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Abstract 33 

Colorectal cancer (CRC) has one of the highest cancer incidences and mortality rates. In stage 34 

III, postoperative chemotherapy benefits <20% of patients, while more than 50% will develop 35 

distant metastases. Predictive biomarkers for identification of patients with increased risk for 36 

disease recurrence are currently lacking, with progress in biomarker discovery hindered by 37 

the disease’s inherent heterogeneity. The immune profile of colorectal tumors has previously 38 

been found to have prognostic value. The aims of this study were to evaluate immune 39 

signatures in the tumor microenvironment (TME) using an in situ multiplexed 40 

immunofluorescence imaging and single cell analysis technology (Cell DIVETM). Tissue 41 

microarrays (TMAs) with up to three 1mm diameter cores per patient were prepared from 117 42 

stage III CRC patients treated with adjuvant fluoropyrimidine/oxaliplatin chemotherapy. Single 43 

sections underwent multilplexed immunofluorescence with Cy3- and Cy5-conjugated 44 

antibodies for immune cell markers (CD45, CD3, CD4, CD8, FOXP3, PD1) and cell 45 

segmentation markers (DAPI, pan-cytokeratin, AE1, NaKATPase and S6). We applied a 46 

probabilistic multi-class, multi-label classification algorithm based on multi-parametric models 47 

to build statistical models of protein expression to classify immune cells. Expert annotations 48 

of immune cell markers were made on a range of images, and Support Vector Machines 49 

(SVM) were used to derive a statistical model for cell classification. Images were also manually 50 

scored independently by a Pathologist as ‘high’, ‘moderate’ or ‘low’, for stromal and total 51 

immune cell content. Excellent agreement was found between manual and total automated 52 

scores (p<0.0001). Higher levels of multi-marker classified regulatory T cells 53 

(CD3+CD4+FOXP3+PD1-) were significantly associated with disease-free survival (DFS) and 54 

overall-survival (OS) (p=0.049 and 0.032), compared to FOXP3 alone. Our results also 55 

showed that PD1- Tregs rather than PD1+ Tregs were associated with improved survival. 56 

Overall, compared to single markers, multi-marker classification provided more accurate 57 

quantitation of immune cells with greater potential for predicting patient outcomes. 58 

 59 
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Introduction 60 

For early and locally advanced (stage I and II) colorectal cancer (CRC), the standard treatment 61 

of choice for low risk patients is surgical resection. Subsequent oncological treatment 62 

decisions for non-metastatic CRC are based largely on the anatomical AJCC/UICC TNM 63 

staging classification1. After the MOSAIC study in 2004, patients with stage III CRC now 64 

commonly receive oxaliplatin/fluoropyrimidine/leucovorin (5-fluorouracil (5FU), FOLFOX; or 65 

xeloda/capecitabine, XELOX) as standard adjuvant treatment 2. Of patients with stage III CRC 66 

treated with adjuvant chemotherapy, only ~20% will benefit from adjuvant FOLFOX, and 30% 67 

relapse within 2 to 3 years after surgery. Consequently, 80% of patients receive chemotherapy 68 

(and endure unnecessary toxicities) that yields no benefit 3. However, improvements in the 69 

understanding of CRC heterogeneity are paving the way for more personalized approaches 70 

that combine both histological and molecular data intelligence for patient stratification and 71 

therapy selection, including selecting which patients will benefit from adjuvant 72 

chemotherapy4,5. 73 

In the past decade, there has been an increasing interest in the impact of the tumor 74 

microenvironment (TME) on patient prognosis. Decreased risk of tumor progression and 75 

improved survival have been observed in solid tumors with high T cell infiltration6. For CRC, 76 

the concept of an “Immunoscore” was introduced by Galon et al; this evaluates CD3- and 77 

CD8-positive immune infiltrates in the tumor core (TC) and tumor margin (TM) to classify 78 

“TNM-immune scores” for tumors7. In addition to Immunoscore, there have been numerous 79 

studies that reinforce the importance of tumor-infiltrating lymphocytes (TILs) as indicators of 80 

prognosis in CRC8,9. The importance of the immune contexture in CRC for patient prognosis 81 

logically suggests that immunotherapy could be a promising therapeutic approach10. 82 

Responsiveness to immunotherapy depends on several key factors, including high mutational 83 

loads (leading to high levels of tumor neoantigens), which are found in MMR-deficient (dMMR) 84 

microsatellite instability-high (MSI-high) CRC11,12. The immune checkpoint inhibitor (ICI) 85 

pembrolizumab has been approved by the US Food Drug Administration (FDA) for patients 86 
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with metastatic dMMR/MSI-high CRC. However, the majority of colorectal tumors are 87 

microsatellite stable (MSS), with low mutational burdens and exhibit no response to ICI 88 

therapy. Thus, chemotherapy remains the backbone therapy for MSS CRC. 89 

With the unmet clinical need to better stratify stage III patients for possible adjuvant (or neo-90 

adjuvant) chemotherapy and the opportunity to better quantify immune response using newer 91 

cell quantification method, our goal was: 1) to compare multi-marker immune cell classification 92 

(using Cell DIVE) with immune cell scores determined by a pathologist and 2) investigate the 93 

association between single-marker and multi-marker immune cell classification and patient 94 

outcomes.  95 

 96 

Materials and Methods: 97 

Patient Cohort:  Tissue microarrays (TMAs) from formalin-fixed paraffin-embedded (FFPE) 98 

tissue blocks with up to three 1mm diameter cores per patient were prepared from 170 patients 99 

with stage III CRC. The punches were taken from the center of the tumor based on 100 

identification by a pathologist (Prof Manuel Salto-Tellez, Queen’s University Belfast). The 101 

patient samples were collected from three Research Centres: Beaumont Hospital (RCSI 102 

Hospital Group, Ireland), Queen’s University Belfast (UK) and Paris Descartes University 103 

(France) and the TMAs were constructed at Queen’s University Belfast. By design, the TMAs 104 

from 91 patients had 2 or 3 cores from each tumor. Pathological stage was determined by the 105 

AJCC TNM staging version applicable at the time of the reporting. All Centres provided ethical 106 

approval for this study and informed consent was obtained from all participants (NIB12-0034). 107 

Patients were recruited during 2005-2012.  108 

 109 

 110 

At the patient level, the exclusion criteria based on tissue block or clinical data were: i) poor 111 

tissue quality or no tumor cells in tissue, ii) loss of follow-up or recurrence and/or death within 112 
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less than two months from surgical resection, iii) absence of chemotherapy treatment, iv) 113 

positive resection margins, v) tumor site was appendix, vi) stage II or IV disease, vii) only one 114 

assessable core remaining after applying all exclusion criteria. At the tissue core level, 115 

individual cores on the TMA were excluded for assessment after pathology TMA slide review 116 

if no or minimal viable tumor was present for evaluation (i.e. minimal or no tumor tissue, heavily 117 

artefacted tissue, extensive tumor necrosis, extensive presence of normal adjacent tissue). 118 

After applying exclusion criteria from the original patient cohort, the remaining data comprised 119 

117 stage III patients, who were all treated with 5FU-based adjuvant chemotherapy 120 

(predominantly FOLFOX or XELOX).  121 

 122 

KRAS status: A MassARRAY system (Sequenom) was used to detect somatic point 123 

mutations of KRAS.  124 

 125 

Multiplexed immunofluorescence analysis of TMAs: Multiplexed immunofluorescence 126 

staining of the CRC TMAs was performed as previously described13 using Cell DIVE™ Cytiva, 127 

