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Abstract  

Pupil dynamics serve as a physiological indicator of cognitive processes and arousal states of the 

brain across a diverse range of behavioral experiments. Pupil diameter changes reflect brain state 

fluctuations driven by neuromodulatory systems. Resting state fMRI (rs-fMRI) has been used to 

identify global patterns of neuronal correlation with pupil diameter changes, however, the linkage 

between distinct brain state-dependent activation patterns of neuromodulatory nuclei with pupil 

dynamics remains to be explored. Here, we identified four clusters of trials with unique activity 

patterns related to pupil diameter changes in anesthetized rat brains. Going beyond the typical rs-

fMRI correlation analysis with pupil dynamics, we decomposed spatiotemporal patterns of rs-fMRI 

with principal components analysis (PCA) and characterized the cluster-specific pupil-fMRI 

relationships by optimizing the PCA component weighting via decoding methods. This work shows 

that pupil dynamics are tightly coupled with different neuromodulatory centers in different trials, 

presenting a novel PCA-based decoding method to study the brain state-dependent pupil-fMRI 

relationship. 
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Introduction 

 Pupil diameter changes reflect the brain state and cognitive processing (1-4). It contains 

information about behavioral variables as diverse as a subject’s arousal fluctuation (5-7), sensory task 

performance (5, 8), movement (9-12), exerted mental effort (13-15), expected reward (16), task-

related uncertainty (17-19), or upcoming decisions (20, 21). This richness of behavioral correlates is 

partly explained by the fact that multiple neuronal sources drive pupil activity. Pupil diameter changes 

reflect spontaneous neural activity across the cortex (9-11, 22, 23) and in major subcortical areas (9, 

24-27). Both sympathetic and parasympathetic systems innervate muscles controlling pupil dilation 

and constriction (28-30), and the activity of subcortical nuclei mediating neuromodulation has been 

tightly coupled with pupillary movements (23, 24, 31-34). In particular, rapid and sustained pupil size 

changes are associated with cortical noradrenergic and cholinergic projections respectively (31) and 

direct recordings of the noradrenergic locus coeruleus demonstrate neuronal activity highly correlated 

with pupil dynamics (24, 32, 35). Also, pupil diameter changes are regulated through dopaminergic 

neuromodulation under drug administration (36) and in reward-related tasks (16, 33). Studies also 

show that pupil dilation and constriction can be controlled by serotonergic agonists and antagonists, 

respectively (37, 38). These studies have revealed the highly complex relationship between pupil 

dynamics and brain state fluctuations (7, 12, 30, 39). 

 Resting state fMRI (rs-fMRI) studies have uncovered global pupil-fMRI correlation patterns 

in human brains as well as revealed that the pupil dynamics-fMRI relationship changed under 

different lighting conditions or when subjects engaged in mental imagery (22, 26). The dynamic 

functional connectivity changes detected by fMRI, possibly modulated by the interplay of cholinergic 

and noradrenergic systems (40), are also reflected by pupil dynamics both at rest (41) and in task 

conditions (42). Furthermore, rs-fMRI has been used to display a differential correlation pattern with 

brainstem noradrenergic nuclei, e.g., A5 cell group, depending on the cortical cross-frequency 

coupling state in the animal model (23). Although rs-fMRI enables brain-wide pupil-fMRI correlation 

analysis across different states, the linkage of brain state-dependent pupil dynamics with distinct 

activation patterns of neuromodulatory nuclei remains to be thoroughly investigated beyond the 

conventional analysis methods. 

Here, we aimed to differentiate brain states with varied coupling patterns of pupil dynamics 

with the subcortical activity of major neuromodulatory nuclei in an anesthetized rat model. First, we 

demonstrated that the pupil-fMRI relationship is not uniform across different scanning trials and 

employed a clustering procedure to identify distinct pupil-fMRI spatial correlation patterns from a 

cohort of datasets. Next, we modeled the relationship of the two modalities for each cluster using 

principal component analysis (PCA)-based decoding methods (gated recurrent unit (GRU) (43) 

neural networks and linear regression) and characterized unique subcortical activation patterns 
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coupled with specific pupil dynamic features. This work demonstrates the effectiveness of PCA-based 

decoding to dissect the time-varied pupil-fMRI relationship corresponding to different forms of brain 

state-dependent neuromodulation. 

 

Results 

Identification of brain states with distinct pupil dynamics correlation patterns 

 To investigate brain state-dependent pupil dynamics, we acquired whole-brain rs-fMRI with 

real-time pupillometry in anesthetized rats (n=10) as previously reported (23). Initially, the pupil 

dilation and fMRI time-series from all trials (n=74) were concatenated. A voxel-wise correlation map 

of the concatenated pupil dynamics signals with fMRI time courses showed a global negative 

correlation (Fig. 1A). However, the generated map was not representative of all trials, which was 

revealed by creating correlation maps for individual trials (Fig. 1B). These maps demonstrated high 

variability of pupil-fMRI correlations, which is presented by the histogram distribution of spatial 

correlation values between individual-trial spatial maps and the concatenated all-trial map (Fig. 1C). 

Next, we clustered all trials into different groups based on pupil-fMRI correlation maps (Fig. 

2A). To facilitate the clustering analysis we reduced the dimensionality of the spatial correlation maps 

using the uniform manifold approximation and projection (UMAP) (44) method and decreased the 

number of features used for clustering from the number of voxels (n=20804) to 72 for each map. 

Three to seven clusters were identified with Gaussian mixture modeling and examined using 

silhouette analysis (45, 46). Here, we focused on the 4-cluster categorization since this division 

yielded the highest mean silhouette scores (Fig. 2B). The power spectral density (PSD) estimates of 

pupil dynamics were plotted based on the cluster division in Fig. 2C. PSD of cluster 1 showed a 

distinct peak at 0.018 Hz as well as the lowest baseline pupil diameter values. In contrast, cluster 4 

Fig. 1. Variability of the pupil-fMRI linkage. (A) The pupil-fMRI correlation map created by correlating the two modalities’ 
concatenated signals from all trials. (B) Selected individual trial correlations maps. (C) Histogram of spatial correlations 
between the all-trial correlation map and individual trial maps. High variability of similarities between the maps shows that 
the pupil-fMRI relationship is not stationary and changes across trials. 
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had the highest mean baseline diameter and a peak at 0.011 Hz. Clusters 2 and 3 showed peaks of 

oscillatory power at less than 0.01 Hz. The ultra-slow oscillation is typical for spontaneous pupil 

fluctuations (47). We recreated pupil-fMRI correlation maps based on the 4 clusters (Fig. 2D). Three 

clusters (1, 2 and 4) showed negative correlations across large parts of the brain, with the correlation 

strength differing across clusters. In contrast, cluster 3 displayed a very low mean correlation with 

positive coefficients spreading across the entire brain. It is also noteworthy that cluster 1 showed a 

high positive correlation in the periaqueductal gray and ventral midbrain regions. These results 

verified the usage of data-driven clustering for identifying brain state-dependent pupil dynamics. 

