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ABSTRACT
Motivation: Recent advancements in fluorescence in situ hybridization (FISH) techniques enable them
to concurrently obtain information on the location and gene expression of single cells. A key question in
the initial analysis of such spatial transcriptomics data is the assignment of cell types. To date, most
studies used methods that only rely on the expression levels of the genes in each cell for such assignments.
To fully utilize the data and to improve the ability to identify novel sub-types we developed a new
method, FICT, which combines both expression and neighborhood information when assigning cell types.

Results: FICT optimizes a probabilistic function that we formalize and for which we provide learning
and inference algorithms. We used FICT to analyze both simulated and several real spatial transcrip-
tomics data. As we show, FICT can accurately identify cell types and sub-types improving on expression
only methods and other methods proposed for clustering spatial transcriptomics data. Some of the
spatial sub-types identified by FICT provide novel hypotheses about the new functions for excitatory
and inhibitory neurons.

Availability: FICT is available at: https://github.com/haotianteng/FICT

Contact: zivbj@andrew.cmu.edu

1 Introduction

A number of different technologies have been recently developed for spatial transcriptomics.
In contrast to single cell RNA-Seq most spatial transcriptomics platforms rely on image
analysis by extending Fluorescence in situ hybridization (FISH) methods. This enables the
quantification of expression levels for several genes at a single cell resolution while still
recording the location of each of the cells in the sample. Examples of platforms for spatial
transcriptomics include MERFISH [1,2,3], seqFISH [4,5], seqFISH+ [6], osmFISH [7], and
the 3D transcriptomics record (STARmap [8]). Spatial transcriptomics techniques have now
been applied to study several different organs and tissues including lung [9], kidney [10] and
brain [5,6,7,8,11]. These studies have led to new insights about the set of cell types in these
regions, their location and their interactions [12,13,14]

A key question in the analysis of single cell expression data (both for scRNA-Seq and
for spatial transcriptomics) is the assignment of cell types. This is often the essential task
performed in any analysis of such data and downstream analysis often relies on these
assignments (for example, when studying cell-cell interactions [13,15]). Several packages have
been developed to aid in such clustering for single cell expression data [16]. These methods
often start by clustering cells (usually in low dimensional space). Next, clusters are assigned
to known or new cell types based on the expression of a subset of marker genes. Most spatial
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transcriptomics studies have also relied on similar methods for cell type assignment. For
example, in the osmFISH paper, hierarchical clustering of the gene expression profiles is
used to assign cell types [7]. For the MERFISH data, cell type assignment is performed by
Louvain community detection applied to a neighbourhood graph which is constructed using
low dimension representation of gene expression profiles [17,18].

While using gene expression levels often leads to successful assignments, relying on scRNA-
Seq cell assignment methods, for example the Seurat [19] or other clustering methods, for
spatial transcriptomics may not fully utilize the available location information. Specifically,
the set of neighboring cells which is known in spatial transcriptomics studies may provide
valuable information about the likely cell type of a specific cell. In many cases specific cell
types are known to reside together [20] or next to other types of cells [21]. Knowledge of the
cell types of neighboring cells may thus provide information on the correct assignment of the
cell itself. In other cases such knowledge can lead to the identification of new cell types based
on their neighborhood profiles. Recently a method termed smfishHmrf was developed to
utilize spatial information when assigning cell types [22]. smfishHmrf starts with an initial cell
type assignment using a a support vector machine classifier which is trained using annotated
expression data. Next, some assignments are updated based on a neighborhood affinity score
which takes into account the fraction of cells assigned to the same cluster. While smfishHmrf
utilizes some the spatial information, it only assumes that cells of the same type reside in
close proximity and does not look at the overall distribution of cell types in the neighborhood
of each cell. Thus, important information about the neighborhood of the cell may not be fully
utilized which can lead to decrease in assignment accuracy.

To enable the use of both expression and spatial information for cell type assignment we
developed FICT (FISH Iterative Cell Type assignment). FICT maximizes a joint probabilistic
likelihood function that takes into account both the expression of the genes in each cell and
the joint multi-variate spatial distribution of cell types. We discuss how to formulate the
likelihood function and present a method for learning and inference in this model.

