Assumption since µ and v are not sufficient to
determine �⇤. We describe how to enumerate and select SSCN genotype sets �⇤ in Section 2.5.

2.3 Probabilistic model for the Cancer Cell Fraction

Recall that the VAF v is not directly measured from sequencing data; rather one observes only the total read
count t and variant read count a. Thus, the affine transformation in Eq. (5) cannot be used directly to compute
the CCF c from the VAF v. Many existing methods13, 19, 21, 39–41, 41, 43, 44 calculate the CCF by assuming that
the proportion v̂ = a/t of variant reads is an accurate estimate of the VAF and do not evaluate uncertainty
due to sequencing errors and coverage. Here we show how to derive a probability distribution Pr(c) for
the CCF c from any probability distribution Pr(v) on the VAF v. Specifically, we compute the posterior
probability Pr(c | a, t,µ,�) of the CCF given the observed data and an SSCN genotype set as

Pr(c | a, t, ⇢,µ,�) = ⇢m⇤

F
Pr(V (c) | a, t,µ,�) (6)

where V (c) = c⇢m⇤

F + 1
F

P
(x,y,m)2�CCF
(x,y) 6=(x⇤,y⇤)

(m�m⇤) · µ(x,y) is the inverse of Eq. (5). We derive this formula

using a change-of-variable technique in Appendix B.3.
To derive Pr(V (c) | a, t,µ,�), we first apply Bayes’ Theorem, giving

Pr(V (c) | a, t,µ,�) / Pr(V (c) | t,µ,�) Pr(a | V (c), t,µ,�). (7)

We then assume that the VAF is conditionally independent of the total read count t given µ and � and that
variant read count v is conditionally independent of µ and � given the VAF V (c) and total read count t. This
yields the following posterior probability for V (c).

Pr(V (c) | a, t,µ,�) / Pr(V (c) | µ,�) Pr(a | V (c), t). (8)
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Pr(a | V (c), t) is the likelihood of the observed variant read counts for a given VAF value. Pr(V (c) | µ,�)
is a prior over VAFs. Pr(V (c) | µ,�) is the prior probability of the VAF given copy-number proportion and
a genotype set. In Appendix B.1, we describe that due to consistency constraints, not all VAFs are feasible
given copy-number proportions µ and SSCN genotype set �. For example, 0.5 is an upper bound for VAFs v
for heterozygous mutations in diploid regions. Thus, the prior for VAF v has support over the range [v�, v+]

of feasible VAFs. One can use any reasonable distributions for the prior and likelihood. In practice, we use a
uniform distribution over [v�, v+] for the prior, and a binomial or beta-binomial distribution for the likelihood.
In Appendix B.3 we provide a more detailed derivation of the probabilistic model and in Appendix B.7 we
describe how we estimate parameters for the beta-binomial distribution from DNA sequencing data.

2.4 Descendant Cell Fraction

We derive a new quantity, the descendant cell fraction (DCF), a generalization of the CCF that accounts for
potential SNV losses. The DCF of a mutation is the proportion of cells in a sample that are descendants of
the ancestral cell where the mutation was first introduced. As an example, consider two SNVs that occurred
at the same time in the same cell. If one of these SNVs is subsequently lost due to a deletion, these SNVs
would have distinct CCFs at the time of sampling. However, the DCF for both SNVs would be the same, as
they have the same set of descendent cells in the sample. Note that the DCF equals the CCF for SNVs that
are not affected by deletions.

To define the DCF formally, we introduce the notion of a genotype tree T� = (�, E), which is a rooted
tree whose vertex set is a genotype set � and whose directed edges E encode evolutionary relationships
between pairs of genotypes. While a tumor phylogeny models the evolutionary history of all SNVs in the
tumor, a genotype tree describes the evolutionary history of only a single SNV. As such, inference of genotype
trees of individual SNVs is a less challenging task than comprehensive phylogeny inference. We summarize
a genotype tree T� and genotype proportions g by the DCF, which will enable us to assign a genotype tree to
each SNV subject to a parsimony constraint regarding the number of distinct DCF values. Specifically, the
DCF d of an SNV is defined as

d =
1

⇢

X

(x,y,m)2�DCF

g(x,y,m), (9)

where �DCF ✓ � is the subset of genotypes that are descendants of the vertex corresponding to genotype
(x⇤, y⇤,m⇤). Thus, while the CCF is the total prevalence of the subset �CCF ✓ � of genotypes with mutation
multiplicity m � 1 at the present time, the DCF is total prevalence of genotypes that are descendants of the
genotype (x⇤, y⇤,m⇤) where the mutation is first introduced. We have the following theorem.

