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Abstract 10 

How natural variation affects phenotype is difficult to determine given our incomplete ability to 11 

deduce the functional impact of the polymorphisms detected in a population. Although current 12 

computational and experimental tools can predict and measure allele function, there has 13 

previously been no assay that does so in a high-throughput manner while also representing 14 

haplotypes derived from wild populations. Here, we present such an assay that measures the 15 

fitness of hundreds of natural alleles of a given gene without site-directed mutagenesis or DNA 16 

synthesis. With a large collection of diverse Saccharomyces cerevisiae natural isolates, we 17 

piloted this technique using the gene SUL1, which encodes a high-affinity sulfate permease 18 

that, at increased copy number, can improve the fitness of cells grown in sulfate-limited media. 19 

We cloned and barcoded all alleles from a collection of over 1000 natural isolates en masse and 20 

matched barcodes with their respective variants using PacBio long-read sequencing and a 21 

novel error-correction algorithm. We then transformed the reference S288C strain with this 22 

library and used barcode sequencing to track growth ability in sulfate limitation of lineages 23 

carrying each allele. We show that this approach allows us to measure the fitness conferred by 24 

each allele and stratify functional and nonfunctional alleles. Additionally, we pinpoint which 25 

polymorphisms in both coding and noncoding regions are detrimental to fitness or are of small 26 
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effect and result in intermediate phenotypes. Integrating these results with a phylogenetic tree, 27 

we observe how often loss-of-function occurs and whether or not there is an evolutionary 28 

pattern to our observable phenotypic results. This approach is easily applicable to other genes. 29 

Our results complement classic genotype-phenotype mapping strategies and demonstrate a 30 

high-throughput approach for understanding the effects of polymorphisms across an entire 31 

species which can greatly propel future investigations into quantitative traits. 32 

 33 

Background 34 

Quantitative traits, or traits that vary on a continuous distribution rather than in discrete 35 

categories, are responsible for most phenotypic differences across all organisms (MacKay et al., 36 

2009; Morgante et al., 2018). Despite decades of efforts investigating how genotype informs 37 

phenotype, the molecular underpinnings of quantitative traits are still largely unknown, 38 

especially on a species-wide scale. Understanding how sequence changes lead to phenotypic 39 

changes is difficult to disentangle as these traits often involve interactions between multiple loci 40 

that each in themselves have genetic variation among natural populations. Even for a single 41 

locus, an exhaustive population-scale determination of genetic variants impacting phenotype 42 

remains out of sight. Improved approaches for investigating this in a cost-effective and high-43 

throughput manner will greatly broaden insights into the genetic basis of trait variation, ranging 44 

from deleterious diseases to adaptive evolution.  45 

Due to the rapid advancement and decreased cost of high-throughput sequencing, 46 

forward genetics approaches have boosted our ability to pinpoint loci underlying traits of 47 

interest. For instance, quantitative trait loci (QTL) and linkage mapping provide avenues for 48 

identifying loci responsible for phenotypic differences between individuals, and even in some 49 

instances can result in determining what polymorphisms are integral for certain phenotypes 50 

(Ehrenreich et al., 2012; Treusch et al., 2015). However, this method relies on pairwise crosses 51 

between a small subset of genetic backgrounds and is difficult to scale to investigate phenotypic 52 
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variation on the population level (Stinchcombe and Hoekstra, 2008). Approaches like genome-53 

wide association studies do investigate loci on the population scale, but lack the ability to infer 54 

and experimentally functionalize the effects of rare or low-frequency variants (Morgante et al., 55 

2018). Other computational approaches deduce function based on collected data describing 56 

metrics such as conservation, statistical analyses of genomic architecture, allele frequency, 57 

predicted changes in protein stability, known sites of protein-protein interactions, and 58 

transcription factor-binding motifs, but all still require experimental validations (Adzhubei et al., 59 

2010; Mitchell-Olds et al., 2007; Schymkowitz et al., 2005; She and Jarosz, 2018; Wagih et al., 60 

2018; Wray et al., 2013).  61 

Recently, multiplexed assays of variant effects (MAVE) studies have provided an 62 

approach for functionalizing thousands of variants in a high-throughput manner (Starita et al., 63 

2017; Weile and Roth, 2018). These have been extremely useful in understanding how 64 

missense mutations or nucleotide changes alter gene function and/or expression (Duveau et al., 65 

2017; Fowler and Fields, 2014; Matreyek et al., 2018). However, most of these approaches 66 

have been limited to studying single nucleotide or amino acid substitutions away from a 67 

reference sequence, as technologies don’t yet exist to generate and measure the 68 

consequences of the large libraries that would be necessary to explore combinatorial variation. 69 

Additionally, the majority of variants assayed are rarely reflective of those in natural populations. 70 

For instance, natural alleles can have more than one polymorphism, not all of which are seen 71 

exclusively in coding or exclusively in noncoding regions, and thus are not surveyed completely 72 

in many MAVE studies. Being able to directly test the function of natural variants of whole 73 

populations provides context for how polymorphisms and combinations of polymorphisms alter 74 

phenotype. Furthermore, such an approach would provide deeper insight into the evolutionary 75 

history of a gene and how both weak and strong selection or drift have acted upon a phenotype 76 

that results in the variation present in natural populations (Johnson and Barton, 2005; Mitchell-77 
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Olds et al., 2007). Thus, developing a method for testing natural variants in a high-throughput 78 

manner is of high interest. 79 

Here, we developed such an assay functionalizing natural variants on a species-wide 80 

scale using Saccharomyces cerevisiae, the budding yeast. With the rapid advancement of high-81 

throughput whole-genome sequencing, we now have large collections of natural S. cerevisiae 82 

strains that contain genomic data as well as geographical and ecological information (Bergström 83 

et al., 2014; Liti et al., 2009; Peter et al., 2018; Schacherer et al., 2009; Strope et al., 2015; Zhu 84 

et al., 2016). Although much research has been done on laboratory strains for understanding 85 

biology, curation of these collections revealed the striking diversity within this popular model 86 

organism: S. cerevisiae has been isolated from a variety of countries all over the globe and from 87 

habitats like human clinical samples, domesticated products like beer and bread, and tree and 88 

fruit samples. Sequencing of these genomes has revealed a lot about genetic variation, but still 89 

little is known about how these genetic changes impact phenotypic variation outside of a handful 90 

of association studies and QTL mapping efforts (Ehrenreich et al., 2012, 2009; Kim et al., 2012; 91 