We applied FICT to both simulated and real spatial transcriptomics datasets. As we show
using the simulation data FICT can correctly determine both expression and neighborhood
parameters for different cell types improving on methods that rely only on expression levels
or do not take into account the complete neighborhood of each cell. For the real data we
show that the models learned by FICT for different animals for the same tissue are in good
agreement, that it can indeed use the spatial information to correct errors resulting from noise
in the expression values and that it can be used to identify spatially different cell sub-types
even when their expression profiles are similar.

2 Methods

Our goal is to cluster spatial transcriptomics data using both gene expression levels and cell
location. A generative mixture model is defined firstly: each cell is assigned a cell type given
its neighborhood, and then the dimension reduced representation of gene expression levels are
drawn from cell-type specific distribution. We next learn the parameters of this generative
model by maximizing the joint likelihood of gene expression and cell location (Figure 1). The
cell type is then inferred by the posterior distribution of this generative model given the gene
expression level and cell location.
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Fig. 1: FICT pipeline. A reduced dimension expression profile is generated using a Denoising Autoencoder [23], and
an undirected graph is constrcuted according to the spatial locations information. Cells are initially clustered using
an expression only GMM. Next, the the model is iteratively optimized using an EM algorithm to improve the joint
likelihood of the expression and neighborhood models given both the gene expression representation and the spatial
graph. The final output is an assignment of cells to clusters, a Gaussian gene expression model and a Multinomial
neighborhood model for each class.

2.1 A generative model for spatial transcriptomics data

We assume the following generative model for a single cell transcriptomics dataset X = x(i)

consisting of the gene expression levels and a graph G representing location of the cells: (1)
A cell type is selected according to Pθ(Z) ∝

∏
i P (z

i)φθ(z
i, NG(z

i)), in which P (zi = k) = πk
is the prior distribution for cell type k of cell i and φθ is a score function with parameters θ
capturing the relationship between neighboring cells NG(c) in G. The neighbourhood cells
are the cells within a threshold distance of the current cell. (2) Next, expression levels X are
generated according to a cell type specific probability distribution P (x(i)|z(i)).

Given this model the likelihood of a dataset with a set of gene expression levels X and
cell locations (G) is:

P (X) =
∑
Z

(P (X|Z) · P (Z)) ∝
∑
z∈Z

(
∏
i

P (xi|zi)φθ(zi, NG(zi))) (1)

We use a multinomial distribution to model the relationship with neighborhood cells:

φθ(zi, NG(zi)) = P (yi|zi) (2)

Where yi is the neighborhood count of cell i, and P (yi|zi) follows multinomial distribution
M(θk). Combined, the overall likelihood function is:

P (X, Y ) =
D∏
i=1

∑
k

P (zi = k)P (xi|zi = k)P (yi|zi = k) (3)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.25.432887doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.25.432887
http://creativecommons.org/licenses/by-nc-nd/4.0/


Where X is the dimension reduced gene expression matrix and Y is the neighborhood cell
type count matrix for each cell, we also change the order of product and sum as y is now
treated as a property of the cells. We assume that P (xi|zi = k) follows a Gaussian distribution
and P (yi|zi = k) follows a multinomial distribution.

2.2 Inferring cell types (E-step)

We use an Expectation Maximization (EM) approach to learn the parameters of the model.
EM iterates between the expectation (E) and maximization (M) steps. Given the generative
model, to infer cell types we need to calculate the posterior probability P (z|x, y). However,
computing these assignments is challenging since changing the assignment of a specific cell
type (i.e. changes to Z’) also change the neighborhood count Y for other cells. Thus, we
perform an iterative procedure as follows: In the first phase Y is treated as a fixed vector
for each cell (similar to mean field approximation), and is used to calculate the posterior
distribution of cell i given the gene expression matrix xi and current neighborhood count yi
by setting:

P (zi = k|xi, yi) ∝ N (xi;µk,Σk)M(yi;θk) (4)

