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Abstract

How natural variation affects phenotype is difficult to determine given our incomplete ability to
deduce the functional impact of the polymorphisms detected in a population. Although current
computational and experimental tools can predict and measure allele function, there has
previously been no assay that does so in a high-throughput manner while also representing
haplotypes derived from wild populations. Here, we present such an assay that measures the
fitness of hundreds of natural alleles of a given gene without site-directed mutagenesis or DNA
synthesis. With a large collection of diverse Saccharomyces cerevisiae natural isolates, we
piloted this technique using the gene SUL 1, which encodes a high-affinity sulfate permease
that, at increased copy number, can improve the fitness of cells grown in sulfate-limited media.
We cloned and barcoded all alleles from a collection of over 1000 natural isolates en masse and
matched barcodes with their respective variants using PacBio long-read sequencing and a
novel error-correction algorithm. We then transformed the reference S288C strain with this
library and used barcode sequencing to track growth ability in sulfate limitation of lineages
carrying each allele. We show that this approach allows us to measure the fithess conferred by
each allele and stratify functional and nonfunctional alleles. Additionally, we pinpoint which

polymorphisms in both coding and noncoding regions are detrimental to fitness or are of small
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effect and result in intermediate phenotypes. Integrating these results with a phylogenetic tree,
we observe how often loss-of-function occurs and whether or not there is an evolutionary
pattern to our observable phenotypic results. This approach is easily applicable to other genes.
Our results complement classic genotype-phenotype mapping strategies and demonstrate a
high-throughput approach for understanding the effects of polymorphisms across an entire

species which can greatly propel future investigations into quantitative traits.

Background

Quantitative traits, or traits that vary on a continuous distribution rather than in discrete
categories, are responsible for most phenotypic differences across all organisms (MacKay et al.,
2009; Morgante et al., 2018). Despite decades of efforts investigating how genotype informs
phenotype, the molecular underpinnings of quantitative traits are still largely unknown,
especially on a species-wide scale. Understanding how sequence changes lead to phenotypic
changes is difficult to disentangle as these traits often involve interactions between multiple loci
that each in themselves have genetic variation among natural populations. Even for a single
locus, an exhaustive population-scale determination of genetic variants impacting phenotype
remains out of sight. Improved approaches for investigating this in a cost-effective and high-
throughput manner will greatly broaden insights into the genetic basis of trait variation, ranging
from deleterious diseases to adaptive evolution.

Due to the rapid advancement and decreased cost of high-throughput sequencing,
forward genetics approaches have boosted our ability to pinpoint loci underlying traits of
interest. For instance, quantitative trait loci (QTL) and linkage mapping provide avenues for
identifying loci responsible for phenotypic differences between individuals, and even in some
instances can result in determining what polymorphisms are integral for certain phenotypes
(Ehrenreich et al., 2012; Treusch et al., 2015). However, this method relies on pairwise crosses
between a small subset of genetic backgrounds and is difficult to scale to investigate phenotypic

2
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variation on the population level (Stinchcombe and Hoekstra, 2008). Approaches like genome-
wide association studies do investigate loci on the population scale, but lack the ability to infer
and experimentally functionalize the effects of rare or low-frequency variants (Morgante et al.,
2018). Other computational approaches deduce function based on collected data describing
metrics such as conservation, statistical analyses of genomic architecture, allele frequency,
predicted changes in protein stability, known sites of protein-protein interactions, and
transcription factor-binding motifs, but all still require experimental validations (Adzhubei et al.,
2010; Mitchell-Olds et al., 2007; Schymkowitz et al., 2005; She and Jarosz, 2018; Wagih et al.,
2018; Wray et al., 2013).

Recently, multiplexed assays of variant effects (MAVE) studies have provided an
approach for functionalizing thousands of variants in a high-throughput manner (Starita et al.,
2017; Weile and Roth, 2018). These have been extremely useful in understanding how
missense mutations or nucleotide changes alter gene function and/or expression (Duveau et al.,
2017; Fowler and Fields, 2014; Matreyek et al., 2018). However, most of these approaches
have been limited to studying single nucleotide or amino acid substitutions away from a
reference sequence, as technologies don'’t yet exist to generate and measure the
consequences of the large libraries that would be necessary to explore combinatorial variation.
Additionally, the majority of variants assayed are rarely reflective of those in natural populations.
For instance, natural alleles can have more than one polymorphism, not all of which are seen
exclusively in coding or exclusively in noncoding regions, and thus are not surveyed completely
in many MAVE studies. Being able to directly test the function of natural variants of whole
populations provides context for how polymorphisms and combinations of polymorphisms alter
phenotype. Furthermore, such an approach would provide deeper insight into the evolutionary
history of a gene and how both weak and strong selection or drift have acted upon a phenotype

that results in the variation present in natural populations (Johnson and Barton, 2005; Mitchell-


https://doi.org/10.1101/2021.02.26.433108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433108; this version posted February 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

78  Olds et al., 2007). Thus, developing a method for testing natural variants in a high-throughput
79  manner is of high interest.
80 Here, we developed such an assay functionalizing natural variants on a species-wide
81  scale using Saccharomyces cerevisiae, the budding yeast. With the rapid advancement of high-
82  throughput whole-genome sequencing, we now have large collections of natural S. cerevisiae
83  strains that contain genomic data as well as geographical and ecological information (Bergstrom
84  etal, 2014; Liti et al., 2009; Peter et al., 2018; Schacherer et al., 2009; Strope et al., 2015; Zhu
85 etal, 2016). Although much research has been done on laboratory strains for understanding
86  biology, curation of these collections revealed the striking diversity within this popular model
87  organism: S. cerevisiae has been isolated from a variety of countries all over the globe and from
88 habitats like human clinical samples, domesticated products like beer and bread, and tree and
89 fruit samples. Sequencing of these genomes has revealed a lot about genetic variation, but still
90 little is known about how these genetic changes impact phenotypic variation outside of a handful
91  of association studies and QTL mapping efforts (Ehrenreich et al., 2012, 2009; Kim et al., 2012;
92  Peltier et al., 2019; Wilkening et al., 2014). With the large genome sequencing efforts and strain
93 collections, in addition to the wealth of molecular tools developed for yeast, S. cerevisiae is the
94  ideal system to develop this assay and investigate the effects of natural polymorphisms for
95  whole populations.
96 For piloting and developing our approach, we used the natural alleles of SUL7 from a
97  collection of 1,011 isolates to test whether we can deconvolute how variation affects cell growth
98 under sulfate limiting conditions. SUL7 encodes a high-affinity sulfate permease and is
99  expressed under sulfate limitation. Previous studies have found that when evolving different
100 strains of S. cerevisiae under sulfate limitation in the chemostat, cells with amplifications of
101 SUL1 have high fitness and rise in frequency in the population (Gresham et al., 2008; Payen et
102  al., 2014; Sanchez et al., 2017). Strong selection for amplification of this locus in sulfate-limiting

