10

11

12

13

14

15

16

17

18

19

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.25.432982; this version posted February 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Analyses of the complete genome sequence of 2,6-dichlorobenzamide (BAM) degrader
Aminobacter sp. MSH1 suggests a polyploid chromosome, phylogenetic reassignment, and

functions of (un)stable plasmids.
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Abstract

Aminobacter sp. MSH1 (CIP 110285) can use the pesticide dichlobenil and its transformation
product, the recalcitrant groundwater micropollutant, 2,6-dichlorobenzamide (BAM) as sole
source of carbon, nitrogen, and energy. The concentration of BAM in groundwater often exceeds
the threshold limit for drinking water, resulting in the use of additional treatment in drinking water
treatment plants (DWTPs) or closure of the affected abstraction wells. Biological treatment with
MSHI is considered a potential sustainable alternative to remediate BAM-contamination in
drinking water production. Combining Illumina and Nanopore sequencing, we here present the
complete genome of MSH1, which was determined independently in two different laboratories.
Unexpectedly, divergences were observed between the two genomes, i.e. one of them lacked four
plasmids compared to the other. Besides the circular chromosome and the two previously
described plasmids involved in BAM catabolism pPBAMI1 (41 kb) and pPBAM2 (54 kb), we observe
that the genome of MSH1 contains two megaplasmids pUSP1 (367 kb) and pUSP2 (366 kb) and
three smaller plasmids pUSP3 (97 kb), pUSP4 (64 kb), and pUSP5 (32 kb). The MSH1 substrain

from KU Leuven showed a reduced genome lacking plasmids pUSP2 and the three smaller
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plasmids and was designated substrain MK 1, whereas the variant with all plasmids was designated
as substrain DK1. Results of a plasmid stability experiment, indicate that strain MSH1 may have
a polyploid chromosome when growing in R2B medium with more chromosomes than plasmids
per cell. Based on phylogenetic analyses, strain MSH1 is reassigned as Aminobacter niigataensis

MSHI.

Importance

The complete genomes of the two MSH1 substrains, DK1 and MK1, provide further insight into
this already well-studied organism with bioremediation potential. The varying plasmid contents in
the two substrains suggest that some of the plasmids are unstable, although this is not supported
by the herein described plasmid stability experiment. Instead, results suggest that MSHI is
polyploid with respect to its chromosome, at least under some growth conditions. As the essential
BAM-degradation genes are found on some of these plasmids, stable inheritance is essential for
continuous removal of BAM. Finally, Aminobacter sp. MSHI is reassigned as Aminobacter

niigataensis MSH1, based on phylogenetic evidence.

Keywords

Aminobacter, 2,6-dichlorobenzamide, Phyllobacteriaceae, Nanopore sequencing, catabolic

plasmids

Introduction

The occurrence of organic micropollutants in different water compartments threatens both

ecosystem functioning as well as future drinking water supplies (1). Organic micropollutants are
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80  organic chemicals with complex and highly variable structures, and they have in common that they
81  occur in the environment at trace concentrations (in the pg — ng/L range). Organic micropollutants
82  often have unknown ecotoxicological and/or human health effects. They include a multitude of
83  compounds such as pharmaceuticals, pesticides, ingredients of household products and additives
84  of personal care products. In the European Union, the threshold limit for pesticides and relevant
85  transformation products in drinking water is set at 0.1 ug/L (2). This threshold is frequently
86 exceeded and forces drinking water treatment plants to invest in expensive physicochemical
87  treatment technologies or to close groundwater extraction wells (3). The use of pollutant degrading
88  bacteria in bioaugmentation strategies to remove micropollutants, such as pesticides, from drinking
89  water, is presented as a solution (3,4). The groundwater micropollutant 2,6-dichlorobenzamide
90 (BAM), a transformation product of the herbicide dichlobenil, frequently occurs in groundwater
91 in Europe, often exceeding the treshold concentration (5). Aminobacter sp. MSH1 (CIP 110285)
92  was enriched and isolated from dichlobenil treated soil sampled from the courtyard of a plant
93  nursery in Denmark. The strain converts dichlobenil to BAM, which is further fully mineralized
94  (6). Efforts to elucidate the catabolic pathway for BAM degradation in MSHI revealed the
95 involvement of two plasmids. The first step of BAM-mineralization involves the hydrolysis of
96 BAM to 2,6-dichlorobenzoic acid (2,6-DCBA) by the amidase BbdA encoded on the 41 kb IncP1-
97 P plasmid pBAM1 (7). Further catabolism of 2,6-DCBA to central metabolism intermediates
98 involves enzymes encoded on the 54 kb repABC family plasmid pPBAM2. The strain mineralizes
99 BAM at trace concentrations (6) and invades biofilms of microbial communities of rapid sand
100 filters used in DWTPs (8). Moreover, it was successfully used in bioaugmentation of rapid sand
101  filters, both in lab scale and pilot scale biofilration systems, to remove BAM from (ground)water

102 (8-11). On the other hand, long-term population persistence and catabolic activity in the sand
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103  filters were impeded, likely due to a combination of predation and wash out (11, 12), as well as
104  to physiological and genetic changes. Reducing flow rate and improving inoculation strategy have
105  demonstrated prolonged persistence and activity of MSH1 in bioaugmented sand filters (13).
106  However, other studies indicate that MSH1 shows a starvation survival response, in the nutrient
107  (especially carbon) limiting environment of DWTPs, leading to reduced specific BAM degrading
108  activity (14). Moreover, a substantial loss of plasmid pPBAM2 was observed upon prolonged
109  transfer of MSH1 both in R2A medium and in C-limited minimal medium (15), indicating that
110  the plasmid is not entirely stable. Moreover, mutants lacking the ability to convert BAM into 2,6-
111 DCBA have been reported (7). Clearly, to come to full management of bioaugmentation using
112 MSHI1 in DWTP biofiltration units aiming at BAM removal, more knowledge is needed on the
113  physiological as well as genetic adaptations of MSH1 when introduced into the corresponding

114  oligotrophic environment. The elucidation of the full genome sequence is crucial in this.