Issaquah, WA), a multiplexed immunofluorescence microscopy method allowing for multiple 128 

protein markers to be imaged and quantified at cell level in a single tissue section. Briefly, 129 

formalin-fixed, paraffin-embedded (FFPE) tissue slides were de-paraffinized and rehydrated, 130 

underwent a two-step antigen retrieval and were then stained for 1 hour at room temperature 131 

using a Leica Bond autostainer. All antibodies were characterized per the previously described 132 

protocol13 and when possible, antibodies in routine clinical use were employed. After down-133 

selection, each antibody was conjugated with either Cy3 or Cy5 bis-NHS-ester dyes using 134 

standard protocols as previously described13. All sections underwent multiplexed 135 

immunofluorescence for a total of 24 markers listed on Supplementary Table 1. The markers 136 

of interest for this study included CD3, CD4, CD8, FOXP3, CD45, NaKATPase, S6, pan-137 

cytokeratin and AE1 and DAPI nuclear stain. All samples underwent DAPI imaging in every 138 

round, and background imaging for the first five rounds and every three rounds thereafter.  139 
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Image processing, single cell segmentation: Using Cell DIVE automated image pre-140 

processing software, all images were registered to baseline using DAPI and underwent 141 

autofluorescence subtraction, illumination and distortion correction. DAPI and Cy3 142 

autofluorescence images were used to generate a pseudo-colored image, which visually 143 

resembles a Hematoxylin and Eosin (H&E) stained image, which we refer to as a virtual H&E 144 

(vH&E). This visualization format helps tissue QC review and facilitated review of tumor 145 

morphology and lymphocytes. All cells in the epithelial and stromal compartments were 146 

segmented using DAPI and pan-cytokeratin, while S6, and NaKATPase were used for 147 

subcellular analysis of epithelial cells. Each segmented cell was assigned an individual ID and 148 

spatial coordinate, as previously described13. Post segmentation, several quality control  (QC) 149 

steps were conducted, including visual review and manual scoring of tissue quality and 150 

segmentation for every image, also described elsewhere14. Briefly, each image was reviewed 151 

for completeness and accuracy of segmentation masks in each subcellular compartment and 152 

tumor and stroma separation. Average biomarker intensity was calculated for each cell and 153 

the following additional cell filtering criteria were applied: 1) epithelial cells were required to 154 

have either 1-2 nuclei; 2) each sub-cellular compartment (nucleus, membrane, cytoplasm) 155 

area had to have > 10 pixels and < 1500 pixels;  3) cells had to have excellent alignment with 156 

the first round of staining (round 0) ; 4) cells were at >25 pixels distance from the image 157 

margins; 5) cell area for nuclear segmentation mask was >100 or <3000 pixels.  158 

Immune cell classification: A customized machine learning based algorithm15 developed as 159 

a Fiji (ImageJ) plug-in was used for immune cell classification. This is a probabilistic multi-160 

class, multi-label classification algorithms based on multi-parametric models to build statistical 161 

models of protein expression and classify immune cells. The images were first segmented into 162 

epithelial and stromal regions or masks using a combination of PCK26 and AE1 (expressed 163 

in epithelial cells).  Nuclei were segmented using DAPI signal and a wavelet-based algorithm16 164 

and assigned to the epithelium or stromal regions based on co-localization of the nuclei with 165 

the epithelial or stromal masks. Manual expert annotations of the following markers associated 166 
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with each segmented cell were made: AE1+, CD45+ CD3+, CD4+, CD8+, FOXP3+ and PD1+ 167 

and negative cells. Support Vector Machines (SVM) were used to derive a statistical model 168 

for cell classification. This multi-marker, annotation driven workflow was custom designed as 169 

an FIJI plug-in and allows analysis of complex multi-class models (up to 27 markers)17,15. 170 

Following classification, counts for both single-marker and multi-marker immune cell types 171 

were determined.  172 

Pathologist Scoring: A gastrointestinal pathologist (Maurice B. Loughrey, MBL) performed 173 

visual inspection of the virtual H&E slides generated from the DAPI and autofluorescence 174 

images13,18, for the 419 TMA cores. After applying exclusion criteria described earlier, 28 cores 175 

were excluded and 391 cores were assessed.  MBL assigned two qualitative scores to each 176 

core comprising either  ‘high’, ‘moderate’ or ‘low’ score, one for stromal cell content and one 177 

for immune cell content. For stroma, a high score was assigned when the stromal area was 178 

higher than the epithelial area; a moderate score was assigned when the stromal and the 179 

epithelial areas were equivalent; and a low score was assigned when the stromal area was 180 

lower than the epithelial area. The immune score was based on lymphoid cell abundance in 181 

the tissue core. 182 

For equivalent comparison of the pathologist stroma and immune score with Cell DIVE 183 

automated scores the following steps were taken: 1) “Stromal cells” were defined as DAPI 184 

positive cells that were negative for all markers and outside the epithelial segmentation mask. 185 

The stroma score was calculated as the percentage of non-immune stromal cells in all 186 

segmented cells in the non-epithelial region; 2)   “Immune cells” were defined as segmented 187 

cells that were positive for any of the immune markers (CD45, CD3, CD4, CD8) and negative 188 

for the AE1 epithelial marker. The immune scores were calculated from the counts of all 189 

segmented immune cells. 3) “Epithelial cells” were defined as segmented cells that were 190 

positive for AE1 staining and were within the Epithelial Segmentation Mask19.  191 

 192 
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Statistical Analysis: For comparison of Cell DIVE quantitative stroma and immune scores 193 

with the pathologist scores, the Cell DIVE scores were categorized based on the pathologist’s 194 

three qualitative groups (high – moderate – low). Statistical analysis for comparison of group 195 

means was performed using Welch’s ANOVA and pairwise t-test. The association of the 196 

single-marker and multi-marker classified immune cells with clinical outcome was evaluated 197 

using both univariate and multivariate analyses with adjustment for clinico-pathological 198 

confounders (T, N, age, sex, nodal count, positive nodes, lymphovascular invasion, 199 

differentiation) in the multivariate Cox proportional hazards models. For the final multivariate 200 

models, the variables were subjected to backward elimination and the variables that did not 201 

contribute to model fit were removed. The final multivariate model was tested for multi-202 

collinearity and proportional Hazards assumption. Variables with variance inflation factor > 2 203 

were removed, and the remaining variables were re-subjected to backward elimination. The 204 

relative quality and goodness-of-fit of models was examined using Harrell's C-index, and the 205 

model choice was determined by the Akaike Information Criterion (AIC). The T cell subtypes 206 

were counted and analysed as continuous variables after being transformed to ‘Percent of 207 

total’ tissue segmented cells, per patient. When the patients had multiple cores, the average 208 

percent of the assessable cores was calculated, unless stated otherwise. For survival 209 

analyses, the T cell subtypes calculated as % of total tissue cells were dichotomised at the 210 

median, and the Kaplan-Meier method was used to plot survival curves with the log-rank test 211 

used for comparisons. No adjustments were made for multiple comparisons. Hypothesis 212 

testing was performed at the 5% significance level. 213 

The end-points studied were disease-free survival (DFS) and overall-survival (OS). DFS was 214 

the time between the study entry and either the date of the first recurrence, or the date that 215 

the last follow-up took place. OS was the time between the date of study entry and either the 216 

date of death from any cause, or the date of the last follow-up. All statistical analyses were 217 

performed in R Version 3.5.1 (https://cran.r-project.org).  218 

 219 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432210doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432210
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

RESULTS 220 

Pathologist scoring versus automated immune cell classification 221 

The TMA cores form the patients were assessed by the pathologist (MBL) and, after exclusion 222 

criteria, 62 patients had 3 assessable cores, 99 had 2 assessable cores whereas 7 patients 223 

had only 1 assessable core. Intra-tumor heterogeneity was reflected in intra-patient 224 

differences between the pathologist’s immune and stroma scores. Specifically, from the 62 225 

patients with 3 assessable cores, only 13 (19%) had the same immune score and 18 (29%) 226 

the same stroma score for all three cores. For 5 (8%) patients, the immune score was different 227 

in each of the three cores, while for 6 (10%) patients, the stroma score was different in each 228 

of the three cores. This is to be expected given tumor histology variation in different core 229 

punches. From the 99 patients with two cores, 44 (44%) had the same immune score and 42 230 