103  conditions allows for a reliable functional assay in which we can mimic amplifications by
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104  transforming cells with a low-copy plasmid containing SUL 1. Additionally, we have previously
105 performed a deep mutational scan on the promoter of SUL1, giving us a dataset measuring the
106  functional consequences of single mutations for comparison (Rich et al., 2016). By co-culturing
107  a population of cells transformed with a barcoded library of natural alleles, we can measure
108 competitive fitness via barcode sequencing and thereby determine SUL1 functionality en

109  masse. Our results show that this assay is accurate in predicting function and useful in

110  understanding what genetic changes affect phenotype. These data allow for insight into the
111 evolutionary history of SUL1 function and possible evidence for selection of loss-of-function
112  mutations. This approach, especially when combined with established forward genetics

113  approaches in identifying causal loci, will greatly strengthen our understanding of quantitative
114  traits on a species-wide scale.

115

116 Methods

117  Strains and plasmids

118 Natural isolates from the 1,011 Saccharomyces cerevisiae collection were used to

119  isolate natural variants of SUL1 (Peter et al., 2018). Strains pinned on yeast extract peptone
120  dextrose (YPD) agar plates were transferred to liquid YPD in 96-well plates, grown overnight at
121 30°C, and stored in 30% glycerol at -80°C. The FY3 S288C strain DBY7284 (MATa ura3-52)
122  was used for transformation and competition experiments (described below). A GFP-marked
123  strain YMD1214 (MATa hoA::GFP-KANMX) that has neutral fitness under sulfate limitation was
124  used for validation competition assays. Prototrophic FY3 (DBY11069), YMD4321 (MATa ura3-
125 52 sul1A::URA3-KANMX), YMD4322 (MATa ura3-52 sul2A::URA3-KANMX), and YMD4323
126  (MATa ura3-52 sul1A::URA3-KanMX sul2A::URA3-KanMX) were used to validate growth rates
127  on sulfate-limited and sulfate-abundant agar plates. A pRS316 vector with an Nrul site inserted
128  in the BamHI site (YMD2307) was used in this study for molecular cloning and competitions

129  described below. A complete list of strains can be found in Supplementary Table 1.
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130

131 Plasmid and yeast library generation

132 Strains from the 1,011 S. cerevisiae collection were pooled together from colonies on a
133  solid agar plate. Genomic DNA was then extracted using the QIAGEN Genomic-tip 100/G kit.
134  Natural variants of SUL7 were amplified with primers designed to hybridize to conserved

135  regions 844 bp upstream of the translation start site and 262 bp downstream of the stop codon
136  (oligos 1 and 2, (Supplementary Table 2)). Oligo 2 also contained an 8 bp randomized

137  sequence to serve as a barcode. PCR was performed using KAPA HiFi Hotstart Readymix with
138  the following cycling conditions: 95°C for 3 min, then 19 cycles of 98°C for 20 seconds, 60°C for
139 15 seconds, and 72°C for 4 minutes. Final extension was at 72°C for 4 minutes, and then the
140 reaction was cooled to 4°C. The barcoded product was purified using the DNA Clean and

141  Concentrator kit from Zymo Research and assembled into an Nrul-digested plasmid via Gibson
142  assembly. Chemically competent E. coli cells were transformed with the product using heat
143  shock at 42°C, and >20,000 transformants were collected and pooled. Plasmids were extracted
144  from the pooled transformants using Wizard® Plus SV Miniprep DNA Purification Kit and then
145  used to transform yeast (DBY7284) using 100 pL of 2 M lithium acetate, 800 pL of 50% 4000
146  polyethylene glycol, 100 pL of 1M dithiothreitol, and 50 uL of 10 mg/mL of carrier DNA.

147  Approximately 6,000 Ura+ yeast transformants were collected for pooled competition

148  experiments and for PacBio sequencing (Figure 1A).

149

150 Linking barcodes with full-length variants

151 Plasmids were extracted from the yeast transformant pool using Zymoprep Yeast

152  Plasmid Miniprep Il (Zymo Research). Plasmid fragments containing the barcode and variant
153  were isolated using M13/pUC primers with KAPA HiFi Hotstart Readymix and the following

154  cycling conditions: 95°C for 3 min, then 13 cycles of 98°C for 20 seconds, 60°C for 15 seconds,

155 and 72°C for 4 minutes. The final product was extracted from a 0.5% agar gel using Qiagen’s
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156  Gel Extraction kit and cleaned using Ampure PB beads (Pacific Biosciences). Two PacBio

157 libraries were made using the SMRTbell™ Template Prep Kit 1.0 (Pacific Biosciences) and sent
158 to University of Washington PacBio Sequencing Services for sequencing and Sequel Il circular
159  consensus sequence (CCS) analysis.

160 BAM files of CCS reads were aligned to the plasmid reference file using BWA/0.7.13
161 mem (Li, 2013). Reads that were aligned to the reference were piped to a new BAM file with
162  Samtools/1.9 (Li et al., 2009). These reads were also analyzed with cigar strings to validate

163  alignment of PacBio reads. From there, the barcodes were extracted, and a barcode-variant
164  map was generated that contained a file with all of the barcode-variant reads and all of the

165  highest quality reads for each barcode, as previously described (Matreyek et al., 2018). Since
166 the resulting barcode-variant map still showed a considerable number of insertion and deletion
167  errors, we used a multiple sequence alignment of all the reads that shared the same barcodes
168  to eliminate additional sequencing errors. Alignments were done using MUSCLE (v.3.8.31)

169  (Edgar, 2004). Any further ambiguous nucleotides were resolved by performing a pairwise

170  alignment against the highest quality read (EMBOSS Needle v. 6.4.0) (Needleman and Wunsch,
171 1970).