115  The complete genome sequence presented in this study shows that MSH1 substrain DK1 has a
116  single chromosome and seven plasmids, including the two previously described catabolic plasmids
117 pBAMI and pBAM2, while substrain MK1 lacks four of these plasmids. The relative sequence
118  coverage of the plasmids compared to the chromosome suggested that there are either multiple
119  copies of the chromosome per cell or that there are, on average, fewer than one copy of six out of
120  the seven plasmids per cell. This was tested in a plasmid stability experiment with substrain DK1
121 where plasmids were found to be overall stable, with the exception of a single loss event of pUSP1.
122 This supports the hypothesis that MSH1 might have a polyploid chromosome, at least under some

123 growth conditions.
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124  Material and Methods

125  Growth conditions, genomic DNA preparation and sequencing

126 The genome sequence of strain MSH1 was independently obtained in two different laboratories,
127  i.e.,the KU Leuven in Belgium (MK1) and the Aarhus University lab in Roskilde, Denmark (DK1).
128  In both cases, Aminobacter sp. MSH1 was obtained from the strain collection of the laboratory
129  that originally isolated the bacterium (6). Sequencing of substrain DK1 at the Roskilde lab was
130  performed as follows. Directly derived from a cryostock obtained from the original lab of MSH1,
131  two ml of a culture grown in R2B were used for extraction of high molecular weight (HMW) DNA
132 using the MasterPure™ DNA Purification Kit (Epicentre, Madison, WI, USA), using the kit’s
133 protocol for cell samples. DNA was eluted in 35 pL 10 mM Tris-HCI (pH 7.5) with 50 mM NacCl.
134  The purity and concentration of extracted DNA were measured with a NanoDrop 2000c and a
135  Qubit® 2.0 fluorometer (Thermo Fisher Scientific, Walther, MA, USA), respectively. An Illumina
136  Nextera XT library was prepared for paired-end sequencing on an Illumina NextSeq 500 with a
137  Mid Output v2 kit (300 cycles) (Illumina Inc., San Diego, CA, USA). Paired-end reads (2x151 bp)
138  were trimmed for contaminating adapter sequences and low quality bases (<Q20) at the ends of
139  the reads were removed using Cutadapt (v1.8.3) (16). Paired-end reads that overlapped were
140 merged with AdapterRemoval (v2.1.0) (17). For Oxford Nanopore sequencing, a library was
141  prepared from the same DNA extract using the Rapid Sequencing kit (SQK-RADO004). This was
142  loaded on an R9.4 flow cell and sequenced using MinKnow (v1.11.5) (Oxford Nanopore
143 Technologies, Oxford, UK). Nanopore reads were basecalled with albacore (v2.1.10) without
144  quality filtering of reads. Only reads longer than 5,000 bp were retained and sequencing adapters
145  were trimmed using Porechop (v0.2.3). A hybrid genome assembly with Nanopore and Illumina

146  reads was performed using Unicycler (v0.4.3) (18).
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147  The Illumina sequencing of substrain MK1 in the KU Leuven lab was reported previously (7, 19).
148  Briefly, genomic DNA was isolated from a culture grown on R2B using the Puregene Core kit A
149  (Qiagen, Hilden, Germany), according to the manufacturer’s instructions, except that DNA
150  precipitation was performed with ethanol. A library was constructed for paired-end sequencing
151  using 500 bp inserts and sequencing was performed on the Illumina GAIIx platform. Generated
152 read lengths were 90 bp. The Illumina reads were quality controlled using FastQC (20) (v0.11.6)
153  and BBduk (21) (v36.47). This included trimming the reads with low scoring regions (Phred < 30),
154  clipping adapters, and removing very short reads (length < 50). For Nanopore sequencing, total
155  genomic DNA was extracted from a culture grown on R2B with 200 mg/L. BAM using the DNeasy
156  UltraClean Microbial Kit (Qiagen, Hilden, Germany ). Afterwards, the genomic DNA was
157  mechanically sheared using a Covaris g-Tube (Covaris Inc., MA, USA) to an average fragment
158  length of 8 kb. The library for sequencing was prepared using the 1D ligation approach with native
159 1D barcoding (SQK-LSK109) and sequenced on a MinlON R9.4 flow cell using the Min[ON
160  sequencer (Oxford Nanopore Technologies, Oxford, UK). The Nanopore reads were basecalled
161  with Albacore (v2.0.2), and the barcode sequences were trimmed using Porechop (v0.2.3). Hybrid

162  assembly of genome was performed as reported above.

163  Genome analyses

164  For both genomes, automatic gene annotation was done using Prokka (22) (v1.14.0). Separately
165  from Prokka, proteins with transmembrane helices were identified using TMHMM v2.0 (23).
166  Genes were assigned to COG functional categories using EggNOG-mapper v4.5.1 (24). Genome
167  comparison was done using EDGAR (25). Metabolic pathways were explored using Pathway
168  Tools (26) and RAST (27). Circularized views of chromosome and plasmids were made using
169  Circos (28). MegaX (29) was used for protein alignment and tree building. Phylogenetic analysis

8
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170  for strain MSH1 was performed using a clustal-omega (30) multiple sequence alignment using 16S
171  ribosomal RNA genes from the set of type strains available in the Phyllobacteriaceae family. The
172 tree was inferred using PhyML (31) with a GTR substitution model and a calculation of branch
173 support values (bootstrap value of 1,000). Whole-genome-based taxonomic classification was
174  performed with in silico DNA:DNA hybridization using the Type Strain Genome Server (TYGS)
175  (32). Furthermore, average nucleotide identity (ANI) values were calculated for MSH1 against all
176  available Aminobacter genomes in NCBI (downloaded January 31, 2021), using FastANI (33) and
177  plotted in R with the pheatmap package (34). Genomes of the two MSHI1 substrains were
178  compared using the Mauve genome alignment software (35). Plasmids were characterized with

179  regards to relaxase genes and replicon families using MOB-suite (36).
180
181  Plasmid (in)stability experiment

182  To test for plasmid stability, MSH1 cells from -80°C cryostock were streaked on R2A plates and
183  DNA from 1 ml of the cryostock was extracted using MasterPure™ DNA Purification Kit. After
184  incubation at 22°C for 11 days, a single colony from the R2A plate was picked and resuspended
185 in 105 pl phosphate-buffered saline (PBS). From this, 5 pl suspension was inoculated in 25 ml
186 R2B for 72 hours. Whole genome sequencing was performed on the remaining 100 ul PBS
187  suspension. After 72 hours of growth in R2B, 1 mL broth culture was sampled for DNA extraction,
188  similarly to the DNA extracted for initial DNA sequencing (above), and 100 pL of dilution series
189  107-108 of the R2B culture were plated onto R2A and the plates incubated at 22°C. After 7 days
190  of growth, DNA was extracted and sequenced, as described above, from 14 individual colonies

191  (originating from a single cell) resuspended in 100 uL PBS. All sequencing was performed on an
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192 Illumina NextSeq 550 with a Mid Output v2 kit (300 cycles) using Nextera XT library preparations

193  as described above.

