

1 **STRATIFICATION OF CHEMOTHERAPY-TREATED STAGE III COLORECTAL CANCER**
2 **PATIENTS USING MULTIPLEXED IMAGING AND SINGLE CELL ANALYSIS OF T CELL**
3 **POPULATIONS**

4 Xanthi Stachtea¹, Maurice B. Loughrey^{1,2}, Manuela Salvucci^{3,4}, Andreas U. Lindner^{3,4},
5 Sanghee Cho⁴, Elizabeth McDonough⁴, Anup Sood⁴, John Graf⁴, Alberto Santamaria-Pang⁴,
6 Alex Corwin⁴, Pierre Laurent-Puig⁵, Sonali Dasgupta⁶, Sandra Van Schaeybroeck¹, Mark
7 Lawler¹, Jochen H. M. Prehn^{3,4}, Fiona Ginty⁴ and Daniel B Longley^{1#}

8

9

10

11

12

13

14

15

16 **Affiliations.** ¹Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry
17 and Biomedical Science, Queen's University Belfast, Northern Ireland, UK. ²Department of
18 Cellular Pathology, Royal Victoria Hospital, Belfast Health and Social Care trust, Belfast, UK.
19 ³Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal
20 College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, 123 St.
21 Stephen's Green, Dublin 2, Ireland. ⁴GE Research Center, 1 Research Circle, Niskayuna, NY,
22 12309, USA. ⁵UMR-S 1147, Université Paris Descartes, Paris, France. ⁶Velindre Cancer
23 Centre, Velindre Rd, Cardiff, UK. ⁷Precision Medicine Centre of Excellence, The Patrick G
24 Johnston Centre for Cancer Research, Queen's University, Belfast, Northern Ireland, UK.

25

26 **#Corresponding author:** Daniel B Longley, Patrick G. Johnston Centre for Cancer Research, School
27 of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK,
28 Phone: +44 (0) 28 9097 2636, Email: d.longley@qub.ac.uk.

29

30

31

32

33 **Abstract**

34 Colorectal cancer (CRC) has one of the highest cancer incidences and mortality rates. In stage
35 III, postoperative chemotherapy benefits <20% of patients, while more than 50% will develop
36 distant metastases. Predictive biomarkers for identification of patients with increased risk for
37 disease recurrence are currently lacking, with progress in biomarker discovery hindered by
38 the disease's inherent heterogeneity. The immune profile of colorectal tumors has previously
39 been found to have prognostic value. The aims of this study were to evaluate immune
40 signatures in the tumor microenvironment (TME) using an *in situ* multiplexed
41 immunofluorescence imaging and single cell analysis technology (Cell DIVETM). Tissue
42 microarrays (TMAs) with up to three 1mm diameter cores per patient were prepared from 117
43 stage III CRC patients treated with adjuvant fluoropyrimidine/oxaliplatin chemotherapy. Single
44 sections underwent multiplexed immunofluorescence with Cy3- and Cy5-conjugated
45 antibodies for immune cell markers (CD45, CD3, CD4, CD8, FOXP3, PD1) and cell
46 segmentation markers (DAPI, pan-cytokeratin, AE1, NaKATPase and S6). We applied a
47 probabilistic multi-class, multi-label classification algorithm based on multi-parametric models
48 to build statistical models of protein expression to classify immune cells. Expert annotations
49 of immune cell markers were made on a range of images, and Support Vector Machines
50 (SVM) were used to derive a statistical model for cell classification. Images were also manually
51 scored independently by a Pathologist as 'high', 'moderate' or 'low', for stromal and total
52 immune cell content. Excellent agreement was found between manual and total automated
53 scores ($p<0.0001$). Higher levels of multi-marker classified regulatory T cells
54 (CD3+CD4+FOXP3+PD1-) were significantly associated with disease-free survival (DFS) and
55 overall-survival (OS) ($p=0.049$ and 0.032), compared to FOXP3 alone. Our results also
56 showed that PD1- Tregs rather than PD1+ Tregs were associated with improved survival.
57 Overall, compared to single markers, multi-marker classification provided more accurate
58 quantitation of immune cells with greater potential for predicting patient outcomes.

59

60 **Introduction**

61 For early and locally advanced (stage I and II) colorectal cancer (CRC), the standard treatment
62 of choice for low risk patients is surgical resection. Subsequent oncological treatment
63 decisions for non-metastatic CRC are based largely on the anatomical AJCC/UICC TNM
64 staging classification¹. After the MOSAIC study in 2004, patients with stage III CRC now
65 commonly receive oxaliplatin/fluoropyrimidine/leucovorin (5-fluorouracil (5FU), FOLFOX; or
66 xeloda/capecitabine, XELOX) as standard adjuvant treatment². Of patients with stage III CRC
67 treated with adjuvant chemotherapy, only ~20% will benefit from adjuvant FOLFOX, and 30%
68 relapse within 2 to 3 years after surgery. Consequently, 80% of patients receive chemotherapy
69 (and endure unnecessary toxicities) that yields no benefit³. However, improvements in the
70 understanding of CRC heterogeneity are paving the way for more personalized approaches
71 that combine both histological and molecular data intelligence for patient stratification and
72 therapy selection, including selecting which patients will benefit from adjuvant
73 chemotherapy^{4,5}.

74 In the past decade, there has been an increasing interest in the impact of the tumor
75 microenvironment (TME) on patient prognosis. Decreased risk of tumor progression and
76 improved survival have been observed in solid tumors with high T cell infiltration⁶. For CRC,
77 the concept of an “Immunoscore” was introduced by Galon *et al*; this evaluates CD3- and
78 CD8-positive immune infiltrates in the tumor core (TC) and tumor margin (TM) to classify
79 “TNM-immune scores” for tumors⁷. In addition to Immunoscore, there have been numerous
80 studies that reinforce the importance of tumor-infiltrating lymphocytes (TILs) as indicators of
81 prognosis in CRC^{8,9}. The importance of the immune contexture in CRC for patient prognosis
82 logically suggests that immunotherapy could be a promising therapeutic approach¹⁰.
83 Responsiveness to immunotherapy depends on several key factors, including high mutational
84 loads (leading to high levels of tumor neoantigens), which are found in MMR-deficient (dMMR)
85 microsatellite instability-high (MSI-high) CRC^{11,12}. The immune checkpoint inhibitor (ICI)
86 pembrolizumab has been approved by the US Food Drug Administration (FDA) for patients

87 with metastatic dMMR/MSI-high CRC. However, the majority of colorectal tumors are
88 microsatellite stable (MSS), with low mutational burdens and exhibit no response to ICI
89 therapy. Thus, chemotherapy remains the backbone therapy for MSS CRC.

90 With the unmet clinical need to better stratify stage III patients for possible adjuvant (or neo-
91 adjuvant) chemotherapy and the opportunity to better quantify immune response using newer
92 cell quantification method, our goal was: 1) to compare multi-marker immune cell classification
93 (using Cell DIVE) with immune cell scores determined by a pathologist and 2) investigate the
94 association between single-marker and multi-marker immune cell classification and patient
95 outcomes.

96

97 **Materials and Methods:**

98 **Patient Cohort:** Tissue microarrays (TMAs) from formalin-fixed paraffin-embedded (FFPE)
99 tissue blocks with up to three 1mm diameter cores per patient were prepared from 170 patients
100 with stage III CRC. The punches were taken from the center of the tumor based on
101 identification by a pathologist (Prof Manuel Salto-Tellez, Queen's University Belfast). The
102 patient samples were collected from three Research Centres: Beaumont Hospital (RCSI
103 Hospital Group, Ireland), Queen's University Belfast (UK) and Paris Descartes University
104 (France) and the TMAs were constructed at Queen's University Belfast. By design, the TMAs
105 from 91 patients had 2 or 3 cores from each tumor. Pathological stage was determined by the
106 AJCC TNM staging version applicable at the time of the reporting. All Centres provided ethical
107 approval for this study and informed consent was obtained from all participants (NIB12-0034).
108 Patients were recruited during 2005-2012.

109

110

111 At the patient level, the exclusion criteria based on tissue block or clinical data were: i) poor
112 tissue quality or no tumor cells in tissue, ii) loss of follow-up or recurrence and/or death within

113 less than two months from surgical resection, iii) absence of chemotherapy treatment, iv)
114 positive resection margins, v) tumor site was appendix, vi) stage II or IV disease, vii) only one
115 assessable core remaining after applying all exclusion criteria. At the tissue core level,
116 individual cores on the TMA were excluded for assessment after pathology TMA slide review
117 if no or minimal viable tumor was present for evaluation (i.e. minimal or no tumor tissue, heavily
118 artefacted tissue, extensive tumor necrosis, extensive presence of normal adjacent tissue).
119 After applying exclusion criteria from the original patient cohort, the remaining data comprised
120 117 stage III patients, who were all treated with 5FU-based adjuvant chemotherapy
121 (predominantly FOLFOX or XELOX).

122

123 **KRAS status:** A MassARRAY system (Sequenom) was used to detect somatic point
124 mutations of *KRAS*.

125

126 **Multiplexed immunofluorescence analysis of TMAs:** Multiplexed immunofluorescence
127 staining of the CRC TMAs was performed as previously described¹³ using Cell DIVE™ Cytiva,
128 Issaquah, WA), a multiplexed immunofluorescence microscopy method allowing for multiple
129 protein markers to be imaged and quantified at cell level in a single tissue section. Briefly,
130 formalin-fixed, paraffin-embedded (FFPE) tissue slides were de-paraffinized and rehydrated,
131 underwent a two-step antigen retrieval and were then stained for 1 hour at room temperature
132 using a Leica Bond autostainer. All antibodies were characterized per the previously described
133 protocol¹³ and when possible, antibodies in routine clinical use were employed. After down-
134 selection, each antibody was conjugated with either Cy3 or Cy5 bis-NHS-ester dyes using
135 standard protocols as previously described¹³. All sections underwent multiplexed
136 immunofluorescence for a total of 24 markers listed on **Supplementary Table 1**. The markers
137 of interest for this study included CD3, CD4, CD8, FOXP3, CD45, NaKATPase, S6, pan-
138 cytokeratin and AE1 and DAPI nuclear stain. All samples underwent DAPI imaging in every
139 round, and background imaging for the first five rounds and every three rounds thereafter.

140 **Image processing, single cell segmentation:** Using Cell DIVE automated image pre-
141 processing software, all images were registered to baseline using DAPI and underwent
142 autofluorescence subtraction, illumination and distortion correction. DAPI and Cy3
143 autofluorescence images were used to generate a pseudo-colored image, which visually
144 resembles a Hematoxylin and Eosin (H&E) stained image, which we refer to as a virtual H&E
145 (vH&E). This visualization format helps tissue QC review and facilitated review of tumor
146 morphology and lymphocytes. All cells in the epithelial and stromal compartments were
147 segmented using DAPI and pan-cytokeratin, while S6, and NaKATPase were used for
148 subcellular analysis of epithelial cells. Each segmented cell was assigned an individual ID and
149 spatial coordinate, as previously described¹³. Post segmentation, several quality control (QC)
150 steps were conducted, including visual review and manual scoring of tissue quality and
151 segmentation for every image, also described elsewhere¹⁴. Briefly, each image was reviewed
152 for completeness and accuracy of segmentation masks in each subcellular compartment and
153 tumor and stroma separation. Average biomarker intensity was calculated for each cell and
154 the following additional cell filtering criteria were applied: 1) epithelial cells were required to
155 have either 1-2 nuclei; 2) each sub-cellular compartment (nucleus, membrane, cytoplasm)
156 area had to have > 10 pixels and < 1500 pixels; 3) cells had to have excellent alignment with
157 the first round of staining (round 0) ; 4) cells were at >25 pixels distance from the image
158 margins; 5) cell area for nuclear segmentation mask was >100 or <3000 pixels.

