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Abstract 
Microbial populations and communities are heterogeneous, yet capturing their diverse activities has 
proven challenging at the relevant spatiotemporal scales. Here we present par-seqFISH, a targeted 
transcriptome-imaging approach that records both gene-expression and spatial context within microscale 
assemblies at a single-cell and molecule resolution. We apply this approach to the opportunistic bacterial 
pathogen, Pseudomonas aeruginosa, analyzing ~600,000 individuals across dozens of physiological 
conditions in planktonic and biofilm cultures. We explore the phenotypic landscape of this bacterium and 
identify metabolic and virulence related cell-states that emerge dynamically during growth. We chart the 
spatial context of biofilm-related processes including motility and kin-exclusion mechanisms and identify 
extensive and highly spatially-resolved metabolic heterogeneity. We find that distinct physiological states 
can co-exist within the same biofilm, just a few microns away, underscoring the importance of the 
microenvironment. Together, our results illustrate the complexity of microbial populations and present a 
new way of studying them at high-resolution. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432792doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432792
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 
Life exists in context. Cells within microbial populations and communities are typically closely 
associated with one another in multicellular biofilms, whether found within infected tissues, attached to 
diverse surfaces, or forming assemblages in the deep sea (Costerton et al., 1987; Flemming and Wuertz, 
2019). Natural microbiota and infectious bacteria generally exist in biofilm aggregates that are on the 
order of several dozen microns and which can contain many interacting species (DePas et al., 2016; Mark 
Welch et al., 2016; Schaber et al., 2007). Despite the ubiquity of the biofilm lifestyle in both natural and 
manmade habitats, understanding what life is like within it for individual microbes has proven highly 
challenging. While single-cell level activities have been tracked at high spatial resolution using a variety 
of approaches in diverse contexts (Chadwick et al., 2019; Hatzenpichler et al., 2020; Jorth et al., 2019), 
we have been unable to resolve the hundreds if not thousands of concurrent activities that characterize 
microbial life at relevant spatiotemporal scales. What we understand about microbial life literally has 
been limited by our ability to see. 

Despite this limitation, it has become clear in recent years that extreme phenotypic heterogeneity defines 
the microbial experience (Ackermann, 2015; Evans et al., 2020). This is as true for isogenic populations 
as it is for complex biofilm communities. Clonemates sampled from the same environment often display 
significant differences that are thought to result from stochastic gene-expression and variable 
environmental factors (Ackermann, 2015; Schreiber and Ackermann, 2019; Schreiber et al., 2016). The 
detection of phenotypic diversity even in seemingly well-mixed environments such as chemostats (Kopf 
et al., 2015; Schreiber et al., 2016) also serves as a powerful reminder that life at the microscale may 
inhabit far more diverse niches than are readily apparent. Phenotypic diversity has been rationalized as 
providing microbes with a fitness advantage in an unpredictable world (Ackermann, 2015; Veening et al., 
2008). In addition, specialized functions have been proposed to underpin collective interactions such as 
division of labor (Ackermann, 2015; Armbruster et al., 2019; Diard et al., 2013; Rosenthal et al., 2018). 
However, little is still known about the range of possible cellular phenotypic states and their roles in most 
biological processes. 

What triggers such phenotypic plasticity, and are there underlying “rules” that govern any patterns that 
may exist at the microscale? In sessile communities, both clonal or multispecies, biological activities give 
rise to changing chemical gradients that create a range of local microenvironments (Stewart, 2003; 
Stewart and Franklin, 2008). Furthermore, spatial organization enables different conflicting metabolic 
states or species to co-exist via physical separation, increasing the potential for diversity and allowing for 
new interactions to emerge (Bocci et al., 2018; Evans et al., 2020; Kotte et al., 2014; Nadell et al., 2016; 
Wolfsberg et al., 2018). Indeed, natural communities often contain many interacting species that assemble 
into intricate spatial structures. These microscale assemblies can promote interactions between species 
and represent a key ecosystem feature (Cordero and Datta, 2016; Nadell et al., 2016). Yet a wide gulf—
limited by technology—still separates such observations from a coherent conceptual framework to 
explain the rules governing microbial ecology.  

Recent advances in imaging methods provide a means to chart the physical associations between different 
species in natural environments (Mark Welch et al., 2016; Shi et al., 2020; Tropini et al., 2017; Wilbert et 
al., 2020). However, interpreting these maps remains challenging without additional functional 
information on the physiological states and activities of relevant community members. In contrast, recent 
adaptions of eukaryotic single-cell RNA-sequencing (scRNA-seq) approaches provide a powerful means 
of exploring the phenotypic landscape of planktonic bacteria (Blattman et al., 2020; Imdahl et al., 2020; 
Kuchina et al., 2021). However, these approaches do not preserve the spatial context of analyzed cells and 
are therefore limited in their capacity to address single and multispecies biofilms. Thus, a major gap exists 
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in our ability to account for both spatial and functional complexity, limiting progression toward a high-
resolution understanding of microbial life. 

Single-molecule fluorescence in situ hybridization (FISH) based technologies have been used to measure 
gene-expression directly within native tissues, recording both spatial and functional information. 
However, while these methods have shed important light on single-cell heterogeneity they have been 
traditionally limited to measuring the expression of only a few genes at a time (Choi et al., 2014; Femino 
et al., 1998; Raj et al., 2008; So et al., 2011). In addition to this limited throughput, single-gene 
measurements do not provide a means to capture coordinated cellular responses—the molecular 
“fingerprint” of multiple biological activities that underpin distinct physiological states. Recent advances 
in combinatorial mRNA labeling and sequential FISH (seqFISH) now allow for hundreds and even 
thousands of genes to be analyzed within the same sample at a sub-micron resolution (Chen et al., 2015; 
Eng et al., 2019; Lubeck et al., 2014). Until now, seqFISH has been used in mammalian systems to 
expose the physical organization of cell states within tissues (Chen et al., 2015; Eng et al., 2019; Lubeck 
et al., 2014; Moffitt et al., 2018; Shah et al., 2016). We reasoned that the high spatial resolution of these 
modern transcriptome-imaging techniques also had the potential to illuminate the microscale organization 
of microbial populations and communities. 

In this study, we adapted and further developed seqFISH for studying bacteria, measuring the expression 
of hundreds of genes within individual cells while also capturing their spatial context. We utilized 
Pseudomonas aeruginosa planktonic and biofilm populations to demonstrate how different cellular 
functions are coordinated in time and space. Our proof-of-concept work illustrates how the ability to 
observe transcriptional activities at the microscale permits insights into the spatiotemporal regulation and 
coordination of critical life processes, enabling hitherto unrecognized, transient physiological states to be 
identified and new hypotheses to be generated. These findings represent the tip of the iceberg and the 
opportunities for discovery our approach enables promise to reveal new insights about the rules governing 
microbial ecology. 

Results 

A sequential mRNA-FISH framework for studying bacterial gene-expression. 

Combinatorial mRNA labeling requires that each measured mRNA molecule be individually resolved. 
However, this is much more challenging in bacteria due to the small size of their cells, as many different 
mRNA molecules occur in close proximity and cannot be resolved using standard fluorescent microscopy. 
We therefore utilized a nonbarcoded seqFISH approach (Lignell et al., 2017).  

In seqFISH, target mRNAs are first hybridized with a set of primary, non-fluorescent probes, which are 
flanked by short sequences uniquely assigned per gene (Figure 1A). Specific genes can be turned “ON” 
via a secondary hybridization with short fluorescently labeled “readout” probes, complementary to the 
gene-specific flanking sequences (Figure 1A). Several genes can be measured at once using a set of 
readout probes labeled with different fluorophores (Methods). Importantly, these short fluorescent readout 
probes can be efficiently stripped and washed away from the sample without affecting the primary probes 
(Shah et al., 2018) (Figure 1A). Thus, once expression is measured, fluorescence can be turned OFF and a 
new set of genes can be measured by introducing a new set of readout probes (Figure 1B). This 2-step 
design allows for potentially hundreds of genes to be measured sequentially, one after the other in the 
same sample, using automated microscopy (Figure 1B). The individual gene mRNA-FISH data can be 
combined into spatially resolved multigene profiles at the single-bacterium level (Figure 1B). 
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Due to the diffraction limit and the small size of bacteria, mRNA-FISH fluorescent signals (appearing as 
spots within cells) can contain overlapping mRNA molecules that cannot be spatially resolved in standard 
microscopes. Thus, counting the number of spots within a bacterial cell severely underestimates 
expression levels. This problem can be overcome by integrating the fluorescent intensity per spot, which 
scales linearly with the number of mRNAs. Fluorescent intensity can be converted to discrete mRNA 
counts by measuring the characteristic intensity of a single transcript. This analog to digital conversion 
approach has been shown to provide a wide dynamic range in bacteria (Skinner et al., 2013; So et al., 
2011). 

