

1 **Evaluation of dsRNA delivery methods for targeting macrophage migration
2 inhibitory factor MIF in RNAi-based aphid control**

3

4 Shaoshuai Liu[§], Maria Jose Ladera-Carmona, Minna M. Poranen[&], Aart J.E. van Bel,
5 Karl-Heinz Kogel^{*}, Jafargholi Imani

6

7 Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus
8 Liebig University, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany

9 [§]Present address: National Key Facility for Crop Gene Resources and Genetic
10 Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences,
11 Beijing 100081, China

12 [&]Molecular and Integrative Biosciences Research Programme, Faculty of Biological
13 and Environmental Sciences, University of Helsinki, Finland

14 Shaoshuai.Liu@agrar.uni-giessen.de

15 Maria.Ladera-Carmona@agrar.uni-giessen.de

16 minna.poranen@helsinki.fi

17 Aart.v.Bel@bot1.bio.uni-giessen.de

18 Karl-Heinz.Kogel@agrar.uni-giessen.de

19 Jafargholi.Imani@agrar.uni-giessen.de

20 *Correspondence to: Karl-Heinz.Kogel@agrar.uni-giessen.de

21

22 **Abstract**

23 Macrophage migration inhibitory factors (MIF) are multifunctional proteins regulating
24 major processes in mammals, including activation of innate immune responses. In
25 invertebrates, MIF proteins participate in the modulation of host immune responses

26 when secreted by parasitic organisms, such as aphids. In this study, we assessed the
27 possibility to use *MIF* genes as targets for RNA interference (RNAi)-based control of
28 the grain aphid *Sitobion avenae* (*Sa*) on barley (*Hordeum vulgare*). When nymphs were
29 fed on artificial diet containing double-stranded (ds)RNAs (*SaMIF*-dsRNAs) that
30 target sequences of the three *MIF* genes *SaMIF1*, *SaMIF2* and *SaMIF3*, they showed
31 higher mortality rates and these rates correlated with reduced *MIF* transcript levels as
32 compared to the aphids feeding on artificial diet containing a control dsRNA
33 (*GFP*-dsRNA). Comparison of different feeding strategies showed that nymphs'
34 survival was not altered when they fed from barley seedlings sprayed with
35 *SaMIF*-dsRNAs, suggesting they did not effectively take up dsRNA from the sieve
36 tubes of these plants. Furthermore, aphids' survival was also not affected when the
37 nymphs fed on leaves supplied with dsRNA via basal cut ends of barley leaves.
38 Consistent with this finding, the use of sieve-tube-specific YFP-labeled *Arabidopsis*
39 reporter lines confirmed that fluorescent 21 nt dsRNA_{Cy3} supplied via petioles
40 co-localized with xylem structures, but not with phloem tissue. Our results suggest that
41 *MIF* genes are a potential target for insect control and also imply that application of
42 naked dsRNA to plants for aphid control is inefficient. More efforts should be put into
43 the development of effective dsRNA formulations.

44

45

46 **Keywords:** Macrophage Migration Inhibitory factor (MIF); dsRNA; phloem; *Sitobion*
47 *avenae*; xylem

48

49 **Introduction**

50 Macrophage migration inhibitory factors (MIFs) are multifunctional proteins
51 regulating major processes in mammals, including activation of innate immune
52 responses (Mitchell and Bucala 2000). MIF proteins also play a role in innate immunity
53 of invertebrates and participate in the modulation of host immune responses when
54 secreted by parasitic organisms such as aphids (Rosani et al. 2019; Ghosh et al. 2020).

55 A broad survey of the presence of *MIF* genes across 803 species of plants, fungi,
56 protists, and animals identified them in all eukaryotes. MIFs seem to be essential and
57 highly conserved in some kingdoms (e.g., plants), while they appear more dispensable
58 in other kingdoms (e.g., in fungi) or present in several diverged variants (e.g., insects),
59 suggesting potential neofunctionalizations within the protein superfamily (Michelet et
60 al. 2019). MIFs were discovered in 1966 as a product of activated T cells that limited
61 the random migration of macrophages *in vitro* (David 1966). Subsequently, it was
62 shown that MIFs not only are involved in cell proliferation and apoptosis but play a
63 vital role in the host response against parasitic infection (Calandra and Roger 2003) and
64 vice versa in parasite virulence (Ghosh et al. 2020).

65 MIFs of aphids also are involved in the response to pathogens and mutualistic
66 symbionts (Dubreuil et al. 2014). Multiple copies of *MIF* genes were found in aphid
67 genomes, including pea aphid (*Acyrthosiphon pisum*, *Ap*) and green peach aphid
68 (*Myzus persicae*, *Mp*) (Dubreuil et al., 2014). MIFs are secreted in aphid saliva during
69 feeding, thereby inhibiting major plant immune responses and therefore are crucial to
70 plant infestation (Naessens et al. 2015). Ectopic expression of *MIFs* in leaf tissues
71 inhibited major plant immune responses, such as the expression of defense-related
72 genes, callose deposition, and hypersensitive cell death. Functional complementation
73 analyses showed that MIF1 is the key member of the MIF protein family that allows
74 aphids to exploit their host plants.

75 Aphids are one of the largest groups of phloem-feeding pests, which can cause huge
76 losses in agriculture and horticulture worldwide (Jaouannet et al. 2014; Pons et al.
77 2020). They colonize the leaves and stalks, and migrate later towards the ears and settle
78 among the bracts and kernels in the milky-ripe stage of corn plants. A massive
79 withdrawal of sieve-tube components weakens the plant and eventually leads to a
80 reduced overall yield. In most cases, aphids act as important vectors of viruses to spread
81 plant disease (Ng and Perry 2004; Will et al. 2007). More than 5,000 aphid species have
82 been described (The International Aphid Genomics 2010).

83 We investigated the possibility that *MIF* genes can be used as targets for RNAi-based
84 insect control in plants. Several studies have shown that aphids are sensitive to
85 double-stranded (ds)RNA (Jaubert-Possamai et al. 2007; Pitino et al. 2011) and
86 therefore are amenable to RNAi strategies in crop protection (Christiaens et al. 2020;
87 Liu et al. 2020). In 2015, Abdellatef and colleagues showed that dsRNA derived from
88 the gene encoding Salivary Sheath Protein (SHP), when expressed in barley, strongly
89 reduced the survival of the grain aphid *Sitobion avenae* (*Sa*) (Abdellatef et al. 2015).
90 Similar results were obtained when the green peach aphid was grown on transgenic
91 *Arabidopsis thaliana* expressing dsRNA with homology to the *MpC002* gene
92 (Coleman et al. 2015). The *C002* gene was first described by Mutti et al. (2008) and is
93 predominantly expressed in the salivary glands of aphids.
94 The degree and the persistence of RNAi in aphids is strong as evidenced by the finding
95 that target genes were also down-regulated in nymphs born from mothers exposed to
96 dsRNA-producing transgenic plants. Notably, *S. avenae* and *M. persicae* aphids reared
97 on transgenic barley (Abdellatef et al. 2015) or *Arabidopsis* (Coleman et al. 2015),
98 expressing dsRNA against salivary protein components, even showed a decline in
99 survival over several generations. These reports strongly support earlier proposals to
100 use RNAi-based strategies for insect control (Price and Gatehouse 2008; Burand and
101 Hunter 2013).
102 While transgenic strategies using dsRNA-expressing plants have proven successful in
103 insect control, other strategies might also be applicable. Injection and ingestion of
104 dsRNAs also can induce significant levels of gene silencing in insects (Tomoyasu and
105 Denell 2004; Zhu et al. 2011). Thus, it also might be feasible to deliver dsRNA through
106 foliar application (San Miguel and Scott 2016; Gogoi et al. 2017). The purpose of our
107 study was to assess the potential of *MIF* genes as a target for pest control by oral
108 delivery of dsRNAs derived from gene sequences of three *Sitobion avenae* *MIF*
109 genes. We also compared the efficiency of different dsRNA delivery strategies,
110 including exposure of aphids to artificial diet vs. leaf spray application and a
111 sucrose-aid delivery in order to provide theoretical support for future application.

112

113 **Results**

114

115 **Prediction of *MIF* genes in *Sitobion avenae* (*Sa*)**

116 Genomic *MIF* sequences of evolutionarily distant species from hemipterans revealed a
117 highly conserved structure (Dubreuil et al. 2014; Michelet et al. 2019). With the aim to
118 deduce *MIF* gene sequences in *Sa* from currently available expressed sequence tags
119 (ESTs) in public databases (<https://www.ncbi.nlm.nih.gov/>), we searched for *MIF*
120 genes in insect genomes. Based on known peach aphid *Myzus persicae* and pea aphid
121 *Acyrthosiphon pisum* sequence data, partial sequences of *SaMIF1*, *SaMIF3*, and
122 *SaMIF4* were predicted, amplified by PCR using degenerate primers (Table S1) and
123 sequenced. Sequence alignment, which also included the already published *SaMIF2*
124 sequence (Dubreuil et al. 2014), confirmed that *SaMIFs* are highly conserved in aphids'
125 evolutionary history (Fig. S1). The identified *SaMIF* sequences (Table S2) were cloned
126 and used as a template for dsRNA production.

127

128 **Detection of fluorescence labeled dsRNA in aphids' midguts after feeding**

129 We conducted dsRNA feeding experiments to assess the effect of *MIF* gene silencing
130 on aphid survival. Since the sucrose concentration in artificial diet is critical, we first
131 tested the optimal concentration of sugar supply. We found that a concentration of 7.5%
132 (w/v) sucrose is optimal for the survival of *Sa* (Fig. S2). Next, we investigated the
133 uptake of fluorescent-labeled dsRNA by *Sa* nymphs from artificial diet. To this end,
134 *SaMIF1*-dsRNA (223 nt; Table S2) labeled with UTP-PEG₅-AF488 during the dsRNA
135 synthesis was added to the artificial diet at a concentration of 250 ng/μL. A fluorescent
136 signal was observed in the midgut of *Sa* nymphs within 24 h and spread further into the
137 body within 48 h (Fig. 1).

138

139 **The impact of different *SaMIF*-dsRNAs on aphids' survival**

140 Aphid MIFs are involved in the regulation of plant immune responses, but it remains
141 largely unknown how the respective members of the MIF family contribute to this
142 activity. In *Mp*, mainly MIF1 functions as secreted salivary protein to suppress host
143 immunity (Naessens et al. 2015). We investigated the effect of silencing different
144 *SaMIF* genes on *Sa*'s survival. Since expression of *MIF1*, *MIF2* and *MIF3* are strongly
145 induced after immune challenge in *Mp* (Dubreuil et al. 2014), we placed our focus on
146 these genes. One-day-old *Sa* nymphs were fed with artificial diet containing dsRNAs
147 directed against *SaMIF1* (*SaMIF1*-dsRNA, 223 nt), *SaMIF2* (*SaMIF2*-dsRNA, 323
148 nt), *SaMIF3* (*SaMIF3*-dsRNA, 212 nt), and *Green fluorescent protein* (*GFP*-dsRNA,
149 476 nt) (see Table S1) at two different doses, 250 ng/µL and 125 ng/µL. We found
150 that survival rates of aphids treated with either *SaMIF*-dsRNA vs. *GFP*-dsRNA were
151 significant reduced (Kaplan-Meier analysis and log-rank test, $p \leq 0.0001$) at day 4 of
152 feeding with 250 ng/µL (Fig. 2a). Feeding with the lower concentration of
153 *SaMIF*-dsRNAs (125 ng/µL) only resulted in a statistically significant lower survival
154 rate after treatment with *SaMIF1*-dsRNA (Fig. 2b). This finding also confirms that
155 beyond the anticipated function of MIFs as effector interacting with the plant's defence,
156 MIFs have essential endogenous function in the aphid (Dubreuil et al. 2014).

