

1 **A genome-wide CRISPR screen identifies interactors of the autophagy pathway as**
2 **conserved coronavirus targets**

3

4 Annika Kratzel^{1,2,3}, Jenna N. Kelly^{1,2,6}, Yannick Brueggemann⁴, Jasmine Portmann^{1,2}, Philip
5 V'kovski^{1,2}, Daniel Todt^{4,6}, Nadine Ebert^{1,2}, Eike Steinmann⁴, Ronald Dijkman^{1,2,5,6}, Gert
6 Zimmer^{1,2}, Stephanie Pfaender^{4#} and Volker Thiel^{1,2#}

7 [#]equally shared senior authorship

8

9 ¹Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland.

10 ²Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern,
11 Bern, Switzerland.

12 ³Graduate School for Biomedical Science, University of Bern, Bern, Switzerland

13 ⁴Department for Molecular & Medical Virology, Ruhr-Universität Bochum, Germany.

14 ⁵Institute for Infectious Diseases, University of Bern, Bern, Switzerland

15 ⁶European Virus Bioinformatics Center (EVBC), Jena, Germany

16

17 e-mail: Volker.thiel@vetsuisse.unibe.ch; stephanie.pfaender@ruhr-uni-bochum.de

18 **Summary**

19 Over the past 20 years, the emergence of three highly pathogenic coronaviruses (CoV)
20 – SARS-CoV, MERS-CoV, and most recently SARS-CoV-2 – has shown that CoVs pose a
21 serious risk to human health and highlighted the importance of developing effective therapies
22 against them. Similar to other viruses, CoVs are dependent on host factors for their survival
23 and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host
24 factors and pathways to support their replication cycle. Here, we conducted two independent
25 genome-wide CRISPR/Cas9 knockout screens to identify pan-CoV host factors required for
26 the replication of both endemic and emerging CoVs, including the novel CoV SARS-CoV-2.
27 Strikingly, we found that several autophagy-related genes, including the immunophilin
28 FKBP8, TMEM41B, and MINAR1, were common host factors required for CoV replication.
29 Importantly, inhibition of the immunophilin family with the compounds Tacrolimus,
30 Cyclosporin A, and the non-immunosuppressive derivative Alisporivir, resulted in dose-
31 dependent inhibition of CoV replication in primary human nasal epithelial cell cultures that
32 resemble the natural site of virus replication. Overall, we identified host factors that are crucial
33 for CoV replication and demonstrate that these factors constitute potential targets for
34 therapeutic intervention by clinically approved drugs.

35

36

37

38 Introduction

39 Coronaviruses (CoVs) are positive-sense single-stranded enveloped RNA viruses with
40 a broad host tropism and in case of the three highly pathogenic zoonotic CoVs the ability to
41 cross species barriers and infect humans. Since 1960, seven human CoVs (HCoVs) with a
42 suspected zoonotic origin in bats, mice, or domestic animals have been identified, including
43 four seasonally circulating well-established human pathogens (HCoV-229E, HCoV-OC43,
44 HCoV-NL63, and HCoV-HKU1) that usually cause mild symptoms like the common cold
45 and/or diarrhea in immunocompetent patients^{1,2,3,4}. HCoV infections have therefore generally
46 been considered harmless; however, the relatively recent emergence of three highly pathogenic
47 HCoVs, which infect the upper and also lower respiratory tract and cause severe disease in
48 humans, has demonstrated that HCoVs can impact human health. Between 2002 and 2003 the
49 highly pathogenic Severe Acute Respiratory Syndrome (SARS) coronavirus was responsible
50 for an outbreak of severe viral pneumonia causing disease in over 8,000 patients⁵. Moreover,
51 the emergence of Middle East Respiratory Syndrome (MERS) in 2012 marked the second
52 occurrence of a highly pathogenic CoV in humans and has persistently caused endemics in the
53 Middle East via zoonotic transmissions from dromedary camels and nosocomial outbreaks^{6,7,8}.
54 Recently, the newly emerged SARS-CoV-2, the causative agent of coronavirus disease 2019
55 (COVID-19), continues to create an imminent threat to global health, with more than 100 Mio
56 individuals currently infected in > 200 countries and more than 2 Mio fatalities (February 8th
57 2021) (Johns Hopkins Coronavirus Resource Center).

58 The lack of specific pharmaceutical intervention options and/or prevention measures
59 against HCoVs, as well as the ongoing difficulties containing the rapid global spread of the
60 SARS-CoV-2, have intensified in the current pandemic and new therapies are urgently needed.
61 CoVs are obligate intracellular pathogens and thus rely on selected host proteins, termed host
62 dependency factors (HDFs), to achieve virus entry, replication, and release. The identification
63 of HDFs is therefore of importance for the understanding of essential host-virus interactions
64 required for successful viral replication and provide a framework to guide development of new
65 pharmacological strategies for the treatment of CoV infections, including the disease COVID-
66 19 and future emerging CoVs. Coronaviruses encode a spike surface glycoprotein, which
67 enables specific binding to a host-cell receptor to mediate viral entry. Known host receptors
68 include dipeptidyl peptidase 4 (DPP4) for MERS-CoV, human aminopeptidase N (ANPEP) for
69 HCoV-229E, and angiotensin-converting enzyme 2 (ACE2) for SARS-CoV and SARS-
70 CoV2^{9,10,11,12}. Cleavage of the spike protein by cellular proteases, such as TMPRSS2, cathepsin

71 L, and/or furin facilitates membrane fusion followed by release of the viral genome into the
72 cellular cytoplasm for replication¹³. One hallmark that occurs in host cells during replication
73 of positive-stranded RNA viruses is the extensive remodeling of host endomembranes that
74 results in coronavirus infection in the formation of both double-membrane vesicles (DMVs)
75 and convoluted membranes (CM) to which the viral replication and transcription complexes
76 are targeted^{14,15,16}. However, the host factors that are required for the formation of these
77 structures remain elusive. Newly synthesized viral RNA is assembled to viral particles at the
78 ER-Golgi intermediate compartment (ERGIC) and trafficked to the Golgi for post-translational
79 modifications¹⁷. While only little is known on how HCoVs exit from infected cells, recent work
80 found that the β -CoVs MHV and SARS-CoV egress from cells via a lysosome-based
81 pathway¹⁸.

82 To identify HDFs essential for CoV infection, we performed two independent genome-
83 wide loss-of-function CRISPR screens with MERS-CoV, a highly pathogenic CoV, and
84 HCoV-229E, an endemic CoV that causes mild respiratory symptoms in humans. We sought
85 to uncover HDFs required for infection by a wide range of CoVs, including highly pathogenic
86 CoVs with pandemic potential. Our results revealed that a number of autophagy-related genes,
87 including FK506 binding protein 8 (FKBP8), transmembrane protein 41B (TMEM41B),
88 vacuole membrane protein 1 (VMP1), and Membrane Integral NOTCH2 Associated Receptor
89 1 (MINAR1), were among the top hits for both CoV screens, suggesting that host factors
90 involved in autophagy may also be required for CoV replication. Importantly, we found that
91 perturbation of FKBP8 and other members of the immunophilin family by clinically approved
92 and well-tolerated drugs, but not inhibition of late cellular autophagy, inhibited CoV infection
93 in a dose-dependent manner. Overall, the genes and pathways identified in our CoV screens
94 expand the current repertoire of essential HDFs required for CoV replication that can be
95 exploited to identify novel therapeutic targets for host-directed therapies against both existing
96 and future emerging CoVs.

97

98

99

100

101 **Results**

102 **Two independent genome-wide CRISPR/Cas9 knockout screens reveal CoV host
103 dependency factors**

104 We performed two independent genome-wide loss-of-function CRISPR screens with
105 MERS-CoV and HCoV-229E to uncover unknown HDFs required for CoV replication. To
106 conduct these CRISPR screens, we employed the well-established Human GeCKOv2 genome-
107 wide library, which includes 65,386 unique single guide RNAs (sgRNAs) targeting 19,052
108 protein-coding genes¹⁹. As a screening platform, we selected human hepatoma Huh7 cells for
109 several reasons. First, Huh7 cells endogenously express DPP4 and ANPEP/CD13, the host cell
110 receptors for MERS-CoV and HCoV-229E, respectively^{9,10}. Thus, Huh7 cells are susceptible
111 to infection with both viruses. Second, both MERS-CoV and HCoV-229E induce cytopathic
112 effects in Huh7 cells following infection, which allows for rapid selection of CRISPR
113 knockout-mediated non-susceptible cells. Finally, several recent studies have also selected
114 Huh7 cells for the CRISPR-based screening of other CoVs, including the novel, highly
115 pathogenic SARS-CoV-2 virus²⁰⁻²².

116 Genome-wide CRISPR/Cas9 knockout screens were performed by transducing Huh7
117 cells with the Human GeCKOv2 library, selecting for library-transduced cells with puromycin,
118 followed by infection with either MERS-CoV (37°C, MOI 0.05) or HCoV-229E (33°C, MOI
119 0.1). Surviving cells were harvested 14 days post infection, genomic DNA was extracted, and
120 sgRNA abundance was quantified using amplicon-based Illumina next-generation sequencing
121 (NGS) (Figure 1A). Technical performance was evaluated using a number of quality control
122 metrics, including an area under the curve (AUC) analysis of all sgRNAs found in samples
123 from each screen. AUC analysis confirmed that library representation was diverse and properly
124 maintained in uninfected samples from both screens. As expected, AUC analysis also revealed
125 a much greater level of sgRNA guide dropout following infection with either MERS-CoV or
126 HCoV-229E (Figure S1A). Pairwise correlation analysis showed that biological replicates from
127 each screen clustered together and shared a high correlation coefficient (Figure S1B).

128 Using the MAGeCK pipeline²³, we performed paired analyses on uninfected and
129 infected samples from each screen and computed gene-level scores to identify genes that were
130 significantly enriched in our MERS-CoV and HCoV-229E infected samples. Overall, we
131 identified 1149 genes in the MERS-CoV screen and 517 genes in the HCoV-229E screen that
132 had significant robust rank aggregation (RRA) enrichment ($p < 0.05$) using the gene log fold

133 change (LFC) alpha median method. RRA analysis using the second-best LFC method
134 identified 989 significantly enriched genes in the MERS-CoV screen and 332 significantly
135 genes in the HCoV-229E screen. To prioritize genes and generate a more robust dataset, we
136 focused on genes identified as significantly enriched using both methods (RRA p-value < 0.05)
137 with a LFC of ≥ 2 (Figures S1C and S1D). In total, 944 genes from the MERS-CoV screen and
138 332 genes from the HCoV-229E screen met these criteria, including 19 genes that were
139 identified by both methods in both screens (Figures 1B, 1D, and S1D). Top scoring genes from
140 both screens are shown in Figure 1E, including several virus-specific genes as well as the 19
141 aforementioned common genes. Coronaviruses encode a spike surface glycoprotein, which
142 enables specific binding to a host-cell receptor to mediate viral entry. Known host receptors
143 include dipeptidyl peptidase 4 (DPP4) for MERS-CoV, human aminopeptidase N (ANPEP) for
144 HCoV-229E, and angiotensin-converting enzyme 2 (ACE2) for SARS-CoV and SARS-CoV2
145^{24,10,11,12}. Subsequent cleavage of the spike protein by cellular proteases, such as TMPRSS2,
146 cathepsin L, and/or furin enables membrane fusion followed by release of the viral genome
147 into the cellular cytoplasm for replication¹³. Importantly, in the MERS-CoV screen, the
148 DPP4/CD26 host cell receptor was identified as the top scoring gene, whereas in the HCoV-
149 229E screen, the top scoring gene was ANPEP/CD13. Moreover, the known DPP4
150 transcription factor HNFA1 was ranked second in the MERS-CoV screen, demonstrating the
151 robustness of the screen.

152 To identify and compare host cell biological processes that may be required for CoV
153 replication, we next performed Gene Ontology (GO) enrichment analysis on each screen using
154 the enriched genes identified above. This analysis uncovered multiple biological processes
155 (BP) that were significantly enriched in both CoV screens, many of which clustered together
156 into 7 overarching biological themes (Figure 2A). Next, we calculated the semantic similarity
157 among the 636 unique GO terms (BP) that were identified as significantly enriched in one or
158 both screens (p-value < 0.05; Table 2). Hierarchical clustering was then used to group similar
159 GO terms together and a representative term for each group was selected based on scores
160 assigned to each term. The latter analysis led to the identification of 44 conserved
161 representative GO terms and 51 virus-specific representative GO terms (Figure S2A).
162 Representative GO terms found in both MERS-CoV and HCoV-229E screens included a
163 number of immune-related terms as well as terms related to the regulation of phosphorylation,
164 kinase activity, autophagy, and lipid transport. Several specific GO terms were also
165 significantly enriched in both screens, including neutrophil-mediated immunity, regulation of

166 protein dephosphorylation, and regulation of the c-Jun N-terminal kinase (JNK) cascade
167 (Figure S2B). GO terms specific to our MERS-CoV screen included regulation of exit from
168 mitosis, protein glycosylation, and syncytium formation via plasma membrane fusion. In
169 contrast, GO terms specific to HCoV-229E included regulation of coagulation and nitric oxide
170 biosynthesis (Figure S2A).

171 To establish which pathways and/or processes may be particularly important for CoV
172 replication, we next focused on conserved representative GO terms that included one or more
173 of the 19 genes that were significantly enriched in both of our CoV screens (Figures 1D and
174 1E). The resulting 70 unique GO terms and their relationships to each other are the terms
175 illustrated in Figure 2A. The 7 prominent biological themes these 70 terms clustered into are
176 also shown and include autophagy, immunity, dephosphorylation, Golgi vesicle transport,
177 catabolic processes, homeostatic processes, and developmental processes. To examine each
178 biological cluster in more detail, we constructed cluster-specific heatmaps showing all enriched
179 genes from both CoV screens associated with that cluster (Figure 2B). Furthermore, for each
180 cluster we inspected the network of functionally related GO terms that comprise the cluster
181 (Figure S3A-G). Overall, our results indicate the involvement of diverse biological processes
182 in both, MERS-CoV and HCoV-229E replication cycle.