172 To match PacBio reads to strains in the 1,011 collection, reference sequences were first
173  extracted from the GVCF in the 1,011 collection genome data using BCFtools consensus. We
174  then used regular expressions to search for reads that were putatively derived from these

175 reference sequences. We removed barcodes that contained only one CCS read or were not
176  represented in our barcode sequencing analysis (Figure 1B).

177

178  Pooled library competition in chemostats

179 Sulfate-limited media (3mg/L ammonium sulfate) was prepared as previously described
180 (Gresham et al., 2008; Payen et al., 2014). Four 50 mL chemostat culture vessels were filled

181  with 20 mL of media at 30°C and inoculated with 1 mL of the yeast transformant pool. This
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182  culture was grown for 24 hours, after which the pumps were turned on and the culture switched
183  to a continuous culture system at a dilution rate of about 0.17 volumes per hour (~3.4 mL/hour
184  in a 20 mL culture). Samples were taken twice a day for 5 days, or about 25 generations. For
185 each sample, 1 mL was stored in 25% glycerol at -80°C, and another 1 mL was used for

186  plasmid extraction (Figure 1C).

187

188  Barcode sequencing and analysis

189 For each time point and replicate from the pooled library competition, plasmids were
190 again extracted using the Zymoprep Yeast Plasmid Miniprep kit. One replicate was discarded
191  due to technical errors. Barcodes were isolated and amplified using forward oligo 25 and

192  indexed reverse oligos 26-40 and 120-128 that included lllumina Nextera sequencing adaptors.
193  KAPA HiFi Hotstart Readymix was used with 1 pL of 1X SYBR™ Green | and the following PCR
194  cycles: 95°C for 3 min, then 17-19 cycles of 98°C for 20 seconds, 60°C for 15 seconds, and
195  72°C for 15 seconds. The reaction was run on a Bio-Rad MiniOpticon (Bio-Rad) to avoid

196  overamplification. PCR products were cleaned using Ampure XP Beads (Agencourt) and

197  quantified using the KAPA Library Quantification Kit for lllumina® Platforms (Roche). Libraries
198  were sequenced on a NextSeq sequencer (lllumina) with sequencing oligos 41 (Read 1), 44
199 (Read 2), and 100 (Index). Paired-end reads were merged using PEAR/0.9.5 (Zhang et al.,
200 2014). Using FitSeq, we calculated the fitness of each barcode for each given replicate (Li et al.,
201 2018). FitSeq normalizes each pool to account for experimental error between replicates,

202  providing a more accurate readout of fithess. The fitness values were then normalized by the
203  average fitness of barcodes associated with the wild-type (S288C) alleles. The effects of single
204  mutations were also compared with predicted consequences of mutations from mutfunc (Wagih
205 etal, 2018) (Figure 1C).

206

207  Pairwise fitness assays in chemostats
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208 To assess fitness of strains carrying individual alleles, 300 uL of a liquid culture of each
209 strain was inoculated into a chemostat containing 20 mL of sulfate-limited media at 30°C. For
210  each of the competitors, one competitor strain contained a plasmid with an extra copy of SUL1
211 and the other isogenic strain contained a neutral GFP marker. Additionally, competition

212  experiments of strains carrying each allele being assayed were conducted in at least two

213  biological replicates. Cultures were grown for 24 hours before switching to a continuous culture
214  system. Once cultures achieved steady state, the competing cultures were mixed at a 1:1 ratio.
215  Cultures were competed for 15 generations after mixing and sampled twice daily (approximately
216  every 3-6 generations). For each sample, cultures were assayed for percent GFP cells with a
217  BD Accuri C6 flow cytometer (BD Biosciences). Competitive fitness values were calculated by
218  plotting In(number of dark cells/number of GFP+ cells) over about 25 generations and taking the
219 linear slope of the linear regression from this data.

220

221 Measuring the growth of the 1,011 isolates on solid media

222 Solid sulfate-limited media (3mg/L ammonium sulfate) was prepared by adding 2%

223  agarose to liquid sulfate-limited media and poured in PlusPlates (Singer Instruments). Solid

224  sulfate abundant media was prepared by adding ammonium sulfate (to 5g/L) to the sulfate-

225 limited media. To ensure the depletion of sulfate in the cells, all 1,011 natural isolates were

226  grown overnight (~14 hours) on solid sulfate-limited media. The isolates were then replicated in
227  quadruplicate on solid sulfate-limited and sulfate-abundant media. Photos of the colonies were
228  taken every 12 hours for 3 days and the R package gitter was used to calculate the size of each
229  colony in the photos (Wagih and Parts, 2014). For each time point on both limited and abundant
230 conditions, we subtracted the colony size at the first time point from the colony size at

231  subsequent time points (colony size = size; - sizew=o). Growth rates were calculated by taking the
232  average of the ratio of the colony size in limited media over the colony size in abundant media

233 across 72 hours.
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234

235  Phylogenetic tree generation and sequence analysis

236 To generate our phylogenetic trees, SUL1 sequences from the 1,011 strains and from S.
237  paradoxus strain CBS432 were aligned using MUSCLE (Edgar, 2004). The genetic distances
238  for SUL1 alleles were calculated using the maximume-likelihood-based distances through

239 DNADIST in the PHYLIP package (Felsenstein, 2005). A gene tree for SUL1 was then

240 generated using the NEIGHBOR program, and the final tree was visualized and annotated using
241  R/ggtree (Yu et al., 2017).

242 To determine the prevalence of loss-of-function mutations across all 1,011 strains, we
243  used sequences from the core ORFs in the pangenome as reference sequences and identified
244  which strains were homozygous for premature stop codons in each of the core ORFs (Peter et
245  al., 2018). Premature stop codons that occurred in the last 90% of an ORF were not included,
246  as previous studies have shown that these mutations would not necessarily cause a significant
247  loss of function (Bergstrom et al., 2014). Gene Ontology (GO) analysis was conducted using
248  Yeastmine (accessed May 22, 2020) and both Benjamini-Hochberg and Bonferroni test

249  corrections were used to account for multiple testing (Balakrishnan et al., 2012).

