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Abstract

In invasive electrophysiological recordings, a variety of neuronal oscillations can be detected across the cortex,
with overlap in space and time. This overlap complicates measurement of neuronal oscillations using standard
referencing schemes, like common average or bipolar referencing. Here, we illustrate the effects of spatial
mixing on measuring neuronal oscillations in invasive electrophysiological recordings and demonstrate the
benefits of using data-driven referencing schemes in order to improve measurement of neuronal oscillations.
We discuss referencing as the application of a spatial filter. Spatio-spectral decomposition is used to estimate
data-driven spatial filters, a computationally fast method which specifically enhances signal-to-noise ratio
for oscillations in a frequency band of interest. We show that application of these data-driven spatial filters
has benefits for data exploration, investigation of temporal dynamics and assessment of peak frequencies
of neuronal oscillations. We demonstrate multiple use cases, exploring between-participant variability in
presence of oscillations, spatial spread and waveform shape of different rhythms as well as narrowband
noise removal with the aid of spatial filters. We find high between-participant variability in the presence of
neural oscillations, a large variation in spatial spread of individual rhythms and many non-sinusoidal rhythms
across the cortex. Improved measurement of cortical rhythms will yield better conditions for establishing
links between cortical activity and behavior, as well as bridging scales between the invasive intracranial
measurements and noninvasive macroscale scalp measurements.
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1. Introduction

Invasive, intracranial electroencephalography (iEEG)
recordings from patients undergoing epilepsy moni-
toring have been tremendously valuable for examin-
ing neuronal activity. This is because iEEG provides
both high temporal and spatial resolution that is im-
possible to achieve using solely noninvasive human
neuroimaging (Engel et al., 2005; Jacobs and Kahana,
2010). Because of the superior spatial and tempo-
ral resolution of iEEG, combined with the possibility
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of simultaneous single-neuron recordings from hu-
mans (Suthana and Fried, 2012), these rare record-
ings provide a bridge between human cognition and
decades of animal electrophysiology. The record-
ings display myriad types of complex activity, for
instance prominent rhythms (Buzsáki et al., 2012)
in several frequency bands, overlapping in time and
space. Cortical rhythms have been examined during
resting-state activity (Groppe et al., 2013; Frauscher
et al., 2018) as well as during tasks (Jasper and Pen-
field, 1949; Halgren et al., 2019; Miller, 2019; Crone
et al., 1998b). The rhythms show distinct spectral
peaks, for instance in alpha- and beta-frequency range,
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distinct spatial distribution across rhythm types, for
instance with beta-bursts prominent in the precen-
tral gyrus, and the sensorimotor mu-rhythm in the
postcentral gyrus (Stolk et al., 2019). Theta-rhythms
are visible to a greater extent in invasive recordings,
whereas in non-invasive recordings theta is mostly
limited to mid frontal areas (Mitchell et al., 2008).
Rhythms show distinct task-related modulation and
intricate waveforms strongly deviating from sinusoids,
with these non-sinusoidalities potentially providing
improved physiological interpretability beyond oscil-
lation power alone (Cole and Voytek, 2017).

For noninvasive electrophysiological recording tech-
niques such as electroencephalography (EEG) and
magnetoencephalography (MEG), source reconstruc-
tion techniques are commonly used to extract indepen-
dent activity sources from sensor space data (Jas et al.,
2018). This is often not the case for invasive elec-
troencephalography (iEEG), where electrode-based
approaches are dominant (Liu et al., 2015; Li et al.,
2018; Arnulfo et al., 2015), which use a fixed way of
referencing the data. The two most prevalent methods
for referencing are to apply either a common average
reference, with the aim to minimize common noise
or distal activity, or to use bipolar reference, with
the aim to extract locally generated signals. Source
reconstruction for iEEG recordings has mostly em-
ployed in the context of localizing epileptic seizure
focus. The main techniques used here are biophysi-
cal modeling (Pascarella et al., 2016; Dümpelmann
et al., 2012; Fuchs et al., 2007; Chintaluri and Wójcik,
2015) and approaches using independent component
analysis (Hindriks et al., 2018; Michelmann et al.,
2018; Fahimi Hnazaee et al., 2020; Dümpelmann
et al., 2012; Hu et al., 2007; Whitmer et al., 2010).

For examining high-frequency activity, an electrode-
based approach (using a standard common average or
bipolar reference) seems to be justified because of lim-
ited spatial spread of high-frequency signal content
not exceeding inter-electrode distance (Dubey and
Ray, 2019; Crone et al., 1998a), with sub-centimeter
functional specificity (Flinker et al., 2011). In contrast
to that, activity in lower frequency ranges displays an
increased spatial spread, showing a high degree of cor-
relation between neighboring electrode locations de-
pending on oscillation frequency (Muller et al., 2016;

Crone et al., 1998b). Because of the spatial spread, it
is expected that different rhythms contribute to activ-
ity of several electrodes due to spatial superposition.
Therefore, multivariate separation techniques may im-
prove measurement of cortical rhythms also in iEEG.

Here, we explore a data-driven spatial filtering method,
spatio-spectral decomposition (SSD) for specifically
extracting oscillatory sources in iEEG data. This
technique, based on generalized eigenvalue decompo-
sition, has been shown to be superior to for instance
independent component analysis for extraction of os-
cillatory sources (Nikulin et al., 2011). Fig. 1 shows
the underlying linear model of iEEG data and illus-
trates bipolar and common average referencing.

For recording iEEG data, a number of electrodes are
placed on the cortical surface to acquire time series
data. Each electrode picks up a mixture of signals
from different types of cortical sources, determined
by location and orientation of the generating sources
and the biophysical properties of the tissue. This
spatial mixing is given by the forward model and is
assumed to be linear here (Parra et al., 2005). The
SSD approach helps in recovering distinct neuronal
sources from the activity recorded via the electrodes,
i.e., it estimates a backward model in the form of
spatial filters, in order to best measure the temporal
dynamics of oscillations and their associated features
of interest. Data referencing can be viewed as the
application of a spatial filter, in which the trace of
each electrode is multiplied with a specific weight.
For instance, in the case of a bipolar filter, the spatial
filter is a vector with as many entries as electrodes,
containing weights -1 and +1 for two selected elec-
trodes and zero for all other electrodes. For each time
point, the dot product of the electrode data with the
spatial filter is taken to yield the corresponding entry
for the component trace. The spatial filter vector is
the same for all time points and this operation can be
performed efficiently by matrix multiplication.

It is important to make a distinction between spatial
filters and the spatial patterns associated with each fil-
ter. A spatial filter assigns a weight to each electrode
that quantifies how much each electrode contributes
to the extracted component. A spatial filter is gener-
ally not interpretable (Haufe et al., 2014b), however,
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in the sense that the magnitude of the weights directly
reflects the contribution of the source to the spatially
filtered signal. This information about spatial origin
of a component can be found in the spatial pattern,
which can be computed for each spatial filter and
reflects the mapping of sources onto measured elec-
trode signals, showing the strength and polarity of a
source signal on all electrodes. The spatial patterns
are computed by matrix inversion of the spatial filters.
It can be seen that although the spatial filters in Fig. 1
have different structure respectively, the associated
spatial patterns are quite similar, reflecting a source
originating in the sensorimotor region.

