

1 **Dual mechanisms of opioid-induced respiratory depression in the**
2 **inspiratory rhythm-generating network**

4 Nathan A Baertsch^{1,2,*}, Nicholas E Bush¹, Nicholas J Burgraff¹, and Jan-Marino Ramirez^{1,2,3}

6 ¹Center for Integrative Brain Research; Seattle Children's Research Institute; Seattle, WA, USA

7 ²Department of Pediatrics; University of Washington; Seattle, WA, USA

8 ³Department Neurological Surgery; University of Washington; Seattle, WA, USA

10 *** Corresponding Author and Lead Contact:**

11 Nathan Baertsch

12 nathan.baertsch@seattlechildrens.org

13 (218)349-6757

16 **Postal Address for all authors:**

17 1900 9th Ave.

18 JMB10

19 Seattle, WA 98101

22 **Author Contributions:** Conceptualization, NAB; Methodology, NAB, NEB; Investigation, NAB,
23 NEB, NJB; Formal Analysis, NAB, NJB; Writing—Original Draft, NAB; Writing—Review & Editing,
24 NAB, NEB, NJB, JMR; Funding Acquisition, NAB, JMR; Visualization, NAB, NEB; Supervision,
25 NAB, JMR.

26 **Declarations of Interest:** The authors declare no conflicts of interest.

28 **Abstract**

29 The analgesic utility of opioid-based drugs is limited by the life-threatening risk of respiratory
30 depression. Opioid-induced respiratory depression (OIRD), mediated by the μ -opioid receptor
31 (MOR), is characterized by a pronounced decrease in the frequency and regularity of the
32 inspiratory rhythm, which originates from the medullary preBötzinger Complex (preBötC). To
33 unravel the cellular- and network-level consequences of MOR activation in the preBötC, MOR-
34 expressing neurons were optogenetically identified and manipulated in transgenic mice *in vitro*
35 and *in vivo*. Based on these results, a model of OIRD was developed *in silico*. We conclude that
36 hyperpolarization of MOR-expressing preBötC neurons alone does not phenocopy OIRD.
37 Instead, the effects of MOR activation are twofold: 1) pre-inspiratory spiking is reduced and 2)
38 excitatory synaptic transmission is suppressed, thereby disrupting network-driven
39 rhythmogenesis. These dual mechanisms of opioid action act together to make the normally
40 robust inspiratory-rhythm-generating network particularly prone to collapse when challenged
41 with exogenous opioids.

42

43

44

45

46

47

48

49

50

51 **Introduction**

52 The neuronal control of breathing is highly vulnerable to exogenous opioid-based analgesics
53 and drugs of abuse. As a result, clinical and illicit use of opioids is associated with the life-
54 threatening, and often difficult to predict, risk for opioid-induced respiratory depression (OIRD)
55 (Overdyk et al., 2014, Gupta et al., 2018, Dahan et al., 2018). Yet, opioids are widely used due
56 to their powerful analgesic utility and their hedonic and addictive properties. In response to
57 overdoses, naloxone (Narcan) remains the gold standard for reversal of OIRD. But, naloxone
58 has limitations including a short half-life, loss of analgesia, rapid induction of withdrawal
59 symptoms, and reduced efficacy against opioids with high affinity for the MOR, such as
60 carfentanil and buprenorphine (Gal, 1989, Algera et al., 2019, Dahan et al., 2010, van Dorp et
61 al., 2006).

62 This highlights the need to expand the toolbox of strategies to protect against and
63 reverse OIRD while preserving the intended analgesic effects of opioids. Yet, to date, such
64 strategies are limited. One approach has focused on the development of biased MOR agonists
65 that limit activation of β -arrestin2-dependent signaling (Conibear and Kelly, 2019, Schmid et al.,
66 2017). However, a role of β -arrestin2 in mediating the respiratory side effects of opioids has not
67 been reproducible among laboratories (Kliewer et al., 2020, Kliewer et al., 2019), casting doubt
68 on the potential for biased agonists to mitigate OIRD. A second approach involves the use of
69 respiratory stimulants in combination with opioid medication as a compensatory strategy to
70 protect against OIRD (Algera et al., 2019, Manzke et al., 2003, Imam et al., 2020). Such
71 strategies have shown promise in animal models (Mosca et al., 2014, Kimura et al., 2015,
72 Guenther et al., 2010, Ren et al., 2009, Sun et al., 2019, Haw et al., 2016, Dai et al., 2017) and
73 in some human trials (Oertel et al., 2010, Persson et al., 1999) but not others (Lötsch et al.,
74 2005, Oertel et al., 2007). Optimization of this approach will require a detailed mechanistic
75 understanding of the physiological consequences of MOR activation in the respiratory network.

76 Thus, unravelling how opioids affect the respiratory control network represents a critical step
77 towards combating the mortality associated with the opioid health crisis.

78 In humans and mice, OIRD is characterized by a pronounced decrease in the frequency
79 and regularity of breaths (Bouillon et al., 2003, Ferguson and Drummond, 2006, Smart et al.,
80 2000). This is primarily due to longer and more irregular pauses between inspiratory efforts
81 (Drummond, 1983). Both the beneficial analgesic effects and the detrimental respiratory
82 consequences of opioids are dependent on the $G_{a_{i/o}}$ -coupled, μ -opioid receptor (MOR)
83 encoded by the *Oprm1* gene (Dahan et al., 2001, Sora et al., 1997). *Oprm1* is expressed widely
84 throughout the brain (Erbs et al., 2015) (Allen Brain Atlas), and multiple sites in the central and
85 peripheral nervous system are important for modulating the severity of OIRD (Montandon et al.,
86 2011, Kirby and McQueen, 1986, Prkic et al., 2012, Mustapic et al., 2010). Two brainstem sites
87 important for respiratory control – the parabrachial nucleus (PBN) and the preBötzinger complex
88 (preBötC) (Varga et al., 2020, Bachmutsky et al., 2020) are particularly important for
89 understanding OIRD, since localized genetic deletions of *Oprm1* in these sites abolishes OIRD.
90 The preBötC and PBN are bidirectionally connected (Yang and Feldman, 2018, Yang et al.,
91 2020) yet have distinct functional roles in the control of breathing (Baertsch et al., 2018,
92 Baertsch and Ramirez, 2019, Ramirez and Baertsch, 2018b). The preBötzinger Complex is an
93 autonomously rhythrogenic hub for respiratory control, critical for producing the inspiratory
94 rhythm per se (Del Negro et al., 2018, Smith et al., 1991a, Baertsch et al., 2018, Baertsch and
95 Ramirez, 2019, Ramirez and Baertsch, 2018b, Ramirez et al., 1998, Tan et al., 2008), whereas
96 the PBN is a powerful source of modulatory control, important for providing excitatory drive to
97 the respiratory network and regulating respiratory phase relationships (Molkov et al., 2013,
98 Levitt et al., 2015, Zuperku et al., 2017, Smith et al., 2013). Consequently, their respective roles
99 in OIRD may be similarly distinct.

100 Here, we dissect the network- and cellular- level mechanisms of OIRD within the
101 preBötC. The preBötC contains both excitatory and inhibitory neurons that interact to regulate
102 breathing frequency (Winter et al., 2009, Baertsch et al., 2018). However, inhibitory synaptic
103 transmission does not seem to play a significant role in OIRD (Bachmutsky et al., 2020, Gray et
104 al., 1999a). Instead, excitatory glutamatergic neurons are the critical substrate for both
105 rhythmogenesis and OIRD in the preBötC (Funk et al., 1993, Greer et al., 1991, Bachmutsky et
106 al., 2020, Sun et al., 2019). Collectively, glutamatergic neurons produce an inspiratory rhythm
107 with three distinct time-domains. Each respiratory cycle begins in a refractory phase, during
108 which excitability within the preBötC network is reduced and the rhythm is relatively insensitive
109 to perturbations (Baertsch et al., 2018, Kottick and Del Negro, 2015). The network then
110 transitions to a percolation phase during which excitability gradually builds, driven by intrinsic
111 membrane properties and synaptic excitation among recurrently connected neurons (Baertsch
112 and Ramirez, 2019, Kam et al., 2013b). The percolation phase ends when network excitability
113 becomes sufficiently high for interconnected preBötC neurons to produce a synchronized bout
114 of action potentials during the third phase - a network-wide inspiratory burst. Together, the
115 refractory and percolation phases define the time between inspiratory efforts, or inter-burst
116 interval (IBI), which is the primary determinant of breathing frequency and regularity. Within the
117 preBötC network, each neuron's firing pattern during the respiratory cycle, or "discharge
118 identity" is largely determined by its synaptic inputs and intrinsic excitability. As a result,
119 excitatory preBötC neurons are not functionally homogeneous (Ramirez and Baertsch, 2018a).
120 Indeed, only a subset of preBötC neurons participate in all three phases of the inspiratory
121 rhythm and are therefore considered particularly important mediators of rhythmogenesis (Kam
122 et al., 2013a, Kam et al., 2013b, Baertsch and Ramirez, 2019, Rubin et al., 2009). These
123 neurons, referred to as "pre-inspiratory neurons", are active during inspiratory bursts,
124 suppressed during the refractory phase, and produce spikes during the percolation phase with a
125 characteristic ramp in spike frequency (Baertsch and Ramirez, 2019, Baertsch et al., 2019). To

126 date, the effects of opioids on preBötC spiking activity and the three-phase inspiratory rhythm
127 have not been well defined, nor have the discharge identities of MOR-expressing preBötC
128 neurons.

129 To characterize mechanisms underlying OIRD in the preBötC, we combine *in vitro* and *in*
130 *vivo* electrophysiology and computational modelling approaches. Using optogenetic
131 identification and manipulation of *Oprm1* expressing neurons, we find that *Oprm1* is expressed
132 in ~50% of functionally identified preBötC neurons. In the context of OIRD, the activity of
133 *Oprm1*+ pre-inspiratory neurons is preferentially suppressed during the percolation phase.
134 However, mimicking this decrease in preBötC spiking is not sufficient to phenocopy OIRD.
135 Indeed, we find that, in addition to suppression of the number of spikes produced during the
136 percolation phase, excitatory pre-synaptic transmission from *Oprm1*+ neurons is also impaired
137 making the remaining spiking activity of these neurons less consequential for network function.
138 Based on these findings, we developed a computational model of the preBötC containing a
139 subpopulation of *Oprm1*+ neurons to isolate and compare the functional consequences of
140 membrane hyperpolarization with reduced pre-synaptic efficacy. Consistent with our
141 electrophysiology results, we find that OIRD is best modelled *in silico* when both mechanisms
142 occur in combination. We conclude that these dual mechanisms of opioid action in the preBötC
143 act together to make the inspiratory rhythm particularly vulnerable to exogenous opioids.

144

145 **Results**

146 ***Phenotypes of Oprm1+ preBötC neurons***

147 Neurons in the inspiratory rhythm-generating network are functionally heterogeneous; and the
148 role of any given neuron is determined, in part, by its spiking pattern or “discharge identity”
149 (Segers et al., 2012). The inspiratory network is primarily composed of neurons with four

150 discharge identities that sum to produce the rhythmic activity observed in integrated multi-unit
151 preBötC recordings: 1) *Pre-inspiratory neurons* with spiking during the inter-burst interval that
152 ramps up prior to a bout of action potentials during inspiratory bursts. 2) *Inspiratory neurons*
153 active only during inspiratory bursts. 3) A relatively small number of “*expiratory*” *neurons* (<15%,
154 (Baertsch et al., 2019, Harris et al., 2017)) that receive more inhibitory input than excitatory
155 input during bursts and only spike during the inter-burst interval; and 4) *tonic neurons* with
156 spiking that is not modulated by the inspiratory rhythm. To identify the direct targets of MOR
157 activation in the preBötC, we characterized the discharge identities of *Oprm1* expressing
158 neurons within the preBötC using an *Oprm1*^{CreGFP} mouse line (heretofore referred to as
159 *Oprm1*^{Cre}). Horizontal brainstem slices were prepared from *Oprm1*^{Cre}; *Rosa26*^{ChR2} and *Oprm1*^{Cre};
160 *Rosa26*^{ArchT} neonatal mice. Rhythmic integrated multi-unit activity was recorded simultaneously
161 with single-unit activity (n=223) from the contralateral preBötC. The spiking pattern of each unit
162 was referenced to the integrated multi-unit rhythm to determine its discharge identity, and the
163 unit was subsequently characterized optogenetically as *Oprm1*+ or *Oprm1*- based on responses
164 to light (Széll et al., 2020, Baertsch et al., 2018) (Figure 1A). The *Oprm1* gene was expressed in
165 52% of pre-inspiratory neurons, 42% of inspiratory neurons, 47% of expiratory neurons, and
166 60% of tonic neurons (Figure 1B, C). This leads to the first important conclusion that *Oprm1* is
167 not preferentially expressed among neurons with a particular discharge identity. Of 58 neurons
168 intracellularly labelled with AlexaFluor598 there was no spatial segregation of discharge
169 identities or *Oprm1* expression in the preBötC (Figure 1D, E). These results are consistent with
170 previous experiments that utilized *in situ* hybridization for *Oprm1* transcripts (Allen Brain Atlas;
171 Supplemental Figure 1) and imaging of fluorescently tagged MOR (Erbs et al., 2015) suggesting
172 that MOR-expressing neurons are numerous and broadly distributed in the preBötC region.
173
174 **MOR activation reduces spiking during the percolation phase of the inspiratory rhythm.**

175 Pre-inspiratory neurons are primarily excitatory (Baertsch et al., 2019) and play a critical role in
176 rhythmogenesis (Del Negro et al., 2018, Del Negro et al., 2011, Ashhad and Feldman, 2020),
177 frequency control, and regularity by participating in the percolation phase of the inspiratory
178 rhythm (Baertsch and Ramirez, 2019). A prevailing view suggests that excitatory synaptic
179 interactions among pre-inspiratory neurons within the recurrently connected preBötC network
180 play a critical role in the percolation phase and together with intrinsic membrane properties and
181 synaptic inhibition determine the resulting spiking activity. (Kam et al., 2013b, Del Negro and
182 Hayes, 2008, Del Negro et al., 2011, Baertsch and Ramirez, 2019). To differentiate between the
183 effects of MOR activation on the intrinsically- versus synaptically driven spiking activity in this
184 important subgroup of preBötC neurons, we examined changes in the spiking of *Oprm1+* and
185 *Oprm1-* pre-inspiratory neurons while increasing the concentration of the MOR agonist DAMGO
186 ([D-Ala2, N-MePhe4, Gly-ol]- enkephalin) before blocking excitatory synaptic transmission
187 (AMPA- and NMDA-dependent) and reversing MOR activation with Naloxone (5 μ M). The
188 blockade of excitatory synaptic inputs revealed that most pre-inspiratory neurons (n=15/20,
189 75%) continued to spike tonically i.e., were “intrinsically tonic”, while others (n=5/20, 25%)
190 became silent i.e., “intrinsically quiescent”, after blocking excitatory synaptic transmission. To
191 estimate the contribution of intrinsic activity to pre-inspiratory spiking, we normalized the spike
192 frequency during the inter-burst interval to the intrinsic spiking activity after blocking synaptic
193 transmission: intrinsically driven (normalized spike frequency ~ 1) versus synaptically driven
194 (normalized spike frequency > 1) for each individual neuron.

195 The intrinsic activity of each neuron was predictive of its response to DAMGO. DAMGO
196 reduced (-60 \pm 13% at 300 nM), but did not eliminate, spiking during the inter-burst interval in
197 *Oprm1+* intrinsically tonic, pre-inspiratory neurons (Figure 2A, C, D). In contrast, the pre-
198 inspiratory spiking of intrinsically tonic neurons that did not express MOR (*Oprm1-*) was much
199 less affected by DAMGO (-11 \pm 10% at 300nM) (Figure 2A, C, D). Among intrinsically quiescent

200 neurons, pre-inspiratory spiking was significantly suppressed by DAMGO in both *Oprm1+* and
201 *Oprm1-* neurons (-95±5% and -57±9%, respectively) (Figure 2B, E, F). Collectively, these
202 results suggest that MOR activation suppresses pre-inspiratory percolation activity within the
203 preBötC.

204

205 ***Effects of MOR activation on preBötC neurons during the burst phase of the inspiratory***
206 ***rhythm.***

207 Inspiratory preBötC neurons receive a large volley of concurrent excitatory synaptic drive from
208 multiple input neurons during each burst (Ashhad and Feldman, 2020). Single-unit recordings
209 from inspiratory neurons (n=10) that were exclusively active during inspiratory bursts were
210 intrinsically quiescent since they did not spike when deprived of excitatory synaptic input. The
211 spiking frequency of inspiratory neurons during bursts was reduced by DAMGO (-37±7%).
212 Similarly, spiking of pre-inspiratory neurons during bursts was reduced by DAMGO (-19±6%). In
213 contrast to the effects on percolation activity, MOR expression did not predict the changes on
214 burst activity, since DAMGO had similar effects on the activity of *Oprm1+* and *Oprm1-* neurons
215 during bursts (Figure 2G, H). Importantly, these results suggest that any direct effects of MOR
216 activation on the intrinsic excitability of *Oprm1+* neurons play a minimal role in the suppression
217 of spiking activity during inspiratory bursts.

218

219 ***Network-level effects of MOR activation in the preBötC.***

220 We also explored whether the effects of MOR activation at the cellular level are reflected in
221 corresponding changes at the population level. In horizontal brainstem slices, integrated multi-
222 unit spiking activity was recorded from the preBötC before and during increasing concentrations
223 of DAMGO from 50 to 300 nM. A representative experiment is shown in Figure 3A. As expected

224 (Gray et al., 1999a, Montandon et al., 2011, Wei and Ramirez, 2019), DAMGO caused a dose-
225 dependent decrease in the frequency of inspiratory bursts, $-26\pm3\%$, $-45\pm4\%$, $-63\pm4\%$ and $-$
226 $74\pm4\%$ change from baseline in 50, 100, 200, and 300 nM DAMGO, respectively (Figure 3A, C),
227 which did not differ between horizontal slices from heterozygous *Oprm1*^{Cre/+} and wild-type
228 controls (Supplemental Figure 2). The time between inspiratory bursts became more irregular
229 with DAMGO with inconsistent changes in burst-amplitude irregularity (Figure 3C). These
230 hallmarks of OIRD were accompanied by a decrease in the total amount of spiking activity
231 between inspiratory bursts, measured as the integrated inter-burst interval (IBI) amplitude
232 (Figure 3B, C). Integrated IBI spiking was reduced by $-12\pm2\%$, $-15\pm2\%$, $-17\pm2\%$ and $-18\pm2\%$
233 from baseline in 50, 100, 200, and 300 nM DAMGO, respectively (Figure 3C). Changes in burst
234 frequency shared a weak ($R^2=0.16$) but significant linear relationship with changes in IBI spiking
235 at 100 nM DAMGO ($p=0.03$) and became progressively less significant with 200 nM ($p=0.05$)
236 and 300 nM ($p=0.08$) DAMGO (Supplemental Figure 3). We also noted that many bursts failed
237 to fully form in DAMGO. These failed bursts were characterized by small-amplitude activity
238 occurring in only subsets of the population typically active during successful bursts (Figure 3D,
239 E; Supplemental Figure 4), potentially analogous to “burstlets” (Kam et al., 2013a, Kallurkar et
240 al., 2020). As a fraction of the total burst attempts, such burst failures became more prevalent
241 with increasing concentrations of DAMGO (Figure 3E) with $43\pm5\%$ of bursts attempts failing in
242 300 nM DAMGO.