157

158 **The impact of *SaMIF*-dsRNA on *MIF* target down regulation**

159 Next, we determined target gene silencing upon feeding aphids with the respective
160 *SaMIF*-dsRNA (250 ng/µL) in artificial diet by 72 h of feeding using RT-qPCR.
161 Consistent with the effects of dsRNA on aphids' survival, transcript levels of all three
162 *SaMIF* genes were reduced significantly (Student's *t*-test, $p < 0.05$) (Fig. 3). These
163 data further substantiate that the effect of *SaMIF*-dsRNAs on *Sa* is based on
164 RNAi-mediated gene silencing.

165

166 **The impact of *SaMIF*-dsRNA mixtures on aphids' survival**

167 The above data indicate that *SaMIF1* plays a prominent role in the survival of aphids.
168 To further assess *SaMIF1* as a target, we comparatively analysed the effects of *SaMIF1*

169 silencing versus a triple gene silencing of all three *MIF* genes on the survival of *Sa*.
170 Nymphs were treated with *i.* *SaMIF1*-dsRNA (187.5 ng/μL), *ii.* a mixture of
171 *SaMIF1*-dsRNA, *SaMIF2*-dsRNA, and *SaMIF3*-dsRNA (each at a concentration of
172 62.5 ng/μL in the artificial diet) and *iii.* *GFP*-dsRNA (187.5 ng/μL) as control. The
173 relatively low concentration of individual *SaMIF*-dsRNAs in the mixture was chosen
174 because we did not expect a measurable effect on aphid survival when administered
175 as single dsRNA doses (see Fig. 2). We found that *Sa*'s survival rates treated with
176 either *SaMIF1*-dsRNA or the mixture of *SaMIF*-dsRNAs were significantly reduced
177 (Kaplan-Meier analysis and log-rank test, $p \leq 0.0001$) after 5 days as compared with
178 *GFP*-dsRNA treatments (Fig. 4). This suggests that the activity of single dsRNAs are
179 not additive but might have a synergistic effect on the aphid mortality instead.

180

181 ***SaMIF1*-dsRNA spray application to barley seedlings had no effect on aphids' 182 survival**

183 It has been controversially discussed as to whether application of exogenous dsRNA to
184 plants results in its accumulation in the phloem tissue, which is a prerequisite for the
185 RNAi-based control of phloem-feeding insects (Gogoi et al. 2017; Dalakouras et al.
186 2018). We investigated the possibility that direct application of *SaMIF1*-dsRNA to
187 plants have an effect on *Sa*'s survival, when feeding from these plants. Therefore, three
188 barley seedlings per pot were sprayed with 10 μg *SaMIF1*-dsRNA (500 μL of a 20
189 ng/μL solution), and seedlings, which were infested 24 h later with 50 one-day-old *Sa*
190 nymphs, kept in confined jars (Fig. S3a). Compared to *GFP*-dsRNA-treated control
191 plants, we found no significant differences in the survival rates of aphids feeding on
192 *SaMIF1*-dsRNA-treated plants (Fig. S3b) and controls. This finding implies that spray
193 application to leaves does not result in the accumulation of sufficient amounts of
194 dsRNA or small RNA duplexes derived from it in the sieve tubes and suggests that
195 spray-treatment of naked, unformulated dsRNA probably does not meet the
196 requirements of efficient crop protection.

197

198 **Sucrose-aided dsRNA delivery to barley leaves**

199 Next, alternative experimental designs were evaluated for simple and rapid screening
200 of potential dsRNA targets for aphid control. Oligodeoxynucleotide (ODN)-directed
201 gene silencing in barley is mediated by passive vascular feeding of ODN through cut
202 leaves in sucrose solution via co-import of sucrose and negatively charged ODN
203 molecules (Sun et al. 2005), suggesting that ODNs reached the leaf symplast and
204 entered living cells. This report, together with accumulating evidence for
205 xylem-to-phloem solute transport (van Bel 1990) and the presence of exo/endocytosis
206 mechanisms in xylem vessels (Botha et al. 2008; Słupianek et al. 2019), prompted us
207 to investigate whether the cut leaf delivery method could also be used to deliver
208 dsRNA molecules to plant cells, including the phloem tissue. Detached leaves from
209 two-week-old barley seedlings were dipped with the basal end into 1 mL of a solution
210 of 200 mM sucrose and 20 µg *SaMIF1*-dsRNA (Fig. S4a), and kept in the dark for 24
211 h. As shown in Fig. 5a-c, dsRNA was taken up through the cut ends as revealed by the
212 detection of fluorescence in upper segments of the detached leaves. In barley leaf
213 cross-sections, fluorescence was associated with the vascular bundle, especially the
214 xylem parenchyma cells (Fig. 5d-g). Note that bigger xylem vessels lose their content
215 during preparation of cross-sections due to flushing with the fluid set free by the cut
216 cells and thus do not show fluorescence.

217 Next, the survival of *Sa* on *SaMIF1*-dsRNA vs. *GFP*-dsRNA-treated detached barley
218 leaves was recorded after seven days of infestation. Overall, there was no significant
219 difference in the *Sa*'s survival rates on treated and control leaves (Fig. S4b).
220 Consistent with this finding, no difference was found in the expression of the *SaMIF1*
221 target gene in *Sa* fed on *SaMIF1*-dsRNA vs. *GFP*-dsRNA treated leaves (Fig. S4c).
222 To further substantiate this finding, we conducted the sucrose-aided RNA uptake
223 experiment with *SaSHP*-dsRNA (470 bp; see Table S2), which is known to target the
224 *SaSHP* gene thereby strongly reducing the survival of the aphids on barley
225 (Abdellatef et al. 2015). As shown in Fig. S4b, feeding on *SaSHP*-dsRNA treated
226 leaves also had no effect on aphids' survival and expression of the *SHP* gene in *Sa*
227 was not affected (Fig. S4d).

228

229 **Petiole-mediated uptake of 21 nt dsRNA_{Cy3} in *Arabidopsis* follows the**
230 **xylem-route**

231 To further confirm the absence of microscopically detectable exchange of dsRNA
232 between xylem and phloem vessels, when dsRNA is supplied via petioles, we used
233 the *Arabidopsis* reporter line *Arabidopsis thaliana SUC2::4xYFP*, in which the
234 promoter of the phloem-specific *SUC2* is fused with *Yellow fluorescent protein* (YFP),
235 allowing visualization of the sieve-tubes (Marquès-Bueno et al. 2016). Leaves from
236 thirty-two-day-old plants were inserted with the petioles in nuclease-free water
237 containing fluorescent 21 nt dsRNA_{Cy3} (20 μ M). After 24 h, confocal images were
238 taken from different segments of the petioles. We found that dsRNA_{Cy3} was localized
239 in the xylem, and its signal did not overlap with the YFP fluorescence of the phloem
240 (Fig. 6a-h). Moreover, sucrose-aid uptake by petioles resulted in the same localization
241 of Cy3 fluorescence in the xylem vessels (Fig. S5). This result is consistent with our
242 finding that the survival of aphids is not negatively affected when they feed on leaves
243 treated with dsRNA supplied via cut leaf ends. Thus, in contrast to reports showing
244 that ODN can be introduced into plant cells via cut leaf ingestion, our data show that
245 this method of introduction does not result in sufficient uptake of dsRNA or small
246 RNA derivatives to affect aphids or be detected by fluorescence techniques.

247

248 **dsRNA delivery to leaves also follows the xylem route**

249 Finally, we used the *Arabidopsis thaliana SUC2::4xYFP* reporter line to visualize the
250 uptake of fluorescence dsRNA from the leaf surface (Fig. 6i-l). *Arabidopsis* leaves
251 were treated with 1 μ L drop and four drops per plant of a 20 μ M solution of
252 dsRNA_{Cy3}. After five days, confocal images were taken from different segments of
253 the leaves. We found that dsRNA_{Cy3} was localized in the xylem, and its signal did not
254 overlap with the YFP fluorescence of the phloem. These finding supports our notion
255 that leaf-applied naked dsRNA does not reach the plant symplast and is therefore an
256 inappropriate method for aphid control.

257

258

259 **Materials and Methods**

260 **Plant Material and Aphids rearing**

261 Spring barley (*Hordeum vulgare* L.) cv. Golden Promise (GP) was used in all
262 experiments. *Arabidopsis thaliana* (Col-0) *SUC2::4xYFP* lines were purchased from
263 NASC (N2106107). Plants were grown under controlled conditions in a climate
264 chamber at 22°C/18°C day/night with 65% relative humidity, a 16 h photoperiod and a
265 photon flux density of 240 $\mu\text{mol m}^{-2} \text{s}^{-1}$. *Arabidopsis* seedlings were grown in vertical
266 plates containing half strength MS medium (Murashige and Skoog 1962), 0.5% of
267 sucrose and 0.7% of agar. The grain aphid (*Sitobion avenae*, *Sa*) monoclonal
268 population used in this study was reared on three-week-old GP plants in a climate
269 chamber at 22°C with a 16 h photoperiod and a photon flux density of 240 $\mu\text{mol m}^{-2} \text{s}^{-1}$.
270 One-day-old fresh synchronized nymphs were used for the experiments (Abdellatef et
271 al. 2015).

272

273 **RT-qPCR, Transcript Analysis**

274 RT-qPCR was performed with the Applied Biosystems QuantStudio 5 Real-Time
275 PCR system. Amplifications were performed with SYBR® green JumpStart Taq
276 ReadyMix (Sigma-Aldrich). To quantify the target genes expression, the transcript
277 was normalized with *Ribosomal gene L27* (*RPL27*, NM_001126221.2) (Table S1)
278 (Zhang et al. 2013). The program was performed with 95°C for 5 min, 40 cycles (95°C
279 for 30 sec, 57°C for 30 sec, 72°C for 30 sec. Transcript levels of genes were
280 determined via the $2^{-\Delta\Delta Ct}$ method (Livak and Schmittgen 2001) by normalizing to the
281 amount of reference gene transcript.