183

184 **Regulators of the autophagy pathway are conserved host factors for CoV infection**

185 Based on our initial gene enrichment results from the MERS-CoV and HCoV-229E
186 screens, as well as a comparison of the respective results with previously published data²⁵⁻²⁷,
187 we selected 21 hits for further experimental validation. Focusing on the highly pathogenic
188 MERS-CoV screen, but also with an interest in examining common hits between both screens,
189 we chose 17 genes that were significantly enriched in the MERS-CoV screen and 4 genes
190 (TMEM41B, ELFN2, NOM1, and KRTAP13-4) that were significantly enriched in both
191 MERS-CoV and HCoV-229E screens. For these 21 hits, stable CRISPR/Cas9 KO cell lines
192 were generated for each gene and then challenged with either HCoV-229E or MERS-CoV.
193 Specific KO of the MERS-CoV receptor DPP4 and the HCoV-229E receptor APN served as
194 controls. MERS-CoV replication could be significantly reduced in all KO cell lines, except for
195 WNT5A and APN, thus confirming our screen and validating our data analysis (Figures 3A
196 and S4A). In contrast to MERS-CoV, HCoV-229E replication was significantly impaired upon

197 deletion of APN as well as CDH7, MINAR1, TMEM41B, and FKBP8. Interestingly, KO of
198 WNT5A significantly reduced HCoV-229E titers (Figures 3B and S4B). Importantly,
199 TMEM41B, FKBP8, and MINAR1 knockout resulted in impaired titers for both MERS-CoV
200 and HCoV-229E. Strikingly, SARS-CoV and SARS-CoV-2 also replicated to lower titers in
201 respective KO cell lines expressing the specific entry receptor ACE2, confirming a conserved
202 function in the CoV replication cycle for these three genes. (Figures 3C, 3D, and S4B). Western
203 blot analysis confirmed stable knockout of both FKBP8 and TMEM41B (Figure 3E).
204 Moreover, CRISPR/Cas9 mediated genome editing in MINAR1, FKBP8, and TMEM41B KO
205 cell lines were confirmed via Sanger Sequencing (Figure S4E). To further validate the effect
206 of the CRISPR/Cas9-mediated KO of all the three host factors, we expressed CRISPR resistant
207 variants of these host factors and observed a rescue of virus titers for MERS-CoV, HCoV-
208 229E, SARS-CoV, and SARS-CoV-2, thereby confirming the antiviral effect of TMEM41B,
209 FKBP8, and MINAR1 KO (Figure 3F). To investigate the step of the viral replication cycle for
210 which these factors are required, we employed a vesicular stomatitis virus (VSV) pseudo
211 particle system bearing spike proteins from one of several different CoVs and encoding GFP
212 as a reporter²⁸. We found knockdown of TMEM41B, FKBP8, or MINAR1 did not alter VSV
213 pseudoparticle entry mediated by spike proteins from HCoV-229E, MERS-CoV, SARS-CoV,
214 or SARS-CoV-2 (Figure 4A). Collectively, these findings show that there is a conserved
215 requirement for the host factors TMEM41B, FKBP8, and MINAR1 during CoV replication,
216 but not during CoV entry.

217 Despite having distinct cellular functions, TMEM41B, FKBP8, and MINAR1 are all
218 involved in the cellular or mitochondrial autophagy pathways, albeit at different stages. As
219 autophagy was also identified as one of the main conserved biological clusters in our GO
220 analysis, we next chose to focus on these factors in the context of autophagy for further
221 analysis. To confirm the association of TMEM41B, FKBP8, and MINAR1 with cellular
222 autophagy, we induced autophagy in LC3-GFP transfected KO cells using Rapamycin and
223 subsequently infected these cells with HCoV-229E. Under normal physiological conditions,
224 the cytosolic protein LC3 translocates to autophagosomal membrane structures during early
225 autophagy²⁹. We thus analyzed the ability of LC3-GFP to translocate to such vesicles in
226 TMEM41B, FKBP8, and MINAR1-KO cells infected with HCoV-229E and undergoing
227 autophagy as described previously²⁹ and analyzed our results using immunofluorescence
228 (Figures 4B and 4C). In line with previous reports, we confirmed by visualizing LC3-GFP
229 accumulation that Rapamycin treatment induced specific vesicle formation in native Huh7

230 cells, but not in TMEM41B-KO, FKBP8-KO, or MINAR1 KO cells, reasserting the necessity
231 of these proteins for autophagosome formation. Similarly, LC3-GFP accumulated in Huh7
232 cells during HCoV-229E infection, but significantly less in TMEM41B-KO, FKBP8-KO, and
233 MINAR1-KO cells (Figures 4B and 4C). Together these results show that KO of TMEM41B,
234 FKBP8, and MINAR1 impairs membrane-remodeling during Rapamycin-induced autophagy
235 and compromises LC3-GFP translocation during HCoV-229E infection.

236

237 **Inhibition of the immunophilin protein family with pre-existing drugs**

238 TMEM41B, FKBP8, and MINAR1 have all been implicated as interactors of the
239 autophagy pathway (Figure 5A). Moreover, FKBP8 is part of a large immunophilin family,
240 known to bind the immunosuppressive agent Tacrolimus. Interestingly, in addition to FKBP8,
241 several cyclophilins (additional members of the immunophilin family) were also significantly
242 upregulated in the MERS-CoV and HCoV-229E CRISPR KO screens, including Peptidyl-
243 prolyl isomerase (PPI) B, PPIC, PPID, PPIE, PPIF, PPIG and PPIH. Proteins of this family
244 specifically bind Cyclosporin A, an immunosuppressant drug that is usually applied to suppress
245 rejection after internal organ transplantation. Given the lack of specific treatment options for
246 HCoVs, in particular during the ongoing SARS-CoV-2 pandemic, we tested Cyclosporin A ,
247 as well as Alisporivir, a non-immunosuppressant derivative of Cyclosporin A, currently used
248 for treatment of HCV³⁰. Importantly, both Tacrolimus and Cyclosporin A are known to bind
249 and thereby inhibit calcineurin (PP3R1, MERS-CoV-specific HDF, Figure 5A) in their
250 complexed form with the respective immunophilin³¹.

251 Inhibitor treatment over the course of CoV infection resulted in a dose-dependent
252 inhibition of MERS-CoV, SARS-CoV, as well as SARS-CoV-2 replication in cell lines 24
253 hours post infection. The most substantial reduction of genome equivalent copy numbers was
254 up to 4 log upon Cyclosporin A treatment at concentrations starting at 10 μ M for MERS-CoV
255 (Figure 5B) and 30-40 μ M for SARS-CoV (Figure 5C). Similar dose-dependence was observed
256 for reduction of SARS-CoV-2 replication (Figure 5D). There are currently no drugs available
257 against SARS-CoV-2. Therefore, we analyzed the effect of these compounds specifically
258 against SARS-CoV-2 in a more biologically relevant cell culture system: primary well-
259 differentiated human nasal epithelial cell cultures, which mimic the natural site of SARS-CoV-
260 2 replication. Cyclosporin A inhibited SARS-CoV-2 replication at 48 hours post infection by
261 around 4 \log_{10} TCID₅₀/ml at non-cytotoxic concentrations with a half maximal inhibitory

262 concentration (IC_{50}) of 7.9 μ M (Figure 5E, S5E and S5J) and Alisporivir by approximately 4
263 \log_{10} TCID $_{50}$ /ml at non-cytotoxic concentrations with an IC_{50} of 2.3 μ M (Figure 5F, S5F and
264 S5J). In contrast, the inhibition effect of Tacrolimus was accompanied by impaired cell
265 viability in the nasal epithelial cell cultures (Figure 5G, S5G and S5J). Taken together, these
266 findings suggest that these immunophilin interactors inhibit the function of certain HCoV
267 HDFs, thereby impairing virus replication.

268

269 **Discussion**

270 Identification of HDFs essential for HCoV infection offers great potential to reveal novel
271 therapeutic targets and enhance our understanding of HCoV infection and pathogenesis (e.g.,
272 COVID-19). Here, we have performed two independent genome-wide CRISPR/Cas9 knockout
273 screens in Huh7 cells with HCoV-229E and MERS-CoV to identify functionally important
274 genes during HCoV infection. Using MERS-CoV as a representative emerging virus and
275 HCoV-229E as a representative endemic virus, we identified multiple virus-specific and
276 conserved HDFs, including several that are required for the replication of the novel pandemic
277 CoV SARS-CoV-2. GO enrichment analysis revealed that the conserved HDFs were involved
278 in diverse biological processes that clustered into seven major categories. Interestingly, we
279 found that MERS-CoV and HCoV-229E seemed to exploit different components of the same
280 biological processes, as the majority of genes involved in each biological cluster were virus
281 specific, but the overall biological processes were similar. This may be due to evolutionary
282 differences between the viruses, as MERS-CoV is part of the betacoronavirus genus whereas
283 HCoV-229E is a member of alphacoronavirus genus. Furthermore, many commonly enriched
284 genes were involved in Golgi vesicle transport, or more specifically in vesicle coating and
285 budding from membranes, as well as regulation of endocytosis and exocytosis, which are
286 known to be associated with virus entry and exit³². Moreover, Golgi vesicle markers have been
287 found in close proximity to CoV replication compartments, suggesting another potential
288 function for genes in this cluster during CoV replication, e.g. membrane re-organization for
289 membranous replication compartments³³. A second prominent category was the immune
290 system cluster, which may be associated with direct exploitation of immunological host
291 responses against CoVs and thus offer potential intervention strategies. These strategies may
292 also have antiviral efficacy and work to lower dysfunctional immune responses, which is a
293 known driver of disease progression and severe lung pathology³⁴. Another major category

294 containing enriched genes in both HCoV screens was dephosphorylation. Genes involved in
295 phosphorylation and kinase activities were strongly enriched in our screens, suggesting that
296 these processes are required for HCoV replication and that other CoVs also exploit the host's
297 phosphorylation machinery for their benefit. Importantly, recent work observed striking
298 changes in phosphorylation on host and viral proteins during SARS-CoV-2 infection, including
299 many changes related to dephosphorylation and altered kinase activity^{35,36}. For example, the
300 JNK signaling cascade, but also the regulation of tau-protein kinase activity, were highly
301 enriched in our MERS-CoV screen. JNKs belong to the mitogen-activated protein kinase
302 (MAPK) family and SARS-CoV-2 infection was recently shown to promote p38 MAPK
303 signaling activity³⁵. Of note, the FKBP8 gene clustered into the dephosphorylation category
304 and the MINAR1 gene was included in regulation of tau-protein kinase activity, suggesting
305 that these two genes may influence CoV replication via other biological processes in addition
306 to autophagy. Along this line, therapeutical intervention targeting AP2M1 (part of the clathrin-
307 dependent endocytic pathway) phosphorylation using a kinase inhibitor resulted in reduced
308 SARS-CoV, MERS-CoV and SARS-CoV-2 infection, exemplifying the antiviral potential of
309 targeting specific phosphorylation sites during viral infection³⁷. Finally, our analysis also found
310 that genes involved in catabolic and homeostatic processes were significantly enriched in both
311 CoV screens. Interestingly, a similar cluster linked to cholesterol metabolism was identified in
312 previous studies, including SARS-CoV-2, HCoV-229E, and HCoV-OC43 genome-wide
313 CRISPR/Cas9-mediated KO screens and SARS-CoV-2 interactome studies^{21,38} and has been
314 linked to CoV entry and membrane fusion³⁹.

315 For our downstream experimental analysis, we focused on the autophagy cluster.
316 Autophagy is a cellular stress response to e.g. starvation or infection by pathogens for the
317 recycling of proteins and cell organelles to maintain cellular homeostasis⁴⁰. The processes
318 comprises a very wide-ranging family of trafficking pathways required for the transportation
319 of cytoplasmic material to the lysosome for destruction. The ER localized TMEM41B was
320 recently identified as a gene required for early autophagosome formation and lipid mobilization
321 in three independent genome-wide CRISPR knockout screens, which also observed that
322 TMEM41B and the well-characterized early-stage autophagy protein VMP1 (top scoring HDF
323 in HCoV-229E screen) implement related functions^{25,26,27}. Furthermore, interaction of
324 TMEM41B with Beclin1 (PI3K complex) underscores the importance of this protein in the
325 induction of autophagy⁴¹. Interestingly, the FK506-binding protein 8 (gene: FKBP8, protein:
326 FKBP38), a member of the immunophilin protein family is located in the outer mitochondrial

membrane and plays a key role in mitophagy by inhibiting the mTORC1 complex during nutrient deprivation⁴². Moreover, FKBP8 targets Beclin-1 to ER-mitochondria membranes during mitophagy and recruits LC3A to damaged mitochondria, thereby actively inducing the removal of excess mitochondria by autophagy⁴³. FKBP8 itself avoids degradation by escaping from mitochondria and is translocated to the ER⁴⁴. MINAR1 (also known as Ubtor or KIAA1024) was the third MERS-CoV HDF with a possible indirect involvement in autophagy regulation. The otherwise very rudimentary characterized protein plays a role in regulating cell growth and mTOR signaling, as MINAR1 depletion resulted in higher mTOR activity⁴⁵ (Figure 5A). In addition, the phosphatase PPP3R1, commonly referred to as calcineurin, is upregulated during cell starvation and controls the activity of the TFEB transcriptional regulator of lysosomal biogenesis and autophagy⁴⁶. Importantly, the interaction between autophagy components and CoVs but also other positive-stranded RNA viruses during viral replication has been under discussion for a long time, as parts of the autophagy process show similarities to the process of DMV formation^{47,33,48}. CoVs rely on the formation of replication complexes at DMVs, the presumed site of viral genome replication and transcription. Due to a lack of conventional endoplasmic reticulum (ER) or Golgi protein markers the exact origin of DMVs remains unclear and studies investigating the possible involvement of the early autophagy machinery in the conversion of host membranes into DMVs reached conflicting conclusions^{49,50}. Another possibility is that single components of the autophagic machinery may be hijacked by CoVs independently of their activity in autophagic processing. The non-lipidated autophagy marker LC3 has been observed to localize to DMVs and the downregulation of LC3, but not inactivation of host cell autophagy, protects cells from CoV infection^{51,52,47,53}. We show that TMEM41B, MINAR1 and FKBP8 are involved in regulating vesicle formation during autophagy as LC3-GFP did not relocate to characteristic foci indicative of autophagosomes following chemical induction of autophagy and that KO of each gene distinctly impairs HCoV replication, but the mechanistic connection of both processes remains elusive. Further roles of the three identified host factors have been suggested. Both TMEM41B and FKBP8 are thought to interact with Beclin-1, which is a core subunit of the PI3K complex that drives autophagy^{41,54}. Captivatingly, inhibition of SKP2, another Beclin-1 interactor, reduced MERS-CoV infection.⁵⁵ Recent work suggested a putative autophagy-independent role for TMEM41B as a pan-coronavirus and flavivirus replication factor, which is recruited to flavivirus RNA replication complexes to facilitate membrane curvature and create a protected environment for viral genome replication^{56,20}. Furthermore, MINAR1 serves

360 as a regulator of mTOR signaling, which regulates numerous cellular processes including the
361 cap-dependent mRNA translation and synthesis machinery required during viral replication.
362 These observations add further potential layers of modulation by TMEM41B, FKBP8 and
363 MINAR1 during CoV replication.