159 **Immune cell classification:** A customized machine learning based algorithm¹⁵ developed as
160 a Fiji (ImageJ) plug-in was used for immune cell classification. This is a probabilistic multi-
161 class, multi-label classification algorithms based on multi-parametric models to build statistical
162 models of protein expression and classify immune cells. The images were first segmented into
163 epithelial and stromal regions or masks using a combination of PCK26 and AE1 (expressed
164 in epithelial cells). Nuclei were segmented using DAPI signal and a wavelet-based algorithm¹⁶
165 and assigned to the epithelium or stromal regions based on co-localization of the nuclei with
166 the epithelial or stromal masks. Manual expert annotations of the following markers associated

167 with each segmented cell were made: AE1+, CD45+ CD3+, CD4+, CD8+, FOXP3+ and PD1+
168 and negative cells. Support Vector Machines (SVM) were used to derive a statistical model
169 for cell classification. This multi-marker, annotation driven workflow was custom designed as
170 an FIJI plug-in and allows analysis of complex multi-class models (up to 27 markers)^{17,15}.
171 Following classification, counts for both single-marker and multi-marker immune cell types
172 were determined.

173 **Pathologist Scoring:** A gastrointestinal pathologist (Maurice B. Loughrey, MBL) performed
174 visual inspection of the virtual H&E slides generated from the DAPI and autofluorescence
175 images^{13,18}, for the 419 TMA cores. After applying exclusion criteria described earlier, 28 cores
176 were excluded and 391 cores were assessed. MBL assigned two qualitative scores to each
177 core comprising either ‘high’, ‘moderate’ or ‘low’ score, one for stromal cell content and one
178 for immune cell content. For stroma, a high score was assigned when the stromal area was
179 higher than the epithelial area; a moderate score was assigned when the stromal and the
180 epithelial areas were equivalent; and a low score was assigned when the stromal area was
181 lower than the epithelial area. The immune score was based on lymphoid cell abundance in
182 the tissue core.

183 For equivalent comparison of the pathologist stroma and immune score with Cell DIVE
184 automated scores the following steps were taken: 1) “Stromal cells” were defined as DAPI
185 positive cells that were negative for all markers and outside the epithelial segmentation mask.
186 The stroma score was calculated as the percentage of non-immune stromal cells in all
187 segmented cells in the non-epithelial region; 2) “Immune cells” were defined as segmented
188 cells that were positive for any of the immune markers (CD45, CD3, CD4, CD8) and negative
189 for the AE1 epithelial marker. The immune scores were calculated from the counts of all
190 segmented immune cells. 3) “Epithelial cells” were defined as segmented cells that were
191 positive for AE1 staining and were within the Epithelial Segmentation Mask¹⁹.

192

193 **Statistical Analysis:** For comparison of Cell DIVE quantitative stroma and immune scores
194 with the pathologist scores, the Cell DIVE scores were categorized based on the pathologist's
195 three qualitative groups (high – moderate – low). Statistical analysis for comparison of group
196 means was performed using Welch's ANOVA and pairwise t-test. The association of the
197 single-marker and multi-marker classified immune cells with clinical outcome was evaluated
198 using both univariate and multivariate analyses with adjustment for clinico-pathological
199 confounders (T, N, age, sex, nodal count, positive nodes, lymphovascular invasion,
200 differentiation) in the multivariate Cox proportional hazards models. For the final multivariate
201 models, the variables were subjected to backward elimination and the variables that did not
202 contribute to model fit were removed. The final multivariate model was tested for multi-
203 collinearity and proportional Hazards assumption. Variables with variance inflation factor > 2
204 were removed, and the remaining variables were re-subjected to backward elimination. The
205 relative quality and goodness-of-fit of models was examined using Harrell's C-index, and the
206 model choice was determined by the Akaike Information Criterion (AIC). The T cell subtypes
207 were counted and analysed as continuous variables after being transformed to 'Percent of
208 total' tissue segmented cells, per patient. When the patients had multiple cores, the average
209 percent of the assessable cores was calculated, unless stated otherwise. For survival
210 analyses, the T cell subtypes calculated as % of total tissue cells were dichotomised at the
211 median, and the Kaplan-Meier method was used to plot survival curves with the log-rank test
212 used for comparisons. No adjustments were made for multiple comparisons. Hypothesis
213 testing was performed at the 5% significance level.

214 The end-points studied were disease-free survival (DFS) and overall-survival (OS). DFS was
215 the time between the study entry and either the date of the first recurrence, or the date that
216 the last follow-up took place. OS was the time between the date of study entry and either the
217 date of death from any cause, or the date of the last follow-up. All statistical analyses were
218 performed in R Version 3.5.1 (<https://cran.r-project.org>).

219

220 **RESULTS**

221 **Pathologist scoring versus automated immune cell classification**

222 The TMA cores from the patients were assessed by the pathologist (MBL) and, after exclusion
223 criteria, 62 patients had 3 assessable cores, 99 had 2 assessable cores whereas 7 patients
224 had only 1 assessable core. Intra-tumor heterogeneity was reflected in intra-patient
225 differences between the pathologist's immune and stroma scores. Specifically, from the 62
226 patients with 3 assessable cores, only 13 (19%) had the same immune score and 18 (29%)
227 the same stroma score for all three cores. For 5 (8%) patients, the immune score was different
228 in each of the three cores, while for 6 (10%) patients, the stroma score was different in each
229 of the three cores. This is to be expected given tumor histology variation in different core
230 punches. From the 99 patients with two cores, 44 (44%) had the same immune score and 42
231 (42%) had the same stroma score in both tissue cores. In summary, for the 161 patients with
232 more than one core, 104 (65%) showed immune heterogeneity and 101 (63%) showed stroma
233 heterogeneity between their tissue cores. This highlights the inherent high degree of intra-
234 tumor heterogeneity in CRC.

235 MBL performed visual inspection of the virtual H&E slides and assigned scores to each core
236 of 'high', 'moderate' or 'low', for both stromal and immune cell content. We used the machine
237 learning workflow to create a quantitative cell classification-based immune and stroma score
238 (**Figure 1A**) to compare with the pathologist's scores. The Cell DIVE immune ($p < 0.001$;
239 **Figure 1B**) and stromal ($p < 0.001$; **Figure 1C**) score values were significantly associated with
240 the corresponding pathologist's scores. Therefore, the machine-learning-based Cell DIVE cell
241 classification has potential to be used to evaluate tumor immune and stromal content.

242

243 **T cell classification for single-marker and multi-marker (multiplexed) classification**
244 **models.** In order to study the impact of different T cell subtypes on patient prognosis in this
245 adjuvant chemotherapy-treated cohort, we used a panel of T cell biomarkers as described

246 earlier. In addition, to single marker analyses (CD3, CD4, CD8, FOXP3, PD1), multi-marker
247 combinations were used to define subtypes (Tc, TcPD1, Th, ThPD1, Treg, TregPD1, **Figure**
248 **2A**). In the single-marker classification workflow, each one of these immune markers was
249 analysed individually, and each segmented cell was classified as either positive or negative
250 for each marker. Since the individual markers are used to generate the multi-marker
251 classification, it is not surprising that they were significantly correlated ($p<0.001$;
252 **Supplementary Figure 3**). The demographic data of the patient cohort are summarized in
253 **Table 1**.

254 Representative immunofluorescent images of a single tissue core for the individual markers
255 and the corresponding Segmentation Masks are illustrated in **Supplementary Figure 1**. In
256 the multi-marker classification workflow all markers were assessed simultaneously (**Figure**
257 **2A(a)**) and, depending on marker co-localization, segmented cells were assigned to the
258 following classes (**Figure 2A(b)**): PD1-negative T-helper (Th), PD1-positive Th (ThPD1), PD1-
259 negative cytotoxic T cells (Tc), PD1-positive Tc (TcPD1), PD1-negative Treg and PD1-positive
260 Treg (TregPD1).

261 To account for tumor heterogeneity, only patients with more than 1 core were used for the
262 analysis (117 patients). Each T cell subtype was calculated as a percentage of total cells per
263 core and the average percentage per patient was calculated. The distribution of T cell
264 subtypes across the cohort is shown in **Figure 2B**; Tc and TcPD1 cells were the most
265 abundant subtype associated with the epithelial compartment; however, overall and as
266 expected, the majority of each T cell subtype was located in the stroma (**Figure 2C**). All T cell
267 subtypes were generally positively correlated with each other, except TcPD1 had minimal
268 correlation with Th and Treg (**Figure 2D**). Hierarchical clustering was used to assess the
269 immune landscape of the patient cohort (**Figure 2E**). Separation into two clusters, immune
270 “hot” (higher immune cells) and “cold” (lower immune cells), showed that nearly 50% of
271 patients were low in all T cell subtypes; however, Kaplan-Meier analyses showed that their
272 prognosis was similar to patients with higher level of T cells (**Supplementary Figure 2A**).

273 After separating into three clusters, the “immune-hot” cluster of patients with highest infiltration
274 of T cell subtypes showed improved DFS and OS compared to the other 2 groups that had
275 lower T cell levels; however this did not reach statistical significance (**Supplementary Figure**
276 **2B**). Detailed summary statistics for T cells for the multi-marker classifications and single
277 marker classifications are presented in **Table 2**.

278 In **Supplementary Figure 4** representative images of virtual H&Es, immunofluorescent
279 images and tissue mappings with color-coded cell classifications are illustrated. The selected
280 images are representative of all 9 Stroma-Score/Immune-Score combinations from the
281 pathologist review. This shows that multiplexing can be used to identify multiple subtypes of
282 immune cells simultaneously, allowing for associations and potential cross-talk between
283 distinct cell subtypes in the TME to be assessed.

284

285 **T cell infiltration and patient prognosis.** As proof-of-concept for the applicability of this
286 approach for identification of prognostic immune biomarkers, we next determined the
287 prognostic value of the single and multiplexed markers in this FOLFOX-treated stage III patient
288 cohort. The correlation of each T cell type with clinical endpoints (DFS and OS) was analysed
289 using univariate and multivariate Cox proportional hazards models and Kaplan-Meier
290 analyses.

291 In the univariate analyses, the forest plots in **Figure 3** demonstrate that none of the single
292 immune markers was significantly associated with DFS (**Figure 3A**) or OS (**Figure 3B**),
293 whereas the level of Treg cells (CD3+/CD4+/FOXP3+/PD1-) from the multi-marker machine-
294 learning classification was significantly associated with longer DFS ($HR = 0.37$, $95\% CI = 0.14$ -
295 0.99 , $p = 0.047$).

296 For the multivariate analysis, the model initially included the clinical variables: T, N, age, sex,
297 nodal count, positive nodes, differentiation and lymphovascular invasion together with single-
298 and multi-marker immune scores. Backward elimination was used to select variables for the

299 final model. For DFS in the single-marker model, CD8 remained in the final model and was
300 positively associated with longer DFS (*multivariate adjusted HR* = 0.78, 95% *CI* = 0.6 - 1.0, *p*
301 = 0.048; **Figure 3C**) and in the multi-marker model Tregs remained positively associated with
302 longer DFS (*multivariate adjusted HR* = 0.34, 95% *CI* = 0.12 - 1.0, *p* = 0.049; **Figure 3C**). For
303 OS in the single-marker model, FOXP3 remained in the final model but did not reach
304 significance (*multivariate adjusted HR* = 0.56, 95% *CI* = 0.297 - 1.06, *p* = 0.074; **Figure 3D**)
305 and in the multi-marker model Tregs remained positively associated with longer OS
306 (*multivariate adjusted HR* = 0.08, 95% *CI* = 0.0079 - 0.8, *p* = 0.032; **Figure 3D**). The detailed
307 Forest plots for the multivariate models for clinical variables only are shown in **Supplementary**
308 **Figure 5**.