282

283 **dsRNA synthesis**

284 The Si-Fi software was used to select the donor sequences for the RNAi design (Luck
285 et al. 2019). *SamIF* genes were cloned into pGEM-T-easy vector, using the degenerate
286 primers listed in Table S1, and the resulting plasmids were used as templates for the
287 synthesis of dsRNA. Plasmids pGEM-T-easy-SHP and pGEM-T-easy-GFP contain

288 respective *SaSHP* and *GFP* gene sequences (Table S2). The target sequences were
289 amplified from the plasmid DNAs using primers containing T7 polymerase promotor
290 or phi6 polymerase promoter sequences at their 5'-end (Table S1). *SaMIF2*-, *SaSHP*-
291 and *GFP*-dsRNAs were produced using a single-tube transcription and replication
292 reaction catalyzed by the T7 DNA-dependent RNA polymerase and the phi6
293 RNA-dependent RNA polymerases (Aalto et al., 2007; Levanova and Poranen, 2018).
294 The produced dsRNAs were enriched using stepwise fractionation with LiCl, followed
295 by precipitation with sodium acetate and thorough washing of the resulting pellet with
296 70% ethanol. Alternatively, *SaMIF*- and *GFP*-dsRNAs were generated using
297 MEGAscript T7 Transcription Kit (Thermo Fisher Scientific) following the
298 manufacturer's protocol. The produce dsRNAs were resuspended in RNAase-free
299 milliQ-water and stored at -20°C prior use.

300

301 **Fluorescence labeling of dsRNA**

302 Fluorescence labeling of *SaMIF1*-dsRNA was performed using the HighYield T7
303 AF488 RNA Labeling Kit (Jena Bioscience, Germany) following the manufacturer's
304 instruction. Labeled *SaMIF1*-dsRNA_{A488} was used for the uptake experiments. For
305 uptake analysis of small RNA, 21 nt *GAPDH*-dsRNA (provided in the kit) was labeled
306 with CyTM3 utilizing the SilencerTM siRNA Labeling kit (ThermoFisher) according to
307 the manufacturer's instructions.

308

309 **Feeding of aphids on dsRNA supplemented artificial diet**

310 The rearing method as described by Will et al. (2012) was used with minor
311 modifications. The artificial diet (50 mM L-serine, 50 mM L-methionine, and 50 mM
312 L-aspartic acid; pH 7.2) containing different sucrose concentrations was sealed
313 between two layers of parafilm in a 2 cm diameter feeding tube, and one-day-old *Sa*
314 nymphs were placed on the plates. The plates were covered with a feeding tube. The
315 diet was prepared with RNase free water. For dsRNA feeding experiments, the dsRNA
316 was mixed with the artificial diet. Ten synchronized nymphs with five replicates for

317 each sample were used. Nymphs were placed at 22°C under 65 % relative humidity,
318 with a photoperiod of 16 h and a photon flux density of 125 $\mu\text{mol m}^{-2} \text{s}^{-1}$.

319

320 **Application of dsRNA**

321 Three-week old barley seedlings (each pot with three plants) were first sprayed with
322 0.02% Silwet-77, and 10 min later with 10 μg dsRNA solved in 500 μl deionized water.
323 Controls were sprayed with 500 μL of deionized water. After spraying, the plants were
324 infested with 50 *Sa* nymphs and stored in closed jars. Seven days later, the number of
325 aphids was counted.

326 For treatment of *Arabidopsis* leaves, 19-day-old *Arabidopsis* SUC2::YFP seedlings
327 grown in vertical plates were treated with 1 μL drop of nuclease free-water containing
328 20 μM dsRNA_{Cy3} at on the top of the leaf. Four leaves were treated. Confocal images
329 were taken 5 days later.

330

331 **dsRNA delivery via the sucrose-aid method**

332 Ten-day-old barley seedlings were transferred to the dark for 12 h. Leaves were
333 detached and submerged with the basal end into 200 mM sucrose solution containing
334 20 $\mu\text{g} / \text{mL}$ dsRNA for 24 h in the dark. Subsequently, the submerged parts of the leaves
335 were cut and the top segment transferred to agar plates and used for aphid infestation.
336 Thirty-two-day-old *Arabidopsis* leaves were cut and inserted with the petiole in
337 nuclease-free water containing 20 μM dsRNA_{Cy3}. For the sucrose-aid experiment, the
338 solution was supplemented with 200 mM sucrose.

339

340 **Microscopy**

341 Cross hand-cut sections of barley leaves were analyzed using a confocal laser-scanning
342 microscopy (CLSM, Leica, TCS SP8, Germany). Green fluorescence of dsRNA_{A488}
343 was detect by filter AF488 ($\lambda_{\text{exc}} 494$, $\lambda_{\text{em}} 515$ nm). The laser filter AF633 ($\lambda_{\text{exc}} 631$
344 nm, $\lambda_{\text{em}} 642$ nm) was used for the detection of red fluorescence, e.g. chloroplast, and
345 autofluorescence of tissues). *Arabidopsis* leaves were visualized with the CLSM
346 microscope (previously described) for fluorescence YFP ($\lambda_{\text{exc}} 514$ nm, $\lambda_{\text{em}} 527$ nm) and

347 Cy3 (λ_{exc} 555 nm, λ_{em} 569 nm). YFP was excited with the 514 nm laser (detection
348 519-551 nm) and Cy3 with the 561 nm laser (detection 566-635 nm).

349

350

351 **Discussion**

352 We show here that members of the Macrophage migration inhibitor factor (MIF)
353 protein family are necessary for the survival of the aphid *Sitobion avenae*. We found
354 that *Sa* contains four *MIF* genes and that silencing of three of them, namely *SaMIF1*,
355 *SaMIF2* and *SaMIF3*, leads to reduced aphid survival on artificial diet. This
356 corroborates findings that MIFs, apart from its role in suppressing host immunity, also
357 have an endogenous function in the aphid (Naessens et al. 2015). dsRNAs targeting
358 individual *SaMIF* genes were effective at a concentration of 250 ng/ μ L. At lower
359 concentration (125 ng/ μ L), only dsRNA directed against the *SaMIF1* transcript
360 reduced target gene expression substantially, suggesting the possibility that *SaMIF1*
361 could be a potential target candidate for aphid control by RNAi.

362 Functionally redundant *MIF* gene family members are wide-spread in eukaryotic
363 genomes, which often hampers the analysis of gene families, due to functional
364 redundancy (Jover-Gil et al. 2014; Martienssen and Irish 1999). For functional
365 analysis, silencing of the entire set of paralogous genes at the same time is a straight
366 forward approach. Simultaneous targeting of three out of the four known *SaMIF* genes
367 using three *SaMIF* gene-specific dsRNAs caused a significant reduction in survival,
368 when compared with the activity of a *GFP*-dsRNA that had no known target in *Sa*
369 (Fig. 4). Interestingly, when applied in mixtures, *SaMIF*-dsRNAs had a synergistic
370 effect as they affected survival of *Sa* in a concentration that showed no effects upon
371 single delivery. Despite of this finding, overall our data suggest that *SaMIF1* is a
372 candidate for aphid control and it is probably not required to take the other *SaMIF*
373 genes into consideration.

374 In our experiments, different dsRNA delivery strategies were investigated to test the
375 efficiency of RNAi-mediated control of insects. Oral feeding on artificial diet
376 containing *SaMIF1*-dsRNA showed the highest mortality rate (Fig. 2) and
377 concomitant downregulation of *SaMIF1* target transcripts (Fig. 3). In contrast,
378 spraying *SaMIF1*-dsRNA onto leaves had no effect on the survival rate of nymphs fed
379 on these leaves (Fig. S3). This result can be explained by the fact that the
380 *SaMIF1*-dsRNA applied to the leaves did not reach the sieve-tubes in amounts
381 sufficient to silence the *SaMIF1* target gene, though it cannot be excluded that
382 spraying leaves with higher concentration of dsRNA would have an effect on aphid
383 survival. Uptake of dsRNA via the leaf surface has been controversially discussed.
384 Gogoi et al. (2017) published data showing that aphids take up, among others, a 588
385 bp long dsRNA from tomato leaves. It should be noted, however, that the dsRNA was
386 applied by gently rubbing the solution onto the upper side of tomato leaflets that were
387 previously carborundum-dusted. Subsequently, the treated leaves were thoroughly
388 washed with 0.05% Triton X-100 for five times in 3 min intervals, showing that the
389 dsRNA application method was rather harsh. In a report from the group of N. Mitter,
390 dsRNA-mediated protection was obtained in tobacco against viral diseases, when
391 leaves were spread with virus-specific dsRNA loaded on non-toxic, degradable,
392 layered double hydroxide (LDH) clay nanosheets (Mitter et al. 2017). Once loaded on
393 LDH, the dsRNA did not wash off, showed sustained release and could be detected on
394 sprayed leaves even 30 days after application. Finally, it was recently reported that
395 strong *GFP* transgene silencing was accomplished in tobacco and tomato by loading
396 dsRNA into carbon dots (Schwartz et al. 2020). Chemical formulations not only
397 enhance the uptake of RNA from leaves, but could also improve dsRNA penetration
398 through the body wall of an insect, as shown for a polymer/detergent formulation that
399 improves RNAi-induced mortality in the soybean aphid *Aphis glycines* (Zheng et al.
400 2019). In the light of these reports, more research should be focused on the dsRNA
401 delivery strategies that might support more efficient use of RNAi-based plant
402 protection.

403 Feeding of *Sa* on barley leaves immersed at the base in *SaMIF1*-dsRNA containing
404 buffer also did not affect aphids' survival nor could we detect an effect on *SaMIF1*
405 target gene expression (Fig. S4). This setup was tested because we wanted to evaluate
406 alternative experimental design for simple and rapid screening of potential dsRNA
407 targets for aphid control. In agreement with a lack of effect on aphids, we could not
408 detect fluorescence in phloem tissue when barley leaves had been submerged into
409 fluorescence *SaMIF1*-dsRNA_{A488} solution. Instead, we detected fluorescence
410 predominantly in the xylem parenchyma cells, mainly the contact cells (Fig. 5a-g). This
411 is in agreement with earlier reports, where apical transport of exogenous dsRNA
412 structurally is located within xylem structures (Dalakouras et al. 2018; Dalakouras et al.
413 2020). While the latter reports and our investigation support the view that dsRNA
414 application onto leaves and via petioles results in the accumulation of RNA in the
415 xylem, some reports challenge this generalized view: i. ODN-directed gene silencing in
416 barley is mediated by passive vascular feeding of ODN through cut barley leaves using
417 co-import of sucrose and negatively charged ODN molecules (Sun et al. 2005),
418 resulting in ODN uptake into the leaf symplast and living cells. ii. back in 1990, the
419 importance of the xylem-to-phloem pathway was underscored in a review that
420 summarized work of the precedent two decades (van Bel 1990). Moreover, it is well
421 accepted that exo/endocytosis processes are involved in the uptake of macromolecules
422 from xylem tissue (Botha et al. 2008; Słupianek et al. 2019). iii. Turnip mosaic virus
423 (TuMV) is a single-stranded RNA virus that can cause diseases in cruciferous plants.
424 Viral RNA can move systemically through both phloem and xylem as
425 membrane-associated complexes in plants (Wan et al. 2015).
426 Trafficking of vesicles carrying sRNAs has been observed between *Arabidopsis* and
427 *Botrytis cinerea* (Cai et al. 2018). Exosomes derived from Tetraspanin-GFP
428 *Arabidopsis* line could be visualized as fluorescent dots, demonstrating that sRNA
429 transfer occurs via exosomes. Trafficking of sRNA in vesicular bodies might explain
430 why fluorescence appears in a punctate manner in traversal leaf section (Fig. 5a-c). If