We developed seqFISH in the study of Pseudomonas aeruginosa, an opportunistic human pathogen and a 
severe cause of morbidity and mortality in cystic fibrosis (CF) patients (Bhagirath et al., 2016; Malhotra 
et al., 2019). We generated a probe library targeting a set of 105 marker genes that capture many core 
physiological aspects of this pathogen (Tables S1-S2). These included genes involved in biosynthetic 
capacity (ribosome and RNA-polymerase subunits), anerobic physiology (fermentation and denitrification 
pathways), stress responses (oxidative and nutrient limitation), cellular signaling (c-di-GMP), biofilm 
matrix components, motility (flagella and T4P), all major quorum-sensing (QS) systems, as well as 
multiple antibiotic resistance and core virulence factors. In addition, to control for false positives, we 
designed probes targeting three different negative control genes that do not exist in Pseudomonas (Figure 
S1). 
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Figure 1. Parallel and sequential mRNA-FISH in bacteria. 
(A) seqFISH probe design scheme. Primary probes contain unique sequences (Si) that are read by secondary probes  
(colored wands). Each gene is read by a unique probe and its fluorescence can be turned “ON” or “OFF”. (B) 
mRNA-FISH applied sequentially to the same sample. In each cycle, a new set of secondary readout probes are 
introduced. Raw fluorescence data is shown on the right and the detected local spot maxima are shown in the spot 
detection image. Merged spots for many genes shown in shuffled colors. (C) Combinatorial labeling can be used to 
encode species taxonomy using 16S rRNA, or to enable the parallel study of (D) bacteria grown in different 
conditions. 

 

Parallel and sequential mRNA-FISH in single bacterial cells 

To test our bacterial seqFISH approach, we first studied P. aeruginosa grown in well-understood batch 
culture conditions. We performed a growth curve experiment in LB medium, where key parameters such 
as cell density, growth rate, and oxygen levels change in a predictable manner. We collected 11 time 
points representing the lag phase, exponential growth, and stationary phase and imaged them 
simultaneously (Figure 2A). Independent imaging of these samples in a serial manner would have taken 
~3 weeks of automated microscopy time. 
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To perform simultaneous imaging, we developed an efficient multiplexing method that enables parallel 
seqFISH experiments (par-seqFISH). We designed a set of primary probes targeting the 16S rRNA (Ribo-
Tags), which contain unique combinations of flanking sequences (barcodes), that serve as the “readout” in 
a seqFISH run (Figure 1C-D; Table S3). In principle, this multiplexing approach can be applied to 
studying combinations of different species (Figure 1C) or for pooling bacteria from different growth 
conditions (Figure 1D). We validated the latter application by individually labeling the 16S rRNAs of 
each of the 11 growth curve samples with unique Ribo-Tags. The samples were pooled, collectively 
hybridized with the 105 gene probe library, and subjected to sequential hybridizations to measure gene-
expression and to decode cell identity (Figure 2B). We acquired expression profiles for >50,000 
individual P. aeruginosa cells, over 91.8% of which were unambiguously decoded and assigned to the 
condition from which they originated (Figure 2B). We estimate the false positive decoding rate at 0.04% 
(1 in 2500 cells) by counting the number of hits for barcodes left out of the experiment, demonstrating 
both high efficiency and accuracy for par-seqFISH.  

In addition to acquiring mRNA expression profiles, our imaging-based platform permits concurrent 
tracking of key information such as cell size and shape, and can be combined with functional stains, 
markers and/or immunofluorescence measurements (Takei et al., 2021). This opens up the possibility of 
correlating particular expression profiles at the single cell level with integrative physiological or cell 
biological parameters. We applied a 4′,6-diamidino-2-phenylindole (DAPI) stain as a part of the par-
seqFISH experiment and used DAPI fluorescence to estimate the nucleoid size and chromosome copy per 
cell. Comparing cells at different stages of growth shows that both nucleoid size (estimating cell size) and 
chromosome number distributions follow identical trends, in agreement with the P. aeruginosa literature 
(Vallet-Gely and Boccard, 2013) (Figure 2C-D). We also estimated ribosome abundance using 16S rRNA 
fluorescence. Notably, the distribution of this metric differed significantly from that of the chromosome 
parameters, displaying contrasting intensities at different stages of lag phase, increased variability at deep 
stationary and a delay in signal decline during the shift from exponential growth to stationary phase 
(Figure 2E). In contrast, the total number of mRNAs per cell (estimated by our 105 genes) differentiates 
each time point along the growth curve, reaching a maxima and minima at the fastest and slowest growth 
rates, respectively (Figure 2F). These data further support the accuracy of our par-seqFISH multiplexing 
approach and demonstrate the unique ability of this method to integrate single cell gene-expression with 
global parameters. 

To examine whether our expression profiles faithfully capture known physiological processes that occur 
during culture development, we grouped the cells according to their decoded conditions and calculated 
their average gene expression profiles. We find a temporally resolved expression pattern associated with 
different stages of growth (Figure 2G). For example, genes representing high replicative/biosynthetic 
capacity such as those involved in RNA and protein biosynthesis reach their peak expression during 
maximal division rate but decreased between 90 to 250-fold in stationary phase (Figure 2G). In contrast, 
stress factors involved in stationary phase adaptation and nutrient limitation peak at low division rates and 
higher cell densities (Figure 2G). QS signal production, receptor expression and target activation reflect 
the known hierarchical QS regulatory network (Lee and Zhang, 2015). Notably, the expression of 
anaerobic metabolism genes occurred in two stages: early induction of the fermentation and nitrate/nitrite 
reduction genes in the entry to stationary phase, in which hypoxic conditions emerge, followed by 
expression of the remaining denitrification pathway at lower predicted oxygen levels (Price-Whelan et al., 
2007) (Figure 2G). Furthermore, the shift from aerobic to anaerobic metabolism was accompanied by 
sequential exchanges in terminal oxidase identities, from ccoN1 to ccoN2 and finally, ccoN4, 
concomitantly with the induction of phenazine biosynthesis (Arai, 2011; Jo et al., 2017) (Figure 2G). 
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Notably, repeated mRNA measurements of the same genes in independent and spaced hybridization 
rounds were well correlated, both in average expression and at single-bacterium levels (Pearson R = 0.86, 
0.89 and 0.9, for sigX, rpsC and rpoS, respectively). In addition, the three negative control genes had an 
average false positive rate of 0.002 transcripts per cell (Figure S1). Together, these results further validate 
the accuracy of our multiplexing method and demonstrate that our marker genes capture diverse 
transcriptional states across a wide range of physiological conditions. 
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Figure 2. Parallel seqFISH (par-seqFISH) of an LB growth curve experiment 
(A) The sampled LB growth curve. Collected time points are indicated with gray circles. A zoom-in shows the 
sampled lag phase. (B) Demultiplexed bacteria and their mRNAs. The merged, raw Ribo-Tag 16S rRNA 
fluorescence is shown for a representative region. Different barcodes (16S combinations) result in unique colors that 
visually report the condition of which they originated from (indicated with the corresponding OD600 value). Ellipses 
fitted to the segmented cell boundaries are shown. The mRNA spots (fitted position of maximal intensity) for all 
genes per cell are shown in unique colors per gene. Each spot may represent more than one mRNA copy. (C-F) 
Condition specific distributions of nucleoid length, chromosome copy, ribosome levels and total mRNAs detected 
across our gene set. (G) Heatmap showing average gene expression normalized to the maximal value for each gene 
across all conditions. Highlighted gene groups and their functions are indicated on the right. 