243 We also examined the effects of systemic MOR activation on preBötC population activity
244 *in vivo*. In urethane-anesthetized, adult mice, rhythmic integrated-spiking activity was recorded
245 from the preBötC while simultaneously recording inspiratory motor output from the XII nerve
246 (Figure 3F). Example preBötC and XII activity under control conditions (baseline) and ~ 10 min
247 following intraperitoneal morphine (150 mg/kg) are shown in Figure 3G. Changes in total
248 integrated IBI spiking activity before and after morphine are exemplified in Figure 3H. Morphine

249 significantly reduced the total preBötC spiking activity during the IBI (IBI spiking) by $-17\pm5\%$.
250 Breathing frequency was also significantly decreased by morphine ($-31\pm6\%$) (Figure 3I);
251 however, changes in frequency were not related to changes in spiking activity during the IBI
252 (linear regression; $p>0.05$). At the level of the preBötC, changes in frequency were primarily due
253 to a $74\pm22\%$ increase in the duration of the IBI from 386 ± 84 ms to 629 ± 97 ms along with a
254 comparatively modest $16\pm3\%$ increase in the duration of preBötC bursts (TI) (258 ± 14 ms to
255 300 ± 19 ms) due to slower burst-rise times (Figure 3J), consistent with reports of reduced peak
256 inspiratory flow during OIRD (Ferguson and Drummond, 2006).

257

258 ***Hyperpolarization of Oprm1+ preBötC neurons only partially mimics OIRD.***

259 OIRD is often attributed to mechanisms leading to membrane hyperpolarization and reduced
260 spiking activity of respiratory neurons (Liang et al., 2018, Montandon et al., 2016, Montandon
261 and Slutsky, 2019, Montandon et al., 2011). However, we found that IBI spiking of *Oprm1+*
262 preBötC neurons was suppressed but not silenced during OIRD (see Figure 2). To address if
263 this decrease in spiking activity is sufficient to explain the pronounced decrease in inspiratory
264 frequency that occurs when the preBötC network is challenged with exogenous opioids, we
265 employed optogenetic tools and expressed ArchT, an enhanced light activated outward proton
266 pump, specifically within *Oprm1+* neurons. This approach allowed us to examine changes in
267 preBötC network function caused by hyperpolarization of *Oprm1+* neurons.

268 In horizontal brainstem slices from *Oprm1^{Cre}*; *Rosa26^{ArchT}* mice, rhythmic integrated
269 multi-unit preBötC activity was recorded during 10 s of continuous bilateral pulses of 598 nm
270 light at 2, 4, and 6 mW. Slices were then exposed to 50, 100, 200, or 300 nM DAMGO, and
271 light-pulse trials were repeated (Figure 4A-D). As expected, bilateral hyperpolarization of
272 *Oprm1+* preBötC neurons (Supplemental Figure 5) suppressed network spiking during the IBI (-

273 24±3% at 2 mW, -32±4% at 4 mW, and -40±4% at 6 mW). Photoinhibition also depressed the
274 frequency of inspiratory population bursts by -20±7% at 2 mW, -32±10% at 4 mW, and -49±8%
275 at 6 mW; and changes in burst frequency were proportional to the suppression of IBI spiking
276 (burst frequency/IBI spiking ratio: 1.06±0.1 at 2 mW, 1.02±0.16 at 4 mW, and 0.875±0.15 at 6
277 mW) (Figure 4C). Interestingly, subsequent application of DAMGO resulted in a comparatively
278 small change in IBI spiking (-13±2% at 50 nM, -17±3% at 100 nM, -17±3% at 200 nM, and -
279 20±4% at 300 nM) despite a more potent slowing of inspiratory burst frequency (-34±7% at 50
280 nM, -56±8% at 100 nM, -72±8% at 200 nM, and -83±5% at 300 nM). Indeed, in response to
281 DAMGO, changes in burst frequency were not proportional to changes in IBI spiking (0.74±0.09
282 at 50nM, 0.52±0.09 at 100nM, 0.33±0.10 at 200nM, and 0.225±0.08 at 300nM) (Figure 4C).
283 Moreover, at 2mW (but not 4 or 6mW) bilateral photoinhibition of *Oprm1*+ preBötC neurons
284 caused suppressed IBI spiking by an amount equivalent ($p=0.42$) to 300 nM DAMGO (Figure
285 4D), yet inspiratory burst frequency was reduced by only -20±7% during photoinhibititon
286 compared to -83±5% in 300 nM DAMGO (Figure 4D). In addition, consistent with our
287 observations from single-unit recordings (see Figure 2), MOR activation by DAMGO only
288 partially suppressed spiking activity of *Oprm1*+ preBötC neurons. Even after the inspiratory
289 population rhythm had been nearly silenced by 300 nM DAMGO, light-mediated
290 hyperpolarization of *Oprm1*+ preBötC neurons continued to reduce IBI spiking by -39±5% at 6
291 mW (Figure 4C). We conclude that MOR activation causes a significant frequency reduction that
292 is associated with only a small reduction in network spiking activity *in vitro*.

293 We also tested whether optogenetic suppression of preBötC spiking activity is sufficient
294 to mimic OIRD *in vivo*. PreBötC spiking activity and XII motor output were recorded
295 simultaneously from urethane-anesthetized adult *Oprm1*^{Cre}; *Rosa26*^{ArchT} mice during bilateral
296 photoinhibition of *Oprm1*+ preBötC neurons (Figure 4E). A representative experiment is shown
297 in Figure 4F. We found that 6 mW photoinhibition of *Oprm1*+ preBötC neurons was sufficient to

298 suppress IBI spiking by $-20\pm5\%$, an amount similar ($p=0.72$) to changes in IBI spiking induced
299 by morphine administration (Figure 4I). To further examine the cellular consequences of
300 photoinhibition, we recorded single preBötC units *in vivo* during 6-mW light pulses. We found
301 that photoinhibition reduced, but did not eliminate, spiking from most preBötC neurons (Figure
302 4H). However, consistent with our findings *in vitro*, photoinhibition of *Oprm1*⁺ preBötC neurons
303 did not phenocopy OIRD because breathing frequency was unaffected ($-1\pm5\%$ change). Indeed,
304 changes in breathing frequency and the ratio of burst frequency/IBI spiking induced by morphine
305 administration were significantly different than changes observed during photoinhibition of
306 *Oprm1*⁺ preBötC neurons (Figure 4I). Taken together, these results suggest that
307 hyperpolarization and reduced spiking of *Oprm1*⁺ preBötC neurons cannot fully account for
308 OIRD *in vitro* and seems to be even less consequential for OIRD *in vivo*.

309

310 ***Pre-synaptic drive from Oprm1+ preBötC neurons is reduced by MOR activation.***

311 Based on these observations, we wondered what mechanisms may account for the
312 disproportionate frequency effects of exogenous opioids on preBötC rhythmogenesis relative to
313 their effects on the spiking activity of preBötC neurons. The frequency of miniature EPSCs
314 recorded from individual preBötC neurons is reduced by DAMGO (Wei and Ramirez, 2019),
315 suggesting that suppression of synaptic transmission within the preBötC network may contribute
316 to OIRD. To further test this hypothesis, we examined how MOR activation affects evoked
317 EPSPs driven specifically by *Oprm1*⁺ neurons. We first determined the response characteristics
318 of channelrhodopsin2 expressing *Oprm1*⁺ preBötC neurons when directly activated by brief light
319 pulses (10 ms, 0.75 mW, ~50 trials for each neuron). All *Oprm1*⁺ neurons reliably generated a
320 spike (1.13 ± 0.08 spikes/stimulation) with a latency of 9.4 ± 0.6 ms that was consistent among
321 stimulus trials (SD of latency: 1.42 ± 0.22) (Figure 5A, B, C) (Széll et al., 2020). In contrast, only 7
322 of 16 (44%) *Oprm1*⁻ neurons produced spikes in response to light pulses. When compared to

323 *Oprm1+* neurons, the spikes generated by *Oprm1-* neurons were unreliable (0.24 ± 0.09
324 spikes/stimulation) with a longer latency from light onset (19.2 ± 1.6 ms) and exhibited more jitter
325 from trial to trial (SD of latency: 5.8 ± 1.1).

326 We tested whether activation of *Oprm1+* neurons would produce corresponding EPSPs
327 in contralateral preBötC neurons via commissural projections, and whether these excitatory
328 interactions are inhibited by MOR activation. Membrane potential was recorded from inspiratory
329 preBötC neurons in whole-cell configuration while delivering light pulses to the contralateral
330 preBötC (Figure 5D). Neurons that received excitatory synaptic input from contralateral *Oprm1+*
331 neurons (n=6 of 30 recorded neurons) were then selected based on the presence of
332 consistently evoked EPSPs following the onset of each light pulse. For each of these *Oprm1+*
333 (n=3) and *Oprm1-* (n=3) neurons, evoked EPSPs were recorded during 50-100 stimulus trials
334 under baseline conditions. Stimulus trials were then repeated in 50 nM and 300 nM DAMGO. In
335 some neurons, a hyperpolarizing holding current was applied to maintain V_m below spiking
336 threshold throughout the experiment. The amplitude of EPSPs evoked by activation of
337 contralateral *Oprm1+* neurons was reduced by DAMGO ($-20\pm7\%$ and $-49\pm12\%$ in 50 nM and
338 300 nM DAMGO, respectively) (Figure 5E). Notably, evoked EPSP amplitude was similarly
339 reduced in *Oprm1+* and *Oprm1-* neurons ($p=0.6$). Collectively, these data indicate that MOR-
340 expressing neurons have commissural projections, and MOR activation suppresses excitatory
341 synaptic transmission from *Oprm1+* neurons to their postsynaptic targets.

342

343 ***MOR activation limits the ability of *Oprm1+* preBötC neurons to drive the inspiratory
344 rhythm.***

345 To test for evidence of impaired synaptic transmission at the population-level, integrated multi-
346 unit preBötC activity was recorded during a strong (0.75 mW) sustained (10 s) photoactivation

347 of contralateral *Oprm1*+ neurons under baseline conditions and in 300 nM DAMGO
348 (Supplemental Figure 6A). At baseline, photoactivation of *Oprm1*+ neurons (Supplemental
349 Figure 5) caused a 29±6% increase in the total integrated spiking activity in the contralateral
350 preBötC; however, this effect was significantly reduced to 5±2% in the presence of DAMGO
351 (Supplemental Figure 6B). The ability of commissural *Oprm1*+ neurons to drive an increase in
352 inspiratory burst frequency was also reduced by DAMGO (Supplemental Figure 6C). Similar
353 results were observed during bilateral photoactivation *Oprm1*+ preBötC neurons with 20-s
354 continuous light pulses (3-5 trials per light power) (Figure 6A, B). Under baseline conditions,
355 light stimulation produced a robust increase in the frequency of inspiratory bursts (53±6% at
356 0.05 mW, 99±11% at 0.15 mW, and 131±15% at 0.25 mW) (Figure 6C, D). *Oprm1*+ neuron
357 stimulation also increased network spiking during the IBI (35±4% at 0.05 mW, 81±11% at 0.15
358 mW, and 95±13% at 0.25 mW). Like the effects of *Oprm1*+ neuron hyperpolarization (see
359 Figure 4), changes in inspiratory burst frequency were proportional to changes in IBI spiking
360 activity (burst frequency/IBI spiking ratio: 1.13±0.05 at 0.05 mW, 1.12±0.07 at 0.15 mW, and
361 1.21±0.08 at 0.25 mW) (Figure 6C, D). Light pulses were repeated in the presence of 300 nM
362 DAMGO to test how MOR activation may alter the ability of *Oprm1*+ neuron depolarization to
363 regulate network function. In 300 nM DAMGO, inspiratory burst frequency was reduced to
364 37±6% of baseline levels. Burst frequency could be partially restored by depolarization of
365 *Oprm1*+ preBötC neurons to 61±6%, 87±8%, and 95±9% of baseline levels by 0.05, 0.15, and
366 0.25 mW, respectively (Figure 6D). Thus, *Oprm1*+ neurons remain functionally integrated within
367 the preBötC network during OIRD. However, the relationship between changes in burst
368 frequency and depolarization of *Oprm1*+ neurons, quantified as a slope (Hz/mW), was reduced
369 by DAMGO (0.44±0.05 Hz/mW at baseline vs. 0.21±0.02 Hz/mW in DAMGO; p=0.0004) (Figure
370 6E). In contrast, following MOR activation, changes in the amount of network-spiking activity
371 elicited by *Oprm1*+ neuron depolarization (17±12% at 0.05 mW, 57±12% at 0.15 mW, and
372 77±15% at 0.25 mW) were not different from baseline conditions. Indeed, DAMGO did not alter

373 the relationship between changes in network spiking and depolarization of *Oprm1*⁺ neurons
374 (Slope: 1.32±0.19 IBI spiking/mW at baseline and 1.23±0.15 IBI spiking/mW in 300 nM
375 DAMGO) (Figure 6E), suggesting the ability of *Oprm1*⁺ preBötC neurons to spike when
376 depolarized is not impaired by pharmacological MOR activation. The relationship between
377 changes in network spiking and inspiratory frequency remained proportional in DAMGO (burst
378 frequency/IBI spiking ratio: 0.61±0.13 at 0.05 mW 0.59±0.07 at 0.15 mW 0.57±0.06 at 0.25 mW)
379 (Figure 6D). However, the relationship was shifted such that larger changes in spiking activity
380 were needed to produce the same change in inspiratory burst frequency. For example, although
381 depolarization of *Oprm1*⁺ preBötC neurons could restore inspiratory burst frequency to ~95% of
382 baseline at the highest light power tested, this required an ~80% increase in network spiking
383 above baseline levels. Consistent with these results in brainstems slices, we found that bilateral
384 photoactivation of *Oprm1*⁺ preBötC neurons *in vivo* increased IBI spiking (Figure 6F, G, H) and
385 produced a light power-dependent increase in breathing frequency (14±7% at 0.05 mW, 29±8%
386 at 0.15 mW, and 39±8% at 0.25 mW). Following morphine administration (150 mg/kg *i.p.*),
387 photoactivation of *Oprm1*⁺ preBötC neurons continued to increase breathing frequency (Figure
388 6I, J), but to a lesser extent and with less light power-dependence (0.53±0.1 Hz/mW at baseline
389 vs. 0.18±0.05 Hz/mW in DAMGO) (Figure 6J, K). Collectively, these data suggest that MOR
390 activation causes the spiking activity of *Oprm1*⁺ preBötC neurons to become less consequential
391 for preBötC network function.

392

393 ***Modelling the functional consequences of preBötC MOR activation in silico.***

394 Based on the experimental results *in vitro* and *in vivo* described above, we constructed a
395 computational network *in silico* to model the effects of MOR activation on preBötC
396 rhythmogenesis. Our model network, based on elements from prior preBötC computational
397 studies (Butera et al., 1999a, Butera et al., 1999b, Park and Rubin, 2013, Harris et al., 2017),

398 contains 300 total model neurons, 80% designated as excitatory and 20% inhibitory, connected
399 randomly with an average of 6 connections/neuron. The intrinsic spiking activity (i.e., without
400 synaptic interactions) of the model neurons was set such that 65% were quiescent (Q) and 35%
401 exhibited tonic spiking (T). Specific conductance parameters for each model neuron type are
402 summarized in Supplementary Table 1 and described in Methods. Based on our optogenetic-
403 tagging experiments *in vitro* (see Figure 1), we introduced the dynamic parameters I_{opioid} and
404 $\text{syn}_{\text{opioid}}$ to a subpopulation of *Oprm1+* neurons, encompassing 50% of all excitatory model
405 neurons. I_{opioid} introduces a hyperpolarizing current to the subpopulation of *Oprm1+* model
406 neurons (Figure 7B), whereas $\text{syn}_{\text{opioid}}$ reduces the strength of synaptic output (i.e., pre-
407 synaptic) from *Oprm1+* neurons. With these parameters set to 0 (i.e., under control conditions),
408 the model preBötC network produced robust rhythmic bursting activity like preBötC rhythms *in*
409 *vitro* (Figure 7C).

410 To test the functional role of the modelled *Oprm1+* subpopulation, *Oprm1+* neurons
411 were removed from the rhythmogenic process by either 1) increasing I_{opioid} such that spikes
412 were no longer generated by *Oprm1+* neurons, or 2) increasing $\text{syn}_{\text{opioid}}$ such that the spikes
413 produced by *Oprm1+* neurons were inconsequential for their postsynaptic targets
414 (Supplemental Figure 7). Consistent with the critical role of *Oprm1+* neurons for preBötC
415 rhythmogenesis *in vitro* (Bachmutsky et al., 2020, Gray et al., 1999a, Montandon et al., 2011,
416 Wei and Ramirez, 2019, Mellen et al., 2003), both methods of functionally removing the
417 modelled *Oprm1+* subpopulation effectively silenced the network rhythm. It is noteworthy,
418 however, that hyperpolarizing *Oprm1+* model neurons vs. blocking their synaptic output had
419 distinct effects on spiking activity generated by the network, reminiscent of the differential
420 effects on network spiking we observed during optogenetic hyperpolarization of *Oprm1+*
421 neurons vs. MOR activation (see Figure 4).

422 We utilized our computational model network to dissociate the functional consequences
423 of the intrinsic vs. synaptic effects of preBötC MOR activation by manipulating I_{opioid} and $\text{syn}_{\text{opioid}}$
424 independently or in combination (Figure 7D; Supplemental Figure 8). Each combination of I_{opioid}
425 and $\text{syn}_{\text{opioid}}$ was repeated over $n=8$ unique synaptic connectivity patterns. I_{opioid} was varied from
426 0pA to 6pA, which was more than sufficient to strongly suppress the IBI spiking of intrinsically
427 tonic (T) *Oprm1*⁺ model neurons (Supplemental Figure 8), consistent with the effects of 300 nM
428 DAMGO *in vitro* (see Figure 2). $\text{Syn}_{\text{opioid}}$ was varied from 0 to 0.6 (i.e. synaptic strength=100% to
429 40% of baseline), since this value range was sufficient to account for our *in vitro* data
430 demonstrating that 300 nM DAMGO suppresses the amplitude of EPSPs driven by *Oprm1*⁺
431 neurons by ~50% (see Figure 5D,E). When varying I_{opioid} and $\text{syn}_{\text{opioid}}$ independently, we found
432 that neither parameter reliably reproduced the effects of MOR activation in the preBötC. Indeed,
433 as I_{opioid} was increased, burst frequency was only moderately reduced. As synaptic efficacy
434 decreased, burst amplitude was reduced with inconsistent effects on burst frequency and
435 irregularity. In contrast, manipulation of I_{opioid} and $\text{syn}_{\text{opioid}}$ in combination had consequences for
436 the model network rhythm that were surprisingly like the effects of MOR activation in the
437 preBötC (Figure 7C, D). Frequency was reduced, IBI irregularity was increased, and periodic
438 burst failures became apparent (Figure 7C). The model network responded similarly to
439 simulated MOR activation with synaptic inhibition blocked (Figure 7C, D), consistent with
440 experimental observations suggesting that inhibitory mechanisms do not play a significant role
441 in producing OIRD (Bachmutsky et al., 2020, Gray et al., 1999a). These network-level effects of
442 simulated MOR activation were associated with changes in the spiking activity of model neurons
443 that were also consistent with our experimental results. Specifically, changes in spiking activity
444 occurred primarily during the inter-burst interval, due to a preferential suppression of spiking
445 among *Oprm1*⁺ vs. *Oprm1*⁻ intrinsically tonic (T) neurons (Figure 7E, F), whereas spiking during
446 inspiratory bursts was reduced similarly among *Oprm1*⁺ and *Oprm1*⁻ model neurons (Figure
447 7G). These results *in silico* support important, yet interdependent, roles for both intrinsic and

448 synaptic mechanisms underlying MOR-mediated suppression of rhythmogenesis in the
449 preBötC.