431 the supplied RNA is being transferred from one cell to another via exo/endocytosis, the
432 RNA would be packed into vesicles and thus fluorescence would be dotted.
433 The fact that we could not detect dsRNA_{A488} fluorescence in the barley phloem tissue
434 led us to further experiments to substantiate a xylem-associated uptake of dsRNA. We
435 repeated the RNA uptake experiments with the Arabidopsis *SUC2::4xYFP* reporter
436 line, which is a more sensitive tool to distinguish between transport of solutes in xylem
437 and phloem. When taken up by petioles, we detected 21 nt dsRNA_{Cy3} exclusively in
438 the Arabidopsis xylem, and its signal did not overlap with the YFP fluorescence of the
439 phloem (Fig. 6a-h). This result further substantiates the previous report showing that
440 dsRNA uptake and its acropetal transport follows mainly the apoplastic route via the
441 xylem (Dalakouras et al. 2018). It also shows that a possible exchange of dsRNA from
442 xylem-to-phloem is not efficient enough to be detected in our fluorescence
443 microscopy experiment nor to silence genes from aphids feeding on the phloem at
444 least at the concentrations used here. Nevertheless and consistent with our finding,
445 soaking roots in dsRNA solution conferred protection in rice and maize against
446 stem-borer (Li et al. 2015), further showing the potential of the approach. We also used
447 the Arabidopsis *SUC2::4xYFP* reporter line to follow the uptake of 21 nt dsRNA_{Cy3},
448 upon dropping onto leaves (Fig. 6i-l). In agreement with the results from the barley
449 spray experiments, we could detect fluorescence exclusively in the leaf xylem. While
450 fluorescence imaging is sensitive and a well accepted method, final proof of the
451 absence of exogenously-applied dsRNA in the symplast, e.g in mesophyll cells and
452 sieve-tubes is missing. In particular, the observation that virus-specific dsRNA, when
453 scattered on leaves, is quite effective in reducing viral infections suggests that dsRNA -
454 possibly assisted by physical means such as formulations and gentle leaf wounding -
455 can lead to symplastic uptake of dsRNA.

456

457 **Declarations**

458

459 **Ethics approval and consent to participate:**

460 Approved by all authors

461

462 **Authorship principles**

463 All authors whose names appear on the submission

464 1) made substantial contributions to the conception or design of the work; or the
465 acquisition, analysis, or interpretation of data; or the creation of new software used in
466 the work;

467 2) drafted the work or revised it critically for important intellectual content;

468 3) approved the version to be published; and

469 4) agree to be accountable for all aspects of the work in ensuring that questions related
470 to the accuracy or integrity of any part of the work are appropriately investigated and
471 resolved.

472

473 **Authors' contributions**

474 S.L., J.I., M.J.L-C, A.v.B. and K-H.K. wrote the manuscript; S.L., J.I., and K-H.K.
475 designed the study; M.M.P. prepared material for the experiments; S.L. and M.J.L-C
476 conducted the experiments; K-H.K., J.I., M.J.L-C, S.L. and A.v.B. analyzed all data
477 and drafted the figures. All authors commented and reviewed the final manuscript.

478

479 **Compliance with Ethical Standards:**

480 **Conflict of Interest:**

481 The research described in the manuscript was not funded by private partners or
482 industry. Author Shaoshuai Liu declares that he has no conflict of interest. Author
483 Jafargholi Imani declares that he has no conflict of interest. Author Karl-Heinz Kogel
484 declares that he has no conflict of interest. Author Minna Poranen declares that she has
485 no conflict of interest. Author Maria Jose Ladera Carmona declares that she has no
486 conflict of interest. Author Aart van Bel declares that he has no conflict of interest.

487

488 **Consent for publication**

489 All authors declare consent of publication.

490 **Availability of data and material**

491 All data generated or analyzed during this study are included in this published article
492 [and its supplementary information files].

493

494 **Code availability (software application or custom code)**

495 Not applicable.

496

497 **Acknowledgements**

498 We thank Christina Birkenstock for technical assistance. The personnel of the HiLIFE
499 Biocomplex unit at the University of Helsinki, a member of Instruct-ERIC Centre
500 Finland, FINStruct, and Biocenter Finland, is also gratefully acknowledged. This work
501 was funded in the cooperative German/French program by the Deutsche
502 Forschungsgemeinschaft (DFG) and the Agence Nationale de la Recherche (ANR) to
503 KHK (Ko 1208/25-1) as well as in the DFG program FOR5116 to KHK and Academy
504 of Finland (grant #331627) to MMP. SL was supported by the China Scholarship
505 Council.

506

507 **Competing financial interests**

508 The authors declare no competing financial interests.

509

510

511 **References**

512

513 Aalto AP, Sarin LP, van Dijk AA, Saarma M, Poranen MM, Arumäe U, Bamford DH (2007)
514 Large-scale production of dsRNA for siRNA pools for RNA interference utilizing
515 bacteriophage ϕ 6 RNA-dependent RNA polymerase. *RNA* 13:422-429

516 Abdellatef E, Will T, Koch A, Imani J, Vilcinskas A, Kogel KH (2015) Silencing the
517 expression of the salivary sheath protein causes transgenerational feeding suppression in
518 the aphid *Sitobion avenae*. *Plant Biotechnol J* 13:849-857

519 Botha CEJ, Aoki N, Scofield GN, Liu L, Furbank RT, White RG (2008) A xylem sap retrieval
520 pathway in rice leaf blades: evidence of a role for endocytosis? *J Exp Bot*
521 59(11):2945-2954

522 Burand JP, Hunter WB (2013) RNAi: future in insect management. *J Invert Pathol* 112:68-74

523 Calandra T, Roger T (2003) Marophage migration inhibitory factor: a regulator of innate
524 immunity. *Nat Rev Immunol* 3:791-800

525 Christiaens O, Niu J, Taning CNT (2020) RNAi in insects: a revolution in fundamental
526 research and pest control applications. *Insects* 11:415

527 Coleman AD, Wouters RH, Mugford ST, Hogenhout SA (2015) Persistence and
528 transgenerational effect of plant-mediated RNAi in aphids. *J Exp Bot* 66:541-548

529 Dalakouras A, Jarausch W, Buchholz G, *et al.* (2018) Delivery of hairpin RNAs and small
530 RNAs into woody and herbaceous plants by trunk injection and petiole absorption. *Front
531 Plant Sci* 9:1253

532 Dalakouras A, Wassenegger M, Dadami E, Ganopoulos I, Pappas ML, Papadopoulou K (2020)
533 Genetically modified organism-free RNA interference: exogenous application of RNA
534 molecules in plants. *Plant Physiol* 182:38-50

535 David JR (1966) Delayed hypersensitivity in vitro: its mediation by cell-free substances
536 formed by lymphoid cell-antigen interaction. *Proc Natl Acad Sci U S A* 56:72-77

537 Dubreuil G, Deleury E, Crochard D, Simon J-C, Coustau C (2014) Diversification of MIF
538 immune regulators in aphids: link with agonistic and antagonistic interactions. *BMC
539 Genomics* 15:762

540 Ghosh S, Padalia J, Ngobeni R *et al.* (2020) Targeting parasite-produced Macrophage
541 Migration Inhibitory Factor as an antivirulence strategy with antibiotic-antibody
542 combination to reduce tissue damage. *J Infect Dis* 221:1185-1193

543 Gogoi A, Sarmah N, Kaldis A, Perdikis D, Voloudakis A (2017) Plant insects and mites uptake
544 double-stranded RNA upon its exogenous application on tomato leaves. *Planta*
545 246(6):1233-1241

546 Jaouannet M, Rodriguez PA, Thorpe P *et al.* (2014) Plant immunity in plant-aphid interactions.
547 *Front Plant Sci* 5:663

548 Jaubert-Possamai S, Le Trionnaire G, Bonhomme J, Christophides GK, Rispe C, Tagu D
549 (2007) Gene knockdown by RNAi in the pea aphid *Acyrthosiphon pisum*. *BMC
550 Biotechnol* 7:63

551 Jover-Gil S, Paz-Ares J, Micol JL, Ponce MR (2014) Multi-gene silencing in *Arabidopsis*: a
552 collection of artificial microRNAs targeting groups of paralogs encoding transcription
553 factors. *Plant J* 80:149-60

554 Levanova A, Poranen MM (2018) Application of steric exclusion chromatography on

555 monoliths for separation and purification of RNA molecules. *J Chromatogr A*,
556 1574:50-59

557 Li H, Guan R, Guo H, Miao X (2015) New insights into an RNAi approach for plant defence
558 against piercing-sucking and stem-borer insect pests. *Plant Cell Environ* 38:2277-2285

559 Liu S, Jaouannet M, Dempsey DMA, Imani J, Coustau C, Kogel KH (2020) RNA-based
560 technologies for insect control in plant production. *Biotechnol Adv* 39:107463

561 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time
562 quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25:402-408

563 Luck S, Kreszies T, Strickert M, Schweizer P, Kuhlmann M, Douchkov D (2019)
564 siRNA-finder (si-Fi) software for RNAi-target design and off-target prediction. *Front
565 Plant Sci* 10:1023

566 Marquès-Bueno MDM, Morao AK, Cayrel A et al. (2016) A versatile multisite
567 gateway-compatible promoter and transgenic line collection for cell type-specific
568 functional genomics in *Arabidopsis*. *Plant J* 85:320-333

569 Martienssen R, Irish V (1999) Copying out our ABCs: the role of gene redundancy in
570 interpreting genetic hierarchies. *Trends Genet* 15:435-437

571 Michelet C, Danchin EGJ, Jaouannet M et al. (2019) Cross-kingdom analysis of diversity,
572 evolutionary history, and site selection within the eukaryotic Macrophage Migration
573 Inhibitory Factor superfamily. *Genes* 10(10):740

574 Mitchell RA, Bucala R (2000) Tumor growth-promoting properties of macrophage migration
575 inhibitory factor (MIF). *Semin Cancer Biol* 10:359-366

576 Mitter N, Worrall EA, Robinson KE et al. (2017) Clay nanosheets for topical delivery of
577 RNAi for sustained protection against plant viruses. *Nat Plants* 3:16207

578 Mutti NS, Louis J, Pappan LK, Pappan K, Begum K et al. (2008) A protein from the salivary
579 glands of the pea aphid, *Acyrtosiphon pisum*, is essential in feeding on a host plant. *Proc
580 Natl Acad Sci U S A* 105:9965-9969