(42%) had the same stroma score in both tissue cores. In summary, for the 161 patients with 231 

more than one core, 104 (65%) showed immune heterogeneity and 101 (63%) showed stroma 232 

heterogeneity between their tissue cores. This highlights the inherent high degree of intra-233 

tumor heterogeneity in CRC. 234 

MBL performed visual inspection of the virtual H&E slides and assigned scores to each core 235 

of ‘high’, ‘moderate’ or ‘low’, for both stromal and immune cell content. We used the machine 236 

learning workflow to create a quantitative cell classification-based immune and stroma score 237 

(Figure 1A) to compare with the pathologist’s scores. The Cell DIVE immune (p < 0.001; 238 

Figure 1B) and stromal (p < 0.001; Figure 1C) score values were significantly associated with 239 

the corresponding pathologist’s scores. Therefore, the machine-learning-based Cell DIVE cell 240 

classification has potential to be used to evaluate tumor immune and stromal content.  241 

 242 

T cell classification for single-marker and multi-marker (multiplexed) classification 243 

models.  In order to study the impact of different T cell subtypes on patient prognosis in this 244 

adjuvant chemotherapy-treated cohort, we used a panel of T cell biomarkers as described 245 
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earlier. In addition, to single marker analyses (CD3, CD4, CD8, FOXP3, PD1), multi-marker 246 

combinations were used to define subtypes (Tc, TcPD1, Th, ThPD1, Treg, TregPD1, Figure 247 

2A). In the single-marker classification workflow, each one of these immune markers was 248 

analysed individually, and each segmented cell was classified as either positive or negative 249 

for each marker. Since the individual markers are used to generate the multi-marker 250 

classification, it is not surprising that they were significantly correlated (p<0.001; 251 

Supplementary Figure 3). The demographic data of the patient cohort are summarized in 252 

Table 1. 253 

Representative immunofluorescent images of a single tissue core for the individual markers 254 

and the corresponding Segmentation Masks are illustrated in Supplementary Figure 1.  In 255 

the multi-marker classification workflow all markers were assessed simultaneously (Figure 256 

2A(a)) and, depending on marker co-localization, segmented cells were assigned to the 257 

following classes (Figure 2A(b)): PD1-negative T-helper (Th), PD1-positive Th (ThPD1), PD1-258 

negative cytotoxic T cells (Tc), PD1-positive Tc (TcPD1), PD1-negative Treg and PD1-positive 259 

Treg (TregPD1).  260 

To account for tumor heterogeneity, only patients with more than 1 core were used for the 261 

analysis (117 patients). Each T cell subtype was calculated as a percentage of total cells per 262 

core and the average percentage per patient was calculated. The distribution of T cell 263 

subtypes across the cohort is shown in Figure 2B; Tc and TcPD1 cells were the most 264 

abundant subtype associated with the epithelial compartment; however, overall and as 265 

expected, the majority of each T cell subtype was located in the stroma (Figure 2C). All T cell 266 

subtypes were generally positively correlated with each other, except TcPD1 had minimal 267 

correlation with Th and Treg (Figure 2D).  Hierarchical clustering was used to assess the 268 

immune landscape of the patient cohort (Figure 2E). Separation into two clusters, immune 269 

“hot” (higher immune cells) and “cold” (lower immune cells), showed that nearly 50% of 270 

patients were low in all T cell subtypes; however, Kaplan-Meier analyses showed that their 271 

prognosis was similar to patients with higher level of T cells (Supplementary Figure 2A). 272 
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After separating into three clusters, the “immune-hot” cluster of patients with highest infiltration 273 

of T cell subtypes showed improved DFS and OS compared to the other 2 groups that had 274 

lower T cell levels; however this did not reach statistical significance (Supplementary Figure 275 

2B). Detailed summary statistics for T cells for the multi-marker classifications and single 276 

marker classifications are presented in Table 2. 277 

In Supplementary Figure 4 representative images of virtual H&Es, immunofluorescent 278 

images and tissue mappings with color-coded cell classifications are illustrated. The selected 279 

images are representative of all 9 Stroma-Score/Immune-Score combinations from the 280 

pathologist review. This shows that multiplexing can be used to identify multiple subtypes of 281 

immune cells simultaneously, allowing for associations and potential cross-talk between 282 

distinct cell subtypes in the TME to be assessed. 283 

 284 

T cell infiltration and patient prognosis.  As proof-of-concept for the applicability of this 285 

approach for identification of prognostic immune biomarkers, we next determined the 286 

prognostic value of the single and multiplexed markers in this FOLFOX-treated stage III patient 287 

cohort. The correlation of each T cell type with clinical endpoints (DFS and OS) was analysed 288 

using univariate and multivariate Cox proportional hazards models and Kaplan-Meier 289 

analyses.  290 

In the univariate analyses, the forest plots in Figure 3 demonstrate that none of the single 291 

immune markers was significantly associated with DFS (Figure 3A) or OS (Figure 3B), 292 

whereas the level of Treg cells (CD3+/CD4+/FOXP3+/PD1-) from the multi-marker machine-293 

learning classification was significantly associated with longer DFS (HR = 0.37, 95% CI = 0.14-294 

0.99, p = 0.047). 295 

For the multivariate analysis, the model initially included the clinical variables: T, N, age, sex, 296 

nodal count, positive nodes, differentiation and lymphovascular invasion together with single- 297 

and multi-marker immune scores. Backward elimination was used to select variables for the 298 
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final model. For DFS in the single-marker model, CD8 remained in the final model and was 299 

positively associated with longer DFS (multivariate adjusted HR = 0.78, 95% CI = 0.6 - 1.0, p 300 

= 0.048; Figure 3C) and in the multi-marker model Tregs remained positively associated with 301 

longer DFS (multivariate adjusted HR = 0.34, 95% CI = 0.12 - 1.0, p = 0.049; Figure 3C). For 302 

OS in the single-marker model, FOXP3 remained in the final model but did not reach 303 

significance (multivariate adjusted HR = 0.56, 95% CI = 0.297 – 1.06, p = 0.074; Figure 3D) 304 

and in the multi-marker model Tregs remained positively associated with longer OS 305 

(multivariate adjusted HR = 0.08, 95% CI = 0.0079 – 0.8, p = 0.032; Figure 3D). The detailed 306 

Forest plots for the multivariate models for clinical variables only are shown in Supplementary 307 

Figure 5.  308 

In order to facilitate comparison with previously published results, Treg levels were divided 309 

into high and low groups using the sample median as the cut-off and Kaplan-Meier analyses 310 

were performed for curves for DFS and OS (Figure 3E and F). Similar to the univariate and 311 

multivariate analyses above, Treg-high patients had improved DFS (p = 0.019) and OS (p = 312 

0.017) than Treg-low patients. Kaplan-Meier curves for all single-marker and multi-marker 313 

classes dichotomized on the median are included in Supplementary Figure 6.  Sub-regional 314 

analysis based on the percentage of immune cell subtypes located in the stroma or located 315 

within/associated with the epithelial compartment and association with outcome are shown in 316 