In which N (µk,Σk) is a multi-variate Gaussian distribution with mean µk and covariance
matrix Σk, andM(θk) is a Multinomial distribution with θk as the frequency parameter,
and we use ψ = (µ,Σ,θ) to denote all the model parameters. We next use the posterior
distribution calculations to update cell type assignments for a subset of the cells. Specifically,
we randomly select a set of non-adjacent cells in the adjacency graph G and update their
types by the posterior probability. Next, the neighborhood count matrix for all cells, Y, is
updated, and is used in the next iteration. We continue with this iterative process until
convergence. This method extends the well known Iterative Condition Modes (ICM) update
method [24] by updating multiple cells in each iteration instead of a single one. However,
since we only update non adjacent cells, those updated cells still have the same neighborhood
after each round of updates guaranteeing convergence due to the monotonical increase in
overall likelihood.

2.3 Learning model parameters (M-step)

For M-step, we have:

Q(ψ|ψold) =
D∑
i=1

∑
k

log[Pψ(x
i, yi, zi = k)] · Pψold

(zi = k|xi, yi) (5)

When conditioning on the cell type, the values observed for the gene expression xi and
neighborhood for a cell become independent. Thus, we can write:

Q(ψ|ψold) =
D∑
i=1

∑
k

log[Pψ(x
i|zi = k) · Pψ(yi|zi = k) · Pψ(zi = k)]

· Pψold
(zi = k|xi, yi)

(6)
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Pψold
(zi = k|xi, yi) =
Pψold

(xi|zi = k) · Pψold
(yi|zi = k) · Pψold

(zi = k)∑
zi Pψold

(xi|zi) · Pψold
(yi|zi) · Pψold

(zi)

(7)

So as mentioned above (Section 2.2), the posterior distribution is calculated using an
alternated ICM algorithm, in which P (xi|z = k) follows a multivariate Gaussian distribution
N (µk,Σk), and the neighborhood vector for each cell P (yi|z = k) follows a Multi-Nominal
distributionM(θk). We set P (yi|z = k) = n!

yi1!...y
i
K !
θ
yi1
k,1 · · · θ

yiK
k,K , where K is the number of cell

types, (θij) ∈ RK×K is the neighborhood frequency of cell type j given the current cell type i,
and is row-wise normalized so that ||θk||1 = 1, where θk is the kth row of θ. πk = Pθ(z

i = k)
is the prior distribution for cell types.

With Pφold(zi = k|xi, yi) = γik, then by maximizing the given Q function, we can obtain
the parameters:

µk =

∑
i γik · xi∑
i γik

, Σk =

∑
i γik · (xi − µk)(xi − µk)T∑

i γik
,

πk =

∑
i γik∑
i,k γik

, θk,j =

∑
i γik · yij∑
i,j γik · yij

(8)

The above likelihood function assumes equal weight for each term in the two types of
data (expression and neighborhood). However, there are often much more genes than cell
types which can lead to over reliance on the expression data. We use two ways to address this
problem, first our model is using the dimensional-reduced gene expression as input, instead of
the raw expression profile. But the dimension of this input can still be high, e.g. 20, compared
to the typical cell type number to be clustered, for example 7, thus then we include a weight
term that balances the contribution of the gene and spatial components, named power factor
(see section A1). And also during EM training, the neighborhood count is calculated in term
of the assigned probability (a soft update), while usual multinomial distribution is defined in
N, so we expand the scope of the multinomial distribution to R to address this. See Appendix
A2 for details.

2.4 Dimensionality reduction using denoising autoencoder

A dimension reduced representation of the original gene expression data is used as the input
to our model. While the original gene expression data usually does not follow a Gaussian
distribution, by using a denoising autoencoder we can transform the data to better fit such
model [23]. While we use a single layer linear neural network for the auto-encoder it is possible
to adapt the method to use multi-layered networks if the outcome does not fit the required
Guassian distribution.