581 Naessens E, Dubreuil G, Giordanengo P et al. (2015) A secreted MIF cytokine enables aphid
582 feeding and represses plant immune responses. *Curr Biol* 25:1898-903

583 Ng JC, Perry KL (2004) Transmission of plant viruses by aphid vectors. *Mol Plant Pathol*
584 5:505-511

585 Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid
586 genes by dsRNA feeding from plants. *PLoS One* 6, e25709

587 Price DR, Gatehouse JA (2008) RNAi-mediated crop protection against insects. *Trends
588 Biotechnol* 26:393-400

589 Pons C, Voß AC, Schweiger R, Müller C (2020) Effects of drought and mycorrhiza on wheat
590 and aphid infestation. *Ecol Evol* 10(19):10481-10491

591 Rosani U, Domeneghetti S, Gerdol M, Pallavicini A, Venier P (2019) Expansion and loss
592 events characterized the occurrence of MIF-like genes in bivalves. *Fish & Shellfish
593 Immunology* 9:39-49

594 San Miguel K, Scott JG (2016) The next generation of insecticides: dsRNA is stable as a
595 foliar-applied insecticide. *Pest Manag Sci* 72:801-809

596 Schwartz SH, Hendrix B, Hoffer P, Sanders RA, Zheng W (2020) Carbon dots for efficient
597 small interfering RNA delivery and gene silencing in plants. *Plant Physiol* 184:647-657

598 Słupianek A, Kasprowicz Maluśki A, Myśkow E, Turzańska M, Sokołowska K (2019)

599 Endocytosis acts as transport pathway in wood. *New Phytol* 222:1846-1861
600 Sun C, Höglund AS, Olsson H, Mangelsen E, Jansson C (2005) Antisense
601 oligodeoxynucleotide inhibition as a potent strategy in plant biology: identification of
602 SUSIBA2 as a transcriptional activator in plant sugar signalling. *Plant J* 44:128-138
603 The International Aphid Genomics C (2010) Genome sequence of the pea aphid
604 *Acyrtosiphon pisum*. *PLOS Biol* 8, e1000313
605 Tomoyasu Y, Denell RE (2004) Larval RNAi in *Tribolium* (Coleoptera) for analyzing adult
606 development. *Dev Genes Evol* 214:575-578
607 van Bel AJE (1990) Xylem-phloem exchange via the rays: the undervalued route of transport. *J
608 Exp Bot* 41:631-644
609 Wan J, Cabanillas DG, Zheng H, Laliberte JF (2015) Turnip mosaic virus moves systemically
610 through both phloem and xylem as membrane-associated complexes. *Plant Physiol*
611 167:1374-1388
612 Will T, Steckbauer K, Hardt M, Van Bel AJ (2012) Aphid gel saliva: sheath structure, protein
613 composition and secretory dependence on stylet-tip milieu. *PLoS One* 7, e46903
614 Will T, Tjallingii WF, Thönnessen A, Van Bel AJ (2007) Molecular sabotage of plant defense
615 by aphid saliva. *Proc Natl Acad Sci U S A* 104:10536-10541
616 Zhang M, Zhou Y, Wang H et al. (2013) Identifying potential RNAi targets in grain aphid
617 (*Sitobion avenae* F.) based on transcriptome profiling of its alimentary canal after feeding
618 on wheat plants. *BMC Genomics* 14:560
619 Zheng Y, Hu Y, Yan S (2019) A polymer/detergent formulation improves dsRNA penetration
620 through the body wall and RNAi-induced mortality in the soybean aphid *Aphis glycines*.
621 *Pest Manag Sci* 75:1993-1999
622 Zhu F, Xu J, Palli R, Ferguson J, Palli SR (2011) Ingested RNA interference for managing the
623 populations of the Colorado potato beetle, *Leptinotarsa decemlineata*. *Pest Manag Sci*
624 67:175-182.
625
626

627 **Legends to Figures**

628
629 **Fig. 1** Uptake of fluorescence-labeled dsRNA from an artificial diet and its spreading
630 inside *Sitobion avenae*. Pictures were taken at 0 h, 24 h and 48 h after onset of feeding.
631 The artificial diet contained 250 ng/µL *SaMIF1*-dsRNA_{A488}. Fluorescence was
632 detected in the insect gut. Left panels: stereo-microscopic analysis under bright field;
633 right panels: fluorescence stereo microscopic analysis: excitation/emission wavelength
634 (483 nm/506 nm), scale bars = 500 µm.
635
636 **Fig. 2** *Sitobion avenae* survival rates after four days of feeding on artificial diet
637 supplied with dsRNA present as percent of control (no dsRNA in the diet).
638 *SaMIF1*-dsRNA, *SaMIF2*-dsRNA, and *SaMIF3*-dsRNA were used with concentration
639 of 250 ng/µL (a) and 125 ng/µL (b). *GFP*-dsRNA was used as an additional control,
640 since a target for this dsRNA is lacking in aphids. Survival data were evaluated by

641 Kaplan-Meier analysis and log-rank test based on three biological replicates. Bars
642 represent means (\pm SD) from three independent replicates. Different letters indicate
643 significant differences at $p < 0.001$.

644

645 **Fig. 3** Relative expression of target genes *SaMIF1*, *SaMIF2* and *SaMIF3* in *Sitobion*
646 *avenae* fed on an artificial diet containing 250 ng/ μ L of the respective *SaMIF*-dsRNA.
647 RT-qPCR analysis data for (a) *SaMIF1*, (b) *SaMIF2* and (c) *SaMIF3* were normalized
648 to the aphid's *Ribosomal protein L27 (Rpl27)* gene. *GFP*-dsRNA was used as a control.
649 Bars represent means (\pm SD) from two independent replicates. The asterisks indicate
650 significant differences (Student's *t*-test; $p < 0.05$).

651

652 **Fig. 4** Aphid survival after five days of feeding on artificial diet supplied with
653 *SaMIF1*-dsRNA (187.5 ng/ μ L), a mixture of *SaMIF1*-dsRNA, *SaMIF2*-dsRNA and
654 *SaMIF3*-dsRNA (each 62.5 ng/ μ L) or *GFP*-dsRNA (187.5 ng/ μ L) as a control. Bars
655 represent mean values (\pm SD) of three biological replicates. Survival data were
656 evaluated by Kaplan-Meier analysis and log-rank test. Different letters indicate
657 significant differences at $p < 0.0001$.

658

659 **Fig. 5** Confocal images of detached barley leaves having absorbed
660 fluorescence-labeled *SaMIF1*-dsRNA_{A488} through cut basal ends. The leaf base was
661 submerged in 1 mL of 200 mM sucrose solution containing 20 μ g dsRNA. Surface
662 views of **a**, leaf base; **b**, leaf segment 2 cm away from the base at 24 h after onset of
663 soaking. **c**, leaf segment 5 cm from the base 48 h after onset of soaking. **d-g**, leaf
664 cross-section (3 cm from the cutting), photographs taken at three days after onset of
665 the *SaMIF1*-dsRNA_{A488} treatment. The green color represents the fluorescence (λ_{exc}
666 494, λ_{em} 515 nm) of the Alexa Flour 488 (AF488) dye. **xy**, xylem; **ph**, phloem; **bs**,
667 bundle sheath.

668

669 **Fig. 6** Uptake of labeled dsRNA into *Arabidopsis thaliana* petioles and leaves.
670 Confocal images of the reporter line *SUC2::YFP*. **a-h**, cut petiole ends were
671 submerged for 24 h in nuclease-free water containing 20 μ M 21-nt siRNA_{Cy3} and
672 cross-sections were examined at the base (a-d) and in the middle of the petiole (e-h).
673 **i-l**, leaves were dropped with 21 nt dsRNA_{Cy3} (20 μ M) for 24 h. Images were taken
674 with a confocal microscope from different segments of the petiole. The red color,
675 which is restricted to the xylem vessels, represents Cy3 fluorescence (λ_{exc} 555nm,
676 λ_{em} 569 nm) and the green color represents the phloem-based YFP fluorescence
677 (λ_{exc} 514 nm, λ_{em} 527 nm). **xy**, xylem; **ph**, phloem.

678

679

680

681 **Supplement Figures**

682

683 **Fig. S1** Prediction of partial *Sitobion avenae* *SaMIF* sequences using available
684 sequence data of *Acyrthosiphon pisum* (*Ap*) and *Myzus persicae* (*Mp*). a, *SaMIF1*; b,
685 *SaMIF2* c, *SaMIF3*; d, *SaMIF4*. Dark blue boxes denote homology. Sequences are
686 deduced from *MpMIF1* (GenBank: KP218519), *MpMIF3* (GenBank: KR136352),
687 *MpMIF4* (GenBank: KR136353), *ApMIF1* (LOC100161225), *ApMIF3*
688 (LOC100144890) and *ApMIF4* (LOC100162394). The sequence of *SaMIF2*
689 (JK723326) was published in Dubreuil et al. (2014).

690

691 **Fig. S2** Survival of *Sitobion avenae* nymphs on artificial diet after four days of
692 feeding. Artificial diet was supplemented with different sucrose concentrations. The
693 most suitable concentration is 7.5% (w/v), which corresponds to 218 mM sucrose.
694 Bars represent means (\pm SD) of three biological replicates. Survival data were
695 evaluated by Kaplan-Meier analysis and log-rank test. Different letters indicate
696 significant differences at $p < 0.001$.

697

698 **Fig. S3** Survival analysis of aphids fed on plants sprayed with dsRNA after 7 days. **a**,
699 experimental design: fifty synchronous one-day-old nymphs were kept on barley plants
700 sprayed with *GFP*-dsRNA (20 ng/ μ L) or *SaMIF1*-dsRNA (20 ng/ μ L). The infested
701 plants were kept in glass jars in a climate chamber with a 16 h photoperiod (260
702 μ mol/ $m^2 \cdot s^{-1}$) at 22°C/18°C (light/dark) with 65% relative humidity. **b**, aphids survival
703 was monitored on day seven after the onset of feeding on sprayed plants. Bars represent
704 mean values \pm SD of three independent experiments. “ns” indicates no significant
705 differences ($p > 0.05$).

706

707 **Fig. S4** Survival and target gene expression of *Sitobion avenae* nymphs on detached
708 barley leaves, the cut base immersed in *SaMIF1*-dsRNA or *SaSHP*-dsRNA,
709 respectively. **a**, design of sucrose-aided dsRNA delivery method, **cut bases of** barley
710 leaves were immersed in 200 mM sucrose containing 20 μ g dsRNA. **b**, aphid survival
711 monitored after seven days of feeding on barley leaves supplied with dsRNA solution.
712 Bars represent mean values \pm SD of three independent experiments. Relative
713 expression level of *SaMIF1* (**c**) and *SaSHP* (**d**) transcripts normalized to *Rpl27*
714 analyzed by RT-qPCR. Bars represent means (\pm SD) from two independent replicates.
715 “ns” indicates no significant differences at $p > 0.05$.