450

451 **Discussion**

452 OIRD is a life threatening consequence of clinical and illicit opioid use that stems from the high
453 sensitivity of the respiratory control network to MOR activation. Developing a detailed
454 mechanistic understanding of how opioids disturb rhythmogenesis at the cellular and network
455 level will help facilitate the development of new strategies to protect against and reverse OIRD.
456 In this study, we show that MOR activation among a subset of *Oprm1*+ neurons reduces the
457 number of spikes, while also impairing the ability of each spike to drive synaptic transmission,
458 thereby functionally dis-integrating *Oprm1*+ neurons from the recurrently connected preBötC
459 network. We propose that these dual consequences of MOR activation in the preBötC
460 undermine the generally robust nature of the respiratory rhythm, making it particularly
461 vulnerable to exogenous opioids.

462 Breathing must be integrated with complex volitional and reflexive behaviors including
463 vocalization, feeding, sensory exploration, and exercise. As such, the inspiratory-rhythm-
464 generating network must be assembled in a way that allows it to be extremely flexible yet
465 reliable in order to reconcile these complex behaviors with the inexorable physiological
466 requirement for gas exchange. At the core of this network, is the preBötC (Baertsch et al., 2019,
467 Smith et al., 1991b). The preBötC contains an intermingled population of neurons with
468 heterogeneous gene expression and connectomes that interact to produce distinct firing
469 phenotypes or “discharge identities” (Segers et al., 2012, Lalley and Mifflin, 2017, Baertsch et
470 al., 2018). Collectively, this spiking activity results in a rhythmogenic process that can be divided
471 into three functionally distinct phases: a refractory phase, a percolation phase, and a burst
472 phase. Each phase of the inspiratory rhythm can be differentially regulated by neuromodulators

473 (Baertsch and Ramirez, 2019) or synaptic inputs (Zuperku et al., 2019) to drive dynamic
474 changes in the frequency and regularity of inspiration. For example, the excitatory
475 neuromodulator and potent respiratory stimulant, substance P (SP), specifically affects the
476 percolation phase of the rhythm by increasing the spiking activity of pre-inspiratory neurons
477 between, but not during, bursts. This phase-specific change in spiking activity reduces the time
478 and variability of the IBI, leading to a faster and more regular inspiratory rhythm (Baertsch and
479 Ramirez, 2019).

480 Here we explored this concept in the context of OIRD. Based on single-unit recordings,
481 we find that ~50% of functionally identified preBötC neurons express the *Oprm1* gene,
482 consistent with expression patterns of *Oprm1* determined by ISH (Allen Brain Atlas;
483 Supplemental Figure 1) and transgenic mice with a fluorescent reporter fused to the MOR (Erbs
484 et al., 2015). Our single-unit recordings also indicate that *Oprm1* expression is evenly
485 distributed among preBötC neuron discharge identities, including putatively rhythmogenic pre-
486 inspiratory neurons (Ashhad and Feldman, 2020, Del Negro et al., 2010, Kam et al., 2013a).
487 Indeed, *Oprm1*-expressing neurons are critical for preBötC rhythmogenesis since
488 pharmacological MOR activation in this isolated network can cause cessation of the rhythm
489 (Bachmutsky et al., 2020, Gray et al., 1999a, Montandon et al., 2011, Wei and Ramirez, 2019,
490 Mellen et al., 2003). Perhaps surprisingly, our data indicate that opioid concentrations that are
491 sufficient to induce severe OIRD did not silence *Oprm1*+ preBötC neurons but reduced spiking
492 activity of pre-inspiratory neurons preferentially during the period between inspirations. These
493 opioid-induced changes in spiking activity were related to each individual neuron's intrinsic
494 activity when deprived of synaptic inputs. Surprisingly, most pre-inspiratory neurons intrinsically
495 produced tonic spiking activity in the absence of excitatory synaptic input. This is notable
496 because it suggests that for these neurons the pre-inspiratory ramp pattern is primarily driven by
497 recovery from intrinsic refractory properties (Baertsch et al., 2018, Krey et al., 2010) rather than

498 mechanisms of recurrent synaptic excitation. Consistent with the pre-inspiratory spiking activity
499 of these neurons being driven by intrinsic mechanisms, we found that MOR activation had a
500 much greater effect on pre-inspiratory spiking of *Oprm1+* vs *Oprm1-* intrinsically tonic neurons
501 (Figure 2D). In contrast, among intrinsically quiescent neurons where excitatory synaptic input is
502 the primary driver of pre-inspiratory spiking, MOR activation produced a substantial suppression
503 of pre-inspiratory spiking regardless of *Oprm1* expression (Figure 2F). Thus, OIRD involves
504 reduced spiking during the percolation phase due, in part, to suppression of intrinsically driven
505 pre-inspiratory spiking of *Oprm1+* neurons and de-recruitment of neurons with synaptically
506 driven, pre-inspiratory spiking activity. Thus, we predict that opioid-induced suppression of
507 preBötC activity during the percolation phase underlies the prolonged and irregular durations
508 between inspiratory efforts that are characteristic of OIRD in both mice and humans (Walker et
509 al., 2007, Wu et al., 2020, Varga et al., 2020).

510 These effects on preBötC spiking activity are largely opposite to those produced by the
511 respiratory stimulant SP (Baertsch and Ramirez, 2019) and, interestingly, MOR activation can
512 inhibit the release of SP in the spinal cord (Chen et al., 2018). Yet, SP only partially reverses
513 OIRD in brainstem slices (Sun et al., 2019). The preferential suppression of intrinsically driven
514 IBI spiking we observed among *Oprm1+* pre-inspiratory neurons (Figure 2) is consistent with
515 opioids causing hyperpolarization of MOR-expressing neurons (Gray et al., 1999b, Montandon
516 et al., 2011). However, mimicking changes in preBötC spiking activity during OIRD via
517 hyperpolarization of *Oprm1+* preBötC neurons causes only a moderate suppression of the
518 inspiratory rhythm *in vitro* and is even less consequential *in vivo* (Figure 4), suggesting that
519 additional mechanisms play an important role (Ren et al., 2019, Wei and Ramirez, 2019, Akins
520 and McCleskey, 1993). Indeed, we find the effects of exogenous opioids in the preBötC go
521 beyond changes in spiking activity. MOR activation also weakened excitatory synaptic
522 connections (Figure 5D, E), like effects on spinal nociceptive pre-synaptic terminals (Corder et

523 al., 2017). As a result, the remaining spiking activity of *Oprm1*+ preBötC neurons becomes less
524 consequential for network function (Figure 6). Thus, considering the recurrent connectivity within
525 the preBötC (Guerrier et al., 2015, Rubin et al., 2009, Yang and Feldman, 2018, Yang et al.,
526 2020), it is not surprising that the suppressive effect of opioids on synaptically driven pre-
527 inspiratory spiking is not specific to MOR-expressing preBötC neurons (Figure 2E, 5E).
528 Importantly, the efficacy of spiking activity could not be restored by depolarizing *Oprm1*+

529 preBötC neurons, suggesting the pre-synaptic effect of MOR activation in the preBötC is
530 independent from changes in membrane potential. These results help explain mechanistically
531 the effectiveness of ampakines for reversing OIRD (Ren et al., 2009, Ren et al., 2015, Lorier et
532 al., 2010, Greer and Ren, 2009), because potentiation of post-synaptic AMPAR currents could
533 compensate for opioid-induced impairments in excitatory pre-synaptic transmission. However,
534 ampakine treatment would not be expected to reverse the intrinsic hyperpolarizing effect of
535 opioids on *Oprm1*+ preBötC neurons, which could underlie the limitations for ampakine-
536 mediated prevention of OIRD seen clinically (van der Schier et al., 2014, Oertel et al., 2010).
537 Thus, combination therapies that help the inspiratory rhythm generating network compensate for
538 both the intrinsic and synaptic consequences of MOR activation in the preBötC may prove to be
539 a more effective strategy for the prevention and reversal of OIRD without affecting analgesia.

540 MOR activation also caused a moderate reduction in spiking activity during inspiratory
541 bursts. Because preBötC neurons receive strong synchronized excitatory synaptic input during
542 inspiratory bursts (Ashhad and Feldman, 2020), we suspect that the reduced spike frequency
543 during bursts is primarily due to the suppressive effect of opioids on pre-synaptic transmission
544 (Figure 5D, E). Indeed, spiking of *Oprm1*+ and *Opmr1*- neurons during inspiration was similarly
545 reduced by DAMGO (Figure 2G, H), suggesting that direct effects of MOR activation on the
546 intrinsic excitability of *Oprm1*+ neurons plays a minimal role. Suppressed spiking of single
547 preBötC neurons during inspiratory bursts due to impaired synaptic communication may also

548 contribute to changes in the rate of burst onset observed at the network-level following MOR
549 activation *in vivo* (Figure 3J) (Ferguson and Drummond, 2006) and/or the higher proportion of
550 failed bursts observed *in vitro* (Figure 3D,E). As observed following chronic exposure to
551 intermittent hypoxia (CIH), weakened preBötC activity during the burst phase can lead to
552 periodic and “all or none” type failures of inspiratory drive to be transmitted to the XII motor pool
553 (Garcia et al., 2019, Garcia et al., 2017, Garcia et al., 2016). Indeed, MOR activation reduces
554 inspiratory synaptic drive to XII motor neurons without changing their membrane input
555 resistance and this effect is reversed by ampakines (Lorier et al., 2010), consistent with
556 impaired pre-synaptic transmission in *Oprm1*+ preBötC neurons (Figure 5D, E). Because XII
557 output is important for maintaining upper airway patency, this may have important implications
558 in the context of sleep apnea, which is highly prevalent among opioid users (Mogri et al., 2009,
559 Rose et al., 2014, Walker et al., 2007). Thus, we speculate that the risk of OIRD is amplified by
560 a dangerous feed-forward process that arises due to the synergy between opioids, sleep apnea,
561 and CIH (Lam et al., 2016, Overdyk et al., 2014).

562 Our collective results indicate that only ~50% of preBötC neurons express the *Oprm1*
563 gene and are therefore able to play a direct role in OIRD. Yet, respiratory rhythmogenesis is
564 effectively inhibited, because opioids act with a “double-edged sword” to functionally remove
565 *Oprm1* neurons from the preBötC network. By simultaneously reducing intrinsic excitability and
566 impairing excitatory synaptic communication, exogenous opioids effectively disable the normally
567 robust inspiratory network, leading to long and variable pauses between breaths and ultimately
568 cessation of rhythmogenesis altogether. Thus, interesting, yet unresolved, questions are: Why
569 do these critical rhythm generating neurons express the MOR? Are there circumstances when
570 the heightened opioid sensitivity of the preBötC may provide an evolutionary advantage? And
571 how and when might endogenous opioid signaling play important functional roles in the
572 preBötC? Addressing these important questions may reveal naturally occurring mechanisms or

573 neuromodulatory states that protect this vital respiratory network. Such insights will be a critical
574 next step in the development of novel strategies to protect against and reverse OIRD.

575

576 **Competing Interests**

577 The authors declare no conflicts of interest financial or otherwise.

578

579 **Acknowledgments**

580 We thank Dr. Richard Palmiter and his lab for the development and generous donation of the
581 *Oprm1*^{Cre:GFP} mouse line, Dr. Aguan Wei for helpful edits on the manuscript, and the National
582 Heart, Lung, and Blood Institute for funding this work: K99HL145004 (NAB), R01HL144801
583 (JMR), and F32HL154558 (NJB).

584

585

586

587

588

589

590

591

592

593

594

595 **References**

596 AKINS, P. T. & MCCLESKEY, E. W. 1993. Characterization of potassium currents in adult rat
597 sensory neurons and modulation by opioids and cyclic AMP. *Neuroscience*, 56, 759-69.

598 ALGERA, M. H., KAMP, J., VAN DER SCHRIER, R., VAN VELZEN, M., NIESTERS, M.,
599 AARTS, L., DAHAN, A. & OLOFSEN, E. 2019. Opioid-induced respiratory depression in
600 humans: a review of pharmacokinetic-pharmacodynamic modelling of reversal. *Br J Anaesth*,
601 122, e168-e179.

602 ASHHAD, S. & FELDMAN, J. L. 2020. Emergent Elements of Inspiratory Rhythmogenesis:
603 Network Synchronization and Synchrony Propagation. *Neuron*, 106, 482-497.e4.

604 BACHMUTSKY, I., WEI, X. P., KISH, E. & YACKLE, K. 2020. Opioids depress breathing
605 through two small brainstem sites. *Elife*, 9.

606 BAERTSCH, N. A., BAERTSCH, H. C. & RAMIREZ, J. M. 2018. The interdependence of
607 excitation and inhibition for the control of dynamic breathing rhythms. *Nat Commun*, 9, 843.

608 BAERTSCH, N. A. & RAMIREZ, J. M. 2019. Insights into the dynamic control of breathing
609 revealed through cell-type-specific responses to substance P. *Elife*, 8.

610 BAERTSCH, N. A., SEVERS, L. J., ANDERSON, T. M. & RAMIREZ, J. M. 2019. A spatially
611 dynamic network underlies the generation of inspiratory behaviors. *Proc Natl Acad Sci U S A*,
612 116, 7493-7502.

613 BOUILLON, T., BRUHN, J., ROEPCKE, H. & HOEFT, A. 2003. Opioid-induced respiratory
614 depression is associated with increased tidal volume variability. *Eur J Anaesthesiol*, 20, 127-33.

615 BUTERA, R. J., JR., RINZEL, J. & SMITH, J. C. 1999a. Models of respiratory rhythm generation
616 in the pre-Bötziinger complex. I. Bursting pacemaker neurons. *J Neurophysiol*, 82, 382-97.

617 BUTERA, R. J., JR., RINZEL, J. & SMITH, J. C. 1999b. Models of respiratory rhythm generation
618 in the pre-Bötziinger complex. II. Populations Of coupled pacemaker neurons. *J Neurophysiol*,
619 82, 398-415.

620 CHEN, W., ENNES, H. S., MCROBERTS, J. A. & MARVIZÓN, J. C. 2018. Mechanisms of μ -
621 opioid receptor inhibition of NMDA receptor-induced substance P release in the rat spinal cord.
622 *Neuropharmacology*, 128, 255-268.

623 CONIBEAR, A. E. & KELLY, E. 2019. A Biased View of μ -Opioid Receptors? *Mol Pharmacol*,
624 96, 542-549.

625 CORDER, G., TAWFIK, V. L., WANG, D., SYPEK, E. I., LOW, S. A., DICKINSON, J. R.,
626 SOTOUDEH, C., CLARK, J. D., BARRES, B. A., BOHLEN, C. J. & SCHERRER, G. 2017. Loss
627 of μ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance
628 without disrupting analgesia. *Nat Med*, 23, 164-173.

629 DAHAN, A., AARTS, L. & SMITH, T. W. 2010. Incidence, Reversal, and Prevention of Opioid-
630 induced Respiratory Depression. *Anesthesiology*, 112, 226-38.

631 DAHAN, A., SARTON, E., TEPPEMA, L., OLIEVIER, C., NIEUWENHUIJS, D., MATTHES, H.
632 W. & KIEFFER, B. L. 2001. Anesthetic potency and influence of morphine and sevoflurane on
633 respiration in mu-opioid receptor knockout mice. *Anesthesiology*, 94, 824-32.

634 DAHAN, A., VAN DER SCHRIER, R., SMITH, T., AARTS, L., VAN VELZEN, M. & NIESTERS,
635 M. 2018. Averting Opioid-induced Respiratory Depression without Affecting Analgesia.
636 *Anesthesiology*, 128, 1027-1037.

637 DAI, W., XIAO, D., GAO, X., ZHOU, X. B., FANG, T. Y., YONG, Z. & SU, R. B. 2017. A brain-
638 targeted ampakine compound protects against opioid-induced respiratory depression. *Eur J
639 Pharmacol*, 809, 122-129.

640 DEL NEGRO, C. A., FUNK, G. D. & FELDMAN, J. L. 2018. Breathing matters. *Nat Rev
641 Neurosci*, 19, 351-367.

642 DEL NEGRO, C. A. & HAYES, J. A. 2008. A 'group pacemaker' mechanism for respiratory
643 rhythm generation. *J Physiol*, 586, 2245-6.

644 DEL NEGRO, C. A., HAYES, J. A., PACE, R. W., BRUSH, B. R., TERUYAMA, R. & FELDMAN,
645 J. L. 2010. Synaptically activated burst-generating conductances may underlie a group-
646 pacemaker mechanism for respiratory rhythm generation in mammals. *Prog Brain Res*, 187,
647 111-36.

648 DEL NEGRO, C. A., HAYES, J. A. & REKLING, J. C. 2011. Dendritic calcium activity precedes
649 inspiratory bursts in preBotzinger complex neurons. *J Neurosci*, 31, 1017-22.

650 DRUMMOND, G. B. 1983. Comparison of decreases in ventilation caused by enflurane and
651 fentanyl during anaesthesia. *Br J Anaesth*, 55, 825-35.

652 ERBS, E., FAGET, L., SCHERRER, G., MATIFAS, A., FILLIOL, D., VONESCH, J. L., KOCH,
653 M., KESSLER, P., HENTSCH, D., BIRLING, M. C., KOUTSOURAKIS, M., VASSEUR, L.,
654 VEINANTE, P., KIEFFER, B. L. & MASSOTTE, D. 2015. A mu-delta opioid receptor brain atlas
655 reveals neuronal co-occurrence in subcortical networks. *Brain Struct Funct*, 220, 677-702.

656 FERGUSON, L. M. & DRUMMOND, G. B. 2006. Acute effects of fentanyl on breathing pattern
657 in anaesthetized subjects. *Br J Anaesth*, 96, 384-90.

658 FUNK, G. D., SMITH, J. C. & FELDMAN, J. L. 1993. Generation and transmission of respiratory
659 oscillations in medullary slices: role of excitatory amino acids. *J Neurophysiol*, 70, 1497-515.