2.5 Generating simulated data for testing the method

We tested our method on both real and simulated data. While it is not trivial to simulate
data for these experiments, simulation data provides an opportunity to test methods against
ground truth which is hard to do with real data.
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To obtain the simulated data we first generate a neighborhood graph, then generate a
cell-type assignment on the neighbourhood graph which gives the desired neighbourhood
frequency, and finally we sample expression data for each cell based on its type. See Appendix
A3 for detail.

2.6 A comparison to Hidden Markov Random Field

Our method is a special case of a Hidden Markov Random Field (HMRF) . Consider a Hidden
Markov Random Field where only length 2 clique (edges) are used. For any given cell i, we
have:

P (zi = k|N(zi)) ∝ exp
∑
l∈N(i)

∑
j

wk,jfj(z
l)

Where N(zi) are neighbors of cell i, W is K − by −K matrix where K is the number of cell
types, and fj(zl) is a pre-defined potential function on the edges. If we set fj(zl) = 1j(z

l)
the potential function becomes an indicator function (1 if cell l is of type j (zl = j) and 0
otherwise) and so we have

P (zi = k|N(zi)) ∝ exp(
∑
j

Ci
jwk,j)

=
∏
j

exp(wk,j)
Ci
j

=
∏
j

θ
Ci
j

k,j

Which is the Multinomial distribution given the neighborhood count for cell i, Ci
j . This is the

same as counting the number of cells of type j that are neighbors of cell i using the frequency
parameter θk,j = exp(wk,j) that we use.

3 Results

We developed a joint expression and location clustering method to infer cell types in spatial
transcriptomics studies. To test the method we used both simulated and real single cell spatial
transcriptomics data.

3.1 Evaluation using simulated data

While a number of spatial transcriptomics datasets exist, we do not have ground truth
information about cell types in these studies. Thus, we first tested our method using simulated
data where we can assign both expression and cell type and test if the method can correctly
recover the cell types. As noted in Methods, generating simulated data for such analysis is not
trivial since the data needs to satisfy both expression and location constraints. We developed
an iterative procedure for the required spatial distributions. We used these to generate 3
datasets with different neighbourhood configurations for 3 cell types. These configurations are
presented in Figure A1. We randomly sampled locations for 1,000 cells for each configuration
and have also sampled expression values for each cell according to the parameters for its type.
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We next tested FICT and compared it to four prior methods used to assign cell types in
spatial transcriptomics data. Three of these (GMM [25,26], scanpy [27] and Seurat [19,28])
only use expression data for clustering while the fourth, smfishHmrf combines gene expression
data with cell location and neighborhood information. However, unlike FICT smfishHmrf only
considers neighboring cells of the same type (similar to only manually setting the diagonal
values in the FICT cell neighborhood matrix and ignoring the off diagonal elements).

Results for all methods are presented in Figure 2. As can be seen, for all settings we tested
FICT significantly outperforms the other methods. Seurat, which relies on shared nearest
neighbor (SNN) [29] and Louvian for clustering [30] is the second most accurate method
though the difference between FICT and Seurat is significant (P value ranges from 9e−13 to
0.028 depending on the setup).

Fig. 2: Accuracy of five different clustering methods on simulated data. We compared FICT to three expression
only methods (Gaussian Mixture Models (GMM), Scanpy and Seurat) and to smfishHmrf on 3 simulation datasets
generated by using different neighbourhood frequencies (see Figure A1 for distributions used for each). Accuracy was
computed from 50 test runs on each dataset for each model. p value is calculated using t-test for paired samples.

3.2 Performance on the MERFISH dataset

We next tested FICT using real single cell spatial transcriptomics data. We first focused on
mouse hypothalamus data generated by the multiplexed error-robust fluorescence in situ
hybridization (MERFISH) method [11]. The MERFISH data profiles the expression of 258
genes in 480,000 cells from 11 animals (4 females and 7 males). Since there is no ground truth
for this data, we used a different approach to compare the different clustering methods. For
all gender pairs (i.e. 21 male pairs and 6 female pairs) we performed the following analysis.
Let A and B be a pair of animals from the same gender. We first train FICT on A and use
the parameters learned for the model trained on A to assign cells in B. We next learn a FICT
model for B. We then compare the Adjusted Rand Index (ARI) of the clustering results for
the two animals. Higher ARIs mean that the results are more consistent between animals
indicating better fit to the underlying biology. Note that this process is not symmetric and
so results for training on A and testing on B would be different from those trained on B and
tested on A.