716

717 **Fig. S5** Feeding of 21 nt dsRNA_{Cy3} via *Arabidopsis thaliana* petioles. Confocal
718 images of petiole segments of the reporter line *SUC2::YFP*. Cut petioles were

719 immersed in 9.6 μ L of a 200 mM sucrose solution containing 20 μ M dsRNA_{Cy3} for
720 24 h. Images were taken with a confocal microscope from different segments of the
721 petiole. The red color, which is restricted to the xylem vessels represents Cy3
722 ($\lambda_{\text{exc}}555\text{nm}$, $\lambda_{\text{em}}569$ nm) and the green color represents the phloem-based YFP
723 fluorescence ($\lambda_{\text{exc}}514$ nm, $\lambda_{\text{em}}527$ nm). xy, xylem; ph, phloem.
724
725

Fig. 1

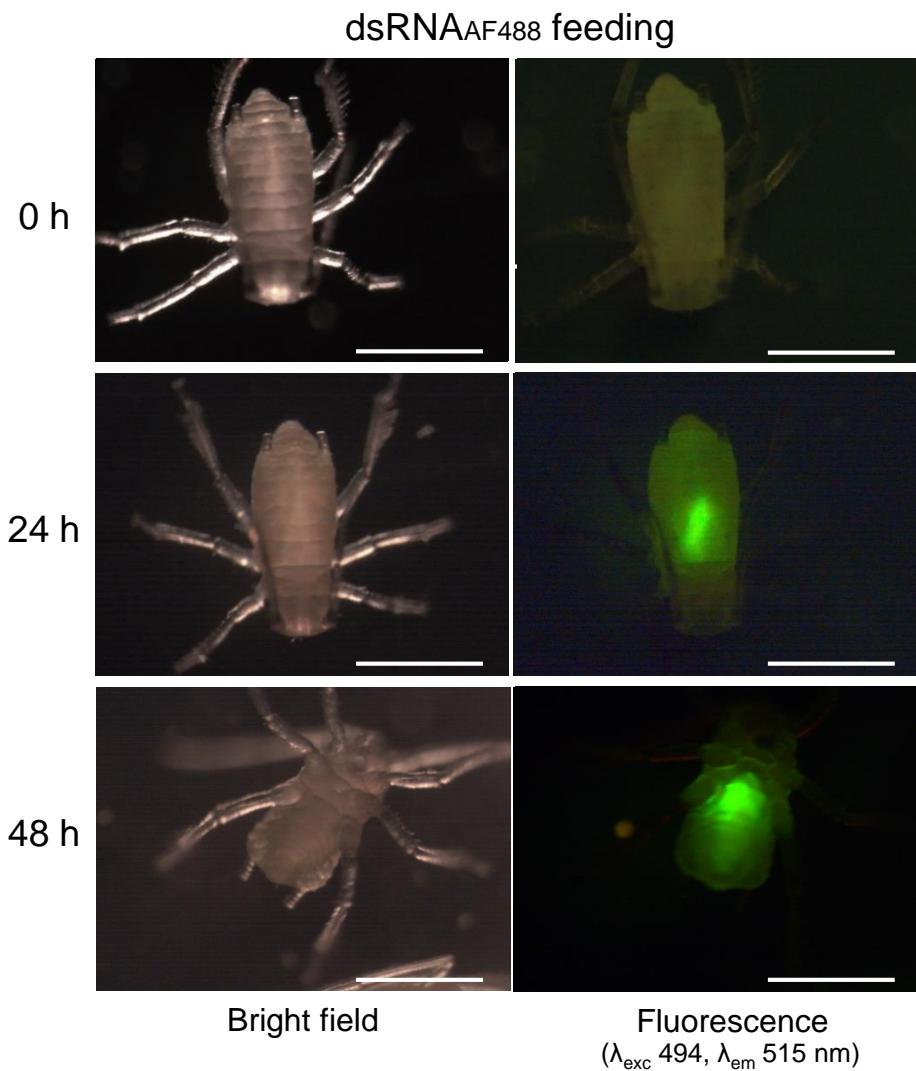


Fig. 2

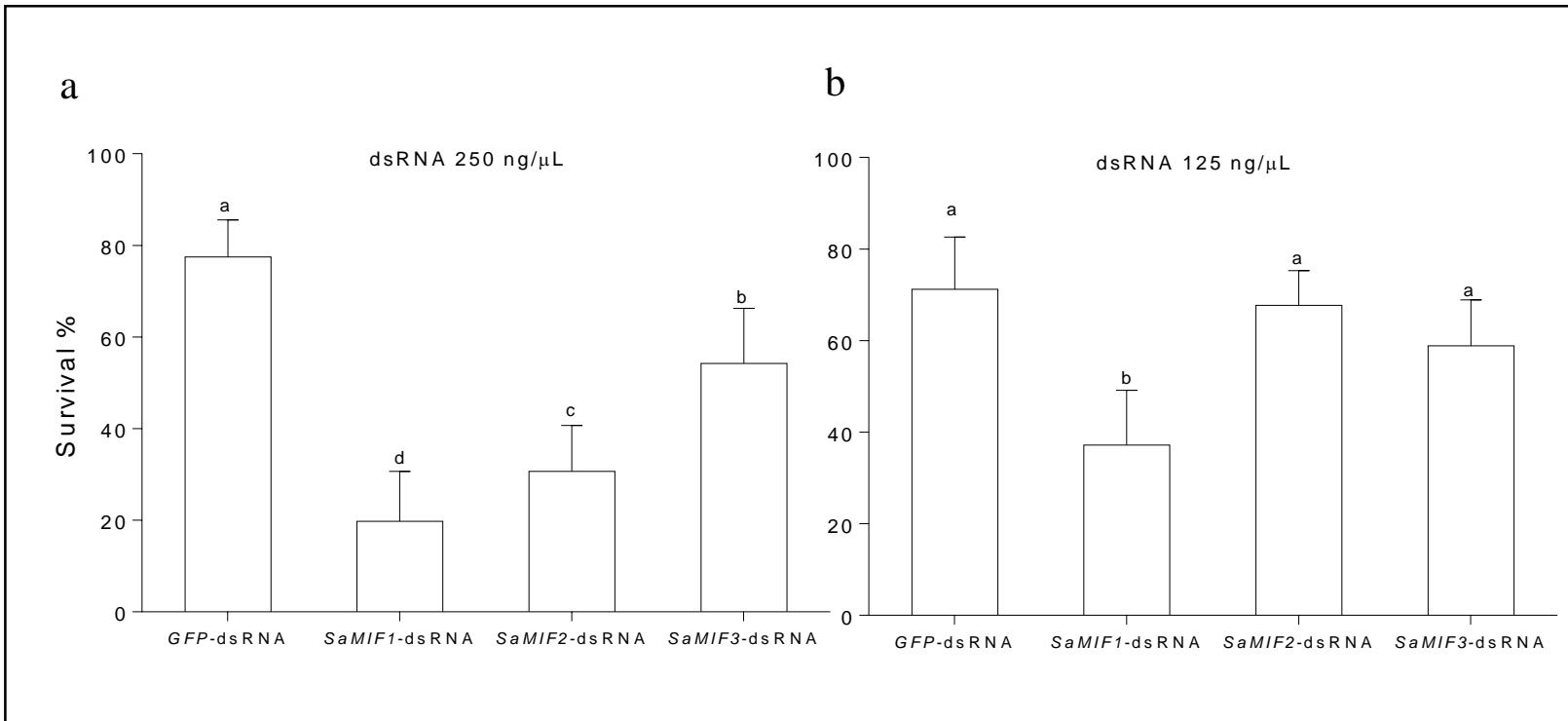


Fig. 3