In this article, we use spatial filters to investigate
rhythms present in mainly the alpha and beta-frequency
bands in human iEEG recordings. We illustrate that
the activity spread of individual rhythms can exceed
inter-electrode distance and show that spatial mix-
ing of rhythms in intracranial recordings can affect
the oscillatory power of a given rhythm and alter
its non-sinusoidal waveform shape when sources are
mixed. We demonstrate how spatial filtering can iden-
tify rhythms that otherwise may not be apparent in
the data due to masking by other stronger oscillatory
contributions, from low signal-to-noise ratio (SNR),
and/or from destructive interference. We also ex-
tract dominant rhythms in a resting state dataset with
spatial filters and discuss variability across partici-
pants in presence of detected rhythms. Additionally,
we illustrate how spatial filtering can be used as a
powerful way to remove band-limited noise, without
artefacts from temporal bandstop-filtering. While the
employed spatial filtering methods are already used
in analysis of noninvasive recordings, the aim here is
to also highlight the specific benefits of using data-
driven spatial filters for invasive electrophysiological
recordings. Improved measurement of rhythms will
aid bridging the scales from recordings obtained inva-
sively to noninvasive recording techniques.

2. Materials and Methods

2.1. Experimental recordings

We analyzed openly available datasets from a library
of intracranial recordings (Miller, 2019). We primar-

ily used the dataset fixation pwrlaw where partici-
pants fixated on a target location for several minutes,
as our focus here is physiological rhythms in the rest-
ing state. For the single participant spatial mixing
illustration in Fig. 2 as well as Fig. S1 and to show
that spatial filtering preserves oscillatory task dynam-
ics in Fig. S2 we used the dataset motor basic. In
addition, we used one recording from the faces basic-
dataset to demonstrate the application of spatial filters
for strip electrode recordings for several leads that
are in close vicinity and one recording for removing
noise with a specific spectral profile. We include the
required ethics statement for each of those datasets in
the following, as mandated by the data usage require-
ments of the data library.

2.1.1. Ethics statements

Data set fixation pwrlaw: Ethics statement: All pa-
tients participated in a purely voluntary manner, after
providing informed written consent, under experimen-
tal protocols approved by the Institutional Review
Board of the University of Washington (#12193). All
patient data was anonymized according to IRB pro-
tocol, in accordance with HIPAA mandate. These
data originally appeared in the manuscript “Power-
Law Scaling in the Brain Surface Electric Potential”
published in PLoS Computational Biology in 2009
(Miller et al., 2009).

Dataset motor basic: Participants in this dataset per-
formed hand or tongue movements with timing based
on a cue, with movement contralateral to placement
of the recording grid. Cues were presented as written
words in a 10 x 10 cm presentation window, within a
distance of 0.75–1 m from participants. The analyzed
dataset features a 39 year old female participant with
a 5 x 5 electrode array, with an inter-electrode spacing
of 10 mm, with a 4 mm diameter of each electrode.
The sampling frequency was 1000 Hz, acquired with
the sample recording system as above and hardware
band-pass filtered in the same range.

Data set faces basic: Ethics statement: All patients
participated in a purely voluntary manner, after pro-
viding informed written consent, under experimental
protocols approved by the Institutional Review Board
of the University of Washington (#12193). All patient
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“How do sources map onto electrodes?”

backward model: spatial filters W
“How to compute sources from electrode signals?”

electrode signals x estimated sources s
forward model
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Figure 1: Generative linear model of electrophysiological data. Sources s in the gray matter mix according to the forward model
A with the corresponding propagation of currents through tissue to the electrodes. The resulting signals x are recorded with electrodes
placed on the cortical surface. The objective is to estimate the sources s̃ from the electrode signals x with a backward model W .
Three different backward models are illustrated with one specific example of their respective corresponding spatial filters and patterns.
While the spatial filters can look quite different from each other, the spatial patterns point to a similar spatial origin of the extracted
signal. Image source for coronal cut: public domain Gray’s anatomy plate 718 (Gray, 1918).

data was anonymized according to IRB protocol, in
accordance with HIPAA mandate. These data origi-
nally appeared in the manuscript “Spontaneous De-
coding of the Timing and Content of Human Object
Perception from Cortical Surface Recordings Reveals
Complementary Information in the Event-Related Po-
tential and Broadband Spectral Change” published in
PLoS Computational Biology in 2016 (Miller et al.,
2016).

2.1.2. Participants

For resting state group analyses, the data from 20 par-
ticipants was used. The mean age was 31.1±9.5
(mean±standard deviation), 9 female, 7 male. For

four participants, age and gender information was not
available.

2.1.3. Experimental design and recording setup

Dataset fixation pwrlaw:The task was a fixation task
where participants fixated on a fixation cross placed
on the wall in three meters distance for several min-
utes (mean data length: 157±51 s). Intracranial
recordings were made from subdural electrode ar-
rays (mean number of electrodes: 60±12), with an
inter-electrode spacing of 10 mm, with a 4 mm diam-
eter of each electrode. For most participants, data was
available with a sample rate of 1000 Hz and was re-
sampled to 1000 Hz for participants with a higher sam-
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pling rate. The recordings were made with Neuroscan
Synamps2 amplifiers (Compumedics-Neuroscan, San
Antonio, TX) in conjunction with a clinical record-
ing system (XLTEK or Nicolet-BMSI). A common
ground and reference electrode, placed on the scalp,
was used. A hardware band-pass filter from 0.15 Hz
to 200 Hz was applied.

Dataset motor basic: Participants in this dataset per-
formed hand or tongue movements with timing based
on a cue, with movement contralateral to placement
of the recording grid. Cues were presented as written
words in a 10 x 10 cm presentation window, within a
distance of 0.75-1 m from participants. The analyzed
dataset features a 39 year old female participant with
a 5 x 5 electrode array, with an inter-electrode spacing
of 10 mm, with a 4 mm diameter of each electrode.
The sampling frequency was 1000 Hz, acquired with
the sample recording system as above and hardware
band-pass filtered in the same range.

Dataset faces basic: Participants in this dataset per-
formed a simple visual discrimination task. The elec-
trodes had 4 mm diameter and 10 mm inter-electrode
spacing, with silastic embedding. We selected three
electrode leads over the left parietal hemisphere for
analysis. The sampling frequency was 1000 Hz, ac-
quired with the sample recording system as above and
hardware band-pass filtered in the same range, the sig-
nals were measured with respect to a scalp reference
and ground.