Fig. 2. Clustering of trials with distinct pupil-fMRI correlation patterns. (A) Schematic of the clustering procedure. UMAP 
is used to reduce the dimensionality of all individual-trial correlation maps to 72 dimensions. A 2D UMAP-projection of the 
real data is shown. Each dot represents a single trial. The trials are clustered using Gaussian mixture model clustering. 
Different numbers of clusters are evaluated. (B) The final number of clusters is selected based on silhouette analysis. The 
highest average silhouette score is obtained by k=4 clusters. (C) Pupil power spectral density estimates (PSD) of each of 
the four clusters. Signals were downsampled to match the fMRI sampling rate. (D) Cluster-specific correlation maps based 
on concatenated signals belonging to the respective groups. 
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Decoding-based investigation of the relationship between whole-brain rs-fMRI and pupil dynamics 

To characterize the pupil-fMRI relationship beyond the conventional correlation analysis, we 

implemented data-driven decoding models to dissect the dynamics of the two modalities. First, we 

performed principal component analysis (PCA) to extract spatiotemporal features of whole-brain rs-

fMRI signals (n=300) and trained either linear regression (LR) or a gated recurrent unit (GRU) neural 

network to predict pupil dynamics based on rs-fMRI PCA time courses (Fig. 3A). Furthermore, we 

compared the LR and GRU prediction models with a correlation template-based pupil dynamics 

estimation used in previous studies (23, 48). All methods were trained on 64 trials using cross-

validation and then were tested on additional 10 independent trials. As the correlation template-based 

predictions were bounded to the <-1; 1> range, Pearson’s correlation coefficient was used to evaluate 

the decoding of all methods. We optimized the hyperparameters of GRUs and linear regression 

variants using Bayesian optimization (49, 50) and 4-fold cross-validation (hyperparameter values are 

listed in Methods). Both linear regression and GRU outperformed the correlation-template approach 

Fig. 3. Decoding pupil dynamics based on fMRI signals. (A) Schematic of the decoding procedure. Principal component 
analysis (PCA) was applied to fMRI data from all trials. The PCA time courses were fed into either linear regression or 
GRU decoders which generated pupil signal predictions. The prediction quality was evaluated by comparing the generated 
signals with real pupil fluctuations using Pearson’s correlation coefficients. (B) Comparison of the three methods’ pupil 
dynamics predictions. Linear regression and GRU performed better than the correlation-based baseline method on both 
the cross-validation splits (CCbase=0.37±0.27 s.d., CCLR=0.45±0.26 s.d., CCGRU=0.46±0.25 s.d., pLR=4.3*10-6, 
pGRU=2.4*10-6) and on test data (CCbase=0.25±0.17 s.d., CCLR=0.44±0.24 s.d., CCGRU=0.45±0.27 s.d., pLR=0.003, 
pGRU=0.01). Scattered points show individual prediction scores. (C) Linear regression and GRU predictions of three 
selected trials (CCGRU-top=0.79, CCLR-top=0.77, CCGRU-middle=0.75,CCLR-middle=0.73, CCGRU-bottom=0.02, CCLR-bottom=0.06). 
Qualitatively, linear regression and GRU predictions are very similar. 
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on both training (CCbase=0.37±0.27 s.d., CCLR=0.45±0.26 s.d., CCGRU=0.46±0.25 s.d., pLR=4.3*10-6, 

pGRU=2.4*10-6) and test sets (CCbase=0.25±0.17 s.d., CCLR=0.44±0.24 s.d., CCGRU=0.45±0.27 s.d., 

pLR=0.003, pGRU=0.01) (Fig. 3B). We also verified the number of rs-fMRI PCA components by testing 

varied component counts, showing that the highest prediction scores were achieved with 300 

components (Supplementary Fig. 1). In addition, when varying the temporal shift between pupil 

dynamics and rs-fMRI signals, we obtained the highest prediction scores with zero shift between the 

input and output signals (Supplementary Fig. 1). Interestingly, the component which explained the 

most pupillary variance (explained var. = 7.03 %) and had the highest linear regression weight, 

explained only 0.8 % of the fMRI variance (Supplementary Fig. 2). Furthermore, the component 

which explained the most fMRI variance (explained var. = 22.01 %), was weakly coupled with the 

pupil fluctuation (explained var. = 0.51 %). Thus, this prediction-based PCA component weighting 

scheme enabled the dissection of unique brain activity features for the modeling of the pupil-fMRI 

relationship. It should also be noted that GRU and linear regression methods obtained comparable 

scores and both methods showed similar prediction performance (Fig. 3C). Supplementary Fig. 3 

shows prediction maps created by integrating PCA components using linear regression weights or 

averaged GRU gradients (details in Methods). The resemblance of the two maps suggests that despite 

GRU’s potential for encoding complex and non-linear functions, a linear regression-based rs-fMRI 

mapping scheme was sufficient for predicting pupil dynamics.  

The map generated by combining PCA components with the linear regression decoder allowed 

the identification of brain nuclei which were not highlighted in the correlation map shown in Fig. 1A. 

Fig. 4 shows an overview of the PCA-based fMRI prediction map overlaid on the brain atlas, 

revealing pupil-related activation patterns at key neuromodulatory nuclei of the ascending reticular 

activating system (ARAS) - the dopaminergic ventral tegmental area, substantia nigra and 

supramammillary nucleus, the serotonergic raphe and B9 cells, the histaminergic tuberomammillary 

nucleus, the cholinergic laterodorsal tegmental and pontine nuclei, the glutamatergic parabrachial 

nuclei and the noradrenergic locus coeruleus. Positive weights were also located in subcortical regions 

involved in autonomous regulation - the lateral and preoptic hypothalamus and the periaqueductal 

gray. In addition, the subcortical basal forebrain nuclei (the horizontal limb of the diagonal band, 

nucleus accumbens, and olfactory tubercle) and the septal area were positively coupled to pupil 

dynamics. Lastly, regions of the hippocampal formation - the hippocampus, entorhinal cortex and 

subiculum, as well as cingulate, retrosplenial and visual cortices displayed positive weighting. It 

should be noted that the thalamus and the hippocampus displayed both positive and negative weights. 