Theorem 2. Given tumor purity ⇢, VAF v, copy-number proportions µ, an SSCN genotype set �⇤
consistent

with v and µ, and a genotype tree T�⇤ , the DCF d is uniquely determined by

d =
1

⇢m⇤

2

664vF �
X

(x,y,m)2�DCF
(x,y) 6=(x⇤,y⇤)

(m�m⇤) · µ(x,y)

3

775 (10)
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where �DCF is the set of genotypes in genotype tree T�⇤ that are descendants of the state (x⇤, y⇤,m⇤).

Observe that the only difference between Eqs. (10) and (5) is the use of �DCF rather than �CCF. To obtain
a probabilistic model for the DCF d, we follow a similar procedure described in Section 2.3 above for the
CCF, replacing the inverse transformation V (c) with V (d) = d⇢m⇤

F + 1
F

P
(x,y,m)2�DCF
(x,y) 6=(x⇤,y⇤)

(m�m⇤)µ(x,y) (see

Appendix B.3).

2.5 DeCiFer: Simultaneous Clustering and Genotype Selection using the DCF

Theorem 2 defines DCF d given VAF v, copy-number proportions µ and a genotype tree T�⇤ for SSCN
genotype set �⇤. However, neither �⇤ nor T�⇤ are directly observed by bulk data, and there frequently
are multiple possible values that are consistent with the observed data (Figure S1a). Examining SNVs
individually, there is no way to distinguish between these values. However, by evaluating SNVs jointly and
assuming that there are a small number of possible values of the DCF , we obtain constraints that reduce
ambiguity in the selection of �⇤ or T�⇤ for individual SNVs. Specifically, we make the following assumption.

Assumption. There exist DCF values d1, . . . , dk such that for every SNV in a tumor sample at least one dj

is a valid DCF for the SNV (i.e., solution of equation (10)).

Under this assumption, SNVs may be partitioned into k groups according to their DCF. However, since
SNVs may have more than one possible DCF value, the problem of identifying these groups entails the
simultaneous selection of a genotype tree for each SNV (which determines the DCF value of the SNV) and
the clustering of SNVs into k groups according to their DCF values.

Here, we describe this simultaneous selection and clustering problem in the more general setting where
we have observations from p bulk sequencing samples from the same patient. Thus, we are given variant read
counts ai = [ai,`]`=1,...,p, total read counts ti = [ti,`]`21,...,p and copy-number proportions Mi = [µi,`]`=1,...,p

for each SNV i in each sample `. Let Gi be the set of genotype trees T�⇤ for SSCN genotype sets �⇤ that are
consistent with µi. Let si 2 {1, . . . |Gi|} be a selection of a genotype tree T�⇤ for SNV i. Let zi 2 {1, . . . , k}
be a cluster assignment for SNV i. We aim to find genotype selections s, cluster assignments z, and cluster
DCFs D = [d1, . . . ,dk] where dj,` is the DCF of cluster j in sample ` that maximize the posterior probability
of the parameters given the observed read counts. Eq. (S23) in Appendix B.3 gives this posterior probability
of the DCF for an individual SNV in one sample. We assume that given cluster assignments and DCFs,
variant read counts are conditionally independent across samples and across SNVs. Thus, to compute the
objective, we take the product across samples and SNVs. This leads to the following problem.