660 GAL, T. J. 1989. Naloxone reversal of buprenorphine-induced respiratory depression. *Clin
661 Pharmacol Ther*, 45, 66-71.

662 GARCIA, A. J., 3RD, DASHEVSKIY, T., KHUU, M. A. & RAMIREZ, J. M. 2017. Chronic
663 Intermittent Hypoxia Differentially Impacts Different States of Inspiratory Activity at the Level of
664 the preBötzinger Complex. *Front Physiol*, 8, 571.

665 GARCIA, A. J., 3RD, VIEMARI, J. C. & KHUU, M. A. 2019. Respiratory rhythm generation,
666 hypoxia, and oxidative stress-Implications for development. *Respir Physiol Neurobiol*, 270,
667 103259.

668 GARCIA, A. J., 3RD, ZANELLA, S., DASHEVSKIY, T., KHAN, S. A., KHUU, M. A.,
669 PRABHAKAR, N. R. & RAMIREZ, J. M. 2016. Chronic Intermittent Hypoxia Alters Local
670 Respiratory Circuit Function at the Level of the preBötzinger Complex. *Front Neurosci*, 10, 4.

671 GRAY, P. A., REKLING, J. C., BOCCHIARO, C. M. & FELDMAN, J. L. 1999a. Modulation of
672 respiratory frequency by peptidergic input to rhythmogenic neurons in the preBotzinger
673 complex. *Science*, 286, 1566-8.

674 GRAY, P. A., REKLING, J. C., BOCCHIARO, C. M. & FELDMAN, J. L. 1999b. Modulation of
675 respiratory frequency by peptidergic input to rhythmogenic neurons in the preBötzinger
676 complex. *Science*, 286, 1566-8.

677 GREER, J. J. & REN, J. 2009. Ampakine therapy to counter fentanyl-induced respiratory
678 depression. *Respir Physiol Neurobiol*, 168, 153-7.

679 GREER, J. J., SMITH, J. C. & FELDMAN, J. L. 1991. Role of excitatory amino acids in the
680 generation and transmission of respiratory drive in neonatal rat. *J Physiol*, 437, 727-49.

681 GUENTHER, U., WRIGGE, H., THEUERKAUF, N., BOETTCHER, M. F., WENSING, G.,
682 ZINSERLING, J., PUTENSEN, C. & HOEFT, A. 2010. Repinotan, a selective 5-HT1A-R-agonist,
683 antagonizes morphine-induced ventilatory depression in anesthetized rats. *Anesth Analg*, 111,
684 901-7.

685 GUERRIER, C., HAYES, J. A., FORTIN, G. & HOLCMAN, D. 2015. Robust network oscillations
686 during mammalian respiratory rhythm generation driven by synaptic dynamics. *Proc Natl Acad
687 Sci U S A*, 112, 9728-33.

688 GUPTA, K., PRASAD, A., NAGAPPA, M., WONG, J., ABRAHAMYAN, L. & CHUNG, F. F. 2018.
689 Risk factors for opioid-induced respiratory depression and failure to rescue: a review. *Curr Opin
690 Anaesthesiol*, 31, 110-119.

691 HARRIS, K. D., DASHEVSKIY, T., MENDOZA, J., GARCIA, A. J., 3RD, RAMIREZ, J. M. &
692 SHEA-BROWN, E. 2017. Different roles for inhibition in the rhythm-generating respiratory
693 network. *J Neurophysiol*, 118, 2070-2088.

694 HAW, A. J., MEYER, L. C., GREER, J. J. & FULLER, A. 2016. Ampakine CX1942 attenuates
695 opioid-induced respiratory depression and corrects the hypoxaemic effects of etorphine in
696 immobilized goats (*Capra hircus*). *Vet Anaesth Analg*, 43, 528-38.

697 IMAM, M. Z., KUO, A. & SMITH, M. T. 2020. Countering opioid-induced respiratory depression
698 by non-opioids that are respiratory stimulants. *F1000Res*, 9.

699 KALLURKAR, P. S., GROVER, C., PICARDO, M. C. D. & DEL NEGRO, C. A. 2020. Evaluating
700 the Burstlet Theory of Inspiratory Rhythm and Pattern Generation. *eNeuro*, 7.

701 KAM, K., WORRELL, J. W., JANCZEWSKI, W. A., CUI, Y. & FELDMAN, J. L. 2013a. Distinct
702 inspiratory rhythm and pattern generating mechanisms in the preBotzinger complex. *J Neurosci*,
703 33, 9235-45.

704 KAM, K., WORRELL, J. W., VENTALON, C., EMILIANI, V. & FELDMAN, J. L. 2013b.
705 Emergence of population bursts from simultaneous activation of small subsets of preBotzinger
706 complex inspiratory neurons. *J Neurosci*, 33, 3332-8.

707 KIMURA, S., OHI, Y. & HAJI, A. 2015. Blockade of phosphodiesterase 4 reverses morphine-
708 induced ventilatory disturbance without loss of analgesia. *Life Sci*, 127, 32-8.

709 KIRBY, G. C. & MCQUEEN, D. S. 1986. Characterization of opioid receptors in the cat carotid
710 body involved in chemosensory depression in vivo. *Br J Pharmacol*, 88, 889-98.

711 KLIEWER, A., GILLIS, A., HILL, R., SCHMIEDEL, F., BAILEY, C., KELLY, E., HENDERSON,
712 G., CHRISTIE, M. J. & SCHULZ, S. 2020. Morphine-induced respiratory depression is
713 independent of β -arrestin2 signalling. *Br J Pharmacol*, 177, 2923-2931.

714 KLIEWER, A., SCHMIEDEL, F., SIANATI, S., BAILEY, A., BATEMAN, J. T., LEVITT, E. S.,
715 WILLIAMS, J. T., CHRISTIE, M. J. & SCHULZ, S. 2019. Phosphorylation-deficient G-protein-
716 biased μ -opioid receptors improve analgesia and diminish tolerance but worsen opioid side
717 effects. *Nat Commun*, 10, 367.

718 KOTTICK, A. & DEL NEGRO, C. A. 2015. Synaptic Depression Influences Inspiratory-
719 Expiratory Phase Transition in Dbx1 Interneurons of the preBotzinger Complex in Neonatal
720 Mice. *J Neurosci*, 35, 11606-11.

721 KREY, R. A., GOODREAU, A. M., ARNOLD, T. B. & DEL NEGRO, C. A. 2010. Outward
722 Currents Contributing to Inspiratory Burst Termination in preBötzingers Complex Neurons of
723 Neonatal Mice Studied in Vitro. *Front Neural Circuits*, 4, 124.

724 LALLEY, P. M. & MIFFLIN, S. W. 2017. Oscillation patterns are enhanced and firing threshold is
725 lowered in medullary respiratory neuron discharges by threshold doses of a μ -opioid receptor
726 agonist. *Am J Physiol Regul Integr Comp Physiol*, 312, R727-r738.

727 LAM, K. K., KUNDER, S., WONG, J., DOUFAS, A. G. & CHUNG, F. 2016. Obstructive sleep
728 apnea, pain, and opioids: is the riddle solved? *Curr Opin Anaesthesiol*, 29, 134-40.

729 LEIN, E. S., HAWRYLYCZ, M. J., AO, N., AYRES, M., BENSINGER, A., BERNARD, A., BOE,
730 A. F., BOGUSKI, M. S., BROCKWAY, K. S., BYRNES, E. J., CHEN, L., CHEN, L., CHEN, T. M.,
731 CHIN, M. C., CHONG, J., CROOK, B. E., CZAPLINSKA, A., DANG, C. N., DATTA, S., DEE, N.
732 R., DESAKI, A. L., DESTA, T., DIEP, E., DOLBEARE, T. A., DONELAN, M. J., DONG, H. W.,
733 DOUGHERTY, J. G., DUNCAN, B. J., EBBERT, A. J., EICHELE, G., ESTIN, L. K., FABER, C.,
734 FACER, B. A., FIELDS, R., FISCHER, S. R., FLISS, T. P., FRENSLEY, C., GATES, S. N.,
735 GLATTFELDER, K. J., HALVERSON, K. R., HART, M. R., HOHMANN, J. G., HOWELL, M. P.,
736 JEUNG, D. P., JOHNSON, R. A., KARR, P. T., KAWAL, R., KIDNEY, J. M., KNAPIK, R. H.,
737 KUAN, C. L., LAKE, J. H., LARAMEE, A. R., LARSEN, K. D., LAU, C., LEMON, T. A., LIANG, A.
738 J., LIU, Y., LUONG, L. T., MICHAELS, J., MORGAN, J. J., MORGAN, R. J., MORTRUD, M. T.,
739 MOSQUEDA, N. F., NG, L. L., NG, R., ORTA, G. J., OVERLY, C. C., PAK, T. H., PARRY, S. E.,
740 PATHAK, S. D., PEARSON, O. C., PUCHALSKI, R. B., RILEY, Z. L., ROCKETT, H. R.,
741 ROWLAND, S. A., ROYALL, J. J., RUIZ, M. J., SARNO, N. R., SCHAFFNIT, K.,
742 SHAPOVALOVA, N. V., SIVISAY, T., SLAUGHTERBECK, C. R., SMITH, S. C., SMITH, K. A.,
743 SMITH, B. I., SODT, A. J., STEWART, N. N., STUMPF, K. R., SUNKIN, S. M., SUTRAM, M.,
744 TAM, A., TEEMER, C. D., THALLER, C., THOMPSON, C. L., VARNAM, L. R., VISEL, A.,
745 WHITLOCK, R. M., WOHNOUTKA, P. E., WOLKEY, C. K., WONG, V. Y., et al. 2007. Genome-
746 wide atlas of gene expression in the adult mouse brain. *Nature*, 445, 168-76.

747 LEVITT, E. S., ABDALA, A. P., PATON, J. F., BISSONNETTE, J. M. & WILLIAMS, J. T. 2015. μ
748 opioid receptor activation hyperpolarizes respiratory-controlling Kölliker-Fuse neurons and
749 suppresses post-inspiratory drive. *J Physiol*, 593, 4453-69.

750 LIANG, X., YONG, Z. & SU, R. 2018. Inhibition of protein kinase A and GIRK channel reverses
751 fentanyl-induced respiratory depression. *Neurosci Lett*, 677, 14-18.

752 LORIER, A. R., FUNK, G. D. & GREER, J. J. 2010. Opiate-induced suppression of rat
753 hypoglossal motoneuron activity and its reversal by ampakine therapy. *PLoS One*, 5, e8766.

754 LÖTSCH, J., SKARKE, C., SCHNEIDER, A., HUMMEL, T. & GEISSLINGER, G. 2005. The 5-
755 hydroxytryptamine 4 receptor agonist mosapride does not antagonize morphine-induced
756 respiratory depression. *Clin Pharmacol Ther*, 78, 278-87.

757 MANZKE, T., GUENTHER, U., PONIMASKIN, E. G., HALLER, M., DUTSCHMANN, M.,
758 SCHWARZACHER, S. & RICHTER, D. W. 2003. 5-HT4(a) receptors avert opioid-induced
759 breathing depression without loss of analgesia. *Science*, 301, 226-9.

760 MELLEN, N. M., JANCZEWSKI, W. A., BOCCHIARO, C. M. & FELDMAN, J. L. 2003. Opioid-
761 induced quantal slowing reveals dual networks for respiratory rhythm generation. *Neuron*, 37,
762 821-6.

763 MOGRI, M., DESAI, H., WEBSTER, L., GRANT, B. J. & MADOR, M. J. 2009. Hypoxemia in
764 patients on chronic opiate therapy with and without sleep apnea. *Sleep Breath*, 13, 49-57.

765 MOLKOV, Y. I., BACAK, B. J., DICK, T. E. & RYBAK, I. A. 2013. Control of breathing by
766 interacting pontine and pulmonary feedback loops. *Front Neural Circuits*, 7, 16.

767 MONTANDON, G., QIN, W., LIU, H., REN, J., GREER, J. J. & HORNER, R. L. 2011.
768 PreBotzinger complex neurokinin-1 receptor-expressing neurons mediate opioid-induced
769 respiratory depression. *J Neurosci*, 31, 1292-301.

770 MONTANDON, G., REN, J., VICTORIA, N. C., LIU, H., WICKMAN, K., GREER, J. J. &
771 HORNER, R. L. 2016. G-protein-gated Inwardly Rectifying Potassium Channels Modulate
772 Respiratory Depression by Opioids. *Anesthesiology*, 124, 641-50.

773 MONTANDON, G. & SLUTSKY, A. S. 2019. Solving the Opioid Crisis: Respiratory Depression
774 by Opioids as Critical End Point. *Chest*, 156, 653-658.

775 MOSCA, E. V., CIECHANSKI, P., ROY, A., SCHEIBLI, E. C., BALLANYI, K. & WILSON, R. J.
776 2014. Methylxanthine reversal of opioid-induced respiratory depression in the neonatal rat:
777 mechanism and location of action. *Respir Physiol Neurobiol*, 200, 80-9.

778 MUSTAPIC, S., RODOCAJ, T., SANCHEZ, A., DOGAS, Z., STUCKE, A. G., HOPP, F. A.,
779 STUTH, E. A. & ZUPERKU, E. J. 2010. Clinically relevant infusion rates of mu-opioid agonist
780 remifentanil cause bradypnea in decerebrate dogs but not via direct effects in the pre-Bötzinger
781 complex region. *J Neurophysiol*, 103, 409-18.

782 OERTEL, B. G., FELDEN, L., TRAN, P. V., BRADSHAW, M. H., ANGST, M. S., SCHMIDT, H.,
783 JOHNSON, S., GREER, J. J., GEISSLINGER, G., VARNEY, M. A. & LÖTSCH, J. 2010.
784 Selective antagonism of opioid-induced ventilatory depression by an ampakine molecule in
785 humans without loss of opioid analgesia. *Clin Pharmacol Ther*, 87, 204-11.

786 OERTEL, B. G., SCHNEIDER, A., ROHRBACHER, M., SCHMIDT, H., TEGEDER, I.,
787 GEISSLINGER, G. & LÖTSCH, J. 2007. The partial 5-hydroxytryptamine1A receptor agonist
788 buspirone does not antagonize morphine-induced respiratory depression in humans. *Clin
789 Pharmacol Ther*, 81, 59-68.

790 OVERDYK, F., DAHAN, A., ROOZEKRANS, M., VAN DER SCHRIER, R., AARTS, L. &
791 NIESTERS, M. 2014. Opioid-induced respiratory depression in the acute care setting: a
792 compendium of case reports. *Pain Manag*, 4, 317-25.

793 PARK, C. & RUBIN, J. E. 2013. Cooperation of intrinsic bursting and calcium oscillations
794 underlying activity patterns of model pre-Bötziinger complex neurons. *J Comput Neurosci*, 34,
795 345-66.

796 PERSSON, J., SCHEININ, H., HELLSTRÖM, G., BJÖRKMAN, S., GÖTHARSON, E. &
797 GUSTAFSSON, L. L. 1999. Ketamine antagonises alfentanil-induced hypoventilation in healthy
798 male volunteers. *Acta Anaesthesiol Scand*, 43, 744-52.

799 PRKIC, I., MUSTAPIC, S., RODOCAJ, T., STUCKE, A. G., STUTH, E. A., HOPP, F. A., DEAN,
800 C. & ZUPERKU, E. J. 2012. Pontine μ -opioid receptors mediate bradypnea caused by
801 intravenous remifentanil infusions at clinically relevant concentrations in dogs. *J Neurophysiol*,
802 108, 2430-41.

803 RAMIREZ, J. M. & BAERTSCH, N. 2018a. Defining the Rhythmogenic Elements of Mammalian
804 Breathing. *Physiology (Bethesda)*, 33, 302-316.

805 RAMIREZ, J. M. & BAERTSCH, N. A. 2018b. The Dynamic Basis of Respiratory Rhythm
806 Generation: One Breath at a Time. *Annu Rev Neurosci*, 41, 475-499.

807 RAMIREZ, J. M., SCHWARZACHER, S. W., PIERREFICHE, O., OLIVERA, B. M. & RICHTER,
808 D. W. 1998. Selective lesioning of the cat pre-Bötziinger complex in vivo eliminates breathing but
809 not gasping. *J Physiol*, 507 (Pt 3), 895-907.

810 REN, J., DING, X., FUNK, G. D. & GREER, J. J. 2009. Ampakine CX717 protects against
811 fentanyl-induced respiratory depression and lethal apnea in rats. *Anesthesiology*, 110, 1364-70.

812 REN, J., DING, X. & GREER, J. J. 2015. Ampakines enhance weak endogenous respiratory
813 drive and alleviate apnea in perinatal rats. *Am J Respir Crit Care Med*, 191, 704-10.

814 REN, J., DING, X. & GREER, J. J. 2019. Activating $\alpha 4\beta 2$ Nicotinic Acetylcholine Receptors
815 Alleviates Fentanyl-induced Respiratory Depression in Rats. *Anesthesiology*, 130, 1017-1031.

816 ROSE, A. R., CATCHESIDE, P. G., MCEVOY, R. D., PAUL, D., KAPUR, D., PEAK, E.,
817 VAKULIN, A. & ANTIC, N. A. 2014. Sleep disordered breathing and chronic respiratory failure in
818 patients with chronic pain on long term opioid therapy. *J Clin Sleep Med*, 10, 847-52.

819 RUBIN, J. E., HAYES, J. A., MENDENHALL, J. L. & DEL NEGRO, C. A. 2009. Calcium-
820 activated nonspecific cation current and synaptic depression promote network-dependent burst
821 oscillations. *Proc Natl Acad Sci U S A*, 106, 2939-44.

822 SCHMID, C. L., KENNEDY, N. M., ROSS, N. C., LOVELL, K. M., YUE, Z., MORGENWECK, J.,
823 CAMERON, M. D., BANNISTER, T. D. & BOHN, L. M. 2017. Bias Factor and Therapeutic
824 Window Correlate to Predict Safer Opioid Analgesics. *Cell*, 171, 1165-1175.e13.

825 SEGERS, L. S., NUDING, S. C., VOVK, A., PITTS, T., BAEKEY, D. M., O'CONNOR, R.,
826 MORRIS, K. F., LINDSEY, B. G., SHANNON, R. & BOLSER, D. C. 2012. Discharge Identity of
827 Medullary Inspiratory Neurons is Altered during Repetitive Fictive Cough. *Front Physiol*, 3, 223.

828 SMART, J. A., PALLETT, E. J. & DUTHIE, D. J. 2000. Breath interval as a measure of dynamic
829 opioid effect. *Br J Anaesth*, 84, 735-8.

830 SMITH, J. C., ABDALA, A. P., BORGGMANN, A., RYBAK, I. A. & PATON, J. F. 2013. Brainstem
831 respiratory networks: building blocks and microcircuits. *Trends Neurosci*, 36, 152-62.

832 SMITH, J. C., ELLENBERGER, H. H., BALLANYI, K., RICHTER, D. W. & FELDMAN, J. L.
833 1991a. Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in
834 mammals. *Science*, 254, 726-9.