Negative coupling was also found in the cerebellum and most somatosensory cortical regions. The 

voxel-wise statistical significance (p<0.01) was validated using randomization tests and corrected for 

multiple comparisons with false discovery rate correction (details in Methods). These results highlight  
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Fig. 4. Localization of pupil dynamics-related information content across the brain. The spatial map highlights regions 
from which pupil-related information was decoded. It was created by integrating PCA spatial maps with weights of the 
trained linear regression model. The map displays positive weights in all positive neuromodulatory regions of the 
ascending reticular activating system as well as in other regions involved in autonomous regulation - the lateral and 
preoptic hypothalamus and the periaqueductal gray. The subcortical basal forebrain nuclei (the horizontal limb of the 
diagonal band, nucleus accumbens, and olfactory tubercle) and the septal area were also positively coupled to pupil 
dynamics. Finally, regions of the hippocampal formation - the hippocampus, entorhinal cortex and subiculum, as well as 
cingulate, retrosplenial and visual cortices showed positive weights. The thalamus and the hippocampus had both positive 
and negative weights. Strong negative weighting was found in the cerebellum and most somatosensory cortical regions. 
Masked regions (white) did not pass the false discovery rate corrected significance threshold (p=0.01). Abbreviations: B9 
– B9 serotonergic cells, Ce – cerebellum, CgCx – cingulate cortex, DB – horizontal limb of the diagonal band, ECx – 
entorhinal cortex, Hp – hippocampus, LC – locus coeruleus, LDT – laterodorsal tegmental nuclei, LH – lateral 
hypothalamus, NA – nucleus accumbens, OTu – olfactory tubercle, PAG – periaqueductal gray, PB – parabrachial nuclei, 
PO – preoptic nuclei, PPT- pedunculopontine tegmental nuclei, Ra – raphe, RF – reticular formation, RsCx – retrosplenial 
cortex, Sb – subiculum, SCx – somatosensory cortex, Se – septal nuclei, SG – subgeniculate nucleus, SN – substantia 
nigra, SuM – supramammillary nucleus, Th – thalamus, TuM – tuberomammillary nucleus, VTA – ventral tegmental area. 
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the advantage of using PCA decomposition combined with prediction-based decoding methods 

instead of conventional correlation analysis to identify pupil-related subcortical activation patterns. 

 

Characterization of brain state-dependent PCA-based pupil-fMRI prediction maps 

 To differentiate brain state-dependent subcortical activation patterns related to different pupil 

dynamics, we retrained the linear regression model based on the 4 different clusters shown in Fig. 2D 

and created PCA-based fMRI prediction maps for each cluster (Fig. 5).  

Each PCA-based prediction map portrayed a cluster-specific spatial pattern (Fig. 5B). Cluster 

1 was characterized by strong positive weights in the dopaminergic substantia nigra and ventral 

tegmental area as well as in their efferent projections in the striatum (nucleus accumbens and caudate-

putamen) (51). Positive coupling was also displayed in the periaqueductal gray and brainstem 

laterodorsal tegmental and parabrachial nuclei as well as in the superior colliculus. Cluster 2 had the 

strongest positive weights in hypothalamic regions, lateral in particular, but also in brainstem arousal-

regulating locus coeruleus, laterodorsal tegmental and parabrachial nuclei. High positive values were 

also found in the septal area and the olfactory tubercle. In cluster 3 the highest values were visible in 

preoptic and other hypothalamic areas, as well as in stria terminalis carrying primarily afferent 

hypothalamic fibers (52), caudate-putamen and globus pallidus. As in cluster 2, the locus coeruleus, 

laterodorsal tegmental and parabrachial nuclei showed positive linkage with pupil dynamics. 

Contrastingly, in cluster 4 caudal raphe was the only neuromodulatory region showing positive 

weights and the anterior parts of the brainstem displayed negative weighting. Characteristic to cluster 

4 were high weights in the hippocampus and the subiculum forming the hippocampal formation, as 

well as in thalamic and amygdaloid areas. Common to all clusters, negative weights were detected 

across somatosensory cortices, the cerebellum and posterior parts of the thalamus, as well as positive 

weights in hypothalamic and anterior thalamic nuclei. The subiculum and parts of the hippocampus 

were also positive in all clusters, however, the entorhinal cortex, also belonging to the hippocampal 

formation, was positive only in clusters 1-3. The same three clusters showed major positive weights 

in the neuromodulatory brainstem regions, substantia nigra, and ventral tegmental area. Clusters 2-4 

displayed strong weights in the retrosplenial cortex and the cingulate cortex which has been coupled 

with both noradrenergic modulation (35) and pupil dynamics (23, 24). Here, we demonstrated the 

effectiveness of the PCA-based approach to reveal brain state-specific subcortical activity patterns 

related to pupil diameter changes. 
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Fig. 5. Characterization of brain state-specific pupil-fMRI relationships. (A) Pupil information content maps generated by 
integrating PCA spatial maps with weights of linear regression models trained on cluster-specific trials. In all clusters, 
negative weights were found in the somatosensory cortex, the cerebellum and posterior parts of the thalamus. Common 
to all clusters, were positive weights in anterior thalamic, preoptic and hypothalamic nuclei, the subiculum and parts of the 
hippocampus. Clusters 1-3 displayed positive weights in neuromodulatory brainstem regions, substantia nigra and ventral 
tegmental area, as well as the entorhinal cortex. The cingulate cortex and retrosplenial cortex were positive in clusters 2-
4. Marked with gray are frames plotted in B. (B) Cluster-specific spatial patterns are portrayed on slices selected from A 
(marked with gray rectangles). Characteristic to cluster 1 were positive weights in the dopaminergic substantia nigra and 
ventral tegmental area as well as in their efferent projections in the nucleus accumbens and caudate-putamen. Positive 
weighting was also found in the periaqueductal gray and brainstem laterodorsal tegmental and parabrachial nuclei, as 
well as in the superior colliculus. Cluster 2 was characterized by the strongest positive weights in hypothalamic regions, 
lateral in particular. Brainstem arousal-regulating locus coeruleus, laterodorsal tegmental and parabrachial nuclei, as well 
as the septal area and the olfactory tubercle displayed high positive weights. In cluster 3, as in cluster 2, the locus 
coeruleus, laterodorsal tegmental and parabrachial nuclei showed positive linkage with pupil dynamics. The highest 
cluster 3 values were located in preoptic and other hypothalamic areas, as well as in stria terminalis carrying primarily 
afferent hypothalamic fibers, caudate-putamen and globus pallidus. In cluster 4 the only neuromodulatory region showing 
positive weights was the caudal raphe. The anterior parts of the brainstem displayed negative weighting. Characteristic 
to cluster 4 were high weights in the thalamus and in the hippocampus and the subiculum forming the hippocampal 
formation. Masked regions (white) did not pass the false discovery rate corrected significance threshold (p=0.01). 
Abbreviations: CgCx – cingulate cortex, CP – caudate-putamen, GP – globus pallidus, Hp – hippocampus, Hy – 
hypothalamus, LH – lateral hypothalamus, NA – nucleus accumbens, OTu – olfactory tubercle, PAG – periaqueductal 
gray, PO – preoptic nuclei, TSb – subiculum, SC – superior colliculus, Se – septal area, SN – substantia nigra, ST – stria 
terminalis, Th – thalamus, VTA – ventral tegmental area. 
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Discussion 

 Previous studies analyzed the relationship of fMRI and pupil dynamics either by directly 

correlating pupil size changes with the fMRI signal fluctuation (22, 23, 26) or by applying a general 

linear model to produce voxel-wise activation maps (15, 34, 53). Here, we performed PCA-based 

dimensionality reduction to decouple spatiotemporal features of fMRI signals (54) and implemented 

prediction methods to decode pupil dynamics based on the optimized PCA component weighting 

(Fig. 3).  