Supplementary Table 2. 317 

 318 

T cell infiltration and patient prognosis for immune hot-spot.  In order to account for tumor 319 

immune heterogeneity, the average percent T cells in multiple cores was used for the above 320 

data analyses. However, this could dilute the impact of very high but very localised immune 321 

cell infiltrates. We hypothesised that by focusing our analyses on the available cores with 322 

highest tumor immune regions, we might uncover additional prognostic information; therefore, 323 
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we repeated the above analyses for the one core per patient with maximum T cell density for 324 

each subtype. 325 

We calculated the total counts of T cells in each core (CD3 counts for single markers and sum 326 

of all T cell subtypes for the multiplexed model). From the 117 patients, the cores with the 327 

highest number of CD3 or T cells (immune hot-spot core) was selected for further analysis. 328 

Cox proportional hazards regression analysis and Kaplan-Meier plots were performed as 329 

above. In the univariate analysis none of the single markers was significantly associated with 330 

survival. For the multi-marker classification Treg levels were significantly associated with DFS 331 

(HR = 0.51, 95% CI = 0.27-0.97, p = 0.04; Figure 4A) and were borderline significant for OS 332 

(HR = 0.24, 95% CI = 0.059-1, p = 0.05; Figure 4B).  333 

In the multivariate analysis, for DFS in the single-marker model, FOXP3 remained in the final 334 

model (multivariate adjusted HR = 0.75, 95% CI = 0.56-1.0, p = 0.05) and had borderline 335 

statistical significance (Figure 4C), and in the multi-marker model Treg and TcPD1 remained 336 

in the final model and Treg remained statistically significant (for TcPD1: multivariate adjusted 337 

HR = 0.68, 95% CI = 0.38-1.22, p = 0.194; for Treg: multivariate adjusted HR = 0.44, 95% CI 338 

= 0.20-0.95, p = 0.038). For OS, none of the single markers remained in the final model. In 339 

the multi-marker model, Treg levels remained in the final model and were significantly 340 

associated with improved OS (multivariate adjusted HR = 0.14, 95% CI = 0.026-0.78, p = 341 

0.025) (Figure 4D).  342 

As previously, Kaplan-Meier curves for all single marker and multi-marker classes 343 

dichotomized on the median are included in Supplementary Figure 7. Sub-regional analysis 344 

based on the percentage of immune cell subtypes located in the stroma or located 345 

within/associated with the epithelial compartment and association with outcome are shown in 346 

Supplementary Table 3.  347 

 348 
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Association of KRAS status with survival and distribution of T cell subtypes. In adjuvant 349 

FOLFOX/XELOX-treated stage III colorectal cancer patients, KRAS mutations have been 350 

associated with shorter time to recurrence (TTR) and OS20. We performed survival analysis 351 

for the patients with known KRAS status (108 out of 117 patients tested) to study the effect of 352 

this mutation in our cohort and its interaction with T cell subtype levels. Survival curves for 353 

colorectal cancer DFS and OS were plotted using the Kaplan-Meier method and compared by 354 

the log rank test using the KRAS mutation status as the stratification variable. KRAS status 355 

was not significantly associated with prognosis in our cohort, although, interestingly, there was 356 

a non-significant trend (p = 0.07) for KRAS mutant tumors to be associated with better DFS in 357 

this FOLFOX-treated cohort (Supplementary Figure 8). KRAS mutation has also been 358 

reported to have an immunosuppressive effect in the tumor microenvironment of colorectal 359 

cancer21. Summary statistics for the clinicopathological data of the patients grouped by KRAS 360 

status are shown in Table 3. No differences of T cell subtypes were observed between KRAS 361 

WT and mutant patients, for any of the classes tested for multiplexed classification or single 362 

marker classification. Collectively, these results indicate that the prognostic impact of T cell 363 

subtypes is not associated with KRAS mutational status. 364 

 365 

DISCUSSION 366 

Currently 5FU-based chemotherapy (usually FOLFOX or XELOX) is used as adjuvant 367 

treatment for stage-III CRC patients2. However, only 20% of patients benefit, while 30% will 368 

experience recurrence3. Therefore, reliable biomarkers that can predict which stage III patients 369 

would benefit from adjuvant chemotherapy is an urgent unmet clinical need in CRC. 370 

A large number of multigene signatures using tumor gene expression profiles have emerged 371 

in the last decade, such as Consensus Molecular Subgroups (CMS) and CRC Intrinsic 372 

Subtypes (CRIS), which classify patients into molecular subtypes for risk prediction22,23,24. 373 

However, this approach is therapeutically valuable only under the assumption that highest risk 374 
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patients will also be the most responsive to chemotherapy. This is not the case and, in fact, 375 

CMS4 patients who are predicted to have poor prognosis do not benefit from intensive 376 

adjuvant chemotherapy25. We recently reported that stage-II patients with CMS2/CRIS-C 377 

tumors, which demonstrate low levels of CD8-positive tumor-infiltrating lymphocytes benefit 378 

from adjuvant chemotherapy. In stage III patients, benefit from chemotherapy was particularly 379 

apparent in CMS2/CRIS-C and CMS2/CRIS-D patients5. However, transcriptional profiling is 380 

not routinely available or applied in clinical practice. Ideally, a clinical test to triage patients for 381 

adjuvant chemotherapy that could be performed rapidly on a single FFPE tumor section would 382 

be extremely useful. 383 

Herein, we explored the potential of the Cell DIVE platform for enumerating several key 384 

immune cell populations previously linked with patient outcome in CRC. Using FFPE tissue 385 

samples, Cell DIVE can measure up to 60 markers within a single histological section, 386 

whereas standard IHC would require multiple sections to achieve similar result. This 387 

requirement would introduce the problem of cellularity changes through the sequential 388 

sections, as well as require extensive use of often limited valuable biological material. In 389 

addition, with Cell DIVE, multiple markers can be visualized simultaneously, thus increasing 390 

specificity for cell classification and providing a molecular signature within a histological 391 

content. In concert with user-friendly machine-learning methodologies, Cell DIVE has the 392 

potential to become a routine digital pathology platform for clinical laboratory settings. To 393 

demonstrate this, we compared immune and stroma scoring from the visual inspection of all 394 

tissues by a gastrointestinal pathologist with the corresponding Cell DIVE-derived immune 395 

and stroma scoring. Cell DIVE scoring showed significant association with the pathologist’s 396 

scores, suggesting that the Cell DIVE platform provides robust immune and stroma scoring 397 

for tumor tissue sections. 398 

Using the Cell DIVE platform and a segmentation and classification workflow involving 10 399 

markers, we show that we were able to detect 6 classes of T cells and associate them with 400 

patient prognosis using a single section from TMAs of FOLFOX/XELOX-treated stage III 401 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432210doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432210
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

patients. Our results showed that high levels of Treg cells (CD3+/CD4+/FOXP3+/PD1-) were 402 

associated with improved survival in this cohort and were distinct from their PD1+ 403 

counterparts.  404 

Treg cells are key mediators of self-tolerance, regulating multiple immune cells, such as CD4+ 405 

and CD8+ effector cells, macrophages and dendritic cells26. In the thymus, CD25+/CD4+ 406 

thymocytes can become Treg precursors, which, after stimulation with IL-2 and TGF-β, will 407 

differentiate into natural thymic FOXP3+ Tregs27,28. Natural Tregs can recognize self-antigens 408 

and migrate to damaged tissues to supress the activity of other T cells and prevent an 409 

uncontrolled inflammatory response29,30. Outside the thymus, in secondary lymphoid organs 410 

and peripheral tissues, Tregs are derived from differentiation of naïve conventional CD4+ T 411 

cells in response to cytokines that induce FOXP3 expression31,32. In CRC, there are higher 412 

levels of Tregs in the tumor than in healthy tissue. Recently, it has been shown that tumor-413 

associated Tregs have distinct differences from normal peripheral Tregs33,34. In cancer, Tregs 414 

can suppress anti-tumor immune responses35 or have protective roles by controlling cancer-415 

associated inflammation36,37. Within the intestine, immune cells reside within the mucosa38 and 416 

are tightly associated with the intestinal microbiome, thus intestinal Treg depletion can lead to 417 

unresolved inflammation28,36. 418 

High Treg levels have been associated with poor clinical outcomes in different cancers, 419 

including CRC35,39,40, in contrast to our findings; other studies have associated high Treg levels 420 

with better prognosis in CRC patients41,42,43,44,45. There are a number of reasons that could be 421 

responsible for these apparently contradictory results. For example, differences in the study 422 

cohorts, most notably, stage and whether patients were treated with chemotherapy, but also 423 

cohort size, variable thresholds for scoring, technical differences in detection and scoring 424 

between laboratories and different follow-up times46 may contribute to these findings. In 425 

addition, the conflicting results may be due to lack of robust biomarkers that can reflect the 426 