309 In order to facilitate comparison with previously published results, Treg levels were divided
310 into high and low groups using the sample median as the cut-off and Kaplan-Meier analyses
311 were performed for curves for DFS and OS (**Figure 3E** and **F**). Similar to the univariate and
312 multivariate analyses above, Treg-*high* patients had improved DFS (*p* = 0.019) and OS (*p* =
313 0.017) than Treg-*low* patients. Kaplan-Meier curves for all single-marker and multi-marker
314 classes dichotomized on the median are included in **Supplementary Figure 6**. Sub-regional
315 analysis based on the percentage of immune cell subtypes located in the stroma or located
316 within/associated with the epithelial compartment and association with outcome are shown in
317 **Supplementary Table 2**.

318

319 **T cell infiltration and patient prognosis for immune hot-spot.** In order to account for tumor
320 immune heterogeneity, the average percent T cells in multiple cores was used for the above
321 data analyses. However, this could dilute the impact of very high but very localised immune
322 cell infiltrates. We hypothesised that by focusing our analyses on the available cores with
323 *highest* tumor immune regions, we might uncover additional prognostic information; therefore,

324 we repeated the above analyses for the one core per patient with maximum T cell density for
325 each subtype.

326 We calculated the total counts of T cells in each core (CD3 counts for single markers and sum
327 of all T cell subtypes for the multiplexed model). From the 117 patients, the cores with the
328 highest number of CD3 or T cells (immune hot-spot core) was selected for further analysis.
329 Cox proportional hazards regression analysis and Kaplan-Meier plots were performed as
330 above. In the univariate analysis none of the single markers was significantly associated with
331 survival. For the multi-marker classification Treg levels were significantly associated with DFS
332 ($HR = 0.51$, 95% CI = 0.27-0.97, $p = 0.04$; **Figure 4A**) and were borderline significant for OS
333 ($HR = 0.24$, 95% CI = 0.059-1, $p = 0.05$; **Figure 4B**).

334 In the multivariate analysis, for DFS in the single-marker model, FOXP3 remained in the final
335 model (*multivariate adjusted HR = 0.75, 95% CI = 0.56-1.0, $p = 0.05$) and had borderline
336 statistical significance (**Figure 4C**), and in the multi-marker model Treg and TcPD1 remained
337 in the final model and Treg remained statistically significant (for TcPD1: *multivariate adjusted*
338 $HR = 0.68$, 95% CI = 0.38-1.22, $p = 0.194$; for Treg: *multivariate adjusted HR = 0.44, 95% CI
339 = 0.20-0.95, $p = 0.038$). For OS, none of the single markers remained in the final model. In
340 the multi-marker model, Treg levels remained in the final model and were significantly
341 associated with improved OS (*multivariate adjusted HR = 0.14, 95% CI = 0.026-0.78, $p =$
342 0.025) (**Figure 4D**).***

343 As previously, Kaplan-Meier curves for all single marker and multi-marker classes
344 dichotomized on the median are included in **Supplementary Figure 7**. Sub-regional analysis
345 based on the percentage of immune cell subtypes located in the stroma or located
346 within/associated with the epithelial compartment and association with outcome are shown in
347 **Supplementary Table 3**.

348

349 **Association of KRAS status with survival and distribution of T cell subtypes.** In adjuvant
350 FOLFOX/XELOX-treated stage III colorectal cancer patients, *KRAS* mutations have been
351 associated with shorter time to recurrence (TTR) and OS²⁰. We performed survival analysis
352 for the patients with known *KRAS* status (108 out of 117 patients tested) to study the effect of
353 this mutation in our cohort and its interaction with T cell subtype levels. Survival curves for
354 colorectal cancer DFS and OS were plotted using the Kaplan-Meier method and compared by
355 the log rank test using the *KRAS* mutation status as the stratification variable. *KRAS* status
356 was not significantly associated with prognosis in our cohort, although, interestingly, there was
357 a non-significant trend ($p = 0.07$) for *KRAS* mutant tumors to be associated with better DFS in
358 this FOLFOX-treated cohort (**Supplementary Figure 8**). *KRAS* mutation has also been
359 reported to have an immunosuppressive effect in the tumor microenvironment of colorectal
360 cancer²¹. Summary statistics for the clinicopathological data of the patients grouped by *KRAS*
361 status are shown in **Table 3**. No differences of T cell subtypes were observed between *KRAS*
362 WT and mutant patients, for any of the classes tested for multiplexed classification or single
363 marker classification. Collectively, these results indicate that the prognostic impact of T cell
364 subtypes is not associated with *KRAS* mutational status.

365

366 **DISCUSSION**

367 Currently 5FU-based chemotherapy (usually FOLFOX or XELOX) is used as adjuvant
368 treatment for stage-III CRC patients². However, only 20% of patients benefit, while 30% will
369 experience recurrence³. Therefore, reliable biomarkers that can predict which stage III patients
370 would benefit from adjuvant chemotherapy is an urgent unmet clinical need in CRC.

371 A large number of multigene signatures using tumor gene expression profiles have emerged
372 in the last decade, such as Consensus Molecular Subgroups (CMS) and CRC Intrinsic
373 Subtypes (CRIS), which classify patients into molecular subtypes for risk prediction^{22,23,24}.
374 However, this approach is therapeutically valuable only under the assumption that highest risk

375 patients will also be the most responsive to chemotherapy. This is not the case and, in fact,
376 CMS4 patients who are predicted to have poor prognosis do not benefit from intensive
377 adjuvant chemotherapy²⁵. We recently reported that stage-II patients with CMS2/CRIS-C
378 tumors, which demonstrate low levels of CD8-positive tumor-infiltrating lymphocytes benefit
379 from adjuvant chemotherapy. In stage III patients, benefit from chemotherapy was particularly
380 apparent in CMS2/CRIS-C and CMS2/CRIS-D patients⁵. However, transcriptional profiling is
381 not routinely available or applied in clinical practice. Ideally, a clinical test to triage patients for
382 adjuvant chemotherapy that could be performed rapidly on a single FFPE tumor section would
383 be extremely useful.

384 Herein, we explored the potential of the Cell DIVE platform for enumerating several key
385 immune cell populations previously linked with patient outcome in CRC. Using FFPE tissue
386 samples, Cell DIVE can measure up to 60 markers within a single histological section,
387 whereas standard IHC would require multiple sections to achieve similar result. This
388 requirement would introduce the problem of cellularity changes through the sequential
389 sections, as well as require extensive use of often limited valuable biological material. In
390 addition, with Cell DIVE, multiple markers can be visualized simultaneously, thus increasing
391 specificity for cell classification and providing a molecular signature within a histological
392 content. In concert with user-friendly machine-learning methodologies, Cell DIVE has the
393 potential to become a routine digital pathology platform for clinical laboratory settings. To
394 demonstrate this, we compared immune and stroma scoring from the visual inspection of all
395 tissues by a gastrointestinal pathologist with the corresponding Cell DIVE-derived immune
396 and stroma scoring. Cell DIVE scoring showed significant association with the pathologist's
397 scores, suggesting that the Cell DIVE platform provides robust immune and stroma scoring
398 for tumor tissue sections.

399 Using the Cell DIVE platform and a segmentation and classification workflow involving 10
400 markers, we show that we were able to detect 6 classes of T cells and associate them with
401 patient prognosis using a single section from TMAs of FOLFOX/XELOX-treated stage III

402 patients. Our results showed that high levels of Treg cells (CD3+/CD4+/FOXP3+/PD1-) were
403 associated with improved survival in this cohort and were distinct from their PD1+
404 counterparts.

405 Treg cells are key mediators of self-tolerance, regulating multiple immune cells, such as CD4+
406 and CD8+ effector cells, macrophages and dendritic cells²⁶. In the thymus, CD25+/CD4+
407 thymocytes can become Treg precursors, which, after stimulation with IL-2 and TGF-β, will
408 differentiate into natural thymic FOXP3+ Tregs^{27,28}. Natural Tregs can recognize self-antigens
409 and migrate to damaged tissues to suppress the activity of other T cells and prevent an
410 uncontrolled inflammatory response^{29,30}. Outside the thymus, in secondary lymphoid organs
411 and peripheral tissues, Tregs are derived from differentiation of naïve conventional CD4+ T
412 cells in response to cytokines that induce FOXP3 expression^{31,32}. In CRC, there are higher
413 levels of Tregs in the tumor than in healthy tissue. Recently, it has been shown that tumor-
414 associated Tregs have distinct differences from normal peripheral Tregs^{33,34}. In cancer, Tregs
415 can suppress anti-tumor immune responses³⁵ or have protective roles by controlling cancer-
416 associated inflammation^{36,37}. Within the intestine, immune cells reside within the mucosa³⁸ and
417 are tightly associated with the intestinal microbiome, thus intestinal Treg depletion can lead to
418 unresolved inflammation^{28,36}.

419 High Treg levels have been associated with poor clinical outcomes in different cancers,
420 including CRC^{35,39,40}, in contrast to our findings; other studies have associated high Treg levels
421 with better prognosis in CRC patients^{41,42,43,44,45}. There are a number of reasons that could be
422 responsible for these apparently contradictory results. For example, differences in the study
423 cohorts, most notably, stage and whether patients were treated with chemotherapy, but also
424 cohort size, variable thresholds for scoring, technical differences in detection and scoring
425 between laboratories and different follow-up times⁴⁶ may contribute to these findings. In
426 addition, the conflicting results may be due to lack of robust biomarkers that can reflect the
427 Treg versatility and plasticity, and the best classification method for Treg is still under active
428 debate. FOXP3 is a biomarker with high selectivity for Treg identification that is routinely used

429 as a Treg biomarker in clinical studies. However, it has limitations since it is not exclusively
430 expressed by Treg cells. FOXP3 can also be expressed in dividing, activated T effector
431 cells^{47,48}. Apart from FOXP3, some Treg subtypes can express other molecules that increase
432 their immuno-suppressive capacity, and these highly suppressive Treg cells have been
433 detected in CRC patients^{49,50,51}. Therefore, relying solely on FOXP3 as a marker of Tregs may
434 be the cause of some of the inconsistencies in the literature regarding Treg and CRC
435 prognosis.

436 Recently, it was shown that the majority of intra-tumoral T cells in the TME are CD4+ with co-
437 expression of PD1 molecules^{52,53}, which is similar to our findings. PD-1 expression on T cells
438 can be sign of early activation or exhaustion and reduced effector functions, due to prolonged
439 exposure to tumor antigens⁵⁴. Our results show that PD1- Tregs rather than PD1+ Tregs are
440 associated with improved survival. Overall, the presence of Treg correlates with the presence
441 of T effector cells in inflamed tissues. Given that CRC is a highly inflammatory type of tumor,
442 PD1-Treg enrichment may not be associated with pro-tumorigenic immunosuppression, but
443 rather are recruited as a result of an active immune response; this would explain the
444 association which we observed with improved prognosis in this chemotherapy-treated stage-
445 III cohort. Lastly, one limitation of our study is the lack of untreated patients for comparison.
446 Therefore, we cannot evaluate the potential of Tregs as a prognostic biomarker. Of note, Tregs
447 have been associated with better prognosis both for treated⁴¹ and untreated patients⁵⁵.

448 The association of T cell infiltration with patient prognosis was assessed using: i) the average
449 of two or three available TMA cores, and ii) the core with the highest T cell infiltration (or the
450 “immune hot-spot” core). While using the core average can better account for TME
451 heterogeneity and may be more representative of an entire tumor section, the immune hot
452 spot core could better reveal subtle immune signatures of distinct T cell subtypes and
453 infiltration levels that would have otherwise been attenuated or lost by averaging. Comparing
454 the two workflows, the results were similar, especially in the univariate analysis, where none
455 of the single markers was significant, while Treg cells were significantly associated with DFS

456 in both workflows. In the multivariate analysis, the results were comparable for the multi-
457 marker classes, with Treg cells remaining significant, while the single markers were
458 inconsistent between workflows. In addition, when using hierarchical clustering for the immune
459 hot-spot core we were unable to discover a distinct immune signature that was significantly
460 associated with survival (data not shown). Since the TMA cores were randomly selected from
461 the tumor center, it is unknown whether the immune hot -pot represents the entire tumor or is
462 random event. Considering these limitations, averaging may be a superior sampling approach
463 for assessing tumor immune infiltration than selecting the hot-spot for the purposes of this
464 study.