 

Transient emergence of physiologically distinct sub-populations during LB growth 
Phenotypic diversity in clonal populations can generate distinct sub-populations that specialize in 
different tasks at different times, setting a fertile ground for bet-hedging behaviors and complex 
interactions (Ackermann, 2015; Rosenthal et al., 2018). The single-cell resolution and high sensitivity of 
seqFISH has the potential to shed light on this important yet largely unexplored aspect of microbial life. 

We applied Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction and 
unsupervised clustering to our single-cell expression data (McInnes et al., 2018). This analysis charted the 
single-cell phenotypic landscape in LB growth, from the perspective of our marker genes. Analyzing the 
11 time points together, we detect 20 sub-populations with diverse predicted functional capabilities. 
These included among others, differential replicative capacity, exoproduct biosynthesis, and virulence 
factor production (Figure 3A-B). We find that the sampled populations of most of the growth conditions 
are partitioned into multiple co-existing sub-groups with distinct expression profiles (Figure 3; Figure S2; 
Table S4). Notably, our data suggest that the degree of dispersion within this expression space (estimating 
phenotypic diversity) varies significantly between conditions and is elevated during stationary phase 
(Figure S2; Table S4). 

Our growth condition-specific analysis revealed intriguing dynamics during lag phase progression. It 
could be expected that lag phase cultures will follow a steady ribosome accumulation as the cells progress 
toward exponential growth and maximal ribosome content (Bosdriesz et al., 2015). In contrast, we found 
a relative decline in the average ribosomal rRNA levels: early lag phase populations (30 min post 
dilution) had a higher signal than the more advanced lag culture (60 min post dilution; Figure 2E). These 
differences appear to be rooted in the transient emergence and disappearance of an early lag sub-
population with exceptionally high levels of 16S rRNA (cluster 13; comprising 34.6% of the population 
in early lag; Figure 3C-F; Figure S3; Table S4). In agreement with the deviation in the rRNA signal, this 
sub-population also shows a proportional increase in total mRNA counts. However, its size and 
chromosome copy distributions were not elevated (Figure S3; cluster 13 vs. 3). 

Beyond illuminating the extent of heterogeneity in seemingly well mixed cultures and classifying 
subpopulations into particular types, seqFISH can directly connect global cell-specific parameters such as 
ribosome levels or cell shape to particular gene-expression signatures. For example, a closer examination 
of the metabolically hyperactive sub-population revealed a 186-fold enrichment in cdrA expression 
relative to the rest of the population (Figure 3G). The cdrA gene encodes a major adhesive protein 
component of the P. aeruginosa biofilm matrix (Borlee et al., 2010; Reichhardt et al., 2018). Expression 
of cdrA is commonly used as a reporter for cyclic diguanylate monophosphate (c-di-GMP) levels, a key 
signaling molecule involved in surface attachment (Armbruster et al., 2019). In addition, this sub-
population also displays a 30-fold enrichment in pstS expression, which encodes for the phosphate-
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binding component of the pstSCAB phosphate uptake system (Figure 3H). PstS has been previously 
detected in extracellular appendages of P. aeruginosa and has been suggested to provide an adhesion 
phenotype to intestinal epithelial cells (Zaborina et al., 2008). In support of this non-canonical role, pstS 
was recently suggested to confer a similar adherence phenotype in Acinetobacter baumannii, another 
human pathogenic bacterium (Gil-Marqués et al., 2020).  

A second example from our dataset of the type of fine-grained information seqFISH can provide comes 
from the temporal expression of genes involved in virulence factor production. Single cell variation in 
virulence factor production has been suggested as a mechanism for division of labor during infection 
(Diard et al., 2013). P. aeruginosa employs a variety of virulence factors to overcome the host immune 
response (Malhotra et al., 2019), including the type 3 secretion system (T3SS) that translocate toxins 
(effectors) directly into host cells (Hauser, 2009). Our gene set monitors two T3SS structural genes (pscC 
and pcrD) and two main effectors (exoT and exoY), all of which are encoded in different operons (Wurtzel 
et al., 2012). We detected two different types of sub-populations with enriched T3SS related genes, 
suggesting a unique division of cells into virulent and avirulent states (Figure 3I-J). The first group 
transiently appears during exponential growth and constitutes 8-30% of the population (Figure 3C-F and 
3I-J; Table S4). This group expresses both the secretion system genes (86-fold enrichment) and the 
effectors (28-fold). In contrast, the second group appears 3-4 divisions later, close to the replicative 
minima at stationary phase, and occupies only ~2.7% of cells (Table S4). This sub-population is strongly 
enriched for the two effectors (average 26-fold; Figure 3I-J) but only mildly so for the secretion system 
(6-fold), as compared with the earlier group.  

We can potentially reconcile these observations as follows: P. aeruginosa has been shown to contain 
approximately 1-3 T3SS units per cell under inducing conditions (Lombardi et al., 2019). Thus, 
successive divisions following T3SS expression will result in rapid dilution of the T3SS+ group. 
Assuming the inheritance of the T3SS and effectors is uncoupled, then T3SS+ stationary phase cells are 
likely to lose their effectors during division and are predicted to be “inactive”. Thus, an intriguing 
hypothesis is that P. aeruginosa invests in the costly T3SS+ sub-population during “times of plenty” 
(rapid growth) and specifically expresses the effectors at stationary to “reload” and maintain this sub-
population following division-based dilution, just prior to growth arrest. Together, these examples 
underscore the power of seqFISH to suggest hypotheses that can be tested going forward. 
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Figure 3. Single-bacterium analysis reveals physiologically distinct dynamic sub-populations. 
(A) UMAP analysis using cells from all 11 time points. Identified clusters are shown in different colors and are 
indexed by group size. Specific group and their enriched functions are shown to the right.  (B) Gene expression 
overlays for four genes that report on metabolic state, stationary phase progression and exoproduct biosynthesis. (C-
F) Density scatter plots of cells from individual conditions in a zoom-in of the UMAP (dashed box in panel A). The 
clusters are indicated by their index. (G-J) Gene expression overlays shown as in B and indicated in the figure. 
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Spatial transcriptomics at a single-cell resolution in P. aeruginosa biofilms 
Though much can be learned by applying seqFISH to planktonic cultures, in many contexts, bacteria exist 
in biofilms (Costerton et al., 1987; Flemming and Wuertz, 2019). Variation in local environmental 
conditions and the effect of spatially confined metabolic activities in biofilm populations can promote the 
emergence of chemically distinct microenvironments and phenotypes (Evans et al., 2020; Stewart, 2003). 
We reasoned that seqFISH’s capacity to record transcriptional activities with micron resolution would be 
particularly useful in shedding light on these processes.  

The P. aeruginosa biofilm mode of life is particularly important in chronic infections such as those 
residing in the airways of individuals with CF (Bjarnsholt et al., 2009; Høiby et al., 2011). Accordingly, 
having used LB to validate bacterial seqFISH, we switched to synthetic cystic fibrosis sputum medium 
(SCFM) for our biofilm studies (Palmer et al., 2007). Briefly, bacteria were incubated in coverslip 
attached microwells and the medium was replaced every several hours (Methods). Using biofilms that 
were allowed to develop for 10 or 35 hours, we imaged hundreds of aggregates ranging in size from 
several bacteria to tens-of-thousands of tightly bound members (Figure 4A-B). As a reference for cellular 
physiological states, we also performed a planktonic growth curve experiment in SCFM. We applied par-
seqFISH multiplexing to image 10 time points matching those sampled in the planktonic LB experiment 
(Methods). We extracted the physical coordinates of individual bacterial cells within microaggregates, 
acquiring a microscale spatial expression profile for ~365,000 surface attached bacteria (Figure 4A-B). In 
addition, we collected single-cell expression data for ~218,000 planktonic cells.  