194  Sequencing adapters and poor quality sequences were trimmed from paired end reads using
195  Trimmomatic (v0.39) (37) with the options
196  “ILLUMINACLIP:/usr/share/trimmomatic/NexteraPE-PE.fa:2:30:10 LEADING:3 TRAILING:3
197 SLIDINGWINDOW:4:15 MINLEN:36”. Trimmed and filtered reads from each replicate MSH1
198  sample were mapped with bwa (v0.7.17-r1198-dirty) (38) to the completely assembled MSHI1
199  genome including plasmids pPBAMI1-2 and pUSP1-5. Sequencing coverage in 1,000 bp windows
200 for all replicons per replicate sample was calculated with samtools (v1.9-166-g74718c2) (39) and
201 bedtools (v2.28.0) (40). Coverage data for all replicons were divided by the mean coverage of the
202  chromosome, in order to normalize replicon copy numbers relative to the chromosome.

203  Normalized coverage of all replicons for all replicates were visualized with Circos (v0.69-6) (28).

204
205 Data availability

206  The genome sequences of strain MSH1 substrains MK1/DK1 are available under the following
207  GenBank accession numbers CP026265/CP028968 (chromosome), CP026268/CP028967
208  (pBAM1), CP026267/CP028966 (pBAM2), CP026266/CP028969 (pUSP1) and CP028970

209  (pUSP2), CP028971 (pUSP3), CP028972 (pUSP4) and CP028973 (pUSPS).

210 Results and discussion

211 Genome statistics

212 The MSHI genome (based on substrain DK 1) consists of a chromosome of 5,301,518 bp and seven
213 plasmids. The genome contains two large plasmids pUSP1 of 367,423 bp and pUSP2 of 365,485

10
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214 bp, three smaller plasmids pUSP3, pUSP4, and pUSPS5 (respectively 97,029 bp, 64,122 bp, and
215 31,577 bp) and the two previously reported smaller catabolic plasmids pPBAM1 and pBAM2 of
216 40,559 bp and 53,893 bp, respectively (Table 1). A total of 6,257 genes could be predicted of
217 which six rRNAs, 53 tRNAs, and four ncRNAs. A total of 6,194 CDS were predicted including
218 190 pseudogenes (Table 2). Circular views of the chromosome and seven plasmids are shown in
219  Figure | and 2. The KU Leuven variant, designated as substrain MK 1, lacked one of the two larger
220  plasmids, i.e. pUSP2, and the three smaller plasmids pUSP3, pUSP4, and pUSP5. Except for the
221  discrepancy in plasmids, the shared genomes (chromosome, pUSP1, pPBAM1, and pPBAM2) of the
222 two strains have an average nucleotide identity of 99.9925%. The BAM-catabolic genes were
223 manually checked for mutations that could indicate differences in degradation potential. A single
224 nucleotide change was noted in the bbdb3 gene on pBAM2, encoding one of three subunits of a
225  TRAP-type transport system potentially involved in the uptake of 2,6-DCBA (19). In this gene, a
226  non-synonomous substitution has changed a glycine to an arginine in the resulting protein in MK1.
227  Currently, it is not known if this change has an effect on the putative function of this tripartite
228  transport system. Furthermore, differences were found in the region of plasmid pUSP1 containing
229  an IS30 family insertion sequence with 38 bp flanking, imperfect, inverted repeats (IRs). The
230 repeats appear complete in DKI1, but MKI1 shows a deletion of 56 bp and 34 bp up- and
231  downstream of the IS30 transposase gene, including partial deletion of the IR at both ends,
232 suggesting that the MK1 substrain has undergone further genetic changes. The deletions flanking
233 the IS30 element on pUSP1 in MKI1 may have been caused by a possible intramolecular
234  transposition event (41). However, this IS30 element with deletion in the IRs in MK 1 may still be

235  functional, as the functional core region of IS30 IRs are only part of the complete IR (42).

11
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236
237 Phylogenetic assignment of MSH1 to Aminobacter niigataensis

238 A phylogenetic tree based on the 16S rRNA gene sequence indicating the position of MSH1 is
239  shown in Figure 3. The 1,463 bp 16S rRNA gene sequence of MSHI is 100% identical to that of
240  Aminobacter niigataensis DSM 7050 and 99.6-99.8% to those of other Aminobacter species. This
241 s supported by whole-genome in silico digital DNA:DNA hybridization using TYGS, which
242 reports that MSH1 (substrain DK1) is 82.5% (recommended d formula) similar to 4. niigataensis
243 DSM 7050. (Supplementary Table S1). Finally, ANI values against all available Aminobacter
244 genomes from NCBI (complete and incomplete assemblies; downloaded January 31, 2021),
245  showed an ANI of 98% against A. niigataensis DSM 7050 (Figure 4). Based on these analyses, we

246  reassign Aminobacter sp. MSH1 as Aminobacter niigataensis MSH1.
247
248  Chromosomally encoded metabolic features of MSH1

249  The chromosome of MSHI1 possesses all genes required for glycolysis using the Embden-
250  Meyerhof pathway and additionally possesses all genes for glucose metabolism through the
251  Entner-Doudoroff pathway and the pentose phosphate pathway. It also contains all genes of the
252 tricarboxylic acid cycle. MSH]1 was previously shown to grow slower on succinate and acetic acid
253 as carbon sources compared to glucose, fructose, and glycerol (43). MSH1 does not possess genes
254  involved in carbon fixation which rules out autotrophic growth. MSHI1 further displays the
255  catechol ortho-cleavage pathway (44) and possesses genes for conversion of benzoate to catechol
256  allowing the organism to grow on benzoate which was confirmed by culturing the strain on

257  benzoate (data not shown). With regards to nitrogen metabolism, MSH1 contains a gene cluster