Treg versatility and plasticity, and the best classification method for Treg is still under active 427 

debate. FOXP3 is a biomarker with high selectivity for Treg identification that is routinely used 428 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432210doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432210
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

as a Treg biomarker in clinical studies. However, it has limitations since it is not exclusively 429 

expressed by Treg cells. FOXP3 can also be expressed in dividing, activated T effector 430 

cells47,48. Apart from FOXP3, some Treg subtypes can express other molecules that increase 431 

their immuno-suppressive capacity, and these highly suppressive Treg cells have been 432 

detected in CRC patients49
’
50

’
51. Therefore, relying solely on FOXP3 as a marker of Tregs may 433 

be the cause of some of the inconsistencies in the literature regarding Treg and CRC 434 

prognosis.  435 

Recently, it was shown that the majority of intra-tumoral T cells in the TME are CD4+ with co-436 

expression of PD1 molecules52,53, which is similar to our findings.  PD-1 expression on T cells 437 

can be sign of early activation or exhaustion and reduced effector functions, due to prolonged 438 

exposure to tumor antigens54. Our results show that PD1- Tregs rather than PD1+ Tregs are 439 

associated with improved survival. Overall, the presence of Treg correlates with the presence 440 

of T effector cells in inflamed tissues. Given that CRC is a highly inflammatory type of tumor, 441 

PD1-Treg enrichment may not be associated with pro-tumorigenic immunosuppression, but 442 

rather are recruited as a result of an active immune response; this would explain the 443 

association which we observed with improved prognosis in this chemotherapy-treated stage-444 

III cohort. Lastly, one limitation of our study is the lack of untreated patients for comparison. 445 

Therefore, we cannot evaluate the potential of Tregs as a prognostic biomarker. Of note, Tregs 446 

have been associated with better prognosis both for treated41 and untreated patients55. 447 

The association of T cell infiltration with patient prognosis was assessed using: i) the average 448 

of two or three available TMA cores, and ii) the core with the highest T cell infiltration (or the 449 

“immune hot-spot” core). While using the core average can better account for TME 450 

heterogeneity and may be more representative of an entire tumor section, the immune hot 451 

spot core could better reveal subtle immune signatures of distinct T cell subtypes and 452 

infiltration levels that would have otherwise been attenuated or lost by averaging. Comparing 453 

the two workflows, the results were similar, especially in the univariate analysis, where none 454 

of the single markers was significant, while Treg cells were significantly associated with DFS 455 
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in both workflows. In the multivariate analysis, the results were comparable for the multi-456 

marker classes, with Treg cells remaining significant, while the single markers were 457 

inconsistent between workflows. In addition, when using hierarchical clustering for the immune 458 

hot-spot core we were unable to discover a distinct immune signature that was significantly 459 

associated with survival (data not shown). Since the TMA cores were randomly selected from 460 

the tumor center, it is unknown whether the immune hot -pot represents the entire tumor or is 461 

random event. Considering these limitations, averaging may be a superior sampling approach 462 

for assessing tumor immune infiltration than selecting the hot-spot for the purposes of this 463 

study.  464 

KRAS status has been reported to be a biomarker for outcome in MSS stage III CRC20. KRAS 465 

mutational status was not significantly associated with outcome in our study, although there 466 

was a non-significant association for improved DFS in the KRAS mutant group. KRAS 467 

mutation has been associated with an immunosuppressive TME in MSS CRC21. However, no 468 

differences were observed in the levels of any the T cell subtypes examined between KRAS 469 

WT and mutant tumors in our study.  470 

In summary, we show that multiplexed analysis of tissue and multi-marker cell classification 471 

can be used to accurately determine immune cells in tumor and stroma in colorectal tumor 472 

cores. We also provide proof-of-concept evidence for its utility to identify highly specific 473 

immune subsets that have clinical relevance. 474 

 475 

Supplementary information is available at Modern Pathology’s website 476 

 477 

References: 478 

1 Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, et al. ASCO 479 

2006 update of recommendations for the use of tumor markers in gastrointestinal 480 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432210doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432210
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

cancer. J. Clin. Oncol. 2006;24:5313–5327. 481 

2 André T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, et al. 482 

Oxaliplatin, Fluorouracil, and Leucovorin as Adjuvant Treatment for Colon Cancer. N 483 

Engl J Med. 2004;350:2343–2351. 484 

3 Auclin E, Zaanan A, Vernerey D, Douard R, Gallois C, Laurent-Puig P, et al. Subgroups 485 

and prognostication in stage III colon cancer: future perspectives for adjuvant therapy. 486 

Ann Oncol  Off J Eur Soc Med Oncol. 2017;28:958–968. 487 

4 Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. 488 

The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a 489 

population-based to a more “personalized” approach to cancer staging. CA Cancer J 490 

Clin. 2017;67:93–99. 491 

5 Allen WL, Dunne PD, McDade S, Scanlon E, Loughrey M, Coleman HG, et al. 492 

Transcriptional Subtyping and CD8 Immunohistochemistry Identifies Patients With 493 

Stage II and III Colorectal Cancer With Poor Prognosis Who Benefit From Adjuvant 494 

Chemotherapy. JCO Precis Oncol. 2018;2:1–15. 495 

6 Fridman WH, Pagès F, Saut̀s-Fridman C, Galon J. The immune contexture in human 496 

tumours: Impact on clinical outcome. Nat. Rev. Cancer. 2012;12:298–306. 497 

7 Galon J, Pagès F, Marincola FM, Thurin M, Trinchieri G, Fox BA, et al. The immune 498 

score as a new possible approach for the classification of cancer. J. Transl. Med. 499 

2012;10. doi:10.1186/1479-5876-10-1. 500 

8 Nosho K, Baba Y, Tanaka N, Shima K, Hayashi M, Meyerhardt JA, et al. Tumour-501 

infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: 502 

Cohort study and literature review. J Pathol. 2010;222:350–366. 503 

9 Malka D, Lièvre A, André T, Taïeb J, Ducreux M, Bibeau F. Immune scores in colorectal 504 

cancer: Where are we? Eur. J. Cancer. 2020;140:105–118. 505 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432210doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432210
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

10 Sharma P, Allison JP. The future of immune checkpoint therapy. Science (80- ). 506 

2015;348:56–61. 507 

11 Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable 508 

clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-509 

deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 510 

2018;36:773–779. 511 

12 Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade 512 

in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–2520. 513 

13 Gerdes MJ, Sevinsky CJ, Sood A, Adak S, Bello MO, Bordwell A, et al. Highly 514 

multiplexed single-cell analysis of formalinfixed, paraffin-embedded cancer tissue. Proc 515 

Natl Acad Sci U S A. 2013;110:11982–11987. 516 

14 Berens ME, Sood A, Barnholtz-Sloan JS, Graf JF, Cho S, Kim S, et al. Multiscale, 517 

multimodal analysis of tumor heterogeneity in IDH1 mutant vs wild-type diffuse gliomas. 518 