250

251  Data availability

252  Raw sequencing data can be found in the Sequencing Read Archive (BioProject Accession

253 PRJNA681436 https://www.ncbi.nim.nih.gov/bioproject/PRJINA681436). Scripts and

254  Supplemental Tables used for this paper can be found at

255 https://github.com/dunhamlab/SUL1 natural variants. All alleles, matched strains, barcodes,

256 fitness, coding mutations, and noncoding mutations can be found in Supplementary Table 3.
257
258 Results

259  Allele library curation and characterization

10
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260 When sulfate is a limiting nutrient, S. cerevisiae increases expression of SUL1, which
261  encodes a high-affinity sulfate permease that increases the intake of sulfate molecules into the
262  cell. Previously, we measured the competitive fithess of SUL1 alleles isolated from 10 different
263  wild yeast isolates (Payen et al., in preparation). We found that these alleles confer a wide

264  range of fitness: some had loss-of-function phenotypes while others performed better than the
265  allele found in the reference strain S288C. In order to determine if this wide variation was

266 representative across the entire species and whether it correlated with features such as the

267  environment from which each strain was isolated, we set out to survey SUL 1 functionality

268  across a bigger sample of natural isolates. For this study, we used the 1,011 S. cerevisiae strain
269 collection, which was curated from a variety of geographical and ecological origins (Peter et al.,
270  2018). In addition, the collection contains at least 250 unique alleles of SUL1 with 354 variable
271 sites in the gene. Alleles contain 11 polymorphisms on average vs. the reference allele, with the
272 most polymorphic allele having 79 mutations. Therefore, these factors make SUL1 a powerful
273  tool for us to better understand the natural variation of a single gene in S. cerevisiae

274  populations.

275 In our previous studies, the fitness of individual SUL1 alleles was measured by

276 transforming the reference strain with an additional copy of a SUL1 allele on a low-copy

277  plasmid, and the resulting strain was competed against an isogenic GFP-marked strain under
278  sulfate limitation (Payen et al., in preparation) (Sanchez et al., 2017). While this assay is reliable
279  and consistent, it would be difficult and unrealistic to scale to measure hundreds of alleles.

280  Thus, we developed a high-throughput, multiplexed approach that allows us to simultaneously
281 measure these fitness values directly (Figure 1). To do this, we pooled the 1,011 isolates

282  together, extracted genomic DNA, and used barcoded primers binding to conserved regions to
283 isolate and amplify all natural alleles of the SUL1 gene. These sequences were cloned en

284  masse onto low-copy CEN/ARS plasmids to create an allele library and used to transform the
285 reference strain (FY). The resulting library contained approximately 6,000 barcodes for an

1"
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286  estimated 250 unique alleles (24X coverage) to ensure complete coverage and internal

287  replicates (Figure 1A).

288 We used PacBio long-read circular consensus sequencing (CCS) to pair barcodes with
289 their respective alleles (Figure 1B). Although PacBio CCS has drastically improved and

290 decreased sequencing errors over the past few years, we found that many reads still contained
291 errors that were especially noticeable in the form of insertions and deletions. To further

292  eliminate these sequencing artifacts, we performed multiple sequencing alignments on CCS
293 reads that shared the same barcode, and used those to derive new consensus sequences. In
294  total, our analysis produced 8,386 barcode-variant pairs, which we determined was still an

295  overestimate given our library size of ~6,000 barcodes. We removed consensus reads that only
296  appeared once to eliminate false positives or negatives in our downstream analysis, with 3,787
297  barcodes remaining.

298 Among these 3,787 barcodes, we identified 407 unique alleles in our library. Of these
299 variants, we were able to match 228 alleles to at least one strain in the 1,011 strain collection,
300 with a total of 880 strains that had at least one matched allele in the library (Supplemental

301 Figure 1). To determine how well this library reflected the polymorphisms in the strain

302 collection, we plotted the correlation of polymorphism frequency in both the variant reference
303 sequences and library sequences and found that these values were highly correlated

304 (Pearson’s correlation, r=0.978, Supplemental Figure 2). Correlation values were similar for
305 polymorphisms in all regions of the gene: the 5-UTR, coding region, and 3’-UTR were all well-
306 correlated (Pearson’s correlation, r=0.956, 0.980, and 0.993, respectively). Of the 354 variable
307  sites found in the reference sequences, only 45 of them were not detected in the allele library,
308 nine of which were rare polymorphisms. Our pipeline did not reveal any de novo mutations that

309  could have resulted from PCR or sequencing artifacts.

12
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Figure 1. Workflow for assaying natural variants in the 1,011 strain collection. A) The S288C lab strain is transformed
with SUL1 natural allele barcoded plasmid library. B) PacBio long-read sequencing is used to link barcodes with variants. C)
Transformants are competed together under sulfate limitation. Barcode sequencing every 3-4 generations is used to calculate
the abundance of each variant and its respective competitive fitness.

We were also unable to capture the alleles from 23 strains that were identified to have
SUL1 introgressed from Saccharomyces paradoxus. This was likely due to these sequences
being more highly diverged and therefore unable to hybridize with the primers that were
designed. However, for completeness, we were still able to measure the functionality of the
introgressed SUL1 alleles using our lower throughput method of direct competitions, as

described below.
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Fitness distribution across natural SUL1 alleles

To determine the fitness landscape of all the SUL1 alleles present in our allele library,
we competed the library of yeast transformants in a continuous culture system under sulfate-
limited media. Samples from 12 timepoints across four replicates were collected every 3-4
generations. For each sample, we extracted the plasmids from sampled cultures and
sequenced the ba rcodes using Illlumina short-read sequencing. By tracking the change in
barcode frequencies over the 12 timepoints, we determined the competitive fitness values for
strains carrying each allele (Figure 1C). The calculated competitive fitness of the three

replicates showed strong correlation and reproducibility (Supplemental Figure 3).

wild-type
loss of function intermediate function function
o0 Allele Type
Nonsense ; .
-E' . Nonsynonymous ;
8 40 Synonymous
@)
20
0 e ———————. e— \\\
-0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