12
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258  that encodes the transmembrane ammonium channel AmtB as well as its cognate protein GInK
259  (45) for controlling ammonium influx in response to the intracellular nitrogen status, indicating
260 that MSH1 can use mineral ammonia as a nitrogen source directly from its environment. In
261  addition, MSH1 encodes for proteins involved in nitrate transport (NrtA and NrtT). The
262  corresponding genes are located upstream of genes for assimilatory nitrate reduction (nasDEA) to
263 ammonium suggesting that MSHI1 can also use nitrate as a nitrogen source. Finally, ammonia is
264  also released from amino acid metabolism and is further incorporated in L-glutamate for
265  biosynthesis. Furthermore, MSH1 contains a gene cluster which combines a periplasmic
266  dissimilatory nitrate reductase (napAB), the membrane-bound cytochrome ¢ (napC) that is
267  involved in electron transfer from the quinol pool in the cytoplasmic membrane to NapAB, nirK
268  (nitrate reductase) and norBC (nitrix oxide reductase). However, narG, encoding the cytoplasmatic
269  oriented dissimilatory nitrate reductase, is lacking. Dissimilatory nitrate reductases are associated
270  with the cell membrane, and are typically involved in energy acquisition, detoxification, and redox
271  regulation (46) NarG, located at the cytoplasmatic side of the cell membrane, is the typical
272 respiratory nitrate reductase though its function can be replaced by NapAB in cases coupled to
273 formate oxidation (46). However, this is unlikely since MSH1 is unable to grow under nitrate
274  reducing conditions (6). In addition, nosZ for reduction of nitrous oxide to dinitrogen (47) is
275  missing. The exact function of the gene cluster containing napABC, nirK and norBC is yet
276  unknown. Besides direct uptake, for sulfur metabolism, MSH1 possesses two nearby located gene
277  clusters encoding the ABC transporter complex CysUWA involved in sulfate/thiosulfate import.
278  One of the two clusters appears directed to the uptake of sulfate while the other to thiosulfate
279  uptake, since they respectively are linked with sbp and cysP (48). Both genes encode for the

280  periplasmic protein that delivers sulfate or thiosulfate to the ABC transporter for high affinity

13
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281  uptake but Sbp binds sulfate and CysP thiosulfate. Furthermore, the chromosome contains all
282  genes necessary for assimilatory sulfate reduction. The pathway reduces sulfate to sulfide
283  involving ATP sulfurylase (CysND), adenosine 5'-phosphosulfate reductase (CysC), 3'-
284  phosphoadenosine-5'-phosphosulfate reductase (CysH) and sulfite reductase (CislJ). In addition,
285 MSHI1 contains cysK encoding O-acetylserine sulfhydrylase that incorporates sulfide into O-
286  acetylserine to form cysteine (48). The assimilation of thiosulfate is less clear but MSH1 encodes
287  for another homologue of CysK as well as several glutaredoxin proteins that are needed to
288  incorporate thiosulfate in O-acetylserine and reductive cleavage reaction of its disulfide bond to

289  form cysteine (48).
290
291 Plasmids of MSH1

292  Besides the previously described IncP1- and repABC plasmids, pPBAMI1 and pBAM?2 (7, 19),
293  substrain DK1 harbors the five pUSP1-5 plasmids (Figure 2), while substrain MK 1 lacks pUSP2,
294  pUSP3, pUSP4, and pUSPS5. Catabolic genes on pPBAM1 and pBAM?2 enable MSH1 to mineralize
295  the groundwater micropollutant BAM and use it as a source of carbon, nitrogen, and energy for
296  growth. The amidase BbdA on pBAMI transforms BAM to 2,6-dichlorobenzoic acid (DCBA) (7)
297  which is further metabolized by a series of catabolic enzymes encoded by pPBAM?2 (19, 49). As
298  previously discussed (19), the gene bbdl encoding the gluthatione dependent thiolytic
299  dehalogenase responsible for removal of one of the chlorines from BAM together with bbdJ
300 encoding gluthatione reductase, occur on pPBAM?2 in three consecutive, perfect repeats followed
301 by a fourth, imperfect repeat. This, together with the placement of the BAM degradation genes on
302  two separate plasmids (pBAMI1 and pBAM?2) and the bordering of the catabolic gene clusters by

303 remnants of insertion sequences and integrase genes, suggests that the BAM catabolic genes in
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304 MSHI have been acquired by horizonral gene transfer and then evolved to occur in their observed
305  genomic organisation. In addition, pPBAM2 has a considerably lower GC content of 56% compared
306  to the chromosome and other plasmids which are between 60.0 and 64.4% (Table 2), which could
307 indicate that pPBAM?2 was acquired from another, unknown, unrelated bacterium. It was previously
308 shown that mineralization of DCBA is a common trait in bacteria in sand filters and soils, while
309 BAM to DCBA conversion is the rate limiting step in BAM mineralization and is rare in microbial

310 communities (50).

311 Like pBAM2, plasmids pUSP1, pUSP2, and pUSP3 belong to the repABC family. repABC
312 replicons are known as typical genome components of Alphaproteobacteria species (51). The
313  occurrence of more than one repABC replicon in one and the same genome has been described

314  Dbefore and the plasmid family has been shown to exist of different incompatability groups. For

315  instance, Rhizobium etli CFN42 has 6 repABC plasmids (52, 53).

316  Plasmids pBAM2, pUSP2, pUSP3, and pUSP4 contains Type IV secretion system (T4SS) genes
317  (54), while pUSP1 does not. This indicates that pUSP1 is likely not self-transferable, unlike
318 pBAM2, pUSP2, pUSP3, and pUSP4. Besides T4SS genes, plasmid pUSP4 contains a mobABC
319 operon. The 31.6 kbp plasmid pUSP5 lacks conjugative transfer genes and appears to be a
320 mobilizable plasmid with genes encoding a VirD4-like coupling protein and a TraA conjugative
321  transfer relaxase likely involved in nicking at an oriT site and unwinding DNA before transfer.
322 Furthermore, MOB-suite predicted that pPBAM1, pUSP2, and pUSP4 have MOBP-type relaxase
323  genes, while pUSP3 and pUSP5 have MOBQ-type relaxase genes. pPBAM2 and pUSP1 were not

324  predicted to have MOB-related genes.