835 SMITH, J. C., ELLENBERGER, H. H., BALLANYI, K., RICHTER, D. W. & FELDMAN, J. L.
836 1991b. Pre-Bötzing complex: a brainstem region that may generate respiratory rhythm in
837 mammals. *Science*, 254, 726-9.

838 SORA, I., TAKAHASHI, N., FUNADA, M., UJIKE, H., REVAY, R. S., DONOVAN, D. M., MINER,
839 L. L. & UHL, G. R. 1997. Opiate receptor knockout mice define mu receptor roles in
840 endogenous nociceptive responses and morphine-induced analgesia. *Proc Natl Acad Sci U S A*,
841 94, 1544-9.

842 SUN, X., THÖRN PÉREZ, C., HALEMANI, D. N., SHAO, X. M., GREENWOOD, M., HEATH, S.,
843 FELDMAN, J. L. & KAM, K. 2019. Opioids modulate an emergent rhythmogenic process to
844 depress breathing. *Elife*, 8.

845 SZÉLL, A., MARTÍNEZ-BELLVER, S., HEGEDÜS, P. & HANGYA, B. 2020. OPETH: Open
846 Source Solution for Real-Time Peri-Event Time Histogram Based on Open Ephys. *Front*
847 *Neuroinform*, 14, 21.

848 TAN, W., JANCZEWSKI, W. A., YANG, P., SHAO, X. M., CALLAWAY, E. M. & FELDMAN, J. L.
849 2008. Silencing preBötzing complex somatostatin-expressing neurons induces persistent
850 apnea in awake rat. *Nat Neurosci*, 11, 538-40.

851 VAN DER SCHIER, R., ROOZEKRANS, M., VAN VELZEN, M., DAHAN, A. & NIESTERS, M.
852 2014. Opioid-induced respiratory depression: reversal by non-opioid drugs. *F1000Prime Rep*, 6,
853 79.

854 VAN DORP, E., YASSEN, A., SARTON, E., ROMBERG, R., OLOFSEN, E., TEPPEMA, L.,
855 DANHOF, M. & DAHAN, A. 2006. Naloxone reversal of buprenorphine-induced respiratory
856 depression. *Anesthesiology*, 105, 51-7.

857 VARGA, A. G., REID, B. T., KIEFFER, B. L. & LEVITT, E. S. 2020. Differential impact of two
858 critical respiratory centres in opioid-induced respiratory depression in awake mice. *J Physiol*,
859 598, 189-205.

860 WALKER, J. M., FARNEY, R. J., RHONDEAU, S. M., BOYLE, K. M., VALENTINE, K.,
861 CLOWARD, T. V. & SHILLING, K. C. 2007. Chronic opioid use is a risk factor for the
862 development of central sleep apnea and ataxic breathing. *J Clin Sleep Med*, 3, 455-61.

863 WEI, A. D. & RAMIREZ, J. M. 2019. Pre-synaptic Mechanisms and KCNQ Potassium Channels
864 Modulate Opioid Depression of Respiratory Drive. *Front Physiol*, 10, 1407.

865 WINTER, S. M., FRESEMANN, J., SCHNELL, C., OKU, Y., HIRRLINGER, J. & HULSMANN, S.
866 2009. Glycinergic interneurons are functionally integrated into the inspiratory network of mouse
867 medullary slices. *Pflugers Arch*, 458, 459-69.

868 WU, J. G., WANG, D., ROWSELL, L., WONG, K. K., YEE, B. J., NGUYEN, C. D., HAN, F.,
869 HILMISSON, H., THOMAS, R. J. & GRUNSTEIN, R. R. 2020. The effect of acute exposure to
870 morphine on breathing variability and cardiopulmonary coupling in men with obstructive sleep
871 apnea: A randomized controlled trial. *J Sleep Res*, 29, e12930.

872 YANG, C. F. & FELDMAN, J. L. 2018. Efferent projections of excitatory and inhibitory
873 preBötzinger Complex neurons. *J Comp Neurol*, 526, 1389-1402.

874 YANG, C. F., KIM, E. J., CALLAWAY, E. M. & FELDMAN, J. L. 2020. Monosynaptic Projections
875 to Excitatory and Inhibitory preBötzinger Complex Neurons. *Front Neuroanat*, 14, 58.

876 ZUPERKU, E. J., STUCKE, A. G., HOPP, F. A. & STUTH, E. A. 2017. Characteristics of
877 breathing rate control mediated by a subregion within the pontine parabrachial complex. *J
878 Neurophysiol*, 117, 1030-1042.

879 ZUPERKU, E. J., STUCKE, A. G., KROLIKOWSKI, J. G., TOMLINSON, J., HOPP, F. A. &
880 STUTH, E. A. 2019. Inputs to medullary respiratory neurons from a pontine subregion that
881 controls breathing frequency. *Respir Physiol Neurobiol*, 265, 127-140.

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897 **Methods**

898 **Animals.** Experiments were performed on neonatal (p4-p12) and adult (>p40) male and female C57Bl/6
899 mice bred at Seattle Children's Research Institute. Homozygous *Oprm1*^{CreGFP} mice were provided by the
900 laboratory of Dr. Richard Palmiter (University of Washington) (Jax Stock No: 035574). *Oprm1*^{CreGFP} were
901 genotyped using a standard protocol with the following three primers: 5' CCT TCC ACT CAG AGA GTG
902 GCG (*Oprm1* forward), 5' CCT TCC ACT CAG AGA GTG GCG (*Oprm1* reverse), and 5' GGC AAA TTT
903 TGG TGT ACG GTC AG (*Cre* reverse). The wild-type allele gives a band of ~500 bp, while the targeted
904 allele gives a band of ~400 bp after 34 cycles with 20-s annealing at 60 °C. *Oprm1*^{CreGFP} mice were
905 crossed with homozygous mice derived at the Allen Brain Institute containing either (1) floxed STOP
906 channelrhodopsin2 fused to EYFP, *Rosa26*^{Isl-ChR2:EYFP}, or more simply *Rosa26*^{ChR2} (Ai32, Jax Stock No:
907 024109); or (2) floxed STOP ArcherrhodopsinT fused to EYFP, *Rosa26*^{Isl-ArchT:EYFP}, or more simply
908 *Rosa26*^{ArchT} (Ai40D, Jax Stock 021188). All mice were group housed with access to food and water *ad*
909 *libitum* in a temperature controlled (22±1°C) facility with a 12-hr light/dark cycle.

910 ***In vitro* medullary horizontal slice preparation.** Horizontal medullary slices containing the ventral
911 respiratory column were prepared from postnatal day 4-12 mice as previously described (Baertsch et al.,
912 2019). Briefly, whole brainstems were dissected in ice cold, artificial cerebrospinal fluid (aCSF; in mM:
913 118 NaCl, 3.0 KCl, 25 NaHCO₃, 1 NaH₂PO₄, 1.0 MgCl₂, 1.5 CaCl₂, 30 D-glucose) equilibrated with
914 carbogen (95% O₂, 5% CO₂). aCSF had an osmolarity of 305–312 mOSM and a pH of 7.40– 7.45 when
915 equilibrated with gas mixtures containing 5% CO₂ at ambient pressure. Cyanoacrylate was used to
916 secure the dorsal surface of the brainstem to an agar block cut at a ~15° angle, and a vibratome was
917 used (Leica 1000S) to section the brainstem in the transverse plane in 200-µm steps moving from rostral
918 to caudal until the VII nerves were visualized. Brainstems were then sectioned in the horizontal plane by
919 reorienting the agar block to position its ventral surface facing up. The blade was leveled with the ventral
920 edge of the brainstem and a single ~850-µm step was taken. The angle of the horizontal section through
921 the tissue is determined by the angle at which the agar block was cut and is critical for cutting a horizontal

922 slice at the correct thickness. A partially open “teardrop” shaped central canal is indicative of a properly
923 prepared horizontal slice. The preBötC is located lateral to the rostral end of the teardrop and
924 approximately ½ - ¾ of the distance between the midline and the lateral edge of the tissue.

925 Slices were placed in a custom recording chamber containing circulating aCSF (~15 ml/min)
926 warmed to 30°C. The [K+] in the aCSF was then gradually raised from 3 to 8 mM over ~10 min to elevate
927 neuronal excitability. Glass pipette electrodes (<1MΩ tip resistance) filled with aCSF were placed on the
928 surface of the slice to record rhythmic extracellular neuronal population activity. Signals were amplified
929 10,000X, filtered (low pass, 300 Hz; high pass, 5 kHz), rectified, integrated, and digitized (Digidata 1550A,
930 Axon Instruments). The blind patch clamp approach was used to record the activity of single neurons.
931 Recording electrodes were pulled from borosilicate glass (4-8 MΩ tip resistance) using a P-97
932 Flaming/Brown micropipette puller (Sutter Instrument Co., Novato, CA) and filled with intracellular patch
933 electrode solution containing (in mM): 140 potassium gluconate, 1 CaCl₂, 10 EGTA, 2 MgCl₂, 4 Na₂ATP,
934 and 10 Hepes (pH 7.2). To map the location of recorded neurons, patch pipettes were backfilled with
935 intracellular patch solution containing 2mg/ml Alexa Fluor568 Hydrazide (ThermoFisher). Neuronal
936 activity was recorded in current clamp mode in either cell-attached or whole-cell configuration (depending
937 on the specific experiment as noted in the text) using a MultiClamp 700B amplifier (Molecular Devices,
938 Sunnyvale, CA). Extracellular population activity and intracellular signals were acquired with pCLAMP
939 software (Molecular Devices, Sunnyvale, CA). After cell-attached recordings, the neuronal membrane
940 was ruptured to allow the AlexaFluor fluorescent marker to fill the cell body. Following each experiment,
941 the dorsal surfaces of fresh, unfixed slices were imaged (2.5X) using a Leica DM 4000 B epifluorescence
942 microscope equipped with 405, 488, 548 nm laser lines. Images were post-processed using Image-J
943 software (Version 1.48); brightfield and epifluorescent images of Alexa Fluor 568 labelled cell(s) were
944 overlayed to determine the coordinates of the recorded neuron(s) relative to rostral edge of the slice (VII
945 nerve; Y direction) and the midline (X direction) (Figure 1D, E).

946 **In vivo surgical preparation.** Adult mice were induced with isoflurane (~3%) and then transferred to
947 urethane anesthesia (1.5 g/kg, *i.p.*). Mice were then placed supine on a custom heated surgical table to
948 maintain body temp at ~37°C. The trachea was exposed through a midline incision and cannulated with
949 a curved (180 degree) tracheal tube (24 G) caudal to the larynx and then mice spontaneously breathed
950 100% O₂ throughout the remainder of the surgery and experimental protocol. ECG leads were placed on
951 the fore and hind paw to monitor heart rate. The trachea and esophagus were removed rostral to the
952 tracheal tube, and the underlying muscles were removed to expose the basal surface of the occipital
953 bone. The portion of the occipital bone and dura overlying the ventral medullary surface were removed,
954 and the exposed surface of the brainstem was superfused with warmed (~37°C) aCSF equilibrated with
955 carbogen (95% O₂, 5% CO₂). The hypoglossal nerve (XII) was isolated unilaterally, cut distally and
956 recorded from using a suction electrode connected to a fire polished pulled glass pipette filled with aCSF.
957 To record multi-unit neuronal population activity directly from the preBötC, tapered pulled glass pipettes
958 with a sharp broken tip (<1MΩ tip resistance) filled with aCSF were advanced into the ventral medulla
959 ~200-500μm until integrated rhythmic activity was maximal. Electrical activity from the brainstem and XII
960 nerve was amplified (10,000X), filtered (low pass 300Hz, high pass 5kHz), rectified, integrated, and
961 digitized (Digidata 1550A, Axon Instruments). In some experiments, extracellular activity was recorded
962 from single units *in vivo* using 4-8 MΩ pulled glass electrodes filled with aCSF. Prior to experimental
963 protocols, adequate depth of anesthesia was determined via heart rate and respiratory responses to toe
964 pinch and adjusted if necessary with supplemental urethane (*i.p.*).

965 **Optogenetic and pharmacological manipulations.** 200-μm diameter glass fiber optics (0.24NA)
966 connected to blue (470 nm) high-powered LEDs or yellow-orange (598 nm) lasers were positioned above
967 the preBötC either bilaterally, or ipsilateral/contralateral to the population and/or unit recordings
968 depending on the specific experiment (as indicated in the text and figure legends). Light power was
969 calibrated using an optical power meter (ThorLabs). Powers and durations of light pulses are noted in
970 the text and figures. During single unit recordings *in vitro* using the blind patch approach, neurons were

971 classified as *Oprm1*+ based on optogenetic responses. In *Oprm1*^{CreGFP}; *Rosa26*^{ArchT:YFP} slices, neurons
972 that were inhibited during 598nm light were designated as *Oprm1*+, whereas those that lacked a
973 response were presumed to be *Oprm1*-. In *Oprm1*^{Cre:GFP}; *Rosa26*^{ChR2:YFP} slices, *Oprm1* expression was
974 determined using one or both of the following methods: (1) the presence of an excitatory response to
975 light following pharmacological blockade of glutamatergic synaptic transmission (20 μ M CNQX, 20 μ M
976 CPP); (2) the presence of spikes generated reliably and with short latency ~5-10 ms following brief 10ms
977 470 nm light pulses ipsilateral to the recording electrode (e.g. see Figure 5A-C). In many cases these
978 strategies were used in combination to characterize neurons as *Oprm1*+ or *Oprm1*-.

979 During *in vitro* experiments, stable baseline preBötC population and single-unit activities were
980 recorded for \geq 5min prior to addition of the MOR-agonist DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-
981 Enkephalin) to the circulating aCSF bath. DAMGO (Sigma Aldrich) stock solutions (1 mM in H₂O) were
982 aliquoted, and stored at -20°C. In dose-response experiments, DAMGO was added to the aCSF bath at
983 total concentrations of 50, 100, 200, and 300 nM at 7-min intervals, and data were analyzed during the
984 last 2 min of each interval. In some experiments, MOR activation was reversed with the competitive MOR
985 antagonist Naloxone (Nx) and AMPAR- and NMDAR-dependent glutamatergic synaptic transmission
986 was blocked by adding CNQX (6-Cyano-7-nitroquinoxaline-2,3-dione disodium) and (R)-CPP (3-((R)-2-
987 Carboxypiperazin-4-yl)-propyl-1-phosphonic acid) to the aCSF bath. Naloxone (Tocris) was diluted to a
988 100 mM stock solution in H₂O. CNQX and CPP (Tocris) were diluted to 20 mM stock solutions in H₂O.
989 All drugs were aliquoted and stored at -20°C. For experiments *in vivo*, stable baseline preBötC and XII
990 multi-unit activity was established for \geq 5 min prior to systemic injection of morphine (150 mg/kg; Patterson
991 Veterinary Supply).

992 **Constructing a computational model of OIRD in the preBötC.** The computational model of the
993 preBötC consisted of 300 Hodgkin-Huxley style neurons with equations modified from (Butera et al.,
994 1999a, Butera et al., 1999b). The membrane voltage of each neuron is given by:

995
$$C_m \frac{dv}{dt} = I_{Na} + I_K + I_{leak} + I_{NaP} + I_{opiod} + I_{syn}$$

996 Where the currents are

997
$$I_{Na} = g_{Na} \cdot m_{\infty}^3 \cdot (1 - n) \cdot (v - E_{Na})$$

998
$$I_K = g_K \cdot n^4 \cdot (v - E_K)$$

999
$$I_{NaP} = g_{NaP} \cdot m_{NaP\infty} \cdot h \cdot (v - E_{Na})$$

1000
$$I_{leak} = g_{leak} \cdot (v - E_{leak})$$

1001
$$I_{opiod} = \begin{cases} I_{opiod}, & Oprm1^+ \\ 0pA, & Oprm1^- \end{cases}$$

1002 And:

1003
$$\frac{dn}{dt} = \frac{(n_{\infty} - n)}{\tau_n}$$

1004
$$\frac{dh}{dt} = \frac{(h_{\infty} - h)}{\tau_h}$$

1005
$$m_{\infty} = \frac{1}{1 + e^{\left(\frac{v - v_m}{\sigma_m}\right)}}$$

1006
$$n_{\infty} = \frac{1}{1 + e^{\left(\frac{v - v_n}{\sigma_n}\right)}}$$

1007
$$m_{NaP\infty} = \frac{1}{1 + e^{\left(\frac{v - v_{mNaP}}{\sigma_{mNaP}}\right)}}$$

1008
$$h_{\infty} = \frac{1}{1 + e^{\left(\frac{v - v_h}{\sigma_h}\right)}}$$

1009
$$\tau_n = \frac{\tau_{nb}}{\cosh\left(\frac{v - v_n}{2\sigma_n}\right)}$$

1010
$$\tau_h = \frac{\tau_{hb}}{\cosh\left(\frac{v - v_h}{2\sigma_h}\right)}$$

1011 The synaptic currents for neuron post-synaptic neuron i are given by (REF Destexhe):

1012
$$I_{syn,i} = \sum_{j \in OPRM1^+: j \rightarrow i} (1 - syn_{opiod}) \cdot g_E s_{ij} (V_i - E_{synE})$$

1013
$$+ \sum_{j \in OPRM1^-: j \rightarrow i} g_E s_{ij} (V_i - E_{synE}) + \sum_{j \in I: j \rightarrow i} g_I s_{ij} (V_i - E_{synI})$$

1014 So that if pre-synaptic neuron j is $OPRM1^+$, the excitatory conductance of the $j \rightarrow i$ synapse is scaled by
1015 the controlled parameter $syn_{opiod} = [0,1]$. The dynamics of the synapses are governed by:

1016
$$\frac{ds}{dt} = \frac{(1 - s_{ij}) m_{\infty}^{(ij)}(V_j) - s_{ij}}{\tau_{syn}}$$

1017
$$m_{\infty}^{(ij)}(V_j) = \frac{1}{1 + e^{\frac{V_j - \theta_{syn}}{\sigma_{syn}}}}$$

1018 Global parameters are listed in Table 1, and cell specific parameters are listed in Table 2.

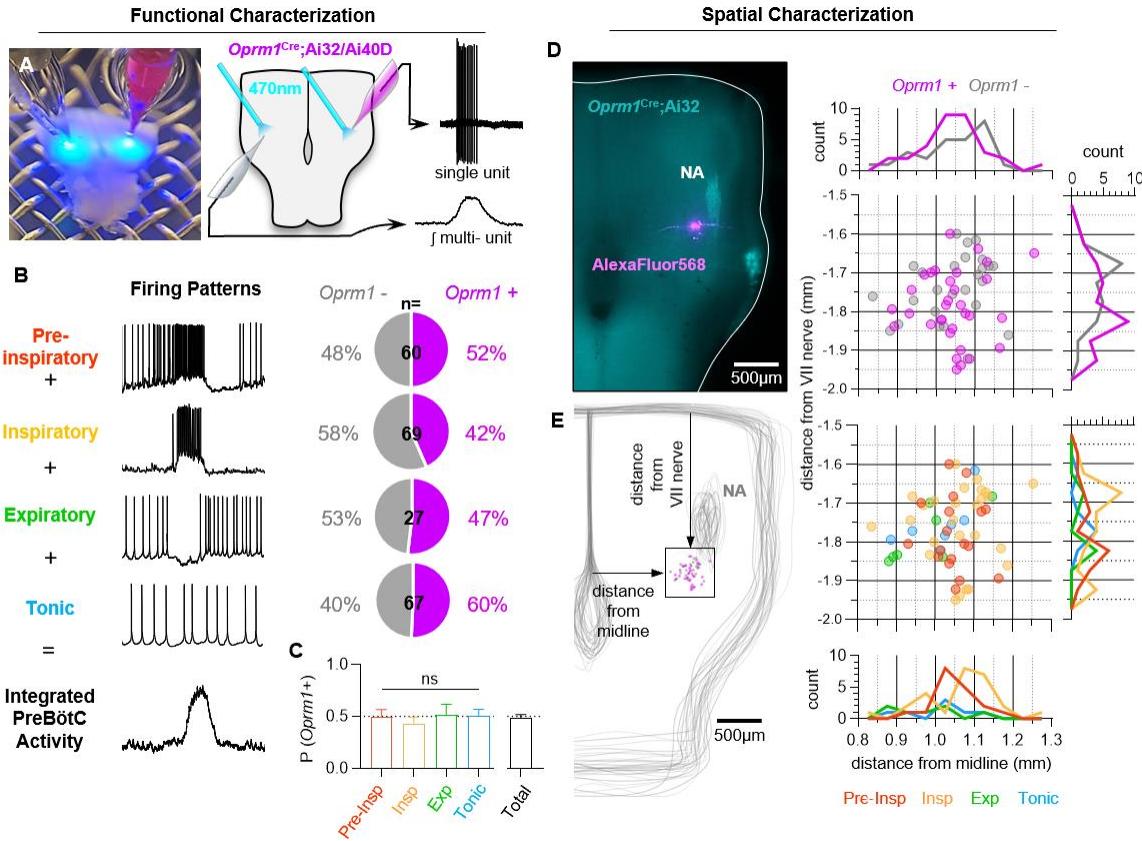
1019 We vary I_{opiod} from 0 to 6 pA in steps of 0.5 pA, and syn_{opiod} from 0 to 0.6 in steps of 0.05. I_{opiod} and
1020 syn_{opiod} were set to zero during “control” conditions, and to a proscribed value during simulated MOR
1021 activation. Connectivity was generated randomly with probability $p = \frac{k_{avg}}{2(N-1)}$ where $k_{avg} = 6$; $N =$
1022 300. Eight replicates were performed of each combination of I_{opiod} and syn_{opiod} by initializing the
1023 random number generator with an integer seed in [0,7]. All simulations were performed in python using
1024 Brian2, and code is available at <https://github.com/nbush257/oprm1> and upon request.