A basic question we sought to answer was the extent to which transcriptional responses are unique to the 
biofilm lifestyle. We performed a joint UMAP analysis using both biofilm and planktonic samples 
(Figure 4C). These different modes of growth cluster into independent groups in expression space, 
reflecting their significant physiological differences (Figure 4D). Ribosome and RNAP subunit 
expression in the planktonic experiment correlated strongly with growth rate, as observed in LB (Figure 
4D). Examining these marker genes in the biofilm-derived cells places the average replicative capacity of 
the 10h and 35h biofilm populations at roughly equal to those of early-mid and late stationary planktonic 
populations, respectively (Figure 4F). Expression of the stationary phase master regulator, rpoS further 
supports this classification (Figure 4G). However, biofilm cells also have unique expression profiles that 
distinguish them from liquid cultures. For example, the matrix component gene, cdrA, is uniformly 
expressed in both 10 and 35h biofilms but repressed in most planktonic cells (Figure 4E). In addition, 
compared with stationary liquid cells, our data indicates that early biofilms (10h) have higher expression 
of sigX (5.1-fold), a transcription factor recently implicated in biofilm formation (Gicquel et al., 2013), 
mexB (>4.5-fold), of the mexA-mexB-oprM antibiotic efflux system, and an increase in the 3’-5’ 
exonuclease, polynucleotide phosphorylase (pnp) (7.5-fold). Comparing the 35h biofilm to the stationary 
cells, we find a 3.3-fold increase in the extracellular protease, lasB, but reduced expression of other 
proteases such lasA (3-fold lower), as well as aprA and the rhamnolipid biosynthesis gene, rhlA (~10-fold 
lower). Notably, these genes are quorum-sensing (QS) regulated and our liquid cultures expressed both 
lasA and rhlA at later time points than lasB, suggesting these differences may reflect the age of the 
biofilm rather than features that define the biofilm state per se. 
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Figure 4. Spatial transcriptomics in P. aeruginosa biofilms at a single cell resolution. 
(A) A representative field of view collected during a 10h surface colonization experiment showing cells via 16S 
rRNA fluorescence (gray). A zoom-in (orange box) shows the cell segmentation masks depicted as white ellipses. 
The 16S rRNA signal and mRNA-FISH data for several genes are shown in different colors. (B) A 35h experiment 
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field is shown in an identical manner to panel A. Scale bar length is annotated within the figure. (C) Joint UMAP 
cluster analysis of biofilm and planktonic experiments. Planktonic cells are shown for all time points collected (D) 
UMAP scatter plots showing cells from either planktonic or biofilm experiments as indicated. Below, a highlighted 
set of UMAP clusters associated with each experiment is annotated with enriched functions. (E-H) UMAP overlay 
with specific gene data. 

 

In situ analysis of biofilm specific functions  
The above data demonstrate that seqFISH can capture both cell states and their physical position directly 
within intact biofilms, providing an opportunity to examine known and new processes that contribute to 
biofilm development from a quantitative and highly spatially resolved perspective. To illustrate this, we 
focused on the expression patterns of representative genes known to define critical stages in biofilm 
development such as attachment, maturation and exclusion of competitors. 

Motility systems such as the flagella and the type 4 pilus (T4P) are major determinant of surface 
colonization subsequent biofilm formation (Belas, 2014; Burrows, 2012; O’Toole and Kolter, 1998). 
Recent work identified an asymmetric division process coined “Touch-Seed-and-Go”, in which 
flagellated mother cells first attach to a surface and then produce un-flagellated daughter cells that contain 
the T4P. This c-di-GMP dependent phenotypic diversification enables the mother “spreader” cell to 
spawn multiple adherent “seed” populations (Laventie et al., 2019). This is thought to be mainly regulated 
by surface sensing (Laventie et al., 2019). However, how such motility-based division of labor affects the 
organization of biofilms at stages beyond surface attachment remains unknown. 

We examined the spatial expression patterns of the major flagellum and T4P components, fliC and pilA, 
respectively in the early surface colonization experiment (10h biofilm). An abundant “checkerboard” like 
pattern is evident, in which cells express high levels of either fliC or pilA but generally not both (Figure 
5A). This pattern is apparent in both small groups (~tens of cells) and in microaggregates that contain 
thousands of cells. In contrast, the older 35h biofilms showed lower expression of pilA but contained a 
sparse but uniform distribution of fliC+ cells, suggesting that biofilm associated bacteria invest in a costly 
motility apparatus despite being spatially confined (Figure 5B), effectively, the bacterial equivalent of 
purchasing a sports car during a midlife crisis. Strikingly, examining the expression of fliC and pilA in our 
paired planktonic experiment we find a similar mutually exclusive pattern (Figure 5C). Thus, in contrast 
to the current model, our planktonic control experiment suggests that the asymmetric distribution of 
motility systems is unlikely to be directly regulated by surface sensing (Figure 5C); such a conclusion 
would not be possible without the means to compare transcriptional activities at the single cell level. 

Beyond initial surface attachment, bacteria must establish a strong foothold for colony development as 
well as outcompete resident microbes. One strategy that potentially address both needs is the utilization of 
phage tail-like bacteriocins, broadly called tailocins (Ghequire and De Mot, 2015). These elements are 
thought to be adapted from prophages and are applied as narrow-spectrum toxins for kin exclusion 
(Bobay et al., 2014; Ghequire and De Mot, 2015). However, in contrast with antibiotics, these phage tail-
like structures are released into the environment via explosive lysis events that kill the producer and spray 
the toxin locally to inhibit nearby competitors (Turnbull et al., 2016; Vacheron et al., 2021). This event 
also releases extracellular DNA that integrates into the biofilm matrix, structurally supporting biofilm 
maturation (Turnbull et al., 2016; Whitchurch et al., 2002). Yet how this “sacrificial” process is regulated 
within developing biofilms is not well understood. 

Our UMAP analysis identified a sub-population (cluster 18; Figure 4C) exhibiting >1000-fold enrichment 
in expression of the R2-pyocin operon (Pseudomonas tailocin), represented by the PA14_08150 gene. 
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This UMAP cluster was enriched ~4-fold in 10h biofilm derived cells, suggesting pyocin induction is 
upregulated during surface attachment. Furthermore, we find an 11-fold higher expression of the DNA-
repair gene, recA, in agreement with its role in inducing pyocin expression (Brazas and Hancock, 2005). 
Visualizing the expression of the pyocin producers, we find that induction events are spread across 
various microaggregates regions but often appear in local clusters (Figure 5D-E). Indeed, we find a ~37-
fold average spatial enrichment in pyocin expression in the immediate vicinity of strong induction sites as 
compared with the general population (Figure 5F). This enrichment decayed rapidly as a function of 
neighborhood size, suggesting a highly localized effect (Figure 5F).  

Remarkably, in addition to reporting gene-expression levels, seqFISH also reports the physical position of 
measured mRNA molecules at a sub-micron resolution. During this analysis we noticed that R2-pyocin 
transcript fluorescence generally appeared as two spots. Upon closer examination, we discovered that this 
mRNA is strongly localized to the two cell poles (Figure 5G). The 16S rRNA fluorescent signal in these 
pyocin producers show identical polarization, a rare pattern not observed in neighboring non-inducing 
cells (Figure 5G). These data suggest that ribosomes and the R2-pyocin transcript are mobilized following 
induction and spatially co-localize. In contrast, the expression of recA did not follow this pattern, 
suggesting a pyocin-specific effect (Figure 5G). Notably, a recent study discovered an identical polar 
localization for two different Pseudomonas protegens R-tailocins at the protein level (Vacheron et al., 
2021). Together, these data hint at a potentially evolutionary conserved RNA-dependent mechanism for 
R-tailocin protein polar localization. We hypothesize that the spatially correlated ribosomal enrichment 
may provide efficient local translation and particle accumulation prior to cell lysis.  
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Figure 5. Spatial expression patterns for motility and pyocin related genes. 
(A-B) Representative regions from the 10h and 35h biofilm experiments, cells are shown in via 16S rRNA 
fluorescence (gray) and overlayed with raw mRNA-FISH fluorescence for different genes as indicated. (C) 
planktonic cells from the pair liquid experiments. Cells are shown via DAPI and expression as indicated (D-E) 10h 
aggregate showing R2-pyocin expression. (F) Enrichment of R2-Pyocin mRNA near strong induction sites (cell with 
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99.5th percentile pyocin expression). X-axis shows the number of cells closest to an induction site that were analyzed 
(neighborhood size; center cell was excluded). Y-axis shows the enrichment in each neighborhood relative to the 
total population. A non-pyocin control gene is shown (rpoA). (G) Examples of mRNA R-pyocin transcript and 
ribosome polar localization as indicated in the legends.  