325

326
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327  Specialized functions of plasmids pUSP1-5

328 In Table 3, all CDS of the different plasmids are categorized according to COGs. Half of the CDS
329 annotated on plasmid pUSP1 (322 CDS) and pUSP2 (346 CDS) are genes primarily associated
330  with the transport and metabolism of amino acids (20% and 12%, resp.), carbohydrates (6% and
331 6%, resp.) and inorganic compounds (10% and 3%, resp.), and genes for energy production and
332 conversion (9% and 8%, resp.). For the plasmids pUSP3, pUSP4, and pUSPS5, CDS categorized
333  under the same COGs are lower than 18%. Together, pUSP1 and pUSP2 accounts for about 17%
334  of all genes in MSH1 related to amino acid, carbohydrate transport and metabolism, and energy
335  production and conversion in MSHI. The transport systems encoded by pUSP1 and pUSP2 include
336 multiple ABC-transporters for N and/or S-containing organic compounds. For amino acids,
337  carbohydrates and inorganic compound metabolism and transport, ABC-type transport systems are
338  predicted for polar amino acids (arginine, glutamine), branched chain amino acids, and multiple
339  sugars. In addition, transport systems for spermidine/putrescine, taurine, aliphatic sulphonates,
340  dipeptides, beta-methyl galactoside, polysialic acid, and phosphate were predicted. Putative
341  functions could be assigned by Prokka to 64.2%, 56.8%, 27.4%, 42.2%, and 34.3% of CDS for
342 pUSPI, pUSP2, pUSP3, pUSP5 and pUSPS5, respectively. On pUSP1, found in both MSH1
343  substrains, multiple genes could be assigned to metabolic subsystems by RAST. These include
344  folate biosynthesis, cytochrome oxidases and reductases, degradation of aromatic compounds
345  (homogentisate pathway), ammonia assimilation, and several genes related to amino acid
346  metabolism. Some of these functions on pUSP1 do not have functional analogs on the chromosome,
347  which may help to explain why pUSP1 was not lost in substrain MK1, but the other pUSP plasmids
348  were. On pUSP2, which is absent in MK1 substrain, some genes are predicted to be involved in

349  acetyl-CoA fermentation to butyrate, creatine degradation, metabolism of butanol, fatty acids, and
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350 nitrile, and a few miscellanoues functions. A large number of CDS on pUSP1 (19%), and pUSP2
351  (23%) are homologues to CDS on the chromosome and could be considered dispensable genes.
352 However, although these CDS might be considered homologues, their functionality might differ

353  considerably in terms of substrate specificity and kinetics.

354  Besides genes encoding conjugative transfer, plasmid replication, and plasmid stability

355  functions, most genes on plasmids pUSP3, pUSP4, and pUSP5 could not be annotated with a
356  function. However, several genes on pUSP3 may have functions related to metabolism of sugars,
357  including inositol and mannose which were not tested in an earlier growth optimization

358  experiment (43). On pUSP4, genes encoding a transmembrane amino acid transporter are

359  situated next to an aspartate ammonia-lyase-encoding gene that enables conversion between

360 aspartate and fumarate that may enter the tricarboxylic acid cycle, as described above. A

361  cytochrome bd-type quinol oxidase, encoded by two subunit genes on pUSPS5, also occurs in

362  some nitrogen-fixing bacteria where it is responsible for removing oxygen in microaerobic

363  conditions. Furthermore, a pseudoazurin type I blue copper electron-transfer protein is encoded
364 by a gene on pUSPS5, that may act as an electron donor in a denitrification pathway. A chromate
365 transporter, ChrA, encoded by a gene on pUSP5 may confer resistance to chromate. Future

366  studies should look into whether the lack of plasmids pUSP2-5 in substrain MK1 has phenotypic
367  consequences, with regards to the predicted functions, including metabolism of sugars and

368  aspartate, nitrogen metabolism, and resistance to chromate.

369

370

371
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372 Plasmid stability and chromosome polyploidy

373  The Illumina sequencing coverage of several plasmids relative to the chromosome (except for
374 pBAMI1) was lower than one, i.e., approximately 0.3 to 0.6 per chromosome. This suggests that
375 either not all cells (only three to six out of ten) contain a copy of the same plasmid due to plasmid
376  loss or that there are multiple copies of the chromosome. Previously, in the MK1 substrain, we
377  observed that pBAM2 is not always perfectly inherited by the daughter cells in cultures grown in
378 R2B and R2B containing BAM (15). To observe whether plasmid instability explained the copy
379  number relative to the chromosome in the sequenced cultures, sequencing was performed directly
380 on the cryo stock as well as on colonies directly derived from this, mimicking the sequenced cell
381  preparation for whole genome sequencing. We hypothesized that if certain plasmids are not stably
382  inherited (i.e. those with copy numbers 0.3 to 0.6), only part of the cell population will habour
383  those plasmids and picking of multiple colonies from a plate will result in picking of some colonies

384  that have lost one or more plasmids.

385  MSHI was sequenced directly from the cryostock, from a single colony picked from R2A plates
386  after spreading the cryostock, and from the broth R2B culture that had been inoculated with the
387  same single colony from cryostock. Moreover, after spreading the latter R2B culture on an R2A
388 plate, an additional 14 MSH1 colonies were picked for sequencing. Taking into account a plasmid
389  coverage of 0.3 — 0.6 per chromosome, we expect that around half of the colonies would have lost
390 one or more of the plasmids in the case of poor inheritance. However, only one of the colonies
391  showed loss of a plasmid, i.e., plasmid pUSP1 (Figure 5) indicating polyploidy of the chromosome
392  rather than unstable inheritance of plasmids. The loss of repABC megaplasmid pUSP1 shows that
393  the possible metabolic features encoded by genes on pUSP1, as described above, are not essential

394  for growth under these conditions, although, remarkably this is the only pUSP plasmid still present
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395 in substrain MKI1. Interestingly, the plasmid/chromosome-ratio varied according to the growth
396 medium from which DNA was isolated. When growing in R2B (broth), e.g. as done for DNA
397  extraction for genome sequencing and from cryostock and R2B culture (first and third green rings,
398  Figure 6), all plasmids, except pPBAMI1, have a copy number lower than one per chromosome.
399  When DNA was extracted from colonies grown on R2A plates (though resuspended in PBS prior
400 to DNA extraction), plasmid copy numbers were approx. one per chromosome, except for pPBAM1

401  which has a copy number of approx. 2.5 per chromosome.