364 Independently of the exact underlying mechanism, our results suggest that the HDFs
365 FKBP8, TMEM41B, and MINAR1 herein represent potential targets for host-directed
366 therapeutics. Its immunomodulating component, make FKBP8 a very interesting HDF for CoV
367 replication. FKBP8 is part of the immunophilin family of FK506-binding proteins, which share
368 the ability to act as a receptor for the immunosuppressive drug FK506 (Tacrolimus), usually
369 used to lower the risk of transplant rejection after allogenic transplantation⁵⁷. On a different
370 note, knockdown of FKBP8 promotes the activation of IFN-beta and the antiviral response
371 during Sendai virus infection in HEK293T cells, suggesting a possible immunomodulatory
372 component for its role in CoV infection⁵⁸. In addition to FKBP8, cyclophilins were upregulated
373 in both HCoV screens. Cyclophilins express PPI activity, which catalyzes the isomerization of
374 peptide bonds in proline residues from *trans* to *cis*, thereby facilitating protein folding. Proteins
375 of this family specifically bind Cyclosporin A, an immunosuppressant drug that is usually
376 applied to suppress rejection after internal organ transplantation. Moreover, immunophilins and
377 cyclophilin have been in the focus of several CoV studies showing impaired HCoV-229E,
378 HCoV-NL63, as well as SARS-CoV and MERS-CoV replication upon immunophilin and
379 cyclophilin inhibitor treatment^{59,60,61,62,63,64}. Given the lack of specific treatment options during
380 the ongoing SARS-CoV-2 pandemic, we tested Tacrolimus, Cyclosporin A, as well as
381 Alisporivir, a non-immunosuppressant derivative of Cyclosporin A and showed that antiviral
382 intervention using these clinically approved immunosuppressive drugs inhibited the replication
383 of the highly pathogenic CoVs MERS-CoV, SARS-CoV, and SARS-CoV-2 in a dose-
384 dependent manner. While Huh7 and VeroE6 cells are valuable model cell lines for highly
385 pathogenic CoVs, they likely do not capture important aspects of infection compared to
386 primary human airway epithelial cells nor fully recapitulate the complex cellular milieu present
387 in human patients. To address these limitations, we also tested these drugs on primary human
388 nasal epithelial cell cultures and found that both Alisporivir and Cyclosporin A potently inhibit
389 SARS-CoV-2 replication at concentrations known to be achievable and efficacious in patients.
390 Together these findings depict a promising path towards the repurposing of Cyclosporin A and
391 Alisporivir as COVID-19 treatment options. Infection with highly pathogenic CoVs is
392 frequently accompanied by inflammatory immunopathogenesis, including the virus-induced

393 destruction of lung tissue and subsequent triggering of a host immune response. Importantly,
394 in certain cases a dysregulated immune response is associated with severe lung pathology and
395 systemic pathogenesis³⁴. The latter highlights the need for dual-acting antiviral drugs that also
396 target inflammation and/or cell death. Of interest, Alisporivir also blocks mitochondrial
397 cyclophilin-D, a key regulator of mitochondrial permeability transition pore (mPTP) opening,
398 which is a mechanism involved in triggering cell death. Hence, besides its antiviral properties,
399 it is possible that Alisporivir also reduces CoV-induced lung tissue damage⁶⁵. Trials using
400 either Cyclosporin in patients with moderate COVID-19 (ClinicalTrials.gov Identifier:
401 NCT04412785 and NCT04540926) or Alisporivir (ClinicalTrials.gov Identifier:
402 NCT04608214) for the treatment of hospitalized COVID19 patients have been registered.

403 The identification of MINAR1, TMEM41 and FKBP8 as conserved HCoVs HDFs in
404 our MERS-CoV and HCoV-229E screens extend the knowledge on HCoVs. Furthermore, the
405 involvement of FKBP8 and other members of the cyclophilin family in the HCoV replication
406 provide information on how Tacrolimus, Cyclosporin A and Alisporivir are able reduce CoV
407 replication by interfering with essential HCoV HDFs. We confirm the potential of all three
408 inhibitors as treatment against HCoV infections, and additionally observed similar reduction
409 in SARS-CoV-2 replication. Altogether our findings highlight the potential of genome-wide
410 CRISPR/Cas9 knockout screens to identify novel HDFs essential for HCoV infection, which
411 can in turn be used in combination with clinically available drugs to identify and evaluate host-
412 directed therapies against existing and future pandemic CoVs.

413

414 **Author Contributions**

415 AK: experimental setup, data collection, data analysis; writing; JK: experimental setup, data
416 analysis, writing; YB: writing; JP: data collection; PV. data analysis; DT: data analysis. NE:
417 data collection; ES: experimental setup; RD: experimental setup, data analysis; GZ:
418 experimental setup, data collection, SP: experimental setup, data collection, data analysis;
419 writing; VT: experimental setup, writing.

420

421 **Acknowledgements**

422 This study was supported by Swiss National Science Foundation (SNF; grants 165076 and
423 173085), the European Commission (Marie Skłodowska-Curie Horizon 2020 project “COV
424 RESTRICT” grant agreement No. 748627), the Federal Ministry of Education and Research
425 (BMBF; grant RAPID, #01KI1723A) We would like to thank the Next Generation Sequencing
426 Platform of the University of Bern. We would like to thank Biosafety at the Institute for
427 Virology and Immunology (IVI) in Mittelhäusern. We would like to thank for the support of
428 all members of the IVI Bern and the Ruhr-University in Bochum. Finally, we are grateful to
429 Christian Drosten and Marcel Müller for the virus isolates.

430

431 **Main Figure Titles and Legends**

432 **Figure 1: MERS-CoV and HCoV-229E genome-wide CRISPR/Cas9-mediated knockout**
433 **screens.** (A) Native Huh7 cells were transduced with the GeCKOv2 lentiviral genome-wide
434 CRISPR library, ensuring a coverage of ~500 cells per sgRNA. Transduced cells were selected
435 and then infected with either MERS-CoV or HCoV-229E at indicated MOIs and temperatures.
436 Surviving cells were harvested and prepared for deep sequencing. Deconvolution identified
437 both virus-specific and pan-coronavirus host dependency factors (HDFs). (B) Volcano plot
438 showing the log fold change ($\text{Log}_2 \text{ FC}$) and $\log_{10} \text{ p-value}$ for each gene in the MERS-CoV
439 CRISPR screen. Genes with a $\text{FC} \geq 2$ and $\text{p-value} < 0.05$ are highlighted in red. Selected top
440 genes are annotated in the plot, including the MERS-CoV receptor (DPP4) and the 5 most
441 highly ranked genes in the MERS-CoV screen. (C) Volcano plot showing the $\text{Log}_2 \text{ FC}$ and
442 $\log_{10} \text{ p-value}$ for each gene in the HCoV-229E CRISPR screen. Genes with a $\text{FC} \geq 2$ and p-
443 $\text{value} < 0.05$ are highlighted in red. Selected top genes are annotated, including the HCoV-
444 229E receptor (ANPEP) and the 5 most highly ranked genes in the HCoV-229E screen. (D)
445 Pairwise comparison of enriched genes in the HCoV-229E and MERS-CoV CRISPR screens.
446 Dotted lines indicate a $\text{Log}_2 \text{ FC} \geq 2$. Genes with a $\text{Log}_2 \text{ FC} \geq 2$ and $\text{p-value} < 0.05$ in both
447 screens are highlighted in red and annotated. (E) Heatmap comparing the log RRA p-values
448 for selected top virus-specific and common hits in both CoV screens. CoV receptors (DPP4
449 and ANPEP) are demarcated by the blue boxes, MERS-CoV specific genes by the purple
450 boxes, and HCoV-229E specific genes by the green boxes. Common significantly enriched

451 genes, which are also annotated in Figure 2D, are demarcated by the orange boxes. Heatmap
452 clustering was performed using the complete linkage method and Euclidean distance.

453

454 **Figure 2: Enrichment analysis uncovers host biological networks crucial for CoV**
455 **replication.** (A) Enrichment map summarizing major host biological networks co-opted by
456 CoVs during infection. Gene Ontology (GO) enrichment analysis was performed using hits
457 from both MERS-CoV and HCoV-229E CRISPR screens and filtered to contain conserved
458 representative GO terms and genes. Each node represents an individual GO term and nodes
459 that are functionally related cluster together into a larger network. Node size reflects number
460 of significantly enriched genes in the node and color indicates the CoV screen for which the
461 node was significant. A complete list of significant GO terms can be found in Table 2. (B)
462 Heatmaps of individual biological clusters displayed in (A). Heatmaps contain significantly
463 enriched genes from both CoV screens that were associated with significantly enriched GO
464 terms found within the individual biological clusters in (A). Colored panels on the left-hand
465 side of heatmaps show which CoV screen contained specific enriched genes (purple: MERS-
466 CoV, green: HCoV-229E, and orange: enriched in both CoV screens). Colors in each legend
467 represent the log RRA p-values for each gene in each CoV screen. Heatmap clustering was
468 performed using the complete linkage method and Euclidean distance.

469

470 **Figure 3 Top scoring host dependency factors are interactors of the autophagy pathway.**

471 MERS-CoV (A) and HCoV-229E (B) titers upon KO of top scoring HDFs are displayed in
472 Log₁₀ TCID₅₀/ml. SARS-CoV (C) and SARS-CoV-2 (D) titers upon KO of TMEM41B,
473 FKBP8 and MINAR1 are displayed in Log₁₀ TCID₅₀/ml. (E) Western Blot analysis of FKBP8-
474 KO and TMEM41B-KO in Huh7 cells, including beta actin as loading control. MERS-CoV
475 (F), HCoV-229E (G), SARS-CoV (H) and SARS-CoV-2 (I) titers upon reconstruction of
476 TMEM41B, FKBP8 and MINAR1 in respective KO cell lines. Titers are shown relative to
477 Huh7(-ACE2) control in %. Results are displayed as a mean of three with SD, represented by
478 error bars. In A – D, statistical analysis was determined by ordinary one-way ANOVA,
479 Dunnett's multiple comparison test, using Nev 2020 version 9.0. In F, statistical significance
480 was determined by two-tailed unpaired student t-test with Welch's correction. Statistical
481 calculations were performed in GraphPad Prism 8.3.1.

482

483 **Figure 4: LC3-GFP translocation is impaired in TMEM41B, FBKP8 and MINAR1-KO**
484 **cells.** (A) VSV-G-based CoV-spike-mediated pseudo particle entry is shown in RLU in
485 TMEM41B-KO, FKBP8-KO and MINAR1-KO cells normalized to entry in native cells.
486 Results are displayed as a mean of three with SD, represented by error bars. One-way ANOVA
487 statistical analysis was performed in Graph 8.3.1. (B) Quantification of (C) of LC3-GFP
488 translocation shows relative autophagosome formation upon rapamycin treatment and HCoV-
489 229E infection in native Huh7, as well as TMEM41B-KO, FKBP8-KO and MINAR1-KO cells.
490 5 images per condition in 3 independent experiments were acquired using an Evos FL Auto 2
491 imaging system with a 4x air objective, analyzed and quantified in Fiji. Statistical analysis was
492 determined by two-tailed unpaired student t-test in GraphPad Prism 8.3.1. (C)
493 Immunofluorescence staining of LC3-GFP expressing Huh7, TMEM41B-KO, FKBP8-KO and
494 MINAR1-KO cells upon rapamycin treatment and HCoV-229E infection. LC3-GFP is
495 depicted in green, dsRNA is shown in red and DAPI in blue, scale bar is 20 μ m. Representative
496 images of one out of four independent replications are shown. Images were acquired using an
497 EVOS FL Auto 2 imaging system with a 20x air objective and processed using Fiji.

498

499 **Figure 5: CoV HDFs are interactors of the autophagy pathway but do not depend on**
500 **autophagy for replication.** (A) Upon starvation, the mTORC1 complex is blocked and
501 activation of the PI3K complex, as well as the ULK1 complex leads to the initiation of
502 phagophore formation, as an initial step in the autophagy pathway. MERS-CoV and HCoV-
503 229E top scoring CRISPR knockout screen hits FKBP8, MINAR1, TMEM41B and VMP1 are
504 involved in this early pathway. Furthermore, the ATG8 system containing among others LC3,
505 which is recruited by VPM1 or FBKP8 is necessary for targeting cellular cargo to the
506 autophagosome. PPP3R1 is upregulated and initiates TFEB translocalization to the nucleus,
507 where it catalyzes transcription of ATGs. MERS-CoV or conserved host dependency factors
508 (HDFs) are indicated in respective colors. Inhibitor intervention in this pathway is shown in
509 red. MERS-CoV (B), SARS-CoV (C) and SARS-CoV-2 (C) titers in TCID/ml upon treatment
510 of Huh7 (MERS-CoV) and VeroE6 (SARS-CoV and SARS-CoV-2) cell lines with Tacrolimus,
511 Cyclosporin A and Alisporivir at indicated concentrations. SARS-CoV-2 titers in TCID50/ml
512 in primary human nasal epithelial cells at 48 hpi (E-G) and in presence of Cyclosporin A,
513 Alisporivir and Tacrolimus. (H) Immunofluorescence staining of SARS-CoV-2 infected

514 human primary nasal epithelial cells, following DMSO, Tacrolimus, Alisporivir, Cyclosporin
515 A and untreated treatment. dsRNA is shown in red, tight junctions (ZO-I) are shown in white
516 and cilia (β -Tubulin) are shown in light blue. Images were acquired using an EVOS FL Auto
517 2 imaging system with a 40x air objective and processed using Fiji. dsRNA (red), cilia (β -
518 Tubulin, light blue) and the outline of segmented cells (ZO-I, white) of representative images
519 are shown. Scale bar: 20 μ m.