 

Temporal evolution of metabolic heterogeneity during biofilm development. 
Beyond resolving transcriptional activities that contribute to biofilm developmental processes, seqFISH 
can reveal how biofilm cells metabolically respond to subtle changes in their local microenvironment. 
Chemical heterogeneity is a key feature of spatially structured environments, and metabolic heterogeneity 
characterizes mature biofilms   (Evans et al., 2020; Povolotsky et al., 2021; Stewart, 2003; Stewart and 
Franklin, 2008). Yet until now, it has been impossible to capture the development of fine-grained 
metabolic structure across multiple suites of genes at different times.  

To map biofilm metabolic development, we focused on genes whose regulation and functions are well 
understood. In particular, we focused on catabolic genes whose gene products enable energy conservation 
under different oxygen concentrations. Oxygen is a central and dynamic factor that influences metabolic 
activity in bacterial biofilms (Dietrich et al., 2013; Evans et al., 2020; Stewart, 2003; Wessel et al., 2014). 
Local oxygen availability can vary significantly within structured environments and is biotically shaped 
within biofilms (Cowley et al., 2015; Stewart and Franklin, 2008; Wessel et al., 2014). P. aeruginosa can 
survive under anaerobic conditions by fermenting different substrates and/or denitrifying (Arai, 2011; 
Eschbach et al., 2004; Yoon et al., 2002). Accordingly, monitoring the expression of these catabolic genes 
as well as others that are co-regulated with them provides a means to track local oxygen availability and 
its dynamic effects on biofilm metabolic coordination.  

How quickly and over what spatial scales do biofilm cells metabolically differentiate? Following the uspL 
gene, which was strongly induced during hypoxic conditions and correlated with anaerobic fermentation 
and denitrification genes in our planktonic growth experiments, we observed surprisingly heterogeneous 
responses to oxygen depletion over just a few microns in young (10h) biofilms (Figure 6A). Notably, 
uspL expression is strongly spatially correlated with multiple anaerobic markers (Figure S4), indicating 
that this gene reports on local anaerobic activities. A closer examination of these putative hypoxic sites 
showed a frequent anti-correlation of uspL with multiple genes that are otherwise uniformly expressed in 
10h biofilms, appearing as co-localized but reversed expression patches (Figure 6B). Among the anti-
correlated functions are the TCA cycle gene, sucC, and replicative capacity genes such as RNAP and 
ribosome subunits (Figure 6B; Figure S4-S5). However, exceptions to this anti-correlation were also 
visible (Figure S5).  

Can the metabolic heterogeneity revealed by oxygen-responsive marker genes provide an entry point for 
the discovery of more nuanced cellular responses at the microscale? Our spatial correlation analysis 
revealed an intriguing association between anaerobic metabolism genes, such as the denitrification 
pathway (narG-nirS-norB-nosZ), and the oxidative stress response genes katA, katB and sodM, encoding 
for the inducible catalases and an Mn-dependent superoxide dismutase, respectively (Brown et al., 1995; 
Hassett et al., 1992; Su et al., 2014) (Figure 6C-D; Figure S4-S5). Nitrite respiring P. aeruginosa produce 
the highly toxic intermediate nitric oxide (NO) (Cutruzzolà and Frankenberg-Dinkel, 2016). Indeed, KatA 
was recently demonstrated to play a role in protection from NO-associated stress (Su et al., 2014), 
suggesting that these sub-aggregate regions correspond to microenvironments with high NO levels. In 
agreement with this hypothesis, we find that the stress response pattern is also spatially correlated with 
heat-shock protease expression, including the membrane protease, ftsH, which was found to play an 
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important role in survival under anoxic conditions (Basta et al., 2017) (Figure 6E; Figure S4). These data 
highlight how contrasting physiological states can be established just a few microns away early in biofilm 
development. 

These coordinated expressions patterns for particular genes led us to hypothesize that these patterns 
reflected the spatiometabolic distribution of distinct physiological “states” across the biofilm. To test this 
hypothesis we conducted a targeted UMAP analysis using only the 10h biofilm cells (Figure S6). We 
identified two main anaerobic sub-populations corresponding to denitrification and fermentation 
dominated metabolic states (Figure S6). In addition, we detected a smaller sub-population of denitrifying 
cells with 5.3-fold average increase in the oxidative stress factors katB, sodM, and ahpF, which encodes 
for an alkyl hydroperoxide reductase (Ochsner et al., 2000). Relative to the main denitrifying sub-group, 
stressed cells have lower expression of the denitrification pathway (~4-fold) and a >2-fold reduction in 
replicative capacity marker levels (rpoA, rpsC and atpA), in support of a potentially damaged state. 
Projecting these single-cell metabolic states over their respective biofilm positions showed a strong 
overlap with the above predicted hypoxic pockets, supporting our hypothesis and revealing that multiple 
metabolic states can co-exist in the same patch (Figure 6F; Figure S5). 

 

Figure 6. Oxygen availability shapes microscale metabolic heterogeneity in biofilms  
(A-E) Representative 10h biofilms. Cells are shown via 16S rRNA FISH fluorescence (gray) and overlayed with raw 
mRNA-FISH fluorescence for different genes as indicated in each panel. White circles highlight regions of interest. 
(F) Cells painted according to their UMAP derived metabolic state as indicated in the panel legends (also see figure 
S6 clusters, 0, 8, 12 and 15), showing co-localization of multiple metabolic states within a given region. 
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Given the extent of transcriptional heterogeneity manifest in young biofilms, we wondered whether such 
heterogeneity would persist as biofilms aged. We speculated that the higher cell densities and more 
committed spatial structuring of mature biofilms might favor larger scale metabolic zonation. We 
therefore examined the spatial expression patterns in a 35h biofilm experiment. 

In contrast to the spatial variation in aerobic and anaerobic metabolic processes seen in 10h biofilms, 35h 
biofilms have ~50-fold lower average expression of the denitrification pathway genes nar-nirs-norB-
nosZ. Indeed, these genes are known to be repressed by the las and rhl QS-systems, indicating P. 
aeruginosa is programmed to shut down denitrification at high cell densities (Toyofuku et al., 2007; Yoon 
et al., 2002). However, in addition to this complete and co-regulated pathway, P. aeruginosa also encodes 
an independent periplasmic nitrate reductase (nap) (Van Alst et al., 2009). Intriguingly, the napA gene is 
uniformly expressed at low levels across the 35h aggregates, a pattern that was closely shared with the 
uspL gene (Figure 7A; Figure S7). NapA has been implicated in maintaining redox homeostasis under 
oxygen limitation (Dietrich et al., 2013) and the uspL paralogue, uspK, was shown to play a role in 
survival under such conditions (Basta et al., 2017; Schreiber et al., 2006). At first blush, these results 
suggest that as aggregate cell mass grows, survival physiology dominates over growth-promoting 
processes on average. Yet we also find substantial and large-scale heterogeneity in certain genes, such as 
the replicative capacity markers (Figure 7B; Figure S7) and, lasB, encoding a QS-regulated extracellular 
protease (Figure 7C; Figure S7). These data demonstrate that while older biofilms generally comprise 
larger zones of particular activities than younger biofilms, a single microaggregate can still contain cell 
types with distinct physiological states and virulence-related activities. 