Problem 1 (PROBABILISTIC MUTATION CLUSTERING AND GENOTYPE SELECTION (PMCGS)). Given a

set Gi of pairs of genotype sets and trees, variant read counts ai, total read counts ti and (iv) copy-number

proportions µi for each SNV i as well as an integer k > 0 find (i) DCFs D⇤ = [d1, . . . ,dk] and for each

SNV i, select (ii) s⇤i 2 {1, . . . |Gi|} and (iii) z⇤i 2 {1, . . . , k} such that

nY

i=1

pY

`=1

Pr(d⇤z⇤i ,` | ai,`, ti,`,µi,`,�i,s⇤i
, Ti,s⇤i

) (11)

is maximum.
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a b

Figure 2: DeCiFer accurately infers clusters of SNVs
on simulated data with SNV losses. a, The adjusted
Rand index of mutation clusters computed using De-
CiFer, PyClone, and PyClone+ (using CCFs computed
with a CMM-based method41) on simulated data with
varying number of samples. b, Same as a but varying
number of SNVs. Each jitter-boxplot corresponds to
twenty simulated data instances. The remaining parame-
ters are fixed to default values (100⇥ coverage, 5 clusters,
and 100 SNVs in a and 3 samples in b.)

While the hardness of the PMCGS problem is open, the variant of the problem where every VAF v is observed
instead of read counts a, t is NP-complete as it is equivalent to the well-studied HITTING SET problem
(Appendix B.4).

We introduce DeCiFer, an algorithm to solve the PMCGS. DeCiFer uses a coordinate ascent approach
to solve Eq. (11) by alternately optimizing (i) the cluster assignments z and genotype set assignments s for
individual SNVs and (ii) the cluster DCFs D.

DeCiFer imposes stronger constraints on the allowed genotype sets than imposed by the SSCN assumption,
since some SSCN genotype sets are not evolutionary plausible (for example, see the top left genotype set in
Figure 1d). Specifically, we assume that the allowed genotype trees T� for an individual SNV conform to the
following evolutionary model. First, each mutation is introduced exactly once but may be subsequently lost or
amplified due to CNAs. Second, each allele-specific copy number (x, y) of the SNV locus is attained exactly
once. Thus, viewing SNVs as two-state characters and CNAs as multi-state characters, we have the Dollo
model for SNVs and the infinite alleles assumption for CNAs. Finally, any change in mutation multiplicity
must be caused by a corresponding change in copy-number. These constraints were formally described by
El-Kebir et al.49 (Definition 12, Supplementary Material). Note that all genotype sets � that meet these
constraints are also SSCN genotype sets. Under the evolutionary constraints, the mutation multiplicity m⇤ for
the split copy number (x⇤, y⇤) is m⇤ = 1. DeCiFer enumerates Gi using the same tree enumeration procedure
introduced in SPRUCE49.

Further details of DeCiFer model selection and implementation are in Appendix B.5. DeCiFer is available
at https://github.com/raphael-group/decifer.

3 Results

3.1 Simulations

We assessed the performance of DeCiFer on simulated data with varying number of SNVs (100, 250, 500,
or 1000), samples (1, 3, 5, or 7) and SNV clusters (2, 3, 5, or 8) as well as varying expected read depth
(25⇥, 100⇥, 200⇥, or 1000⇥). We simulated all instances by varying the value of each parameter and
fixing all other parameters to default values. Briefly, we simulated each input by partitioning the SNVs into
the given number of clusters and by simulating an evolutionary process where cells accumulate clusters of
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SNVs as well as CNAs (whole chromosome, whole arm, and focal events) which may amplify or delete
overlapping SNVs. To simulate the sequencing of every SNV in each sample, we draw the total number of
reads from a Poisson distribution with rate equal to the coverage and the number of variant reads from a
binomial distribution, as done in previous studies48, 51, 53.

We compared DeCiFer with PyClone38, which is the most commonly used method for direct estimation
and clustering of CCFs. We ran PyClone with default parameters using two standard procedures to obtain
the input: directly providing CNAs in input or providing the CCFs computed using an existing CMM-based
method that accounts for subclonal CNAs41 (denoted as “PyClone+” in Figure 2). Further details are in
Appendix B.8. We evaluated the results by computing the adjusted Rand index as well as the precision and
recall across all pairs of SNVs. To calculate precision, we record the proportion of pairs that are correctly
placed in the same inferred cluster, and to calculate recall we record the proportion of pairs that are in the
same true cluster that were placed in the same inferred cluster.

We observe that DeCiFer consistently outperforms PyClone in terms of the ARI (Figures 2, S2). We
see that performance generally increases with larger numbers of samples (Figure S2a), higher read depth
(Figure S2a), and lower numbers of clusters (Figure S2b). The number of SNVs minimally affects the
performance of DeCiFer and PyClone (Figure 2b). We also find that DeCiFer achieves higher clustering
recall without loss of precision (Figure S3).