PLoS One. 2019;14. doi:10.1371/journal.pone.0219724. 519 

15 Santamaria-Pang A, Padmanabhan RK, Sood A, Gerdes MJ, Sevinsky C, Li Q, et al. 520 

Robust single cell quantification of immune cell subtypes in histological samples. In: 521 

2017 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 522 

2017. : Institute of Electrical and Electronics Engineers Inc., 2017. p. 121–124. 523 

16 Padfield D, Rittscher J, Roysam B. Coupled minimum-cost flow cell tracking. In: Lecture 524 

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence 525 

and Lecture Notes in Bioinformatics). : Springer, Berlin, Heidelberg, 2009. p. 374–385. 526 

17 Sood A, Sui Y, McDonough E, Santamaría-Pang A, Al-Kofahi Y, Pang Z, et al. 527 

Comparison of multiplexed immunofluorescence imaging to chromogenic 528 

immunohistochemistry of skin biomarkers in response to monkeypox virus infection. 529 

Viruses. 2020;12. doi:10.3390/v12080787. 530 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432210doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432210
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

18 Santamaria-Pang A, Rittscher J, Gerdes M, Padfield D. Cell segmentation and 531 

classification by hierarchical supervised shape ranking. In: Proceedings - International 532 

Symposium on Biomedical Imaging. : IEEE Computer Society, 2015. p. 1296–1299. 533 

19 Santamaria-Pang A, Sood A, Meyer D, Chowdhury A, Ginty F. Automated Phenotyping 534 

via Cell Auto Training (CAT) on the Cell DIVE Platform. : Institute of Electrical and 535 

Electronics Engineers (IEEE), 2020. p. 2750–2756. 536 

20 Taieb J, Le Malicot K, Shi Q, Penault-Llorca F, Bouché O, Tabernero J, et al. Prognostic 537 

Value of BRAF and KRAS Mutations in MSI and MSS Stage III Colon Cancer. J Natl 538 

Cancer Inst. 2017;109. doi:10.1093/jnci/djw272. 539 

21 Marco M, Chen C-T, Choi S-H, Pelossof R, Shia J, Garcia-Aguilar J. A KRAS mutation 540 

is associated with an immunosuppressive tumor microenvironment in mismatch-repair 541 

proficient colorectal cancer. J Clin Oncol. 2019;37:609–609. 542 

22 Sztupinszki Z, Gyorffy B. Colon cancer subtypes: Concordance, effect on survival and 543 

selection of the most representative preclinical models. Sci Rep. 2016;6:1–13. 544 

23 Guinney J, Dienstmann R, Wang X, De Reyniès A, Schlicker A, Soneson C, et al. The 545 

consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–1356. 546 

24 Isella C, Brundu F, Bellomo SE, Galimi F, Zanella E, Porporato R, et al. Selective 547 

analysis of cancer-cell intrinsic transcriptional traits defines novel clinically relevant 548 

subtypes of colorectal cancer. Nat Commun. 2017;8. doi:10.1038/ncomms15107. 549 

25 Song N, Pogue-Geile KL, Gavin PG, Yothers G, Kim SR, Johnson NL, et al. Clinical 550 

outcome from oxaliplatin treatment in stage II/III colon cancer according to intrinsic 551 

subtypes: Secondary analysis of NSABP C-07/NRG oncology randomized clinical trial. 552 

In: JAMA Oncology. : American Medical Association, 2016. p. 1162–1169. 553 

26 Shevyrev D, Tereshchenko V. Treg Heterogeneity, Function, and Homeostasis. Front. 554 

Immunol. 2020;10. doi:10.3389/fimmu.2019.03100. 555 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432210doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432210
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

27 Chen W, Konkel JE. Development of thymic Foxp3+ regulatory T cells: TGF-β matters. 556 

Eur. J. Immunol. 2015;45:958–965. 557 

28 Lui PPW, Cho I, Ali N. Tissue regulatory T cells. Immunology. 2020;161:4–17. 558 

29 Mekori YA, Hershko AY. T cell-mediated modulation of mast cell function: Heterotypic 559 

adhesion-induced stimulatory or inhibitory effects. Front. Immunol. 2012;3. 560 

doi:10.3389/fimmu.2012.00006. 561 

30 Gliwiński M, Iwaszkiewicz-Grześ D, Trzonkowski P. Cell-Based Therapies with T 562 

Regulatory Cells. BioDrugs. 2017;31:335–347. 563 

31 Khaja ASS, Toor SM, Salhat HE, Ali BR, Elkord E. Intratumoral FoxP3+Helios+ 564 

regulatory T Cells upregulating immunosuppressive molecules are expanded in human 565 

colorectal cancer. Front Immunol. 2017;8. doi:10.3389/fimmu.2017.00619. 566 

32 Curotto de Lafaille MA, Lafaille JJ. Natural and Adaptive Foxp3+ Regulatory T Cells: 567 

More of the Same or a Division of Labor? Immunity. 2009;30:626–635. 568 

33 Plitas G, Konopacki C, Wu K, Bos PD, Morrow M, Putintseva E V., et al. Regulatory T 569 

Cells Exhibit Distinct Features in Human Breast Cancer. Immunity. 2016;45:1122–570 

1134. 571 

34 Chen WJ, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, et al. Conversion of Peripheral 572 

CD4+CD25- Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of 573 

Transcription Factor Foxp3. J Exp Med. 2003;198:1875–1886. 574 

35 Yaqub S, Henjum K, Mahic M, Jahnsen FL, Aandahl EM, Bjørnbeth BA, et al. 575 

Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in 576 

a COX-2 dependent manner. Cancer Immunol Immunother. 2008;57:813–821. 577 

36 Wang Z, Hua W, Li C, Chang H, Liu R, Ni Y, et al. Protective Role of Fecal Microbiota 578 

Transplantation on Colitis and Colitis-Associated Colon Cancer in Mice Is Associated 579 

With Treg Cells. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.02498. 580 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432210doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432210
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

37 Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of Treg-mediated T cell 581 

suppression. Front. Immunol. 2012;3. doi:10.3389/fimmu.2012.00051. 582 

38 Mowat AM, Agace WW. Regional specialization within the intestinal immune system. 583 

Nat. Rev. Immunol. 2014;14:667–685. 584 

39 Zhuo C, Li Z, Xu Y, Wang Y, Li Q, Peng J, et al. Higher FOXP3-TSDR demethylation 585 

rates in adjacent normal tissues in patients with colon cancer were associated with 586 

worse survival. Mol Cancer. 2014;13:153. 587 

40 Zhu X wen, Zhu H zhen, Zhu Y qing, Feng M hui, Qi J, Chen Z fen. Foxp3 expression 588 

in CD4+CD25+Foxp3+ regulatory T cells promotes development of colorectal cancer 589 

by inhibiting tumor immunity. J Huazhong Univ Sci Technol - Med Sci. 2016;36:677–590 

682. 591 

41 Correale P, Rotundo MS, Del Vecchio MT, Remondo C, Migali C, Ginanneschi C, et al. 592 

Regulatory (FoxP3+) T-cell tumor infiltration is a favorable prognostic factor in 593 

advanced colon cancer patients undergoing chemo or chemoimmunotherapy. J 594 

Immunother. 2010;33:435–441. 595 

42 Hu G, Li Z, Wang S. Tumor-infiltrating FoxP3+ Tregs predict favorable outcome in 596 

colorectal cancer patients: A meta-analysis. Oncotarget. 2017;8:75361–75371. 597 

43 Frey DM, Droeser RA, Viehl CT, Zlobec I, Lugli A, Zingg U, et al. High frequency of 598 

tumor-infiltrating FOXP3 + regulatory T cells predicts improved survival in mismatch 599 

repair-proficient colorectal cancer patients. Int J Cancer. 2010;126:NA-NA. 600 

44 Xu P, Fan W, Zhang Z, Wang J, Wang P, Li Y, et al. The clinicopathological and 601 

prognostic implications of FoxP3+ regulatory T cells in patients with colorectal cancer: 602 