1025 Simulated population rates were smoothed with a gaussian kernel with $\sigma = 25$ ms, and bursts were
1026 defined as excursions of the population rate above 10 sp/s.

1027 **Quantification and statistical analysis.** Effects of MOR activation on the spiking activity of individual
1028 preBötC neurons (Figure 2), were quantified from ~10-20 consecutive respiratory cycles during the last
1029 2min of each dose of DAMGO. Action potentials and integrated preBötC population bursts were detected
1030 using the threshold search function in Clampfit (Molecular Devices). Spike times were compared to onset

1031 and offset times of preBötC population bursts to quantify spike frequencies specifically between (inter-
1032 burst interval) or during bursts. For pre-inspiratory neurons, average spiking frequency at baseline and
1033 in 300nM DAMGO was also quantified over the course of the inter-burst interval. Spike times were
1034 normalized relative to the duration of each IBI, and instantaneous spike frequencies were averaged within
1035 1000-time bins between the start and end of the IBI. To quantify changes in total preBötC population
1036 spiking *in vitro* and *in vivo* between inspiratory bursts (IBI) in response to MOR activation, background
1037 noise was measured with in the aCSF bath, but prior to contacting the surface of slices with the recording
1038 electrode. This noise value was then subtracted from the amplitude of the integrated population recording
1039 during ~10-20 consecutive IBIs to estimate “total spiking activity” during this period (Figure 3A). IBI
1040 spiking was then measured during subsequent MOR activation or optogenetic manipulations and
1041 normalized to the baseline value. Failed bursts were distinguished from successful bursts in they were
1042 >2 standard deviations from the mean burst amplitude. MOR induced changes in evoked EPSP
1043 amplitudes (Figure 5D,E) were determined by unilaterally stimulating *Oprm1*+ preBötC neurons while
1044 recording V_m from neurons in the contralateral preBötC. In responsive neurons, 50-100 trials containing
1045 a 10ms light pulse were delivered at baseline, and in 50 and 300 nM DAMGO and evoked EPSP
1046 amplitudes were averaged across all trials.

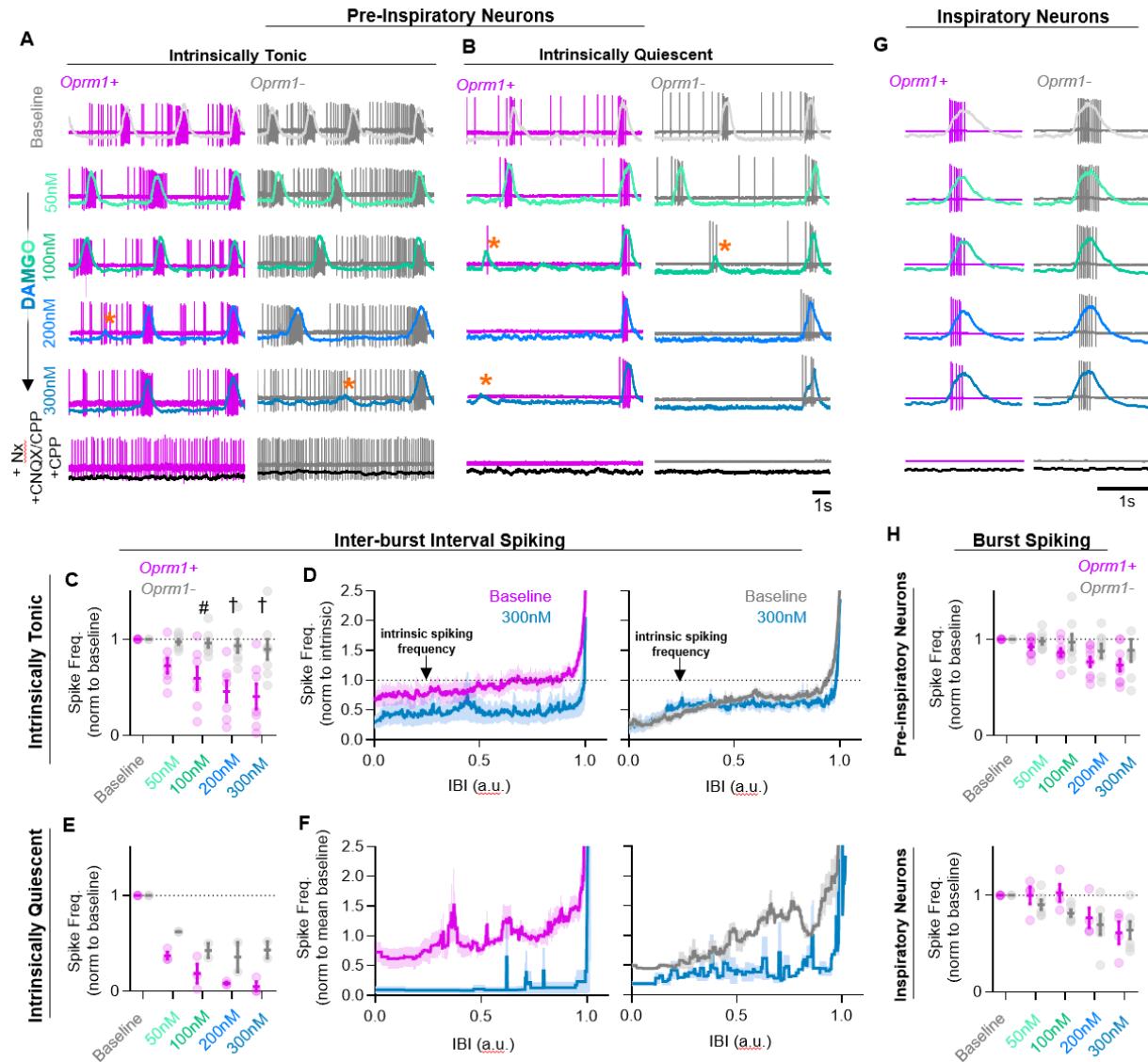
1047 Statistical comparisons were performed using GraphPad Prism8 software. Groups were compared using
1048 appropriate two-tailed t-tests, or one-way or two-way ANOVAs with Bonferroni’s multiple comparisons
1049 post hoc tests. Differences were considered significant at $p<0.05$ and data are displayed as
1050 means \pm standard error. For all post hoc statistical comparisons, p-values are designated in the figures as
1051 follows: * $p<0.05$, # $p<0.01$, † $p<0.001$, ‡ $p<0.0001$. Data was visualized and figures were assembled
1052 using a combination of Clampfit, GraphPad, and PowerPoint software.


1053
1054
1055

1056 **Figures and Legends**

1057

1058


1059

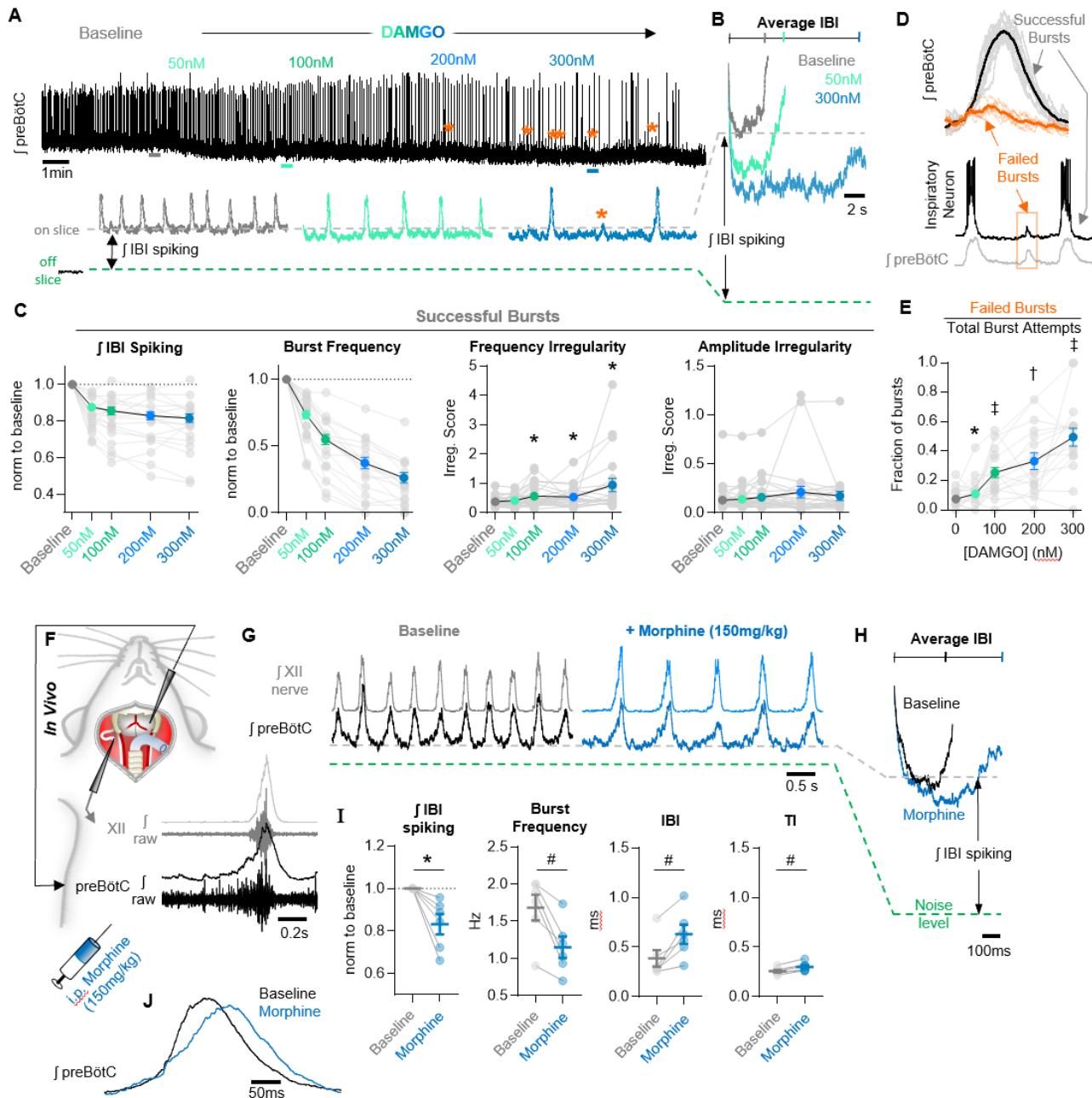
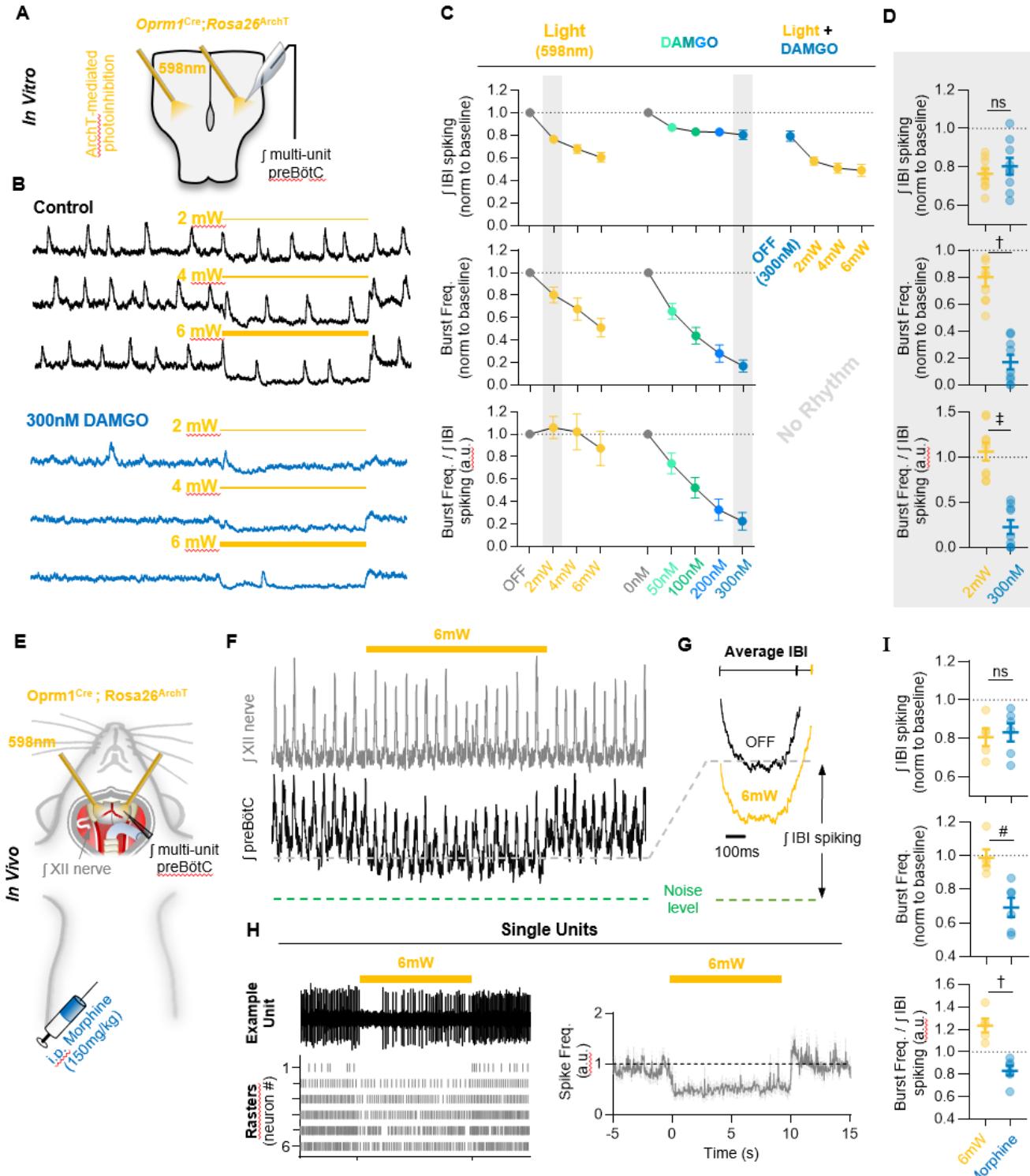
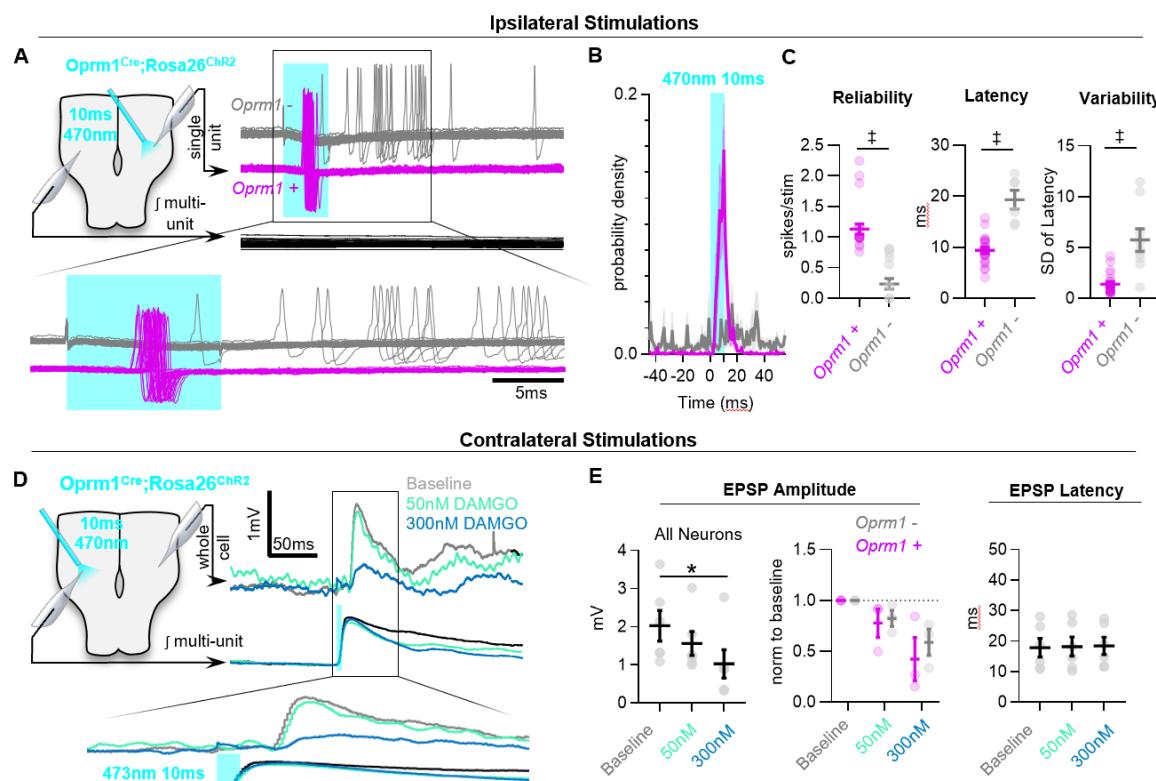