Finally, that metabolism dynamically shapes the microenvironment leads to the prediction that differences 
in local nutrient availability will be reflected in heterogenous transcriptional activities over small spatial 
scales (Evans et al., 2020). We see evidence of this phenomenon in our data when focusing on carbon 
metabolism, for example. Where replicative capacity appears to be high and carbon is presumably replete, 
we see co-expression of the TCA cycle gene (sucC) (Fig. 7B-7D). However, when carbon is limiting, 
bacteria can utilize the glyoxylate shunt (GS), which bypasses the oxidative decarboxylation steps of the 
TCA. The GS provides an alternative metabolic pathway for utilizing acetate and fatty acids as carbon 
sources (Crousilles et al., 2018; Dolan and Welch, 2018). In the GS, carbon flux is redirected by isocitrate 
lyase (ICL) which competes with the TCA enzyme isocitrate dehydrogenase (ICD) for isocitrate. 
However, since ICD has a much lower Km it must be enzymatically inactivated via phosphorylation for 
the carbon flux to be redirected to the GS (Crousilles et al., 2018). However, little is still known about the 
transcriptional regulation of these pathways (Dolan et al., 2020). Our gene set contains both the GS gene, 
aceA, as well as a downstream TCA cycle gene, sucC. While these genes are often co-expressed, we find 
that only the GS marker, aceA, is expressed in low energetic capacity biofilm zones (Figure 7D; Figure 
S7), suggesting these subregions experience carbon limitation. In support of this hypothesis, these regions 
also express the tightly regulated terminal oxidase gene, coxA, which is transcriptionally induced by 
carbon starvation, a condition in which it promotes survival (Basta et al., 2017; Kawakami et al., 2010) 
(Figure 7D; Figure S7). This is just one example of the type of coherent spatiometabolic stratification 
pattern seqFISH can reveal at a given moment in time. 
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Figure 7. Functional zonation in a single microaggregate. 
(A-D) A P. aeruginosa 35h aggregate. Bacteria are shown via 16S rRNA FISH fluorescence (gray) and are overlaid 
with raw mRNA-FISH fluorescence for different genes as described in the panel legends.  

 

Discussion 
We adapted seqFISH to the study of bacterial planktonic and biofilm populations and showed that this 
approach can measure hundreds of genes within individual bacteria. Furthermore, we introduced par-
seqFISH, a novel multiplexing approach that enables parallel seqFISH imaging of dozens of samples. 
Studying P. aeruginosa across a range of physiological conditions and two different modes of life 
(planktonic v. sessile), we analyzed the expression of ~600,000 individual cells. We identified the 
dynamic emergence of planktonic subpopulations with distinct metabolic and/or virulence-related 
functions throughout the course of planktonic growth, effectively capturing evolving cell states. In both 
young and older biofilms, we observed strikingly high levels of metabolic heterogeneity and zonation, yet 
coherent co-expression patterns emerged from the subcellular to the microscale that gave rise to new 
insights. Together, the patterns this new way of “seeing” reveals provide a means to chart and understand 
the extraordinary diversity that defines the microbial world. 

Our approach is based on non-barcoded sequential single-molecule FISH, a sensitive and accurate method 
for measuring mRNA expression (Chen et al., 2015; Eng et al., 2019; Lignell et al., 2017; Raj et al., 2008; 
So et al., 2011). As each gene is measured individually, the number of genes analyzed per experiment 
scales linearly with the number of hybridization cycles. Thus, from a practical point of view, this method 
is better suited for more targeted studies of several hundred genes. Our results nonetheless demonstrate 
that gene sets of this magnitude can drive explorative studies of population sub-structure and functional 
cell states. Considering the operonic encoding of bacterial genes, the effective gene coverage of seqFISH 
is in fact significantly higher (~3-fold higher in our set). In contrast, bacterial scRNA-seq methods are 
unbiased and provide a genome-wide sampling. However, these methods are not spatially resolved and 
must deal with relatively low capture efficiencies, estimated as 2.5-10% of the total mRNAs in recent 
studies (Blattman et al., 2020; Kuchina et al., 2021). Thus, seqFISH and scRNA-seq provide 
complementary approaches for studying individual planktonic bacteria in terms of sensitivity and 
throughput. 

In addition to mRNA profiles, our method has the unique advantage of capturing key cell biological 
parameters such as cell size and shape and can be further integrated with functional markers to connect 
between specific processes and expression within the same cell. In a recent study, seqFISH was integrated 
with DNA-FISH and protein abundances via immunofluorescence within the same cells (Takei et al., 
2021). In addition to its integrative capacity, the spatial resolution and single-molecule nature of seqFISH 
provides a record of the physical location of all studied mRNAs. As just one example, our analysis 
exposed a strong intracellular localization signature of R-pyocin transcripts and ribosomal rRNA within 
inducing cells. Beyond the potential biological implications of these observations, these data highlight 
seqFISH as a high-throughput platform for exploring sub-cellular transcript organization in bacteria (Fei 
and Sharma, 2018). 

To increase the throughput of seqFISH for single-cell analysis we developed the par-seqFISH 
multiplexing approach, which enabled the study of ~270,000 planktonic cells grown in 21 different 
conditions. However, this approach can potentially be applied in various other ways, both in synthetic and 
natural communities. For example, since par-seqFISH is based on 16S rRNA labels (Ribo-Tags), it could 
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in principle be used to encode bacterial taxonomy (Figure 1C). Recently, a conceptually similar and 
exciting method for combinatorial labeling of taxonomy was introduced in a biogeographical study of the 
human microbiome (Shi et al., 2020). In principle, the par-seqFISH strategy could be readily extended to 
capture similar or higher level of taxonomic complexity, as well as adding the currently missing feature of 
mRNA expression. We predict that this future application will be useful in providing a functional measure 
for interpreting spatial associations between microbial species. 

To our knowledge, this study presents the first highly multiplexed and spatially resolved single-cell 
analysis of bacterial populations. Future application of this approach at greater temporal resolution or in 
other biofilm models could help shed light on biofilm functional organization and development. 
Furthermore, extension of this approach to natural and clinical samples could provide important insights 
into the conditions experienced by microbes in more complex environments and the coordinated 
physiological responses that emerge in turn. Understanding the roles that spatial and temporal 
heterogeneity play in microbial populations represents an exciting and important research aim for modern 
microbiology. The results presented in this manuscript provide a new way of addressing these defining 
features on our way to understanding microbial life on its own terms. 
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Materials and methods 
Bacterial strains and growth conditions 
P. aeruginosa strain UCBPP-PA14 was grown aerobically with shaking at 250 rpm in lysogeny broth 
(LB) (Difco) or on LB agar plates at 37°C. SCFM was made as previously described (Palmer et al., 
2007). For the growth curve experiments, an overnight LB culture was washed twice using fresh growth 
media (either LB or SCFM) and then diluted 1:100 into 100 ml prewarmed fresh media. The cultures 
were grown at 37°C with shaking at 250 rpm and collected at various time points as indicated in Figure 
2A. The SCFM samples were collected cell densities identical to the LB experiment, except the OD600 = 
3.2 sample was omitted. Collected samples were immediately fixed in ice-cold 2% paraformaldehyde 
(PFA) and were incubated on ice for 1.5h in the dark, and then washed twice with 1x PBS. Samples were 
resuspended in 70% EtOH and incubated at -20°C for at 24h to permeabilize the cells. Surface 
colonization was performed by washing and diluting an LB overnight culture 1:100 into fresh SCFM and 
dispensing 100 µl into coverslip attached open incubation chambers (Electron Microscopy Sciences, 
70333-42). The coverslips were incubated in parafilm sealed sterile petri dishes at 37°C and the media 
was gently exchanged every 4 hours. A damp Kimwipe was placed in the petri dish to control media 
evaporation. During the overnight stage of the 35h experiment, the media was exchanged only once after 
8h. Biofilm experiments were collected by gently exchanging the SCFM with 100 µl ice cold 2% PFA 
solution and incubating the sample at 4°C for 1.5h. The samples were washed twice with 1x PBS, 
resuspended in 70% EtOH and incubated overnight at 4°C and prepared for seqFISH as described below 
the following day. 

 

SeqFISH probe design and library generation 
Primary probes were designed as 30 nt stretches in a GC range of 45-65%. Probe sequences containing 
more than four consecutive base repeats were removed. The remaining probes were compared to the 
reference genome using blast and any probe with non-specific binding of at 18nt or more was discarded. 
Negative control genes were selected from the P1 phage genome (NC_005856.1) with the same criteria. 
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Each selected gene was covered by 12-20 nonoverlapping probes randomly selected from the gene probe 
set. The probes were designed as a 30nt mRNA binding region flanked by overhangs composed of four 
repeats of the secondary hybridization sequence (complementary to a designated fluorescent readout 
probe; Table S2). Thus, it is estimated that during secondary hybridization, each mRNA is covered by 48-
80 fluorescent readout probes (12-20 x 4), on par with previous mRNA-FISH experiments in bacteria 
(Skinner et al., 2013; So et al., 2011). 