Two advantages can be highlighted in the present pupil-fMRI dynamic mapping scheme. First, 

conventional correlation analysis relies on the temporal features of fMRI time courses from individual 

voxels or regions of interest. Hence, it could not decouple the superimposed effects of multiple signal 

sources (55, 56) or characterize the state-dependent dynamic subcortical correlation patterns. On the 

other hand, the PCA decomposition scheme solved these issues by decoupling multiple components 

of rs-fMRI signals with unique spatiotemporal patterns carrying pupil-related information. Second, 

the data-driven training of prediction methods optimized the weighting of individual rs-fMRI PCA 

components. Using the optimized neural network (GRU) or linear regression (LR)-based decoding 

models, we created prediction maps linking pupil dynamics with fMRI signal fluctuation of specific 

subcortical nuclei (Fig. 4, Supplementary Fig. 3). Also, the decoding models showed much better 

pupil dynamics prediction than the correlation template-based approach reported previously (23, 48). 

Meanwhile, it should be noted that both LR and GRU models generated qualitatively similar 

prediction maps, highlighting the pupil-related rs-fMRI signal fluctuation from the same subcortical 

brain regions (Fig. 3C, Supplementary Fig. 3). Unlike our previous single-vessel fMRI prediction 

study (57), the GRU-based neural network prediction scheme may require much bigger training 

datasets to outperform linear regression modeling (58). Another plausible explanation is that the pupil 

dynamics were predominantly and linearly driven by only a few rs-fMRI PCA components 

(Supplementary Fig 3), presenting brain activation patterns related to arousal fluctuation and 

autonomous regulation (59, 60). 

 The PCA-based prediction modeling provides a novel scheme to decipher subcortical spatial 

patterns of fMRI signal fluctuation related to brain state-dependent pupil dynamics. Most notably, 

neuromodulatory nuclei of ARAS and other subcortical nuclei involved in brain state modulation, as 

well as autonomous regulation were identified in the PCA-prediction map created from all trials. The 

highlighted hypothalamus, basal forebrain, and neuromodulatory brainstem nuclei are responsible for 

both global brain state modulation as well as autonomous cardiovascular, respiratory and baroreflex 

control (60-65). Consequently, the source of pupil-related information found across the cortex was 

probably modulated through global subcortical projections rather than a more direct causal interaction 

with pupil size changes (31, 66). The observed activation pattern suggests that, in the anesthetized 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432768doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432768
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

state, pupil diameter fluctuation reflects a complex interaction of subcortical homeostatic and 

neuromodulatory centers.  

Also, we have shown that these subcortical interactions and the neural correlates of pupil 

dynamics are not stationary but change across trials in a brain state-dependent manner. Based on the 

correlation patterns, we identified four clusters of trials with distinct pupil-fMRI coupling. Our results 

demonstrate that pupil size changes can be modulated by different combinations of subcortical nuclei, 

indicating varied brain state fluctuation underlying different oscillatory patterns of pupil dynamics 

(Fig. 2C). This is further exemplified by examining the cluster-specific PCA prediction maps. The 

map of cluster 2 demonstrates the strongest coupling of pupil dynamics with the hypothalamus, which 

is known to drive pupil dilation (27) and also highlights other brain state-regulating nuclei of the 

ARAS. It is possible that the hypothalamus was the key driver of brain state fluctuation in cluster 2 

(65, 67). On the other hand, hypothalamic weights were least prevalent in cluster 1 which displayed 

strong pupil coupling with the dopaminergic system known to modulate pupil dynamics (16, 33, 36). 

Finally, in trials of cluster 4, the caudal raphe nucleus was the only brainstem neuromodulatory 

nucleus whose activity was positively weighted to predict pupil fluctuations. Additionally, the 

subiculum weights were the strongest in cluster 4 out of all clusters. The positive coupling of the 

raphe and subiculum hints at the possibility of pupillometry reflecting the activity of circuits 

responsible for autonomous stress modulation (68). The PCA prediction maps identify key nuclei 

coupled with pupil dynamics at different states and also highlight the complexity of brain activation 

patterns responsible for autonomous and brain state regulation. 

 Although the present study is based on the anesthetized rat model, it provides a framework 

that could be applied to analyze human datasets. In particular, the cognitive component of brain 

activity reflected in pupil diameter changes of awake human subjects could be investigated using the 

PCA-based fMRI decoding method. Working with awake subjects would additionally mitigate the 

potential impact of anesthesia on the activity of the sympathetic system (69) which controls pupillary 

movements in an antagonistic relationship with the parasympathetic system (28, 29). Further research 

should also be directed towards investigating the state-dependent coupling of pupil dynamics and 

brain activity at finer temporal scales. Importantly, assuming stationarity of the relationship at any 

scale could lead to oversimplification of the results, as already evidenced by our ability to differentiate 

four distinct pupil-fMRI coupling patterns instead of one common correlation map. Combining the 

analysis of individual fMRI frames (70, 71) with the phase of pupil diameter fluctuation, which is 

known to reflect the activity of different cortical neural populations (12), would demonstrate whole-

brain activity patterns coupled to pupil dilation and constriction. Finally, regions like the subiculum, 

which previously have not been linked to pupil dynamics, but displayed strong coupling weights in 
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our study, could guide the future electrophysiological studies to reveal novel neuronal regulatory 

mechanisms underlying pupil dynamics. 

 

Conclusion 

We provided a framework to investigate the brain state-dependent relationship between pupil 

dynamics and fMRI. The pupil-related brain activity was decoupled from other signal sources based 

on PCA decomposition and the cluster-specific pupil-fMRI relationship was identified by integrating 

optimized PCA weighting features using decoding methods. Eventually, distinct subcortical 

activation patterns were revealed to highlight varied neuromodulatory nuclei corresponding to pupil 

dynamics. 

