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Summary

Broadly neutralizing antibodies against influenza virus hemagglutinin (HA) have the potential to
provide universal protection against influenza virus infections. Here, we report a distinct class of
broadly neutralizing antibodies targeting an epitope toward the bottom of the HA stalk domain
where HA is “anchored” to the viral membrane. Antibodies targeting this membrane-proximal
anchor epitope utilized a highly restricted repertoire, which encode for two conserved motifs
responsible for HA binding. Anchor targeting B cells were common in the human memory B cell
repertoire across subjects, indicating pre-existing immunity against this epitope. Antibodies
against the anchor epitope at both the serological and monoclonal antibody levels were potently
induced in humans by a chimeric HA vaccine, a potential universal influenza virus vaccine.
Altogether, this study reveals an underappreciated class of broadly neutralizing antibodies against
H1-expressing viruses that can be robustly recalled by a candidate universal influenza virus

vaccine.

Keywords: broadly neutralizing antibodies, influenza, hemagglutinin stalk, universal vaccine,

public clones
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Introduction

Influenza viruses remain a global health problem, with antigenically drifting seasonal viruses and the
constant risk of zoonotic influenza virus spillovers into humans. Antibodies against the major surface
glycoprotein hemagglutinin (HA) are critical for providing protection against influenza virus infection (Ng et
al., 2019). HA is divided into two domains: the globular head and the stalk. Most epitopes of the HA head
are highly variable and rapidly mutate to circumvent host humoral immunity (Henry et al., 2019; Kirkpatrick
et al., 2018). In contrast, the HA stalk is relatively conserved within and across influenza subtypes (Krystal
etal., 1982). Antibodies against the head and the stalk both independently correlate with protection against
influenza virus infection (Aydillo et al., 2020; Ng et al., 2019; Ohmit et al., 2011). Therefore, vaccine
formulations that preferentially induce antibodies against conserved epitopes of the HA head and stalk
domains could provide broad and potent protection against a wide array of influenza viruses.

Several broadly neutralizing epitopes have been identified on the HA of H1N1 viruses, including
the receptor-binding site (RBS) and lateral patch on the HA head (Ekiert et al., 2012; Raymond et al., 2018;
Whittle et al., 2011) and the broadly neutralizing (BN) epitope on the HA stalk domain (Ekiert et al., 2009;
Wrammert et al., 2011). Current seasonal influenza virus vaccines poorly induce antibodies against broadly
neutralizing epitopes of HA (Andrews et al., 2015; Corti et al., 2010). Therefore, new vaccine platforms
that preferentially drive antibodies against these conserved epitopes are desperately needed to increase
vaccine effectiveness against drifted strains and limit influenza morbidity and mortality. It is critically
important to drive the humoral immune response simultaneously against multiple conserved epitopes of
HA to avoid the generation of viral escape mutants. Notably, escape mutants near the lateral patch
(Linderman et al., 2014; Raymond et al., 2018) and the BN stalk epitope (Park et al., 2020) have been
shown to evade neutralizing antibodies at these epitopes. Hence, identification of additional broadly
neutralizing epitopes of HA that can be efficiently targeted remains an important pursuit to improve vaccine
effectiveness while avoiding escape mutants.

Humans are exposed to influenza viruses throughout their lifetime and reuse memory B cells
(MBCs) from prior exposures to provide defense against drifted and novel strains. Seasonal influenza virus
vaccines often recall MBCs targeting variable epitopes of the HA head rather than MBCs targeting
conserved epitopes of HA (Andrews et al., 2015; Dugan et al., 2020). In the absence of pre-existing
immunity against variable epitopes of the HA head, humans can recall MBCs targeting conserved epitopes
of the HA head and stalk domains (Andrews et al., 2015). Notably, first exposure to the 2009 pandemic
H1N1 virus (pH1N1) robustly recalled MBCs against conserved epitopes of the HA stalk domain (Andrews
etal., 2015; Wrammert et al., 2011). Additionally, exposure to influenza viruses of zoonotic origin can recall
MBCs targeting conserved epitopes of the HA stalk (Ellebedy et al., 2014; Henry Dunand et al., 2016;
Nachbagauer et al., 2014).

Several leading universal influenza virus candidates function to induce antibodies specifically

against the stalk domain. The chimeric HA (cHA) vaccine strategy utilizes the head domain from a zoonotic
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influenza virus, for which humans have little pre-existing immunity, and the stalk domain from pH1N1
(Krammer et al., 2013; Pica and Palese, 2013). A phase | clinical trial has shown cHA vaccination robustly
drives protective antibodies against the stalk domain (Bernstein et al., 2020; Nachbagauer et al., 2020). In
addition to the cHA vaccine strategy, several groups have generated headless HA antigens that potently
induce B cells against the HA stalk in animal models while eliminating the potential of inducing B cells
against the HA head domain (Impagliazzo et al., 2015; Yassine et al., 2015). The full spectrum of distinct
epitopes on the HA stalk targeted by these vaccine antigens remains to be determined.

By analyzing the specificities of B cells targeting the H1 stalk through the generation of monoclonal
antibodies (mAbs), we identified a class of antibodies targeting an anchor epitope of HA near the viral
membrane. Antibodies targeting this epitope are broadly neutralizing across H1-expressing viruses and
potently protective in vivo. Additionally, we showed anchor epitope targeting antibodies were recalled in
humans via vaccination with both the 2009 monovalent influenza virus vaccine and by seasonal influenza
virus vaccination. Furthermore, we identified that the cHA vaccine platform robustly induced antibodies
against the anchor epitope. In contrast, membrane anchor targeting mAbs could not bind mini-HA, a
headless HA antigen, potentially due to trimer splaying of the rHA that used a GCN4 trimerization domain.
Anchor epitope targeting mAbs utilized a highly restricted repertoire and public clonotypes that encoded
for two conserved motifs in the kappa chain CDR3 (K-CDR3) and heavy chain CDR2 (H-CDRZ2). Lastly,
we identified that anchor targeting B cells are common within the human MBC pool. Together, our study
reveals a novel class of broadly neutralizing antibodies against the anchor epitope, a previously
unappreciated epitope. Our study additionally provides valuable insight into the binding and repertoire
features of anchor epitope targeting B cells and how cHA, a potential universal influenza virus vaccine,
potently induces antibodies against this epitope.

Results

Identification of antibodies targeting the anchor epitope

To dissect conserved HA stalk domain epitopes, we generated mAbs from acutely activated plasmablasts
isolated from subjects who received licensed or experimental influenza virus vaccines or were naturally
infected with pH1N1 during the 2009 pandemic (Table S1). Notably, plasmablasts found in the blood of
subjects after infection or vaccination derive from pre-existing MBCs (Andrews et al., 2015), and generation
of mAbs from plasmablasts allows for the dissection of how distinct influenza viruses recall pre-existing
immunity. We also generated mAbs from sorted HA™ B cells one month following vaccination with an
experimental cHA vaccine that utilized the head domain from an avian influenza virus and stalk domain
from pH1N1 (Bernstein et al., 2020). We specifically focused our studies on mAbs targeting the stalk
domain of H1-expressing viruses, as prior studies have shown first exposure to the 2009 pandemic H1N1
virus induce antibodies against the stalk domain (Li et al., 2012; Wrammert et al., 2011). To define
antibodies as targeting the H1 stalk, mAbs were tested for binding to cH5/1, which utilizes the head domain

from H5-expressing viruses and the stalk domain from the pH1N1 virus (Hai et al., 2012), and for
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hemagglutination inhibition (HAI) activity against pH1N1 (A/California/7/2009), a feature of head binding
antibodies. MAbs that bound the cHA and that lacked HAI activity were classified as those binding the HA
stalk domain. Of all mAbs tested, nearly 49% targeted the HA stalk domain, whereas 40% targeted the HA
head domain (Figure S1A). To investigate what proportion were binding the BN stalk domain epitope, we
competed the stalk binding mAbs from our cohorts with CR9114, a well-defined antibody targeting the BN
stalk epitope (Dreyfus et al., 2012). We identified that only 21% of mAbs targeting the stalk domain had
greater than 80% competition with CR9114 (Figure S1B), indicating most H1 stalk domain targeting
antibodies were binding other epitopes of the HA stalk.