465 *KRAS* status has been reported to be a biomarker for outcome in MSS stage III CRC²⁰. *KRAS*
466 mutational status was not significantly associated with outcome in our study, although there
467 was a non-significant association for improved DFS in the *KRAS* mutant group. *KRAS*
468 mutation has been associated with an immunosuppressive TME in MSS CRC²¹. However, no
469 differences were observed in the levels of any the T cell subtypes examined between *KRAS*
470 WT and mutant tumors in our study.

471 In summary, we show that multiplexed analysis of tissue and multi-marker cell classification
472 can be used to accurately determine immune cells in tumor and stroma in colorectal tumor
473 cores. We also provide proof-of-concept evidence for its utility to identify highly specific
474 immune subsets that have clinical relevance.

475

476 Supplementary information is available at *Modern Pathology*'s website

477

478 **References:**

479 1 Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, et al. ASCO
480 2006 update of recommendations for the use of tumor markers in gastrointestinal

481 cancer. *J. Clin. Oncol.* 2006;24:5313–5327.

482 2 André T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, et al.

483 Oxaliplatin, Fluorouracil, and Leucovorin as Adjuvant Treatment for Colon Cancer. *N*

484 *Engl J Med.* 2004;350:2343–2351.

485 3 Auclin E, Zaanan A, Vernerey D, Douard R, Gallois C, Laurent-Puig P, et al. Subgroups

486 and prognostication in stage III colon cancer: future perspectives for adjuvant therapy.

487 *Ann Oncol Off J Eur Soc Med Oncol.* 2017;28:958–968.

488 4 Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al.

489 The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a

490 population-based to a more “personalized” approach to cancer staging. *CA Cancer J*

491 *Clin.* 2017;67:93–99.

492 5 Allen WL, Dunne PD, McDade S, Scanlon E, Loughrey M, Coleman HG, et al.

493 Transcriptional Subtyping and CD8 Immunohistochemistry Identifies Patients With

494 Stage II and III Colorectal Cancer With Poor Prognosis Who Benefit From Adjuvant

495 Chemotherapy. *JCO Precis Oncol.* 2018;2:1–15.

496 6 Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human

497 tumours: Impact on clinical outcome. *Nat. Rev. Cancer.* 2012;12:298–306.

498 7 Galon J, Pagès F, Marincola FM, Thurin M, Trinchieri G, Fox BA, et al. The immune

499 score as a new possible approach for the classification of cancer. *J. Transl. Med.*

500 2012;10. doi:10.1186/1479-5876-10-1.

501 8 Noshio K, Baba Y, Tanaka N, Shima K, Hayashi M, Meyerhardt JA, et al. Tumour-

502 infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis:

503 Cohort study and literature review. *J Pathol.* 2010;222:350–366.

504 9 Malka D, Lièvre A, André T, Taïeb J, Ducreux M, Bibeau F. Immune scores in colorectal

505 cancer: Where are we? *Eur. J. Cancer.* 2020;140:105–118.

506 10 Sharma P, Allison JP. The future of immune checkpoint therapy. *Science* (80-).
507 2015;348:56–61.

508 11 Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable
509 clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-
510 deficient/microsatellite instability-high metastatic colorectal cancer. *J Clin Oncol*.
511 2018;36:773–779.

512 12 Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade
513 in tumors with mismatch-repair deficiency. *N Engl J Med*. 2015;372:2509–2520.

514 13 Gerdes MJ, Sevinsky CJ, Sood A, Adak S, Bello MO, Bordwell A, et al. Highly
515 multiplexed single-cell analysis of formalinfixed, paraffin-embedded cancer tissue. *Proc
516 Natl Acad Sci U S A*. 2013;110:11982–11987.

517 14 Berens ME, Sood A, Barnholtz-Sloan JS, Graf JF, Cho S, Kim S, et al. Multiscale,
518 multimodal analysis of tumor heterogeneity in IDH1 mutant vs wild-type diffuse gliomas.
519 *PLoS One*. 2019;14. doi:10.1371/journal.pone.0219724.

520 15 Santamaria-Pang A, Padmanabhan RK, Sood A, Gerdes MJ, Sevinsky C, Li Q, et al.
521 Robust single cell quantification of immune cell subtypes in histological samples. In:
522 2017 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI
523 2017. : Institute of Electrical and Electronics Engineers Inc., 2017. p. 121–124.

524 16 Padfield D, Rittscher J, Roysam B. Coupled minimum-cost flow cell tracking. In: *Lecture
525 Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
526 and Lecture Notes in Bioinformatics)*. : Springer, Berlin, Heidelberg, 2009. p. 374–385.

527 17 Sood A, Sui Y, McDonough E, Santamaría-Pang A, Al-Kofahi Y, Pang Z, et al.
528 Comparison of multiplexed immunofluorescence imaging to chromogenic
529 immunohistochemistry of skin biomarkers in response to monkeypox virus infection.
530 *Viruses*. 2020;12. doi:10.3390/v12080787.

531 18 Santamaria-Pang A, Rittscher J, Gerdes M, Padfield D. Cell segmentation and
532 classification by hierarchical supervised shape ranking. In: Proceedings - International
533 Symposium on Biomedical Imaging. : IEEE Computer Society, 2015. p. 1296–1299.

534 19 Santamaria-Pang A, Sood A, Meyer D, Chowdhury A, Ginty F. Automated Phenotyping
535 via Cell Auto Training (CAT) on the Cell DIVE Platform. : Institute of Electrical and
536 Electronics Engineers (IEEE), 2020. p. 2750–2756.

537 20 Taieb J, Le Malicot K, Shi Q, Penault-Llorca F, Bouché O, Tabernero J, et al. Prognostic
538 Value of BRAF and KRAS Mutations in MSI and MSS Stage III Colon Cancer. *J Natl
539 Cancer Inst.* 2017;109. doi:10.1093/jnci/djw272.

540 21 Marco M, Chen C-T, Choi S-H, Pelossof R, Shia J, Garcia-Aguilar J. A KRAS mutation
541 is associated with an immunosuppressive tumor microenvironment in mismatch-repair
542 proficient colorectal cancer. *J Clin Oncol.* 2019;37:609–609.

543 22 Sztupinszki Z, Gyorffy B. Colon cancer subtypes: Concordance, effect on survival and
544 selection of the most representative preclinical models. *Sci Rep.* 2016;6:1–13.

545 23 Guinney J, Dienstmann R, Wang X, De Reyniès A, Schlicker A, Soneson C, et al. The
546 consensus molecular subtypes of colorectal cancer. *Nat Med.* 2015;21:1350–1356.

547 24 Isella C, Brundu F, Bellomo SE, Galimi F, Zanella E, Porporato R, et al. Selective
548 analysis of cancer-cell intrinsic transcriptional traits defines novel clinically relevant
549 subtypes of colorectal cancer. *Nat Commun.* 2017;8. doi:10.1038/ncomms15107.

550 25 Song N, Pogue-Geile KL, Gavin PG, Yothers G, Kim SR, Johnson NL, et al. Clinical
551 outcome from oxaliplatin treatment in stage II/III colon cancer according to intrinsic
552 subtypes: Secondary analysis of NSABP C-07/NRG oncology randomized clinical trial.
553 In: *JAMA Oncology*. : American Medical Association, 2016. p. 1162–1169.

554 26 Shevyrev D, Tereshchenko V. Treg Heterogeneity, Function, and Homeostasis. *Front.
555 Immunol.* 2020;10. doi:10.3389/fimmu.2019.03100.

556 27 Chen W, Konkel JE. Development of thymic Foxp3+ regulatory T cells: TGF- β matters.
557 Eur. J. Immunol. 2015;45:958–965.

558 28 Lui PPW, Cho I, Ali N. Tissue regulatory T cells. Immunology. 2020;161:4–17.

559 29 Mekori YA, Hershko AY. T cell-mediated modulation of mast cell function: Heterotypic
560 adhesion-induced stimulatory or inhibitory effects. Front. Immunol. 2012;3.
561 doi:10.3389/fimmu.2012.00006.

562 30 Gliwiński M, Iwaszkiewicz-Grześ D, Trzonkowski P. Cell-Based Therapies with T
563 Regulatory Cells. BioDrugs. 2017;31:335–347.

564 31 Khaja ASS, Toor SM, Salhat HE, Ali BR, Elkord E. Intratumoral FoxP3+Helios+
565 regulatory T Cells upregulating immunosuppressive molecules are expanded in human
566 colorectal cancer. Front Immunol. 2017;8. doi:10.3389/fimmu.2017.00619.

567 32 Curotto de Lafaille MA, Lafaille JJ. Natural and Adaptive Foxp3+ Regulatory T Cells:
568 More of the Same or a Division of Labor? Immunity. 2009;30:626–635.

569 33 Plitas G, Konopacki C, Wu K, Bos PD, Morrow M, Putintseva E V., et al. Regulatory T
570 Cells Exhibit Distinct Features in Human Breast Cancer. Immunity. 2016;45:1122–
571 1134.

572 34 Chen WJ, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, et al. Conversion of Peripheral
573 CD4+CD25- Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF- β Induction of
574 Transcription Factor Foxp3. J Exp Med. 2003;198:1875–1886.

575 35 Yaqub S, Henjum K, Mahic M, JahnSEN FL, Aandahl EM, Bjørnbeth BA, et al.
576 Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in
577 a COX-2 dependent manner. Cancer Immunol Immunother. 2008;57:813–821.

578 36 Wang Z, Hua W, Li C, Chang H, Liu R, Ni Y, et al. Protective Role of Fecal Microbiota
579 Transplantation on Colitis and Colitis-Associated Colon Cancer in Mice Is Associated
580 With Treg Cells. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.02498.

581 37 Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of Treg-mediated T cell
582 suppression. *Front. Immunol.* 2012;3. doi:10.3389/fimmu.2012.00051.

583 38 Mowat AM, Agace WW. Regional specialization within the intestinal immune system.
584 *Nat. Rev. Immunol.* 2014;14:667–685.

585 39 Zhuo C, Li Z, Xu Y, Wang Y, Li Q, Peng J, et al. Higher FOXP3-TSDR demethylation
586 rates in adjacent normal tissues in patients with colon cancer were associated with
587 worse survival. *Mol Cancer.* 2014;13:153.

588 40 Zhu X wen, Zhu H zhen, Zhu Y qing, Feng M hui, Qi J, Chen Z fen. Foxp3 expression
589 in CD4+CD25+Foxp3+ regulatory T cells promotes development of colorectal cancer
590 by inhibiting tumor immunity. *J Huazhong Univ Sci Technol - Med Sci.* 2016;36:677–
591 682.

592 41 Correale P, Rotundo MS, Del Vecchio MT, Remondo C, Migali C, Ginanneschi C, et al.
593 Regulatory (FoxP3+) T-cell tumor infiltration is a favorable prognostic factor in
594 advanced colon cancer patients undergoing chemo or chemoimmunotherapy. *J
595 Immunother.* 2010;33:435–441.

596 42 Hu G, Li Z, Wang S. Tumor-infiltrating FoxP3+ Tregs predict favorable outcome in
597 colorectal cancer patients: A meta-analysis. *Oncotarget.* 2017;8:75361–75371.

598 43 Frey DM, Droseser RA, Viehl CT, Zlobec I, Lugli A, Zingg U, et al. High frequency of
599 tumor-infiltrating FOXP3 + regulatory T cells predicts improved survival in mismatch
600 repair-proficient colorectal cancer patients. *Int J Cancer.* 2010;126:NA-NA.

601 44 Xu P, Fan W, Zhang Z, Wang J, Wang P, Li Y, et al. The clinicopathological and
602 prognostic implications of FoxP3+ regulatory T cells in patients with colorectal cancer:
603 A meta-analysis. *Front Physiol.* 2017;8. doi:10.3389/fphys.2017.00950.