Peltier et al., 2019; Wilkening et al., 2014). With the large genome sequencing efforts and strain 92 

collections, in addition to the wealth of molecular tools developed for yeast, S. cerevisiae is the 93 

ideal system to develop this assay and investigate the effects of natural polymorphisms for 94 

whole populations. 95 

For piloting and developing our approach, we used the natural alleles of SUL1 from a 96 

collection of 1,011 isolates to test whether we can deconvolute how variation affects cell growth 97 

under sulfate limiting conditions. SUL1 encodes a high-affinity sulfate permease and is 98 

expressed under sulfate limitation. Previous studies have found that when evolving different 99 

strains of S. cerevisiae under sulfate limitation in the chemostat, cells with amplifications of 100 

SUL1 have high fitness and rise in frequency in the population (Gresham et al., 2008; Payen et 101 

al., 2014; Sanchez et al., 2017). Strong selection for amplification of this locus in sulfate-limiting 102 

conditions allows for a reliable functional assay in which we can mimic amplifications by 103 
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transforming cells with a low-copy plasmid containing SUL1. Additionally, we have previously 104 

performed a deep mutational scan on the promoter of SUL1, giving us a dataset measuring the 105 

functional consequences of single mutations for comparison (Rich et al., 2016). By co-culturing 106 

a population of cells transformed with a barcoded library of natural alleles, we can measure 107 

competitive fitness via barcode sequencing and thereby determine SUL1 functionality en 108 

masse. Our results show that this assay is accurate in predicting function and useful in 109 

understanding what genetic changes affect phenotype. These data allow for insight into the 110 

evolutionary history of SUL1 function and possible evidence for selection of loss-of-function 111 

mutations. This approach, especially when combined with established forward genetics 112 

approaches in identifying causal loci, will greatly strengthen our understanding of quantitative 113 

traits on a species-wide scale.  114 

 115 

Methods 116 

Strains and plasmids 117 

Natural isolates from the 1,011 Saccharomyces cerevisiae collection were used to 118 

isolate natural variants of SUL1 (Peter et al., 2018). Strains pinned on yeast extract peptone 119 

dextrose (YPD) agar plates were transferred to liquid YPD in 96-well plates, grown overnight at 120 

30°C, and stored in 30% glycerol at -80°C. The FY3 S288C strain DBY7284 (MATa ura3-52) 121 

was used for transformation and competition experiments (described below). A GFP-marked 122 

strain YMD1214 (MATa ho∆::GFP-KANMX) that has neutral fitness under sulfate limitation was 123 

used for validation competition assays. Prototrophic FY3 (DBY11069), YMD4321 (MATa ura3-124 

52 sul1∆::URA3-KANMX), YMD4322 (MATa ura3-52 sul2∆::URA3-KANMX), and YMD4323 125 

(MATa ura3-52 sul1∆::URA3-KanMX sul2∆::URA3-KanMX) were used to validate growth rates 126 

on sulfate-limited and sulfate-abundant agar plates. A pRS316 vector with an NruI site inserted 127 

in the BamHI site (YMD2307) was used in this study for molecular cloning and competitions 128 

described below. A complete list of strains can be found in Supplementary Table 1. 129 
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 130 

Plasmid and yeast library generation 131 

 Strains from the 1,011 S. cerevisiae collection were pooled together from colonies on a 132 

solid agar plate. Genomic DNA was then extracted using the QIAGEN Genomic-tip 100/G kit. 133 

Natural variants of SUL1 were amplified with primers designed to hybridize to conserved 134 

regions 844 bp upstream of the translation start site and 262 bp downstream of the stop codon 135 

(oligos 1 and 2, (Supplementary Table 2)). Oligo 2 also contained an 8 bp randomized 136 

sequence to serve as a barcode. PCR was performed using KAPA HiFi Hotstart Readymix with 137 

the following cycling conditions: 95°C for 3 min, then 19 cycles of 98°C for 20 seconds, 60°C for 138 

15 seconds, and 72°C for 4 minutes. Final extension was at 72°C for 4 minutes, and then the 139 

reaction was cooled to 4°C. The barcoded product was purified using the DNA Clean and 140 

Concentrator kit from Zymo Research and assembled into an NruI-digested plasmid via Gibson 141 

assembly. Chemically competent E. coli cells were transformed with the product using heat 142 

shock at 42°C, and >20,000 transformants were collected and pooled. Plasmids were extracted 143 

from the pooled transformants using Wizard® Plus SV Miniprep DNA Purification Kit and then 144 

used to transform yeast (DBY7284) using 100 μL of 2 M lithium acetate, 800 μL of 50% 4000 145 

polyethylene glycol, 100 μL of 1M dithiothreitol, and 50 μL of 10 mg/mL of carrier DNA. 146 

Approximately 6,000 Ura+ yeast transformants were collected for pooled competition 147 

experiments and for PacBio sequencing (Figure 1A).  148 

 149 

Linking barcodes with full-length variants 150 

 Plasmids were extracted from the yeast transformant pool using Zymoprep Yeast 151 

Plasmid Miniprep II (Zymo Research). Plasmid fragments containing the barcode and variant 152 

were isolated using M13/pUC primers with KAPA HiFi Hotstart Readymix and the following 153 

cycling conditions: 95°C for 3 min, then 13 cycles of 98°C for 20 seconds, 60°C for 15 seconds, 154 

and 72°C for 4 minutes. The final product was extracted from a 0.5% agar gel using Qiagen’s 155 
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Gel Extraction kit and cleaned using Ampure PB beads (Pacific Biosciences). Two PacBio 156 

libraries were made using the SMRTbell™ Template Prep Kit 1.0 (Pacific Biosciences) and sent 157 

to University of Washington PacBio Sequencing Services for sequencing and Sequel II circular 158 

consensus sequence (CCS) analysis.  159 

 BAM files of CCS reads were aligned to the plasmid reference file using BWA/0.7.13 160 

mem (Li, 2013). Reads that were aligned to the reference were piped to a new BAM file with 161 