402  Except for the single loss of pUSP1, nothing here indicates unstable maintenance of plasmids and
403  subsequent loss. Instead, our results indicate that MSH1 regulates the chromosome copy number
404  according to whether it grows as planktonic bacteria or fixed on an agar plate. The results shown
405  here can be explained by MSH1 being polyploid with regards to its chromosome when growing in
406  broth media. Single-copy plasmids (e.g. pPBAM2, pUSP1-5) will thereby have copy numbers lower
407  than one relative to the chromosome, when growing in broth R2B. Polyploidy in prokaryotes have
408  been described before, including in Deinococcus, Borrelia, Azotobacter, Neisseria, Buchnera, and
409  Desulfovibrio (55) and may be quite overlooked in many other bacteria. E. coli in stationary phase
410  was shown to have two chromosome copies after growing in rich, complex medium, but only 60%
411  of the cells had two copies in stationary phase after slower growth in a synthetic medium (55). It
412 was suggested that monoploidy is not typical for proteobacteria, and that many bacteria are
413  polyploid when growing in exponential phase (55). Possible advantages offered by polyploidy
414  include resistance to DNA damage and mutations, global regulation of gene expression by
415  changing chromosome copy number, and finally polyploidy may enable heterozygosity in bacteria
416  where genes mutate to cope with challenging condition while preserving a copy of the original

417  genes. Despite the stability of the plasmids in MSH1, the MSHI substrain MK1 lacks plasmids
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418  pUSP2-5 and a loss of pBAM2 was previously observed (15). Although pPBAM2 encodes its own
419  T4SS, the multiple loss of pBAM2 and pUSP2-5 in MKI1 could be hypothetically explained by
420  some uncharacterized plasmid codependence, where one loss leads to another. The dynamics of

421  plasmid loss that has led to formation of substrain MK are still unknown.

422  Conclusions

423 The full genome of Aminobacter sp. MSHI, re-identified here as Aminobacter niigataensis MSH1,
424  consisting of a chromosome and seven plasmids, was determined combining both Nanopore and
425  Illumina sequencing. Two smaller plasmids pPBAMI1 and pBAM2 were previously identified
426  carrying the catabolic genes required for mineralization of the groundwater micropollutant BAM.
427  Both the chromosome and the other five plasmids are described here for the first time. A plasmid
428  stability experiment showed that most plasmids were stably maintained, with exception of a single
429  loss event of plasmid pUSP1. Instead, the results indicate that MSH1 has a polyploid chromosome
430  when growing in broth, thereby reducing plasmid copy numbers per chromosome to below one.
431  When comparing the original strain MSH1 (DK1) and substrain MK 1, we observed that plasmids
432 pUSP2, pUSP3, pUSP4, and pUSP5 were below detection limits in MK1. Substrain MK1 may
433  previously have lost these plasmids but maintained pUSP1, pBAMI, and pBAM?2, thereby
434  retaining its capacity to degrade BAM. Future studies on growth and degradation kinetics of the
435  MSHI and its substrain MK1 lacking several plasmids, can reveal if plasmids pUSP2-5 harbour
436  unknown (favorable) functions or if they impose a metabolic burden on MSHI. This will help to

437  elucidate which substrain is preferable for bioaugmentation.
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615

616

617

618

Tables

Table 1. Genome accession codes

Label Size (Mb) GC (%) Topology  INSDC identifier RefSeq ID

Chromosome 5.30 63.2 Circular CP028968.1(cro26265.1)*  NZ _CP028968.1(Nz_CP026265.1)*
Plasmid 1 pPBAM1  0.04 64.4 Circular CP028967.1(cro26268.1)* NZ_CP028967.1(Nz_CP026268.1)*
Plasmid 2 pBAM2  0.05 56.0 Circular CP028966.1(cro26267.1)*  NZ_CP028966.1(NZ_CP026267.1)*
Plasmid 3 pUSP1 0.37 63.1 Circular CP028969.1(cro26266.1)* NZ_CP028969.1(Nz_CP026266.1)*
Plasmid 4 pUSP2  0.37 60.1 Circular ~ CP028970.1 NZ_CP028970.1

Plasmid 5 pUSP3 0.10 60.5 Circular ~ CP028971.1 NZ_CP028971.1

Plasmid 6 pUSP4  0.06 61.9 Circular ~ CP028972.1 NZ_CP028972.1

Plasmid 7 pUSPS 0.03 62.9 Circular ~ CP028973.1 NZ_CP028973.1

* INSDC identifier and RefSeqID of KU Leuven substrain MK 1 submission in brackets

Table 2. Genome statistics based on substrain MK1.

Attribute Value % of Total

Genome size (bp) 6321606 100.0
DNA coding (bp) 5587258 88.4
DNA G+C (bp) 3976162 62.9
DNA scaffolds 8 100.0
Total genes 6257 100.0
Protein coding genes 6004 96.0
RNA genes 63 1.0
Pseudo genes 190 3.0
Genes with function prediction 5182 75.9
Genes assigned to COGs 3890 62.2
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Genes with Pfam domains 5006 090
Genes with signal peptides 565 9.0
] ] 620
Genes with transmembrane helices 1423 22.7
CRISPR repeats 0 6910

622

623

624

625

626

627
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628  Table 3. Percentage of genes associated with general COG functional categories in genome and replicons.

Code Description Total Chr pBAM1 pBAM2 pUSP1 pUSP2 pUSP3 pUSP4 pUSP5
J Translation, ribosomal structure and biogenesis 2.9% 3% 0% 0% 2% 1% 0% 0% 0%
A RNA processing and modification 0.0% 0% 0% 0% 0% 0% 0% 0% 0%
K Transcription 7.3% 7% 5% 9% 10% 7% 9% 5% 18%
L Replication, recombination and repair 4.9% 4% 20% 21% 2% 12% 14% 16% 18%
B Chromatin structure and dynamics 0.1% 0% 0% 0% 0% 0% 0% 0% 0%
D Cell cycle control, Cell division, chromosome partitioning 0.7% 1% 2% 2% 2% 1% 2% 3% 6%
\Y Defense mechanisms 1.0% 1% 0% 0% 0% 1% 0% 2% 0%
T Signal transduction mechanisms 2.5% 3% 0% 0% 1% 1% 0% 3% 3%
M Cell wall/membrane biogenesis 3.8% 4% 0% 0% 2% 1% 2% 2% 0%
N Cell motility 0.6% 1% 0% 0% 0% 0% 0% 0% 0%
U Intracellular trafficking and secretion 2.5% 2% 24% 17% 0% 3% 11% 22% 3%
0] Posttranslational modification, protein turnover, chaperones 3.0% 3% 0% 17% 1% 0% 0% 0% 0%
C Energy production and conversion 5.1% 5% 2% 2% 9% 8% 5% 2% 12%
G Carbohydrate transport and metabolism 4.1% 4% 0% 6% 6% 6% 2% 2% 0%
E Amino acid transport and metabolism 9.8% 9% 2% 2% 20% 12% 7% 6% 0%
F Nucleotide transport and metabolism 1.6% 2% 0% 0% 1% 0% 0% 0% 0%
H Coenzyme transport and metabolism 2.3% 3% 0% 0% 2% 1% 0% 0% 0%
| Lipid transport and metabolism 2.3% 2% 0% 0% 2% 5% 3% 0% 3%
P Inorganicion transport and metabolism 5.8% 6% 0% 0% 10% 3% 0% 0% 3%
Q Secondary metabolites biosynthesis, transport and catabolism  1.9% 2% 5% 1% 5% 6% 1% 0% 0%
R General function prediction only 0.0% 0% 0% 0% 0% 0% 0% 0% 0%
S Function unknown 20.7% 21% 10% 13% 17% 21% 17% 5% 21%
- Not in COGs 16.9% 17% 29% 8% 9% 12% 27% 33% 15%
CDS 6237 5277 41 53 322 346 100 63 34
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632  Figure 1. Circular view of the chromosome of Aminobacter sp. MSH1. From outer to inner circle:
633  CDS on leading strand, scale (ticks: 100 kb), CDS on lagging strand, tRNA (purple) and rRNA
634  (red) (only chromosome), GC plot and GC skew (>0: green, <0: red). CDS are colored according