2.2. Data analysis

Data analysis was performed using Python in con-
junction with MNE v.0.20.4 (Gramfort et al., 2013).
Analysis code necessary to produce the figures in the
manuscript from raw data is available at:
https://github.com/nschawor/ieeg-spatial-filters-ssd

2.2.1. Spectral analysis and parametrization

Power spectra were calculated with Welch’s method
(3 s window length, 0% overlap). The spectral param-
eterization method and toolbox of (Donoghue et al.,
2020) (version 1.0.0) was employed for determination
of peak frequencies. In this method, the power spec-
trum is modeled as a superposition of aperiodic and
oscillatory components, which allows to distinguish

between oscillatory and aperiodic contributions to the
power spectrum. The power spectrum P (f) for each
frequency f is expressed as:

P (f) = L(f) +
∑
n

Gn(f). (1)

With the aperiodic contribution L(f) expressed as:

L(f) = b− log[fχ], (2)

with a constant offset b and the aperiodic exponent χ.
When the power spectrum is plotted on a log-log axis,
the aperiodic exponent χ corresponds to the slope of a
line. Each oscillatory contribution Gn(f) is modelled
as a Gaussian peak:

Gn(f) = an exp

[
−(f − µn)2

2σ2
n

]
, (3)

with an as the amplitude, µn as the peak frequency
and σn as the bandwidth of each component. The
number of oscillatory components is determined from
the data, with the option to set a maximum number of
components as a parameter. The model assumption is
that oscillatory and aperiodic processes are separable.
Settings for the spectral parameterization algorithm
were: peak width limits: (0.5, 12.0); maximum num-
ber of peaks: 5; minimum peak amplitude exceeding
the aperiodic fit: 0.0; peak threshold: 2.0; and aperi-
odic mode: ‘fixed’. Here, we only extracted the peak
frequencies and bandwidths for each electrode of each
participant, discarding the aperiodic exponent.

2.2.2. Calculation of spatial filters

We estimate spatial filters via spatio-spectral decom-
position (SSD) (Nikulin et al., 2011), which specifi-
cally maximizes spectral power in a frequency band of
interest, while minimizing spectral power in flanking
frequency bands. This procedure enhances the height
of spectral peaks over the 1/f-contribution, exploiting
specifically the typical narrowband peak structure of
neural oscillations. The underlying data model for the
method assumes that the measured time series X (a
matrix with t samples and k electrodes) constitute a
linear superposition of signal XS and noise XN con-
tributions in the data. In the particular case, signal
here means oscillations in a narrow frequency band,
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while noise represents the signal in the neighboring
frequency bands. The estimation procedure uses tem-
porally band-pass filtered activity, centered on a peak
frequency with a specified bandwidth. The choice
of peak frequency and bandwidth was informed by
spectral parametrization of signals from all electrodes.
Following the original paper (Nikulin et al., 2011),
we use a 4th order Butterworth filter for temporally
filtering the respective signal and noise contributions.
The covariance matrices of the signal and noise con-
tributions are calculated on the basis of the band-pass
filtered electrode activity.

X = XS + XN

signal covariance CS = XS
TXS with CS ∈ Rk×k

noise covariance CN = XN
TXN with CN ∈ Rk×k

The objective is to find a spatial filter w, which max-
imizes the power of the projected signal PS , while
minimizing the power of the projected noise PN .

SNR(w) =
PS
PN

=
var
(
wTXS

)
var (wTXN)

=
wTCSw

wTCNw

This Rayleigh quotient can be transformed into a gen-
eralized eigenvalue problem, which allows efficient
and fast computation. In matrix form, the above equa-
tion can be written as:

CSW = CNWΛ

where W is the matrix of all spatial filters, and Λ is
the unity matrix with the corresponding eigenvalues
on the diagonal. While the spatial filters are estimated
with the aid of covariance matrices obtained from nar-
rowband activity, the spatial filters are then applied on
the broadband signal. The application to a broadband
signal ensures that features of activity originating
from the same spatial location will also be extracted
by the spatial filter, for instance the harmonics of a
non-sinusoidal signal. The number of components
returned by SSD is equal to the number of electrodes,
with the components ordered by relative SNR in the
frequency band of interest.

The peak frequency of estimated SSD components
can differ slightly from the target peak frequency used
to define the signal contribution. Therefore, after spa-
tial filter estimation, the peak frequency and the SNR

of each component (spectral peak height exceeding
the 1/f-contribution) was assessed by calculating the
power spectra and parametrization of them with the
same parameter settings as for the electrode signals.
Components exceeding a SNR-value of 5 dB were re-
tained. This will discard weak rhythms, but the main
objective here is to identify rhythms using a common
threshold in order to make comparisons across par-
ticipants. This was also done to illustrate a caveat in
iEEG analyses, which commonly involves pooling of
electrodes across participants, i.e., underlying here
is the assumption of similar SNR across participants.
The value of the SNR threshold was chosen in ac-
cordance with our previous studies (Schaworonkow
et al., 2019), which were set to examine temporally
resolved features of oscillations, e.g., instantaneous
phase.

2.2.3. Calculation of spatial patterns

Spatial patterns for interpretation of the spatial origin
of the extracted component are obtained with aid of
covariance matrices calculated for the signal compo-
nent in the frequency band of interest and the pseudo-
inverse of the spatial filters (Haufe et al., 2014b). To
illustrate spatial spread of oscillatory components, we
analysed the topography of spatial pattern coefficients.
For each component, the absolute value of the asso-
ciated spatial pattern coefficients was taken and the
values were then divided by the maximum value. The
maximum spatial pattern coefficient in a distance of
2.5 cm around the maximum (distance value deter-
mined by Euclidean distance) was extracted to assess
contribution of a single component onto several elec-
trode signals.

2.2.4. Waveform shape analysis

The bycycle toolbox (Cole and Voytek, 2019) was
used for detecting and quantifying burst features in
the time domain, using the following steps: First, a
narrow band-pass filter (finite impulse response fil-
ter, peak frequency ±3 Hz) was used for identifi-
cation of zero-crossings.With aid of zero-crossings,
cycle features are determined on broadband filtered
(1–45 Hz) data. All cycles that pass predefined crite-
ria were classified as bursts. We used the following
parameter settings for determining bursts, consistent
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across datasets: minimum of three present cycles,
amplitude fraction threshold = 0.75, amplitude con-
sistency threshold: 0.5, period consistency threshold:
0.5, monotonicity threshold: 0.5. An amplitude frac-
tion threshold of 0.75 retains only the cycles exceed-
ing an amplitude higher than the 75th percentile. The
relatively high threshold was chosen to allow for im-
proved measurement of asymmetries, as burst occur-
rence may be quite infrequent. Then, mean waveform
features across burst cycles (e.g., voltage amplitude
and cycle frequency) were calculated for each com-
ponent. A main focus here was the measurement of
waveform shape asymmetries, i.e., peak-trough asym-
metry, where the fraction spent in peak time (time
from rising flank zero-crossing to falling flank zero-
crossing) differs from the fraction spent in trough
time (time from falling flank zero-crossing to rising
flank zero-crossing), as well as rise-decay asymmetry,
where the time taken from peak to trough differs from
the time taken from trough to peak.

2.2.5. Noise removal with spatial filters

For removing noise with a specific spectral profile,
we estimate spatial filters for maximizing SNR around
the frequency peak that should be removed, e.g., 60 Hz
for line noise. Then these components are subtracted
from the raw signal with a linear operation:

Xcleaned = X−
N∑
j=1

ajsj

with X the raw signal matrix, N the number of com-
ponents to remove, aj the spatial pattern associated
with component j and sj the time course of the SSD
component j. N can be determined by inspection of
the power spectra of the estimated components, and
removing components iteratively until the noise level
reaches a sufficiently low state.