520 **Main tables**

521 **Table 1: MAGeCK results for MERS-CoV and HCoV-229E screens**

522 **Table 2: GO term analysis results**

523 **Supplemental figure titles and legends**

524 **Figure S1: Quality control metrics and enriched gene identification for MERS-CoV and**
525 **HCoV-229E genome-wide CRISPR screens.** (A) Area under the curve (AUC) analysis of
526 MERS-CoV and HCoV-229E CRISPR screens evaluating sgRNA library representation in
527 surviving Huh7 cells from uninfected (Mock) and MERS-CoV (left two panels) or HCoV-
528 229E (right two panels) infected samples. For each CRISPR screen, sgRNA abundance was
529 calculated based on average sgRNA abundance over 3 independent biological replicates. (B)
530 Correlation matrix depicting the Pearson correlation for guide-level normalized read counts
531 among biological replicates and samples from both screens. R1, R2, and R3 represent the
532 biological replicates 1, 2, and 3, respectively. Clustering was performed in pheatmap using
533 correlation as a distance metric (C) Robust Rank Aggregation (RRA) p-value distribution of
534 all genes in the GeCKOv2 library for both MERS-CoV (left) and HCoV-229E (right) CRISPR
535 screens. Genes that met the criteria for significance (RRA p-value ≤ 0.05 and FC ≥ 2) are
536 highlighted in red. (D) Venn diagram illustrating the overlap between significantly enriched
537 genes from both CRISPR screens that were identified via two different RRA-based analysis
538 methods (alpha median and second best). A total of 19 genes were identified by both methods
539 in both MERS-CoV and HCoV-229E CRISPR screens.

540

541 **Figure S2:** (A) Representative GO terms identified using full list of enriched GO terms for
542 MERS-CoV and HCoV-229E screens (Table 2). Representative terms found in both screens

543 are shown in the top panel, whereas virus-specific terms are shown in the bottom panel. BP,
544 CC, and MF represent different GO term categories. (B) Specific GO terms enriched in both
545 CoV screens (individual GO terms, not representative GO terms).

546

547 **Figure S3:** Cnet plots for GO BP terms found in each individual biological cluster shown in
548 Figure 2A (S3A Golgi Vesicle Transport, S3B Autophagy, S3C Catabolic Processes, S3D
549 Dephosphorylation, S3E Immunity, S3F Developmental Processes, S3G Homeostatic
550 Processes). Plots include both GO terms that contain one or more of the 19 common
551 significantly enriched genes found in both CoV screens (as in Figure 2A and 2B) as well as
552 representative GO terms found in both screens that do not contain these genes. Each plot shows
553 the relationship among individual GO terms and genes found in each biological cluster. Larger
554 nodes represent individual GO terms and smaller nodes represent individual gene. Nodes that
555 are functionally related cluster together into a larger network. Node size reflects the number of
556 significantly enriched genes in the node and color indicates the CoV screen for which the node
557 was significant.

558

559 **Figure S4: CRISPR-mediated KO of top scoring host dependency factors impairs CoV
560 replication.** (A) Immunofluorescence staining of MERS-CoV infected of Huh7 cells
561 containing KO of top scoring HDFs. dsRNA is shown in green, DAPI is shown in blue. (B)
562 Immunofluorescence staining of HCoV-229E, SARS-CoV and SARS-CoV-2 infected Huh7
563 cells with TMEM41B, FKBP8 and MINAR1-KO, as well as a stable ACE2 expression. dsRNA
564 is shown in green, DAPI is shown in blue, ACE2 is shown in red. Scale bar is 50 μ m. All
565 images were acquired using an Evos Auto FL2 and processed in Fiji. (D) Relative cytotoxicity
566 of TMEM41-KO, FKBP8-KO and MINAR1-KO is depicted in %. Two tailed unpaired student
567 t-test was used to determine significance in GraphPad Prism 8.3.1. (E) Sanger sequencing of
568 FKBP8-KO, MINAR1-KO and TMEM41B-KO verifies Cas9-mediated double strand break in
569 multiple alleles of the KO cells. PAM sequence is indicated in red, binding site of sgRNA is
570 indicated in blue.

571

572 **Figure S5: Cyclosporin A, Alisporivir and Tacrolimus inhibit CoV infection in a dose-
573 dependent manner in cell lines and primary human nasal epithelial cells at non-cytotoxic**

574 **concentrations.** Immunofluorescence staining of SARS-CoV (A), as well as SARS-CoV-2 (B)
575 infected VeroE6 cells and MERS-CoV (C) infected Huh7 cells following Cyclosporin A,
576 Alisporivir, Tacrolimus treatment at 10 μ M to 40 μ M and Bafilomycin treatment at 10 nM –
577 40 nM, as well as well as DMSO CTRL as respective volumes 24 hrs post infection/inhibitor
578 treatment. dsRNA is shown in green, DAPI is shown in blue. Scale bar is 50 μ m. (D)
579 Immunofluorescence staining of SARS-CoV-2 infected and Cyclosporin A, Alisporivir and
580 Tacrolimus, as well as DMSO treated primary human nasal epithelial cells at 10 μ M to 60 μ M
581 48 hpi/post inhibitor treatment. dsRNA (red), cilia (β -Tubulin, light blue) and the outline of
582 segmented cells (ZO-I, white) are shown. Scale bar is 20 μ m. All images were acquired using
583 an EVOS FL Auto 2 imaging system with a 10x air objective (A, B, C) and a 40x air objective
584 (D) and processed using Fiji. (E-G) Inhibitor treated primary nasal epithelial cell cultures
585 displayed as inhibitor versus normalized response. IC₅₀ value is marked with dotted line and
586 indicated on y axis. Calculations were performed in GraphPad Prism 8.3.1. Cyclosporin A,
587 Alisporivir and Tacrolimus treatment-mediated cytotoxicity in Huh7 cells (H) and VeroE6 cells
588 (I) shown relative to dead cell control. (J) Relative nasal epithelial cell culture viability upon
589 treatment of (50 μ M and) 60 μ M Cyclosporin A, Alisporivir and Tacrolimus normalized to
590 DMSO.

591

592 **Methods**

593 **Lead Contact**

594 Further information and request for resources and reagents should be directed to and will be
595 fulfilled by Volker Thiel (Volker.thiel@vetuisse.unibe.ch). Unique reagents generated in this
596 study will be made available on request.

597 **Materials Availability**

598 Unique reagents generated in this study will be made available on request. This applies to
599 pCaggs-MINAR1mut, pCaggs-FKBP8mut, with silent mutations in Cas9 binding PAM region,
600 as well as pCaggs-TMEM41Bmut. Payment/MTA may be required.

601 **Data and Code Availability**

602 Sequencing data from CRISPR/Cas9 knockout screens will be made available in a public
603 repository upon publication.

604 **Experimental Model and Subject Details**

605 **Cell Lines**

606 Human hepatoma (Huh7) cell line (kindly provided by Volker Lohmann) and African green
607 monkey kidney (VeroE6) cell line (kindly provided by Doreen Muth, Marcel Müller and
608 Christian Drosten, Charité, Berlin, Germany) and 293LTV cells (purchased from Cell Biolabs
609 Inc.) were propagated in Dulbecco's modified Eagle Medium (DMEM), supplemented with
610 10% heat inactivated fetal bovine serum, 1% nonessential amino acids, 100 µg/mL of
611 streptomycin and 100 IU/mL of penicillin, and 15 mMol of HEPES. Cells were maintained at
612 37°C in a humidified incubator with 5% CO₂. Profiling of cell lines was performed using
613 highly-polymorphic short tandem repeat loci (STRs) and amplification using PowerPlex 16 HS
614 System (Promega), followed by fragment analysis on an ABI3730xl (Life Technologies) and
615 analysis with GeneMarker HID software (Softgenetics) by Mircosynth. Huh7 cell line was
616 confirmed to be of human origin without contamination, matching the reference DNA of the
617 cell line Huh7 (Microsynth reference, Mic_152021) with 96.7 % and the DNA profile of Huh7
618 (Cellosaurus, RRID:CVCL_0336) with 90 %. 293 LTV cell line was confirmed to be of human
619 origin without contamination, matching the reference DNA of the cell line HEK293T (ATCC®
620 CRL-3216™) with 93.8 % and the DNA profile of HEK293 with 86.7 % (Cellosaurus,
621 RRID:CVCL_0045). Matching at ≥ 80 % of alleles across eight reference loci are said to be
622 related. VeroE6 cell line was identified to be 100% identical with Chlorocebus sabaeus, upon
623 amplification and blast of mitochondrial cytochrome b gene according to DM Irwin *et al.*⁶⁹,
624 using primers:

625

L14724 CGAAGCTTGTATGAAAAACCATCGTTG

H15149 AACTGCAGCCCTCAGAATGATTTGTCCTCA

626

627 **Primary Cell Culture**

628 Primary human nasal epithelium cell cultures: MucilAir™ were purchased from epithelix.
629 Cultures are reconstituted using human primary cells from healthy nasal region from 14 donors
630 and cultured at an air-liquid interface in ready-to-use MucilAir™ Culture Medium purchased
631 from epithelix is serum free, contains phenol red and is supplemented with
632 penicillin/streptomycin. The apical side was washed with HBBS prior to infection. The
633 anonymity of the donors prevents from the determination of the cells' sex.

634

635 **Method Details**

636 **Genome-wide CRISPR/Cas9-mediated Knockout Screens**

637 The vector lentiviral human GeCKOv2 library A⁷⁰, containing 3 sgRNAs per gene, was
638 transfected into 293 LTV cells for lentivirus production using Lipofectamine 2000 (Thermo
639 Fisher Scientific). The supernatant was collected 48 hours post transfection and clarified by
640 centrifugation (3500 *rcf*, 15 min). Huh7 cells were subsequently transduced with GeCKO
641 lentiviruses at a MOI of 0.3 and selected for with puromycin at a concentration of 0.25 µg/ml
642 for 7 days. To ensure sufficient sgRNA coverage, 60 Mio selected Huh7 cells were infected
643 with either HCoV-229E (33°C, MOI 0.1) or MERS-CoV (37°C, MOI 0.05) and then incubated
644 until the non-transduced control cells died. Non-transduced Huh7 cells were infected with
645 respective viruses to control for complete cytopathic effect. Both screens were performed in 3
646 independent biological replicates. Surviving cells were harvested approximately two weeks
647 post infection and genomic DNA was isolated using the Macherey Nagel NucleoSpin Tissue
648 Kit according to the manufacturer's instructions. All sgRNAs were amplified from genomic
649 DNA using a two-step PCR protocol, enabling multiplexing and the addition of specific
650 barcodes for Illumina sequencing on a NovaSeq using 60 Mio reads and paired end reads 150.
651 Illumina Adapter Primers⁷¹:

652

PCR1 fwd
(F_PCR1_CRSPrV2_1-7)
PCR1 rev
(R_PCR1_CRSPrV2)
PCR2 fwd
(F_PCR2_CRSPrV2)
PCR2 rev
(R_PCR2_CRSPrV2_1)

ACACTCTTCCCTACACGACGCTTCCGATCTXXXXXXCTTGTGAAAGGACGAAACACCGG
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTGACGGGCACCGGAGCCAATTCC
AATGATAACGGCGACCACCGAGATCTACACTCTTCCCTACAGACGCTTCCGATCT
CAAGCAGAAGACGGCATACTGAGATATCACGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

653

654 PCR products were then purified using Macherey Nagel PCR Clean Up pooled, and sequenced
655 on the Illumina NovaSeq 6000 at the Next Generation Sequencing (NGS) facility at the
656 University of Bern. The input library was also sequenced using the Illumina NGS platform to
657 ensure full representation of sgRNAs in the GeCKO library.

658

659 **Computational Analysis of Genome-wide CRISPR/Cas9-mediated Knockout Screens**

660 Demultiplexed FASTQ files were trimmed and aligned to the reference sequences in the
661 sgRNA library file. sgRNA abundance was quantified using the ‘count’ command from the
662 MAGeCK pipeline and counts were compared between uninfected and infected samples to
663 determine positive enrichment scores for each gene. MAGeCK testing was performed using
664 paired analysis with the ‘alpha mean’ and ‘second best’ methods. Genes with a Robust Rank
665 Aggregation (RRA) p-value of ≤ 0.05 and a log fold change (LFC) of ≥ 2 were considered
666 significantly enriched. For both the MERS-CoV and HCoV-229E screens, data from three
667 independent biological replicates was used as the input for data analysis. The gene ontology
668 (GO) enrichment was performed on significantly enriched genes from each CoV screen using
669 the ‘compareCluster’ function in clusterProfiler with the ‘fun’ option set to “enrichGO” and a
670 formula of “Entrez ~ Screen”. To reduce GO term redundancy and identify a representative
671 GO term for groups of similar terms, the rrvgo package was used in R with the similarity
672 threshold set to 0.75. Finally, the plot in Figure 2A was created using the ‘emapplot_cluster’
673 function in the enrichplot package with a filtered version of the compareCluster enrichment
674 result (filtered to include representative GO terms found in both CoV screens that contained
675 one or more of the 19 common significantly enriched genes). All heatmaps were generated
676 using the pheatmap package in R with clustering distance set to “Euclidean” and using the
677 complete linkage clustering method. Volcano plots and venn diagrams were created using the
678 EnhancedVolcano and VennDiagram packages, respectively.

679 **Characterization and Analysis of Top Scoring Host Dependency Factors**

680 **ACE2 Expression, FKBP8, TMEM41B and MINAR1 KO in Huh7 Cells**

681 pSCRPSY-Tag-RFP-ACE2 (kindly provided by John Schoggins) was used for lentivirus
682 production as described above and Huh7 cells were transduced and selected for using 0.5 ug/ml
683 Blasticidin. ACE2 expression was confirmed via RFP expression. sgRNAs with highest scores

684 in CRISPR-KO screen were ordered as forward and reverse oligos for creation of stable knock-
685 out cell lines.