635  to COG functional categories determined with EggNOG mapper 4.5.1.
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RNA processing and modification
Chromatin structure and dynamics
Energy production and conversion

Cell cycle control and mitosis

Amino acid metabolism and transport
Nucleotide metabolism and transport
Carbohydrate metabolism and transport
Coenzyme metabolism

Lipid metabolism

Transcription
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Figure 2. Circular view of the plasmids of the newly assigned Aminobacter niigataensis MSHI.
From outer to inner circle: CDS on leading strand, scale (ticks: 100 kb), CDS on lagging strand,
GC plot and GC skew (>0: green, <0: red). CDS are colored according to COG functional
categories determined with EggNOG mapper 4.5.1. The KU Leuven substrain MK 1 lacks plasmids

pUSP2-5.
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Mesorhizobium amorphae ACCC 19665 (AF041442.2)
60 =5 Mesorhizobium huakuii IFO 15243 (D13431.2)
83 153 Mesorhizobium opportunistum WSM2075" (ACZA010000)
—| 25 Mesorhizobium abyssinicae AC98c™ (GQ847896.2)
{ 53 T Mesorhizobium hawassense AC99b™ (GQ847899.2)
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{ 100 T Aminobacter aminovorans DSM 7048" (A)J011759.2)
{76 Aminobacter sp. MSH1™ (DQ401867.1)
60 Aminobacter niigataensis DSM 70507 (AJ011761.2)
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1 69 I Phyllobacterium loti S658T" (KC577468.2)
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68 Phyllobacterium catacumbae CSC19" (AY636000.2)
100 __ phyllobacterium ifrigiyense CFBP 6742T (AY785325.2)
642 Variovorax sp. WDL1" (AF538929.1)
643  Figure 3. Phylogenetic relationships of Aminobacter niigataensis MSH1 based on the 16S rRNA
644  gene sequence. Maximum likehood tree visualized as a cladogram with bootstrap values. This tree
645  was created from a clustal-omega (30) multiple sequence alignment using 16S rRNA genes from
646  the set of type strains available in the Phyllobacteriaceae tamily (NCBI accession numbers
647  between parenthesis). The tree was inferred using PhyML (31) with a GTR substitution model and
648  a calculation of branch support values (bootstrap value of 1000). The Variovorax sp. strain WDL1
649  was used as an outgroup (56).

35


https://doi.org/10.1101/2021.02.25.432982
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.25.432982; this version posted February 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

. 100
Aminobacter sp. J44
Aminobacter sp. J15
Aminobacter sp. J41 95
91.89|91.99|89.45 | 89.50 | 85.84 | 86.90 | 86.90 | 87.02 | 86.74 | 86.86 | Aminobacter sp. SR38
91.75|91.80 | 89.35 | 89.60 | 85.90 | 86.75 | 86.97 | 86.89 | 86.67 | 86.62 | Aminobacter aminovorans strain DSM 10368
91.76 | 91.79 | 89.38 | 89.60 | 85.82 | 86.82 | 86.92 | 86.90 | 86.73 | 86.81 | Aminobacter aminovorans strain KCTC 2477 90
91.7791.74 | 89.44 | 89.51|85.72 | 86.82 | 86.94 | 86.97 | 86.71 | 86.80 | Aminobacter sp. MDW-2
91.75|91.83 | 89.41|89.43 | 85.67 | 86.83 | 86.81 | 86.87 | 86.72 | 86.72 | Aminobacter ciceronei strain DSM 15910
91.84 | 91.89 | 89.48 | 89.45 | 85.72 | 86.83 | 86.90 | 86.94 | 86.80 | 86.77 | Aminobacter ciceronei strain DSM 17455 85
92.03|91.81(91.80|91.79|91.9291.86 90.64 | 90.78 | 85.67 | 86.78 | 86.69 | 86.76 | 86.74 | 86.74  Aminobacter aminovorans strain DSM 7048
92.03|91.75[91.81|91.79|91.86 [ 91.86 90.62 | 90.76 | 85.78 86.81|86.85 | 86.87 | 86.84|86.74 Aminobacter aminovorans strain NCTC10684
89.53 | 89.37 | 89.39 | 89.36 | 89.45 | 89.46 | 90.64 | 90.68 86.08 | 86.90 | 86.95 | 87.02| 87.13|87.16  Aminobacter carboxidus strain DSM 1086 80
89.54 | 89.6189.57 | 89.54 | 89.52 | 89.55 | 90.74 | 90.79 86.04 86.93 87.03 87.08 87.0087.31 Aminobacter lissarensis strain DSM 17454
85.83 | 85.79 | 85.82 | 85.68 | 85.75 | 85.79 | 85.78 | 85.80 | 86.15 | 86.05 85.89 | 85.90 | 85.85 | 86.15 | 86.20 | Aminobacter sp. AP02
87.01|86.86 | 86.93 | 86.92 | 86.92 | 86.89 | 86.90 | 86.91|86.94 | 87.0186.09 91.00|90.83 | Aminobacter aganoensis strain DSM 7051
87.12|86.98 | 86.95 | 86.98 | 87.02 | 86.98 | 86.90 | 86.82 | 87.09 | 87.21 | 86.03 91.12/91.48 Aminobacter sp. DSM 101952
87.06 | 86.96 | 86.98 | 86.94 | 87.02 | 87.02 | 86.86 | 86.84 | 87.09 | 87.14 | 86.00 91.11/91.40 Aminobacter sp. DSM 101952 strain Root100
86.93 | 86.85  86.85 | 86.82 [ 86.80 | 86.84 | 86.89 [ 86.82 | 87.18 [ 87.15 | 86.07 | 90.98 | 91.15[91.14 Aminobacter niigataensis strain DSM 7050
86.87 | 86.77 | 86.77 | 86.91 | 86.83 | 86.82 | 86.84 | 86.87 | 87.26 | 87.36 | 86.07 | 90.93 [ 91.38 | 91.42 Aminobacter sp. MSH1
> » » » » » » » » » » » » »r » > » > >
3 32 3 2 2 3 2 2 32 32 2 32 2 32 32 2 32 2 2
2 3 3 8 3 3 3 3 3 3 38 3 3 3 3 3 3 3
@ ] @ (] @ @ ] @ @ ] @ ] @ @ ] @ @ o @
g £ £ £ ¢ § 8 4 8 8 4 8 58 383 8 %8 3 8§ %
$ 88 £ 5 5 82 228 358 78888 28
s < b 3 3 ° g g 32 32 . k
— — — o
£ 2 = 2 3 3 E ¢ 3 é § ¢ s % 3 2 8 = S
o = Z < S = 3 = 3 o @ 8
& ¢ ¢ = @ @2 ¢g ¢ g » S8 2 = = 35 I
® o ! 2« o ™ 5 2 e L s o =
> 3 N5 = > > [ o © o
3 1) ® S @ @ g =”’.‘ o —6 a @
2 E =l 3 S 2 [ 3 a o g
s 8 o 9 g s 3 =2 - 3
S El [%2] (7] S S o o o g o
o = £ = g z 2 2 @ S @
® O - = o 0 = = s =z
= a3 3 ¥} = g 2 2 ~ P ~
2 B 3 8 3 2 8 3 & 8 2
o = ® § @ g = =z 3
8 ~ (=4
~ ® S