604 45 Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D, Atarashi K, et al. Two FOXP3
605 + CD4 + T cell subpopulations distinctly control the prognosis of colorectal cancers. *Nat*

606 46 Med. 2016;22:679–684.

607 46 Gooden MJM, De Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence
608 of tumour-infiltrating lymphocytes in cancer: A systematic review with meta-analysis.
609 Br. J. Cancer. 2011;105:93–103.

610 47 Wang J, Ioan-Facsinay A, van der Voort EIH, Huizinga TWJ, Toes REM. Transient
611 expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol.
612 2007;37:129–138.

613 48 Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, et al. Activation-
614 induced FOXP3 in human T effector cells does not suppress proliferation or cytokine
615 production. Int Immunol. 2007;19:345–354.

616 49 Elkord E, Al Samid MA, Chaudhary B. Helios, and not FoxP3, is the marker of activated
617 Tregs expressing GARP/LAP. Oncotarget. 2015;6:20026–20036.

618 50 Scurr M, Ladell K, Besneux M, Christian A, Hockey T, Smart K, et al. Highly prevalent
619 colorectal cancer-infiltrating LAP + Foxp3 - T cells exhibit more potent
620 immunosuppressive activity than Foxp3 + regulatory T cells. Mucosal Immunol.
621 2014;7:428–439.

622 51 Olguín JE, Medina-Andrade I, Rodríguez T, Rodríguez-Sosa M, Terrazas LI. Relevance
623 of regulatory T cells during colorectal cancer development. Cancers (Basel).
624 2020;12:1–19.

625 52 Dunne MR, Ryan C, Nolan B, Tosetto M, Geraghty R, Winter DC, et al. Enrichment of
626 inflammatory IL-17 and TNF- α secreting CD4+ T cells within colorectal tumors despite
627 the presence of elevated CD39+ T regulatory cells and increased expression of the
628 immune checkpoint molecule, PD-1. Front Oncol. 2016;6:50.

629 53 Toor SM, Murshed K, Al-Dhaheri M, Khawar M, Abu Nada M, Elkord E. Immune
630 Checkpoints in Circulating and Tumor-Infiltrating CD4+ T Cell Subsets in Colorectal

631 Cancer Patients. *Front Immunol.* 2019;10:2936.

632 54 Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. *Nat. Rev. Immunol.* 2015;15:486–499.

634 55 Lee WS, Park S, Lee WY, Yun SH, Chun HK. Clinical impact of tumor-infiltrating
635 lymphocytes for survival in stage II colon cancer. *Cancer.* 2010;116:5188–5199.

636

637 **Acknowledgements.** Research reported in this publication was partially supported by the
638 National Cancer Institute of the National Institutes of Health under award number
639 R01CA208179 supporting FG, EMcD, AS, JG and AS-P and AC. DBL and XS were supported
640 by a US-Ireland R01 award (NI Partner supported by HSCNI, STL/5715/15). JHMP is
641 supported by Science Foundation Ireland and the Health Research Board (16/US/3301). ML
642 is supported by Health Data Research UK

643 **Conflict of Interest:** ML has received honoraria from Pfizer, EMD Serono and Roche for
644 presentations unrelated to this work. ML is supported by an unrestricted educational grant
645 from Pfizer for research unrelated to this work.

646

647 **LEGENDS OF FIGURES**

648 **Figure 1: A)** Cell DIVE workflow: immunofluorescence staining with overlaying segmentation
649 masks and resulting classification. Based on the classification data, an immune and stroma
650 score was calculated per TMA core. **B.)** The immune score was calculated from the immune
651 cell density as counts of segmented cells that were positive for any of the immune markers
652 (CD45, CD3, CD4, CD8) in each core. The cores were grouped based on the pathologist's
653 high-medium-low immune scores (x-axis) and each dot was the value of the Cell DIVE immune
654 score (y-axis) per core. **C.)** The stroma score for each TMA core was calculated by counting
655 segmented cells outside the epithelial mask that were negative for AE1 and immune markers,

656 and converting to 'percent of total' cells. The cores were grouped based on the pathologist's
657 high-medium-low stroma scores (x-axis) and with each dot indicating stroma score (y-axis)
658 per core. Statistical analysis was performed using Welch's ANOVA and pairwise t-test
659 (** $P < 0.001$ for all comparisons).

660 **Figure 2: A(a)** Representative multiplexed immunofluorescent tissue images and
661 segmentation masks that were used for the multi marker classification workflow. For single
662 marker classification, the immune markers were assessed individually (CD3, CD4, CD8,
663 FOXP3, PD1) and each cell was classified as positive or negative for each marker. **A(b)**
664 Marker combination (AE1, CD3, CD4, CD8, FOXP3, PD1) was used for multi-marker
665 classification workflow and based on the marker co-staining each cell was assigned a cell
666 subtype as shown in the table. The eight multi marker T cell subtypes were: T helper cells
667 (**Th**), T helper PD1 (**ThPD1**), T cytotoxic (**Tc**), T cytotoxic PD1+ (**TcPD1**), T regulatory (**Treg**),
668 T regulatory PD1 positive (**TregPD1**), **Epithelial** and **Other** (non-lymphocyte, non-epithelial)
669 cells. **A(c)** Illustration of the resulting multi-marker classification for the nuclear mask. **B)**
670 Distribution of calculated values for % of Total for each T cell subtype, per patient. Each value
671 represents the average of 2-3 assessable cores, per patient. **C)** Total counts from all patients
672 grouped as epithelial-associated cells (red) and stromal cells (green) for each multi-marker T
673 cell subtype. **D)** Correlation matrix showing the relationship between different T cell subtypes
674 (Spearman's correlation coefficients). A color-coded correlation scale is provided and blue
675 ellipses represent positive correlations, while darker color and narrower ellipses correspond
676 to larger correlation coefficient magnitudes. **E)** Heatmap showing separation and clustering of
677 patients based on % T cells of Total cells in tumor cores. Clusters based on the Ward.D
678 agglomerative clustering method with Euclidean correlation distance measure.

679 **Figure 3:** Survival estimates for DFS and OS for **Average** of cores. Forest plots for multi-
680 marker classification (Tc, TcPD1, Th, ThPD1, Treg, TregPD1) and single-marker classification
681 (CD3, CD4, CD8, FOXP3, PD1) for the patient cohort. Estimated HRs, 95% CIs, and p values
682 from likelihood ratio tests from univariate Cox proportional hazards models demonstrated the

683 associations between the percent of total classified cells with the risks of recurrence (DFS)
684 (**A**) and death (OS) (**B**). In the multivariate analysis the biomarkers were adjusted for clinical
685 variables (T, N, age, sex, nodal count, positive nodes, differentiation, lymphovascular
686 invasion) for DFS (**C**) and OS (**D**). Kaplan–Meier curves demonstrating univariate survival
687 analysis for percent of total for Treg dichotomized at the median for DFS (**E**) and OS (**F**).
688 Differences in Kaplan–Meier survival curves are presented as log- rank P value.

689 **Figure 4:** Survival estimates for DFS and OS for **immune hot-spot**: Forest plots for multi-
690 marker classification (Tc, TcPD1, Th, ThPD1, Treg, TregPD1) and single-marker classification
691 (CD3, CD4, CD8, FOXP3, PD1) for the patient cohort. Estimated HRs, 95% CIs, and P values
692 from likelihood ratio tests from univariate Cox proportional hazards models demonstrated the
693 associations between the percent of total classified cells with the risks of recurrence (DFS)
694 (**A**) and death (OS) (**B**). In the multivariate analysis the biomarkers were adjusted for clinical
695 variables (T, N, age, sex, nodal count, positive nodes, differentiation, lymphovascular
696 invasion) for DFS (**C**) and OS (**D**).

697 **Supplementary Figure 1:** Panel of representative multiplexed image with the corresponding
698 segmentation masks and individual staining for each antibody used for T cell classification
699 and segmentation in this study.

700 **Supplementary Figure 2:** Heatmap showing separation and clustering of patients based on
701 % T cells of Total T cell subtypes in tumor cores. Clusters based on the Ward.D agglomerative
702 clustering method with Euclidean correlation distance measure. Kaplan-Meier curves color-
703 coded for the corresponding 2 (A) and 3 (B) clusters of patients, demonstrating univariate
704 survival analysis for DFS and OS. Differences in Kaplan–Meier survival curves are presented
705 as log- rank p value.

706 **Supplementary Figure 3:** Pearson Correlation between cell counts for single marker model
707 and multi marker classification. **CD3:** CD3 vs Tc+TcPD1+Th+ThPD1+Treg+TregPD1, **CD4:**
708 CD4 vs Th+ThPD1+Treg+TregPD1, **CD8:** CD8 vs Tc+TcPD1, **FOXP3:** FOXP3 vs

709 Treg+TregPD1, **PD1**: PD1 vs TcPD1+ThPD1+TregPD1. The average counts of % of Total per
710 patient were used for the analysis.

711 **Supplementary Figure 4:** Representative vHE images and the corresponding multiplexed
712 immunofluorescence and tissue mappings after classification.

713 **Supplementary Figure 5:** Forest plots of multivariate Cox proportional hazards models for
714 clinical variables after backward elimination.