HFNA1_FWD	GTCGTCTCCCACCGAGACACGACCTCCGTGACGGTTCGAGACGTG
ATP9B_FWD	GTCGTCTCCCACCGAAGAGTTCAGACATACAAGTGTTCGAGACGTG
CDH7_FWD	GTCGTCTCCCACCGGGTCCCGGACCAAGCGCAGCGTTCGAGACGTG
FAM110B_FWD	GTCGTCTCCCACCGTCCACGTCGCGTCCACTGTTCGAGACGTG
GUCY2C_FWD	GTCGTCTCCCACCGGTGAAGGCCTCGACCTACTCGTTCGAGACGTG
KIAA1024_FWD	GTCGTCTCCCACCGTGCACGGAATCGGGGACAGTTCGAGACGTG
MAP3K11_FWD	GTCGTCTCCCACCGCTTCGACGAGCTCGAGCCAGTTCGAGACGTG
OR9K2_FWD	GTCGTCTCCCACCGCATTATTATGACTGATCCTGTTCGAGACGTG
PCTP_FWD	GTCGTCTCCCACCGGATCGAGAGTGAAGGCAAGAGTTCGAGACGTG
C7orf50_FWD	GTCGTCTCCCACCGGAGGGCCAGCGCATCCGACGTTCGAGACGTG
DIO1_FWD	GTCGTCTCCCACCGCTGCCTGCAAGCGATCTGAGTTCGAGACGTG
ECI2_FWD	GTCGTCTCCCACCGCCTGTAACATGCCAAACCCTTCGAGACGTG
ELFN2_FWD	GTCGTCTCCCACCGGTGCCGTGCGACTGCCGTTCGAGACGTG
GLCCI1_FWD	GTCGTCTCCCACCGAATAAGGCAACCTCTTGTGAGACGTG
HOXB6_FWD	GTCGTCTCCCACCGAGACATTACCCCGCCCTAGTTCGAGACGTG
KAT7_FWD	GTCGTCTCCCACCGGACAACTCACCATGTGCCGGTTCGAGACGTG
NOM1_FWD	GTCGTCTCCCACCGGGAGTTCTGTCAGCGACTTGTGTTCGAGACGTG
PIGR_FWD	GTCGTCTCCCACCGGCAGGAAGGCTCGCTATCGTTCGAGACGTG
TIGD1_FWD	GTCGTCTCCCACCGTATACTTACTCACTAAAGCTGGTTTCGAGACGTG
TMEM41B_FWD	GTCGTCTCCCACCGTATACTTACTCACTAAAGCTGGTTTCGAGACGTG
ART1_FWD	GTCGTCTCCCACCGGGGCCACCCCATGCTCATCGGTTTCGAGACGTG
CD1C_FWD	GTCGTCTCCCACCGCTGAGTAATCTTGACTTGCAGTTCGAGACGTG
FKBP8_FWD	GTCGTCTCCCACCGCGTACATCTGAGACGTCGCGTTTCGAGACGTG
GIMAP4_FWD	GTCGTCTCCCACCGGGCACATTGGCAGCCCCAATAGTTCGAGACGTG
WNT5A_FWD	GTCGTCTCCCACCGAGATATCCGACATCGAGTTCGAGACGTG
ZNF480_FWD	GTCGTCTCCCACCGTCACTTACATCTGCTGAAACGTTTCGAGACGTG
KRTAP13-4_FWD	GTCGTCTCCCACCGAGAAATCTGCTACCGCCCGTTTCGAGACGTG
HFNA1_REV	CACGTCTCGAAACCGTACCGAGGTGCCGTCTCGGTGGAGACGAC
ATP9B_REV	CACGTCTCGAAACACTTGTATGTCGAACCTTCGGTGGAGACGAC
CDH7_REV	CACGTCTCGAAACGCTGCGCTTGGTCCGGGACCCGGTGGAGACGAC
FAM110B_REV	CACGTCTCGAAACAGTGGACGCGGACGTGGAGACGGTGGAGACGAC
GUCY2C_REV	CACGTCTCGAAACAGTGGAGTAGGTGAGGCTTCACCGGTGGAGACGAC
KIAA1024_REV	CACGTCTCGAAACTGGTCTCGCAGCTCGTGAAGCGGTGGAGACGAC
MAP3K11_REV	CACGTCTCGAAACAGGATCAGTCATAATAATGGCGTGGAGACGAC
OR9K2_REV	CACGTCTCGAAACTCTTGGCGTACTCTGATCCGGTGGAGACGAC
PCTP_REV	CACGTCTCGAAACGTCGGATGCCTGGGCCCTCCGGTGGAGACGAC
C7orf50_REV	CACGTCTCGAAACTCAGGATCGCCTGCAGGCAGCGGTGGAGACGAC
DIO1_REV	CACGTCTCGAAACACTGGTCTCGCAGCTCGTGAAGCGGTGGAGACGAC
ECI2_REV	CACGTCTCGAAACAGGATCAGTCATAATAATGGCGTGGAGACGAC
ELFN2_REV	CACGTCTCGAAACAGCAGTCGGCACGCACGGCACCGTGGAGACGAC
GLCCI1_REV	CACGTCTCGAAACAAAGAGGAGGTTCGCCTTATTGGTGGAGACGAC
HOXB6_REV	CACGTCTCGAAACTAGGGCGCGGGTAATGTCCTGGTGGAGACGAC
KAT7_REV	CACGTCTCGAAACCCGGCACATGGTAGGTGAGTTCCGGTGGAGACGAC
NOM1_REV	CACGTCTCGAAACAAAGTCGCGTGCAGAACCTCCGGTGGAGACGAC
PIGR_REV	CACGTCTCGAAACAGGATAGGCAGGCCTCTGCCGGTGGAGACGAC
TIGD1_REV	CACGTCTCGAAACCCAGCTTGTAGTGAAGTATAACGGTGGAGACGAC
TMEM41B_REV	CACGTCTCGAAACCCAGCTTGTAGTGAAGTATAACGGTGGAGACGAC
ART1_REV	CACGTCTCGAAACCCAGTGGCATGGGTGGCCCGGTGGAGACGAC
CD1C_REV	CACGTCTCGAAACCGCAGCTCTGCAGATGTAACGGTGGAGACGAC
FKBP8_REV	CACGTCTCGAAACCGCAGCTCGCAGATGTAACGGTGGAGACGAC
GIMAP4_REV	CACGTCTCGAAACTATTGGGCTGCCATTGTCGCCGGTGGAGACGAC
WNT5A_REV	CACGTCTCGAAACTCGATGTCGAATTGATACTCGGTGGAGACGAC
ZNF480_REV	CACGTCTCGAAACGTTCAGACAGATGTAAGTGACGGTGGAGACGAC
KRTAP13-4_REV	CACGTCTCGAAACGGGCGGTAGCAGGATTCTCGGTGGAGACGAC

686

687 Oligonucleotides were denatured for 5 min at 99°C in TE buffer and then slowly adapted to
688 room temperature and assembled with pLentiCRISPRv2 vector using Golden Gate cloning.

689 Plasmids were transformed in Stellar cells (Takara) and prepped for sanger sequencing and
690 lentivirus production. ACE2-expressing Huh7 cells were transduced with pLentiCRISPRv2
691 containing sgRNAs for top scoring hits and selected with 0.25 ug/ml puromycin. Bulk knock-
692 out of FKBP8, TMEM41B and MINAR1 was verified using Sanger Sequencing and Western
693 Blot.

694 **Western Blot**

695 500.000 cells were lysed in M-PER Mammalian Protein Extraction Reagent (Thermo Scientific
696 78501) containing 1x protease inhibitor (cOmplete Tablets, Mini EDTA-free, EASYpack,
697 Roche, 04693159001), mixing at 600 rpm for 10 min at RT in a ThermoMixer. Lysed cells
698 were denatured with SDS at 95°C for 5 min and separated on an 10% SDS PAGE (SurePAGE
699 Bis-Tris, 10x8, GenScript, M00666) at 200V for 30 min. eBlot L1 –Fast Wet Protein Transfer
700 System (GenScript) was used for blotting and proteins were stained using the following
701 antibodies: (Sigma-Aldrich AV46863), TMEM41B (Sigma-Aldrich HPA014946), MINAR1
702 (Sigma-Aldrich HPA011545), β-Actin-HRP (Sigma, A3854), as well as donkey anti rabbit-
703 HRP (JacksonImmunoResearch, 711-035-152). Proteins were visualized using WesternBright
704 ECL HRP substrate (Advansta, K-12045-D20) and the Fusion FX (Vilber) imaging system.

705 **VSV Pseudotype Particles Bearing CoV Spike Proteins**

706 Approximately 6×10^5 293LTV cells were seeded into a six-well plate and transfected with
707 expression plasmids encoding either VSV-G surface protein (positive control, VSV-G; GenBank
708 accession number NC_001560), HCoV-229E spike (pCAGGS-229E S; GenBank accession
709 number X16816), MERS-CoV spike (pCAGGS-MERS S; GenBank accession number
710 JX869059, with a silent point mutation (C4035A, removing internal XhoI)), SARS-
711 CoV spike (pCAGGS-SARS S; GenBank accession number: AY291315.1, with two silent
712 mutations (T2568G and T3327C)) or SARS-CoV-2 spike (generated as described²⁸) using
713 the transfection reagent Lipofectamine 2000 as described previously²⁸. At 20 hours post
714 transfection, cells were infected with VSV-G-trans-complemented VSV*ΔG(FLuc) (MOI = 5)
715 at 37 °C. After inoculating the cells with virus for 30 min, they were washed with PBS and
716 incubated for 24 hours with DMEM medium containing a monoclonal neutralizing monoclonal
717 antibody directed to the VSV-G protein (antibody I1, ATCC, 1:100). The cell culture
718 supernatant was harvested and cleared by centrifugation (3,000g for 10 min) and used to
719 inoculate Huh7 native and knockout cell lines for 24 hours, prior to measurement of luciferase

720 using Bright-Glo Luciferase Assay System (Promega, E2620) and using a plate luminometer
721 (EnSpire 2300 Multilabel reader; Perkin Elmer).

722 **Viruses**

723 HCoV-229E⁶⁶ was propagated on Huh7 cells. MERS-CoV strain EMC⁶⁷ was propagated in
724 VeroB4 cells. SARS-CoV strain Frankfurt-1⁶⁸ and SARS-CoV-2 (SARS-CoV-2/München-
725 1.1/2020/929, kindly provided by Daniela Niemeyer, Marcel Müller and Christian Drosten)
726 were propagated on VeroE6 cells.

727 **Virus Infection**

728 Huh7 cells were plated to 15.000 cells and VeroE6 cells were plated to 20.000 per 96 well 24
729 hours prior to infection. Cells were infected with HCoV-229E (33°C), MERS-CoV (37°C),
730 SARS-CoV (37°C) and SARS-CoV-2 (37°C) at an MOI of 0.01 (MOI 0.1 for HCoV-229E)
731 for 2 hours. The virus inoculum was removed and cells were washed 3 times with PBS. Primary
732 human nasal epithelial cell cultures were infected with SARS-CoV-2 at an MOI of 0.1 at 37°C
733 for 1 hour from the apical side. Inoculum was removed and cell 3 times with HBBS. In case of
734 inhibitor treatment, Tacrolimus, Cyclosporin A or Alisporivir were added to the cell
735 supernatant/basolateral medium directly after the removal of the inoculum and the washing of
736 the cells at following concentrations: 0 uM, 10 uM, 20 uM, 30 uM, 40 uM, 50 uM, 60 uM.
737 DMSO solvent control was added at respective volumes. The inhibitor was not removed during
738 the course of infection. At 24-48 hours post infection the cells/supernatant were/was harvested
739 and analyzed using titration, immunofluorescence staining or quantitative RT-PCR.

740 **Virus Titration**

741 In order to determine the 50% tissue culture infectious dose (TCID₅₀) per milliliter (apical)
742 supernatant was serially diluted at indicated hours post infection, Huh7 (MERS-CoV, HCoV-
743 229E) VeroE6 cells (SARS-CoV(-2)) were inoculated with serial dilution and TCID₅₀ per
744 milliliter was visualized using Crystal Violet and calculated by the Spearman-Kärber algorithm
745 after 72 hrs -120 hrs as described⁷².

746 **Quantitative RT-PCR**

747 Virus replication was analyzed via qRT PCR, viral RNA was isolated from the supernatant at
748 indicated hours post infection using the NucleoMag Vet Kit (Macherey Nagel) and a Kingfisher
749 Flex Purification System (Thermo Fisher Scientific, Darmstadt, Germany) according to

750 manufacturer's guidelines. Extracted RNA was amplified using TagMan™ Fast Virus 1-Step
751 Master Mix (Thermo Fisher Scientific). Following primers were used for detection of MERS-
752 CoV⁷³:

forward	5'-GCAACGCGCGATTCAAGTT-3'
reverse	5'-GCCTCTACACGGGACCCATA-3'
probe	5'-FAM-CTCTTACATAATCGCCCCGAGCTCG-BHQ1--3'

753

754 SARS-CoV and SARS-CoV-2:

forward	5'-ACAGGTACGTTAATAGTTAATAGCGTACTTCT-3'
reverse	5'-ATATTGCAGCAGTACGCACACA-3'
probe	5'-FAM-ATCCTTACTGCGCTTCGA-BHQ1-3'

755

756 targeting the Envelope gene of SARS-CoV-2 (MN908947.3) The primers were adapted from
757 Corman and colleagues⁷⁴. A serial dilution of *in vitro* transcribed MERS-CoV RNA (kindly
758 provided by Marcel Müller and Christian Drosten)⁷³ and RdRp-E-N RNA mixture derived from
759 a SARS-CoV-2 synthetic construct (MT108784) was included to determine the genome copy
760 number⁷⁵. Five *in vitro* transcribed (IVT) RNA preparations were produced from five different
761 DNA fragments to cover the regions used for real-time RT-qPCR methods for the detection of
762 SARS-CoV-2 and SARS-CoV viral RNA. Measurements and analysis were performed with
763 the Applied Biosystems™ 7500 Fast Dx Real-Time PCR Systems and associated software
764 (Applied Biosystems, Foster City, CA, USA).

765 Immunofluorescence Staining

766 For immunofluorescence staining cells were fixated with 4% formalin. Fixated cells were
767 permeabilized in PBS supplemented with 50 mM NH₄Cl, 0.1% (w/v) Saponin and 2% (w/v)
768 Bovine Serum Albumin and stained with a mouse monoclonal antibody against dsRNA
769 (SCICONS, clone J2). Alexa-Fluor 488-labeled donkey-anti mouse IgG (H+L)
770 (JacksonImmuno, 715-545-150) was used as a secondary antibody. Alexa-Fluor® 647-labelled
771 rabbit anti-beta-tubulin IV (Cell Signalling Technology, 9F3) and Alexa-Fluor® 594-labelled
772 mouse anti ZOI-1 (Thermo Fisher Scientific, 1A12) were used to visualize cilia and tight
773 junctions in nasal epithelial cell cultures. Cells were counterstained using 4',6-diamidino-2-
774 phenylindole (DAPI, Thermo Fisher Scientific) to visualize the nuclei. Images were acquired
775 using an EVOS FL Auto 2 Imaging System, using 10x, 20x and 40x air objectives. Brightness
776 and contrast were adjusted identically to the corresponding controls using the Fiji software
777 packages⁷⁶ and figures were assembled using FigureJ⁷⁷. Segmentation of individual cells was

778 based on the ZO-1 staining and performed using CellPose⁷⁸. Outlines were imported and
779 overlayed in Fiji.