Median Competitive Fitness

Figure 2. Species-level distribution of fitness effects of natural SUL1 alleles. Lab strain S288C yeast transformed
with an allele library of SUL 1 cloned onto a low-copy plasmid were competed in sulfate-limited media in the chemostat.
The log-fold change in proportions of each barcode across 12 timepoints were measured through barcode sequencing
and used to calculate competitive fithess. Alleles categorized as nonsense alleles may also contain synonymous and
nonsynonymous polymorphisms. Those grouped as nonsynonymous alleles may contain synonymous polymorphisms,
but do not have premature stop codons. Synonymous alleles do not have nonsynonymous or nonsense
polymorphisms. All alleles may contain polymorphisms in the promoter or 3'UTR. Loss-of-function alleles were defined
as having a fitness lower than the highest-fit allele with a premature stop codon. Wild-type function alleles have a
fitness higher than the lowest-fit synonymous allele.
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325 In our barcoded library, 863 of 3,787 barcodes were associated with alleles identical to
326 that of the S288C reference strain. We normalized all fitness values to the average fitness of
327  these wild-type alleles (0.0097, standard deviation 0.0698). Reassuringly, we found that many
328 barcodes with lower fitness values (fitness < -0.03) were largely associated with alleles

329  containing natural premature stop codons (Figure 2). In fact, upon analyzing the sequences in
330 each strain, we found 74 strains that are homozygous for premature stop codons in their SUL1
331  alleles. Among the 31 alleles with premature stop codons, fifteen occur in amino acid positions
332 155 and 184 (Y155* and 184Q*, where amino acids are compared to the S288C protein

333  sequence).

334 Due to the wide range in fitness of alleles with premature stop codons, we investigated
335  whether stop codons that occurred earlier in SUL1 have a greater impact on function. We found
336 that the location of stop codons in SUL17 did not dictate the deleterious effects of containing a
337 nonsense mutation (Supplemental Figure 4a). However, the fitness of alleles with premature
338  stop codons at amino acid position 671 consistently have much lower fithess compared to

339  others with premature stop codons elsewhere. This stop codon occurs in the predicted

340  extracellular STAS (sulfate transporter and anti-sigma factor antagonist) domain, which is

341 thought to be crucial for metabolism sensing, and may be further impacting sulfate transport
342  under sulfate limiting conditions (Sharma et al., 2011).

343 We compared the standard deviations among barcodes that shared the same loss-of-
344  function alleles to that of barcodes that shared the same wild-type alleles (Supplemental

345  Figure 4b). The barcodes linked to loss-of-function alleles do vary more in fitness (Welch two
346  sample t-test, p < 0.005), although we attribute this variance to increased errors that occur when
347  measuring fithess on a log scale. In regard to magnitude, the barcode counts are reliable, but
348 the barcode counts tend to be less accurate when frequencies are low and continue to decrease

349  through later time points.
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Figure 3. Validation of pooled competition through direct competitions of selected natural SUL17 alleles.
S288C strains transformed with a specific SUL1 allele on a low-copy plasmid were individually competed against an
isogenic GFP-marked strain in the chemostat. Fitness values were calculated by tracking the log-fold change in
proportion of non-fluorescent strains and fluorescent strains over 20 generations. These values were used to validate
select alleles and their phenotypes observed in the pooled competition. Alleles were selected based on definitive
categorization in wild-type-like (pooled competitive fithess close to 0) or loss-of-function (pooled competitive fitness
less than -0.10) phenotypes. Of the loss-of-function alleles, AQM and BGM have premature stop codons while Bll is
loss-of-function due to nonsynonymous polymorphisms. SUL17 alleles in AKN, ADA, and Bll were done in a prior
experiment (Payen et al., in preparation).

350 In addition to stratifying alleles with premature stop codons and alleles with wild-type
351 phenotypes, we identified alleles with nonsynonymous polymorphisms that also result in a loss
352  of function. For instance, alleles that have a single polymorphism resulting in a T669K amino
353  acid substitution show a loss of function. We also found that alleles with A454P and D483N and
354  alleles with S699L substitutions (and no additional nonsense or promoter polymorphisms) have
355  aloss of function phenotype in our pooled library. Alleles with their polymorphism information,
356  corresponding strain information, and measured fitness values can be found in Supplementary
357 Table 3.

358 We assessed how well the fitness values are reflected in direct competitions by selecting
359  SULT alleles from seven isolates and cloning them individually on the same low-copy plasmid.
360 We transformed S288C haploid yeast with these individual plasmids and competed each allele
361  directly against an isogenic GFP strain with no plasmid (Figure 3). Three of the alleles were
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362  selected to validate a wild-type-like phenotype and corresponded to the values calculated in the
363  pooled competition. Three other alleles selected showed a loss-of-function phenotype in the
364  pooled competition, which was reflected in the direct competitions. Two of these alleles

365 contained a deletion that resulted in a frameshift (from strains BGM and AQM), and the third
366  allele had nonsynonymous mutations (from strain Bll). The Bll strain has previously been

367  evolved through sulfate limitation for 150 generations, and it was found that a natural

368  polymorphism that results in a P296L change is responsible for the loss-of-function phenotype
369 (Payen et al., in preparation). In each case, we found the results of the direct competitions

370 recapitulated those found in our pooled competition.

371 Since we were unable to measure functionality of introgressed alleles in our library, we
372  used the same approach of a direct competition to assay introgressed allele functionality. After
373  validating the fitness of the SUL1 orthologue from S. paradoxus in the S. cerevisiae

374  background, which has previously shown high fitness (Sanchez et al., 2017), we also tested the
375 fitness of two alleles that show signatures of introgression from S. paradoxus. The two

376 introgressed alleles, despite having over 40 amino acid differences compared to the reference
377  allele, also have a wild-type phenotype (Figure 3).