3. Results

3.1. Several rhythms contribute to intracranial activ-
ity from single electrodes

First, we illustrate how activity taken from single
intracranial electrodes shows a mixture of several dif-
ferent rhythms. Each electrode features sensorimotor

bursts in the alpha-frequency range, as indicated by a
peak around 10 Hz in the spectral domain (Fig. 2A)
and cycles with a period of approximately 100 ms in
the time domain (Fig. 2B). We compute data-driven
spatial filters using narrowband activity in the alpha-
frequency range defined as the signal contribution and
flanking frequency bands defined as the noise contri-
bution. The estimated spatial filters are then applied
on broadband activity. The spectra and examples of
the time domain activity of the three components with
highest SNR are shown in Fig. 2D and Fig. 2E. The
components display an increase in relative SNR (peak
amplitude height over 1/f-contribution), compared to
the raw electrode signals. The ordering of the compo-
nents is according to the SNR in alpha-range, with the
strongest relative SNR rhythm shown first. The SNR
for all components can be seen in Fig. 2F showing
that SNR is highest for the first component, and a fast
drop off in SNR. This ordering enables fast inspec-
tion, as only the first couple of components typically
contain activity in the frequency band of interest with
sufficient SNR.

Of note in the example is that the first component is
of much smaller total power than the second and third
components, as can be seen in the power spectrum.
The large relative SNR of the oscillation stems in part
from the low power of the 1/f-contribution. In elec-
trode 1 and 3, this component has a large contribution,
as evidenced by large coefficients of the spatial pat-
tern. But due to contributions of other components
with a higher overall amplitude, this component is
obscured on the level of electrodes. Only the activity
in the alpha frequency band and surrounding bands
is used to estimate spatial filters, but since harmon-
ics originate from the same spatial location, due to
the non-sinusoidal nature of the oscillation, the ap-
plication of the spatial filters retains the SNR in the
harmonic bands when the spatial filter is applied on a
broadband signal.

Examining the spatial patterns associated with each
component (Fig. 2I), it is evident that the multiple
rhythms co-occur in a small area, which results in
each component contributing to the activity of the
electrodes as indicated by large coefficients in the
spatial pattern. In the case of tangentially orientated
sources, the sign of the contribution can switch be-
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tween neighboring electrodes. Depending on the spa-
tial mixing of those rhythms, they can cancel out or
enhance each other during specific time periods, due
to changes in their phase relationship. In time peri-
ods where components of comparable amplitude are
phase-aligned, constructive interference takes place,
resulting in a large amplitude of the electrode signal.
In periods with a phase shift reaching π or 180 de-
grees, with peaks of one component coinciding with
troughs of another, destructive interference can result
in a low electrode signal amplitude, even though oscil-
lations are still present in the individual components
(see time points marked with red box in Fig. 2B).
Therefore, by constructive and destructive interfer-
ence, changes in the power of the electrode signal can
reflect changes in synchronization of rhythms across
space (Schaworonkow and Nikulin, 2019), and do not
necessarily reflect changes in the oscillation strength
of the source signals. Disentangling these different
possible causes of changes in oscillatory power can-
not be done based solely on activity that displays a
large degree of spatial mixing and data-driven spatial
filters may be helpful to distinguish such phenomena.

Examining the spatial filters for each component (Fig. 2H),
they resemble but also diverge from bipolar or Laplacian-
type spatial filters. The spatial filter associated with
component 1 has a bipolar-type form, but with the
advantage that the direction along which the bipolar
derivation is taken is learned from data. In Fig. S1 we
show the same traces for common average referenced
electrodes, which shows higher SNR compared to the
common reference, but still exhibits spatial mixing, as
well as bipolar derivations in two directions (anterior
to posterior and lateral to medial). Additionally, we
show in Fig. S2 that task-related temporal dynamics
are preserved by SSD spatial filtering, in line with
other referencing methods, showing high consistency.
The main argument here is not that SSD will achieve
the highest SNR, but that referencing to capture spe-
cific sources is dependent on properties of the source
and that not all sources will be captured best by a
fixed referencing scheme, which utility may depend
on the local cortex morphology. In that sense, using
data-driven spatial filters uses information given by
the multivariate structure of recordings to a greater
extent.

3.2. Improvement of signal to noise ratio for sEEG
signals

There are many ways to reference stereoelectroen-
cephalography (sEEG) recordings, ranging from monopo-
lar, bipolar, common average or Laplacian referenc-
ing (Li et al., 2018). The choice of reference is a
researcher degree of freedom. Fig. 3 shows appli-
cation of SSD for a recording consisting of three
close-by sEEG leads, as shown in Fig. 3A. Fig. 3B
shows time domain examples of electrode signals that
were first common average referenced within a lead
as well as examples for bipolar referencing (choos-
ing a neighboring electrode on the same lead as the
2nd electrode), compared to the first SSD compo-
nent for a peak frequency that was selected according
to the spectrum of electrode signals, as is visible in
Fig. 3C for all three types of signals. It can be seen
that SNR of rhythms of interest was improved in
sEEG recordings by spatial filtering using SSD. In
the case of the 8.2 Hz component, an enhancement
of the spectral peak for the harmonic frequency is
also visible, demonstrating the potential for SSD for
isolating non-sinusoidal rhythms. Additionally, all
signals were submitted simultaneously to the SSD
procedure, without subselection, making it possible
to combine information from multiple leads and elec-
trode configurations efficiently. Using SSD results in
less bias due to fixed reference choice, as learning the
filter coefficients from the data enables recovery of
rhythms in a flexible way regardless of their location
and dipole orientation.

3.3. Determining number and spatial extent of rhythms

Having demonstrated basic properties of spatial filter-
ing with SSD, we turn to a number of physiological
aspects to consider. Fig. 4B shows time domain ex-
amples of two closely neighboring electrodes (black
traces) with oscillatory activity in the same frequency
band. The time domain activity of these electrodes
looks similar, with prominent alpha-band oscillations.
While these two electrodes look similar, it is unclear
whether this is due to several independent rhythms
with the same peak frequency, or one underlying
source that is projecting onto both electrodes. Es-
timating spatial filters with SSD shows the existence
of two components with alpha-rhythm activity, one
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Figure 2: Example: spatial mixing of sensorimotor rhythms for one participant. A) Power spectral densities for three channels
along the sensorimotor strip. The gray bar indicates the frequency band defined as the signal contributoon for estimating the SSD
spatial filters. The power spectrum shows a peak frequency in the alpha-band, with additional harmonic peaks. The channels were
selected a according to highest SNR in the chosen frequency range. B) The corresponding signal in the time domain showing
oscillatory bursts in the alpha-band, amplitudes are normalized for comparison of time courses. The red box marks a time period in
which less pronounced oscillations can be seen in the electrode signals, but the oscillatory power of the constituent SSD components
is not decreased. C) Coefficients in the spatial patterns for the selected electrodes, i.e., electrode 2 can be approximated as a
linear combination of: e2 = 0.34 component1 + 1.05 component2 + 0.59 component3. D) Power spectral densities for the first
three components as estimated by SSD, showing a higher alpha-SNR, with less spectral peaks in flanking frequency bands. E)
Time domain signal for the corresponding three components, showing pronounced sensorimotor bursts, normalized amplitudes for
comparison of time courses. F) SNR per component, for all 25 components. The SNR drops off fast, only a number of components
need to be inspected. For the components last in the sequence, the SNR increases as rhythms in flanking bands increase spectral
power also in the band of interest. G) Approximate location of the ECoG-grid in head coordinates. The black markers highlight the
electrodes shown in A) and B). H) Spatial filter coefficients showing similarity to bipolar and Laplacian-type filters. I) Spatial pattern
coefficients showing focal contributions from sources along the sensorimotor strip.