780 **Cytotox and Cellviability Assay**

781 Cytotoxicity in Huh7 knock-out cell lines and upon inhibitor treatment of Huh7 and VeroE6
782 cell lines was monitored using CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega,
783 G1780). Relative cytotoxicity compared to lysed control cells was analyzed. Cell viability of
784 primary human nasal epithelial cells was analyzed during inhibitor only treatment at highest
785 concentrations (50 uM, 60 uM) using the CellTiter-Glo® 2.0 Cell Viability Assay (Promega,
786 G9241) and related to DMSO treated cells.

787 **LC3-GFP Autophagy**

788 Autophagosome formation was assessed in native Huh7 and Huh7-KO cell lines. Huh7,
789 TMEM41B-KO, MINAR1-KO and FKBP8-KO cells were seeded in a 96 well formation (1.5
790 Mio cells per plate). LC3-GFP was transfected using Lipofectamine 2000 for 24 hrs. After 24
791 hrs cells were treated with 100 nM Rapamycin (Sigma Aldrich, S-015) or an equal volume of
792 DMSO for 6 hrs and GFP was analyzed using an EVOS FL Auto 2 Imaging System, using 10x
793 and processed as mentioned above. Alternatively, transfected cells were infected with HCoV-
794 229E at a MOI 0.1 for 24 hrs and GFP expression was analyzed. Images were quantified for
795 autophagosome formation by manual counting using 5 images per condition and three
796 replicates in Fiji. Autophagosome formation was normalized to number of transfected cells.

797 **Quantification and Statistical Analysis**

798 **Genome-wide CRISPR/Cas9-mediated KO Screen**

799 For the CRISPR screens, positive enrichment scores, RRA p-values, log fold change (LFC),
800 and false discovery rates were calculated using the MAGeCK algorithm. In Figure S1B, the
801 mean normalized sgRNA counts for each biological replicate were used as input to calculate
802 pairwise correlation. The correlation matrix was generated using the ‘cor’ function in R with
803 the Pearson correlation method and visualized using pheatmap with the clustering performed
804 using correlation as distance metrics.

805 **Characterization and Analyses of Top Scoring Host Dependency Factors**

806 Significant difference in data was tested using Nev 2020, version 9.0 or GraphPad Prism
807 version 8.3.1 for Windows (GraphPad). Please refer to figure captions for details regarding the
808 statistical tests applied. *P* values < 0.05 were considered significant.

809 **Additional Resources**

810 No additional resources have been created during this study.

811 **References**

- 812 1. Hamre, D. & Procknow, J. J. A New Virus Isolated from the Human Respiratory Tract.
813 *Proc. Soc. Exp. Biol. Med.* (1966). doi:10.3181/00379727-121-30734
- 814 2. McIntosh, K., Dees, J. H., Becker, W. B., Kapikian, A. Z. & Chanock, R. M. Recovery
815 in tracheal organ cultures of novel viruses from patients with respiratory disease. *Proc.*
816 *Natl. Acad. Sci.* **57**, 933–940 (1967).
- 817 3. Van Der Hoek, L. *et al.* Identification of a new human coronavirus. *Nat. Med.* (2004).
818 doi:10.1038/nm1024
- 819 4. Woo, P. C. Y. *et al.* Characterization and Complete Genome Sequence of a Novel
820 Coronavirus, Coronavirus HKU1, from Patients with Pneumonia. *J. Virol.* (2005).
821 doi:10.1128/jvi.79.2.884-895.2005
- 822 5. Drosten, C. *et al.* Identification of a novel coronavirus in patients with severe acute
823 respiratory syndrome. *N. Engl. J. Med.* **348**, 1967–1976 (2003).
- 824 6. Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. M. E. & Fouchier,
825 R. A. M. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia.
826 *N. Engl. J. Med.* **367**, 1814–1820 (2012).
- 827 7. Corman, V. M. *et al.* Link of a ubiquitous human coronavirus to dromedary camels.
828 *Proc. Natl. Acad. Sci.* **113**, 9864–9869 (2016).
- 829 8. Drosten, C. *et al.* An observational, laboratory-based study of middle east
830 respiratory syndrome coronavirus in Jeddah and Riyadh, Kingdom of Saudi Arabia,
831 2014. *Clin. Infect. Dis.* (2015). doi:10.1093/cid/ciu812
- 832 9. Raj, V. S. *et al.* Dipeptidyl peptidase 4 is a functional receptor for the emerging human
833 coronavirus-EMC. *Nature* **495**, 251–254 (2013).
- 834 10. Yeager, C. L. *et al.* Human aminopeptidase N is a receptor for human coronavirus 229E.
835 *Nature* (1992). doi:10.1038/357420a0
- 836 11. Li, W. *et al.* Angiotensin-converting enzyme 2 is a functional receptor for the SARS
837 coronavirus. *Nature* (2003). doi:10.1038/nature02145
- 838 12. Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor
839 usage for SARS-CoV-2 and other lineage B betacoronaviruses. *Nat. Microbiol.* (2020).

- 840 doi:10.1038/s41564-020-0688-y

841 13. Hoffmann, M. *et al.* SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is
842 Blocked by a Clinically Proven Protease Inhibitor. *Cell* (2020).
843 doi:10.1016/j.cell.2020.02.052

844 14. Knoops, K. *et al.* SARS-coronavirus replication is supported by a reticulovesicular
845 network of modified endoplasmic reticulum. *PLoS Biol.* (2008).
846 doi:10.1371/journal.pbio.0060226

847 15. Ulasli, M., Verheij, M. H., de Haan, C. A. M. & Reggiori, F. Qualitative and
848 quantitative ultrastructural analysis of the membrane rearrangements induced by
849 coronavirus. *Cell. Microbiol.* (2010). doi:10.1111/j.1462-5822.2010.01437.x

850 16. Oudshoorn, D. *et al.* Expression and cleavage of middle east respiratory syndrome
851 coronavirus nsp3-4 polyprotein induce the formation of double-membrane vesicles that
852 mimic those associated with coronaviral RNA replication. *MBio* (2017).
853 doi:10.1128/mBio.01658-17

854 17. Klumperman, J. *et al.* Coronavirus M proteins accumulate in the Golgi complex beyond
855 the site of virion budding. *J. Virol.* (1994). doi:10.1128/jvi.68.10.6523-6534.1994

856 18. Ghosh, S. *et al.* β -Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic
857 Secretory Pathway. *Cell* (2020). doi:10.1016/j.cell.2020.10.039

858 19. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries
859 for CRISPR screening. *Nature Methods* (2014). doi:10.1038/nmeth.3047

860 20. Schneider, W. M. *et al.* Genome-scale identification of SARS-CoV-2 and pan-
861 coronavirus host factor networks. *bioRxiv Prepr. Serv. Biol.* (2020).
862 doi:10.1101/2020.10.07.326462

863 21. Wang, R. *et al.* Genetic Screens Identify Host Factors for SARS-CoV-2 and Common
864 Cold Coronaviruses. *Cell* (2020). doi:10.1016/j.cell.2020.12.004

865 22. Hoffmann, H. H. *et al.* Functional interrogation of a SARS-CoV-2 host protein
866 interactome identifies unique and shared coronavirus host factors. *Cell Host Microbe*
867 (2020). doi:10.1016/j.chom.2020.12.009

868 23. Li, W. *et al.* MAGeCK enables robust identification of essential genes from genome-

- 869 scale CRISPR/Cas9 knockout screens. *Genome Biol.* (2014). doi:10.1186/s13059-014-
870 0554-4
- 871 24. Raj, V. S. *et al.* Dipeptidyl peptidase 4 is a functional receptor for the emerging human
872 coronavirus-EMC. *Nature* (2013). doi:10.1038/nature12005
- 873 25. Morita, K. *et al.* Genome-wide CRISPR screen identifies TMEM41B as a gene required
874 for autophagosome formation. *J. Cell Biol.* (2018). doi:10.1083/jcb.201804132
- 875 26. Moretti, F. *et al.* TMEM 41B is a novel regulator of autophagy and lipid mobilization .
876 *EMBO Rep.* (2018). doi:10.15252/embr.201845889
- 877 27. Shoemaker, C. J. *et al.* CRISPR screening using an expanded toolkit of autophagy
878 reporters identifies TMEM41B as a novel autophagy factor. *PLoS Biol.* (2019).
879 doi:10.1371/journal.pbio.2007044
- 880 28. Pfaender, S. *et al.* LY6E impairs coronavirus fusion and confers immune control of viral
881 disease. *Nat. Microbiol.* (2020). doi:10.1038/s41564-020-0769-y
- 882 29. Kabeya, Y. *et al.* LC3, a mammalian homologue of yeast Apg8p, is localized in
883 autophagosome membranes after processing. *EMBO J.* (2000).
884 doi:10.1093/emboj/19.21.5720
- 885 30. Inoue, K. *et al.* Combined interferon α 2b and cyclosporin A in the treatment of chronic
886 hepatitis C: Controlled trial. *J. Gastroenterol.* (2003). doi:10.1007/s00535-002-1104-5
- 887 31. Liu, J. *et al.* Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-
888 FK506 complexes. *Cell* (1991). doi:10.1016/0092-8674(91)90124-H
- 889 32. V'kovski, P., Kratzel, A., Steiner, S., Stalder, H. & Thiel, V. Coronavirus biology and
890 replication: implications for SARS-CoV-2. *Nature Reviews Microbiology* (2020).
891 doi:10.1038/s41579-020-00468-6
- 892 33. V'kovski, P. *et al.* Determination of host proteins composing the microenvironment of
893 coronavirus replicase complexes by proximity-labeling. *eLife* (2019).
894 doi:10.7554/eLife.42037
- 895 34. Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A. & Ng, L. F. P. The trinity of COVID-
896 19: immunity, inflammation and intervention. *Nature Reviews Immunology* (2020).
897 doi:10.1038/s41577-020-0311-8

- 898 35. Bouhaddou, M. *et al.* The Global Phosphorylation Landscape of SARS-CoV-2
899 Infection. *Cell* (2020). doi:10.1016/j.cell.2020.06.034
- 900 36. Stukalov, A. *et al.* Multi-level proteomics reveals host-perturbation strategies of SARS-
901 CoV-2 and SARS-CoV. *bioRxiv* (2020). doi:10.1101/2020.06.17.156455
- 902 37. Wang, P. G., Tang, D. J., Hua, Z., Wang, Z. & An, J. Sunitinib reduces the infection of
903 SARS-CoV, MERS-CoV and SARS-CoV-2 partially by inhibiting AP2M1
904 phosphorylation. *Cell Discovery* (2020). doi:10.1038/s41421-020-00217-2
- 905 38. Gordon, D. E. *et al.* A SARS-CoV-2 protein interaction map reveals targets for drug
906 repurposing. *Nature* (2020). doi:10.1038/s41586-020-2286-9
- 907 39. Zang, R. *et al.* Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by
908 blocking membrane fusion. *Proc. Natl. Acad. Sci. U. S. A.* (2020).
909 doi:10.1073/pnas.2012197117
- 910 40. Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy.
911 *Nature Reviews Molecular Cell Biology* (2018). doi:10.1038/s41580-018-0003-4
- 912 41. Molejon, M. I., Ropolo, A., Re, A. Lo, Boggio, V. & Vaccaro, M. I. The VMP1-Beclin
913 1 interaction regulates autophagy induction. *Sci. Rep.* (2013). doi:10.1038/srep01055
- 914 42. Bai, X. *et al.* Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38.
915 *Science* (80-.). (2007). doi:10.1126/science.1147379
- 916 43. Bhujabal, Z. *et al.* FKBP8 recruits LC3A to mediate Parkin-independent mitophagy.
917 *EMBO Rep.* (2017). doi:10.15252/embr.201643147
- 918 44. Saita, S., Shirane, M. & Nakayama, K. I. Selective escape of proteins from the
919 mitochondria during mitophagy. *Nat. Commun.* (2013). doi:10.1038/ncomms2400
- 920 45. Zhang, H. *et al.* UBTOR/KIAA1024 regulates neurite outgrowth and neoplasia through
921 mTOR signaling. *PLoS Genet.* (2018). doi:10.1371/journal.pgen.1007583
- 922 46. Medina, D. L. *et al.* Lysosomal calcium signalling regulates autophagy through
923 calcineurin and TFEB. *Nat. Cell Biol.* (2015). doi:10.1038/ncb3114
- 924 47. Reggiori, F. *et al.* Coronaviruses hijack the LC3-I-positive EDEMosomes, ER-derived
925 vesicles exporting short-lived ERAD regulators, for replication. *Cell Host Microbe*
926 (2010). doi:10.1016/j.chom.2010.05.013

- 927 48. Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K. & Baker, S. C. RNA Replication
928 of Mouse Hepatitis Virus Takes Place at Double-Membrane Vesicles. *J. Virol.* (2002).
929 doi:10.1128/jvi.76.8.3697-3708.2002
- 930 49. Prentice, E., Jerome, W. G., Yoshimori, T., Mizushima, N. & Denison, M. R.
931 Coronavirus Replication Complex Formation Utilizes Components of Cellular
932 Autophagy. *J. Biol. Chem.* (2004). doi:10.1074/jbc.M306124200
- 933 50. Zhao, Z. *et al.* Coronavirus replication does not require the autophagy gene ATG5.
934 *Autophagy* (2007). doi:10.4161/auto.4782
- 935 51. Prentice, E., McAuliffe, J., Lu, X., Subbarao, K. & Denison, M. R. Identification and
936 Characterization of Severe Acute Respiratory Syndrome Coronavirus Replicase
937 Proteins. *J. Virol.* (2004). doi:10.1128/jvi.78.18.9977-9986.2004
- 938 52. Snijder, E. J. *et al.* Ultrastructure and Origin of Membrane Vesicles Associated with the
939 Severe Acute Respiratory Syndrome Coronavirus Replication Complex. *J. Virol.*
940 (2006). doi:10.1128/jvi.02501-05
- 941 53. Monastyrskaya, I. *et al.* An autophagy-independent role for LC3 in equine arteritis virus
942 replication. *Autophagy* (2013). doi:10.4161/auto.22743
- 943 54. Bhujabal, Z. *FKBP8 and the autophagy-inducing Class-III PI3K Complex Roles of LIR*
944 *dependent interactions.* (2017).
- 945 55. Gassen, N. C. *et al.* SKP2 attenuates autophagy through Beclin1-ubiquitination and its
946 inhibition reduces MERS-Coronavirus infection. *Nat. Commun.* (2019).
947 doi:10.1038/s41467-019-13659-4
- 948 56. Hoffmann, H.-H. *et al.* TMEM41B is a pan-flavivirus host factor. *bioRxiv Prepr. Serv.*
949 *Biol.* (2020). doi:10.1101/2020.10.09.334128
- 950 57. Edlich, F. & Fischer, G. Pharmacological Targeting of Catalyzed Protein Folding: The
951 Example of Peptide Bond cis/trans Isomerases. in *Molecular Chaperones in Health and*
952 *Disease* (2005). doi:10.1007/3-540-29717-0_15
- 953 58. Xu, S. S. *et al.* FKBP8 inhibits virus-induced RLR-VISA signaling. *J. Med. Virol.*
954 (2019). doi:10.1002/jmv.25327
- 955 59. Pfefferle, S. *et al.* The SARS-Coronavirus-host interactome: Identification of