We also compared DeCiFer with PhyloWGS48, a method that infers tumor phylogenies while simulta-
neously clustering SNVs into clones. We ran PhyloWGS on simulated instances with 100 and 1000 SNVs.
While reconstruction of a tumor phylogeny jointly from CNAs and all SNVs should in principle produce the
most accurate mutation multiplicities, we found that on instances with 100 SNVs, PhyloWGS had the lowest
performance (Figure S4). On instances with 1000 SNVs, we found that PhyloWGS did not converge in
reasonable time (<3 days). These results suggest that phylogeny inference is challenging for large numbers
of SNVs in the presence of CNAs, leading to convergence issues for approaches like PhyloWGS that attempt
to simultaneously cluster SNVs and infer phylogenetic tree relating these clusters. In contrast, DeCiFer
completed all instances in under 20 minutes and produced highly accurate clusters. This suggests that its
approach of simultaneous selection of genotype trees for individual SNVs to maximize clustering of DCF
values retains many of the advantages of full phylogenetic inference.

3.2 Metastatic Prostate Cancer

We analyzed SNVs and CNAs identified in whole-genome sequencing data of 49 tumor samples from 10
metastatic prostate cancer patients from Gundem et al17. The initial published analysis17 of these patients
inferred CCFs for a subset of validated SNVs using the CMM assumption, clustered these SNVs into tumor
clones according to their CCF values, and built a phylogenetic tree describing the evolution of these clones.
We analyzed SNVs and CNAs from another published analysis of these same samples32, computing the DCF
of each SNV using DeCiFer and computing the CCF of each SNV using the method from Dentro et al.41 that
relies on the CMM assumption. Further details of the analysis are in Appendix B.9.

We found that the DCFs computed by DeCiFer are substantially different from the CMM CCFs for a large
number of SNVs (Figure 3 and Figure S5). We summarize these differences according to two commonly
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Figure 3: DeCiFer changes the classification of a
large number of SNVs. a, The classification of SNVs
depends on the values of their cell fractions (i.e., CCF
or DCF). SNVs are classified as clonal/subclonal based
on their CCF in a sample. SNVs are classified as trun-
cal/subtruncal based on their DCF, which quantifies evo-
lutionary history with respect to the cells in the sample.
b, Numbers of SNVs with different classification across
49 samples from 10 prostate cancer patients.

used classifications of SNVs. First, we classify SNVs as clonal if they are inferred to be present in all cells in
a tumor sample (CCF ⇡ 1) or subclonal if they are inferred to be present only in a subpopulation (CCF ⌧ 1).
The clonal/subclonal classification categorizes SNVs according to their presence in cancer cells at the time of
sampling. Second, we classify SNVs as truncal if they are inferred to occur before the most recent common
ancestor of all cancer cells in the sample, and subtrunal otherwise. Most previous studies16, 19, 21, 35, 38–44, 47

assume that clonal SNVs and truncal SNVs are identical. However, this assumption does not necessarily
hold when SNVs are lost due to deletions in cancer cells. Using CCFs, one cannot distinguish such lost
mutations from mutations that never occurred in a sample. However, the DCFs of these two cases will be
different. Thus, by computing the DCF, DeCiFer has the ability to more precisely designate SNVs as truncal,
especially those that were subsequently deleted and are subclonal. We classify SNVs as truncal if DCF ⇡ 1

or subtruncal if DCF ⌧ 1 (Figure 3a).
Overall, >23000 SNVs across all samples had a change in classification (Figure 3a) when using CCFs

with the CMM assumption versus DCFs inferred by DeCiFer. Multiple factors contribute to such changes.
First, we found that ⇠8500 SNVs across all samples that were classified as subclonal using CMM CCFs are
classified as truncal by DeCiFer (Figure 3b). This difference is due to the loss of mutations by deletions.
Such losses affect a moderate percentage of SNVs across all patients (5–32%, Figure S5) consistent with
other recent estimates of the frequency of mutation losses34. We also see a large number of classification
differences that cannot be explained by losses of SNVs. For example, we found that ⇠12000 SNVs across
all samples are classified as clonal using CMM CCFs and as subtruncal by DeCiFer (Figure 3b). These
correspond to a moderate percentage of SNVs across all patients (3–40%, Figure S5). These differences are
explained by choices of different mutation multiplicities (and different genotype sets �), for these SNVs. We
will show below that the genotypes selected by DeCiFer often result in more parsimonious explanations for
the observed data.