A library of 1,763 probes targeting 105 P. aeruginosa genes and three negative controls were designed 
(Tables S1-S2). Additional flanking sequences were added to the primary probe sequences to enable 
library amplification via PCR (Forward 5’- TTTCGTCCGCGAGTGACCAG-3’ and reverse 5’-
CAACGTCCATGTCGGGATGC-3’). The primary probe set was purchased as oligoarray complex pool 
from Twist Bioscience and constructed as previously described (Eng et al., 2019) (Table S2). Briefly, a 
set of 9 PCR cycles were used to amplify the designated probe sequences from the oligo pool. The 
amplified PCR products were purified using the QIAquick PCR Purification Kit (28104; Qiagen) 
according to the manufacturer’s instructions. The PCR products were used as the template for in vitro 
transcription (E2040S; NEB) followed by reverse transcription (EP7051; Thermo Fisher). Then, the 
single-stranded DNA (ssDNA) probes were alkaline hydrolyzed with 1 M NaOH at 65�°C for 15 min to 
degrade the RNA templates, followed by 1 M acetic acid neutralization. Next, to clean up the probes, we 
performed ethanol precipitation to remove stray nucleotides, phenol–chloroform extraction to remove 
protein, and used Zeba Spin Desalting Columns (7K MWCO) (89882; Thermo Fisher) to remove residual 
nucleotides and phenol contaminants. Readout probes were designed as previously described and ordered 
from Integrated DNA Technologies (IDT) (Eng et al., 2019). 

Ribo-Tag probes were designed to target the same region in the 16S rRNA gene according to the criteria 
described above, but with a 28nt binding regions. Each probe sequence was flanked with two secondary 
sequences selected out a set of six that were dedicated to multiplexing (Table S3). An additional 16S 
rRNA probe was generated as a standard between all multiplexed samples and was hybridized to an 
independent region of the 16S rRNA (Table S3). This probe provided an additional reference and was 
used to register images from different channels (see below). 

Coverslip functionalization 
Coverslips were cleaned with a plasma cleaner on a high setting (PDC-001, Harrick Plasma) for 5 min, 
followed by immersion in 1% bind-silane solution (GE; 17-1330-01) made in pH 3.5 10% (v/v) acidic 
ethanol solution for 30 min at room temperature. The coverslips were washed with 100% ethanol three 
times and dried in an oven at >90�°C for 30 min. The coverslips were then treated with 100 μg μl−1 of 
poly-D-lysine (P6407; Sigma) in water for at least one hour at room temperature, followed by three rinses 
with water. Coverslips were air-dried and kept at -20°C for no longer than 2 weeks before use.  

Parallel seqFISH 
Independent fixed samples were individually hybridized with 16S rRNA labels, washed and then pooled 
into a single mixture that was hybridized with the gene probe library and prepared for imaging. 
Approximately 108 cells were collected from each sample into a microcentrifuge, pelleted via 
centrifugation (6,000 rpm) and then resuspended in 20 μl H20 with 6 nM of the designated 16S rRNA 
label (sample specific) and another 6 nM of a shared reference 16S rRNA probe (Table S3). Each sample 
was then mixed with prewarmed 30 μl of primary hybridization buffer (50% formamide, 10% dextran 
sulfate and 2× SSC) via gentle pipetting, incubated at 37°C for >16 h, washed twice with 100 μl wash 
buffer (55% formamide and 0.1% Triton-X 100 in 2× SSC; 5 min 8,000 rpm for the viscous hybridization 
buffer) and then incubated at 37°C in 100 μl wash buffer for 30 min to remove non-specific probe 
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binding. Samples were washed twice with 100 μl 2x SSC and pooled together into a new microcentrifuge 
in equal volumes. The mixture was pelleted and resuspended in 40 μl H20 and 10 μl of the mixture was 
added to 10 μl gene probe library mixture and mixed well with prewarmed 30 μl primary hybridization 
buffer. The hybridizations were incubated for >16 h at 37°C and were washed and prepared as described 
above. The final mixture was resuspended in 20-25 μl 1x PBS and 5-10 μl were gently spotted at the 
center of the coverslip and incubated at RT for 10 min to allow the cells to sediment and bind the surface. 
The coverslips were centrifuged for 5 min at 1,000 rpm to create a smooth and dense cell monolayer. The 
cells were immobilized using a hydrogel as previously described (Eng et al., 2019) and stained with 10 μl 
ml−1 DAPI (D8417; Sigma) for 5 min before imaging so that cells could be visualized.  

In biofilm experiments, the fixed and permeabilized surface attached microaggregates were air dried, 
covered with a hydrogel and hybridized with the gene library and a rRNA probes in one single reaction, 
as described above. 

 

seqFISH imaging 
All seqFISH experiments were performed using a combined imaging and automated fluidics delivery 
system as previously described (Eng et al., 2019). DAPI stained samples mounted on coverslips were 
connected to the fluidic system. The ROIs were registered using the DAPI fluorescence and a set of 
sequential secondary hybridizations, washes and imaging was performed.  

Each hybridization round contained three unique 15-nt readouts probes each conjugated to either Alexa 
Fluor 647 (A647), Cy3B and Alexa Fluor 488 (A488). All readout probes were ordered from Integrated 
DNA Technologies and prepared into 500 nM stock solutions. Each serial probe mixture was prepared in  
EC buffer (10% ethylene carbonate (E26258; Sigma), 10% dextran sulfate (D4911; Sigma), 4× SSC). 
Hybridizations were incubated with the sample for 20 min to allow for secondary probe binding. The 
samples were then washed to remove excess readout probes and to limited non-specific binding using 
~300 μl of 10% formamide wash buffer (10% formamide and 0.1% Triton X-100 in 2× SSC). Samples 
were then rinsed with ~200 μl of 4× SSC and then stained with DAPI solution (10 μg ml−1 of DAPI, 4× 
SSC). Lastly, an anti-bleaching buffer solution made was flowed through the samples (10% (w/v) 
glucose, 1:100 diluted catalase (Sigma C3155), 0.5 mg ml−1 glucose oxidase (Sigma G2133) and 50 mM 
pH 8 Tris-HCl in 4× SSC). Imaging was performed with a Leica DMi8 microscope equipped with a 
confocal scanner unit (Yokogawa CSU-W1), a sCMOS camera (Andor Zyla 4.2 Plus), a 63× oil objective 
lens (Leica 1.40 NA) and a motorized stage (ASI MS2000). Lasers from CNI and filter sets from 
Semrock were used. Snapshots were acquired using 647-nm, 561-nm, 488-nm and 405-nm fluorescent 
channels with 0.5-μm z-steps for all experiments with the exception of the 35h biofilm experiment in 
which 1.0-μm z-steps were collected. After imaging, readout probes were stripped using 55% wash buffer 
(55% formamide and 0.1% Triton-X 100 in 2× SSC) that was flowed through for 1 min, followed by an 
incubation time of 15 min before rinsing with 4× SSC solution. This protocol: serial hybridizations, 
imaging and signal quenching steps, was repeated for ~40 rounds to capture 16S rRNA for multiplexing, 
mRNA expression and background signal. The integration of automated fluidics delivery system and 
imaging was controlled via μManager (Edelstein et al., 2010).  

 

Image analysis demultiplexing and gene-expression measurement 
Maximal projection images were generated using ImageJ (Schneider et al., 2012) for DAPI and 16S 
rRNA and hybridization rounds were registered using the DAPI fluorescence. Aberrations between 
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fluorophores were corrected by alignment of 16S rRNA signals across all channels. Cells were segmented 
using the DAPI signal with SuperSegger using the 60XPa configuration (Stylianidou et al., 2016) and 
filtered using custom scripts to eliminate odd shapes, autofluorescent or low signal components. 

For par-seqFISH demultiplexing, the background (no readouts) and 16S rRNA fluorescent intensity for 
each relevant secondary readout probe was measured within segmented cell boundaries to provide a 
signal-to-background score for each readout. The cells were classified according to the positive readout 
combinations (Table S3). The level of false positives was estimated by counting the number of cells 
classified into combinations left out of the experiment. 