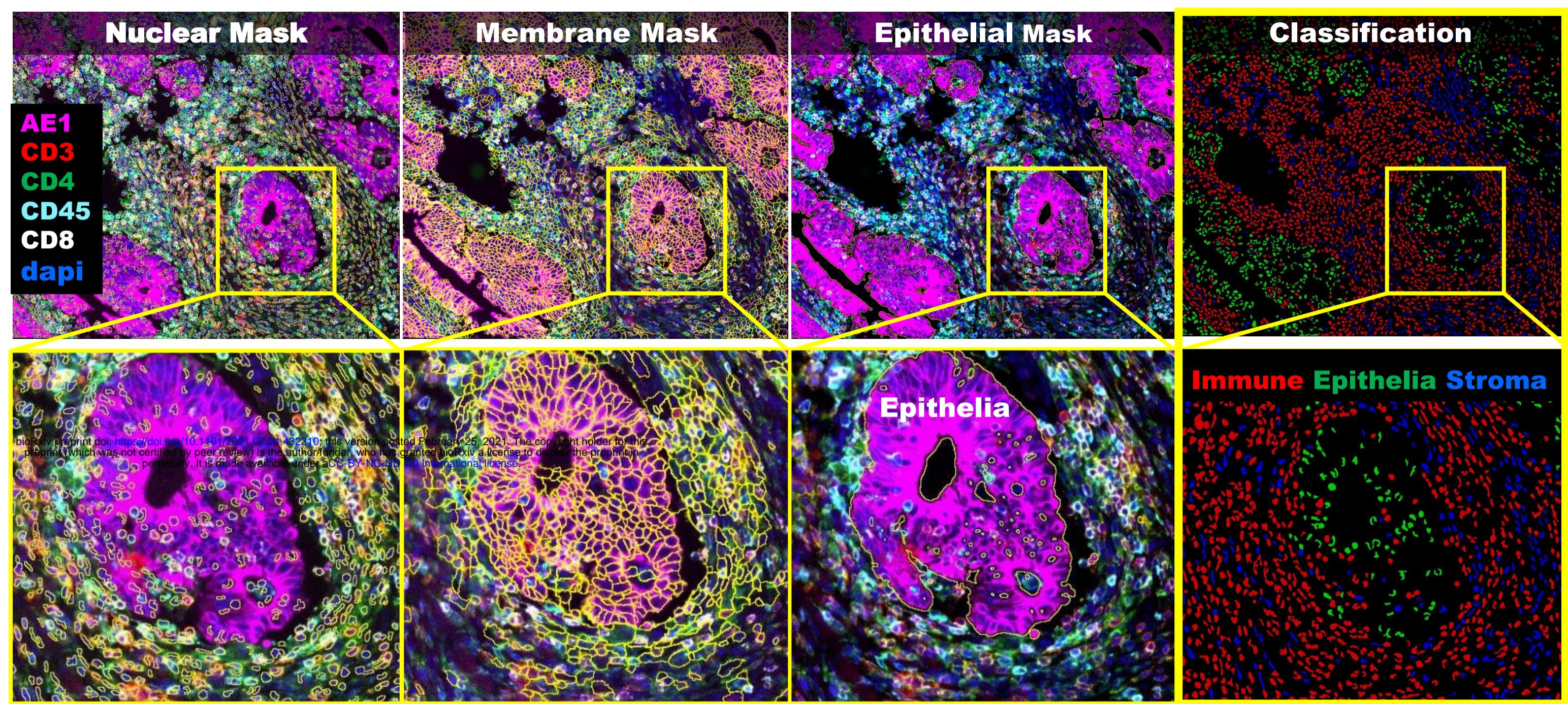
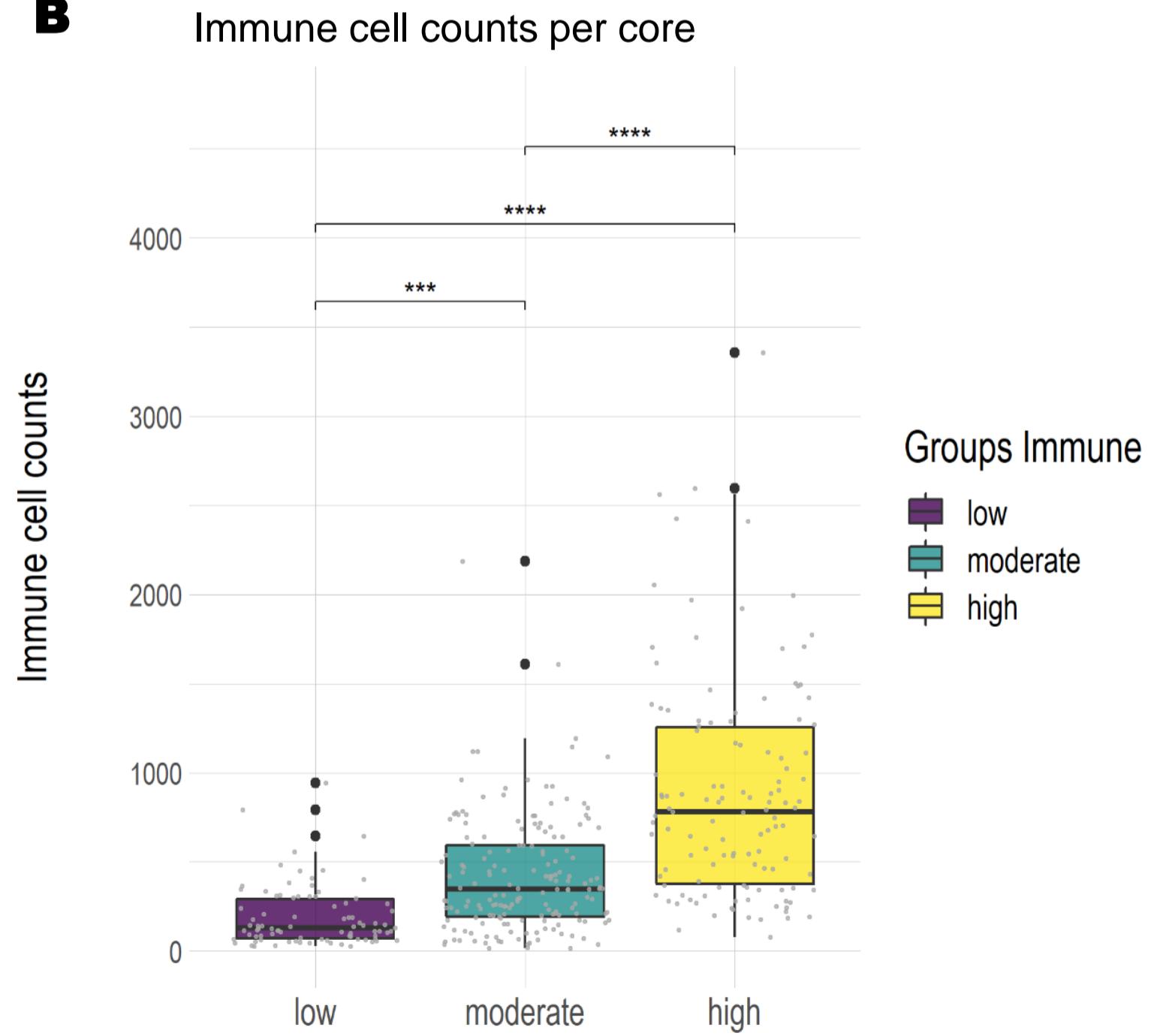
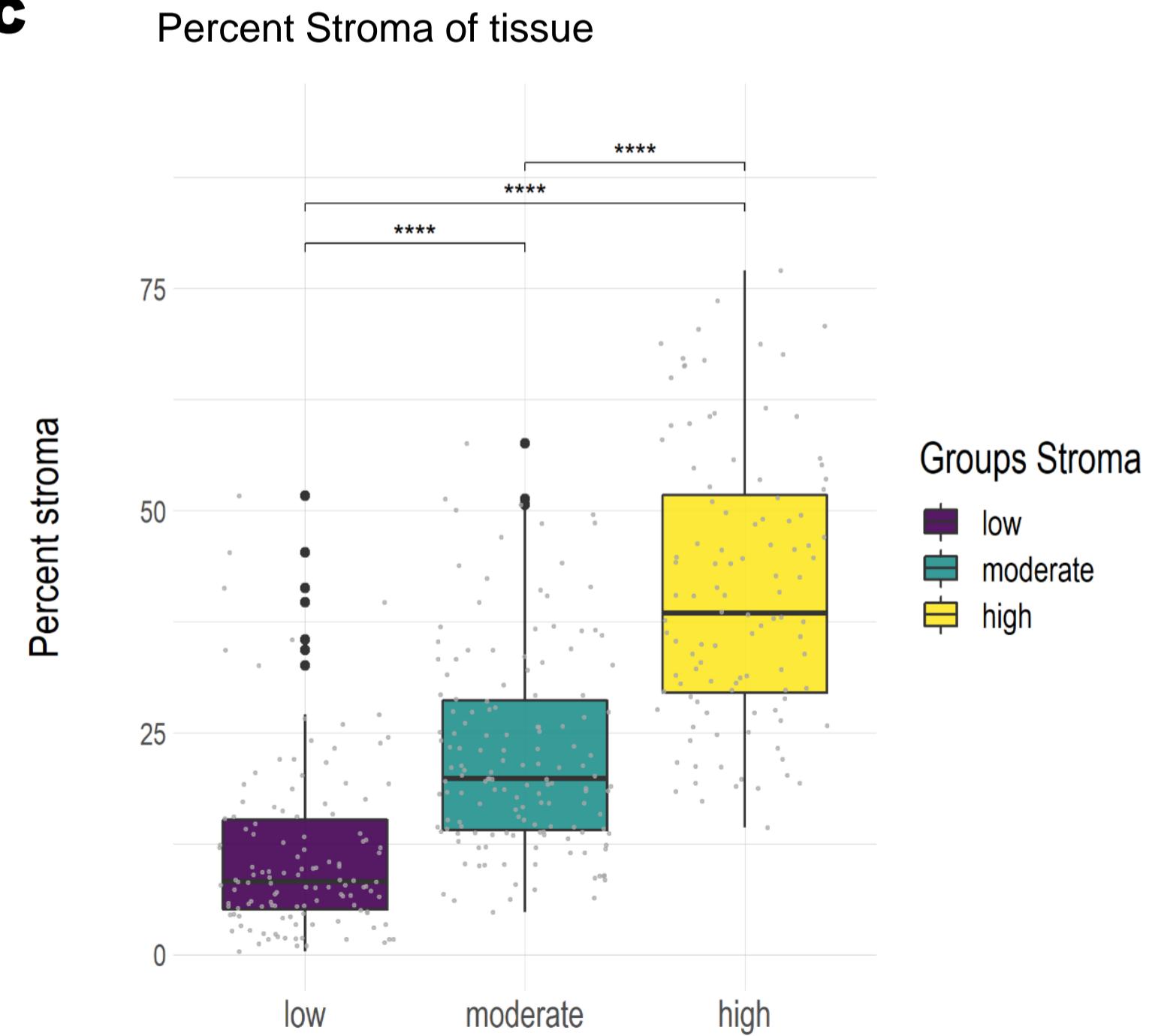
715 **Supplementary Figure 6:** Univariate survival analysis using Kaplan-Meier curves for single-
716 marker and multi-marker T cell subtypes as percent of Total for average. The patients were
717 separated in two groups using the median as cut-off.