Samtools/1.9 (Li et al., 2009). These reads were also analyzed with cigar strings to validate 162 

alignment of PacBio reads. From there, the barcodes were extracted, and a barcode-variant 163 

map was generated that contained a file with all of the barcode-variant reads and all of the 164 

highest quality reads for each barcode, as previously described (Matreyek et al., 2018). Since 165 

the resulting barcode-variant map still showed a considerable number of insertion and deletion 166 

errors, we used a multiple sequence alignment of all the reads that shared the same barcodes 167 

to eliminate additional sequencing errors. Alignments were done using MUSCLE (v.3.8.31) 168 

(Edgar, 2004). Any further ambiguous nucleotides were resolved by performing a pairwise 169 

alignment against the highest quality read (EMBOSS Needle v. 6.4.0) (Needleman and Wunsch, 170 

1970). 171 

 To match PacBio reads to strains in the 1,011 collection, reference sequences were first 172 

extracted from the GVCF in the 1,011 collection genome data using BCFtools consensus. We 173 

then used regular expressions to search for reads that were putatively derived from these 174 

reference sequences. We removed barcodes that contained only one CCS read or were not 175 

represented in our barcode sequencing analysis (Figure 1B). 176 

 177 

Pooled library competition in chemostats 178 

 Sulfate-limited media (3mg/L ammonium sulfate) was prepared as previously described 179 

(Gresham et al., 2008; Payen et al., 2014). Four 50 mL chemostat culture vessels were filled 180 

with 20 mL of media at 30°C and inoculated with 1 mL of the yeast transformant pool. This 181 
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culture was grown for 24 hours, after which the pumps were turned on and the culture switched 182 

to a continuous culture system at a dilution rate of about 0.17 volumes per hour (~3.4 mL/hour 183 

in a 20 mL culture). Samples were taken twice a day for 5 days, or about 25 generations. For 184 

each sample, 1 mL was stored in 25% glycerol at -80°C, and another 1 mL was used for 185 

plasmid extraction (Figure 1C).  186 

 187 

Barcode sequencing and analysis 188 

 For each time point and replicate from the pooled library competition, plasmids were 189 

again extracted using the Zymoprep Yeast Plasmid Miniprep kit. One replicate was discarded 190 

due to technical errors. Barcodes were isolated and amplified using forward oligo 25 and 191 

indexed reverse oligos 26-40 and 120-128 that included Illumina Nextera sequencing adaptors. 192 

KAPA HiFi Hotstart Readymix was used with 1 μL of 1X SYBR™ Green I and the following PCR 193 

cycles: 95°C for 3 min, then 17-19 cycles of 98°C for 20 seconds, 60°C for 15 seconds, and 194 

72°C for 15 seconds. The reaction was run on a Bio-Rad MiniOpticon (Bio-Rad) to avoid 195 

overamplification. PCR products were cleaned using Ampure XP Beads (Agencourt) and 196 

quantified using the KAPA Library Quantification Kit for Illumina® Platforms (Roche). Libraries 197 

were sequenced on a NextSeq sequencer (Illumina) with sequencing oligos 41 (Read 1), 44 198 

(Read 2), and 100 (Index). Paired-end reads were merged using PEAR/0.9.5 (Zhang et al., 199 

2014). Using FitSeq, we calculated the fitness of each barcode for each given replicate (Li et al., 200 

2018). FitSeq normalizes each pool to account for experimental error between replicates, 201 

providing a more accurate readout of fitness. The fitness values were then normalized by the 202 

average fitness of barcodes associated with the wild-type (S288C) alleles. The effects of single 203 

mutations were also compared with predicted consequences of mutations from mutfunc (Wagih 204 

et al., 2018) (Figure 1C). 205 

 206 

Pairwise fitness assays in chemostats 207 
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 To assess fitness of strains carrying individual alleles, 300 μL of a liquid culture of each 208 

strain was inoculated into a chemostat containing 20 mL of sulfate-limited media at 30°C. For 209 

each of the competitors, one competitor strain contained a plasmid with an extra copy of SUL1 210 

and the other isogenic strain contained a neutral GFP marker. Additionally, competition 211 

experiments of strains carrying each allele being assayed were conducted in at least two 212 

biological replicates. Cultures were grown for 24 hours before switching to a continuous culture 213 

system. Once cultures achieved steady state, the competing cultures were mixed at a 1:1 ratio. 214 

Cultures were competed for 15 generations after mixing and sampled twice daily (approximately 215 

every 3-6 generations). For each sample, cultures were assayed for percent GFP cells with a 216 

BD Accuri C6 flow cytometer (BD Biosciences). Competitive fitness values were calculated by 217 

plotting ln(number of dark cells/number of GFP+ cells) over about 25 generations and taking the 218 

linear slope of the linear regression from this data.  219 

 220 

Measuring the growth of the 1,011 isolates on solid media 221 

 Solid sulfate-limited media (3mg/L ammonium sulfate) was prepared by adding 2% 222 

agarose to liquid sulfate-limited media and poured in PlusPlates (Singer Instruments). Solid 223 

sulfate abundant media was prepared by adding ammonium sulfate (to 5g/L) to the sulfate-224 

limited media. To ensure the depletion of sulfate in the cells, all 1,011 natural isolates were 225 

grown overnight (~14 hours) on solid sulfate-limited media. The isolates were then replicated in 226 

quadruplicate on solid sulfate-limited and sulfate-abundant media. Photos of the colonies were 227 

taken every 12 hours for 3 days and the R package gitter was used to calculate the size of each 228 

colony in the photos (Wagih and Parts, 2014). For each time point on both limited and abundant 229 

conditions, we subtracted the colony size at the first time point from the colony size at 230 

subsequent time points (colony size = sizet - sizet=0). Growth rates were calculated by taking the 231 

average of the ratio of the colony size in limited media over the colony size in abundant media 232 

across 72 hours. 233 
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 234 

Phylogenetic tree generation and sequence analysis 235 

 To generate our phylogenetic trees, SUL1 sequences from the 1,011 strains and from S. 236 

paradoxus strain CBS432 were aligned using MUSCLE (Edgar, 2004). The genetic distances 237 

for SUL1 alleles were calculated using the maximum-likelihood-based distances through 238 

DNADIST in the PHYLIP package (Felsenstein, 2005). A gene tree for SUL1 was then 239 

generated using the NEIGHBOR program, and the final tree was visualized and annotated using 240 