strong alpha-rhythm (in terms of relative SNR) and
a second alpha-rhythm with much smaller spectral
power (Fig. 4C), which would be masked in indi-
vidual electrode traces. Of note is that the spatial
spread of these rhythms exceeds inter-electrode spac-

ing, with the same rhythm having large contributions
to the activity of neighboring channels, as indicated
by the spatial pattern coefficients showing high val-
ues for a cluster of electrodes. The components are
closely overlapping in space as can be seen from the
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Figure 3: Illustration: Increase of relative SNR for sEEG A) Three sEEG leads (blue, green, purple color respectively) plotted on
cortical surface, ventral view. The electrodes highlighted with a larger circle size correspond to the colored traces. B) Time domain
signals for common average referenced (CAR) signals, bipolar referenced signals and strongest SSD components for two selected
peak frequencies, with bandwidth highlighted with colored boxes in spectral plots. C) Power spectral densities for common average
referenced signals, showing multiple peak frequencies in the spectrum. D) Power spectral densities for bipolar-referenced signals. E)
Power spectral densities for SSD components, showing an increased SNR over standard referencing.

topography of spatial patterns (Fig. 4A). By applying
data-driven spatial filters, the rhythms close in fre-
quency and space can be disentangled, enhancing the
detectability of small amplitude rhythms, for instance.

To go beyond a single participant, we analyzed the
coefficients of spatial patterns for our resting dataset.
Fig. 4D shows the spatial spread of different rhythms,
as measured by the spatial pattern coefficients of elec-
trodes neighboring the electrode with the maximum
coefficient. It is visible that rhythms can have large
contributions onto several electrodes, as indicated
by neighboring channels with high coefficients. We
show examples of rhythms with high spatial spread in
Fig. 4E, top row. A key point we want to highlight is
that the spatial spread can also be small (see Fig. 4E,
bottom row), with only one singular maximum for

one electrode relative to other electrodes. In such a
case, a standard common average reference might be a
sufficient but more simple approach for investigating
rhythms. However, in the case of a rhythm of a large
spatial spread across a large number of electrodes
however, this rhythm may be attenuated when using
a common average reference. Thus, the benefit of
using data-driven spatial filters is that they may work
in both cases. In addition, using spatial patterns as
estimated from the covariance matrix between chan-
nels may be helpful as a tool for data exploration to
evaluate this factor, because the spatial correlations
across electrodes for different present rhythms cannot
be known a priori.

In general, signal decomposition techniques like SSD
can be used for dimensionality reduction, keeping
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only the N components that contribute most strongly
to the signal in the band of interest, and projecting out
all other components to limit analyses to a specific
subspace. The determination of which components to
keep can be made using a threshold criterion based
on relative SNR (Nikulin et al., 2011; Haufe et al.,
2014a), with the aid of a bootstrapping procedure
(Zuure et al., 2020), or based on physiological consid-
erations such as focusing on rhythms originating from
a specific location, which can be determined with aid
of the spatial patterns.

3.4. Variability of resting rhythms across the cortex

To demonstrate how data-driven spatial filters can
be used for data exploration, we assess the resting
rhythms in the frequency range of 5 to 20 Hz for dif-
ferent participants in an iEEG resting state dataset.
For this analysis, spatial filters were computed sepa-
rately for specific frequency bands, with the frequency
ranges selected via spectral parameterization of elec-
trode signal to identify putative oscillations that ex-
hibit narrowband power above the 1/f-contribution.
The components with SNR exceeding a specified
threshold were retained. Fig. 5A shows the spatial dis-
tribution of different rhythms extracted with SSD for
individual participants. The location of the respective
component marker reflects the electrode location of
the maximum spatial pattern coefficient. In general,
there are several rhythms detectable in the 5 to 20 Hz
range. But there is considerable variation in peak
frequency and measured SNR across participants, as
indicated by a variety of possible component arrange-
ments across the cortex.

We also show the peak frequency of all identified
components in Fig. 5B and C. We find a distribu-
tion similar to Groppe et al. (2013), where there are
more rhythms detected with a peak frequency around
7 as well as 16 Hz, and fewer rhythms with a peak
frequency around 10 Hz, in contrast to non-invasive
electrophysiological measurements. This distribution
of peak frequencies is possibly related to the spatial
bias of electrode placement, wherein most are placed
over sensoriomotor and temporal areas, with less cov-
erage over occipital areas, as determined by clinical
needs. Additionally, the recording spans the duration
of several minutes, during which time the partici-

pant’s behavior is relatively unconstrained and vari-
able. However, such a duration is typical for resting-
state or baseline recordings across different studies.
Another factor to consider, especially in iEEG data,
is the fact that patients have the grids implanted for
clinical reasons, with different pathologies and dif-
ferent medication status, which might contribute to
the observed variability. Nevertheless, variability in
peak frequencies and oscillatory SNR is also observed
in non-invasive electrophysiological measurements.
For iEEG, this might be more of a concern, since a
smaller number of participants are usually included
per study, compared to studies using non-invasive
measurements.

The key point we aim to illustrate here is that rhythms
are present with different SNR and variation in peak
frequency across participants, and canonical oscil-
lations of interest may or may not be detectable in
individual participants in iEEG data, given the large
between participant variability. The variability may
contribute to inconsistent results, as temporal band-
pass filtering of activity in a certain area within a
predefined frequency band might not actually reflect
oscillatory dynamics, but might capture only contri-
butions from 1/f-components. Applying data-driven
spatial filters can aid in verifying the presence and spa-
tial origin of rhythms of interest, while also improving
measurements of their precise temporal dynamics by
increasing the SNR.