 

Materials and methods 

Animal preparation 

All experimental procedures were approved by the Animal Protection Committee of Tuebingen 

(Regierungsprasidium Tuebingen) and performed following the guidelines. Pupillometry and fMRI 

data acquired from 10 Sprague Dawley rats had been previously published (23). The rats were imaged 

under alpha-chloralose anesthesia. For details related to the experimental procedures refer to Pais-

Roldan et al. (23). 

fMRI acquisition & preprocessing 

All MRI measurements were performed on a 14.1T / 26cm magnet (Magnex, Oxford) with an Avance 

III console (Bruker, Ettlingen) using an elliptic trans-receiver surface coil (~2x2.7cm). To acquire 

functional data, a whole-brain 3D EPI sequence was used. The sequence parameters were: 1s TR, 

12.5ms TE, 48x48x32 matrix size, 400x400x600µm resolution. Each run had a length of 925 TRs (15 

min 25 s). The RARE sequence was used to acquire an anatomical image for each rat. The RARE 

parameters were: 4s TR, 9ms TE, 128x128 matrix size, 32 slices, 150µm in-plane resolution, 600µm 

slice thickness, 8x RARE factor. The data from all rats were spatially co-registered. First, for each 

EPI run, all volumes were registered to the EPI mean. The EPI means were registered to 

corresponding anatomical images. To register all data to a common template, all RARE images were 

registered to a selected RARE image. The obtained registration matrices were then applied to the 

functional data. A temporal filter (0.002, 0.15 Hz) was applied to the co-registered data. The 

registration was performed using the AFNI software package (72). Principal component analysis 

(PCA) implemented in Python scikit-learn library (73) was used to reduce the dimensionality of fMRI 

data for prediction purposes. The PCA time courses were variance normalized before the optimization 

of linear regression and GRU weights. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432768doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432768
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

Pupillometry acquisition & pupil diameter extraction 

For each fMRI scan, a video with the following parameters was recorded: 24 bits per pixel, 240x352 

pixels, 29.97 frames/s, RGB24 format. A customized MRI-compatible camera was used. For details 

related to the setup refer to Pais-Roldan et al. (23). The DeepLabCut toolbox (74, 75) was used to 

extract the pupil position from each video frame. The toolbox’s artificial neural network was 

optimized using 1330 manually labeled images extracted from 74 eye monitoring videos. Training 

frames were selected using an automated clustering-based DeepLabCut procedure. 4 pupil edge 

points were manually labeled in each training image. Using the trained network, the 4 points were 

located in each recorded frame and their coordinates were used to calculate the pupil diameter as: 

� =
���� − ��	� + ��� − ��	� + ���� − �
	� + ��� − �
	�

2
 

The pupil diameter signals were averaged over 1 s windows to match the fMRI temporal resolution 

while reducing noise. Pupillometry time courses were variance normalized before the optimization 

of linear regression and GRU weights. 

UMAP dimensionality reduction 

The uniform manifold approximation and projection (UMAP ) (44) algorithm was employed to 

reduce the dimensionality of pupil-fMRI correlation maps before clustering. We used the Python 

implementation of the algorithm provided by the authors of the method. First, UMAP finds a k-nearest 

neighbor graph. Based on silhouette scores we set k=5. To facilitate clustering we set the minimum 

allowed distance between points on the low dimensional manifold to 0. We projected the data from 

the voxel space (n=20804) to a 72-dimensional representation, as this was the highest number of 

dimensions the method permitted given 74 input trials. 

Gaussian mixture model clustering 

To cluster the trials in the low dimensional space resulting from the UMAP embedding, we used the 

expectation-maximization algorithm fitting mixture of Gaussians models to the data (45). We used 

the Python implementation from the scikit-learn library (73) with default parameters. 

Silhouette analysis – cluster number verification 

To find the number of clusters for successive analyses we evaluated clustering results using silhouette 

analysis (46) implemented in the Python scikit-learn library (73). For each point, the method 

computes a silhouette score which evaluates how similar it is to points in its cluster versus points in 

other clusters. The clustering of the entire dataset was evaluated by computing the mean silhouette 

score across all points. The clustering result with the highest mean silhouette score was selected for 

successive analyses. 
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Power spectral density estimation 

The spectral analysis was performed using the Python SciPy library (76). To compute the PSDs of 

utilized signals we employed Welch’s method (77) with the following parameters: 512 discrete 

Fourier transform points; Hann window; 50% overlap. 

Correlation map-based prediction 

Following a strategy described in previous studies (23, 48) we used a pupil-fMRI correlation map to 

predict pupillometry time courses given fMRI input data. To create the correlation map pupillometry 

and fMRI data were concatenated across all trials and the pupil diameter fluctuation signal was 

correlated with each voxel’s signal. This generated a 3D volume (the correlation map) which was 

then correlated with each individual fMRI volume yielding a single predicted value for each time 

point. As the resulting time courses’ amplitudes were bounded to the <-1; 1> range and not 

informative of the target signals amplitudes, Pearson’s correlation coefficient was used to evaluate 

the quality of the predictions on a trial-by-trial basis. 

Linear regression variants 

Linear regression was used to predict pupillometry data given fMRI-PCA inputs. Four linear 

regression variants were available to a Bayesian optimizer which selected both the linear model type 

as well as its parameters. The available variants were ordinary least squares, Ridge, Lasso and elastic-

net regression models. Python scikit-learn library (73) implementations were used. L2 Ridge 

regression with a regularization parameter � = 19861 obtained the best prediction scores and was 

found using the Hyperopt toolbox (49, 50). 

GRU 

The second model employed for pupillometry decoding was the gated recurrent unit (GRU) (43) 

artificial neural network. The GRU is a recurrent neural network which encodes each element of the 

input fMRI-PCA sequence � into a hidden state vector ���	 through the following computations: 

���	 = ��������	 + ��� + ������ − 1	 + ���	 

���	 = ��������	 + ��� + ������ − 1	 + ���	 

 ��	 = �!"ℎ$��%���	 + ��% + ���	⨀���%��� − 1	 + ��%	' 

���	 = $1 − ���	'⨀ ��	 + ���	⨀��� − 1	 

where �, �,   are the reset, update and new gates, � are matrices connecting the inputs, gates and 

hidden states, ��	 and  �!"ℎ�	 are the sigmoid and hyperbolic tangent functions, � are bias vectors 

and ⨀ is the elementwise product. A linear decoder generated predictions based on the hidden state 

vector: 

���	 = *+,-���	. 
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The correlation coefficient was used as the loss function. The networks were trained in PyTorch (78) 

using the Adam optimizer (79). Hyperparameters were found using Bayesian optimization using the 

tree of Parzen estimators algorithm (Hyperopt toolbox, n=200) (49, 50). The optimized 

hyperparameters have been described in Table 1. Early stopping was used in the Bayesian 

optimization procedure. To set the final number of training epochs for the best network, cross-

validation was repeated and the GRU was trained for 100 epochs on each split. Training for 7 epochs 

yielded the best performance. 