R/ggtree (Yu et al., 2017).  241 

 To determine the prevalence of loss-of-function mutations across all 1,011 strains, we 242 

used sequences from the core ORFs in the pangenome as reference sequences and identified 243 

which strains were homozygous for premature stop codons in each of the core ORFs (Peter et 244 

al., 2018). Premature stop codons that occurred in the last 90% of an ORF were not included, 245 

as previous studies have shown that these mutations would not necessarily cause a significant 246 

loss of function (Bergström et al., 2014). Gene Ontology (GO) analysis was conducted using 247 

Yeastmine (accessed May 22, 2020) and both Benjamini-Hochberg and Bonferroni test 248 

corrections were used to account for multiple testing (Balakrishnan et al., 2012). 249 

 250 

Data availability 251 

Raw sequencing data can be found in the Sequencing Read Archive (BioProject Accession 252 

PRJNA681436 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA681436). Scripts and 253 

Supplemental Tables used for this paper can be found at 254 

https://github.com/dunhamlab/SUL1_natural_variants. All alleles, matched strains, barcodes, 255 

fitness, coding mutations, and noncoding mutations can be found in Supplementary Table 3. 256 

 257 

Results 258 

Allele library curation and characterization 259 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.433108doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433108
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

 When sulfate is a limiting nutrient, S. cerevisiae increases expression of SUL1, which 260 

encodes a high-affinity sulfate permease that increases the intake of sulfate molecules into the 261 

cell. Previously, we measured the competitive fitness of SUL1 alleles isolated from 10 different 262 

wild yeast isolates (Payen et al., in preparation). We found that these alleles confer a wide 263 

range of fitness: some had loss-of-function phenotypes while others performed better than the 264 

allele found in the reference strain S288C. In order to determine if this wide variation was 265 

representative across the entire species and whether it correlated with features such as the 266 

environment from which each strain was isolated, we set out to survey SUL1 functionality 267 

across a bigger sample of natural isolates. For this study, we used the 1,011 S. cerevisiae strain 268 

collection, which was curated from a variety of geographical and ecological origins (Peter et al., 269 

2018). In addition, the collection contains at least 250 unique alleles of SUL1 with 354 variable 270 

sites in the gene. Alleles contain 11 polymorphisms on average vs. the reference allele, with the 271 

most polymorphic allele having 79 mutations. Therefore, these factors make SUL1 a powerful 272 

tool for us to better understand the natural variation of a single gene in S. cerevisiae 273 

populations.  274 

 In our previous studies, the fitness of individual SUL1 alleles was measured by 275 

transforming the reference strain with an additional copy of a SUL1 allele on a low-copy 276 

plasmid, and the resulting strain was competed against an isogenic GFP-marked strain under 277 

sulfate limitation (Payen et al., in preparation) (Sanchez et al., 2017). While this assay is reliable 278 

and consistent, it would be difficult and unrealistic to scale to measure hundreds of alleles. 279 

Thus, we developed a high-throughput, multiplexed approach that allows us to simultaneously 280 

measure these fitness values directly (Figure 1). To do this, we pooled the 1,011 isolates 281 

together, extracted genomic DNA, and used barcoded primers binding to conserved regions to 282 

isolate and amplify all natural alleles of the SUL1 gene. These sequences were cloned en 283 

masse onto low-copy CEN/ARS plasmids to create an allele library and used to transform the 284 

reference strain (FY). The resulting library contained approximately 6,000 barcodes for an 285 
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estimated 250 unique alleles (24X coverage) to ensure complete coverage and internal 286 

replicates (Figure 1A).  287 

We used PacBio long-read circular consensus sequencing (CCS) to pair barcodes with 288 

their respective alleles (Figure 1B). Although PacBio CCS has drastically improved and 289 

decreased sequencing errors over the past few years, we found that many reads still contained 290 

errors that were especially noticeable in the form of insertions and deletions. To further 291 

eliminate these sequencing artifacts, we performed multiple sequencing alignments on CCS 292 

reads that shared the same barcode, and used those to derive new consensus sequences. In 293 

total, our analysis produced 8,386 barcode-variant pairs, which we determined was still an 294 

overestimate given our library size of ~6,000 barcodes. We removed consensus reads that only 295 

appeared once to eliminate false positives or negatives in our downstream analysis, with 3,787 296 

barcodes remaining. 297 

Among these 3,787 barcodes, we identified 407 unique alleles in our library. Of these 298 

variants, we were able to match 228 alleles to at least one strain in the 1,011 strain collection, 299 

with a total of 880 strains that had at least one matched allele in the library (Supplemental 300 

Figure 1). To determine how well this library reflected the polymorphisms in the strain 301 

collection, we plotted the correlation of polymorphism frequency in both the variant reference 302 

sequences and library sequences and found that these values were highly correlated 303 

(Pearson’s correlation, r=0.978, Supplemental Figure 2). Correlation values were similar for 304 

polymorphisms in all regions of the gene: the 5’-UTR, coding region, and 3’-UTR were all well-305 

correlated (Pearson’s correlation, r=0.956, 0.980, and 0.993, respectively). Of the 354 variable 306 

sites found in the reference sequences, only 45 of them were not detected in the allele library, 307 

nine of which were rare polymorphisms. Our pipeline did not reveal any de novo mutations that 308 

could have resulted from PCR or sequencing artifacts.  309 
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We were also unable to capture the alleles from 23 strains that were identified to have 310 

SUL1 introgressed from Saccharomyces paradoxus. This was likely due to these sequences 311 

being more highly diverged and therefore unable to hybridize with the primers that were 312 

designed. However, for completeness, we were still able to measure the functionality of the 313 

introgressed SUL1 alleles using our lower throughput method of direct competitions, as 314 

described below. 315 

Figure 1. Workflow for assaying natural variants in the 1,011 strain collection. A) The S288C lab strain is transformed 
with SUL1 natural allele barcoded plasmid library. B) PacBio long-read sequencing is used to link barcodes with variants. C) 
Transformants are competed together under sulfate limitation. Barcode sequencing every 3-4 generations is used to calculate 
the abundance of each variant and its respective competitive fitness. 
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Fitness distribution across natural SUL1 alleles 316 

 To determine the fitness landscape of all the SUL1 alleles present in our allele library, 317 

we competed the library of yeast transformants in a continuous culture system under sulfate-318 

limited media. Samples from 12 timepoints across four replicates were collected every 3-4 319 

generations. For each sample, we extracted the plasmids from sampled cultures and 320 

sequenced the ba rcodes using Illumina short-read sequencing. By tracking the change in 321 

barcode frequencies over the 12 timepoints, we determined the competitive fitness values for 322 

strains carrying each allele (Figure 1C). The calculated competitive fitness of the three 323 

replicates showed strong correlation and reproducibility (Supplemental Figure 3). 324 