3.5. Waveform shape and spatial mixing

Neuronal oscillations are often of a non-sinusoidal
shape, for instance in the form of a pronounced arc-
shape in the case of the sensorimotor mu-rhythm
(e.g., see Fig. 2, component 1). While waveform can
be informative about neuronal processing (Cole and
Voytek, 2017), the detectability of waveform shape
requires a high enough SNR to capture harmonic fre-
quencies, which may not be detectable with a high
level of 1/f-noise. While non-sinusoidality is also
present in noninvasive signals, the difficulty there is
that it is often obscured by spatial mixing and a low
SNR. Therefore, invasive cortical recordings provide
an excellent opportunity to study waveform shape. As
the amplitude envelope of rhythms in the same fre-
quency band tends to co-fluctuate (Hipp et al., 2012)
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Figure 4: Identifying independent sources A) Spatial patterns for two components with electrodes highlighted in green. B) Time
domain activity for two neighboring electrodes (black) and the top SNR components for alpha range (gray span in the spectrum in
C), showing that the oscillatory activity is largely captured by the first component, with a smaller alpha component in the second
component that is otherwise masked in the electrode activity. C) Power spectral densities for electrode and component signals. D)
Spatial spread for components with different peak frequency showing large variation. Each circle corresponds to one component. E)
Example spatial pattern coefficients visualized on electrode grids, for high spatial spread (top row), where a component contributes
to activity of many electrodes and low spatial spread (bottom row) with a single maximum. In contrast to A), the absolute value is
plotted here to better illustrate the spread, regardless of polarity. The electrode with the largest coefficient is marked with a green
circle.

positively, such as when oscillations are present for
one source, there are also oscillations present in neigh-
boring sources, there is a risk of harmonics canceling
out due to spatial mixing. For instance, a tempo-
ral shift of 12.5 ms constitutes a period of 1

4
π for a

10 Hz alpha, but twice the amount, 1
2
π, for a harmonic

20 Hz beta-rhythm, resulting in waveform changes
solely induced by spatial smearing (Schaworonkow
and Nikulin, 2019). Therefore, using spatial filter-
ing techniques can be beneficial to explore waveform
properties in iEEG recordings.

Fig. 6A shows an example where spatial demixing

reveals two different rhythms with varying wave-
form shape properties. While the frequency spectra
(Fig. 6B) of the raw electrode traces activity traces
look similar, waveform shape features are masked in
the signals because different neighboring (Fig. 6C)
rhythmic components with different waveform shape
characteristics summate. The estimated components
show a differentiation between a triangular rhythm
and one that has a spike-wave shape (reminiscent of
local field potential traces that can be found for in-
stance in deep layers of macaques (Bollimunta et al.,
2008) or mice (Senzai et al., 2019). Differentiation
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Figure 5: Variability of resting rhythms across the cortex. A) Each subplot shows the location of electrodes (white squares) on a
template brain for one individual participant . Each sphere indicates an oscillatory component, with the size indicating 1/f-corrected
SNR and the color indicating peak frequency of that component. There is large variability between participants. For improved
comparison across participants, all electrodes and rhythm locations were mapped onto the right hemisphere. Participants are ordered
according to the mean z-coordinate across the electrode grid, to ease comparison. B) Each component is represented as a circle, with
y-position reflecting peak frequency and x-position reflecting participant ID. Color represents position along the posterior-anterior
axis, with negative values reflecting most-posterior position. C) Histogram across all participants and components showing a relative
lack of detectable 10 Hz rhythms.
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between different waveforms may be difficult to make
on the basis of signals highly impacted by spatial mix-
ing.

Fig. 6D illustrates that many ECoG rhythms in the
5–20 Hz frequency band have a non-sinusoidal wave-
form shape, which is information that could be taken
into account to make inferences about underlying cel-
lular physiology. Here, am peak-trough asymmetry
value of 0.2 would mean a peak time of 60 ms and a
trough time of 40 ms for an oscillation cycle of 100 ms
length (a strong deviation from a 50/50 duty cycle).
Non-sinusoidal rhythms can be present in various cor-
tical locations, and in Fig. 6E we show examples of
high peak-trough asymmetry in the sensorimotor as
well as temporal regions. Of note is that the triangu-
lar rhythm visible in Fig. 6A is not asymmetric with
respect to duty cycle, but still deviates from a sinu-
soid by showing sharpness around peaks and troughs.
Therefore, construction of measures capturing wave-
form properties requires careful consideration regard-
ing which aspects to measure, which may be different
regarding physiological settings or disease patholo-
gies of interest, e.g., peak-trough asymmetry for the
sensorimotor mu-rhythm (Nikulin and Brismar, 2006)
or cycle sharpness in Parkinson’s disease (Cole et al.,
2017).

3.6. Removing noise with a specific spectral profile
using spatial filters

Another use case of spatial filters that we want to
highlight here is in the removal of noise with a spe-
cific spectral profile in multichannel data. A promi-
nent noise source in that respect is line noise with a
high narrowband spectral peak at e.g., 50 or 60 Hz.
Fig. 7 illustrates the removal of noise from a raw
ECoG recording that shows high levels of noise at
60 Hz across the majority of electrodes, as well as
narrowband noise at 200 Hz that is of unknown origin
(possibly caused by medical equipment). We estimate
spatial filters to maximize SNR first for the 200 Hz
noise, and subsequently project these components out
from the raw signal by a linear operation. The signal
after removal of noise is shown in Fig. 7B. Fig. 7C
shows the signals after applying common average
referencing; though the level of noise is attenuated,
narrowband noise remains present in the signals. The

benefit of using spatial filters to remove noise, as op-
posed to bandstop filtering, is that spatial filters do
not cause distortions in the time domain around the
noise frequency. This is especially important because
signals in the frequency range of 50–70 Hz can be
highly informative in ECoG, which makes preserving
information in this frequency band of particular inter-
est. Another benefit is the computational simplicity,
the free parameters here are the peak frequency, the
bandwidth around the peak frequency and the number
of components to remove. The degree of attenua-
tion can be selected by adjusting the number of noise
components to remove, with a larger number yielding
greater attenuation at the cost of potentially removing
the signal of interest. For line noise removal with
spatial filters, the ZapLine toolbox (de Cheveigné,
2020) provides several optimized routines. In ECoG,
in addition to line noise, other noise sources can be
present, and the flexibility of spatial filters allows for
the efficient removal of noise with stationary spectral
profiles. The cost is the loss of dimensionality equal
to the number of removed components, similar to the
effect of applying a common average spatial filter.
This loss of dimensionality is not of concern when a
high number of electrodes are present, but would not
be recommended for a small number of electrodes.
While a common average spatial filter may work well
if there is a common noise source that is manifesting
in all electrode signals, using data-driven spatial fil-
ters allows for more flexibility if noise is not present
in all signals.

4. Discussion

In this article, we highlighted the benefits of using
spatial filters for the extraction of neural oscillations
in invasive electrophysiological recordings. Applying
spatial filters that specifically optimize for oscillatory
SNR in iEEG recordings, we assessed presence, spa-
tial spread, variability and waveform shape of iEEG
resting rhythms.

4.1. General benefits of data-driven spatial filtering

Spatial filters can be used for distinct purposes in the
study of neuronal oscillations: to identify rhythms
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Figure 6: Waveform shape of intracranial neuronal rhythms. A) Neighboring rhythms with different waveform shape for two
electrodes and two components estimated based on alpha band activity. B) Power spectral density for electrodes and components. The
presence of harmonic spectral peaks at exact multiples of the alpha peak frequency indicates a non-sinusoidal waveform shape. The
gray marked area corresponds to the frequency range defined as a signal for estimation of spatial filters. While both electrode signals
show a peak in the beta-band, in component space the sharp beta-harmonic is largely captured by the second component, showing
a spike-wave waveform shape, with the first component being a triangular waveform. C) Topographies for the first and second
components showing a radial and tangential source distribution (respectively); the electrodes shown as traces in B are marked with
green circles. D) Group-level assessment of waveform asymmetry, with intracranial recordings showing considerable peak-trough
asymmetry in the waveform (where a peak-trough asymmetry value of 0 is indicating perfect symmetry). E) Peak-trough asymmetry
values, plotted across the cortex, larger circles indicate larger SNR. Rhythms with high asymmetry can be found through-out the
cortex.

in the frequency band of interest and improve their
signal-to-noise ratio, to examine their correlational
structure, as well as to denoise data without band-stop
filters. On the continuum of using a common average
reference spatial filter (potentially capturing mainly
non-local activity) to local bipolar spatial filters (with
a potentially non-optimal direction of the fixed deriva-
tion), the presented spatial filter technique represents

a middle ground, extracting signals based on spatial
spread as estimated from the data. This procedure
results in reduced bias compared to a fixed reference
choice.