378

379  Effects of promoter mutations in natural SUL1 variants

380 The fitness distribution across the natural alleles shows alleles with only synonymous
381  site changes in the coding region that nevertheless have a lower competitive fithess compared
382  to strains carrying the wild-type coding sequence from the reference strain (Figure 2). We

383  reasoned that these alleles may instead carry functional differences in the noncoding

384  sequences. We found that these alleles share the n.-456G>A polymorphism, and upon further
385 inspection discovered that this SNP is only present in alleles (including those with additional
386  nonsynonymous SNPs) with lower competitive fitness values under sulfate limitation (median
387  competitive fitness = -0.04). Since this competitive fitness value is not as low as alleles with
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388  premature stop codons (median competitive fitness = -0.17), it is indicative of an intermediate
389  phenotype. This SNP occurs in a putative Cbf1-binding motif, and binding of this Cbf1

390 transcription factor has been shown to be important for growth in sulfate limiting conditions (Rich
391 etal, 2016; Siggers et al., 2011). The SNP also decreased fithess in a SUL1 promoter

392 mutagenesis study, further supporting the functional effects of changes in this motif (Rich et al.,
393  2016).

394 We used the highest fithess of an allele that contains a premature codon (median

395  competitive fitness = -0.108) and the lowest fitness of alleles without promoter or

396  nonsynonymous polymorphisms (median competitive fitness = -0.0120) to establish a range for
397  other alleles with intermediate phenotypes. Twenty-two unique alleles show an intermediate
398 phenotype, and 9/20 alleles with nonsynonymous polymorphisms also have the n.-456G>A
399  polymorphism. Using these benchmarks, we also identify nonsynonymous changes that do not
400 confer a complete loss of function.

401 The observation of promoter mutations affecting phenotype in sulfate limitation led us to
402 inspect how much promoter polymorphisms in general contribute to the fitness values observed
403 across the entire allele library. We compared the standard deviation in fitness for sequences
404 that share the same coding sequence to the standard deviation in fithess for sequences that
405 share the same promoter sequences. We found that the coding sequences seemed to more
406  consistently determine fitness of a strain under sulfate limitation (Figure 4a). That is, alleles with
407 the same promoter sequences had a greater variance in fitness values. Furthermore, alleles
408 that shared the same coding sequences but differed in promoter sequences showed few

409 significant differences in fitness (Figure 4b). Finally, despite the fact that the promoter

410 mutagenesis study found mutations that could improve fitness under sulfate limitation, we did

411 not identify such polymorphisms among our natural variants.
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Figure 4. Coding polymorphisms are more useful for predicting deleterious effects compared to those in
the promoter of SUL1. A) Violin plots of the standard deviations of the competitive fitness for barcodes grouped
by those that share the same coding sequence compared with the standard deviation of those that share the same
promoter sequence. B) Boxplots of competitive fitness of the sequences that share the same coding sequence but
differ in the promoter sequences.

Comparing competitive fitness with mutfunc

With nonsense mutations, loss of function can be predicted based on sequence alone.
However, predicting the functional effects of other mutations based on sequence alone is much
more challenging. To determine how well these fitness values were reflected in functional
computational predictors, we used mutfunc to compare our results to predicted functional
effects. For each variant, we took the most putatively detrimental mutation and compared its
value to the fitness values calculated in our pooled competition assay. While the SIFT scores
and our fitness values themselves showed very little correlation (Supplementary Figure 5a),
we found that most alleles with a loss-of-function phenotype had a low SIFT score
(Supplementary Figure 5b). Interestingly, many mutations that SIFT predicted would be
detrimental actually had a wild-type-like phenotype under sulfate limitation. This highlights the
value of experimentally measuring the function of variants, especially in cases where we need

to consider the functional impacts of multiple polymorphisms on the same haplotype.

19


https://doi.org/10.1101/2021.02.26.433108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433108; this version posted February 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

French Dairy

. N
African Beer/ & Introgressed
N
—
Sake/Asian
& Fermentation
<
%
°
Competitive Fitness /0
SUL1 genotype

. 1035 ll~' 'uv N "mﬁ ;“ \ === Heterozygous
-0:10 ‘ - [ | ‘ ‘\ = Homozygous

-0.15 [[] Has -456G>A mutation
I -0.20 Bl Has premature stop codon
[ data not available [] No premature stop codon

or -456G>A mutation

Figure 5. Neighbor-joining gene cladogram generated through PHYLIP using unique genotypes of SUL7 in
the 1,011 strain collection. French dairy and sake/Asian fermentation clades both show multiple independent
instances of loss-of-function mutations. A stop codon at amino acid position 184 occurs independently in different
strains. Color of edges (pink or black) indicates whether genotype for those terminal nodes are homozygous or
heterozygous. Heterozygous alleles can be derived from diploid, triploid, tetraploid, or even pentaploid strains. Boxes
directly adjacent to terminal nodes indicate the genotypes that are homozygous for a premature stop codon (red) or
a -456G>A mutation (cyan). Flanking boxes of genotypes with premature stop codons are numbers indicating where
in the amino acid sequence the premature stop codon occurred. The ring surrounding the tree denotes the mean
SUL1 competitive fitness values for a given strain’s allele on a purple (wild-type-like fitness) to red (loss-of-function
fitness) gradient. Labeled regions are generalizations for what comprises most of those clades.

425  Phylogenetics and sequence analysis of natural SUL1 alleles

426 To assess phenotypic patterns of SUL7 on the population level, we annotated a

427  distance-based gene tree of SULT (Figure 5) with the competitive fithess values we calculated
428  from our pooled competition assay. In our gene tree, we used the SUL1 allele of

429  Saccharomyces paradoxus (CBS432) as the outgroup. We removed branch lengths from these
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430 trees to simplify interpretations. Using these annotated trees, we are able to interpret phenotype
431 in relation to ecological origins and phylogenetic relationships (Figure 5). We firstly looked at
432  the strains homozygous for premature stop codons in SUL7. The polymorphism that results in
433 Q184" does not occur in a singular clade, reducing the possibility that this premature stop codon
434  arose in prevalence as a result of drift or identity by descent. Alleles with Y155* are primarily
435 present in strains isolated from dairy environments in Normandy, France; however, not all dairy
436  strains share the same nonsense mutation (Figure 6). Two other strains derived from dairy,
437 AQM and BGM, instead have the L125* frameshift mutation. This pattern suggests that a loss-
438  of-function mutation could be beneficial in a dairy environment.