1060

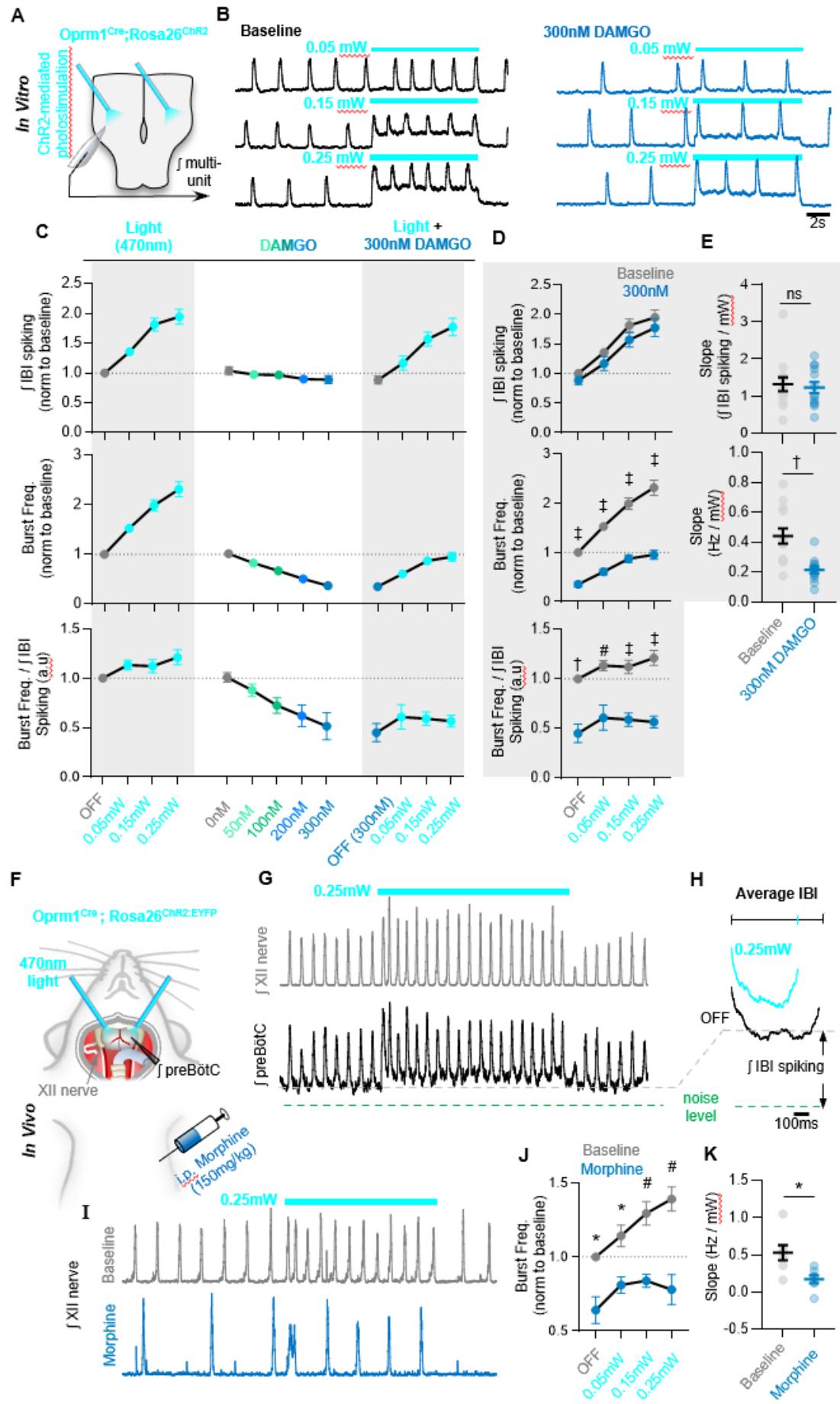
Figure 1: Characterization of *Oprm1*+ neuron discharge identities and spatial distributions in the preBötC.


A) Image (left) and schematic (right) illustrating the approach to optotag functionally identified single units in horizontal brainstem slices. **B)** Discharge identities of n= 223 preBötC neurons and quantification of *Oprm1* expression among each type demonstrating that **C)** *Oprm1* is evenly expressed in ~50% of all preBötC neuron types [one-way ANOVA (p=0.82) with Bonferroni post hoc tests]. **D)** Image of EYFP (cyan) and Alexa598 (magenta) fluorescence in a *Oprm1*^{Cre}; *Rosa26*^{ChR2} (Ai32) horizontal brainstem slice following an intracellular recording experiment. Note the enriched expression of *Oprm1* within the nucleus ambiguus (NA). **E)** Quantified locations of (n=58) recorded preBötC neurons, caudal and slightly medial to the compact region of the NA, and 2D distributions in the horizontal plane of *Oprm1*+ and *Oprm1*- neurons and pre-inspiratory (pre-Insp), inspiratory (insp), expiratory (exp), and tonic neurons.

1071 **Figure 2: Effects of MOR activation on spiking activity of pre-inspiratory and inspiratory preBötC neurons.**
1072 Example cell-attached recordings from *Oprm1+* and *Oprm1-* intrinsically tonic (A) and intrinsically quiescent
1073 (B) pre-inspiratory neurons during increasing concentrations of DAMGO (50-300 nM) and following
1074 subsequent blockade of MOR activation (5 μ M Naloxone, Nx) and excitatory synaptic transmission (20 μ M
1075 CNQX and CPP). Orange asterisks indicate burst failures. C) Comparison of average IBI spiking frequency
1076 normalized to intrinsic spiking activity (dotted line) of *Oprm1+* and *Oprm1-* neurons during the IBI at baseline
1077 and in 300 nM DAMGO. E) Average IBI spiking frequency from intrinsically quiescent *Oprm1+* and *Oprm1-*
1078 pre-inspiratory neurons during increasing concentrations of DAMGO [two-way RM ANOVA (p=0.045) and
1079 Bonferroni post hoc tests]. F) Instantaneous spike frequency normalized to mean baseline IBI spike rate of
1080 *Oprm1+* and *Oprm1-* neurons during the IBI at baseline and in 300 nM DAMGO. G) Example cell-attached
1081 recordings from *Oprm1+* and *Oprm1-* inspiratory neurons during increasing concentrations of DAMGO and
1082 following subsequent application of Naloxone and blockade of excitatory synaptic transmission. H)
1083 Comparison of average spike frequencies during inspiratory bursts (norm to baseline) in *Oprm1+* and
1084 *Oprm1-* pre-inspiratory neurons (top) (two-way RM ANOVA, p=0.187) and inspiratory neurons (bottom)
1085 (two-way RM ANOVA, p=0.41) during increasing concentrations of DAMGO.


1088 **Figure 3: Network-level effects of MOR activation on spiking activity in the preBötC *in vitro* and *in vivo*.**
1089 **A)** Representative \int preBötC activity from a horizontal slice during increasing concentrations of DAMGO.
1090 Orange asterisks indicate burst failures. **B)** Averaged inter-burst intervals at baseline and in DAMGO
1091 demonstrating changes in IBI spiking. **C)** Quantified IBI spiking, burst frequency, frequency irregularity,
1092 and amplitude irregularity ($n=30$) (one-way ANOVA with Bonferroni post hoc tests). **D)** Averaged
1093 successful bursts compared to burst failures (top) and example intracellular recording during a failed burst
1094 (bottom). **E)** Quantified fraction of burst failures during increasing concentrations of DAMGO [RM mixed-
1095 effects model ($p<0.0001$) with Bonferroni post hoc tests]. **F)** Schematic of *in vivo* experimental preparation
1096 with example simultaneous \int XII and \int preBötC recordings. **G)** Representative \int XII and \int preBötC activity at
1097 baseline and following *i.p.* morphine. **H)** Averaged IBIs at baseline and following morphine. **I)** Quantified
1098 IBI spiking, breathing frequency, inter-burst interval, and inspiratory time (TI) ($n=6$; ratio paired t-tests). **J)**
1099 Example changes in preBötC burst morphology in response to morphine administration *in vivo*.

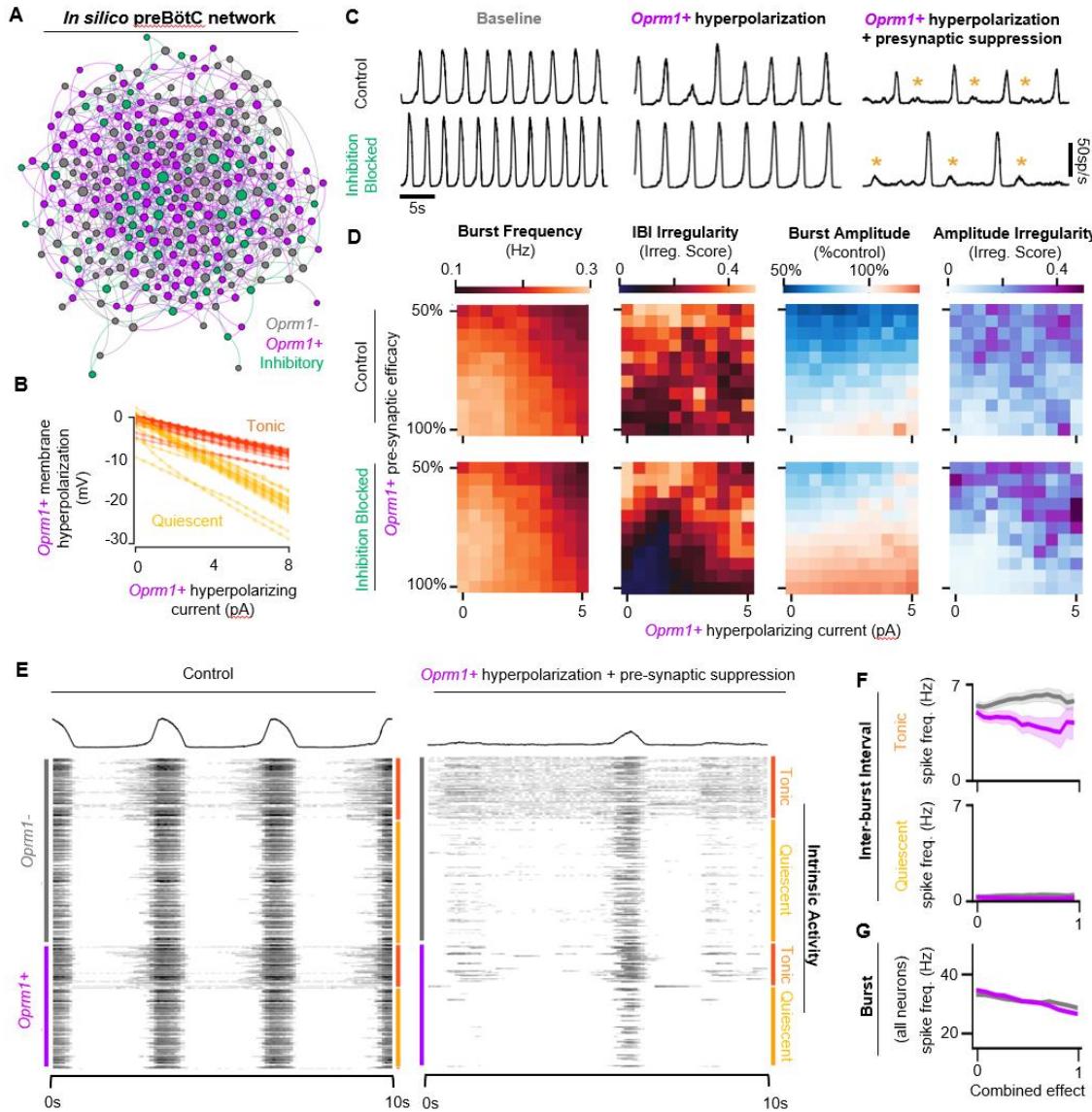
1100 **Figure 4: Mimicking opioid induced changes in preBötC spiking does not phenocopy OIRD. A)** Schematic
1101 of experimental design using *Oprm1*^{Cre}·*Rosa26*^{ArchT} horizontal brainstem slices. **B)** Example \int preBötC
1102 recordings during bilateral photoinhibition of preBötC^{*Oprm1*} neurons at baseline and following OIRD. Note the
1103 continued suppression of preBötC spiking activity following silencing of rhythmogenesis with DAMGO. **C)**
1104 Quantification of \int IBI spiking, burst frequency, and the burst frequency/ \int IBI spiking ratio in n=9 slices during


1105 baseline photoinhibition of *Oprm1*⁺ preBötC neurons, during increasing concentrations of DAMGO, and
1106 during photoinhibition in 300 nM DAMGO. **D**) Comparison of changes in IBI spiking, burst frequency, and
1107 the burst frequency/IBI spiking ratio during 2mW photoinhibition and 300 nM DAMGO. Data corresponds
1108 to gray highlighted regions in panel C. (two-tailed paired t-tests). **E**) Schematic of anesthetized *in vivo*
1109 experimental preparation and **F**) example JXII and JpreBötC recordings during bilateral photoinhibition of
1110 *Oprm1*⁺ preBötC neurons. **G**) Average JIBI spiking activity at baseline (OFF) and during photoinhibition. **H**)
1111 Example single unit recording (top left) rasters (bottom left), and average spike frequency (right) from n=6
1112 preBötC neurons during a 10-s pulse of 598 nm 6 mW light. **I**) Comparison of changes in IBI spiking, burst
1113 frequency, and the burst frequency/IBI spiking ratio elicited during 6-mW bilateral photoinhibition and
1114 following *i.p.* morphine (two-tailed paired t-tests).

1115
1116
1117
1118

1119 **Figure 5: MOR activation impairs synaptic transmission in the preBötC.** **A)** Example responses of *Oprm1*⁺
1120 and *Oprm1*⁻ preBötC neurons to direct (ipsilateral) photostimulation. **B)** Probability density histogram of
1121 spikes before, during, and after a 10ms light pulse (1ms bins). **C)** Quantified number of spikes evoked
1122 per stimulation, latency to spike from light onset, and variability in spike latencies from n=22 *Oprm1*⁺ and
1123 n=6 *Oprm1*⁻ neurons (unpaired t-tests). **D)** Example experiment showing averaged EPSPs evoked during
1124 contralateral photostimulation under baseline conditions and in 50 and 300 nM DAMGO (n=6 of 30 neurons
1125 exhibited EPSPs during contralateral stimulations). **E)** Quantified evoked EPSP amplitudes and latencies
1126 from n=6 neurons [left: RM one-way ANOVA (p=0.011); middle: RM two-way ANOVA (p=0.600); right: RM
1127 one-way ANOVA (p=0.511)].

1128



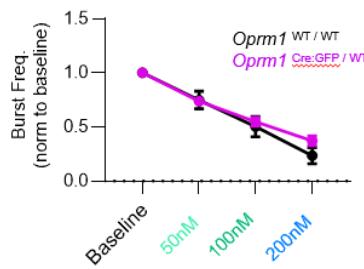
1129 **Figure 6:** The ability of *Oprm1*⁺ neurons to drive preBötC activity is reduced by MOR activation. **A)**
1130 Experimental schematic and **B)** example preBötC activity at baseline and in 300 nM DAMGO during
1131 bilateral photostimulation of *Oprm1*⁺ neurons. **C)** Quantification of Δ IBI spiking, burst frequency, and the
1132 burst frequency/ Δ IBI spiking ratio in n=13 slices during baseline photostimulation of *Oprm1*⁺ preBötC
1133 neurons, during increasing concentrations of DAMGO, and during photoinhibition in 300 nM DAMGO. **D)**
1134 Comparison of light-induced changes in IBI spiking, burst frequency, and the burst frequency/IBI spiking
1135 ratio. Data corresponds to gray highlighted regions in panel C (two-way ANOVA). **E)** Quantified slope of IBI
1136 spiking and burst frequency responses to increasing power of light stimulations (paired t-tests). **F)**
1137 Schematic of in-vivo preparation and **G)** representative XII and Δ preBötC activity during 10-s bilateral
1138 photostimulation of *Oprm1*⁺ neurons. **H)** Averaged Δ IBI activity at baseline (OFF) and during
1139 photostimulation. **I)** Example inspiratory rhythm (XII) during bilateral photostimulation at baseline and
1140 following *i.p.* morphine. **J)** Quantified changes in inspiratory frequency evoked by photostimulation at
1141 baseline and after morphine from n=5 anesthetized mice (two-way ANOVA). **K)** Quantified slope of burst
1142 frequency responses to increasing power of light stimulations (paired t-test).


1143

1144

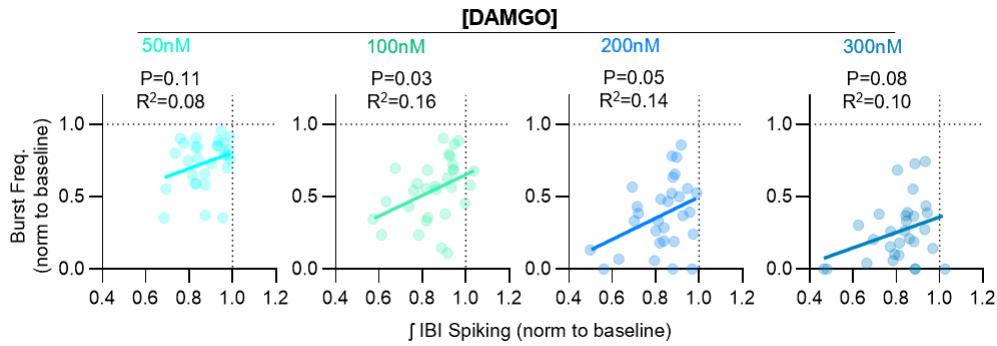
1145

1146 **Figure 7:** Modelling preBötC MOR activation *in silico*. **A)** Example model network structure. Model
 1147 networks were connected randomly and contained excitatory (80%) and inhibitory neurons (20%) that were
 1148 intrinsically tonic (35%) or quiescent (65%). Half of all excitatory neurons were designated as *Oprm1+*.
 1149 Node size and centrality represent the number of synaptic connections. **B)** Current/Voltage plots for the applied opioid driven
 1150 hyperpolarization. **C)** Example rhythmic activity from the network shown in (A) at baseline, during 6 pA
 1151 hyperpolarization of *Oprm1+* neurons, and during 6 pA hyperpolarization and a 45% reduction in pre-
 1152 synaptic efficacy of *Oprm1+* neurons. Orange asterisks indicate burst failures. **D)** Heat maps showing the
 1153 isolated and combined effects of *Oprm1+* neuron hyperpolarization and pre-synaptic suppression on
 1154 characteristics of the network rhythm. **E)** Example spiking activity of all 300 neurons in the model network
 1155 at baseline and during simulated MOR activation (6pA hyperpolarization and 45% pre-synaptic suppression
 1156 of *Oprm1+* neurons). **F)** Quantified inter-burst interval (IBI) spike frequencies of intrinsically tonic and
 1157 quiescent *Oprm1+* and *Oprm1-* neurons during simulated MOR activation. **G)** Spike frequency during
 1158 network bursts for all *Oprm1+* and *Oprm1-* model neurons during simulated MOR activation (combined
 1159 effect of 1 designates 6pA hyperpolarization and 55% pre-synaptic efficacy of *Oprm1+* neurons). Data
 1160 shown as mean \pm SE.