 

  

 

 

 

 

Figure 2. Species-level distribution of fitness effects of natural SUL1 alleles. Lab strain S288C yeast transformed 
with an allele library of SUL1 cloned onto a low-copy plasmid were competed in sulfate-limited media in the chemostat. 
The log-fold change in proportions of each barcode across 12 timepoints were measured through barcode sequencing 
and used to calculate competitive fitness. Alleles categorized as nonsense alleles may also contain synonymous and 
nonsynonymous polymorphisms. Those grouped as nonsynonymous alleles may contain synonymous polymorphisms, 
but do not have premature stop codons. Synonymous alleles do not have nonsynonymous or nonsense 
polymorphisms. All alleles may contain polymorphisms in the promoter or 3’UTR. Loss-of-function alleles were defined 
as having a fitness lower than the highest-fit allele with a premature stop codon. Wild-type function alleles have a 
fitness higher than the lowest-fit synonymous allele.  
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In our barcoded library, 863 of 3,787 barcodes were associated with alleles identical to  325 

that of the S288C reference strain. We normalized all fitness values to the average fitness of 326 

these wild-type alleles (0.0097, standard deviation 0.0698). Reassuringly, we found that many 327 

barcodes with lower fitness values (fitness < -0.03) were largely associated with alleles 328 

containing natural premature stop codons (Figure 2). In fact, upon analyzing the sequences in 329 

each strain, we found 74 strains that are homozygous for premature stop codons in their SUL1 330 

alleles. Among the 31 alleles with premature stop codons, fifteen occur in amino acid positions 331 

155 and 184 (Y155* and 184Q*, where amino acids are compared to the S288C protein 332 

sequence).  333 

Due to the wide range in fitness of alleles with premature stop codons, we investigated 334 

whether stop codons that occurred earlier in SUL1 have a greater impact on function. We found 335 

that the location of stop codons in SUL1 did not dictate the deleterious effects of containing a 336 

nonsense mutation (Supplemental Figure 4a). However, the fitness of alleles with premature 337 

stop codons at amino acid position 671 consistently have much lower fitness compared to 338 

others with premature stop codons elsewhere. This stop codon occurs in the predicted 339 

extracellular STAS (sulfate transporter and anti-sigma factor antagonist) domain, which is 340 

thought to be crucial for metabolism sensing, and may be further impacting sulfate transport 341 

under sulfate limiting conditions (Sharma et al., 2011). 342 

We compared the standard deviations among barcodes that shared the same loss-of-343 

function alleles to that of barcodes that shared the same wild-type alleles (Supplemental 344 

Figure 4b). The barcodes linked to loss-of-function alleles do vary more in fitness (Welch two 345 

sample t-test, p < 0.005), although we attribute this variance to increased errors that occur when 346 

measuring fitness on a log scale. In regard to magnitude, the barcode counts are reliable, but 347 

the barcode counts tend to be less accurate when frequencies are low and continue to decrease 348 

through later time points.  349 
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In addition to stratifying alleles with premature stop codons and alleles with wild-type 350 

phenotypes, we identified alleles with nonsynonymous polymorphisms that also result in a loss 351 

of function. For instance, alleles that have a single polymorphism resulting in a T669K amino 352 

acid substitution show a loss of function. We also found that alleles with A454P and D483N and 353 

alleles with S699L substitutions (and no additional nonsense or promoter polymorphisms) have 354 

a loss of function phenotype in our pooled library. Alleles with their polymorphism information, 355 

corresponding strain information, and measured fitness values can be found in Supplementary 356 

Table 3.   357 

We assessed how well the fitness values are reflected in direct competitions by selecting 358 

SUL1 alleles from seven isolates and cloning them individually on the same low-copy plasmid. 359 

We transformed S288C haploid yeast with these individual plasmids and competed each allele 360 

directly against an isogenic GFP strain with no plasmid (Figure 3). Three of the alleles were 361 

Figure 3. Validation of pooled competition through direct competitions of selected natural SUL1 alleles. 
S288C strains transformed with a specific SUL1 allele on a low-copy plasmid were individually competed against an 
isogenic GFP-marked strain in the chemostat. Fitness values were calculated by tracking the log-fold change in 
proportion of non-fluorescent strains and fluorescent strains over 20 generations. These values were used to validate 
select alleles and their phenotypes observed in the pooled competition. Alleles were selected based on definitive 
categorization in wild-type-like (pooled competitive fitness close to 0) or loss-of-function (pooled competitive fitness 
less than -0.10) phenotypes. Of the loss-of-function alleles, AQM and BGM have premature stop codons while BII is 
loss-of-function due to nonsynonymous polymorphisms. SUL1 alleles in AKN, ADA, and BII were done in a prior 
experiment (Payen et al., in preparation).  
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selected to validate a wild-type-like phenotype and corresponded to the values calculated in the 362 

pooled competition. Three other alleles selected showed a loss-of-function phenotype in the 363 

pooled competition, which was reflected in the direct competitions. Two of these alleles 364 

contained a deletion that resulted in a frameshift (from strains BGM and AQM), and the third 365 

allele had nonsynonymous mutations (from strain BII). The BII strain has previously been 366 

evolved through sulfate limitation for 150 generations, and it was found that a natural 367 

polymorphism that results in a P296L change is responsible for the loss-of-function phenotype 368 