439 The majority of strains with the detrimental promoter mutation n.-456G>A were isolated
440 from sake or Asian fermentation strains. Additionally, many strains in this clade have a

441 premature stop codon and or nonsynonymous polymorphisms that result in loss of function,

442  which would again support the idea that there may be a trade-off for having a loss-of-function
443  SULT allele since more than one loss-of-function allele sequence exist among these strains.
444 Based on the distribution of deleterious alleles over the phylogeny, we wondered if these
445  allele differences would lead to phenotype differences when the alleles were in their native

446  strain context. We grew all isolates (unmodified) from the 1,011 strain collection on solid

447  minimal media agar plates under sulfate limitation and compared the growth rates to that of the
448  strains pinned on sulfate-abundant minimal media. Interestingly, we found little to no correlation
449  between the growth rates of strains and the competitive fitness values of their SUL1 alleles

450 (Supplemental Figure 6a,b). We additionally looked for growth patterns among ploidy,

451  geographical origins, and clade and found no patterns related to these groupings

452  (Supplemental Figure 6¢). These results argue that additional background effects beyond the
453  SULT locus matter for determining fitness in sulfate limitation. Measuring the fithesses of the
454  allele library in additional strain backgrounds may help further characterize this genetic

455  complexity.
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We calculated the average dN/dS value of SUL1 across all 1,011 strains and found that

the value was low (dN/dS < 0.2), suggesting that there may be purifying selection on SUL1.

Additionally, Tajima’s D statistic suggests that SUL1 is unlikely to be evolving neutrally (D = -

2.85). This may indicate that this locus has not reached equilibrium after a bottleneck in the past

and is still undergoing expansion. The neutrality index calculated from the McDonald-Kreitman

test indicated no evidence of selection (NI = 1.117, Fisher’s exact two-tailed test, p = 0.625);

however, there are mutations in the S. cerevisiae population that are slightly and fully
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Figure 6. Dairy and African beer subtree of the 1,011 SUL7 genotypes. Although dairy strains AQM and BGM
share a more recent common ancestor to African beer strains, they show different but independent and homozygous
loss-of-function polymorphisms. Color of edges (pink or black) indicate whether genotype for those terminal nodes are
homozygous or heterozygous. PSC, amino acid site with premature stop codon (homozygous); CF, competitive fitness;
NSRG, number of strains represented by genotype. Boxes around terminal nodes indicate the genotypes that are
homozygous for a premature stop codon (red) or a -456G>A mutation (cyan). Scale (bottom left) indicates number of

nucleotide substitutions per site.
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463 deleterious, which have been shown to cause errors in predictions of adaptive evolution using
464  this test (Charlesworth and Eyre-Walker, 2008).

465 In order to determine whether SUL1 is exceptional in the prevalence of loss of function
466  mutations, we determined the frequency of likely deleterious premature stop codons at all loci in
467 the 1,011 strain collection sequences. Using the sequencing data curated in the 1,011 S.

468 cerevisiae strains, we analyzed the coding sequences of genes in the pangenome for premature
469  stop codons that occurred in the first 90% of the gene. We excluded genes that either did not
470 appear in the pan-genome or contained premature stop codons in the pan-genome reference
471  sequences. Grouping these genes enriched in premature stop codons by ecological origins, we
472  found that dairy strains tended to have a consistently higher number of genes that are

473  homozygous for premature stop codons compared to strains isolated from other ecological

474  origins (Supplemental Figure 7). This is consistent with previous studies that identified

475  enriched loss-of-function alleles among dairy strains that were a result of drift and are important
476  for trait variation (Legras et al., 2018; Zorgo et al., 2012). Of all the genes in the pangenome,
477 2,465 genes contain a premature stop codon in at least two strains, with 862 of these genes
478  containing premature stop codons in more than 20 strains. Gene Ontology (GO) term analysis
479 revealed that 158 of these 862 genes are involved in ion and/or transmembrane transport. This
480 corresponds with previous analyses that found that genes encoding transmembrane proteins
481 tended to be closer to telomeric ends of chromosomes and were more likely to acquire loss-of-
482  function mutations (Bergstrom et al., 2014). Of the 1601 genes that have premature stop

483 codons in fewer than 20 strains, 284 are involved in catabolic processes (Holm-Bonferroni

484  test/Benjamini Hochberg p-value < 3e-4) and 385 are involved in responses to stimuli (p-value <
485  6e-5). The number of genes with loss-of-function variants is much greater than the number

486  found in previous studies, likely due to the fact that this dataset has a greater number of strains
487  and much more diversity among strains in regards to factors such as ploidy and isolation origin
488  (Bergstrom et al., 2014; Jelier et al., 2011).
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489 Discussion

490 Assessing the phenotype of alleles on a species-wide scale is crucial for understanding
491 how quantitative traits vary in a population. Previously developed approaches for experimentally
492 identifying causal variants are conducted through DNA synthesis or mutagenesis, and in many
493 cases do not reflect alleles found in natural populations. We have developed here a high-

494  throughput and low-cost functional approach that can measure the fitness of nearly all alleles
495 presentin a population. Specifically in our study, we investigated the function of 228 natural
496 variants of SUL1, a high-affinity sulfate transporter gene, present in the 1,011 S. cerevisiae

497  strain collection. Our assay identified instances of functional, intermediate, and loss-of-function
498  phenotypes. Using this data, as well as gene and whole genome sequencing data, we related
499  SULT fitness to its evolutionary history. SUL1 acquired multiple independent instances of loss of
500 function, the majority of which were due to premature stop codons. Other alleles had frameshift,
501 nonsynonymous, and promoter polymorphisms that negatively affected fithess. These multiple
502 independent instances provide evidence that there may be a fitness trade-off for having a loss-
503 of-function SULT allele. The strains carrying these loss-of-function alleles were largely isolated
504 from dairy, beer, and sake clades. Because not all loss-of-function polymorphisms were

505 identical in each clade (for instance, there are three different premature stop codons among
506 dairy strains), these events were likely not due to drift but may have a functional benefit instead.
507  We recognize an alternative possible explanation, which is that some strains, including those
508 from dairy environments, have been shown to naturally carry a high burden of loss of function
509 polymorphisms, and SUL17 could simply represent an easily tolerated loss that is recurrent by
510 chance. As shown by previous studies, enriched loss-of-function events in specific populations
511  are thought to arise as a result of genetic drift and play an important role in maintaining genetic
512  variation (Legras et al., 2018; Zorgo et al., 2012).