To investigate which epitopes the remaining 79% of mAbs were targeting on the stalk domain, we
performed negative stain electron microscopy with two stalk domain binding mAbs. Both mAbs bound an
epitope near the anchor of the HA stalk, towards the lower portion of the HA protomer (Figure 1A-B; Figure
S1C-D). Both mAbs were oriented at an upward angle towards the epitope (Figure 1A-B), suggesting this
epitope may be partially obstructed by the lipid membrane and may only be exposed for antibody binding
as the HA trimers flex on the viral membrane (Benton et al., 2018). FISW84, a recently identified anchor
binding mAb, (Benton et al., 2018), overlap with both 047-09 4F04 and 241 IgA 2F04 (Figure 1C),
suggesting this epitope is a common target of stalk binding antibodies. The footprint of several BN stalk
epitope binding mAbs (CR9114 and FI6v3) did not overlap with those of 047-09 4F04 and 241 IgA 2F04
(Figure 1D; Figure S1E), indicating the anchor epitope and the BN stalk epitope are distinct epitopes on
the HA stalk. To understand what proportion of stalk binding mAbs were binding to the anchor epitope, we
competed 047-09 4F04 mAb with the remaining stalk binding mAbs that did not compete with CR9114. In
total, we identified 50 distinct mAbs that competed for binding to the anchor epitope from a total of 21
subjects (Table S2) and accounted for 28% of all stalk mAbs identified (Figure 1E-F). Together, these data
indicate that the anchor epitope is a common target of antibodies binding the H1 stalk domain.

Antibodies binding the anchor are broadly reactive amongst H1 viruses

As the stalk domain is conserved amongst influenza viruses, we next determined the viral binding breadth
of antibodies targeting the anchor epitope. Anchor mAbs were broadly reactive amongst H1-expressing
viruses, including a swine origin H1N2 virus, but rarely cross-reacted with other influenza subtypes (Figure
2A; Figure S2A-B), as often occurs for antibodies targeting the BN stalk epitope (Figure 2A; Figure S2B).
While highly conserved amongst H1 viruses, the anchor epitope was poorly conserved across divergent
group 1 viral subtypes (Figure S2C). Anchor epitope targeting mAbs had nearly a 2-fold higher affinity for
pH1N1 virus than mAbs targeting the BN stalk epitope (Figure 2B). Because the anchor epitope is partially
obstructed by the lipid membrane, we next tested whether anchor binding mAbs had reduced affinity for
whole virus relative to recombinant HA (rHA). MAbs binding the anchor epitope and the BN stalk epitope
both exhibited reduced affinity for the whole virus (A/California/7/2009) relative to rHA from the same virus,

whereas mAbs targeting the HA head domain had similar affinity for whole virus and rHA (Figure S2D).
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These data indicate that antibodies targeting the anchor epitope are broadly reactive amongst H1-
expressing viruses.

Antibodies targeting the anchor epitope maintain binding to HA mutants in the stalk domain

H1N1 viruses have acquired several mutations within the HA stalk domain, likely due to antibody
selective pressures or to increase stability (Cotter et al., 2014). To understand whether these mutations
have affected antibody binding to the anchor epitope, we screened mAbs against naturally occurring
mutants and experimentally identified viral escape mutants of BN stalk epitope binding mAbs (Figure 2C-
D; Figure S3A-B; Table S3). Anchor epitope binding mAbs were mostly unaffected by the mutants tested,
whereas most of the mAbs targeting the BN stalk epitope were affected by at least one mutant, notably
Q42E mutation in HA2 (Figure 2D). Regardless of mAb specificity, most antibodies had reduced binding
to A44V of HA2, which was recently shown to preferentially grow in the presence of mAbs against the BN
stalk epitope (Park et al., 2020). While A44 is distant from the anchor epitope, the A44V mutation was
shown to affect the conformation of the HA stalk (Park et al., 2020) and could explain the broad reduction
of HA binding by antibodies targeting either the anchor epitope or the BN stalk epitope. Furthermore,
A/Michigan/45/2015 acquired mutations at S124N and E172K of HA2 (Clark et al., 2017), which lay near
the binding footprint of 047-09 4F04 and 241 IgA 2F04 (Figure S3C). Despite this, mAbs targeting the
anchor epitope or BN stalk epitope bind A/California/7/2009 (S124, E172) with nearly identical affinity as
they do to A/Michigan/45/2015 (N124, K172; Figure S3D-E), indicating these mutations were likely not
driven by selective pressures of mAbs targeting these residues. Together, these data indicate that known
mutations within the HA stalk largely do not affect the binding of antibodies to the anchor epitope.

Antibodies targeting the anchor epitope are broadly neutralizing against H1N1 viruses and are

potently protective in vivo

We next determined whether mAbs targeting the anchor epitope were neutralizing. All mAbs
targeting the anchor epitope and the BN stalk epitope were neutralizing against the pH1N1 virus
(A/California/7/2009) and had similar neutralizing potency relative to mAbs binding the BN stalk epitope
(Figure 3A). Furthermore, anchor targeting mAbs were broadly neutralizing against historical and recent
H1N1 viruses, as well as a swine H1N2 (A/swine/Mexico/AVX8/2011) virus (Figure 3B). Together, these
data indicate that antibodies against the anchor epitope and other broadly neutralizing epitopes could work
in tandem to be potently neutralizing against antigenically drifted and shifted H1-expressing viruses.

To test whether mAbs targeting the anchor epitope were protective in vivo, we prophylactically
administered a cocktail of 5 mAbs targeting the anchor epitope or the BN stalk epitope to mimic a polyclonal
response against these epitopes and infected mice with a lethal dose of a mouse-adapted pH1N1 virus
(A/Netherlands/602/2009; Figure 3C). Mice that received either cocktail lost a similar amount of weight and
experienced similar mortality (Figure 3D-E). Notably, mice were completely protected at 5 mg/kg of mAb

cocktail, whereas only 60-80% of animals survived at 1 mg/kg (Figure 3E). Together, these data reveal
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mADbs targeting the anchor epitope are protective in vivo and could provide broad protection against H1-
expressing viruses.

Anchor epitope targeting antibodies are induced by seasonal influenza virus vaccines

Antibodies induced by influenza vaccination are biased toward variable epitopes of the HA head (Figure
4A). However, novel exposure to the 2009 pH1N1 virus robustly recalled MBCs targeting the conserved
epitopes of the HA head and stalk domains, likely because subjects had low pre-existing antibody titers
against the variable epitopes of the HA head (Andrews et al., 2015; Guthmiller et al., 2020; Li et al., 2012;
Wrammert et al., 2011). In contrast, subjects that have been repeatedly exposed to the pH1N1 virus tend
to recall MBCs targeting the variable epitopes of the HA head (Guthmiller et al., submitted for publication).
Consistent with this, subjects that received the 2009 monovalent influenza virus (MIV) vaccine robustly
induced a plasmablast response against the stalk domain (38%), as determined by generated mAbs,
whereas only 15% of mAbs isolated from subjects that received the seasonal vaccine 2014 quadrivalent
influenza virus vaccine (QIV) targeted the stalk domain (Figure 4A). Most subjects in each cohort had at
least one stalk domain-targeting mAb isolated, although the frequency of stalk domain-binding mAbs per
subject was higher in the subjects that received the 2009 MIV relative to subjects in the 2014 QIV cohort
(Figure S4A-B). When broken down by the specific stalk epitopes targeted, nearly 40% of stalk binding
mADbs isolated targeted the BN stalk epitope (Figure 4B). A larger proportion of mAbs (57%) targeting the
anchor epitope were isolated from subjects that received the 2014 QIV relative to those subjects that
received the 2009 MIV (16%; Figure 4B). Anchor epitope binding mAbs were detected in two out of six
subjects in the 2014 QIV cohort (33.3%) and four out of eleven subjects in the 2009 MIV cohort (36%;
Figure 4C), demonstrating that this epitope is commonly targeted after influenza virus vaccinations.

To confirm that anchor epitope targeting mAbs generated from plasmablasts were representative
of the serum antibody response, we performed electron microscopy polyclonal epitope mapping (EMPEM)
to dissect the targets of the polyclonal serum antibody response mounted by subjects 236 and 241 from
the 2014 QIV cohort. Both subjects had detectable antibodies targeting the anchor epitope at days 7 and
14 post vaccination, whereas only subject 241 had detectable antibodies against the BN stalk epitope at
day 14 (Figure 4D-E; Figure S4C-D). Notably, subject 241 had more complexes with antibodies targeting
the anchor than the BN stalk epitope (Figure S4D), suggesting this subject more readily mounted an
antibody response against the anchor epitope. Comparison of anchor epitope binding polyclonal antibodies
(pAbs) identified in subjects 236 and 241 revealed the 241 IgA 2F04 mAb strongly overlapped with the 241
pAb from the same donor (Figure 4E-F) while the 236 pAb sat slightly anterior to the HA trimer, similar to
047-09 4F04 (Figure 4G-H; Figure S4E). Together, these data indicate influenza virus vaccination can
recall MBCs targeting the anchor epitope.