650

651  Figure 4. Heatmap of ANI values for all available Aminobacter genomes from NCBI (downloaded
652  January 31, 2021). Genomes are clustered using hierarchical clustering of ANI values, as implemented in

653  the R package “pheatmap” (v1.0.12).
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655 Replicon

656  Figure 5. Coverage of replicons normalized to chromosome coverage (NormCov). A NormCov of 1
657  indicates a single copy per chromosome of a replicon. A NormCov above 1 indicates that there are more
658  copies of a given plasmid than the chromosome per cell. Points have been slightly jittered horizontally to

659  improve visualization of overlaps.
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Figure 6. [llumina reads mapped to the chromosome and plasmids of MSH1 (DK1 substrain). The
outer blue ring indicates the replicons. The inner rings show read mapping coverage of the
replicons, normalized to the coverage of the chromosome per replicate, for all of the 17 sequenced
replicates. The three first green rings show replicates cryostock, first colony from R2A plate, first
colony from R2B broth, respectively. The subsequent 14 grey rings show the replicates that all

originate from the same first colony. A solid line in the background of all tracks indicate the
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668  chromosome coverage line. Coverage above this line indicates a replicon copy number higher than

669 1 per chromosome and vice versa.
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Supplementary data

Supplementary Table S1. Digital DNA:DNA hybridization (dDDH) results from the online Type Strain Genome Server (TYGS)

analysis. d0, d4, d6 refers to different algorithms used TYGS. Formula d0 (a.k.a. GGDC formula 1): length of all HSPs divided by total

genome length. Formula d4 (a.k.a. GGDC formula 2): sum of all identities found in HSPs divided by overall HSP length. Formula d6

(a.k.a. GGDC formula 3): sum of all identities found in HSPs divided by total genome length. C.I.: Confidence interval.

Type Strain Genome Server

Query strain  Subject strain dDDH C.l. dDDH C.l. dDDH C.l. G+C content
(d0,in%) (dO, in %) (d4, in %) (d4, in %) (d6, in %) (d6, in %) difference
(in %)
MSH1 Aminobacter niigataensis DSM 7050 69.7 [65.8-73.3] 82.5 [79.7-85.0] 74.3 [70.8-77.5] 0.51
MSH1 Aminobacter aganoensis DSM 7051 53.4 [49.9 - 56.9] 40.2 [37.7-42.7] 50.5 [47.5-53.6] 1.01
MSH1 Aminobacter lissarensis DSM 17454 40.6 [37.2-44.0] 30.8 [28.4-33.3] 37.4 [34.5-40.5] 0.19
MSH1 Aminobacter aminovorans DSM 7048 41.3 [37.9-44.3] 30 [27.6-32.5] 37.7 [34.8-40.8] 0.31
MSH1 Aminobacter ciceronei DSM 15910 39.2 [35.8-42.6] 29.8 [27.4-32.3] 36 [33.1-39.1] 0.18
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MSH1 Aminobacter ciceronei DSM 17455 39.2 [35.8-42.6] 29.8 [27.4-32.3] 36 [33.1-39.1] 0.18
MSH1 Chelatobacter heintzii DSM 10368 38.7 [35.3-42.2] 29.7 [27.3-32.2] 35.7 [32.7-38.7] 0.26
MSH1 Mesorhizobium plurifarium ORS 1032 18.9 [15.8-22.5] 21.9 [19.6-24.3] 18.5 [15.9-21.5] 1.19
MSH1 Mesorhizobium waimense ICMP 19557 19.1 [16.0-22.7] 21.7 [19.5-24.2] 18.7 [16.0-21.7] 0.49
MSH1 Mesorhizobium australicum WSM2073 19.2 [16.1-22.8] 21.7 [19.4-24.1] 18.8 [16.1-21.8] 0.05
MSH1 Mesorhizobium qingshengii CGMCC 1.12097 19.5 [16.3-23.1] 21.6 [19.3-24.0] 19 [16.3-22.0] 0.24
MSH1 Mesorhizobium sangaii DSM 100039 19.5 [16.3-23.1] 21.6 [19.4-24.1] 18.9 [16.3-22.0] 0.51
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