(Payen et al., in preparation). In each case, we found the results of the direct competitions 369 

recapitulated those found in our pooled competition. 370 

Since we were unable to measure functionality of introgressed alleles in our library, we 371 

used the same approach of a direct competition to assay introgressed allele functionality. After 372 

validating the fitness of the SUL1 orthologue from S. paradoxus in the S. cerevisiae 373 

background, which has previously shown high fitness (Sanchez et al., 2017), we also tested the 374 

fitness of two alleles that show signatures of introgression from S. paradoxus. The two 375 

introgressed alleles, despite having over 40 amino acid differences compared to the reference 376 

allele, also have a wild-type phenotype (Figure 3).  377 

 378 

Effects of promoter mutations in natural SUL1 variants 379 

The fitness distribution across the natural alleles shows alleles with only synonymous 380 

site changes in the coding region that nevertheless have a lower competitive fitness compared 381 

to strains carrying the wild-type coding sequence from the reference strain (Figure 2). We 382 

reasoned that these alleles may instead carry functional differences in the noncoding 383 

sequences. We found that these alleles share the n.-456G>A polymorphism, and upon further 384 

inspection discovered that this SNP is only present in alleles (including those with additional 385 

nonsynonymous SNPs) with lower competitive fitness values under sulfate limitation (median 386 

competitive fitness = -0.04). Since this competitive fitness value is not as low as alleles with 387 
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premature stop codons (median competitive fitness = -0.17), it is indicative of an intermediate 388 

phenotype. This SNP occurs in a putative Cbf1-binding motif, and binding of this Cbf1 389 

transcription factor has been shown to be important for growth in sulfate limiting conditions (Rich 390 

et al., 2016; Siggers et al., 2011). The SNP also decreased fitness in a SUL1 promoter 391 

mutagenesis study, further supporting the functional effects of changes in this motif (Rich et al., 392 

2016).  393 

We used the highest fitness of an allele that contains a premature codon (median 394 

competitive fitness = -0.108) and the lowest fitness of alleles without promoter or 395 

nonsynonymous polymorphisms (median competitive fitness = -0.0120) to establish a range for 396 

other alleles with intermediate phenotypes. Twenty-two unique alleles show an intermediate 397 

phenotype, and 9/20 alleles with nonsynonymous polymorphisms also have the n.-456G>A 398 

polymorphism. Using these benchmarks, we also identify nonsynonymous changes that do not 399 

confer a complete loss of function.  400 

The observation of promoter mutations affecting phenotype in sulfate limitation led us to 401 

inspect how much promoter polymorphisms in general contribute to the fitness values observed 402 

across the entire allele library. We compared the standard deviation in fitness for sequences 403 

that share the same coding sequence to the standard deviation in fitness for sequences that 404 

share the same promoter sequences. We found that the coding sequences seemed to more 405 

consistently determine fitness of a strain under sulfate limitation (Figure 4a). That is, alleles with 406 

the same promoter sequences had a greater variance in fitness values. Furthermore, alleles 407 

that shared the same coding sequences but differed in promoter sequences showed few 408 

significant differences in fitness (Figure 4b). Finally, despite the fact that the promoter 409 

mutagenesis study found mutations that could improve fitness under sulfate limitation, we did 410 

not identify such polymorphisms among our natural variants.  411 
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Comparing competitive fitness with mutfunc 412 

With nonsense mutations, loss of function can be predicted based on sequence alone. 413 

However, predicting the functional effects of other mutations based on sequence alone is much 414 

more challenging. To determine how well these fitness values were reflected in functional 415 

computational predictors, we used mutfunc to compare our results to predicted functional 416 

effects. For each variant, we took the most putatively detrimental mutation and compared its 417 

value to the fitness values calculated in our pooled competition assay. While the SIFT scores 418 

and our fitness values themselves showed very little correlation (Supplementary Figure 5a), 419 

we found that most alleles with a loss-of-function phenotype had a low SIFT score 420 

(Supplementary Figure 5b). Interestingly, many mutations that SIFT predicted would be 421 

detrimental actually had a wild-type-like phenotype under sulfate limitation. This highlights the 422 

value of experimentally measuring the function of variants, especially in cases where we need 423 

to consider the functional impacts of multiple polymorphisms on the same haplotype.  424 

Figure 4. Coding polymorphisms are more useful for predicting deleterious effects compared to those in 
the promoter of SUL1. A) Violin plots of the standard deviations of the competitive fitness for barcodes grouped 
by those that share the same coding sequence compared with the standard deviation of those that share the same 
promoter sequence. B) Boxplots of competitive fitness of the sequences that share the same coding sequence but 
differ in the promoter sequences. 
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Phylogenetics and sequence analysis of natural SUL1 alleles 425 

To assess phenotypic patterns of SUL1 on the population level, we annotated a 426 

distance-based gene tree of SUL1 (Figure 5) with the competitive fitness values we calculated 427 

from our pooled competition assay. In our gene tree, we used the SUL1 allele of 428 

Saccharomyces paradoxus (CBS432) as the outgroup. We removed branch lengths from these 429 

Figure 5. Neighbor-joining gene cladogram generated through PHYLIP using unique genotypes of SUL1 in 
the 1,011 strain collection. French dairy and sake/Asian fermentation clades both show multiple independent 
instances of loss-of-function mutations. A stop codon at amino acid position 184 occurs independently in different 
strains. Color of edges (pink or black) indicates whether genotype for those terminal nodes are homozygous or 
heterozygous. Heterozygous alleles can be derived from diploid, triploid, tetraploid, or even pentaploid strains. Boxes 
directly adjacent to terminal nodes indicate the genotypes that are homozygous for a premature stop codon (red) or 
a -456G>A mutation (cyan). Flanking boxes of genotypes with premature stop codons are numbers indicating where 
in the amino acid sequence the premature stop codon occurred. The ring surrounding the tree denotes the mean 
SUL1 competitive fitness values for a given strain’s allele on a purple (wild-type-like fitness) to red (loss-of-function 
fitness) gradient. Labeled regions are generalizations for what comprises most of those clades.  
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trees to simplify interpretations. Using these annotated trees, we are able to interpret phenotype 430 

in relation to ecological origins and phylogenetic relationships (Figure 5). We firstly looked at 431 

the strains homozygous for premature stop codons in SUL1. The polymorphism that results in 432 

Q184* does not occur in a singular clade, reducing the possibility that this premature stop codon 433 

arose in prevalence as a result of drift or identity by descent. Alleles with Y155* are primarily 434 

present in strains isolated from dairy environments in Normandy, France; however, not all dairy 435 

strains share the same nonsense mutation (Figure 6). Two other strains derived from dairy, 436 

AQM and BGM, instead have the L125* frameshift mutation. This pattern suggests that a loss-437 

of-function mutation could be beneficial in a dairy environment. 438 

The majority of strains with the detrimental promoter mutation n.-456G>A were isolated 439 

from sake or Asian fermentation strains. Additionally, many strains in this clade have a 440 

premature stop codon and or nonsynonymous polymorphisms that result in loss of function, 441 

which would again support the idea that there may be a trade-off for having a loss-of-function 442 

SUL1 allele since more than one loss-of-function allele sequence exist among these strains. 443 