Parameter name Description Range Final value 

Number of layers Multiple recurrent layers could be stacked on top of each other. [1; 3] 1 

Hidden size Hidden state vector size. [10; 500] 300 

Learning rate 
The rate at which network weights were updated during 

training. 
[10-6; 1] 0.0023 

L2 Strength of the L2 weight regularization. [0; 10] 0.0052 

Gradient clipping 
Gradient clipping (80) limits the gradient magnitude at a 

specified maximum value. 
[yes; no] yes 

Max. gradient Value at which the gradients are clipped. [0.1, 2] 1 

Dropout 
During training, a percentage of units could be set to 0 for 

regularization purposes (81). 
[0; 0.2] 0 

Residual connection 
Feeding the input directly to the linear decoder bypassing the 

RNN’s computation. 
[yes; no] no 

Batch size 
The number of training trials fed into the network before each 

weight update. 
[3; 20] 12 

 

Cross-validation 

The available 74 trials were divided into training (n=64) and test (n=10) sets. Linear regression and 

GRU parameters were found based on the training set with 4-fold cross-validation. The final 

performance was evaluated on the test set. Scores of the correlation template-based prediction were 

based on the same data splits.  

Spatial map - linear regression 

To create spatial maps highlighting areas that contributed to linear regression predictions we weighted 

PCA component maps by their associated linear regression weights, summed them and took their 

means. Region borders from the rat brain atlas (82) were matched to and overlaid on spatial map 

slices. 

Spatial map – GRU 

To create spatial maps highlighting areas that contributed to GRU predictions we computed gradients 

of each of the predicted time points with respect to the 300 input features. We then averaged the 

Table 1. Optimized GRU hyperparameters. 
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gradients across all time points for each of the features and used these mean values just like the 

weights in the case of linear regression map generation. 

Variance explained 

We obtained the fMRI variance explained by each PCA component directly from the scikit-learn (73) 

PCA model. To compute the pupil variance explained by each of the PCA time courses we used an 

approach described in Musall et al. (11) with 4-fold cross-validation. The explained variance of each 

component was found by randomly shuffling the time points of all other components, training the 

Ridge linear regression model (� = 19861) on shuffled data and assessing the explained variance 

based on generated predictions. 

Statistical tests – prediction 

We used a paired t-test to compare the prediction scores across methods. 

Statistical tests – linear regression spatial maps 

To test which linear regression spatial map values significantly contributed to the predictions we used 

randomization tests. For each cluster, we shuffled the input and output pairings 10000 times, trained 

a linear model and created a spatial map for each of those pairings. We then compared the values in 

the original maps with the shuffled ones. Values that were at least as extreme as the shuffled values 

at the 0.005 positive or negative percentile (p=0.01) were considered significant. The results were 

controlled for false discovery rate with adjustment (83, 84). 

 

Acknowledgments 

We thank Dr. R. Pohmann and Dr. K. Buckenmaier for technical support; Dr. E. Weiler, Dr. P. Douay, 

Mrs. R. König, Ms. S. Fischer, Ms. H. Schulz and Dr. Jörn Engelmann, for animal/lab maintenance 

and support; the Analysis of Functional NeuroImages (AFNI) team for software support.  

Conflict of Interests: None declared. 

 

Author contributions 

Research design: X.Y., F.S., Data acquisition: P.P., K.T., Analysis: F.S., Writing – original draft: F.S., 

X.Y., Writing – review & editing: X.Y., F.S., P.P., K.T., Supervision: X.Y. 

 

Funding 

This research was supported by internal funding from Max Planck Society, NIH Brain Initiative 

funding (RF1NS113278–01, R01MH111438–01) and shared instrument grant (S10 MH124733-01), 

German Research Foundation (DFG) YU215/2-1 and Yu215/3–1, BMBF 01GQ1702. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432768doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432768
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

References 

1. Beatty J & Lucero-Wagoner B (2000) The pupillary system. Handbook of psychophysiology, 

2nd ed.,  (Cambridge University Press, New York, NY, US), pp 142-162. 
2. Eckstein MK, Guerra-Carrillo B, Miller Singley AT, & Bunge SA (2017) Beyond eye gaze: 

What else can eyetracking reveal about cognition and cognitive development? Developmental 

Cognitive Neuroscience 25:69-91. 
3. Laeng B, Sirois S, & Gredebäck G (2012) Pupillometry: A Window to the Preconscious? 

Perspectives on Psychological Science. 
4. Wilhelm H & Wilhelm B (2003) Clinical Applications of Pupillography. Journal of Neuro-

Ophthalmology 23(1):42–49. 
5. McGinley MJ, David SV, & McCormick DA (2015) Cortical Membrane Potential Signature 

of Optimal States for Sensory Signal Detection. Neuron 87(1):179-192. 
6. Yoss RE, Moyer NJ, & Hollenhorst RW (1970) Pupil size and spontaneous pupillary waves 

associated with alertness, drowsiness, and sleep. Neurology 20(6):545-545. 
7. McCormick DA, Nestvogel DB, & He BJ (2020) Neuromodulation of Brain State and 

Behavior. Annual Review of Neuroscience 43(1):391-415. 
8. Hakerem GAD & Sutton S (1966) Pupillary Response at Visual Threshold. Nature 

212(5061):485-486. 
9. Stringer C, et al. (2019) Spontaneous behaviors drive multidimensional, brainwide activity. 

Science 364(6437). 
10. Salkoff DB, Zagha E, McCarthy E, & McCormick DA (2020) Movement and Performance 

Explain Widespread Cortical Activity in a Visual Detection Task. Cerebral Cortex 30(1):421-
437. 

11. Musall S, Kaufman MT, Juavinett AL, Gluf S, & Churchland AK (2019) Single-trial neural 
dynamics are dominated by richly varied movements. Nature Neuroscience 22(10):1677-
1686. 

12. Reimer J, et al. (2014) Pupil Fluctuations Track Fast Switching of Cortical States during Quiet 
Wakefulness. Neuron 84(2):355-362. 

13. Hess EH & Polt JM (1964) Pupil Size in Relation to Mental Activity during Simple Problem-
Solving. Science 143(3611):1190-1192. 

14. Kahneman D & Beatty J (1966) Pupil Diameter and Load on Memory. Science 
154(3756):1583-1585. 

15. Alnæs D, et al. (2014) Pupil size signals mental effort deployed during multiple object 
tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. 
Journal of Vision 14(4):1-1. 

16. O'Doherty JP, Dayan P, Friston K, Critchley H, & Dolan RJ (2003) Temporal Difference 
Models and Reward-Related Learning in the Human Brain. Neuron 38(2):329-337. 

17. Satterthwaite TD, et al. (2007) Dissociable but inter-related systems of cognitive control and 
reward during decision making: Evidence from pupillometry and event-related fMRI. 
NeuroImage 37(3):1017-1031. 

18. Nassar MR, et al. (2012) Rational regulation of learning dynamics by pupil-linked arousal 
systems. Nature Neuroscience 15(7):1040-1046. 

19. Richer F & Beatty J (1987) Contrasting Effects of Response Uncertainty on the Task-Evoked 
Pupillary Response and Reaction Time. Psychophysiology 24(3):258-262. 

20. Gee JWd, Knapen T, & Donner TH (2014) Decision-related pupil dilation reflects upcoming 
choice and individual bias. Proceedings of the National Academy of Sciences 111(5):E618-
E625. 