The cHA universal influenza virus vaccine candidate robustly induced antibodies against the

anchor epitope
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Several experimental universal influenza virus vaccine candidates currently being tested in clinical trials
are intended to induce antibodies against the stalk domain. Notably, a cHA vaccine platform was shown
to specifically induce antibodies against the stalk domain (Bernstein et al., 2020; Nachbagauer et al.,
2020). To investigate whether subjects who received the cHA vaccine mounted an antibody response
against the anchor epitope and the BN stalk epitope, we adapted the competition ELISA to detect serum
antibody responses that could compete for binding with 047-09 4F04 and CR9114, respectively. Subjects
enrolled in the cHA clinical trial received a prime-boost regimen of cHA, with the prime being a cH8/1
inactivated influenza virus vaccine with an adjuvant (IIV+AS03) or cH8/1 live-attenuated influenza virus
(LAIV) followed by a boost 3 months later with a cH5/1 [IV with or without adjuvant (Figure 5A). On the
prime vaccination, subjects that received the cH8/1 1IV+AS03 had a dramatic increase in serum antibody
responses against the anchor epitope and BN stalk epitope relative to the placebo group (Figure 5B) and
had a 3-fold increase in antibodies binding the anchor epitope over the day 0 time point (Figure S5A-B).
However, these titers drastically dropped after 3 months post-prime (Figure 5B). Subjects that received
the cH8/1 LAIV did not have an increase in serum antibody responses against either the anchor epitope
or the BN stalk epitope (Figure 5B; Figure S5A-B). After the cH5/1 boost, subjects in the LAIV/IIV+AS03
group dramatically increased antibody titers against both the anchor epitope and BN stalk epitope, whereas
subjects in the LAIV/IIV cohort with no adjuvant did not have a substantial increase in serum antibodies
compared to the placebo cohort (Figure 5B). Subjects that received the cH8/1 IIV+AS03 followed by the
cH5/1 IIV+AS03 also boosted antibody responses against both the anchor and BN stalk epitopes
compared to the placebo controls (Figure 5B), although the fold-change in titers was not statistically greater
than the placebo (Figure S5A-B). Furthermore, only subjects in the LAIV/IIV+AS03 cohort had a significant
fold-increase in antibodies targeting both the anchor and BN stalk epitopes relative to pre-boost titers
(Figure S5A-B). At a 1-year time point, subjects within the LAIV/IIV+AS03 and the 1IV+AS03/1IV+AS03 had
a significant decrease in serum antibodies against the anchor epitope and subjects within the
LAIV/IIV+AS03 cohort had a significant decrease in serum antibodies against the BN stalk epitopes (Figure
S5C-D). Furthermore, we identified and generated anchor epitope targeting mAbs from acutely activated
plasmablasts isolated from one subject that received the cH8/1 1IV+AS03 prime and one subject that
received the cH5/1 IIV+AS03 boost (Table S1 and Table S2). Together, these data indicate that the cHA
vaccine strategy can robustly induce antibodies against the anchor epitope.

Headless HA antigens, or mini-HAs, are attractive universal influenza virus vaccine antigens, as
these antigens lack the immunodominant epitopes of the HA head (Impagliazzo et al., 2015; Yassine et
al., 2015). We next tested whether the anchor epitope was present on the recombinant mini-HA antigen
(Impagliazzo et al., 2015) by performing ELISAs with the anchor epitope targeting antibodies. Only 1 out
of 50 anchor antibodies bound the mini-HA antigen, whereas all anchor epitope binding mAbs bound cH6/1
(Figure 5C; Figure S5E). In contrast, all but one BN stalk epitope targeting mAbs were capable of binding
to both the mini-HA and the cH6/1 (Figure S5E), suggesting the anchor epitope is specifically disrupted on
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this antigen. Compared to full-length HA, the membrane proximal region of the mini-HA splays by
approximately 14.5 A (Impagliazzo et al., 2015), suggesting this splaying may disrupt the antigenicity of
the anchor epitope. Notably, the mini-HA antigen utilizes a GCN4 trimerization domain, whereas the cH6/1
utilizes a fibritin trimerization domain. Therefore, we next tested whether the loss of antigenicity of the
anchor epitope could be due to the utilization of the GCN4 trimerization domain. We identified that anchor
epitope targeting antibodies could bind A/California/7/2009 rHA with a fibritin trimerization domain, but not
A/California/7/2009 rHA with a GCN4 trimerization domain (Figure S5F), indicating a GCN4 trimerization
domain affected the antigenicity of this epitope. To understand whether anchor epitope targeting antibodies
could bind the mini-HA in a more native setting, we modified the mini-HA antigen to remove the
trimerization domain and include a transmembrane domain, which would lead to the HA being membrane-
bound. Transfected HEK293T cells were stained with mAbs targeting H1 head epitopes, the BN stalk
epitope, or the anchor epitope, and flow cytometry was performed. MAbs targeting the anchor and BN
stalk epitopes readily bound both the full-length membrane-bound A/California/7/2009 HA (Cal09) and the
membrane-bound mini-HA, whereas the H1 head-specific mAbs only bound the full-length Cal09 HA
(Figure 5D). These data indicate that the anchor epitope is antigenic when HA is trimerized more similarly
to membrane-bound HA. Additionally, these data indicate native-like HA antigens are likely to recall MBCs
targeting the anchor epitope, such as the cHA vaccine candidate.

Anchor epitope targeting mAbs utilize a restricted antibody repertoire

We next investigated the repertoire features of mAbs targeting the anchor epitope. All mAbs that targeted
the anchor epitope utilized one of four VH3 genes: VH3-23, VH3-30/VH3-30-3, and VH3-48, with over
three-quarters utilizing VH3-23 (Figure 6A-B). MAbs targeting the BN stalk epitope commonly used VH1
genes, of which the vast majority used VH1-69 (Figure 6A, C). Anchor epitope targeting mAbs used a
variety of DH genes (Table S2) and JH genes, although 70% of anchor targeting mAbs utilized JH4 (Figure
S6A). Amongst the anchor targeting mAb heavy chain sequences, 75% were non-clonal (Figure 6D),
indicating most anchor targeting utilize similar but distinct heavy chain VDJ recombinations. Similar to the
heavy chain, anchor epitope binding mAbs utilized a highly restricted light chain repertoire relative to the
BN stalk binding mAbs, with all mAbs utilizing a combination of VK3-11 or VK3-15 combined with JK4 or
JK5 (Figure 6E-G; Figure S6B). In contrast, mAbs targeting the BN stalk epitope used a wide array of
VK/VL genes (Figure 6E) and JK/JL genes (Figure S6B). Furthermore, all but one light chain of the anchor
targeting mAbs were clonal (Figure 6H), indicating the light chains were very similar across mAbs and
subjects. By determining paired heavy and light chain clones, we identified 4 distinct clonal expansions,
with one public clonal expansion found across multiple subjects (Figure 61-J; Figure S6C). Anchor epitope
targeting mAbs were mutated to a similar extent as mAbs targeting the BN stalk epitope (Figure S6D). The
K-CDRa3 length of anchor epitope binding mAbs was highly restricted, with all K-CDR3s being ten amino
acids in length (Figure S6E). Together, these data indicate that anchor epitope targeting mAbs utilize a

highly restricted repertoire, particularly for the light chain.
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FISW84 (Benton et al., 2018) similarly uses VH3-23/VK3-15 and largely makes interactions with
the epitope via an NWP motif within the K-CDR3 loop and a tyrosine (Y) immediately following the H-CDR2
(Figure S6F). We identified that all anchor targeting mAbs possessed this NWP motif at the exact same
location within the K-CDR3, which was present in the germline sequence of the various VK/JK pairings
(Figure 6K). Moreover, all anchor binding mAbs utilized a germline encoded tyrosine at position 59 (Figure
6L), suggesting this residue could have led to the selection of B cells utilizing these particular VH3 genes.
Despite this, nearly 2/3 of VH3 genes utilize a tyrosine at this exact position (Figure S6G), suggesting other
features of the heavy chain may lead to the preferential selection of these particular VH3 genes into the B
cell repertoire against the anchor epitope. Together, these data reveal B cells targeting the anchor epitope
utilized a highly restricted V(D)J gene repertoire, and these specific features of the repertoire are likely
critical for binding the anchor epitope.