513 However, there is some evidence that a loss-of-function SUL1 allele may confer a trade-
514  off and be beneficial under particular environments. Prior studies have shown that there are
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515  toxic analogues of sulfate, such as chromate and selenate, that could be transported into the
516  cell through the Sul1 permease (Cherest et al., 1997; Johnson et al., 2016). Several studies
517  have also identified other toxic compounds such as cadmium that affect cell function and growth
518  due to the uptake of sulfate by Sul1 (Zhang et al., 2020). These show instances where having a
519  functional copy of SUL1 would be detrimental and suggest that SUL7 may have some

520 antagonistic pleiotropic effects. This may also explain the lack of gain-of-function alleles in our
521 library, as having a higher-affinity SUL7 may not be beneficial in natural environments. Despite
522  the results from previous studies, many of which investigated the effects of toxic compounds in
523 lab strain backgrounds similar to what we used here, we have been unable to recapitulate these
524  trade-offs.

525 Identifying loss-of-function alleles by searching for premature stop codons is relatively
526  straightforward. Additionally, we found that many of the nonsynonymous polymorphisms were
527  predicted from mutfunc to have a deleterious effect, although many of these predicted

528  deleterious polymorphisms were false positives. Moreover, the effects of polymorphisms in

529 regulatory regions are more challenging to predict computationally. Using natural variation, we
530 have identified instances where a single polymorphism (n.-456G>A) in a predicted transcription
531  factor-binding site affects fitness of cells under sulfate limitation, a result that was also apparent
532  in our prior promoter mutagenesis study (Rich et al., 2016).

533 Our approach also identifies intermediate phenotypes, many of which in our pool were
534 likely a result of a natural promoter polymorphism that affects expression. For studying variants,
535 itis challenging to identify deleterious mutations in a population, and here we illustrate an

536  example showing the importance of studying both coding and noncoding polymorphisms, as
537  both normal expression and protein structure affect phenotype and thus how selection acts on a
538  population.

539 While some SUL1 alleles have single polymorphisms that can result in a total loss of
540 function, there were also alleles with several nonsynonymous mutations that had wild-type-like
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541  fitness under sulfate limitation. Notable examples include the two SUL1 alleles found across 21
542  unique isolates that had signatures of introgression from S. paradoxus; these alleles had over
543 40 amino acid differences, yet functioned normally in the S288C background. These results

544  support our previous findings that SUL 7’s high affinity has been maintained across S.

545  paradoxus and S. cerevisiae (Sanchez et al., 2017), and the fitness measurements of the

546  introgressed alleles support the idea that these sequences maintain their function even in a new
547  genetic background context. The wide variation in SUL1 function under sulfate limitation is stark,
548  and using these natural variants has provided further evidence for non-neutral evolution.

549 In this study and our prior study, we found no correlation between SUL17 function and its
550 original isolate’s growth on sulfate-limited media (Payen et al., in preparation). Again, despite
551  the fact that SUL1 copy number increases in evolution experiments under sulfate limitation, we
552  were surprised to see that fitness of endogenous copies of SUL17 did not necessarily dictate cell
553  performance under sulfate limitation. One possible reason for this observation is that these

554  strains contain functional copies of the SUL1 paralog, SULZ2. Despite being a lower functioning
555  sulfate permease compared to SUL1, we found no strains that were homozygous for obvious
556 loss-of-function SUL2 alleles. The alleles of SUL2 and other transporters like SOA1 likely also
557  play an important role in growth under sulfate-limiting conditions. Alternatively, small growth rate
558 changes may not be observable in our solid media growth rate assays compared to what is

559 possible to measure in chemostat culture.

560 All'in all, leveraging the technologies available in high-throughput lllumina and PacBio
561 sequencing, we present here a widely applicable and affordable approach for assaying

562  hundreds of natural variants in high-throughput. Assaying natural variants in this manner is

563 especially useful when coupled with whole-genome sequencing data, as it allows us to better
564  understand function in relation to molecular evolution. Furthermore, our method compares many
565 alleles of a gene in isolation in an otherwise isogenic background away from the complexities of
566  genetic background interactions. This approach complements methods like QTL mapping,
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567  providing a more thorough investigation of phenotypic patterns across an entire species, which
568 can also contribute to our understanding of how pleiotropic a gene is. Further application of this
569  approach in other genes and other genetic backgrounds will be greatly beneficial to our

570 understanding of how selection acts on natural populations and how multiple polymorphisms
571  contribute to function and ultimately phenotype.
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750  Supplemental Figure 1. Percentage of strains for each ploidy that matched to at least one

751 PacBio read.
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753  Supplemental Figure 2. Allele frequencies found in PacBio allele library reflect those found in

754  the lllumina reference sequences (expected values).
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755  Supplemental Figure 3. Competitive fitness values calculated using FitSeq are well-correlated
756  across replicates. Pearson correlation coefficients r are listed on the top half. ***p<2.2e-16
757
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Supplemental Figure 4. a) Barplot representing average fitness and standard deviation of
barcodes categorized by location of premature stop codons. Sites without error bars are
represented by only one barcode. b) Barcodes associated with loss-of-function alleles tend to

have greater variance compared to barcodes with wild-type fitness.
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762  Supplemental Figure 5. mutfunc determines which mutations are deleterious. For our data,
763  mutfunc returned SIFT scores for each mutation. We used the mutation with the most

764  deleterious SIFT scores for each allele. a) Competitive fitness of allele from pooled natural

765  variant library plotted against SIFT score of most deleterious mutation shows very little

766  correlation (Pearson’s correlation r=0.253). b) Distribution of experimentally assayed compared

767  with mutfunc predictions of deleteriousness.
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768  Supplemental Figure 6. a) Growth rate of sul1Asul2A strains (orange) and wild-type strain
769  (blue) show differential growth on sulfate-limited media. b) Scatterplot comparing strain
770  competitive fitness with growth rate on solid sulfate-limited media show no correlation. c)

771 Grouped by clade, ploidy, zygosity, and continent, strains show no obvious pattern
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772  Supplemental Figure 7. Barplot of number of genes with premature stop codons per strain,

773  grouped by ecological origins.
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