The mRNA-FISH data was analyzed using Spätzcells (Skinner et al., 2013). Briefly, spots were detected 
as regional maxima with intensity greater than a threshold value that was set using the negative control 
genes and were fit with a 2D gaussian model. The integrated intensity of the spot and the position of its 
estimated maxima were determined (Skinner et al., 2013). Spots were assigned to cells using the cell 
segmentation masks (Skinner et al., 2013). In biofilm experiments spots were assigned to cells in a z-
section sensitive manner. Deviating spots maxima positions that did not overlap a cell boundary were 
tested against the flanking z-sections to identify their cell of origin. If no cell was detected the spots were 
discarded. All predicted low expression genes (defined as gene with spots in less than 30% of all cells) 
were identified and the distribution of their spot intensities was fit with a gaussian mixture model to 
identify the characteristic intensity of a single mRNA, normalized to the number of probes used for the 
specific gene. The median characteristic single-mRNA signal was then calculated using all low 
expression genes for each fluorophore (A647, A488 and cy3B). The variation between different genes 
labeled with the same fluorophore was low, with a coefficient of variation of 18-21%. This median 
characteristic value was used to transform fluorescent intensity into to discrete mRNA counts per gene 
within each cell. The A488 characteristic signal was corrected by a factor of 1.5 to account for its lower 
intensity in our system. In each cell, the total intensity of each gene was calculated by summing the 
intensities of all spots. The total value was normalized by the characteristic value for a single mRNA in 
the corresponding fluorophore. 

Single-cell expression analysis and cell biological parameter calculations 
Single-cell UMAP analysis was performed using Scanpy v1.7.0 (Wolf et al., 2018). Genes detected at 
consistently low levels were excluded from the analysis. These included pilY1, flgK, nasA, algU, purF, 
phzH, phzS and pslG (Table S1). We followed the standard Scanpy normalization and scaling, 
dimensionality reduction, and clustering as described in the Scanpy tutorial, minus the high variance gene 
selection and without a library size normalization. We used 15 neighbors and 15 and 17 PCA 
components, for the LB and merged SCFM analyses, respectively. Clustering was performed using the 
Leiden method. Jupyter notebooks with chosen parameters, run lines, output files and source data are 
available at https://github.com/daniedar/seqFISH. 

Cell nucleoid size was calculated using the segmentation mask. A chromosome score was calculated as 
the median DAPI intensity multiplied by the nucleoid size. The median chromosome score was calculated 
for the last time point in our LB experiment (deep stationary; OD600 = 3.2). Because most cells in this 
stage are in a non-dividing state, we set this value as a reference for a single chromosome copy. We then 
normalized the scores of all cells in the experiment using this value, as seen in Figure 2. In addition to 
using Ribo-Tags to label cells from different conditions, we also hybridized another region in the 16S 
rRNA with a probe that was shared across all samples (Table S3; described above). We used this 
reference signal to compare the 16S rRNA intensity between cells from different conditions. We 
measured the median 16S rRNA signal per cells and multiplied it by the nucleoid size (which completely 
overlaps the 16S signal and estimates cell size). In E. coli, maximal ribosome numbers appear at the 
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maximal growth rate and have been estimated at 72,000 (Milo et al., 2010). The median rRNA score was 
calculated for the maximal growth (OD600 = 0.2) and normalized to 72,000 as in E. coli for a rough 
estimate (Figure 2). 

 

Image analysis in surface colonization experiments 
Images were registered as described above and segmentation was performed using the pixel classification 
workflow in Ilastik (Berg et al., 2019). We trained the Ilastik classification model with background, cell 
boundaries and cell bodies, using the 16S rRNA signal. We find that Ilastik performs extremely well. 
However, in high density regions, segmentation often resulted in over-connectivity due to incorrect 3D 
overlaps. We disconnected such cells clusters. The binary masks (segmentation output) were thinned, and 
all 3D connected components (CCs) were re-calculated. This reduced spurious connections. Then, all CCs 
traversing more than 2.5 µm were set aside for re-evaluation for potential over-connections. For each such 
3D component we examined each z-slice at a time and identified all 2D CCs. We removed overly large or 
curved blobs, which represent segmentation artefacts that often incorrectly connect distinct cells across z-
sections. In addition, for each 2D detected component we calculated its orientation and overlap with 
components in the previous flanking z-section. If this component exhibited a significant change in its 
orientation (the direction it is pointing) we disconnected it from the component below. We then continued 
the analysis using the newly oriented component as a seed. Cell clusters that could not be properly 
disentangled were removed from the analysis. At the end of the analysis the cell 3D masks were re-
thickened. 

We conducted bulk neighborhood analysis where we studied the immediate neighborhoods associated 
with high expression of a specific gene. For the gene of interest, we identified all top 99th percentile cells 
(99.5th for the pyocin specific analysis), denoted as “center cells”. Using the 3D centroid coordinates of 
center cells we identified their closest neighbors within a specified distance (up to 10 µm for pyocins and 
3 µm for the rest). We then collected up to k closest cells (up to 5-300 neighbors in the pyocin analysis to 
view the enrichment decay and up to 5 for the rest of the genes). All of the neighborhood cells selected 
(not including the center cells) were then analyzed in bulk together and their mean gene-expression was 
calculated and compared to the population (minus all center cells not used). We conducted this analysis 
across all genes and performed a Pearson correlation analyses to identify spatially correlating genes 
(Figure S4). 
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Data and Code Availability 
Custom MATLAB scripts and single-cell source data from this study were deposited in 
https://github.com/daniedar/seqFISH. Imaging data obtained during this study are available from the 
corresponding author upon reasonable request. 

 

 

Supplemental Figures: 
 

  

 

Figure S1. Negative control genes estimate the false positive rate. 
(A) Examples of positive signal for genes labeled with one of the three fluorophores used in this study A647 (red), 
cy3B (green), and A488 (cyan). For context, the mRNA-FISH fluorescence is shown over DAPI (dark silhouette). 
(B) Same regions as is in panel A but showing the raw fluorescence of the negative control genes for each 
fluorophore. For direct comparison, the intensity range is identical between positive and negative panels in A-B. 
Scale bar represents 5µm.  
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Figure S2. Single-cell dispersions in UMAP space for each growth curve time point. 
A UMAP density plot of cells belonging to specific time points. The OD600 values and the number of the time points 
are shown over each plot. Color intensity represents cell density.  
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Figure S3. Distributions of single-cell parameters across the detected UMAP clusters 
Distributions of nucleoid length, chromosome copy, ribosome levels and total mRNAs for each of the UMAP 
clusters described in main figure 3. 
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Figure S4. Spatial correlation analysis. 
Gene centered neighborhood analysis for detecting spatial correlation. For each gene, its 99th percentile expressing 
cells were identified and their 5 immediate neighbors within 3 µm were collected (leaving out the enriched center 
cell). The set of all such neighbors cross the experiment was analyzed together to produce a mean expression profile 
that was compared with the total population to produce a local enrichment/depletion ratio. The Pearson correlation 
between such gene neighborhood profiles was calculated and shown above as a clustered heat map. Five selected 
regions are highlighted and numbered. Key genes within each cluster are described to the right. 
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Figure S5. Distributions of single-cell parameters per UMAP cluster 
(A-B) Representative 10h microaggregates. Cells are shown via 16S rRNA FISH fluorescence (gray) and overlayed 
with gene-expression as indicated in each panel. White circles highlight regions of interest. (C-D) Zoom-in on 
region 1 and 2 showing uspL (cyan) and sigX (red). (E) Cells painted according to their neighborhood class as 
indicated in the panel legend. (F-H) Zoom-in highlighted regions overlaid with raw gene-expression as indicated in 
the panel legends. 
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Figure S6. UMAP analysis of 10h biofilms 
(A) UMAP analysis was performed using the 10h biofilm experiment. Below, clusters are labeled and are divided 
into predicted anaerobic groups. (B) UMAP overlaid with specific gene data. The cluster number positions are 
shown in the figure. 
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Figure S7. Functional zonation in 35h microaggregates 
(A-B) Various P. aeruginosa 35h aggregate. Bacteria are shown via 16S rRNA FISH fluorescence (gray) and are 
overlaid with raw mRNA-FISH fluorescence for several genes as described in the images. 
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