1162 **Supplemental Figure 1:** *Oprm1* in situ hybridization experiments #69860840 and #79912572 from the
1163 Allen Mouse Brain Atlas (Lein et al., 2007) (https://mouse.brain-map.org/search/show?page_num=0&page_size=25&no_paging=false&exact_match=false&search_term=Oprm1&search_type=gene) showing diffuse expression of *Oprm1* gene transcripts within the preBötC
1164 region and adjacent Nucleus Ambiguus.
1165
1166

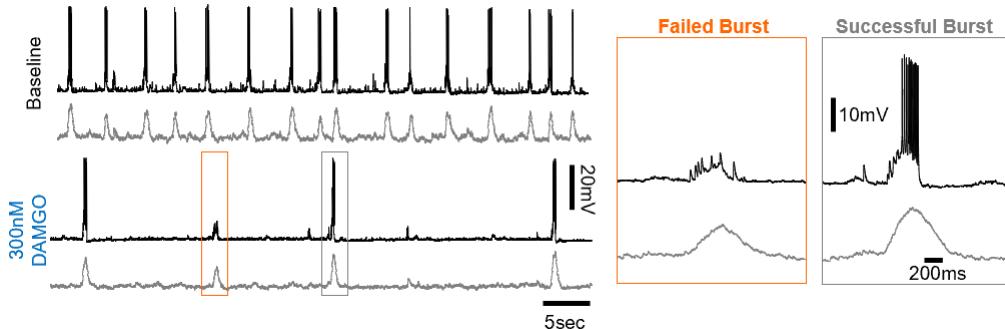
1167


1168

1169

1170

1171 **Supplemental Figure 2:** DAMGO has similar effects on inspiratory burst frequency generated by wild-
1172 type (*Oprm1*^{WT / WT}) and heterozygous (*Oprm1*^{Cre:GFP / WT}) horizontal brainstems slices. Two-way RM
1173 ANOVA with Bonferroni's multiple comparisons tests. Data shown and means \pm SE.


1174 **Supplemental Figure 3:** Relationships between DAMGO-induced changes in inspiratory burst
1175 frequency and integrated inter-burst interval spiking in horizontal brainstem slice preparations. Linear
1176 regression analysis.

1177

1178

1179

1180

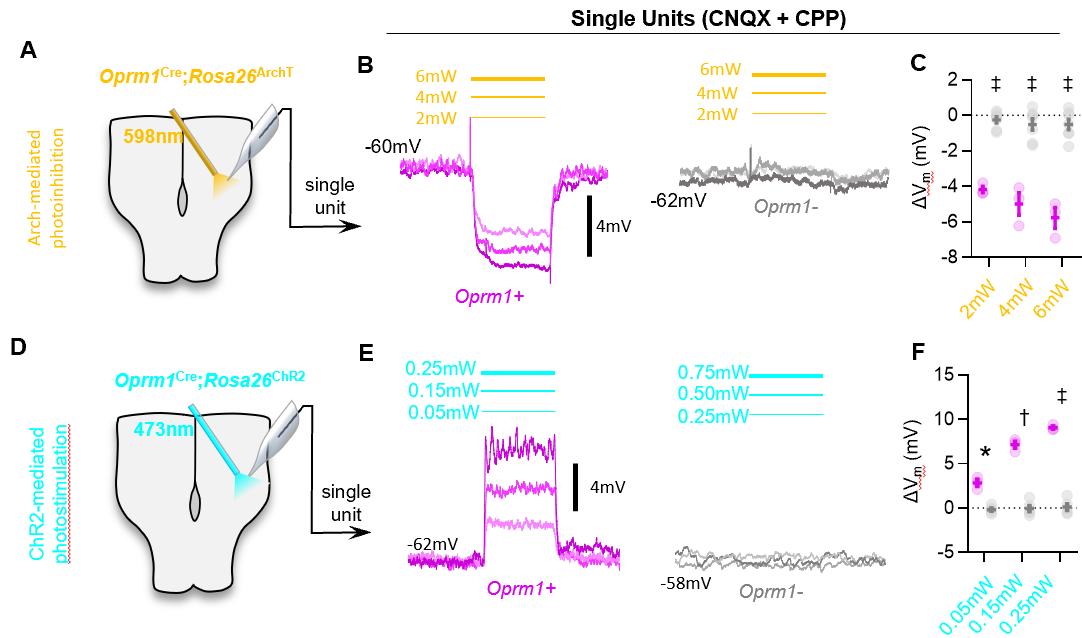
1181 **Supplemental Figure 4:** Example whole cell recording from an inspiratory neuron (top) and
1182 corresponding rhythmic multi-unit activity from the contralateral preBötC at baseline and in 300 nM
1183 DAMGO. Note that during failed population bursts in 300 nM DAMGO, the inspiratory neuron receives
1184 synaptic inputs that are not sufficient to recruit the neuron to spike.

1185

1186

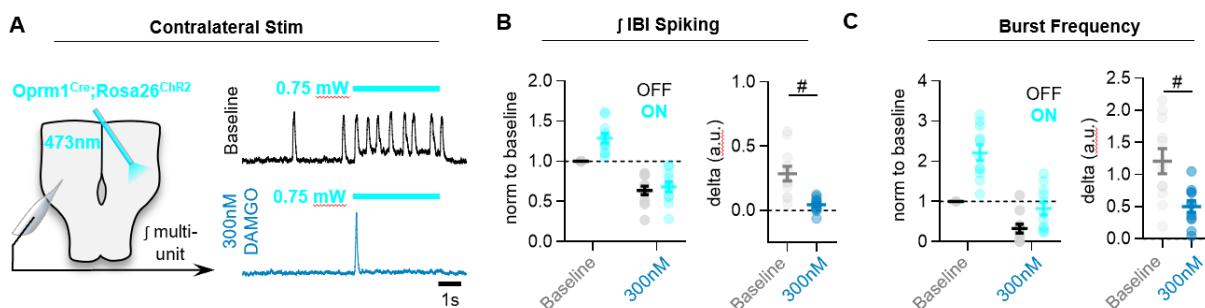
1187

1188

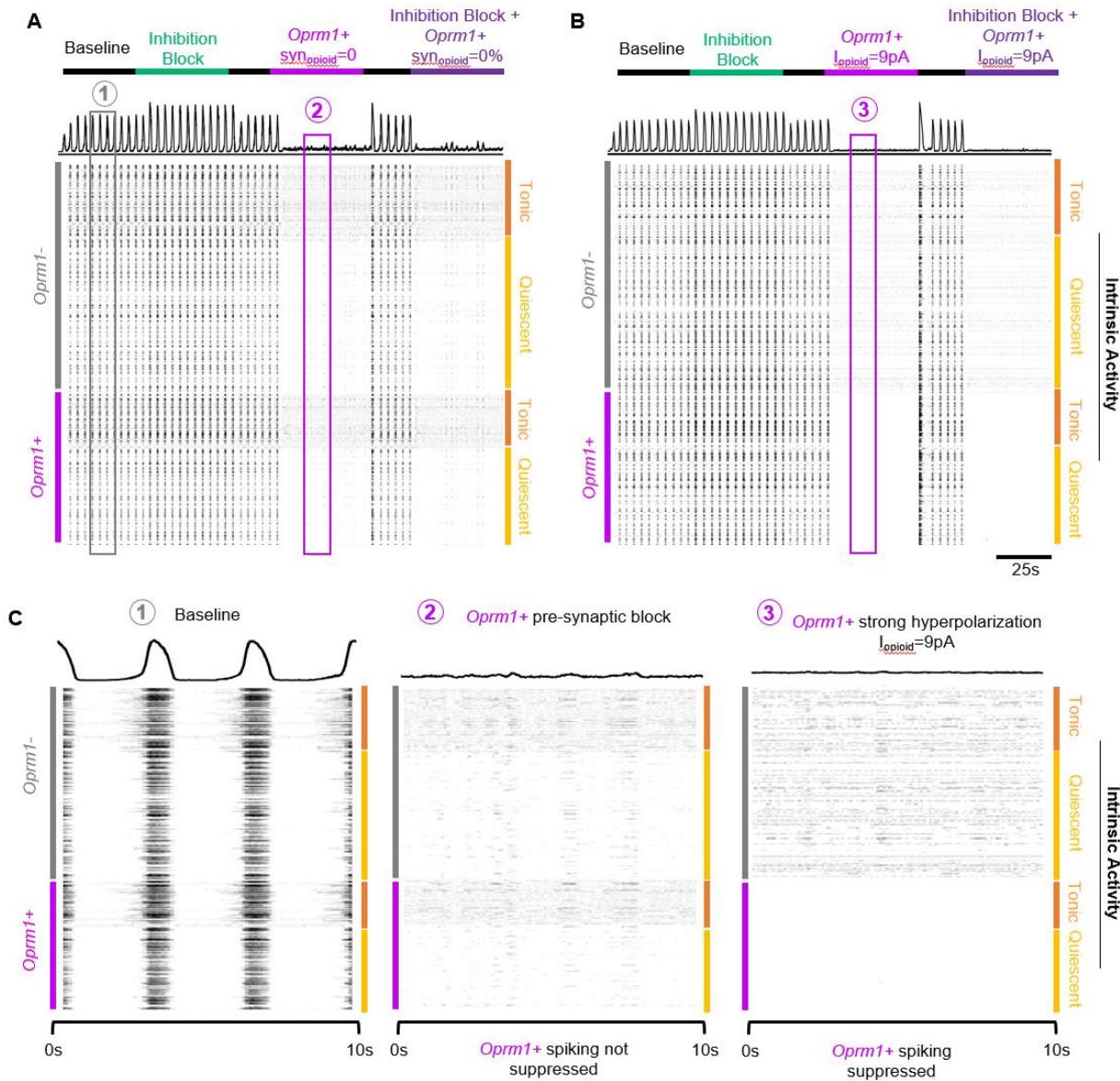

1189

1190

1191


1192

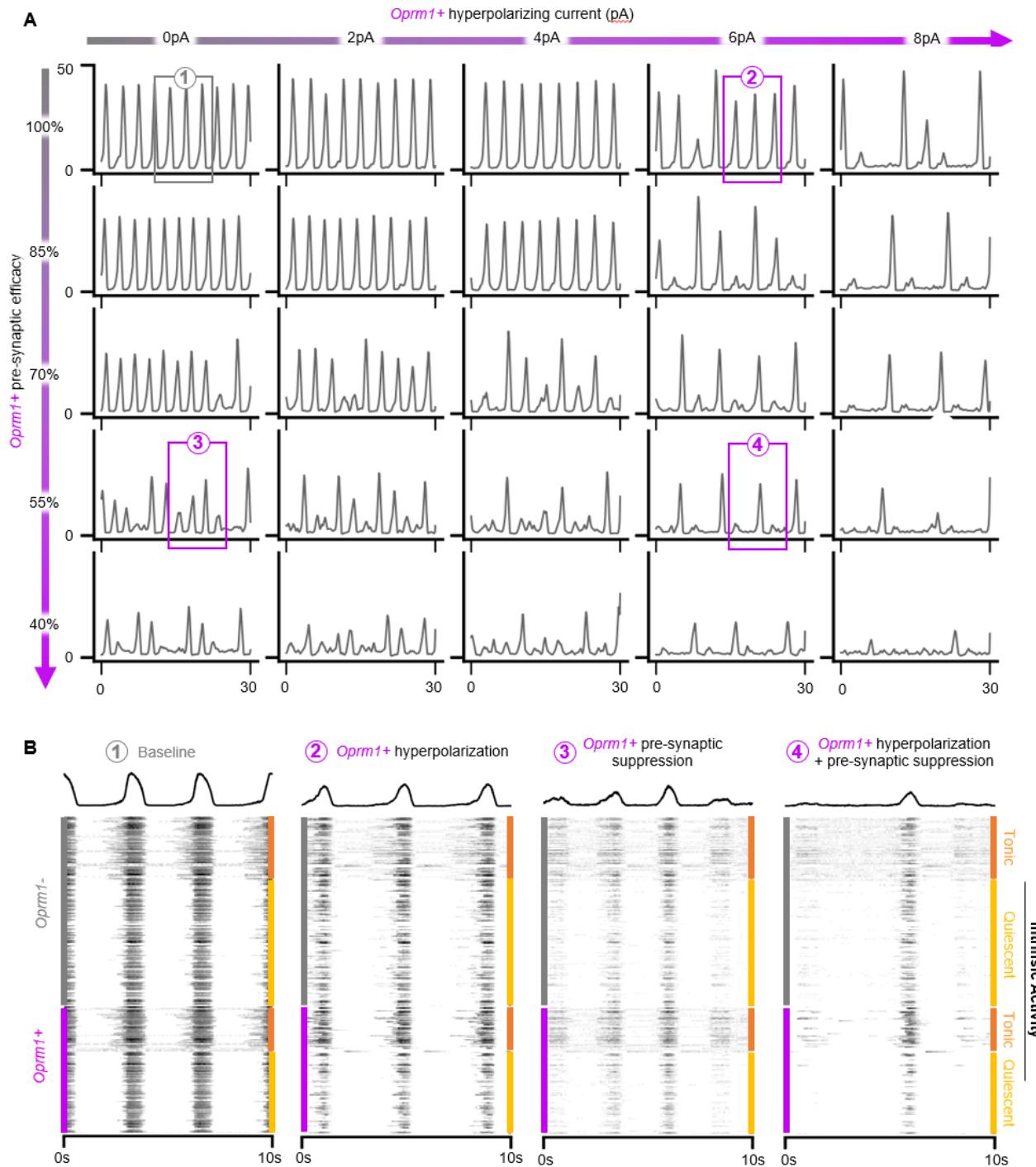
1193



1194 **Supplemental Figure 5:** Optogenetic hyperpolarization and depolarization of *Oprm1*⁺ preBötC neurons.
1195 **A)** Schematic of experiments in *Oprm1*^{Cre}; *Rosa26*^{ArchT} horizontal brainstem slices. **B)** Example average
1196 membrane potential of an *Oprm1*⁺ and an *Oprm1*⁻ preBötC neuron during 2mW, 4mW, and 6mW 598nm
1197 light pulses (3-5 trials/power). **C)** Quantified change in membrane potential (ΔV_m) from *Oprm1*⁺ (n=3) and
1198 *Oprm1*⁻ (n=7) neurons during photoinhibition (two-way RM ANOVA ($p<0.0001$) with Bonferroni's multiple
1199 comparisons tests). **D)** Schematic of *Oprm1*^{Cre}; *Rosa26*^{ChR2} experiments. **E)** Averaged membrane potential
1200 of example *Oprm1*⁺ and *Oprm1*⁻ preBötC neurons during 0.05, 0.15, and 0.25-mW 473-nm light pulses (3-
1201 5 trials/power). **F)** Quantified ΔV_m from *Oprm1*⁺ (n=3) and *Oprm1*⁻ (n=5) neurons during photostimulation
1202 (two-way RM ANOVA ($p<0.0001$) with Bonferroni's multiple comparisons tests). Data shown as mean \pm SE.

1203
1204
1205

1206 **Supplemental Figure 6:** MOR activation limits the ability of commissural *Oprm1*⁺ neurons to drive
1207 activity in the contralateral preBötC. **A)** Experimental schematic and representative preBötC recordings at
1208 baseline and in 300 nM DAMGO during a 10-s photostimulation of contralateral *Oprm1*⁺ neurons. **B)**
1209 Quantified effects on inter-burst interval spiking, and **C)** inspiratory burst frequency (two-tailed paired t-
1210 tests). Data shown as mean \pm SE.



1211

1212 **Supplemental Figure 7:** A simulated data-driven *Oprm1+* subpopulation is necessary for
1213 rhythmogenesis in an *in silico* preBötC model network. **A)** Example integrated population activity and spike
1214 rasters at baseline and during blockade of pre-synaptic transmission from *Oprm1+* neurons ($syn_{\text{oopioid}}=0$)
1215 with and without inhibitory synaptic interactions (inhibition block). **B)** Example integrated population activity
1216 and spike rasters at baseline and during a strong hyperpolarization ($I_{\text{oopioid}}=9\text{pA}$) of *Oprm1+* neurons with
1217 and without concurrent blockade of inhibitory synapses. **C)** Expanded view of integrated rhythmic activity
1218 and corresponding spike rasters of all 300 model neurons during baseline (left), *Oprm1+* pre-synaptic block
1219 (middle), and strong *Oprm1+* hyperpolarization (right). Note that in both cases the network rhythm is
1220 silenced despite distinct effects on the spiking activity of *Oprm1+* neurons.

1221

1222

1223 **Supplemental Figure 8:** OIRD in the preBötC is best modelled by concurrent hyperpolarization and pre-
 1224 synaptic suppression of a simulated *Oprm1*⁺ subpopulation. **A)** Rhythmic activity of a representative model
 1225 network during independent or concurrent *Oprm1*⁺ neuron hyperpolarization and/or pre-synaptic
 1226 suppression. **B)** Expanded view of network activities shown in (A) and corresponding spiking activity from
 1227 all 300 model neurons.

1228

Conductances		Gating and kinetics	
C_m	21pF	τ_n	10ms
g_{Na}	28nS	τ_h	10s
g_K	11.2nS	v_m	-34mV
g_{NaP}	$\mathcal{N}(0.8, 0.05)nS$	v_n	-29mV
g_E	4.5nS	v_{m_p}	-40mV
g_I	4.5nS	v_h	-48mV
Reversal potentials		σ_m	
E_{Na}	50mV	σ_n	
E_K	-85mV	σ_{m_p}	
E_{leak}	-58mV	σ_h	
E_{synE}	0mV	τ_{syn}	
E_{synI}	-70mV	θ_s	
		σ_{syn}	

1229 **Supplemental Table 1:** Global cell parameters for *in silico* preBötC neurons

1230

1231

1232

1233

1234

1235

1236

1237

1238

N = 300, $k_{avg} = 6$		
20% Inh, 40% $Oprm1^+$, 40% $Oprm1^-$		
Neuron Type	g_{leak}	% of Pop.
Tonic	$\mathcal{N}(0.5, 0.05) nS$	35%
Quiescent	$\mathcal{N}(1.2, 0.05) nS$	65%

1239 **Supplemental Table 2:** Network parameters for *in silico* preBötC network