A meta-analysis. Front Physiol. 2017;8. doi:10.3389/fphys.2017.00950. 603 

45 Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D, Atarashi K, et al. Two FOXP3 604 

+ CD4 + T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat 605 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432210doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432210
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

Med. 2016;22:679–684. 606 

46 Gooden MJM, De Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence 607 

of tumour-infiltrating lymphocytes in cancer: A systematic review with meta-analysis. 608 

Br. J. Cancer. 2011;105:93–103. 609 

47 Wang J, Ioan-Facsinay A, van der Voort EIH, Huizinga TWJ, Toes REM. Transient 610 

expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol. 611 

2007;37:129–138. 612 

48 Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, et al. Activation-613 

induced FOXP3 in human T effector cells does not suppress proliferation or cytokine 614 

production. Int Immunol. 2007;19:345–354. 615 

49 Elkord E, Al Samid MA, Chaudhary B. Helios, and not FoxP3, is the marker of activated 616 

Tregs expressing GARP/LAP. Oncotarget. 2015;6:20026–20036. 617 

50 Scurr M, Ladell K, Besneux M, Christian A, Hockey T, Smart K, et al. Highly prevalent 618 

colorectal cancer-infiltrating LAP + Foxp3 - T cells exhibit more potent 619 

immunosuppressive activity than Foxp3 + regulatory T cells. Mucosal Immunol. 620 

2014;7:428–439. 621 

51 Olguín JE, Medina-Andrade I, Rodríguez T, Rodríguez-Sosa M, Terrazas LI. Relevance 622 

of regulatory T cells during colorectal cancer development. Cancers (Basel). 623 

2020;12:1–19. 624 

52 Dunne MR, Ryan C, Nolan B, Tosetto M, Geraghty R, Winter DC, et al. Enrichment of 625 

inflammatory IL-17 and TNF-α secreting CD4+ T cells within colorectal tumors despite 626 

the presence of elevated CD39+ T regulatory cells and increased expression of the 627 

immune checkpoint molecule, PD-1. Front Oncol. 2016;6:50. 628 

53 Toor SM, Murshed K, Al-Dhaheri M, Khawar M, Abu Nada M, Elkord E. Immune 629 

Checkpoints in Circulating and Tumor-Infiltrating CD4+ T Cell Subsets in Colorectal 630 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.24.432210doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432210
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

Cancer Patients. Front Immunol. 2019;10:2936. 631 

54 Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. 632 

Immunol. 2015;15:486–499. 633 

55 Lee WS, Park S, Lee WY, Yun SH, Chun HK. Clinical impact of tumor-infiltrating 634 

lymphocytes for survival in stage II colon cancer. Cancer. 2010;116:5188–5199. 635 

 636 

Acknowledgements.  Research reported in this publication was partially supported by the 637 

National Cancer Institute of the National Institutes of Health under award number 638 

R01CA208179 supporting FG, EMcD, AS, JG and AS-P and AC. DBL and XS were supported 639 

by a US-Ireland R01 award (NI Partner supported by HSCNI, STL/5715/15). JHMP is 640 

supported by Science Foundation Ireland and the Health Research Board (16/US/3301). ML 641 

is supported by Health Data Research UK 642 

Conflict of Interest: ML has received honoraria from Pfizer, EMD Serono and Roche for 643 

presentations unrelated to this work. ML is supported by an unrestricted educational grant 644 

from Pfizer for research unrelated to this work. 645 

 646 

LEGENDS OF FIGURES 647 

Figure 1: A) Cell DIVE workflow: immunofluorescence staining with overlaying segmentation 648 

masks and resulting classification. Based on the classification data, an immune and stroma 649 

score was calculated per TMA core. B.) The immune score was calculated from the immune 650 

cell density as counts of segmented cells that were positive for any of the immune markers 651 

(CD45, CD3, CD4, CD8) in each core. The cores were grouped based on the pathologist’s 652 

high-medium-low immune scores (x-axis) and each dot was the value of the Cell DIVE immune 653 

score (y-axis) per core. C.) The stroma score for each TMA core was calculated by counting 654 

segmented cells outside the epithelial mask that were negative for AE1 and immune markers, 655 
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and converting to ‘percent of total’ cells. The cores were grouped based on the pathologist’s 656 

high-medium-low stroma scores (x-axis) and with each dot indicating stroma score (y-axis) 657 

per core. Statistical analysis was performed using Welch’s ANOVA and pairwise t-test 658 

(***P < 0.001 for all comparisons). 659 

Figure 2: A(a) Representative multiplexed immunofluorescent tissue images and 660 

segmentation masks  that were used for the multi marker classification workflow. For single 661 

marker classification, the immune markers were assessed individually (CD3, CD4, CD8, 662 

FOXP3, PD1) and each cell was classified as positive or negative for each marker. A(b) 663 

Marker combination (AE1, CD3, CD4, CD8, FOXP3, PD1) was used for multi-marker 664 

classification workflow and based on the marker co-staining each cell was assigned a cell 665 

subtype as shown in the table. The eight multi marker T cell subtypes were: T helper cells 666 

(Th), T helper PD1 (ThPD1), T cytotoxic (Tc), T cytotoxic PD1+ (TcPD1), T regulatory (Treg), 667 

T regulatory PD1 positive (TregPD1), Epithelial and Other (non-lymphocyte, non-epithelial) 668 

cells. A(c) Illustration of the resulting multi-marker classification for the nuclear mask. B) 669 

Distribution of calculated values for % of Total for each T cell subtype, per patient. Each value 670 

represents the average of 2-3 assessable cores, per patient. C) Total counts from all patients 671 

grouped as epithelial-associated cells (red) and stromal cells (green) for each multi-marker T 672 

cell subtype. D) Correlation matrix showing the relationship between different T cell subtypes 673 

(Spearman’s correlation coefficients). A color-coded correlation scale is provided and blue 674 

ellipses represent positive correlations, while darker color and narrower ellipses correspond 675 

to larger correlation coefficient magnitudes. E) Heatmap showing separation and clustering of 676 

patients based on % T cells of Total cells in tumor cores.  Clusters based on the Ward.D 677 

agglomerative clustering method with Euclidean correlation distance measure. 678 

Figure 3: Survival estimates for DFS and OS for Average of cores. Forest plots for multi-679 

marker classification (Tc, TcPD1, Th, ThPD1, Treg, TregPD1) and single-marker classification 680 

(CD3, CD4, CD8, FOXP3, PD1) for the patient cohort. Estimated HRs, 95% CIs, and p values 681 

from likelihood ratio tests from univariate Cox proportional hazards models demonstrated the 682 
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associations between the percent of total classified cells with the risks of recurrence (DFS) 683 

(A) and  death (OS) (B).  In the multivariate analysis the biomarkers were adjusted for clinical 684 

variables (T, N, age, sex, nodal count, positive nodes, differentiation, lymphovascular 685 

invasion) for DFS (C) and OS (D). Kaplan–Meier curves demonstrating univariate survival 686 

analysis for percent of total for Treg dichotomized at the median for DFS (E) and OS (F). 687 

Differences in Kaplan–Meier survival curves are presented as log- rank P value.  688 

Figure 4: Survival estimates for DFS and OS for immune hot-spot: Forest plots for multi-689 

marker classification (Tc, TcPD1, Th, ThPD1, Treg, TregPD1) and single-marker classification 690 