Results for this comparison are presented in Figure 3 for both female and male animals.
Note that since both Seurat and scanpy are not generative methods the models they learn
on one dataset cannot be directly applied to another. Thus, for the real data we compared
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Fig. 3: Mean Adjusted Rand index (ARI) based on cross validation analysis of the MERFISH dataset. Results presented
for expression only GMM, smfishHmrf and FICT. Each entry (i,j) in the matrix represents the ARI of the two cluster
assignments (one learned on animal A and applied to animal B and the other learned directly on B). (A-C) Results
for the 7 Male animals (A) GMM, (B) smfishHmrf and (C) FICT. (D-F) Results for the 4 Females (D) GMM, (E)
smfishHmrf and (F) FICT.

FICT to smfishHmrf and GMM. Results show that for 32 of the 54 pairs (59%) FICT is more
consistent than GMM. The result for the larger dataset of male pairs is (29/42, 69%). The
improvement upon smfishHmrf is even larger than that and FICT is more consistent in 52 of
the 54 pairs (96.3%).

An example of the difference in assignments between expression only GMM clustering
and FICT is presented in Figure 4. As can be seen, the yellow cells (Ependymal cells) are
spatially clustered in the center of the hypothalamus tile profiled. However, due to small
variations in gene expression, GMM assigns some cells in that cluster as OD Immature cells.
In contrast FICT is able to correctly assign these cells as shown in the inset.

Sub-type clustering An important question in the analysis of brain single cell data is
the identification of new sub-types of various neuronal cells [31]. We thus examined the
assignments to see if FICT can identify new subtypes of neurons. For this, we focused on the
subset of excitatory neurons identified in the MERFISH dataset. FICT identified three sub-
types of cells that were all determined to be excitatory in the original analysis but displayed
different spatial patterns (Figure 5). To determine if the three sub-clusters are indeed different
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Fig. 4: FICT can correct expression noise. Cell type assignments using expression only GMM (left) and FICT (right).
Using the spatial information FICT correctly assigns Ependymal cells along the periventricular hypothalamic nucleus.
In contast, the GMM method mistakenly classified the cell as OD Immature Cell.

Fig. 5: Cell subtype clustering on MERFISH data from animal 1. We used smfishHmrf (A and D), expression only
GMM (B and E) and FICT (C and F) to sub-cluster excitatory neurons cells (A, B and C) and inhibitory neuron cells
(D, E and F). As can be seen, for both types of neurons FICT assignments are better spatially conserved creating a
central core for sub-cluster 2 surrounded by cells assigned to sub-cluster 0. In contrast, the expression only assignment
mixes cells from different sub-types much more. smfishHmrf with potts model only assigns affinity score between
the same cell types making it harder to infer more complex structures of synergistic activity. (E) DE genes for the
three FICT sub-clusters from the excitatory neurons and (F) inhibitory neurons. As can be seen, even though the
sub-clusters are overall similar in terms of their expression profiles, some genes can be identified for each of the
sub-clusters. (G) GO enrichment analysis identifies unique functions for each of the sub-clusters on excitatory neurons
and (H) inhibitory neurons.

we performed differential expression (DE) analysis for each of the sub-clusters. While, as
expected, their overall expression profiles are similar (leading to their similar assignment by
the expression only method) we were able to identify a number of distinct genes for each
of these sub-types using MAST [32]. We next performed GO enrichment analysis [33,34,35]
on the significant DE genes in each sub-clusters. Results are presented in Figure 5. As can
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be seen, some unique functional terms are associated with each of the three sub-clusters.
For example, the first sub-cluster (e0) seems to be mainly related to response to chemicals.
The second (e1) seems to be related to signaling and regulation of calcium homeostasis
while the third (e2) is linked to responses to activity changes and behavior. Thus, while all
share similar expression profiles and act as excitatory neurons, each of the sub-clusters may
have a further specific function as predicted by the spatial clustering. We performed similar
sub-clustering analysis for inhibitory neurons and obtained similar results both in terms of
the more coherent placing of cells from different sub-types and in terms of the unique genes
and functions assigned to each of the sub-types identified by FICT (Figure 5 C and D).