21. Sheng F, et al. (2020) Decomposing loss aversion from gaze allocation and pupil dilation. 
Proceedings of the National Academy of Sciences 117(21):11356-11363. 

22. Yellin D, Berkovich-Ohana A, & Malach R (2015) Coupling between pupil fluctuations and 
resting-state fMRI uncovers a slow build-up of antagonistic responses in the human cortex. 
Neuroimage 106:414-427. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432768doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432768
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

23. Pais-Roldán P, et al. (2020) Indexing brain state-dependent pupil dynamics with simultaneous 
fMRI and optical fiber calcium recording. Proceedings of the National Academy of 

Sciences:201909937. 
24. Joshi S, Li Y, Kalwani Rishi M, & Gold Joshua I (2016) Relationships between Pupil 

Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. 
Neuron 89(1):221-234. 

25. Wang C-A, Boehnke SE, White BJ, & Munoz DP (2012) Microstimulation of the Monkey 
Superior Colliculus Induces Pupil Dilation Without Evoking Saccades. Journal of 

Neuroscience 32(11):3629-3636. 
26. Schneider M, et al. (2016) Spontaneous pupil dilations during the resting state are associated 

with activation of the salience network. Neuroimage 139:189-201. 
27. Ranson SW & Magoun H (1933) RESPIRATORY AND PUPILLARY REACTIONS: 

INDUCED BY ELECTRICAL STIMULATION OF THE HYPOTHALAMUS. Journal of 

Nervous and Mental Disease 29:1179-1194. 
28. Bonvallet M & Zbrozyna A (1963) Les commandes réticulaires du système autonome et en 

particulier de l'innervation sympathique et parasympathique de la pupille. Archives Italiennes 

de Biologie 101(2):174-207. 
29. McDougal DH & Gamlin PD (2015) Autonomic control of the eye. Comprehensive 

Physiology 5(1):439-473. 
30. Yüzgeç Ö, Prsa M, Zimmermann R, & Huber D (2018) Pupil Size Coupling to Cortical States 

Protects the Stability of Deep Sleep via Parasympathetic Modulation. Current Biology 
28(3):392-400.e393. 

31. Reimer J, et al. (2016) Pupil fluctuations track rapid changes in adrenergic and cholinergic 
activity in cortex. Nature Communications 7(1):13289. 

32. Rajkowski J (1993) Correlations between locus coeruleus (LC) neural activity, pupil diameter 
and behavior in monkey support a role of LC in attention. Soc. Neurosc., Abstract, 

Washington, DC, 1993. 
33. de Gee JW, et al. (2017) Dynamic modulation of decision biases by brainstem arousal 

systems. eLife 6:e23232. 
34. Murphy PR, O'Connell RG, O'Sullivan M, Robertson IH, & Balsters JH (2014) Pupil diameter 

covaries with BOLD activity in human locus coeruleus. Human Brain Mapping 35(8):4140-
4154. 

35. Aston-Jones G & Cohen JD (2005) AN INTEGRATIVE THEORY OF LOCUS 
COERULEUS-NOREPINEPHRINE FUNCTION: Adaptive Gain and Optimal Performance. 
Annual Review of Neuroscience 28(1):403-450. 

36. Shannon RP, Mead A, & Sears ML (1976) The effect of dopamine on the intraocular pressure 
and pupil of the rabbit eye. Investigative Ophthalmology & Visual Science 15(5):371-380. 

37. Vitiello B, et al. (1997) Cognitive and Behavioral Effects of Cholinergic, Dopaminergic, and 
Serotonergic Blockade in Humans. Neuropsychopharmacology 16(1):15-24. 

38. Schmid Y, et al. (2015) Acute Effects of Lysergic Acid Diethylamide in Healthy Subjects. 
Biological Psychiatry 78(8):544-553. 

39. Lowenstein O, Feinberg R, & Loewenfeld IE (1963) Pupillary Movements During Acute and 
Chronic Fatigue : A New Test for the Objective Evaluation of Tiredness. Investigative 

Ophthalmology & Visual Science 2(2):138-157. 
40. Shine JM (2019) Neuromodulatory Influences on Integration and Segregation in the Brain. 

Trends in Cognitive Sciences 23(7):572-583. 
41. Shine James M, et al. (2016) The Dynamics of Functional Brain Networks: Integrated 

Network States during Cognitive Task Performance. Neuron 92(2):544-554. 
42. Mäki-Marttunen V (2020) Pupil-based states of brain integration across cognitive states. 

bioRxiv:2020.2012.2015.422870. 
43. Cho K, et al. (2014) Learning Phrase Representations using RNN Encoder–Decoder for 

Statistical Machine Translation. (Association for Computational Linguistics), pp 1724-1734. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432768doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432768
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

44. McInnes L, Healy J, & Melville J (2020) UMAP: Uniform Manifold Approximation and 
Projection for Dimension Reduction. arXiv:1802.03426 [cs, stat]. 

45. McLachlan GJ & Basford KE (1988) Mixture models. Inference and applications to 

clustering. 
46. Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpretation and validation of 

cluster analysis. Journal of Computational and Applied Mathematics 20:53-65. 
47. McLaren JW, Erie JC, & Brubaker RF (1992) Computerized analysis of pupillograms in 

studies of alertness. Investigative Ophthalmology & Visual Science 33(3):671-676. 
48. Chang C, et al. (2016) Tracking brain arousal fluctuations with fMRI. Proceedings of the 

National Academy of Sciences of the United States of America 113(16):4518-4523. 
49. Bergstra J, et al. (2011) Algorithms for hyper-parameter optimization. in Proceedings of the 

24th International Conference on Neural Information Processing Systems (Curran Associates 
Inc., Granada, Spain), pp 2546-2554. 

50. Bergstra J, Yamins D, & Cox DD (2013) Making a science of model search: hyperparameter 
optimization in hundreds of dimensions for vision architectures. in Proceedings of the 30th 

International Conference on International Conference on Machine Learning - Volume 28 
(JMLR.org, Atlanta, GA, USA), pp I-115-I-123. 

51. Beckstead RM, Domesick VB, & Nauta WJH (1979) Efferent connections of the substantia 
nigra and ventral tegmental area in the rat. Brain Research 175(2):191-217. 

52. Olmos JSD & Ingram WR (1972) The projection field of the stria terminalis in the rat brain. 
An experimental study. Journal of Comparative Neurology 146(3):303-333. 

53. Clewett DV, Huang R, Velasco R, Lee T-H, & Mather M (2018) Locus Coeruleus Activity 
Strengthens Prioritized Memories Under Arousal. Journal of Neuroscience 38(6):1558-1574. 

54. Mwangi B, Tian TS, & Soares JC (2014) A Review of Feature Reduction Techniques in 
Neuroimaging. Neuroinformatics 12(2):229-244. 