Humans possess MBCs with features of anchor epitope targeting antibodies

Due to the restricted repertoire features of anchor targeting mAbs, we next determined the relative
proportion of B cell subsets with these features by integrating single-cell RNA-sequencing and repertoire
sequencing of HA-specific B cells isolated from 22 subjects following cH5/1 vaccination (d112; Figure 5A).
Notably, most B cells isolated likely target the H1 stalk domain as we sequenced sorted cH5/1 B cells and
humans have no measurable pre-existing immunity against the H5 head domain (Han et al., 2020).
However, subjects may have recruited naive B cells against the H5 head component of the cH5/1 vaccine,
therefore the isolated B cell pool is likely a heterogenous population of mostly H1 stalk domain-reactive B
cells and some H5 head domain-reactive B cells. To investigate the proportion of B cells with repertoire
features of B cells targeting the anchor epitope, we selected B cells that used VH3-23/VH3-30/VH3-30-
3/VH3-48, VK3-11/VK3-15, JK4/JK5, a 10 amino acid length K-CDR3, and possessed an NWP motif within
the K-CDR3. For reference, we additionally segregated out B cells expressing VH1-69 and a kappa chain,
as these are the dominate repertoire features of B cells targeting the BN stalk epitope (Figure 6A, C, E).
We identified that B cells with features of antibodies binding the anchor epitope were abundant within the
human B cell repertoire, with 6% of all B cells identified fitting within this defined repertoire (Figure 7A). Of
subjects with ten or more VDJ* B cells (n=20), we identified anchor targeting B cells in all but one subject
(Figure 7B). The anchor targeting B cell pool largely used VH3-23/VK3-15 pairing (Figure 7C). Additionally,
we generated 34 mAbs from the selected anchor targeting B cell list and 31 of these mAbs competed with
047-09 4F04 (Figure 7D). The anchor epitope B cells had a similar number of mutations as VH1-69/kappa
B cells (Figure 7E) and were largely class-switched to IgG1 and IgG3 (Figure 7F), indicative of prior class-
switch recombination and B cell selection within germinal centers. Together, these data indicate that the
anchor epitope is a common target of the human MBC repertoire against HA. Moreover, this study indicates
that most adults have pre-existing immunity against this epitope that can be harnessed by a potential

universal influenza virus vaccine candidate to provide broad protection against H1-expressing viruses.
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Discussion

In this study, we identified a class of antibodies targeting a broadly neutralizing epitope of hemagglutinin
stalk domain near the viral membrane of H1-expressing influenza viruses. The stalk domain is conserved
within and often across influenza virus subtypes. Anchor epitope targeting antibodies showed broad
neutralizing activity against H1-expressing influenza viruses but rarely cross-reacted with other influenza
subtypes. The anchor epitope was poorly conserved across influenza virus subtypes, which could explain
the H1 subtype specificity of the anchor epitope targeting antibody class identified in this study. However,
the broadly neutralizing activity of anchor epitope targeting mAbs against pre- and post-pH1N1 viruses
and a swine-origin H1-expressing virus indicates the anchor epitope is an important target for pan-subtype
neutralizing antibodies. Anchor epitope targeting antibodies have the potential to provide protection against
antigenically drifted H1N1 viruses and zoonotic spillovers of H1-expressing viruses. Furthermore, stalk
binding antibodies are an independent correlate of protection against influenza virus infection and lower
respiratory symptoms (Aydillo et al., 2020; Ng et al., 2019). Whether antibodies against distinct stalk
domain epitopes are independent correlates of protection against influenza virus infection is yet to be
determined.

A striking feature of anchor epitope binding antibodies was the angle of approach, with the antibody
Fab tilting up towards the epitope and sterically clashing with the viral membrane. However, our data
indicate anchor epitope antibodies can bind HA in the context of the viral membrane, as these antibodies
could bind intact virus and were neutralizing in vitro. These data are consistent with a dynamic HA on the
membrane, tilting up to 52° along its three-fold axis (Benton et al., 2018), allowing for the exposure of
epitopes proximal to the membrane. As HA flexes on the viral membrane surface, the epitope may become
available, allowing for antibody binding at the observed angle. However, likely only 1-2 of the anchor
epitopes of the HA trimer is accessible as HA flexes, limiting the avidity of antibodies binding the anchor
epitope. Moreover, influenza viruses are densely decorated with the surface glycoproteins HA and NA
(Gallagher et al., 2018; Wasilewski et al., 2012), further limiting access to the anchor epitope. Further
research is needed to understand how the anchor epitope can be made more accessible for antibody
binding. Moreover, it is of interest to understand whether anchor epitope binding antibodies possess
membrane binding capabilities, similar to antibodies binding to membrane proximal external region
(MPER) of gp41 of HIV (Cardoso et al., 2005; Ofek et al., 2004).

The anchor targeting mAbs utilized a highly restricted repertoire that were public clonotypes across
subjects, with all antibodies possessing two conserved motifs near the H-CDR2 and a NWP motif within
the K-CDR3. In addition, VH3-23 and VH3-48 utilizing mAbs targeted the anchor epitope slightly differently,
with the VH3-48 mAb (047-09 4F04) sitting more anterior and superior on a single HA protomer relative to
the VH3-23 mAb (241 IgA 2F04). However, more antibodies need to be studied to further understand how
the slight differences in repertoire usage affect HA binding. Multiple classes of antibodies against the BN

stalk epitope of H1-expressing viruses have been identified (Joyce et al., 2016; Sui et al., 2009) and often
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cross-react with other group 1 virus subtypes (i.e. H2, H5), and occasionally group 2 viruses (Henry
Dunand et al., 2015). Notably, each antibody class targets the BN stalk epitope at slightly different angles
and have slightly different binding footprints (Joyce et al., 2016; Wu and Wilson, 2020). As a result of this,
viral mutations that arise to circumvent one antibody class may have a minimal effect on viral binding
breadth and neutralization potential of other classes. Moreover, naturally occurring mutations within the
footprint of the anchor antibodies have not been observed, whereas mutations against the BN stalk epitope
have been observed (Wu et al., 2020).

Our study showed that humans have pre-existing immunity against the anchor epitope and
influenza virus vaccination can recall MBCs to secrete antibodies against this epitope. However, vaccine
HA antigens must have a native confirmation near the transmembrane domain, as our study showed that
trimer splaying potentially due to the GCN4 trimerization domain ablates antibody binding at the anchor
epitope. Split vaccines, HA-decorated nanoparticles, and mRNA vaccines that induce expression of
membrane-bound HA should possess a native anchor epitope that can be recognized by MBCs targeting
this epitope. Moreover, our study highlights that the cHA vaccine strategy was able to recall MBCs against
the anchor epitope and the BN stalk epitope, while avoiding the recruitment of MBCs targeting the variable
epitopes of the HA head (Nachbagauer et al., 2020). Similarly, the mini-HA/headless HA vaccine strategy
has the potential to also recall MBCs against multiple epitopes of the HA stalk domain, if folded natively
(van der Lubbe et al., 2018; Yassine et al., 2015). However, an optimal pan-H1 vaccine should strive to
induce antibodies against both conserved epitopes of the HA stalk domain and head domain, including the
RBS, lateral patch, and trimer interface in order to limit potential viral escape mutants. Vaccines that
strategically glycosylate variable epitopes have the potential to induce antibodies against conserved
epitopes of the HA head and stalk domains, while limiting B cell recruitment against variable epitopes (Bajic
et al., 2019; Boyoglu-Barnum et al., 2020; Eggink et al., 2014; Weidenbacher and Kim, 2019). Moreover,
mosaic antigens that replace the variable epitopes with those from avian influenza virus subtypes also
have the potential to induce broadly protective antibodies against HA (Broecker et al., 2019; Liu et al.,
2018; Sun et al., 2019). Together, our study indicates that novel influenza vaccination strategies have the
capability to robustly induce antibodies against the previously unappreciated anchor epitope that can

provide broad protection against H1-expressing viruses.
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Figure 1: The anchor epitope is a common target of HA stalk binding antibodies. (A-B), Negative
stain EM 2D class averages and 3D reconstructions of negative stain EM of 047-09 4F04 Fab (A) and 241
IgA 2F04 Fab (B) binding to A/California/4/2009 HA. (C) Overlay of 047-09 4F04, 241 IgA 2F04, and
FISW84 (PDB: 6HJQ) Fabs binding the anchor epitope of A/California/04/2009 HA. (D) Binding footprints
of 047-09 4F04, 241 IgA 2F04, CR9114, and FI6v3 on A/California/04/2009 HA. (E) Competition of stalk
binding mAbs with CR9114 or 047-09 4F04. (F) Proportion of mAbs binding to the anchor epitope, the BN

14


https://doi.org/10.1101/2021.02.25.432905
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.25.432905; this version posted February 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

434  stalk epitope, or an unknown stalk epitope based on competition with 047-09 4F04 or CR9114. Number in

435  the center of the pie graph represents the number of mAbs tested. See also Figure S1 and Table S2.
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Figure 2: Anchor epitope targeting antibodies are broadly reactive amongst H1 expressing viruses.
(A) Proportion of anchor epitope and BN stalk epitope targeting mAbs binding to other group 1 subtypes.
(B) Apparent affinity of anchor and BN stalk binding mAbs to A/California/7/2009 virus. Data are
represented as mean = S.D. (C-D) Anchor and BN stalk binding mAbs were tested for binding to
A/California/7/2009 HA with naturally occurring mutations and experimentally determined mutations
induced by 045-09 2B06, a BN stalk epitope binding mAb. (C) Location of mutations modeled on
A/California/04/2009 HA (PDB: 4JTV). Residues in blue are located on HA1 and residues in red are located
on HA2. Outlines represent binding footprints of 047-09 4F04 (sky blue) and CR9114 (green). (D) Heatmap
of mAb binding to WT and mutant HAs shown as the proportion of signal relative to mAb binding to the WT
HA. Data in A were analyzed by Fisher's Exact tests and B were analyzed by unpaired non-parametric
Mann-Whitney test. See also Figure S2, Figure S3, Table S3.
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Figure 3: Anchor epitope targeting mAbs are broadly neutralizing amongst H1 viruses and potently
protective in vivo. (A) Neutralization potency of mAbs binding the anchor or BN stalk epitope against
A/California/7/2009 H1N1. (B) Neutralization potency of anchor epitope binding mAbs against H1-
expressing viruses. (C-E) Mice were prophylactically administered i.p. a cocktail of mAbs (n=5
mAbs/cocktail) against the anchor epitope or BN stalk epitope, or an anthrax specific antibody. Mice were
infected 2 hours later with 10 LDso of A/Netherlands/602/2009 H1N1. (C) Experiment design. Weight loss
(D) and survival (E) of mice in each treatment group. N=10 mice per treatment group and are pooled from
two independent experiments. Data in A, B, and D are represented as mean + S.D. Data in A were

analyzed by unpaired non-parametric Mann-Whitney test. See also Table S4.
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Figure 4: Anchor epitope targeting B cells are induced by licensed influenza virus vaccines. (A-C)