- 956 cyclophilins as target for pan-Coronavirus inhibitors. *PLoS Pathog.* (2011).
957 doi:10.1371/journal.ppat.1002331
- 958 60. Carbajo-Lozoya, J. *et al.* Human coronavirus NL63 replication is cyclophilin A-
959 dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives
960 including Alisporivir. *Virus Res.* (2014). doi:10.1016/j.virusres.2014.02.010
- 961 61. Carbajo-Lozoya, J. *et al.* Replication of human coronaviruses SARS-CoV, HCoV-NL63
962 and HCoV-229E is inhibited by the drug FK506. *Virus Res.* (2012).
963 doi:10.1016/j.virusres.2012.02.002
- 964 62. de Wilde, A. H. *et al.* Cyclosporin A inhibits the replication of diverse coronaviruses. *J.*
965 *Gen. Virol.* (2011). doi:10.1099/vir.0.034983-0
- 966 63. de Wilde, A. H. *et al.* Alisporivir inhibits MERS- and SARS-coronavirus replication in
967 cell culture, but not SARS-coronavirus infection in a mouse model. *Virus Res.* (2017).
968 doi:10.1016/j.virusres.2016.11.011
- 969 64. de Wilde, A. H., Pham, U., Posthuma, C. C. & Snijder, E. J. Cyclophilins and cyclophilin
970 inhibitors in nidovirus replication. *Virology* (2018). doi:10.1016/j.virol.2018.06.011
- 971 65. Softic, L. *et al.* Inhibition of SARS-CoV-2 infection by the cyclophilin inhibitor
972 alisporivir (Debio 025). *Antimicrob. Agents Chemother.* (2020).
973 doi:10.1128/AAC.00876-20
- 974 66. Thiel, V. & Siddell, S. G. Reverse genetics of coronaviruses using vaccinia virus vectors.
975 *Current Topics in Microbiology and Immunology* (2005). doi:10.1007/3-540-26765-4_7
- 976 67. Kindler, E. *et al.* Efficient replication of the novel human betacoronavirus EMC on
977 primary human epithelium highlights its zoonotic potential. *MBio* (2013).
978 doi:10.1128/mBio.00611-12
- 979 68. Thiel, V. *et al.* Mechanisms and enzymes involved in SARS coronavirus genome
980 expression. *Journal of General Virology* (2003). doi:10.1099/vir.0.19424-0
- 981 69. Irwin, D. M., Kocher, T. D. & Wilson, A. C. Evolution of the cytochrome b gene of
982 mammals. *J. Mol. Evol.* (1991). doi:10.1007/BF02515385
- 983 70. Shalem, O. *et al.* Genome-scale CRISPR-Cas9 knockout screening in human cells.
984 *Science* (80-.). (2014). doi:10.1126/science.1247005

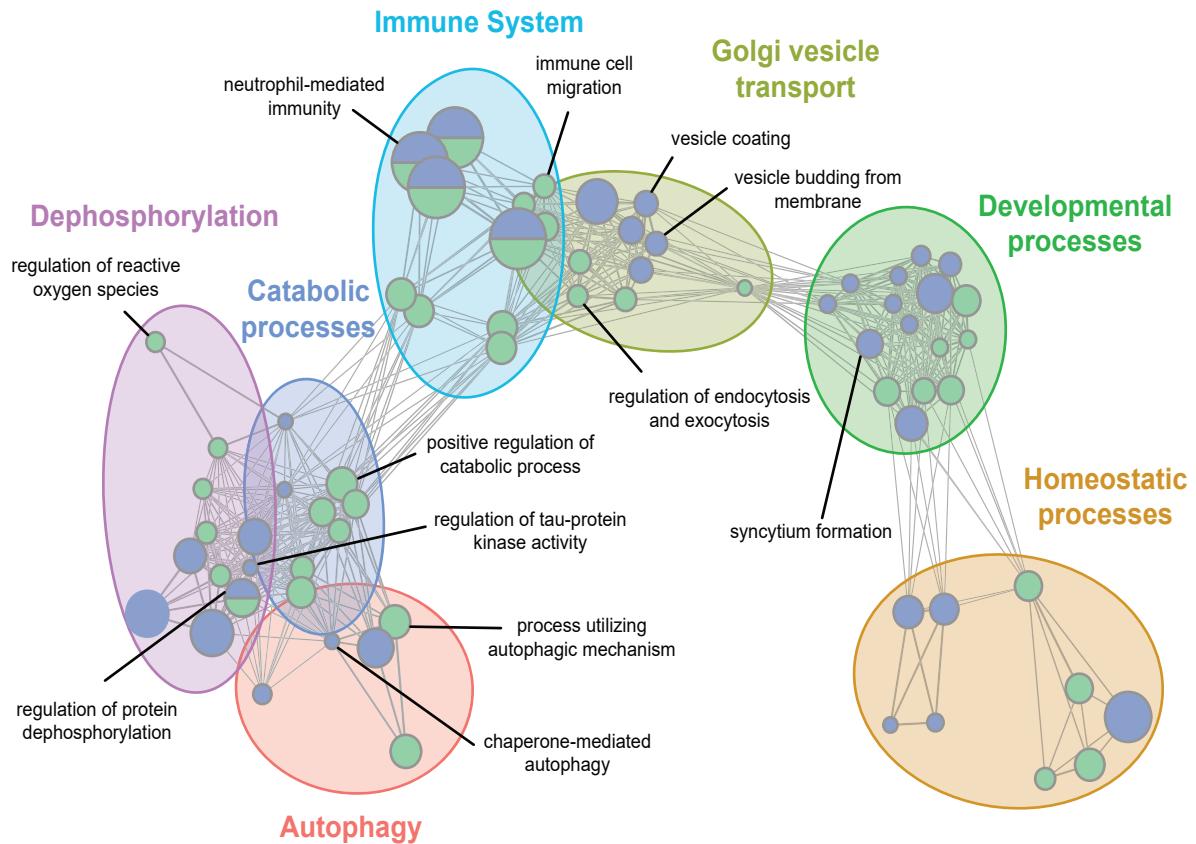

- 985 71. Illumina. Illumina adapter sequences. *Illumina* (2009).
- 986 72. Places, G., Hierholzer, J. C. & Killington, R. A. Cell Culture Cell Culture. *Virol. Methods Man.* **76**, 2–6 (1996).
- 988 73. Corman, V. M. *et al.* Detection of a novel human coronavirus by real-time reverse-
989 transcription polymerase chain reaction. *Eurosurveillance* (2012).
990 doi:10.2807/ese.17.39.20285-en
- 991 74. Corman, V. M. *et al.* Detection of 2019 novel coronavirus (2019-nCoV) by real-time
992 RT-PCR. *Eurosurveillance* **25**, 2000045 (2020).
- 993 75. Thao, T. T. N. *et al.* Rapid reconstruction of SARS-CoV-2 using a synthetic genomics
994 platform. *Nature* (2020). doi:10.1038/s41586-020-2294-9
- 995 76. Schindelin, J. *et al.* Fiji: An open-source platform for biological-image analysis. *Nature Methods* (2012). doi:10.1038/nmeth.2019
- 997 77. Mutterer, J. & Zinck, E. Quick-and-clean article figures with FigureJ. *J. Microsc.*
998 (2013). doi:10.1111/jmi.12069
- 999 78. Stringer, C., Michaelos, M. & Pachitariu, M. Cellpose: A generalist algorithm for
1000 cellular segmentation. *bioRxiv* (2020). doi:10.1101/2020.02.02.931238
- 1001
- 1002

Figure 1

Figure 2

A

B

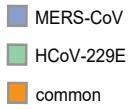
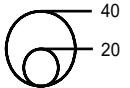
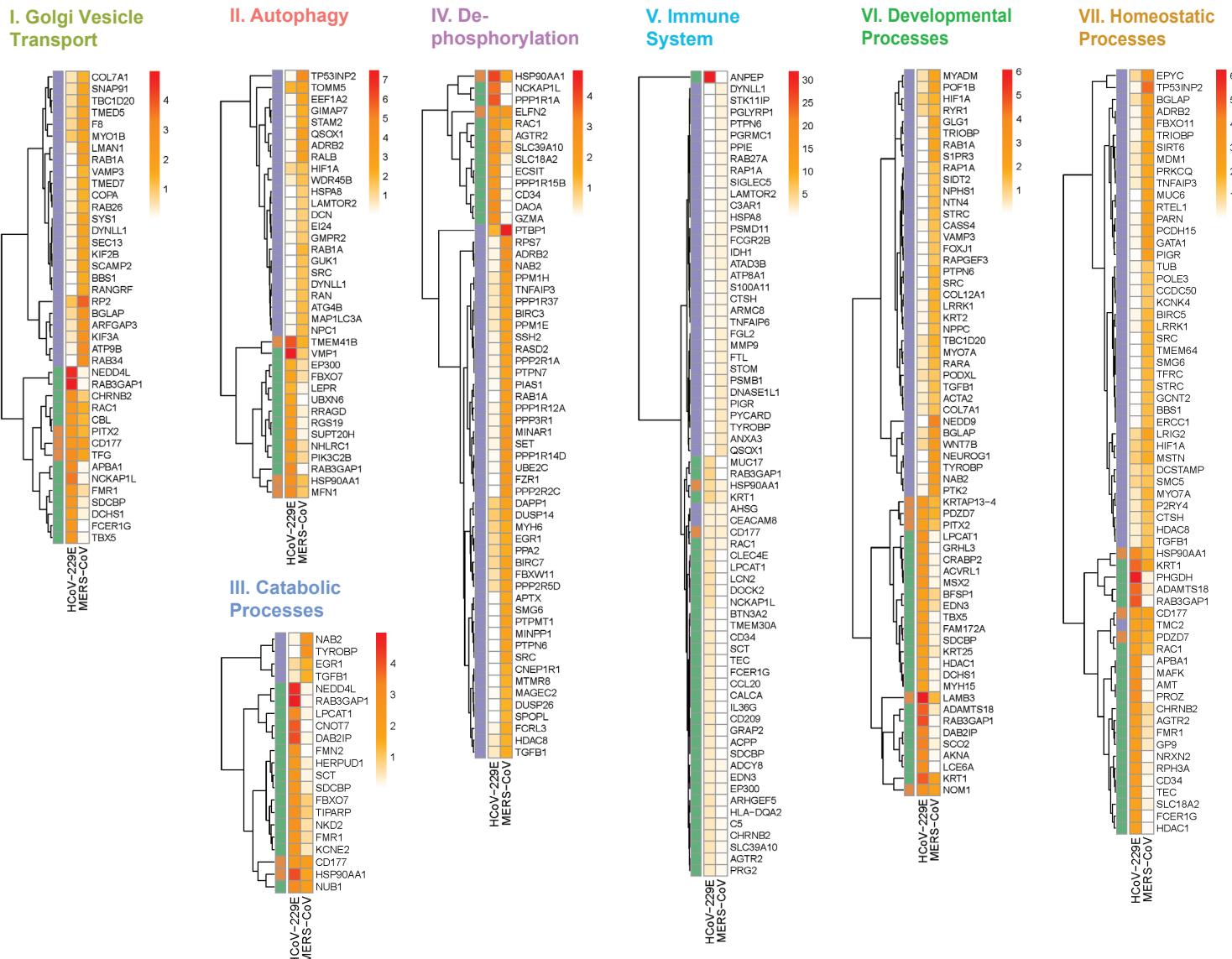