3.3 Performance on osmFISH and seqFISH

To demonstrate the generality of our method we further tested it on two other datasets
from two additional spatial transcriptomics platforms: osmFISH [7] and seqFISH [22]. The
osmFISH dataset profiled 6,470 cells in the mouse somatosensory cortex. The seqFISH dataset
profiled 1,597 cells in the mouse visual cortex. Since both datasets only profiled a single
animal we performed the cross validation by manually splitting each dataset into 4 smaller
regions with approximately the same number of cells. Results for these analyses are presented
in Figure A4. Given the small number of cells for each dataset we see a drop in performance
for all generative model methods. As the figure shows, smfishHmrf was unable to identify
more than a single cell type for many of the cross validation runs resulting in errors. As for
GMM and FICT while both were able to successfully assign cells in the cross validation
runs for the osmFISH and seqFISH datasets, results were not as good as the MERFISH
results presented above. Still, even though FICT fits more parameters than the expression
only model we observe comparable performance on these smaller datasets suggesting that
there is no downside to using the joint expression-spatial assignment.

4 Discussion

Spatial transcriptomics has emerged as a valuable tool for the analysis of single cell expression
data. Similar to scRNA-Seq this technology provides information on the expression of genes
at the single cell resolution. In addition, it also provides information on the location of each
of the cells and their spatial relationships which can help understand cell-cell interactions,
the organization of cells in specific regions and tissues and how changes in such organization
impact development and disease.

A key question in spatial transcriptomics analysis is the assignment of types to the cells
profiled. To date, most studies relied on the profiled expression levels for such assignment using
tools and techniques originally developed for the analysis of scRNA-Seq data. While such
methods work well, they do not fully utilize the information obtained in spatial transcriptomics
studies. Specifically, information about the location of cells and their neighbors is usually not
used in such assignments even though in several cases cell types are known to co-locate with
other cells from the same or different types. To enable the use of the spatial information in
cell assignments we developed FICT which uses an EM method to learn both expression and
spatial distribution models. We presented a likelihood optimization function and learning
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and inference methods for FICT and used it to assign cell types in both simulated and real
datasets.

As we have shown, for both simulated and large real datasets FICT improves on both,
gene expression only methods and methods that only use part of the spatial information when
assigning cell types. Since FICT estimates more parameters than expression only assignment
methods its performance suffers when applied to smaller datasets. Still, even for the smallest
datasets we tested on (seqFISH, which profiled only 1,500 cells) FICT performance was
comparable to expression only methods making it a reasonable alternative for such methods.
Since more recent studies often profile more cells, FICT is likely to generalize better to future
datasets.

In addition to improved accuracy FICT can also identify cell sub-types that are similar in
terms of their expression while differ in their spatial organization. As we have shown, FICT
divided the set of excitatory neuron cells into three sub-types based on other cells in their
neighborhood. Analysis of DE genes between these spatial clusters identified a number of
biological functions that differ between the clusters indicating that each sub-type may indeed
serve a different goal as predicted by FICT.

While FICT worked well for most of the datasets we tested on, there are still a number of
ways in which it can be improved. We would like to improve its run-time since it currently
takes one hour to perform the joint expression and spatial cell type assignment on a single
animal MERFISH dataset (∼100K cells). As we noted, parts of FICT learning resemble
HMRFs and so methods used to speed up HMRF inference including belief propagation can
be incorporated to further improve in FICT [36]. In addition, we would like to be able to use
cross validation to determine the correct number of sub-clusters to assign for each dataset
rather than setting this as a user defined input.

FICT is implemented in Python and both data and an open source version of the software
are available in https://github.com/haotianteng/FICT. Given the results presented in this
paper we hope that it can be used to improve the analysis of the increasing number of studies
that rely on spatial transcriptomics profiling.
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