MAbs were generated from plasmablasts isolated 7 days after influenza virus vaccination with the 2009
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MIV and the 2014 QIV. (A) Domain binding of HA™ mAbs. (B-C) Epitope specificity of stalk domain binding
mADbs by vaccine cohort (B) and by subjects (C). (D-F) EMPEM of serum collected at day 7 and 14 following
2014 QIV in subjects 236 and 241 binding to A/Michigan/45/2015 HA. (D) Summary of pAbs at day 7 and
d14. (E) Overlap of 241 IgA 2F04 fab and pAb binding anchor epitope from subject 241. (F) Binding
footprint of 241 IgA 2F04 (sky blue) and pAb from subject 241 (purple). (G) Overlap of anchor epitope
binding pAbs from subjects 236 (lavender) and 241 (purple). (H) Binding footprint of pAbs from subjects
236 (lavender) and 241 (purple) relative to 241 IgA 2F04 and 047-09 4F04. Data in A and B were analyzed

using Chi-square tests. See also Figure S4.
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Figure 5: cHA vaccination in humans recalls MBCs targeting the anchor epitope. (A-B) Subjects
enrolled in a phase 1 clinical trial received a prime-boost of cHA vaccine, where the prime used cH8/1 and
the boost used cH5/1. On the prime, subjects either received a LAIV or IIV with adjuvant (AS03). On the
boost, subjects received the IV with or without adjuvant (AS03). Serum was collected before and after
vaccination and monitored for competing serum antibodies against the anchor epitope (047-09 4F04) and
BN stalk epitope (CR9114). LAIV/IIV+AS03 (n=10); LAIV/IIV (n=7); IIV+AS03/1IV+AS03 (n=7); Placebo
(n=6). (A) Trial design. (B) EC50s of serum antibodies competing for binding with 047-09 4F04 for binding
to the anchor epitope (left) and CR9114 for binding to the BN stalk epitope (right). Data are mean + S.D.
(C) Proportion of anchor epitope binding mAbs binding to cHA or mini-HA. (D) MAb binding to HEK293T
cells expressing full length A/California/7/2009 HA (Cal09) or mini-HA with a transmembrane domain.

Representative flow cytometry plots of mAbs binding to Cal09 HA and mini-HA (left) and geometric mean
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fluorescence intensity (gMFI) of mAbs binding to Cal09 and mini-HA (right). Data represent the median
and each symbol represents a distinct mAb. Data in B were analyzed using a two-way ANOVA testing for
simple effects within rows, data in C were analyzed by Fisher’'s Exact test and data in D were analyzed by
unpaired non-parametric Mann-Whitney test. See also Figure S5.
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Figure 6: Anchor targeting mAbs use a highly restricted repertoire and possess a conserved
binding motif within the K-CDR3. (A-C) Heavy chain VH classes (A) and gene usage of mAbs binding
the anchor epitope (B) and the BN stalk epitope (C). Only VH1 gene usage of BN stalk epitope binding
mADbs is shown in C. (D) Heavy chain clonality of mAbs binding the anchor epitope. (E) Light chain VK/VL
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classes usage of mAbs binding the anchor epitope or BN stalk epitope. (F-G) VK (F) and JK (G) gene
usage of mAbs binding the anchor epitope. (H) Light chain clonality of mAbs binding the anchor epitope.
(I) Private and public clones that share heavy and light chains. (J) Alignment of VDJ of the VH3-48 public
clone. (K) Sequence logo of the K-CDR3 and the germline sequence of the K-CDR3 of VK3-11/VK3-15
combined with JK4/JK5. NWP motif is highlighted. (L) Sequence logo of the H-CDR2 with the tyrosines
directly following the H-CDR2 and the germline sequence of the H-CDR2 of VH3-23, VH3-30, and VH3-

48. Data in A and E were analyzed using Chi-square tests. See also Figure S6.
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Figure 7: Humans possess MBCs targeting the anchor epitope. cH5/1* B cells from PBMCs were
sorted from subjects 28 days following a booster with the cH5/1 and were subjected to single-cell RNA-
sequencing. (A) Proportion of all B cells with features of anchor antibodies, VH1-69/kappa (BN stalk
epitope), or with other repertoire features. (B) Proportion of B cells with anchor binding antibody features
or that use VH1-69/kappa chain by subject. Lines connect the same subject. (C) VH/VK pairing of B cells
with features of anchor epitope binding antibodies. (D) 34 mAbs with anchor epitope binding mAb
repertoire features and tested for competing for binding with 047-09 4F04. (E-F) number of heavy chain
mutations (E) and isotype usage (F) of B cells with repertoire features of anchor binding antibodies or VH1-
69/kappa. Data in E are represented as mean + S.D. Data in D were analyzed using a paired non-
parametric Wilcoxon matched-pairs signed rank test and data in E were analyzed by unpaired non-
parametric Mann-Whitney test.
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STAR METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE | SOURCE | IDENTIFIER
Antibodies
Anti-human CD19 PE-AF610 conjugate Invitrogen/Thermo Cat# MHCD1922
Scientific RRID:
AB_10373379
Anti-human CD27 R-PE conjugate Invitrogen/Thermo Cat# MHC2704
Scientific RRID:
AB_10392393
Anti-human CD38 APC-Cy5.5 conjugate Invitrogen/Thermo Cat# MHCD3819
Scientific RRID:
AB_10371760
Anti-human CD3 FITC conjugate Invitrogen/Thermo Cat# MHCDO0301
Scientific RRID:
AB_10376003
Anti-human CD20 FITC conjugate Invitrogen/Thermo Cat# MHCD2001
Scientific RRID:
AB_10373690
RosetteSep human B cell enrichment cocktail StemCell Cat#15064

Technologies

HRP-conjugated goat anti-human IgG antibody

Jackson Immuno

Cat# 109-035-098

Research RRID:AB 2337586
Streptavidin-HRP Southern Biotech Cat#7100-05
Streptavidin-PE Biolegend Cat#405203

Anti-Influenza A Antibody, nucleoprotein, clone A3,
biotin-conjugated

Sigma/Millipore

Cat#MAB8258B-5

Bacteria and Virus Strains

NEB® 5-alpha Competent E. coli NEB Cat#C2988J
A/Solomon Islands/6/2006 (H1N1) Patrick Wilson’s N/A
laboratory stock
A/California/7/2009 (H1N1) Patrick Wilson’s N/A
laboratory stock
A/New Caledonia/20/1999 (H1N1) Patrick Wilson’s N/A
laboratory stock
A/Brazil/11/1978 (H1N1) Patrick Wilson’s N/A
laboratory stock
A/Chile/1/1983 (H1N1) Patrick Wilson’s N/A
laboratory stock
AlTexas/36/1991 (H1N1) Patrick Wilson’s N/A
laboratory stock
A/Michigan/45/2015 (H1N1) Patrick Wilson’s N/A
laboratory stock
A/swine/Mexico/AVX8/2011 (H1N2) Patrick Wilson’s N/A
laboratory stock
A/Wisconsin/57/2005 (H3N2) Patrick Wilson’s N/A
laboratory stock
A/Hong Kong/4801/2014 (H3N2) Patrick Wilson’s N/A
laboratory stock
B/Phuket/3073/2013 (B/Yamagata/16/1988-like lineage) | Patrick Wilson’s N/A
laboratory stock
B/Brisbane/60/2008 (B/Victoria/2/1987-like lineage) Patrick Wilson’s N/A
laboratory stock
A/Netherlands/602/2009 (H1N1) Patrick Wilson’s N/A

laboratory stock
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Biological Samples

Human PBMC | This study | N/A
Chemicals, Peptides, and Recombinant Proteins
A/California/7/2009 (H1N1) HA with fibritin trimerization Florian Krammer’s N/A
domain laboratory stock and

Patrick Wilson’s

laboratory stock
A/California/7/2009 (H1N1) HA with GCN4 trimerization Lynda Coughlan’s N/A
domain laboratory stock and