The presented method belongs to a subclass of spatial
filtering techniques that estimate a backwards model
using solely the statistical properties of the signals
recorded from the electrodes. The benefits of using
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Figure 7: Illustration: removal of noise with spatial filters for ECoG data A) Time series of six electrodes and power spectra for
raw ECoG recording for 87 electrodes, color code corresponds to electrode position, with neighboring electrodes having a similar
color. B) Time series and power spectra after removal of components maximizing SNR for 60 Hz and 200 Hz spectral peaks. Note
that there are no band-stop type artefacts in the spectrum since no temporal filtering was performed. C) Time series and power
spectra after common average referencing. While the 200 Hz noise is largely attenuated, 60 Hz line noise still persists.

statistical approaches like SSD, in contrast to biophys-
ical modelling, is that no anatomical information or
biophysical model is required for the estimation of the
spatial filters, which strongly reduces the complexity
of the procedure. Whenever time series data from
multiple electrodes is available, the method can be ap-
plied. The electrode locations are only needed for the
interpretation of spatial patterns, but the source time
series estimation is independent from the localization
accuracy of the electrode positions.

The main benefit of SSD for the study of neural oscil-
lations is that information about the signal structure at
the frequency band of interest is incorporated, enhanc-
ing activity in that band of interest. This procedure
is in contrast to independent component analysis or
principal component analysis, which both maximize
global objectives, which may not be optimal because

components in specific frequency bands might only
contribute a small amount to global variance. SSD
results in an ordering of components according to
SNR in the frequency band of interest, which reduces
manual inspection and can facilitate data exploration.
Additionally, SSD has few parameters and is compu-
tationally fast. The signal is defined using a temporal
band-pass filter around the frequency of interest. The
temporal filter requires a specification of frequency
ranges for respective signal and noise contributions,
for which the prior values can be derived from elec-
trode power spectra. Even though only narrowband
information is used for the estimation of spatial filters,
the application on broadband data preserves informa-
tion beyond these narrow frequency bands, such as
waveform shape, as long as they originate from the
same spatial location.
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While we chose SSD as a spatial filtering technique
for our illustrations, other types of generalized eigen-
value decomposition algorithms are available to solve
specific objectives. For enhancing specifically os-
cillatory SNR, there are variants that maximize the
spectral power in a frequency band of interest, com-
pared to the total spectral power (de Cheveigné and
Arzounian, 2015), which are benchmarked for EEG
in (Cohen, 2017), with demonstrations for MEG/EEG
as well as monkey ECoG and optical imaging given
in (de Cheveigné and Parra, 2014). For task-based
data, Common Spatial Patterns (Koles, 1991) maxi-
mizes differences between conditions, for instance to
investigate main contributions to task-related modula-
tion. Source Power Correlation analysis (Dähne et al.,
2014) maximizes correlation with a target variable,
for instance with reaction times. To consider extract-
ing coupled neuronal sources, an extension of SSD
termed Nonlinear Interaction Decomposition (Idaji
et al., 2020) has been suggested. If specific types of
rhythms are of interest, SSD can also be used as a
regularization technique before using other analysis
methods to limit the analyzed signal to the frequency
range of interest, for instance focusing on rhythms in
the alpha band (Mahjoory et al., 2017; Haufe et al.,
2014a).

4.2. Benefits of data-driven spatial filtering for iEEG
recordings

While the above listed benefits are general and also
hold for applying data-driven spatial filtering for non-
invasive electrophysiological signals, there are spe-
cific considerations when applying these methods for
invasive electrophysiological recordings.

In contrast to noninvasive scalp recordings with stan-
dardized EEG electrode caps or sensor arrays in MEG,
invasive electrodes are placed according to specific
and heterogeneous clinical demands, and therefore do
not conform to standardized positions. This compli-
cates the incorporation of anatomical information into
analyses. For biophysical source estimation/localization
approaches, the accuracy will vary depending on elec-
trode localization accuracy based on postimplantation
CT imaging as well as accuracy of the estimated for-
ward model. Reference-choice is also more variable
in invasive recordings, with referencing often done

to bone or a shank, as well as bipolar or monopolar
referencing schemes, which may bias analyses. In the
specific case of analyzing neural oscillations, using
SSD may be beneficial, since it specifically utilizes
information in the frequency band of interest, max-
imizing SNR in a more flexible way. In addition,
nearby electrodes can have different SNR due to the
placement of individual electrode contacts on cortical
vasculature, which can influence the resulting signal
in a frequency-dependent manner when using other
common referencing schemes (Bleichner et al., 2011).
In addition, SSD allows for the use of information
from several grids, or separate but close-by sEEG
leads, which can convey improved SNR in contrast
to using information from individual leads separately,
as in the case of a fixed referencing scheme. The
data-driven approach could also be helpful in inte-
grating information from several types of electrodes,
for instance in hybrid micro-macro electrode schemes
(Chari et al., 2020).

While strong alpha-oscillations tend to dominate in
non-invasive recordings, a more variable set of os-
cillations, with neighboring peak frequencies, is si-
multaneously detectable in iEEG recordings. To im-
prove the detection of these typically smaller ampli-
tude rhythms, spatial filtering might help to separate
them from more dominant frequency rhythms, as SSD
attenuates the signal contribution from flanking fre-
quency bands, and therefore the separation of distinct
sources in neighboring frequencies becomes possible
with SSD.

4.3. Physiological considerations: spatial spread

Previous work has identified the degree of spatial
correlations across invasively acquired field signals
in varying frequency bands (Dubey and Ray, 2019;
Kajikawa and Schroeder, 2011; Muller et al., 2016;
Katzner et al., 2009), with estimates ranging from
400 µm for the local field potential to several millime-
ters in the case of ECoG. Modeling work by (Lindén
et al., 2011) suggests that important consideration is
the input correlation of the involved neuronal popula-
tions, where spatial spread grows as the degree of in-
put correlations increases. While the spatial spread is
limited for high-frequency signals, for low-frequency
rhythms the spatial spread exceeds the interelectrode
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distance, which results in the same source contribut-
ing to several electrodes.