55. Carbonell F, Bellec P, & Shmuel A (2011) Global and System-Specific Resting-State fMRI 
Fluctuations Are Uncorrelated: Principal Component Analysis Reveals Anti-Correlated 
Networks. Brain connectivity 1(6):496-510. 

56. Tong Y, Hocke LM, & Frederick BB (2019) Low Frequency Systemic Hemodynamic “Noise” 
in Resting State BOLD fMRI: Characteristics, Causes, Implications, Mitigation Strategies, 
and Applications. Frontiers in Neuroscience 13(787). 

57. Sobczak F, He Y, Sejnowski TJ, & Yu X (2021) Predicting the fMRI Signal Fluctuation with 
Recurrent Neural Networks Trained on Vascular Network Dynamics. Cerebral cortex 
31(2):826-844. 

58. Schulz M-A, et al. (2020) Different scaling of linear models and deep learning in UKBiobank 
brain images versus machine-learning datasets. Nature Communications 11(1):4238. 

59. Özbay PS, et al. (2019) Sympathetic activity contributes to the fMRI signal. Communications 

Biology 2(1):1-9. 
60. Duyn JH, Ozbay PS, Chang C, & Picchioni D (2020) Physiological changes in sleep that affect 

fMRI inference. Current Opinion in Behavioral Sciences 33:42-50. 
61. Benarroch EE (2018) Brainstem integration of arousal, sleep, cardiovascular, and respiratory 

control. Neurology 91(21):958-966. 
62. Dampney RAL (2016) Central neural control of the cardiovascular system: current 

perspectives. Advances in Physiology Education 40(3):283-296. 
63. Silvani A, Calandra-Buonaura G, Benarroch EE, Dampney RAL, & Cortelli P (2015) 

Bidirectional interactions between the baroreceptor reflex and arousal: an update. Sleep 

Medicine 16(2):210-216. 
64. Kuwaki T & Zhang W (2010) Orexin neurons as arousal-associated modulators of central 

cardiorespiratory regulation. Respiratory Physiology & Neurobiology 174(1):43-54. 
65. Grimaldi D, Silvani A, Benarroch EE, & Cortelli P (2014) Orexin/hypocretin system and 

autonomic control: New insights and clinical correlations. Neurology 82(3):271-278. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432768doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432768
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

66. Lecrux C & Hamel E (2016) Neuronal networks and mediators of cortical neurovascular 
coupling responses in normal and altered brain states. Philosophical Transactions of the Royal 

Society B: Biological Sciences 371(1705):20150350. 
67. Lee S-H & Dan Y (2012) Neuromodulation of Brain States. Neuron 76(1):209-222. 
68. Lowry CA (2002) Functional Subsets of Serotonergic Neurones: Implications for Control of 

the Hypothalamic-Pituitary-Adrenal Axis. Journal of Neuroendocrinology 14(11):911-923. 
69. Gaumann DM & Yaksh TL (1990) Alpha-Chloralose Anesthesia Inhibits the Somato-

Sympathetic Reflex Response in Cats More Effectively than Halothan. Journal of Veterinary 

Medicine Series A 37(1-10):669-675. 
70. Liu X, Chang C, & Duyn JH (2013) Decomposition of spontaneous brain activity into distinct 

fMRI co-activation patterns. Frontiers in systems neuroscience 7:101. 
71. Tseng J & Poppenk J (2020) Brain meta-state transitions demarcate thoughts across task 

contexts exposing the mental noise of trait neuroticism. Nature Communications 11(1):3480. 
72. Cox RW (1996) AFNI: Software for Analysis and Visualization of Functional Magnetic 

Resonance Neuroimages. Comput. Biomed. Res. 29(3):162--173. 
73. Pedregosa F, et al. (2011) Scikit-learn: Machine Learning in Python. Journal of Machine 

Learning Research 12(85):2825-2830. 
74. Mathis A, et al. (2018) DeepLabCut: markerless pose estimation of user-defined body parts 

with deep learning. Nature Neuroscience 21(9):1281. 
75. Nath T, et al. (2018) Using DeepLabCut for 3D markerless pose estimation across species 

and behaviors. bioRxiv:476531. 
76. Virtanen P, et al. (2020) SciPy 1.0: fundamental algorithms for scientific computing in 

Python. Nature Methods 17(3):261-272. 
77. Welch P (1967) The use of fast Fourier transform for the estimation of power spectra: A 

method based on time averaging over short, modified periodograms. IEEE Transactions on 

Audio and Electroacoustics 15(2):70-73. 
78. Paszke A, et al. (2019) PyTorch: An Imperative Style, High-Performance Deep Learning 

Library.8024--8035. 
79. Kingma DP & Ba J (2017) Adam: A Method for Stochastic Optimization. arXiv:1412.6980 

[cs]. 
80. Pascanu R, Mikolov T, & Bengio Y (2013) On the difficulty of training recurrent neural 

networks. in Proceedings of the 30th International Conference on International Conference 

on Machine Learning - Volume 28 (JMLR.org, Atlanta, GA, USA), pp III-1310-III-1318. 
81. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, & Salakhutdinov R (2014) Dropout: a 

simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1):1929-
1958. 

82. Paxinos G & Watson C (2006) The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition 
(Elsevier) p 451. 

83. Benjamini Y & Hochberg Y (1995) Controlling the False Discovery Rate: A Practical and 
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B 

(Methodological) 57(1):289-300. 
84. Yekutieli D & Benjamini Y (1997) Resampling-based false discovery rate controlling multiple 

test procedures for correlated test statistics. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432768doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432768
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

  

Supplementary Fig. 1. The influence of temporal shifts and different component counts on prediction scores. Temporally 
shifting the fMRI and pupil fluctuation signals reduces prediction accuracy. Predictions generated based on 300 PCA 
components obtain the best scores. 
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Supplementary Fig. 2. PCA decoupling of pupil-related fMRI activity from other signal sources. (A) fMRI variance 
explained by individual PCA components. Components are ordered by variance explained. Black dot marks the 
component with the most explained pupil variance. (B) Pupil variance explained by the PCA signals. Same ordering as in 
A. The component explaining the most pupil variance (explained var.=7.03 %) explains only 0.8% of fMRI variance. Black 
dot marks the component with the most explained pupil variance. (C) Weights of the linear regression model trained to 
decode pupil signals based on fMRI-PCA data.  Each weight corresponds to a single PCA component’s time course. The 
highest absolute weights are not assigned to the components explaining the most fMRI variance. Black dot marks the 
component with the most explained pupil variance. 
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Supplementary Fig. 3. Similarity of GRU and linear regression prediction maps. Spatial maps were generated by 
integrating PCA spatial maps with either linear regression weights or average GRU gradients. The maps highlight the 
same areas. This observation coupled with the similarity of predictions generated by both methods and the short GRU 
training time suggests that a linear mapping was sufficient for this decoding task. 
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