Andrew Ward’s

laboratory stock
A/Michigan/45/2015 HA Patrick Wilson’s N/A

laboratory stock
A/Ann Arbor/6/1960 (H2N2) HA with fibritin trimerization Florian Krammer’s N/A
domain laboratory stock
A/Indonesia/5/2005 (H5N1) HA with fibritin trimerization Florian Krammer’s N/A
domain laboratory stock
A/California/7/2009 (H1N1) HA with fibritin trimerization Patrick Wilson’s N/A
domain, single point mutations laboratory stock
Chimeric H6/1 HA (H6 head from Florian Krammer’s N/A
A/mallard/Sweden/81/2002 combined with H1 stalk from | laboratory stock
A/California/04/2009)
Chimeric H5/1 HA (H5 head from Florian Krammer’s N/A
A/mallard/Sweden/24/2002 combined with H1 stalk from | laboratory stock
A/California/4/2009) with Y98F mutation
Mini-HA (H1 stalk domain from A/Brisbane/59/2007) Lynda Coughlan’s N/A

laboratory stock
Mutant H1 proteins Patrick Wilson’s N/A

laboratory stock

PEI 25K, Transfection Grade

Polysciences

Cat# 23966-2

Super Aquablue ELISA substrate

ThermoFisher

Cat# 00-4203-58

EZ-link Sulfo-NHS-Biotin ThermoFisher Cat# 21217
Trypsin, TPCK treated Sigma-Aldrich Cat# 78802
Pierce™ Protein A agarose ThermoFisher Cat# 20334
Ni-NTA Agarose Qiagen Cat# 30210
Lymphocyte Separation Medium Corning Cat# 25-072-CV
Advanced DMEM Invitrogen Cat# 12491-023
DMEM Invitrogen Cat# 11965118
PFHM-II protein free hybridoma medium Invitrogen Cat# 12040-077
FBS Invitrogen Cat# 16000-044
Ultra Low FBS Invitrogen Cat# 16250078
Bovine Serum Albumin (Wilson) Sigma-Aldrich Cat# A9418

Bovine Serum Albumin (Bloom)

ThermoFisher

Cat# 15260-037

Opti-MEM ThermoFisher Cat# 31985-088
L-glutamine Invitrogen Cat# 25030-164
Penicillin-streptomycin ThermoFisher Cat# 15140163
Antibiotic/Antimycotic ThermoFisher Cat# 15240-112
Experimental Models: Cell Lines

MDCK cells ATCC Cat# CCL-34
HEK293T Cell Line ATCC Cat# CRL-11268
MDCK-SIAT1 Jesse Bloom’s

laboratory stock

Experimental Models: Organisms/Strains

BALB/cJ

The Jackson
Laboratory

RRID:IMSR_JAX:00
0651
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Recombinant DNA

IgG-AbVec Patrick Wilson’s N/A
laboratory stock

Igk-AbVec Patrick Wilson’s N/A
laboratory stock

Igh-AbVec Patrick Wilson’s N/A

laboratory stock

Deposited Data

Negative stain reconstruction of 4F04 Fab bound to
CA09 H1 HA

EMDataBank

D_100025433

Negative stain reconstruction of 2F04 Fab bound to
CA09 H1 HA

EMDataBank

D_1000254374

Negative stain reconstruction of donor 236 day 7
polyclonal Fabs targeting the anchor and esterase
epitopes of CA09 H1 HA

EMDataBank

D_1000254375

Negative stain reconstruction of donor 236 day 7
polyclonal Fabs targeting the RBS of CA09 H1 HA

EMDataBank

D_1000254376

Negative stain reconstruction of donor 236 day 14
polyclonal Fabs targeting the top of the head of CA09 H1
HA

EMDataBank

D_1000254377

Negative stain reconstruction of donor 236 day 14
polyclonal Fabs targeting the esterase epitope of CA09
H1 HA

EMDataBank

D_1000254378

Negative stain reconstruction of donor 236 day 14
polyclonal Fabs targeting the RBS of CA09 H1 HA

EMDataBank

D_1000254383

Negative stain reconstruction of donor 236 day 14
polyclonal Fabs targeting the anchor epitope of CA09 H1
HA

EMDataBank

D_1000254384

Negative stain reconstruction of donor 241 day 7
polyclonal Fabs targeting the esterase epitope of CA09
H1 HA

EMDataBank

D_1000254385

Negative stain reconstruction of donor 241 day 7
polyclonal Fabs targeting the anchor epitope of CA09 H1
HA

EMDataBank

D_1000254386

Negative stain reconstruction of donor 241 day 14
polyclonal Fabs targeting the anchor epitope of CA09 H1
HA

EMDataBank

D_1000254388

Negative stain reconstruction of donor 241 day 14
polyclonal Fabs targeting the esterase epitope of CA09
H1 HA

EMDataBank

D_1000254379

Negative stain reconstruction of donor 241 day 14
polyclonal Fabs targeting the top of the head of CA09 H1
HA

EMDataBank

D_1000254391

Negative stain reconstruction of donor 241 day 14
polyclonal Fabs targeting the RBS of CA09 H1 HA

EMDataBank

D_1000254382

Software and Algorithms

GraphPad Prism (version 8.4.3)

GraphPad Software
Inc

http://www.graphpa
d.com
RRID: SCR 002798

IgBlast

NCBI

http://www.ncbi.nlm.

nih.gov/igblast/
RRID: SCR 002873

JMP Pro 15.1.0

SAS Institute Inc.

https://www.jmp.co
m/en_us/home.html
RRID: SCR 014242

Clustal Omega

EMBL-EBI

http://www.ebi.ac.uk
/Tools/msalclustalo/
RRID: SCR 001591
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UCSF Chimera Resource for https://www.cgl.ucsf
Biocomputing .edu/chimera/
Visualization and RRID: SCR_004097
Informatics
Unicorn 7.0 GE Healthcare https.//www.qellfesc
iences.com/
Leginon Suloway et al., 2005 N/A
Appion Lander et al., 2009 N/A
DoG Picker Voss et al., 2009 N/A
Relion Scheres, 2012 N/A
PyMOL Schrodinger RRID: SCR_000305
FlowJo 10.7.1 Beckton, Dickson, & RRID: SCR 008520
Company
R The R Foundation for http://www.R-
Statistical Computing project.org
RStudio https://www.rstudio.
com/
RRID: SCR 000432
Seurat 3.2 https://www.cell.co
m/cell/fulltext/S0092
-8674(19)30559-8
ggplot2 3.3.2 https://ggplot2.tidyv
erse.org
cowplot 1.1.0 https://qgithub.com/w
ilkelab/cowplot
CellRanger 3.0.2 10x Genomics https://support.10xg
enomics.com/single
-cell-gene-
expression/software
[pipelines/latest/wha
tis-cell-ranger
WebLogo University of https://weblogo.berk
California, Berkeley eley.edu/logo.cgi

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to the Lead contact,

Patrick C. Wilson (wilsonp@uchicago.edu).

Materials Availability

There are restrictions to the availability of mAbs from this study due to the lack of an external centralized
repository for its distribution and our need to maintain the stock. We are glad to share mAbs with

reasonable compensation by requestor for its processing and shipping.
Data and Code Availability

Repertoire data generated from single cell RNA-sequencing data is deposited at NCBI GenBank under
accession numbers (in process of being deposited). Electron microscopy maps were deposited to the
Electron Microscopy DataBank under accession IDs: D_100025433, D_1000254374, D_1000254375,
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D_1000254376, D_1000254377, D_1000254378, D_1000254383, D_1000254384, D_1000254385,
D_1000254386, D_1000254388, D_1000254379, D_1000254391, and D_1000254382. All next
generation sequencing data for 045-09 2B06 deep mutational scanning can be found on the Sequence
Read Archive under BioProject accession number PRIJNA494885.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Materials

Human PBMCs were obtained from multiple subjects from multiple cohorts, which is outlined in Table S1.
All studies were performed with the approval of the University of Chicago Institutional Review Board (ID
#09-043-A). The chimeric HA vaccine study cohort is identified as clinical trial NCT03300050.

Cell Lines

Human Embryonic Kidney HEK293T (female, # CRL-11268) and Madin Darby canine kidney MDCK
(female, # CCL-34, NBL-2) cells were purchased and authenticated by the American Type Culture
Collection (ATCC). All cells were maintained in a humidified atmosphere of 5% CO. at 37°C. HEK293T
cells were maintained in Advanced-DMEM supplemented with 2% ultra-low 1gG fetal bovine serum (FBS)
(Invitrogen), 1% L-glutamine (Invitrogen) and 1% antibiotic-antimycotic (Invitrogen). MDCK cells were
maintained in DMEM supplemented with 10% FBS (Invitrogen), 1% L-glutamine (Invitrogen) and 1%
penicillin-streptomycin (Invitrogen).