We showed examples of spatial spread as estimated
from spatial patterns, ranging from small to large
spread (Fig. 4). The spread for a specific component
and possible neighboring signal sources cannot be
known a priori and differs across sources and par-
ticipants. Therefore spatial mixing will potentially
obfuscate temporal dynamics of neighboring sources.
Data-driven spatial filters can help to separate contri-
butions of different sources onto corresponding elec-
trodes, and spatial pattern coefficients can be used to
visualize the composition of electrode activity as a
linear combination of different sources. It would be
of interest to evaluate whether higher-density ECoG
grids with a smaller inter-electrode spacing than ana-
lyzed here would result in improved ability to separate
rhythms in cortical areas where a large number of in-
dependent rhythms with different peak frequencies
are present, such as along the sensorimotor strip.

4.4. Physiological considerations: waveform shape

The analysis of rhythms using only oscillatory am-
plitude and frequency discards a lot of potentially
valuable physiological information. Using waveform
shape measures can enable a more refined look on
cellular generation mechanisms and functional rele-
vance of rhythms (Sherman et al., 2016; Krishnaku-
maran et al., 2021), however the detection of non-
sinusoidal features of waveforms requires high SNR,
making the analysis of non-sinusoidal waveforms dif-
ficult. Because of this, intracranial recordings are
well suited for investigations of waveform shape. We
show that rhythms as detected in ECoG can be highly
non-sinusoidal in a variety of cortical areas. But a
potential obstacle is that waveforms can be masked
due to spatial mixing of several rhythms. We illus-
trate that neighboring rhythms, as extracted by spa-
tial filtering, can have different waveform properties
that are intermixed at the sensor level (see Fig. 6).
It would be informative to relate these to measures
from the microscopic scale, e.g., the firing properties
of individual neurons in recordings that have both
field recordings and single unit spiking data available
(Cole and Voytek, 2018). For further analysis of peak
frequencies, time domain analysis can help to disen-

tangle harmonic from non-harmonic peaks, e.g., a
differentiation between non-sinusoidal properties of
the sensorimotor mu-rhythm and genuine beta-bursts,
a difference that can be obscured by looking at band-
pass filtered signals.

4.5. Physiological considerations: variability of rhythms
across participants

In terms of mapping invasive electrophysiological
rhythms, the outlined procedure for investigating dom-
inant rhythms in intracranial data focused on the fol-
lowing methodological considerations: first, electrode
activity is always a mixture of many different types of
rhythmic and non-rhythmic activity. Therefore, sepa-
rating putative sources will increase SNR and make it
easier to investigate spectral as well as temporal sig-
natures, with e.g., the improved detection of spectral
peak frequencies. Not separating sources can result in
a “low degree of regional specificity” (Groppe et al.,
2013) given that, with a division of channels strictly
based on location, volume conduction can lead to a
spread of rhythms across regions. Second, the us-
age of spectral parametrization additionally improves
methodological validity in analysis of oscillatory ac-
tivity through separation from potentially confound-
ing aperiodic activity. Without separation of oscilla-
tory and aperiodic signal contributions, comparing
SNR of oscillations in different frequency bands, e.g.,
for neighboring theta- and alpha band rhythms would
require for instance signal whitening, the outcome
of which depends on the frequency range used for
normalization. By requiring a minimum height of a
spectral peak exceeding the aperiodic 1/f-contribution,
we ensure to capture oscillatory dynamics.

Equipped with these considerations, we observed that
there is high variability in measurable rhythms for
individual participants, with for instance no or only
weak rhythms in the canonical alpha-frequency range
across the sensorimotor cortex, as also observed by
(Groppe et al., 2013). The large degree of variability
puts the spotlight on the common practice of electrode
pooling, or combining all electrodes from all partici-
pants for analysis, which might inflate false positives
due to the contribution of a high number of signifi-
cant electrodes from a single participant. In light of
the observed variability as well as a variable number
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of electrodes present for each participant, hierarchi-
cal models and bootstrapping approaches (Saravanan
et al., 2020) should be considered in the analysis of in-
tracranial data, to reduce the risk of only a small frac-
tion of participants showing the effects in the group
average.

4.6. Limitations

As a general limitation, the estimation of a backward
model will never achieve perfect accuracy because
dozens of electrodes are not enough to capture the
thousands of underlying sources of neuronal activity.
Specific limitations of an approach for estimating
spatial filters utilizing eigenvalue decomposition are
detailed below.

First, there is no automatic one-to-one mapping from
estimated components onto physiological entities (but
neither can this be done from electrode-based activ-
ity). In the case of distinct, but highly co-fluctuating
neuronal sources, they will not necessarily be separa-
ble on the basis of their covariance. An indication of
this are spatial patterns that deviate from the spatial
pattern expected for a dipolar source, e.g., by show-
ing several spatially distributed maxima. Approaches
based on eigenvalue decomposition (including PCA
and ICA) will return as many components as there are
electrodes, but not all components will be physiology
meaningful in the sense of representing a neuronal
source in the frequency band of interest. In decid-
ing how many components to keep for analysis, the
following aspects should be considered when using
SSD: Inspecting the relative SNR with aid of the
power spectrum is crucial and is simplified because
the components are ordered according to SNR in the
frequency band of interest. Components without a
spectral peak in the frequency band of interest should
not be considered when talking about neuronal oscil-
lations in that specific frequency band. The spatial
patterns should be inspected for determining the local
focus of the generating source. In addition, bootstrap-
ping approaches based on surrogate data have been
suggested to estimate the number of components to
retain (Zuure et al., 2020).

Further, the estimated spatial filters are invariant with
respect to signal polarity, i.e., the sign cannot be

uniquely determined. Therefore depending on the
choice of parameters, the spatial filter can result in
a polarity-inverted signal. Alignment of spatially fil-
tered signals can for instance be accomplished accord-
ing to the sign of the electrode signals, and is straight-
forward in the case of radially orientated components.
In the case of tangentially orientated components,
with negative and positive contributions to activity
recorded on electrodes, alignment can be made by
incorporating knowledge about physiology. Features
derived from physiology can include waveform shape,
as in the case of the arc-shaped mu-rhythm, or polarity
of evoked responses.

Finally, the underlying assumption here is a linear
model, and the estimated spatial filters are not depen-
dent on time. This assumption might insufficiently
capture traveling wave phenomena, for instance. Prop-
agating activity with high velocity will impact very
sharp waveforms, as for electrodes linearly combined
with a slight offset a sharp trough will result in a
less sharp trough for the component due to time-
independent linear combination. It would be of inter-
est for future directions to take wave propagation into
account when estimating neuronal oscillatory sources
(Kuznetsova et al., 2020; Hindriks, 2020).

4.7. Conclusion

Invasive electrophysiological recordings allow for
high spatial and temporal resolution investigations
into the functional role of the diversity of neuronal
oscillations that are present across the cortex. Dif-
ferent types of oscillations can be seen, showing spe-
cific spatial distributions, peak frequencies, waveform
shapes and functional modulation, all of which indi-
cate diverse underlying physiology. The spatial and
temporal overlap of these rhythms makes the mea-
surement of these different features difficult when
only using data derived from single electrodes. Here,
we argue that the richness of the data can be better
explored when applying data-driven spatial filters,
which use multichannel information to specifically
enhance the signal-to-noise ratio of oscillations, and
therefore improve our ability to study them. This, in
turn, helps bridge scales between invasive intracra-
nial measurements and noninvasive, macroscale scalp
measurements.
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