 Based on the distribution of deleterious alleles over the phylogeny, we wondered if these 444 

allele differences would lead to phenotype differences when the alleles were in their native 445 

strain context.  We grew all isolates (unmodified) from the 1,011 strain collection on solid 446 

minimal media agar plates under sulfate limitation and compared the growth rates to that of the 447 

strains pinned on sulfate-abundant minimal media. Interestingly, we found little to no correlation 448 

between the growth rates of strains and the competitive fitness values of their SUL1 alleles 449 

(Supplemental Figure 6a,b). We additionally looked for growth patterns among ploidy, 450 

geographical origins, and clade and found no patterns related to these groupings 451 

(Supplemental Figure 6c). These results argue that additional background effects beyond the 452 

SUL1 locus matter for determining fitness in sulfate limitation. Measuring the fitnesses of the 453 

allele library in additional strain backgrounds may help further characterize this genetic 454 

complexity. 455 
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We calculated the average dN/dS value of SUL1 across all 1,011 strains and found that 456 

the value was low (dN/dS < 0.2), suggesting that there may be purifying selection on SUL1. 457 

Additionally, Tajima’s D statistic suggests that SUL1 is unlikely to be evolving neutrally (D = -458 

2.85). This may indicate that this locus has not reached equilibrium after a bottleneck in the past 459 

and is still undergoing expansion. The neutrality index calculated from the McDonald-Kreitman 460 

test indicated no evidence of selection (NI = 1.117, Fisher’s exact two-tailed test, p = 0.625); 461 

however, there are mutations in the S. cerevisiae population that are slightly and fully 462 

 

 

 

 

Figure 6. Dairy and African beer subtree of the 1,011 SUL1 genotypes. Although dairy strains AQM and BGM 
share a more recent common ancestor to African beer strains, they show different but independent and homozygous 
loss-of-function polymorphisms. Color of edges (pink or black) indicate whether genotype for those terminal nodes are 
homozygous or heterozygous. PSC, amino acid site with premature stop codon (homozygous); CF, competitive fitness; 
NSRG, number of strains represented by genotype. Boxes around terminal nodes indicate the genotypes that are 
homozygous for a premature stop codon (red) or a -456G>A mutation (cyan). Scale (bottom left) indicates number of 
nucleotide substitutions per site. 
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deleterious, which have been shown to cause errors in predictions of adaptive evolution using 463 

this test (Charlesworth and Eyre-Walker, 2008). 464 

In order to determine whether SUL1 is exceptional in the prevalence of loss of function 465 

mutations, we determined the frequency of likely deleterious premature stop codons at all loci in 466 

the 1,011 strain collection sequences. Using the sequencing data curated in the 1,011 S. 467 

cerevisiae strains, we analyzed the coding sequences of genes in the pangenome for premature 468 

stop codons that occurred in the first 90% of the gene. We excluded genes that either did not 469 

appear in the pan-genome or contained premature stop codons in the pan-genome reference 470 

sequences. Grouping these genes enriched in premature stop codons by ecological origins, we 471 

found that dairy strains tended to have a consistently higher number of genes that are 472 

homozygous for premature stop codons compared to strains isolated from other ecological 473 

origins (Supplemental Figure 7). This is consistent with previous studies that identified 474 

enriched loss-of-function alleles among dairy strains that were a result of drift and are important 475 

for trait variation (Legras et al., 2018; Zorgo et al., 2012). Of all the genes in the pangenome, 476 

2,465 genes contain a premature stop codon in at least two strains, with 862 of these genes 477 

containing premature stop codons in more than 20 strains. Gene Ontology (GO) term analysis 478 

revealed that 158 of these 862 genes are involved in ion and/or transmembrane transport. This 479 

corresponds with previous analyses that found that genes encoding transmembrane proteins 480 

tended to be closer to telomeric ends of chromosomes and were more likely to acquire loss-of-481 

function mutations (Bergström et al., 2014). Of the 1601 genes that have premature stop 482 

codons in fewer than 20 strains, 284 are involved in catabolic processes (Holm-Bonferroni 483 

test/Benjamini Hochberg p-value < 3e-4) and 385 are involved in responses to stimuli (p-value < 484 

6e-5). The number of genes with loss-of-function variants is much greater than the number 485 

found in previous studies, likely due to the fact that this dataset has a greater number of strains 486 

and much more diversity among strains in regards to factors such as ploidy and isolation origin 487 

(Bergström et al., 2014; Jelier et al., 2011). 488 
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Discussion 489 

Assessing the phenotype of alleles on a species-wide scale is crucial for understanding 490 

how quantitative traits vary in a population. Previously developed approaches for experimentally 491 

identifying causal variants are conducted through DNA synthesis or mutagenesis, and in many 492 

cases do not reflect alleles found in natural populations. We have developed here a high-493 

throughput and low-cost functional approach that can measure the fitness of nearly all alleles 494 

present in a population. Specifically in our study, we investigated the function of 228 natural 495 

variants of SUL1, a high-affinity sulfate transporter gene, present in the 1,011 S. cerevisiae 496 

strain collection. Our assay identified instances of functional, intermediate, and loss-of-function 497 

phenotypes. Using this data, as well as gene and whole genome sequencing data, we related 498 

SUL1 fitness to its evolutionary history. SUL1 acquired multiple independent instances of loss of 499 

function, the majority of which were due to premature stop codons. Other alleles had frameshift, 500 

nonsynonymous, and promoter polymorphisms that negatively affected fitness. These multiple 501 

independent instances provide evidence that there may be a fitness trade-off for having a loss-502 

of-function SUL1 allele. The strains carrying these loss-of-function alleles were largely isolated 503 

from dairy, beer, and sake clades. Because not all loss-of-function polymorphisms were 504 

identical in each clade (for instance, there are three different premature stop codons among 505 

dairy strains), these events were likely not due to drift but may have a functional benefit instead. 506 