METHOD DETAILS

Monoclonal antibody production

Monoclonal antibodies were generated as previously described (Guthmiller et al., 2019; Smith et al., 2009;
Wrammert et al., 2008). Peripheral blood was obtained from each subject approximately 7 days after
vaccination or infection or obtained 28+ days post-vaccination. Lymphocytes were isolated and enriched
for B cells using RosetteSep. Total PBs (CD3'CD19*CD27"CD38"; all cohorts except 2014 QIV), IgG* PBs
(CD3'CD19*IgM CD27"CD38"IgG*IgA~; 2014 QIV), IgA* PBs (CD3'CD19*IgM'CD27"CD38"IgG IgA*; 2014
QIV cohort), or HA* bait-sorted MBCs (CD3'CD19*CD27*CD38"*HA*, for 030-09M 1B06) were single-cell
sorted into 96-well plates. Immunoglobulin heavy and light chain genes were amplified by reverse
transcriptase polymerase chain reaction (RT-PCR), sequenced, cloned into human IgG1, human kappa
chain, or human lambda expression vectors, and co-transfected into HEK293T cells. Secreted mAbs were
purified from the supernatant using protein A agarose beads. For mAbs generated from the 2014 QIV
cohort, mAb names include the original isotype of the sorted PB, and all mAbs were expressed as human
IgG1. cH5/1-binding B cells (CD19°CD27*cH5/1") were sorted from subjects 28 days after cH5/1
vaccination (NCT03300050). Cells were sorted with A/California/04/2009 HA (for 030-09M 1B06) or cH5/1
probe with a Y98F mutation to ablate non-specific binding to sialic acids on B cells. MAb heavy chain and
light chain sequences were synthesized from single-cell RNA-sequencing data of cH5/1-baited B cells

(IDT), and cloned into the human 1gG1, human kappa chain, or human lambda expression vectors. B cell
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clones were determined by aligning all the V(D)J sequences sharing identical progenitor sequences, as
predicted by IgBLAST using our in-house software, VGenes. Consensus sequence analysis was
performed using WebLogo (Crooks et al., 2004) and sequence alignments were determined using Clustal
Omega .

Viruses and recombinant proteins

Influenza viruses used in all assays were grown in-house in specific pathogen free (SPF) eggs, harvested,
purified, and titered. The A/swine/Mexico/AVX8/2011 H1N2 virus (Mena et al., 2016) was provided by
Ignacio Mena, Adolfo Garcia-Sastre, and Sean Liu at Icahn School of Medicine at Mount Sinai.
Recombinant HA, cHA, and mini-HA were obtained from BEI Resources or kindly provided by the Krammer
laboratory at Icahn School of Medicine at Mount Sinai, the Coughlan laboratory at The University of
Maryland School of Medicine, or the Wilson laboratory at the University of Chicago. Recombinant HA
mutant proteins used in Figure 2 were generated with identified mutations from the deep mutational
scanning experiments (see below) or with known mutations that have arisen naturally or were identified in
other studies (Figure S3). All mutations were made on HA from A/California/7/2009. Mutant HAs were
expressed in HEK293T cells and purified using Ni-NTA agarose beads (Qiagen).

Antigen Specific ELISA

High protein-binding microtiter plates (Costar) were coated with 8 hemagglutination units (HAU) of virus in
carbonate buffer or with recombinant HA, including HA mutants described below, at 2 ug/ml in phosphate-
buffered saline (PBS) overnight at 4°C. Plates were washed the next morning with PBS 0.05% Tween and
blocked with PBS containing 20% fetal bovine serum (FBS) for 1 hr at 37°C. Antibodies were then serially
diluted 1:3 starting at 10 ug/ml and incubated for 1.5 hr at 37°C. Horseradish peroxidase (HRP)-conjugated
goat anti-human IgG antibody diluted 1:1000 (Jackson Immuno Research) was used to detect binding of
mAbs, and plates were subsequently developed with Super Aquablue ELISA substrate (eBiosciences).
Absorbance was measured at 405 nm on a microplate spectrophotometer (BioRad). To standardize the
assays, control antibodies with known binding characteristics were included on each plate, and the plates
were developed when the absorbance of the control reached 3.0 OD units. All ELISAs were performed in
duplicate twice. To determine mAb affinity, a non-linear regression was performed on background
subtracted ODs and Ky values were reported. To classify antigen-specificity, mAbs that did not definitively
bind the HA head or stalk are listed as binding unknown HA® epitopes. Affinity measurements, as
represented as Kq at a molar concentration (M), were calculated using Prism 9 (Graphpad) by performing
a non-linear regression.

Deep mutational scanning for stalk domain mutants

The mutant libraires used herein were previously described (Doud and Bloom, 2016). The libraries consist
of all single amino-acid mutations to A/WSN/1933 (H1N1). The experiments were performed by using
biological triplicate libraries. The mutational antigenic profiling of the 045-09 2B06 was performed as

previously outlined (Doud et al., 2017). In brief, 10° TCIDso of two of the virus library biological replicates
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was diluted in 1mL in IGM (Opti-MEM supplemented with 0.01% FBS, 0.3% BSA, and 100 ug/ml calcium
chloride) and incubated with an equal volume of 045-09 2B06 antibody at a final concentration of 50 or 25
ug/mL for 1.5 hours at 37°C. MDCK-SIAT1 cells were infected with the virus antibody mixtures. 2 hours
post-infection, the media was removed, the cells washed with 1 ml PBS, and 2 ml of fresh IGM was added.
15 hours post-infection, viral RNA was extracted, reverse-transcribed using primers WSNHA-For (5'-
AGCAAAAGCAGGGGAAAATAAAAACAAC-3’) and WSNHA-Rev (5-
AGTAGAAACAAGGGTGTTTTTCCTTATATTTCTG-3’), and PCR amplified according to the barcoded-
subamplicon library preparation as previously described (Doud and Bloom, 2016). The overall fraction of
virions that survive antibody neutralization was estimated using qRT-PCR targeting the viral nucleoprotein
(NP) and cellular GAPDH as previously described (Doud et al., 2017). Using 10-fold serial dilutions of the
virus libraries, we infected cells with no antibody selection to serve as a standard curve of infectivity. gqPCR
Ct values from the standard curve samples compared to the virus-antibody mix samples are determined
for NP and GAPDH. We then generate a linear regression to fit the difference between the NP and GAPDH
Ct values for the standard curve samples, and then use this curve to interpolate the fraction surviving for
the antibody-virus selection samples. Across the three library replicates the fraction of virus surviving
antibody selection was 0.17, 0.1, and 0.14.

lllumina(R) deep sequencing data was analyzed using dms_tools2 version 2.4.12 software

package (Bloom, 2015) which can be found at https://github.com/jbloomlab/dms_tools2. All of the

computer code used is at https://github.com/ibloomlab/2B06 _DMS, and the Jupyter notebook that

performs most of the analysis is at

https://github.com/jbloomlab/2B06_DMS/blob/master/analysis_notebook.ipynb. The sequencing counts

were processed to estimate the differential selection for each mutation, which is the log enrichment of that
mutation in the antibody-selected condition versus the control (Doud et al., 2017). The numerical
measurements of the differential selection that 2B06 imposes on each mutation can be found here:
https://github.com/jbloomlab/2B06 _DMS/blob/master/results/diffsel/tidy diffsel.csv.

Competition ELISAs

Plates were coated with 50ul of A/California/7/2009 HA at a concentration of 1ug/ml and incubated
overnight at 4°C. To biotinylate the antibodies with known epitope specificities, CR9114 and 047-09-4F04,
were incubated at 4°C with EZ-Link™ Sulfo-NHS-Biotin (Thermo Scientific) for 24h or 48h prior to use,
respectively. After blocking the plates with PBS 20% FBS for 1h at 37°C, serum samples were incubated

(starting dilution of 1:50 for human serum or 20 pg/ml for mAbs) in the coated wells for 2h at room
temperature. Either biotinylated CR9114 or 047-09-4F04 was then added at a concentration equal to twice
its Kq and incubated in the wells with the serum or mAbs for 2h at room temperature. The biotinylated
antibodies were desalted before addition to remove free biotin using Zeba™ spin desalting columns, 7k
MWCO (Thermo Scientific). After washing the plates, wells were incubated with HRP-conjugated
streptavidin (Southern Biotech) at 37°C for 1h for detection of the biotinylated antibody. Super Aquablue
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ELISA substrate (eBiosciences) was then added and absorbance was measured at 405nm on a microplate
spectrophotometer (Bio-Rad). To standardize the assays, biotinylated CR9114 or TS-09-4F04 was
incubated in designated wells on each plate without any competing serum or mAb, and data were recorded
when the absorbance of these wells reached an optical density (OD) of 1 to 1.5 units. After subtracting
background, percent competition by serum samples was then determined by dividing a sample’s observed
OD by the OD reached by the positive control, subtracting this value from 1, and multiplying by 100. For
the serum data, ODs were log transformed and analyzed by non-linear regression to determine ECso values
using Prism software (Graphpad). For Figure 5 and Figure S4, only subjects with serum for all timepoints
were included.