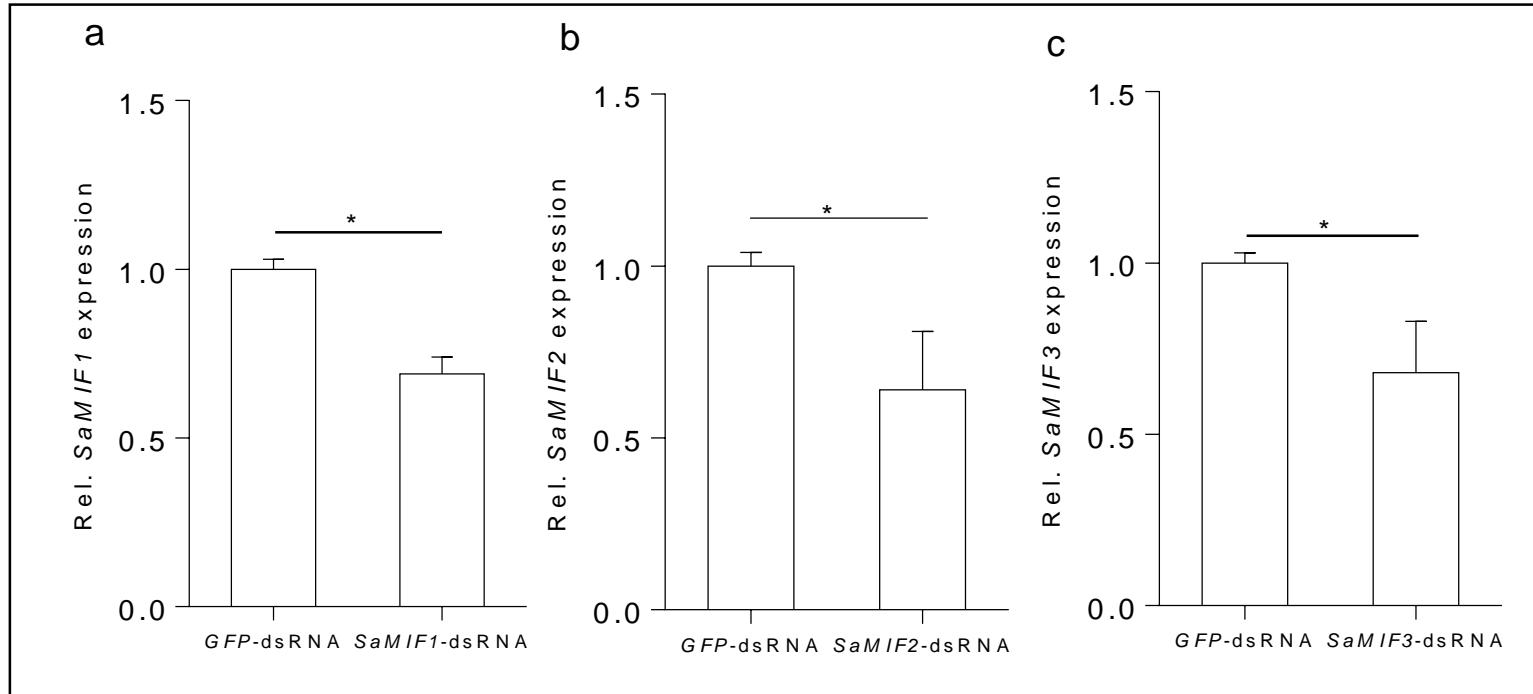


Fig. 4

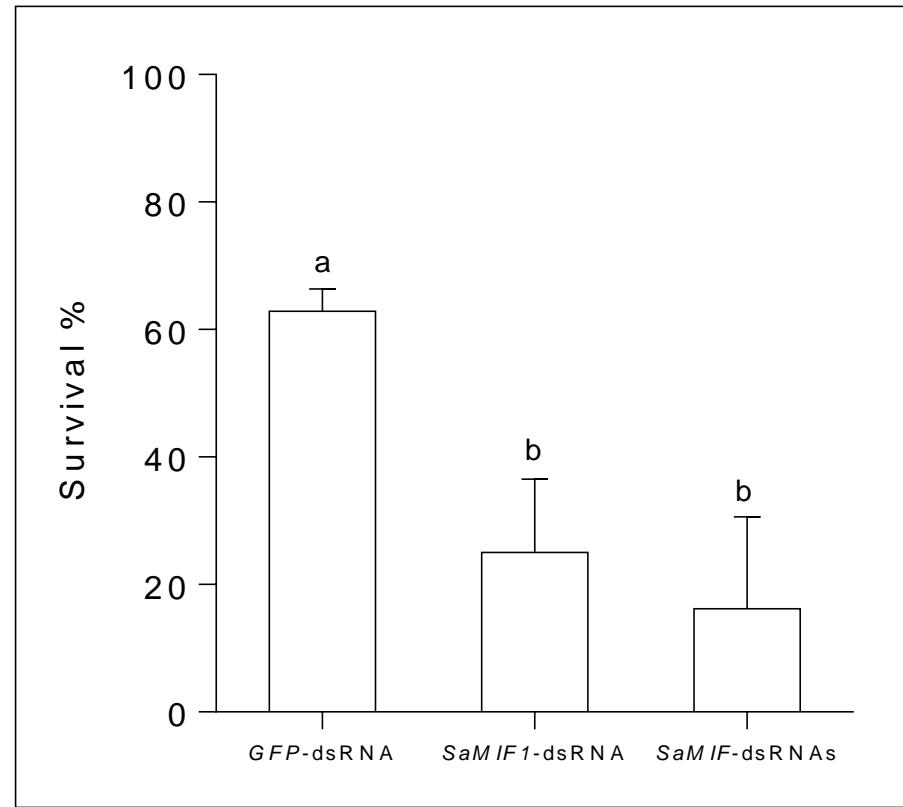


Fig. 5

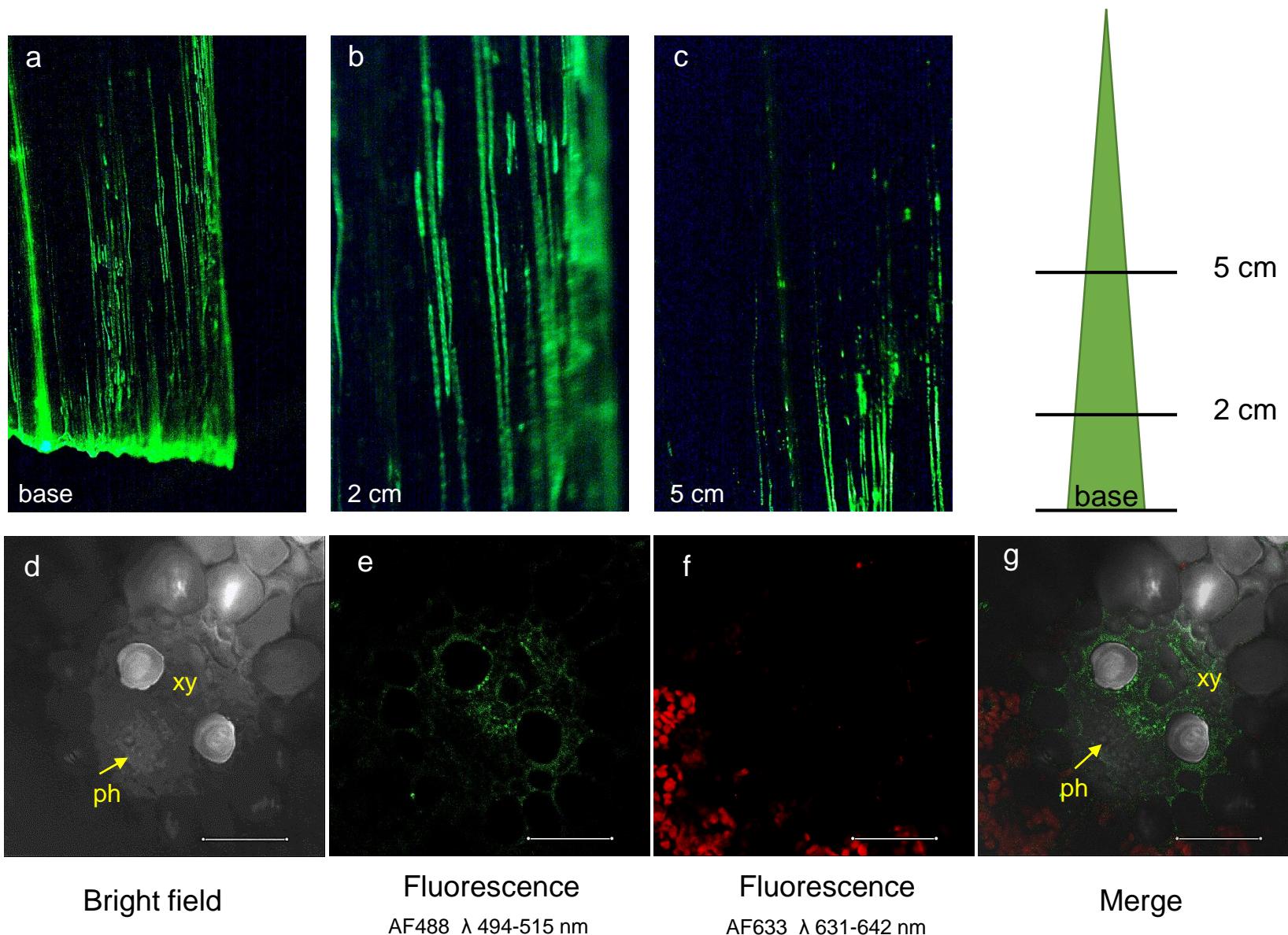


Fig. 6

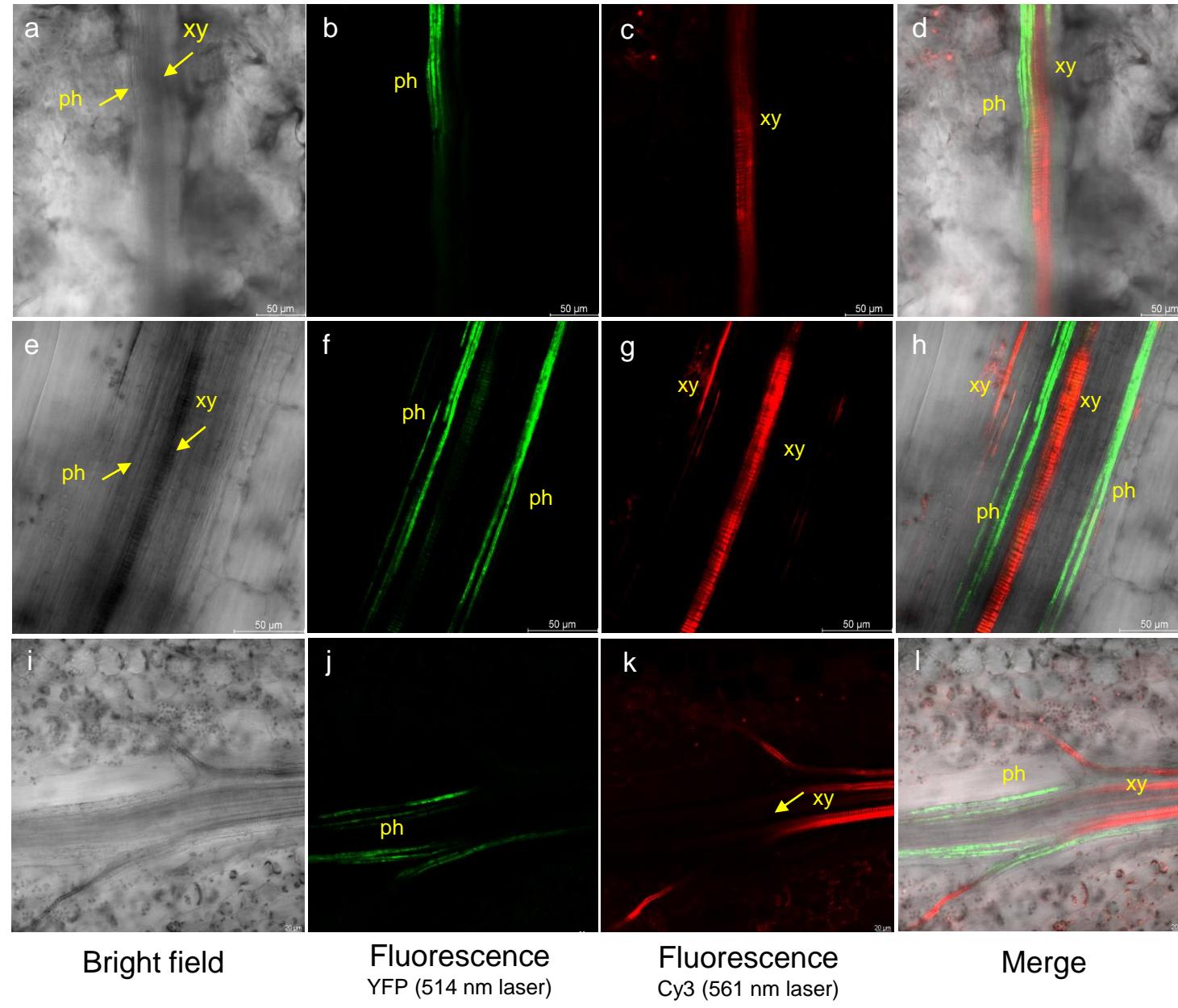


Fig. S1

Fig. S2

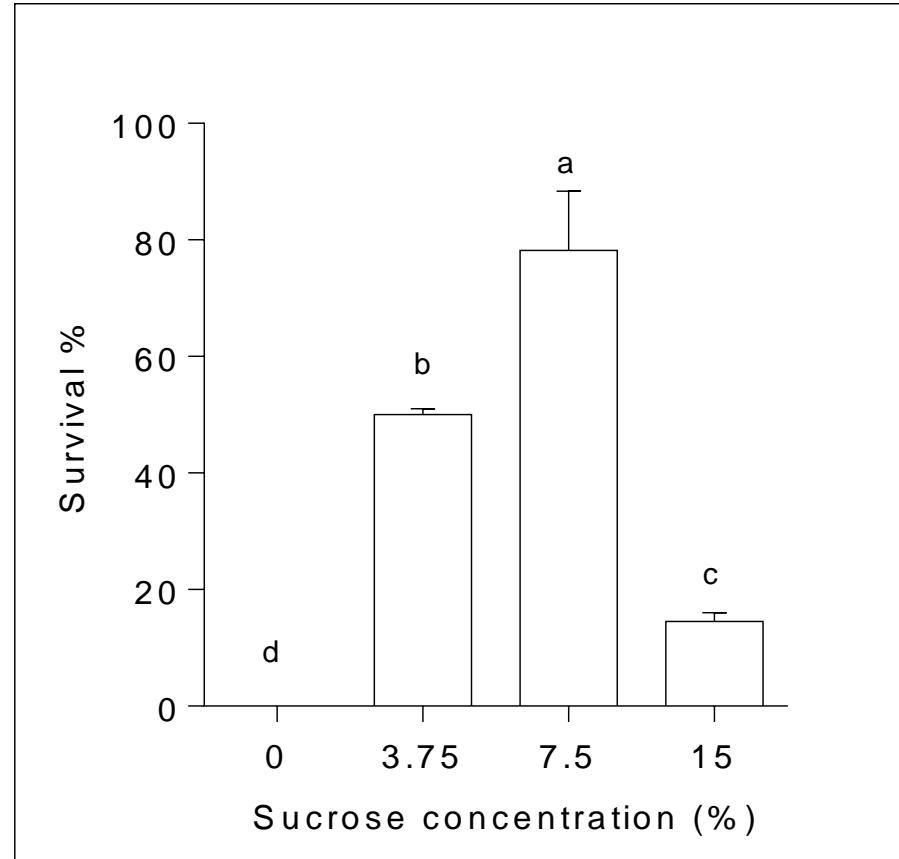


Fig. S3

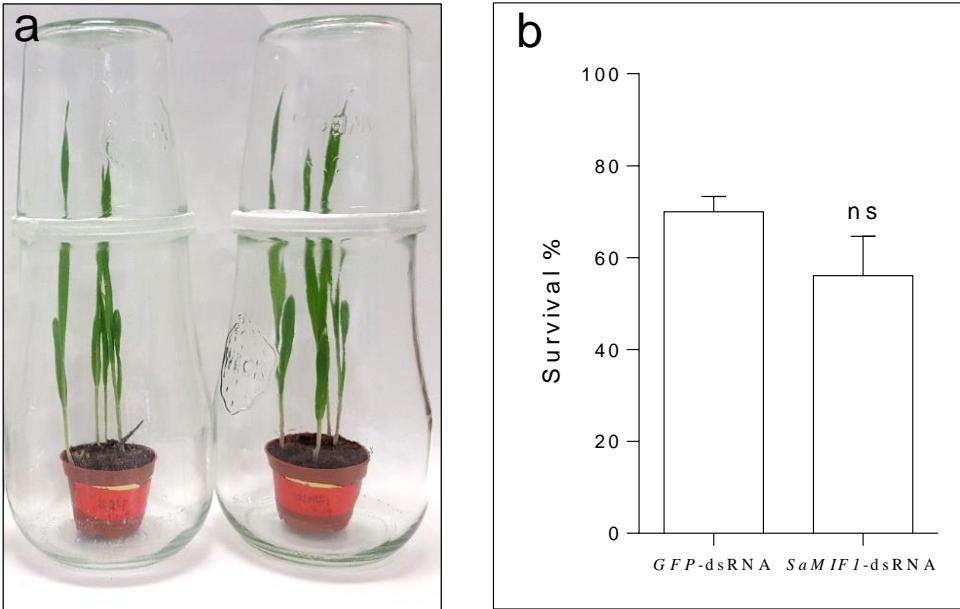


Fig. S4

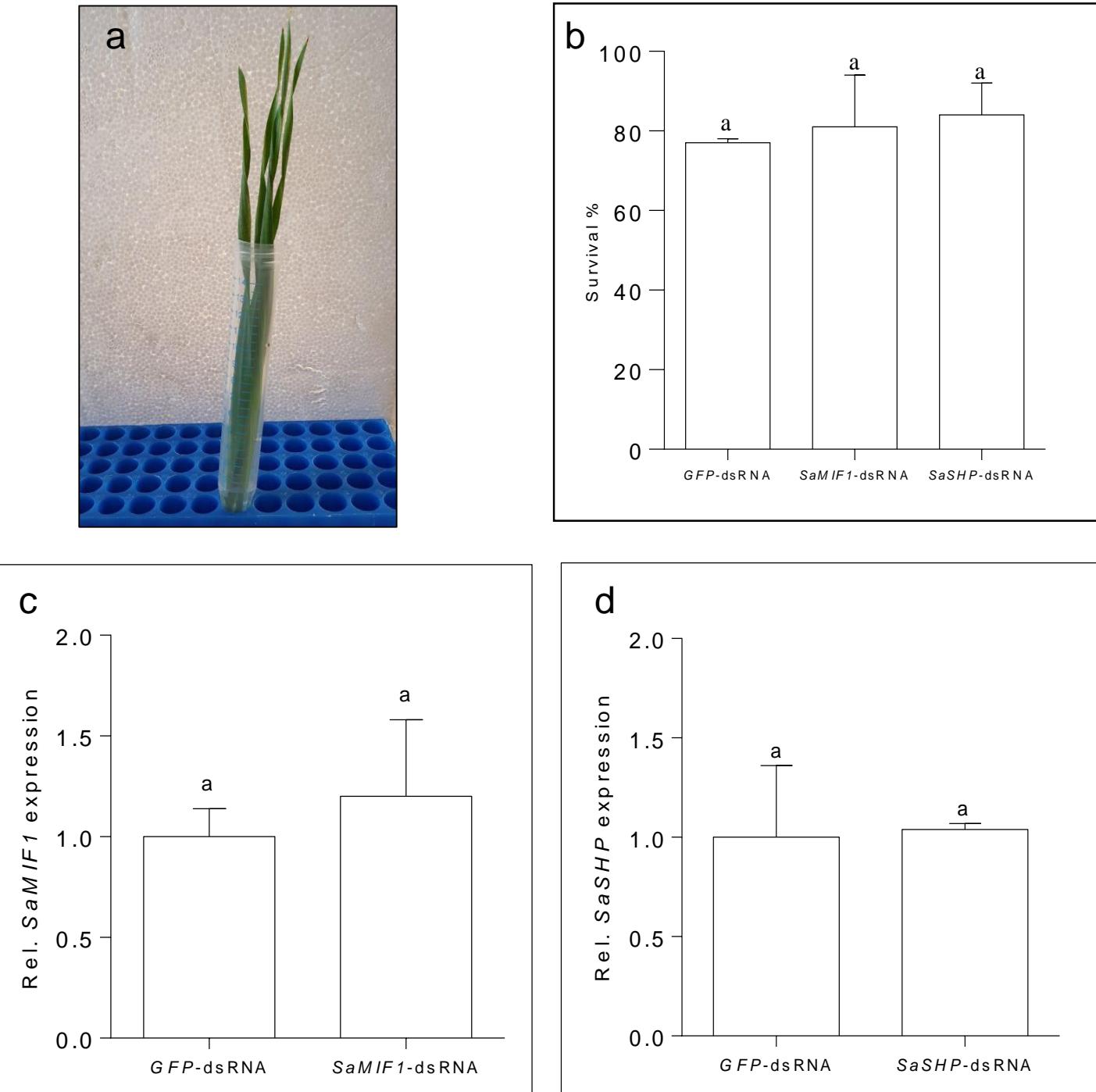
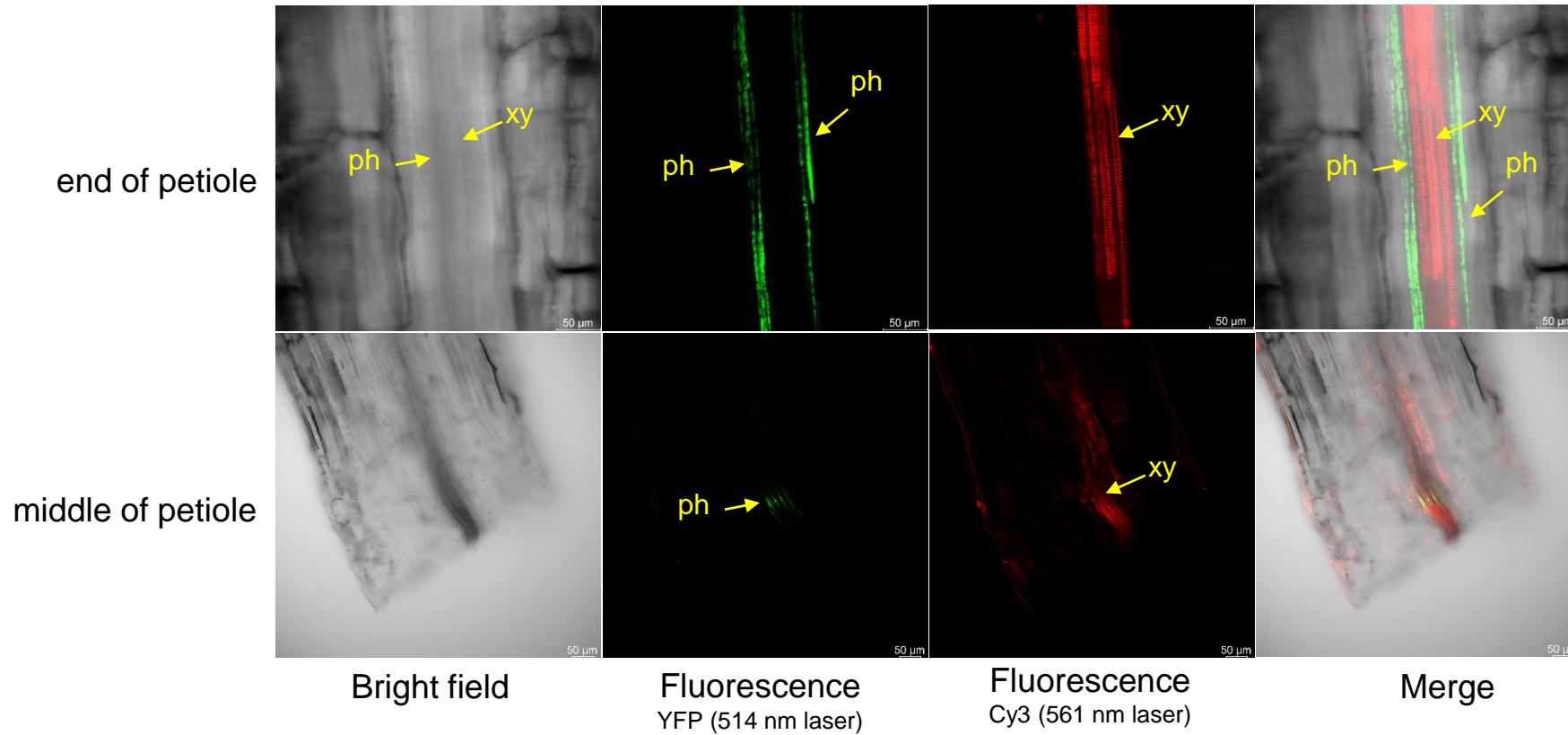



Fig. S5