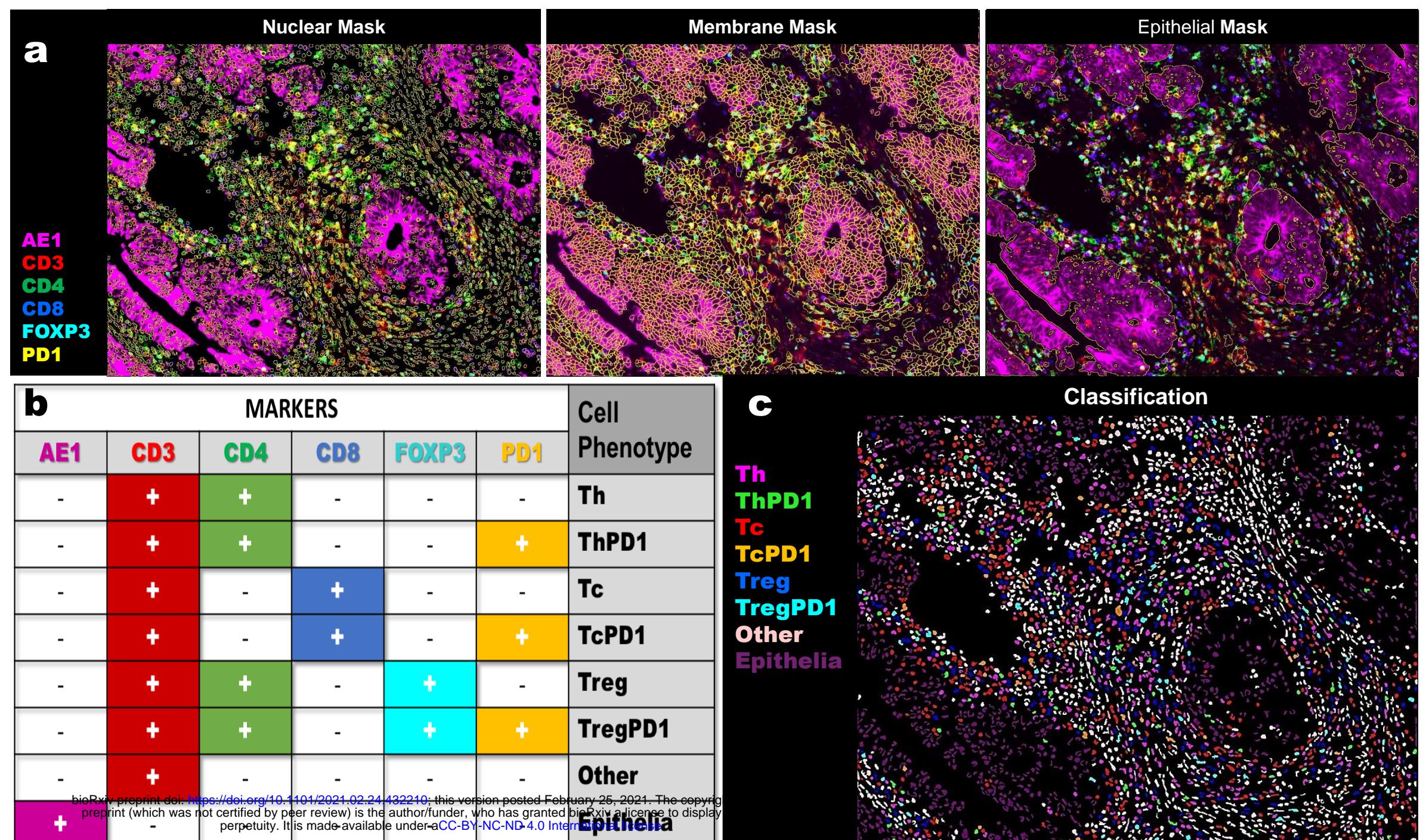
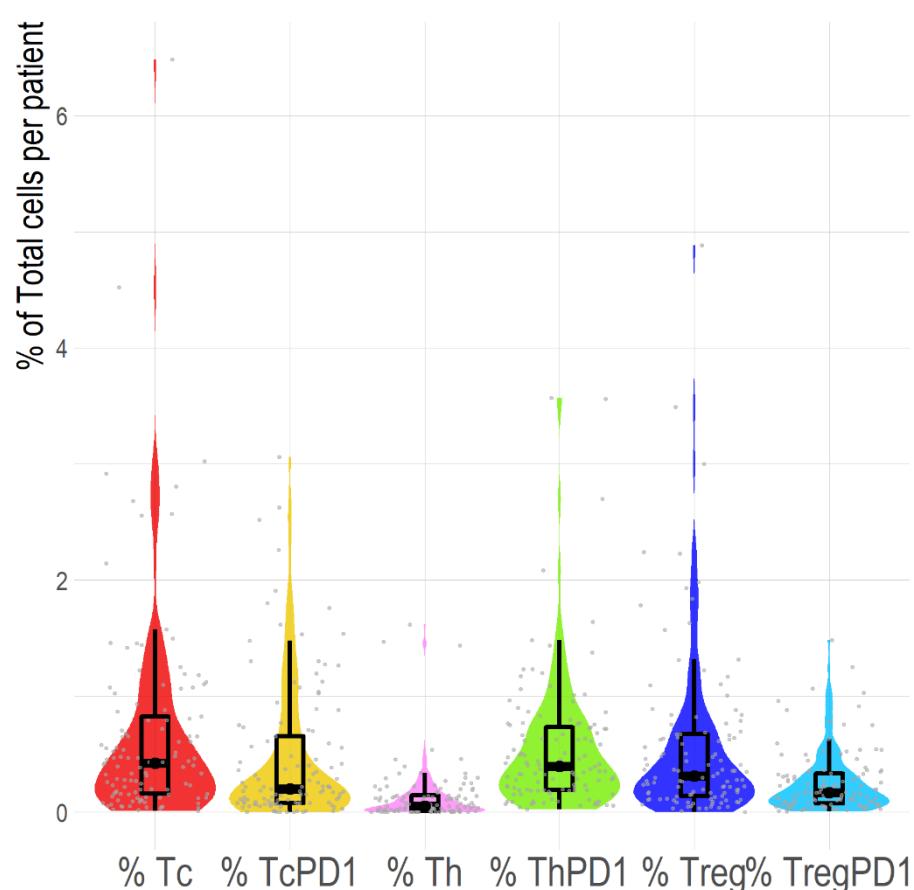
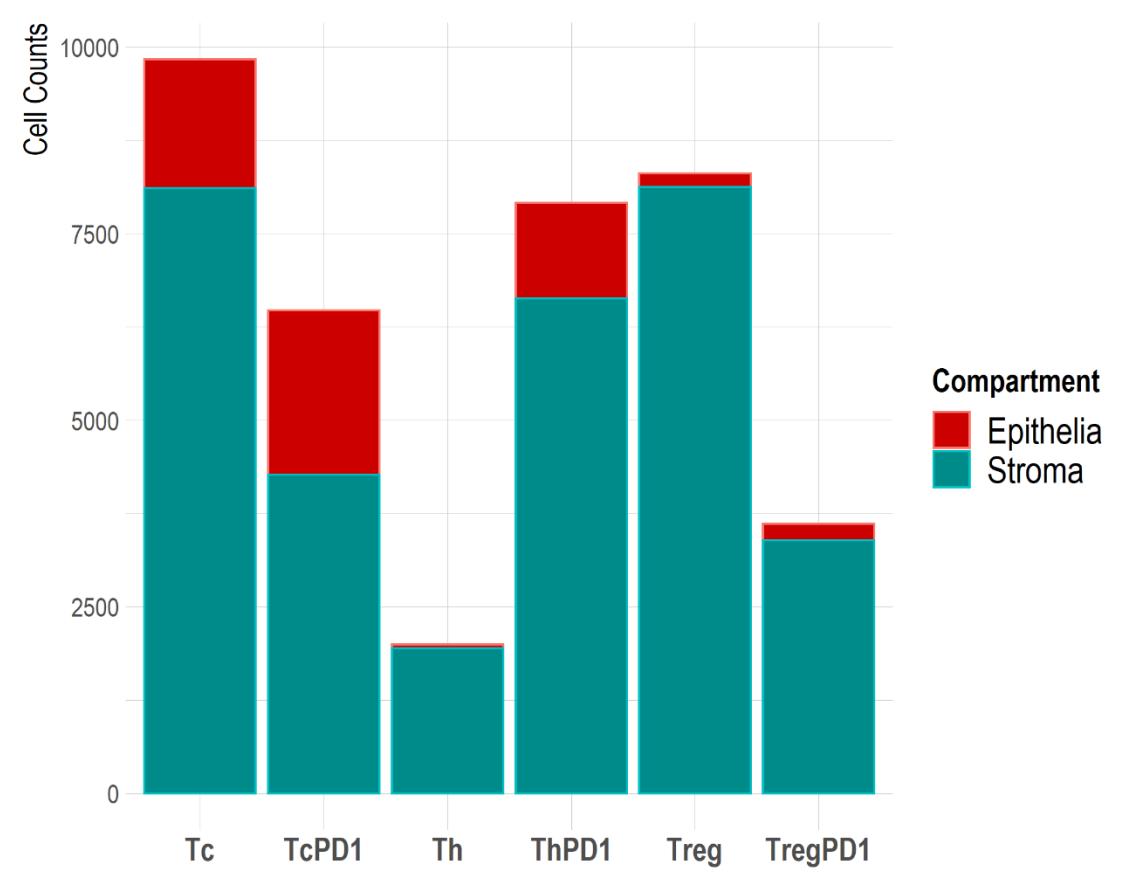
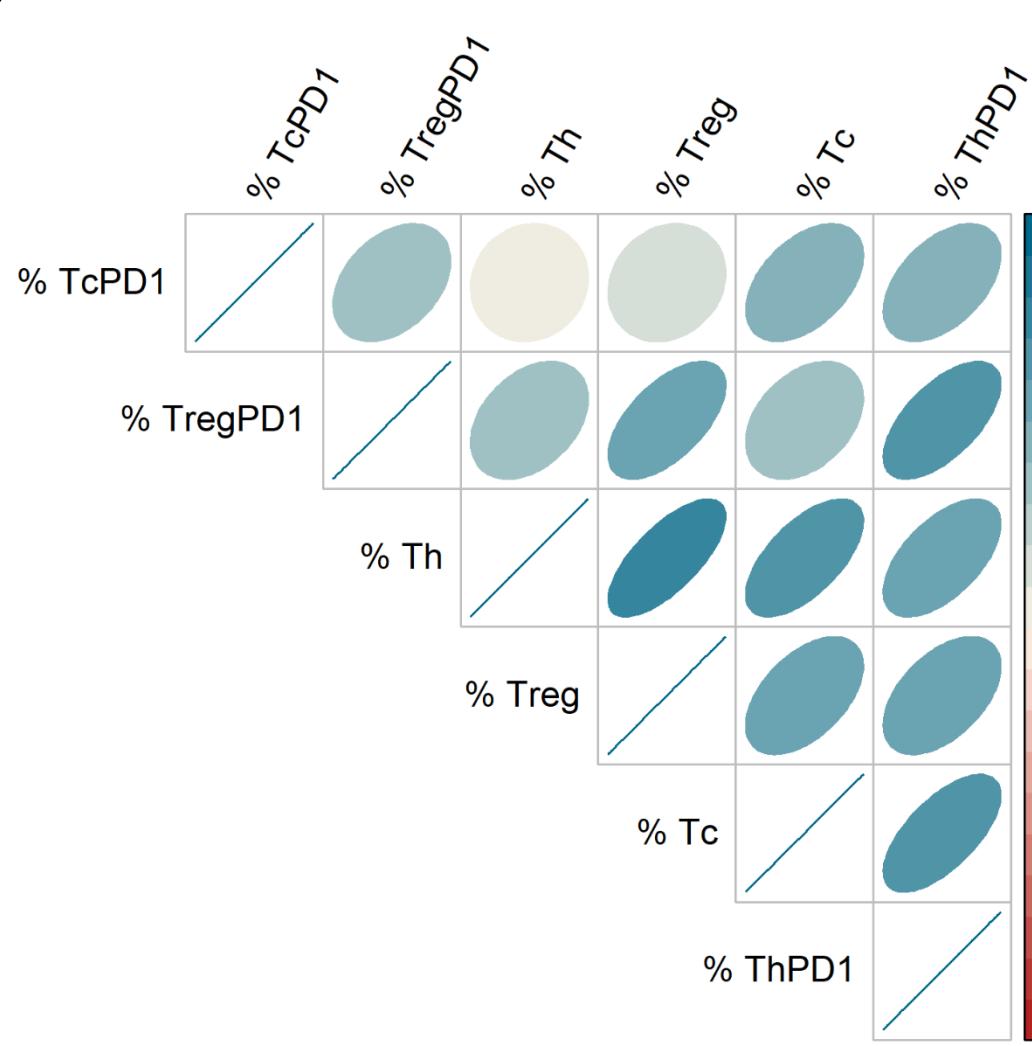
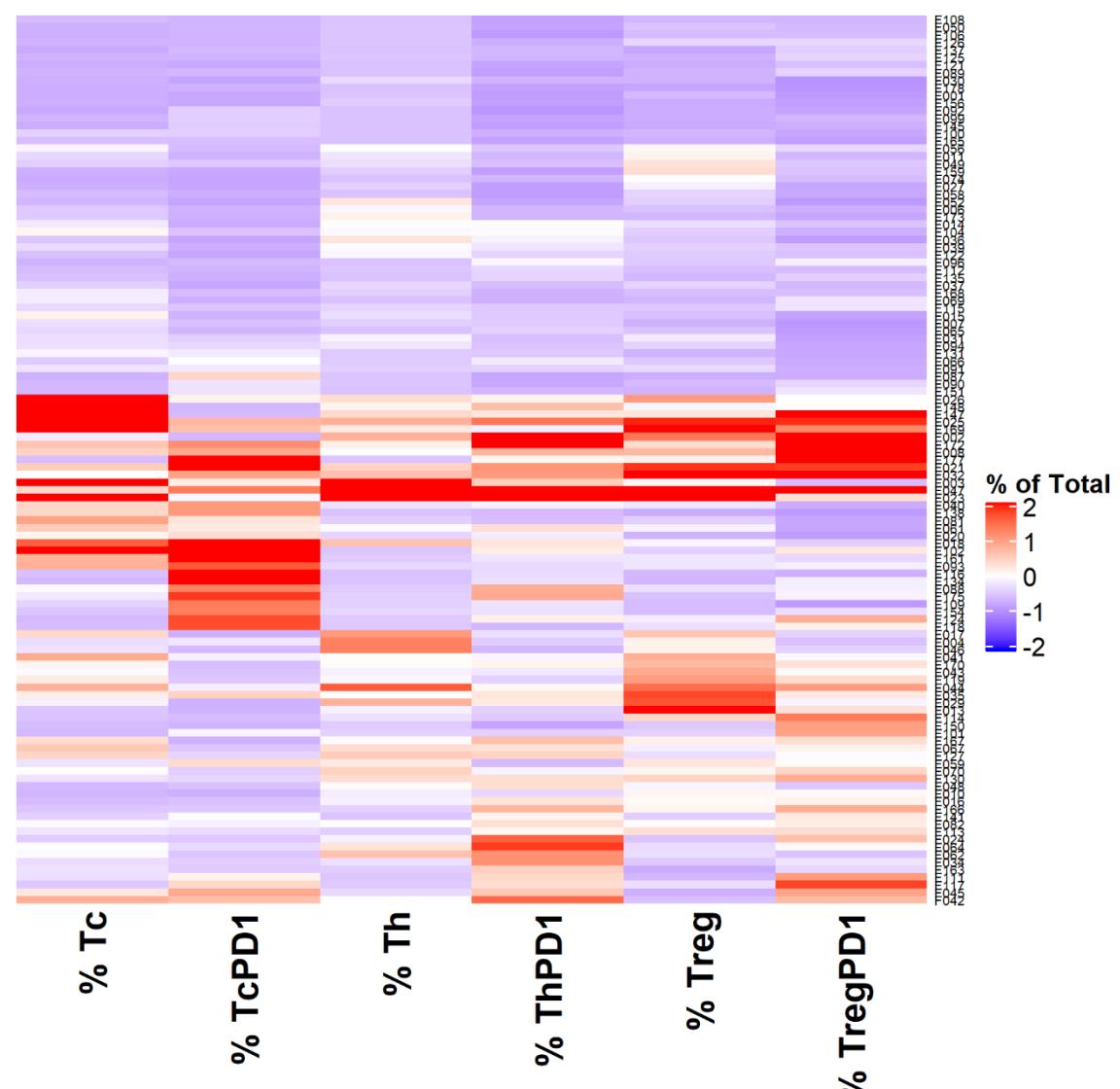
718 **Supplementary Figure 7:** Univariate survival analysis using Kaplan-Meier curves for single-
719 marker and multi-marker T cell subtypes as percent of Total for immune hot-spot cores. The
720 patients were separated in two groups using the median as cut-off.