Microneutralization Assays

Microneutralization assays for mAb characterization were carried out as previously described (Chen et al.,
2018; Henry Dunand et al., 2015). MDCK cells were maintained in DMEM supplemented with 10% FBS,
1% penicillin-streptomycin, and 1% L-glutamine at 37°C with 5% CO.. The day before the experiment,
25,000 MDCK cells were added to each well of a 96-well plate. Serial two-fold dilutions of mAb were mixed
with an equal volume of 100 TCIDs, of virus for 1 hr and added to MDCK cells for 1 hr at 37°C. The mixture
was removed, and cells were cultured for 20 hrs at 37°C with 1X MEM supplemented with 1 pug/ml tosyl
phenylalanyl chloromethyl ketone (TPCK)-treated trypsin and appropriate mAb concentration. Cells were
washed twice with PBS, fixed with 80% ice cold acetone at 20°C for at least 1 hr, washed 3 times with
PBS, blocked for 30 min with 3% BSA, and then treated for 30 min with 2% H»O,. Cells were incubated
with a mouse anti-nucleoprotein antibody (1:1000; Millipore) in 3% BSA-PBS for 1 hr at room temperature
(RT), followed by goat anti-mouse IgG HRP (1:1000; Southern Biotech) in 3% BSA-PBS for 1 hr at RT.
The plates were developed with Super Aquablue ELISA substrate at 405 nm until virus only controls
reached an OD of 1. The signal from uninfected wells was averaged to represent 100% inhibition. The
signal from infected wells without mAb was averaged to represent 0% inhibition. Duplication wells were
used to calculate the mean and SD of neutralization, and inhibitory concentration 50 (ICso) was determined
by a sigmoidal dose response curve. The inhibition ratio (%) was calculated as below: ((OD Pos. Control
— OD Sample) / (OD Pos. Control — OD Neg. Control)) * 100. The final ICso was determined using Prism
software (GraphPad).

In vivo challenge infections

MADb cocktails (Table S4) were passively transferred into 6- to 8-week-old female BALB/c mice (Jackson
Laboratories) by intraperitoneal injection of 0.2, 1, and 5 mg/kg mAb cocktail, which are further detailed in
Figure S4. Negative control mice received 5 mg/kg of the anthrax-specific mAb 003-15D03 as an isotype
control. Two hours post-mAb injection, mice were anesthetized with isoflurane and intranasally challenged
with 10 LDso of mouse-adapted A/Netherlands/602/2009 H1N1 virus, with 10 pl of virus administered into
each nostril (20 ul total). As a read out, survival and weight loss were monitored 1-2 times daily for two

weeks. Mice were euthanized upon 25% weight loss or at the end of the experiment (14 days post
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challenge). All experiments were done in accordance with the University of Chicago Institutional Animal
Care and Use Committee.

HA footprint mapping

The footprints of three mAbs (FISW84 (PDB: 6HJQ), CR9114 (PDB: 4FQl), and FI6v3 (PDB: 3ZTN)) were
mapped onto one HA protomer (A/California/4/2009, PDB: 4M4Y) using UCSF Chimera (Pettersen et al.,
2004) and Adobe Photoshop. EM maps of HA:fab complexes were aligned in UCSF Chimera and footprints
were mapped onto one HA protomer. Individual protomers of the HA trimer are indicated in different shades
of gray.

Negative stain EM

Immune complexes were prepared by incubating Fab with HA (A/California/04/2009 with E47K or E47G
stabilizing mutations) at greater than 3:1 molar ratio for 2 hours at room temperature (RT). Samples were
deposited at ~10ug/mL on glow-discharged, carbon-coated 400 mesh copper grids (Electron Microscopy
Sciences, EMS) and stained with 2% w/v uranyl formate. Samples were imaged at 52,000x magnification,
120kV, on a Tecnai Spirit T12 microscope equipped with an Eagle CCD 4k camera (FEI) or 62,000
magnification, 200kV, on a Tecnai T20 microscope equipped with a CMOS 4k camera (TVIPS).
Micrographs were collected with Leginon, single particles were processed with Appion and Relion,
footprints were mapped with UCSF Chimera, and figures were made with UCSF Chimera (Lander et al.,
2009; Pettersen et al., 2004; Scheres, 2012; Suloway et al., 2005).

EMPEM

Human serum samples were heat-inactivated at 55°C for 30min before incubating on Capture Select IgG-
Fc (ms) Affinity Matrix (Fisher) to bind IgG at 4°C for 72 hours on a rotator. Samples with IgG bound to
resin were centrifuged at 4,000 rpm and supernatant was collected. IgG samples were washed 3 times
with PBS followed by centrifugation to remove supernatant. Samples were buffer exchanged into buffer
containing 100mM Tris, 2mM EDTA, and 10mM L-cysteine through centrifugation with Amicon filters, then
incubated with papain for 4 hours at 37°C shaking at 80 rpm. The digestion reactions were quenched with
50mM iodoacetamide, buffer exchanged to TBS, and separated by size-exclusion chromatography (SEC)
with a Superdex 200 increase 10/300 column (GE Healthcare). Fab and undigested IgG were collected
and concentrated and 500 ug Fab was complexed with 10 ug HA for 18 hours at room temperature.
Reactions were purified by SEC and immune complexes were collected and concentrated. Negative stain
EM grids were prepared as described above.

Membrane-bound HA and mAb staining

HEK293T cells were plated into a 6-well plate and transfected overnight with 0.2 ug of plasmid and 10
ug/ml PEI. After 12-16 hours, media was replaced with PFHM-II and cells were rested for 3 days.

Transfected cells were trypsinized, washed, and aliquoted. Cells were stained with 10 ug/ml of individual
mADbs for 30 minutes. Cells were washed and stained with anti-human IgG Fc-BV421 for 30 minutes. Cells

were washed 2 times and run on a BD LSRFortessa X-20. Data were analyzed using FlowJo v10.
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Single-cell RNA-seq and repertoire analysis
cH5/1* memory B cells (CD19*CD27"HA") were bulk sorted and partitioned into nanoliter-scale Gel Bead-
In-Emulsions (GEMs) to achieve single cell resolution using the 10x Genomics Chromium Controller and
according to the manufacturer’s instruction (10x Genomics). The sorted single cells were processed
according to 5’ gene expression and B cell Immunoglobulin (Ig) enrichment instruction to prepare the
libraries for sequencing. Libraries were sequenced using an lllumina HiSeq 4000 at Northwestern
University or an lllumina NextSeq 500 at the University of Chicago. Cellranger Single-Cell Software Suite
(version 3.0) was used to perform sample de-multiplexing, barcode processing, and single-cell 5° and
V(D)J counting, and Cellranger mkfastq was used to de-multiplex raw base call (BCL) files into sample-
specific fastq files. Subsequently, reads were aligned to the GRCh38 human genome. Cellranger counts
and Cellranger vdj package were used to identify gene expression and assemble V(D)J pairs of antibodies.
Single cell datasets were analyzed using Seurat 3 toolkit. We performed conventional pre-process
steps for all 22 subjects including cell quality control (QC), normalization, identification of highly variable
features, data scaling, and linear dimensional reduction. More specifically, we only kept cells with more
than 200 and less then 2500 detected genes for QC step. We normalized the RNA data using conventional
log normalization. We identified 2000 highly variable genes for each dataset and performed principle
component analysis (PCA) in linear dimensional reduction step. We then integrated all 22 single cell
datasets from vaccinated subjects to remove batch effects. In this analysis, we filtered our dataset and
only kept cells with both transcriptome and full length and paired heavy and light chain V(D)J sequences
(n=1955). From these cells, we identified a group of “VH1-69/Kappa” B cells that used the VH1-69 gene
and kappa light chain. We also identified a group of “anchor epitope” B cells by the following rules: 1) VH
locus: VH3-23, VH3-30, VH3-30-3, or VH-3-48; 2) VK locus: VK3-11 or VK3-15; 3) JK locus: JK4 or JK5;
4) K-CDR3 length equal to 10; 5) a "NWP" pattern in K-CDR3 peptide.
HA conservation modeling
To generate the group 1 HA conservation model, we selected one representative sequence for each group

1 HA subtype from FIuDB (https://www.fludb.org/; Table S5) according to a prior study (Burke and Smith,

2014). A multiple sequence alignment from these HA protein sequences was generated using MUSCLE
(Edgar, 2004) and the conservation of each residue was quantified using an entropy model (Crooks et al.,
2004). HA conservation was visualized on a H1 protein (PDB: 4JTV) using PyMOL (Schrodinger).
Statistical analysis

All statistical analyses were performed using Prism software (Graphpad Version 7.0) or R. Sample sizes
(n) for the number of mAbs tested are indicated in corresponding figures or in the center of pie graphs.
Number of biological repeats for experiments and specific tests for statistical significance used are
indicated in the corresponding figure legends. P values less than or equal to 0.05 were considered
significant. * P<0.05, ** P<0.01, ** P < 0.001, **** P < 0.0001.
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