Another key difference in classification of SNVs is the classification of mutations as absent in a sample.
SNVs without any observed variant reads in a sample (VAF = 0) are typically classified as absent from the
sample. As a result, current cancer sequencing studies generally assume in downstream analyses that these
SNVs were never present in the observed cancer cells in that sample or their ancestors. However, SNVs can
be deleted by CNAs during tumor evolution and, when all cancer cells in a sample have been affected by
such deletions, truncal SNVs may appear as absent. We find that 1, 560 SNVs across all samples classified as
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Figure 4: DeCiFer reclassifies subclonal mutations from CMM CCFs as truncal resulting in simpler evolution-
ary scenarios on prostate cancer patient A17. a, (Top) Two groups of 284 SNVs on chromosome 5q (brown and
green) have similar VAFs in sample A17-F but different VAFs in sample A17-D, while being affected by the same
CNA. (Middle) Positions of green and brown SNVs on chromosome 5q. (Bottom) Inferred copy numbers in samples:
all cells in A17-F are heterozygous diploid, while 61% of cancer cells in A17-D have a copy-neutral LOH. b, A
CMM-based method41 infers CCFs that separate the 284 SNVs into a clonal cluster (green) and a subclonal cluster
(brown). Following the CMM assumption, the clonal SNVs (green) are inferred to have mutation multiplicity of 2
in two distinct tumor clones (clone I and II). This leads to a phylogenetic reconstruction (right) with the unrealistic
conclusion that each of the 142 SNVs occurred twice independently on both homologous chromosomes (i.e., 142
homoplasy events). c, DeCiFer infers DCF⇡1 for all 284 SNVs by identifying different mutation multiplicities (blue
dashed box) for SNVs in the green cluster across the two clones (I and II) and by identifying loss of brown SNVs
in subset of tumor cells. Thus all SNVs in the green and brown cluster are truncal. This results in a realistic tumor
phylogeny where the mutation multiplicities are consistent with the observed copy-neutral LOH.

absent using the CMM CCFs are classified as truncal or subtruncal by DeCiFer (Figure 3b), corresponding to
0–5% of the total number of SNVs across patients (Figure S5c).

The differences between the inferred CMM CCFs and the DCFs do not simply result in different
classifications of SNVs but also have a critical impact on downstream phylogenetic analysis. For example,
on chromosome 5q in prostate cancer patient A17, there are two groups of 284 SNVs with different VAFs
in sample A17-D (Figure 4a, top). While one group (green) is classified as clonal and the other group
(brown) as subclonal based on CMM CCFs, DeCiFer classifies both groups as truncal. A previous copy-
number analysis32 identified the presence of cancer cells with different copy numbers in the same region
(Figure 4a, bottom): 61% of cancer cells have a copy-neutral loss-of-heterozygosity (LOH) (i.e., copy
numbers (2, 0)), while the remaining cells are heterozygous diploid (i.e., copy numbers (1, 1)). Following the
CMM assumption, the mutation multiplicity of the clonal cluster (green) is 2 in all cancer cells (Figure 4b),
indicating the presence of cells with genotype (1, 1, 2). As each of these SNVs are present on both the
two copies of the locus, this implies that each of the 142 SNVs occured twice (homoplasy), once on each
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homologous chromosome. While recurrent mutations, or homoplasy, may occasionally happen in tumor
evolution54, observing homoplasy in 142 SNVs – all on the same chromosomal arm – seems highly unlikely.