(CD3, CD4, CD8, FOXP3, PD1) for the patient cohort. Estimated HRs, 95% CIs, and P values 691 

from likelihood ratio tests from univariate Cox proportional hazards models demonstrated the 692 

associations between the percent of total classified cells with the risks of recurrence (DFS) 693 

(A) and death (OS) (B). In the multivariate analysis the biomarkers were adjusted for clinical 694 

variables (T, N, age, sex, nodal count, positive nodes, differentiation, lymphovascular 695 

invasion) for DFS (C) and OS (D).  696 

Supplementary Figure 1: Panel of representative multiplexed image with the corresponding 697 

segmentation masks and individual staining for each antibody used for T cell classification 698 

and segmentation in this study. 699 

Supplementary Figure 2: Heatmap showing separation and clustering of patients based on 700 

% T cells of Total T cell subtypes in tumor cores.  Clusters based on the Ward.D agglomerative 701 

clustering method with Euclidean correlation distance measure. Kaplan-Meier curves color-702 

coded for the corresponding 2 (A) and 3 (B) clusters of patients, demonstrating univariate 703 

survival analysis for DFS and OS. Differences in Kaplan–Meier survival curves are presented 704 

as log- rank p value.  705 

Supplementary Figure 3: Pearson Correlation between cell counts for single marker model 706 

and multi marker classification. CD3: CD3 vs Tc+TcPD1+Th+ThPD1+Treg+TregPD1, CD4: 707 

CD4 vs Th+ThPD1+Treg+TregPD1, CD8: CD8 vs Tc+TcPD1, FOXP3: FOXP3 vs 708 
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Treg+TregPD1, PD1: PD1 vs TcPD1+ThPD1+TregPD1. The average counts of % of Total per 709 

patient were used for the analysis. 710 

Supplementary Figure 4: Representative vHE images and the corresponding multiplexed 711 

immunofluorescence and tissue mappings after classification. 712 

Supplementary Figure 5: Forest plots of multivariate Cox proportional hazards models for 713 

clinical variables after backward elimination. 714 

Supplementary Figure 6: Univariate survival analysis using Kaplan-Meier curves for single-715 

marker and multi-marker T cell subtypes as percent of Total for average. The patients were 716 

separated in two groups using the median as cut-off. 717 

Supplementary Figure 7: Univariate survival analysis using Kaplan-Meier curves for single-718 

marker and multi-marker T cell subtypes as percent of Total for immune hot-spot cores. The 719 

patients were separated in two groups using the median as cut-off.  720 

Supplementary Figure 8: A) Association of Kras status with survival for treated patients for 721 

DFS and OS. 722 

 723 

 724 
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Table 1: Demographic data of patient cohort

Overall

(N=117)

DFS (months)

Mean (SD) 51.7 (27.9)

Median [Min, Max] 50.7 [2.40, 115]

OS (months)

Mean (SD) 58.5 (24.7)

Median [Min, Max] 59.1 [9.20, 115]

sex

female 46 (39.3%)

male 71 (60.7%)

T

2 10 (8.5%)

3 70 (59.8%)

4 37 (31.6%)

N

1 83 (70.9%)

2 34 (29.1%)

age (years)

Mean (SD) 59.2 (11.2)

Median [Min, Max] 61.0 [26.0, 79.0]

LNC

Mean (SD) 21.3 (11.0)

Median [Min, Max] 19.0 [5.00, 73.0]

PLN

Mean (SD) 3.05 (2.49)

Median [Min, Max] 2.00 [1.00, 13.0]

LVI

no 49 (41.9%)

yes 68 (58.1%)

differentiation

moderate to well 99 (84.6%)

poor 16 (13.7%)

*LNC=Lymph Node Count, *PLN=Positive Lymph Nodes, *LVI=Lymphovascular Invasion
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Table 2: Summary statistics for multi-marker and single-marker subtypes.

Overall

(N=117)

% Tc (of total cells)

Mean (SD) 0.693 (0.925)

Median [Min, Max] 0.423 [0.0111, 6.49]

% TcPD1

Mean (SD) 0.477 (0.619)

Median [Min, Max] 0.197 [0, 3.06]

% Th

Mean (SD) 0.133 (0.251)

Median [Min, Max] 0.0511 [0, 1.62]

% ThPD1

Mean (SD) 0.559 (0.593)

Median [Min, Max] 0.394 [0.0222, 3.57]

% Treg

Mean (SD) 0.568 (0.732)

Median [Min, Max] 0.312 [0, 4.88]

% TregPD1

Mean (SD) 0.262 (0.275)

Median [Min, Max] 0.166 [0.00471, 1.48]

% CD3 

Mean (SD) 3.18 (2.88)

Median [Min, Max] 2.52 [0.221, 22.3]

% CD4

Mean (SD) 3.64 (3.52)

Median [Min, Max] 2.67 [0.126, 23.3]

% CD8

Mean (SD) 2.17 (2.42)

Median [Min, Max] 1.35 [0.0283, 12.3]

% FOXP3

Mean (SD) 1.58 (1.46)

Median [Min, Max] 1.19 [0.0114, 8.57]

% PD1

Mean (SD) 0.669 (0.694)

Median [Min, Max] 0.395 [0.00943, 3.41]
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Table 3: Demographic data and summary statistics of multi-marker model based

 on KRAS status

WT mutant

(N=64) (N=44)

sex

female 24 (37.5%) 20 (45.5%) 0.53

male 40 (62.5%) 24 (54.5%)

T

2 4 (6.2%) 6 (13.6%) 0.342

3 37 (57.8%) 26 (59.1%)

4 23 (35.9%) 12 (27.3%)

N

1 42 (65.6%) 34 (77.3%) 0.277

2 22 (34.4%) 10 (22.7%)

age scores

<50 18 (28.1%) 7 (15.9%) 0.296

>70 14 (21.9%) 7 (15.9%)

51-60 11 (17.2%) 11 (25.0%)

61-70 21 (32.8%) 19 (43.2%)

LNC

<12 8 (12.5%) 5 (11.4%) 0.919

>20 28 (43.8%) 21 (47.7%)

Dec-20 28 (43.8%) 18 (40.9%)

PLN

N>7 6 (9.4%) 2 (4.5%) 0.393

N1-3 42 (65.6%) 34 (77.3%)

N4-6 16 (25.0%) 8 (18.2%)

LVI

no 21 (32.8%) 23 (52.3%) 0.0683

yes 43 (67.2%) 21 (47.7%)

% Tc (of total cells)

Mean (SD) 0.636 (0.728) 0.848 (1.20) 0.355

Median [Min, Max] 0.421 [0.0111, 3.02] 0.475 [0.0199, 6.49]

% TcPD1

Mean (SD) 0.550 (0.670) 0.411 (0.546) 0.606

Median [Min, Max] 0.215 [0, 3.06] 0.254 [0, 2.63]

% Th

Mean (SD) 0.107 (0.215) 0.191 (0.309) 0.0721

Median [Min, Max] 0.0393 [0, 1.62] 0.115 [0, 1.47]

% ThPD1

Mean (SD) 0.547 (0.538) 0.634 (0.695) 0.63

Median [Min, Max] 0.407 [0.0222, 3.56] 0.416 [0.0564, 3.57]

% Treg

Mean (SD) 0.525 (0.669) 0.680 (0.862) 0.371

Median [Min, Max] 0.303 [0.0319, 3.49] 0.352 [0.00996, 4.88]

% TregPD1

Mean (SD) 0.287 (0.312) 0.245 (0.227) 0.778

Median [Min, Max] 0.182 [0.00471, 1.48] 0.166 [0.0253, 0.910]

*LNC=Lymph Node Count, *PLN=Positive Lymph Nodes, *LVI=Lymphovascular Invasion

p-value
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