We recognize an alternative possible explanation, which is that some strains, including those 507 

from dairy environments, have been shown to naturally carry a high burden of loss of function 508 

polymorphisms, and SUL1 could simply represent an easily tolerated loss that is recurrent by 509 

chance. As shown by previous studies, enriched loss-of-function events in specific populations 510 

are thought to arise as a result of genetic drift and play an important role in maintaining genetic 511 

variation (Legras et al., 2018; Zorgo et al., 2012). 512 

However, there is some evidence that a loss-of-function SUL1 allele may confer a trade-513 

off and be beneficial under particular environments. Prior studies have shown that there are 514 
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toxic analogues of sulfate, such as chromate and selenate, that could be transported into the 515 

cell through the Sul1 permease (Cherest et al., 1997; Johnson et al., 2016). Several studies 516 

have also identified other toxic compounds such as cadmium that affect cell function and growth 517 

due to the uptake of sulfate by Sul1 (Zhang et al., 2020). These show instances where having a 518 

functional copy of SUL1 would be detrimental and suggest that SUL1 may have some 519 

antagonistic pleiotropic effects. This may also explain the lack of gain-of-function alleles in our 520 

library, as having a higher-affinity SUL1 may not be beneficial in natural environments. Despite 521 

the results from previous studies, many of which investigated the effects of toxic compounds in 522 

lab strain backgrounds similar to what we used here, we have been unable to recapitulate these 523 

trade-offs.  524 

Identifying loss-of-function alleles by searching for premature stop codons is relatively 525 

straightforward. Additionally, we found that many of the nonsynonymous polymorphisms were 526 

predicted from mutfunc to have a deleterious effect, although many of these predicted 527 

deleterious polymorphisms were false positives. Moreover, the effects of polymorphisms in 528 

regulatory regions are more challenging to predict computationally. Using natural variation, we 529 

have identified instances where a single polymorphism (n.-456G>A) in a predicted transcription 530 

factor-binding site affects fitness of cells under sulfate limitation, a result that was also apparent 531 

in our prior promoter mutagenesis study (Rich et al., 2016). 532 

Our approach also identifies intermediate phenotypes, many of which in our pool were 533 

likely a result of a natural promoter polymorphism that affects expression. For studying variants, 534 

it is challenging to identify deleterious mutations in a population, and here we illustrate an 535 

example showing the importance of studying both coding and noncoding polymorphisms, as 536 

both normal expression and protein structure affect phenotype and thus how selection acts on a 537 

population.  538 

While some SUL1 alleles have single polymorphisms that can result in a total loss of 539 

function, there were also alleles with several nonsynonymous mutations that had wild-type-like 540 
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fitness under sulfate limitation. Notable examples include the two SUL1 alleles found across 21 541 

unique isolates that had signatures of introgression from S. paradoxus; these alleles had over 542 

40 amino acid differences, yet functioned normally in the S288C background. These results 543 

support our previous findings that SUL1’s high affinity has been maintained across S. 544 

paradoxus and S. cerevisiae (Sanchez et al., 2017), and the fitness measurements of the 545 

introgressed alleles support the idea that these sequences maintain their function even in a new 546 

genetic background context. The wide variation in SUL1 function under sulfate limitation is stark, 547 

and using these natural variants has provided further evidence for non-neutral evolution. 548 

 In this study and our prior study, we found no correlation between SUL1 function and its 549 

original isolate’s growth on sulfate-limited media (Payen et al., in preparation). Again, despite 550 

the fact that SUL1 copy number increases in evolution experiments under sulfate limitation, we 551 

were surprised to see that fitness of endogenous copies of SUL1 did not necessarily dictate cell 552 

performance under sulfate limitation. One possible reason for this observation is that these 553 

strains contain functional copies of the SUL1 paralog, SUL2. Despite being a lower functioning 554 

sulfate permease compared to SUL1, we found no strains that were homozygous for obvious 555 

loss-of-function SUL2 alleles. The alleles of SUL2 and other transporters like SOA1 likely also 556 

play an important role in growth under sulfate-limiting conditions. Alternatively, small growth rate 557 

changes may not be observable in our solid media growth rate assays compared to what is 558 

possible to measure in chemostat culture.  559 

 All in all, leveraging the technologies available in high-throughput Illumina and PacBio 560 

sequencing, we present here a widely applicable and affordable approach for assaying 561 

hundreds of natural variants in high-throughput. Assaying natural variants in this manner is 562 

especially useful when coupled with whole-genome sequencing data, as it allows us to better 563 

understand function in relation to molecular evolution. Furthermore, our method compares many 564 

alleles of a gene in isolation in an otherwise isogenic background away from the complexities of 565 

genetic background interactions. This approach complements methods like QTL mapping, 566 
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providing a more thorough investigation of phenotypic patterns across an entire species, which 567 

can also contribute to our understanding of how pleiotropic a gene is. Further application of this 568 

approach in other genes and other genetic backgrounds will be greatly beneficial to our 569 

understanding of how selection acts on natural populations and how multiple polymorphisms 570 

contribute to function and ultimately phenotype.  571 
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Supplemental Figure 1. Percentage of strains for each ploidy that matched to at least one 750 

PacBio read.  751 

 752 

Supplemental Figure 2. Allele frequencies found in PacBio allele library reflect those found in 753 

the Illumina reference sequences (expected values). 754 
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Supplemental Figure 3. Competitive fitness values calculated using FitSeq are well-correlated 755 

across replicates. Pearson correlation coefficients r are listed on the top half. ***p<2.2e-16 756 

 757 
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Supplemental Figure 4. a) Barplot representing average fitness and standard deviation of 758 

barcodes categorized by location of premature stop codons. Sites without error bars are 759 

represented by only one barcode. b) Barcodes associated with loss-of-function alleles tend to 760 

have greater variance compared to barcodes with wild-type fitness. 761 
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Supplemental Figure 5. mutfunc determines which mutations are deleterious. For our data, 762 

mutfunc returned SIFT scores for each mutation. We used the mutation with the most 763 

deleterious SIFT scores for each allele. a) Competitive fitness of allele from pooled natural 764 

variant library plotted against SIFT score of most deleterious mutation shows very little 765 

correlation (Pearson’s correlation r=0.253). b) Distribution of experimentally assayed compared 766 

with mutfunc predictions of deleteriousness.  767 
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Supplemental Figure 6. a) Growth rate of sul1∆sul2∆ strains (orange) and wild-type strain 768 

(blue) show differential growth on sulfate-limited media. b) Scatterplot comparing strain 769 

competitive fitness with growth rate on solid sulfate-limited media show no correlation. c) 770 

Grouped by clade, ploidy, zygosity, and continent, strains show no obvious pattern 771 
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Supplemental Figure 7. Barplot of number of genes with premature stop codons per strain, 772 

grouped by ecological origins.  773 
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