On the same patient A17, DeCiFer infers DCFs that result in a much more realistic mutation multiplicies
and phylogenetic reconstruction. In particular, DeCiFer infers that the two groups of SNVs (green and brown
in Figure 4a) are part of the same truncal cluster (i.e., DCF⇡ 1) but have different mutation multiplicities: the
SNVs in the first group (green) have a multiplicity of 1 in one clone and a multiplicity of 2 in the other, a
scenario that is not allowed under the CMM assumption. DeCiFer’s results are consistent with a realistic
evolutionary scenario where the two groups of SNVs occurred on different alleles of the chromosome: the
first group (green) was amplified during the copy-neutral LOH event, while the second group (brown) was
lost. Further supporting this reconstruction is the observation that the two groups of SNVs are randomly
distributed over chromosome 5q (Figure 4a), indicating that the differences in VAF between the green and
brown SNVs are not due to an error in the copy numbers for one group. Thus, DeCiFer’s classification of
the SNVs in the brown group as truncal, but lost in a subpopulation of cancer cells results in a simpler and
more realistic reconstruction of tumor evolution compared to the classification of these SNVs as subclonal
according to their CMM CCFs. Notably, on another patient (A-24), we observe the opposite difference in
classification: SNVs classified as clonal by the CMM CCFs are classified as subtruncal by DeCiFer resulting
similarly in a simpler reconstruction of tumor evolution (Section C.2 and Figure S6).

On prostate cancer patient A12, we see a example of mutations that are classified as absent using CMM
CCFs but classified as truncal by DeCiFer. Specifically, Chromosome 6q contains 86 SNVs that are split
into two groups with different VAFs across three samples (Figure 5a, top): the first group (green) has VAFs
between 0.4–0.8 in all samples, while the second group (magenta) has VAFs between 0.1–0.4 in samples
A12-C and A12-D but VAFs ⇡ 0 in the remaining sample A12-A. These two groups of SNVs have different
CMM CCFs across samples and result in the inference of three distinct tumor clones with a complicated
evolution characterized by recurrent mutation (homoplasy) of 58 SNVs in the magenta cluster (Figure 5b).
However, a previous copy-number analysis32 revealed the presence of a copy-neutral LOH on chromosome
6q in these samples. The proportions of cancer cells that have the LOH closely follow the VAFs of the SNVs
in the magenta group of SNVs (Figure 5a, bottom): 100%, 66%, and 0% of cancer cells have a copy-neutral
LOH in A12-A, A12-C, and A12-D, respectively. DeCiFer infers that all the 86 SNVs in the green and
magenta groups are truncal with DCFs ⇡ 1, and that the magenta group of SNVs were lost during the
copy-neutral LOH event (Figure 5c). Indeed, in sample A12-A, where all cancer cells have the copy-neutral
LOH, these SNVs have a VAF= 0. Note that the phyloCCF correction introduced in Jamal-Hanjani et al.13 to
address issues of mutation loss would not have identified the magenta SNVs as truncal. Since the phyloCCF
is applied on each sample independently, it cannot distinguish between mutation losses and absences in a
given sample, and thus is only applied to SNVs with VAF > 0. Thus DeCiFer yields a more parsimonious
reconstruction of tumor evolution than obtained with CMM CCFs, with fewer tumor clones and no massive
homoplasy.

13



Clone I
(A12-D)

a b

c

C
C

F 
in

 A
12

-D

CCF in A12-A CCF in A12-C

D
C

F 
in

 A
12

-D

DCF in A12-A DCF in A12-C

Homoplasy 
×58 SNVs

Clone II
(A12-A,C)

Clone III
(A12-C)

Clone II
(A12-A,C)

Clone I
(A12-C,D)

Copy-neutral 
LOH

DeCiFer

CMM method
VA

F 
in

 A
12

-D

VAF in A12-A VAF in A12-C

Genomic positions

28 SNVs

58 SNVs

Chromosome 6q

x

A12-A A12-C A12-D

0% 34% 100%

100% 66% 0%

C
op

y 
nu

m
be

rs

Sample

- 2
- 0

Mutation multiplicity

in A12-A:

2 2
1 0

in A12-C:

1 -
1 -

in A12-D:

- 2
- 0

Mutation multiplicity

in A12-A:

1 2
1 0

in A12-C:

1 -
1 -

in A12-D:

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…

…
…

…… ,

Copy-neutral 
LOH

Copy numbers

Copy numbers

…

Figure 5: DeCiFer accurately identifies losses of SNVs in prostate cancer patient A12. a, Two groups of 87 SNVs
on chromosome 6q (green and magenta) have different VAFs in samples A12-A and A12-C, with one group (magenta)
having VAF = 0 in A12-A. (Middle) Positions of green and magenta SNVs on chromosome 6q. (Bottom): Inferred
copy numbers in samples: sample A12-A only contains cancer cells with a copy-neutral LOH, A12-D only contains
heterozygous diploid cells, and A12-C contains a mixture of both. b, A CMM-based method41 infers CCFs that separate
the SNVs into a clonal cluster in all samples (green) and another cluster (magenta), which is clonal in A12-D, absent in
A12-A, and subclonal in A12-C. Following the CMM assumption, the mutation multiplicities in each sample indicate
the presence of three distinct tumor clones (labeled I, II, and III). This leads to a phylogenetic reconstruction (right) with
the unrealistic conclusion that 58 SNVs occurred twice independently on both homologous chromosomes in Clone III
(58 homoplasy events). c, DeCiFer infers DCF ⇡ 1 for all SNVs by identifying different mutation multiplicities (blue
dashed box) for SNVs in green cluster in sample A12-C and by identifying the loss of 28 magenta SNVs in a subset of
tumor cells due to a copy-neutral LOH. Thus, all SNVs in green and magenta clusters are truncal. Notably, these 28
SNVs have DCF ⇡ 1 also in A12-A even though their VAF = 0; this is because all cancer cells have a copy-neutral
LOH in sample A12-A. The inferred losses of these 28 SNVs are well supported by the fact that the proportion of
cancer cells with the copy-neutral LOH (second row of table in (a)) closely follows their variations of VAF across
samples (VAFs in (a)).

4 Discussion
The cancer cell fraction (CCF) is the cornerstone of tumor heterogeneity and evolution analysis using
single-nucleotide variants (SNV). However, we demonstrated that current approaches to estimate CCFs
suffer from major limitations and these limitations have striking consequences on real data. First, nearly all
existing methods to estimate CCFs are based on the Constant Mutation Multiplicity (CMM) assumption that
is violated in many tumors. Second, the CCF is not the correct quantity to group mutations for phylogenetic
analysis in the case where SNV losses occur due to CNAs, a case that is common in solid tumors. In this work,
we address these limitations by: (i) introducing the Single-Split Copy Number (SSCN) assumption, a more
realistic alternative to the CMM assumption; (ii) defining the descendant cell fraction (DCF), a generalization
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of the CCF that accounts for SNV losses; (iii) developing DeCiFer, an algorithm that simultaneously estimates
DCFs (or CCFs) of individual SNVs and clusters SNVs into a small number of groups according to these
DCFs (or CCFs) across multiple tumor samples. We show that DeCiFer improves the identification of SNVs
that co-occurred in the same tumor clone on both simulated and real cancer data, yielding more realistic
reconstructions of tumor evolution compared to earlier approaches based on CCFs inferred using the CMM
assumption. DCF clusters account for mutation losses and differences in copy number, and thus can be used
as input to standard tumor phylogeny methods55–59. This will enable phylogeny inference for realistic sized
problems containing thousands of SNVs whose copy numbers may differ within and across tumor samples.
DeCiFer can also be run with CCFs instead of DCFs, which may be preferable for certain applications such
as neoantigen prediction60 where identifying the clonal status of mutations is important.

While DeCiFer enables us to overcome some major limitations of previous studies, there are several
venues for future improvements. First, we assume that the given copy numbers and proportions are exact.
However, methods that infer copy numbers and proportions from bulk DNA sequencing data are subject to
errors and may miss CNAs that are small or present at low proportion in a sample. This uncertainty could
be incorporated into the DeCiFer model. Second, further improvements in SNV clustering are possible,
such as better modeling of the tail of low prevalence SNVs that are expected due to neutral evolution47.
Third, breakpoints of structural variants could also be analyzed by DeCiFer since the prevalence of these
mutations is proportional to read counts61. Finally, the genotype trees selected by DeCiFer for each SNV
could be combined into tumor phylogenies, perhaps using consenus tree methods. DeCiFer provides a robust
framework to decipher tumor heterogeneity in the presence of copy number aberrations providing a tool to
improving understanding of tumor development and evolution.
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