Figure 3

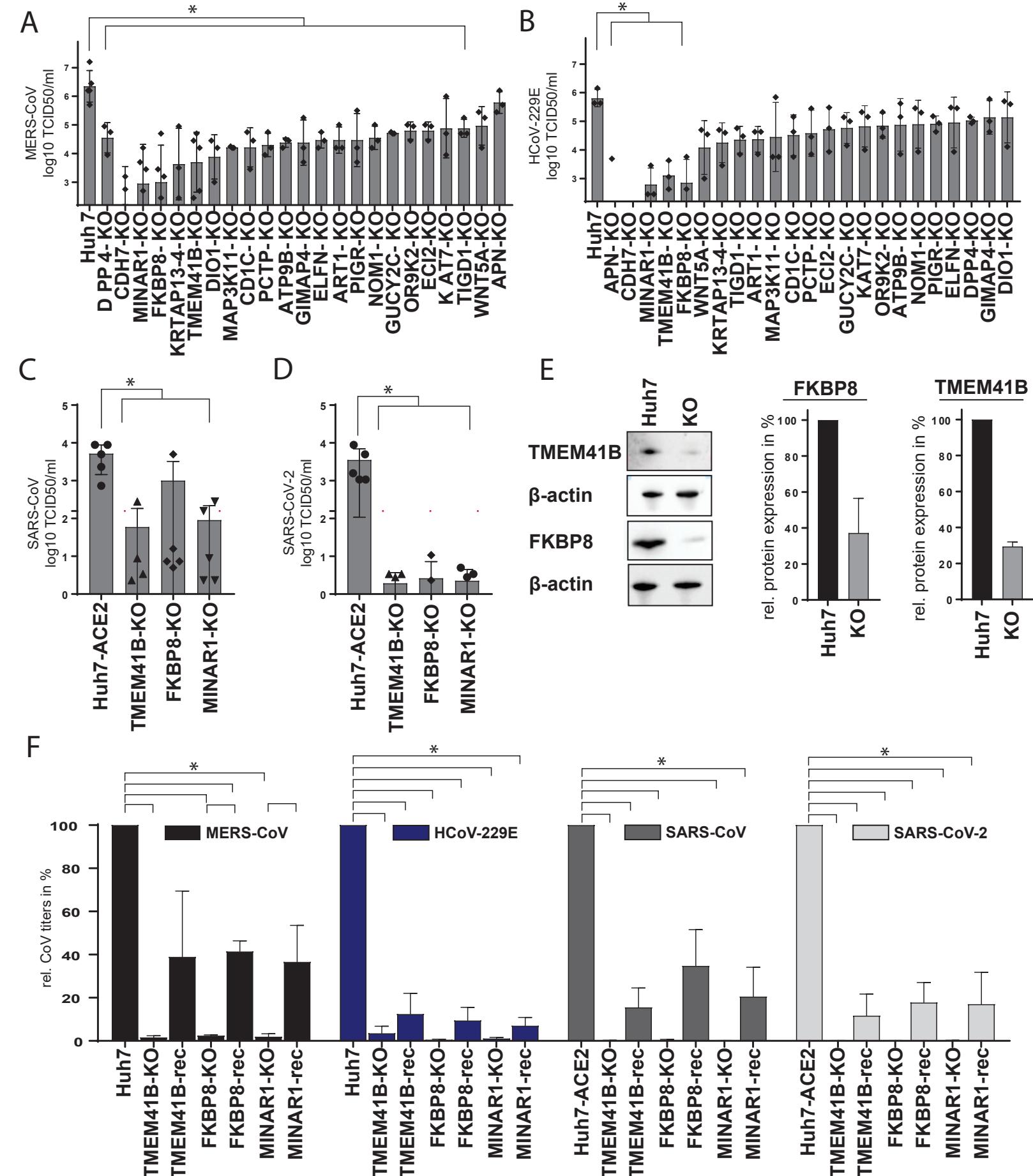


Figure 4

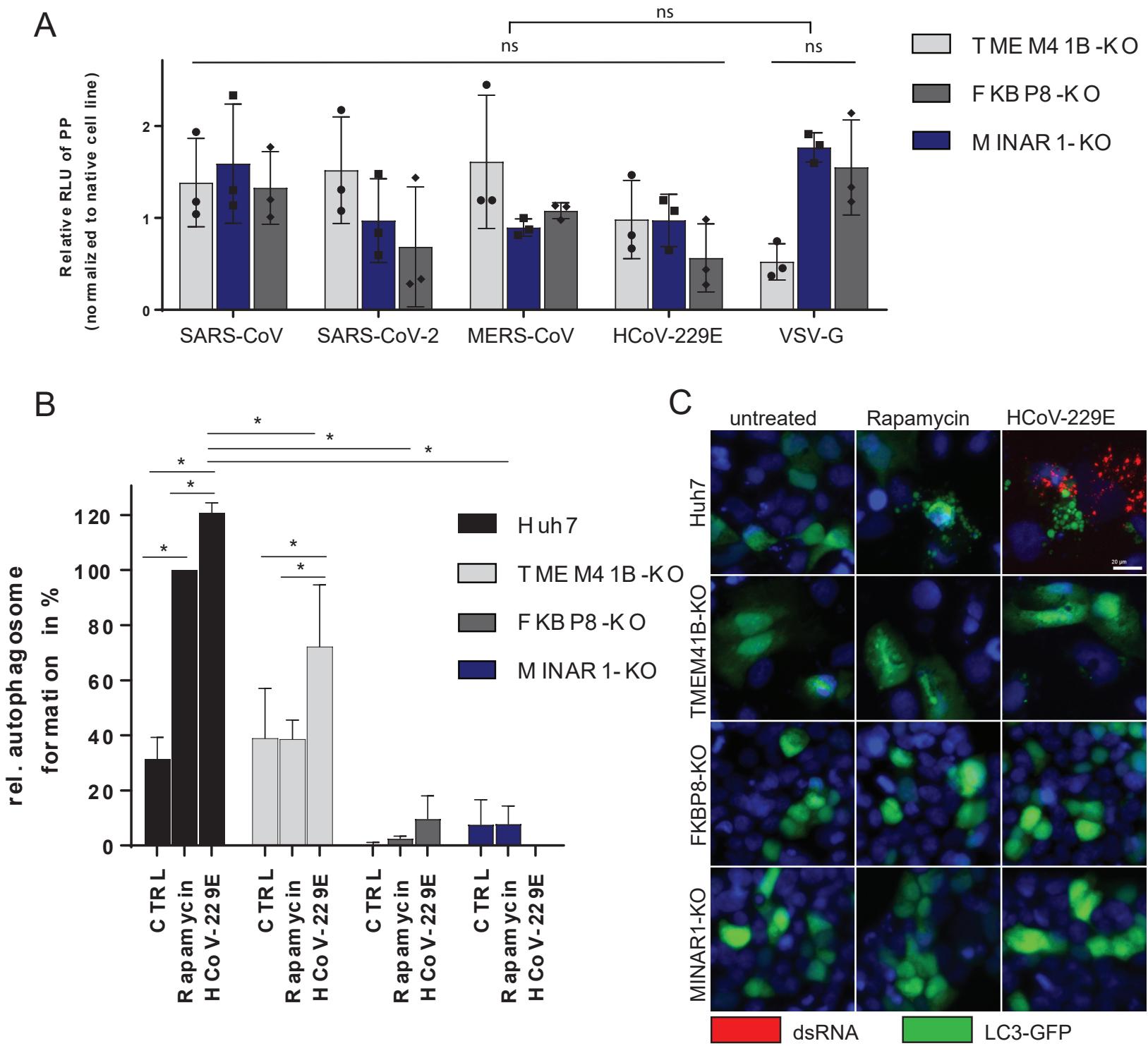
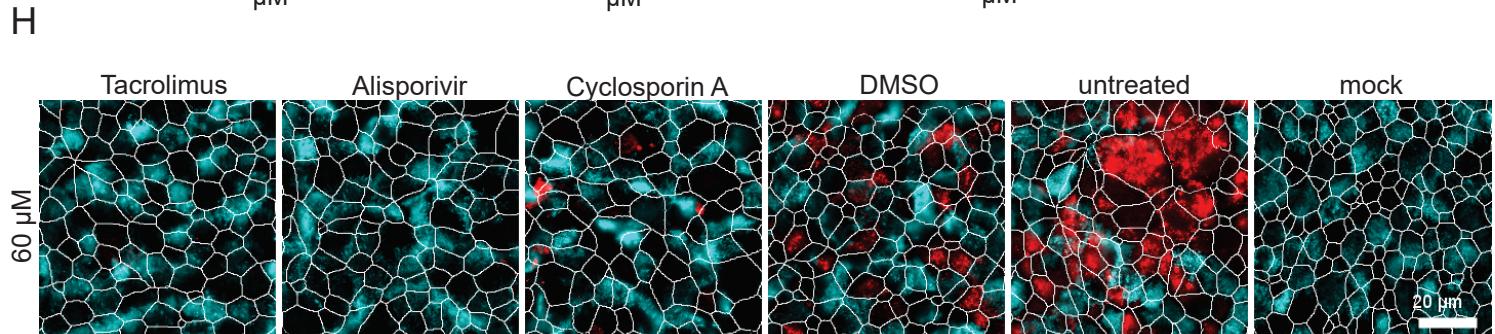
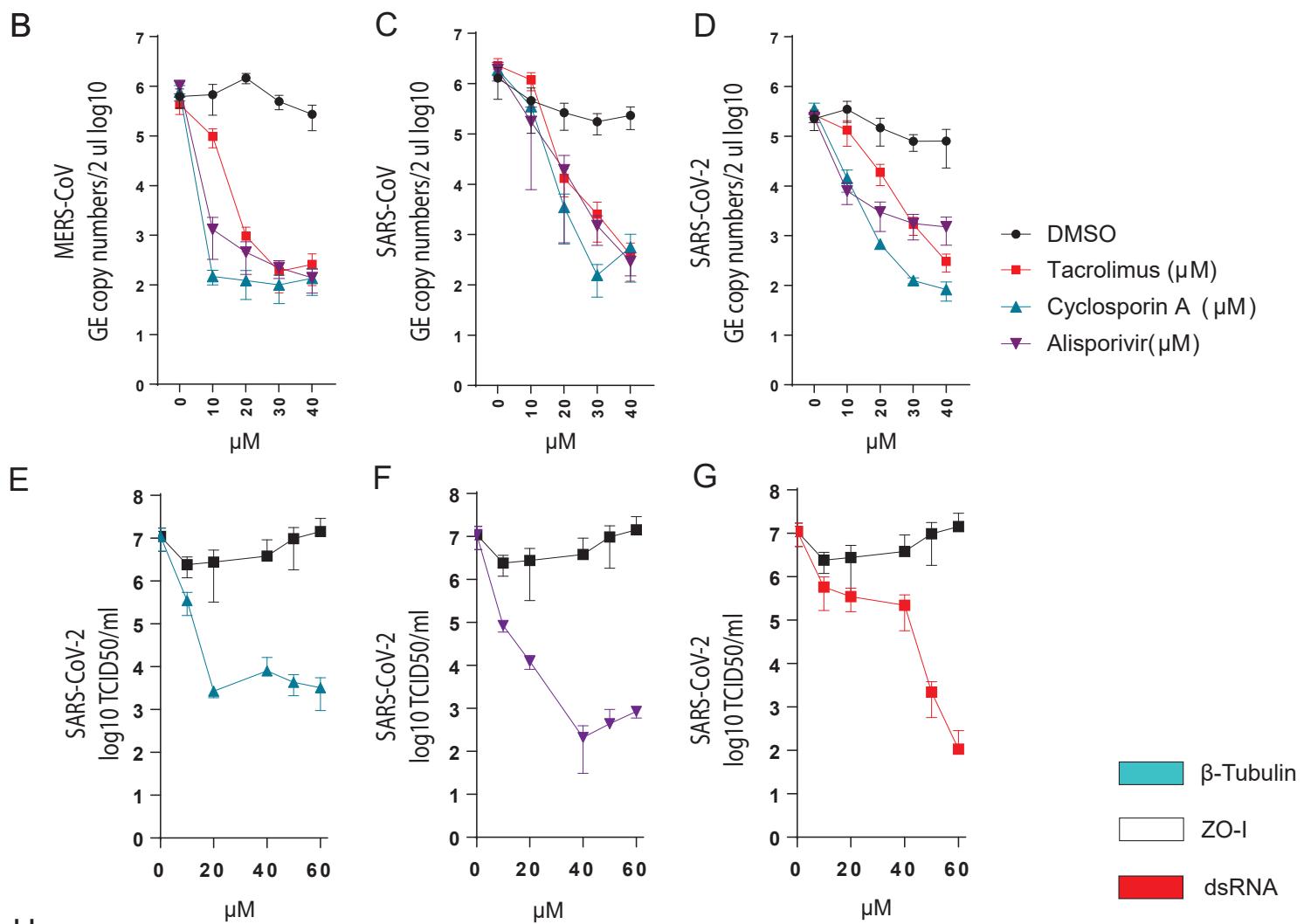
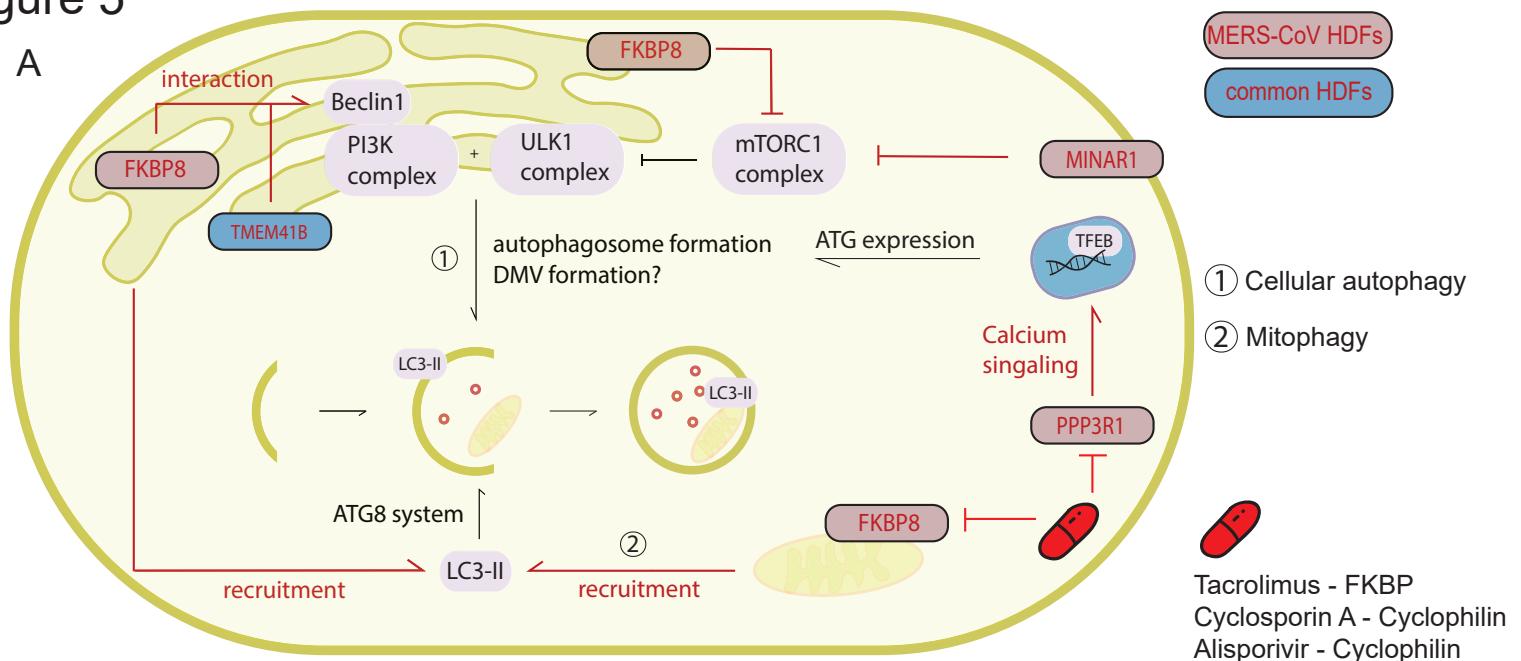





Figure 5