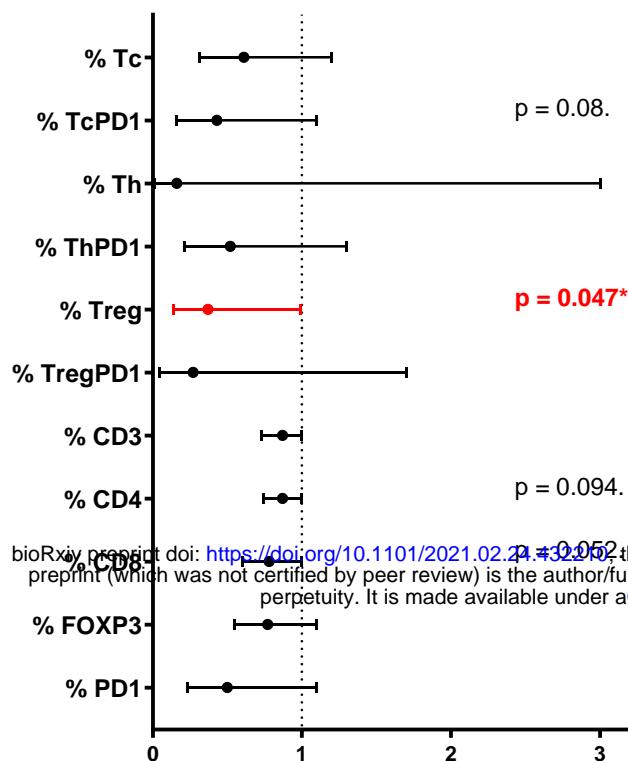
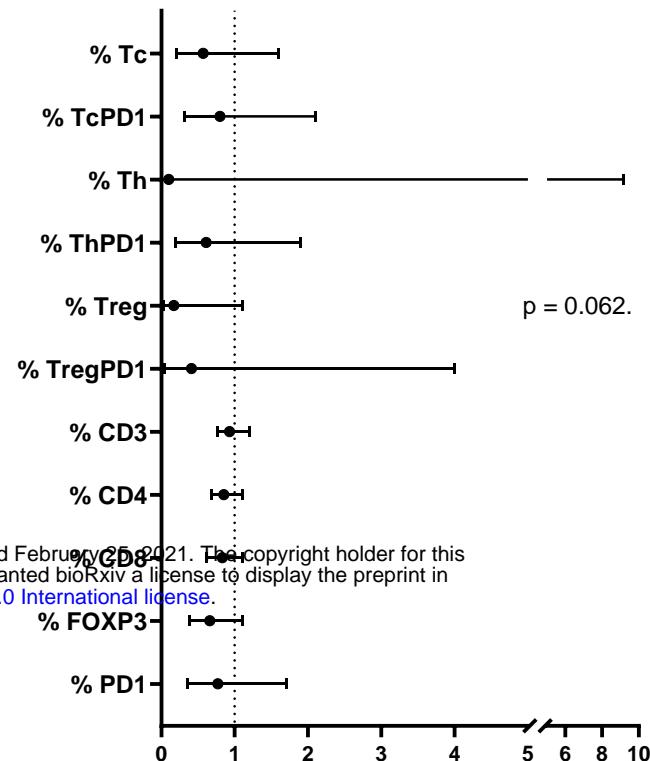
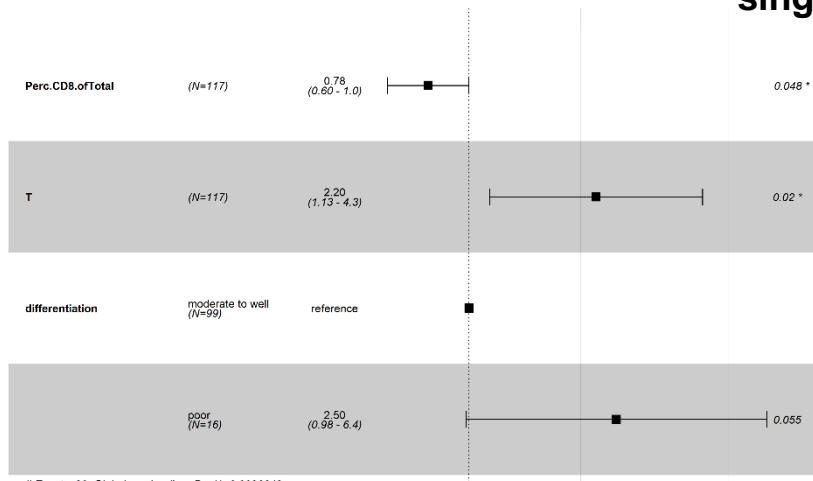
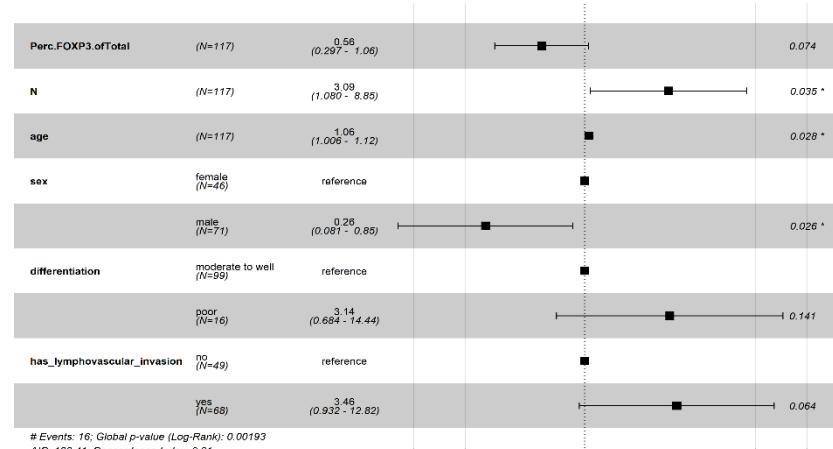
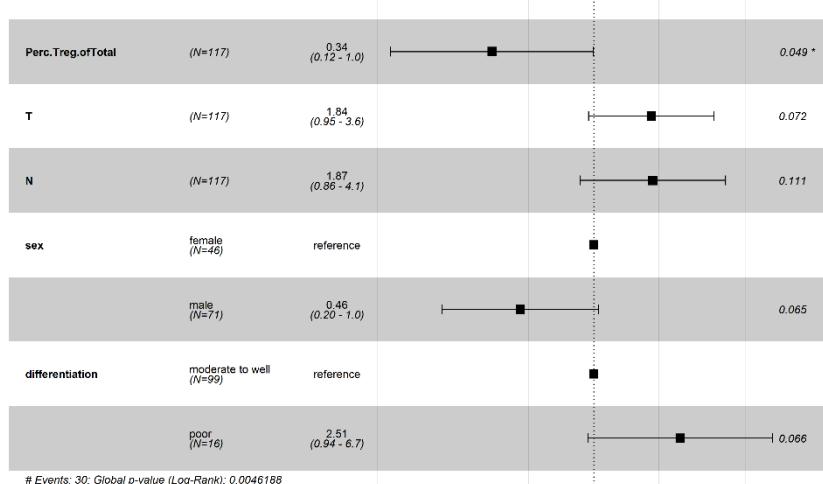
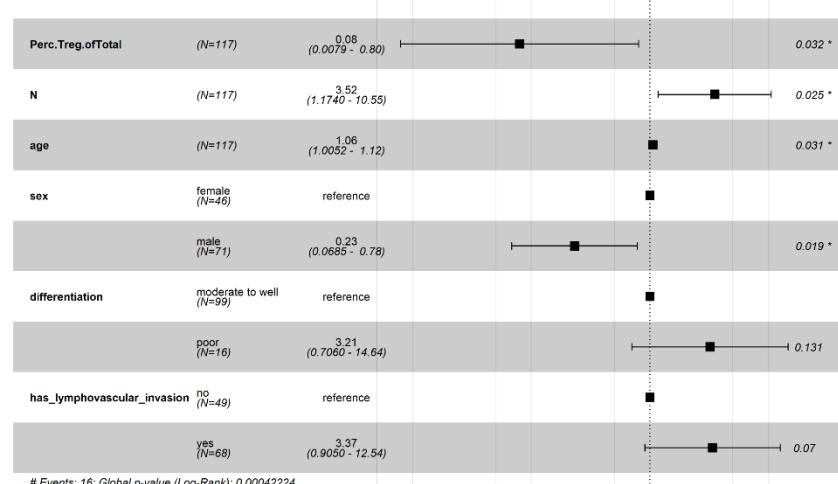
721 **Supplementary Figure 8: A)** Association of Kras status with survival for treated patients for
722 DFS and OS.

723

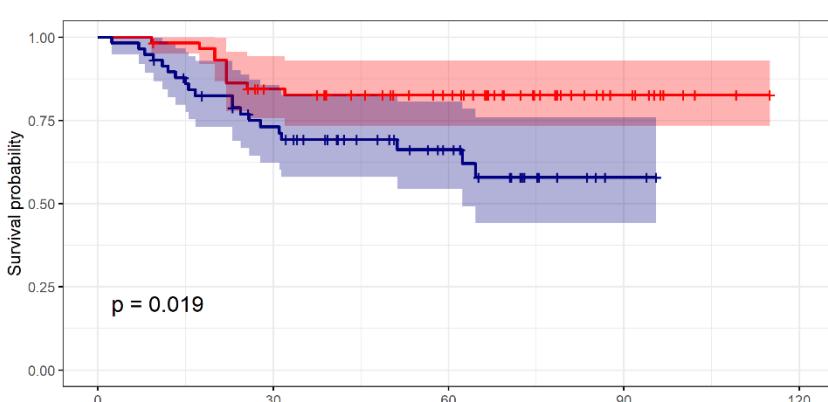
724

A**B****C**

A**B****C****D****E**

A**DFS**
% of Total cells**B****OS**
% of Total cells**C****DFS****single-marker****multi-marker****E****DFS**

Treg (% of Total) high low

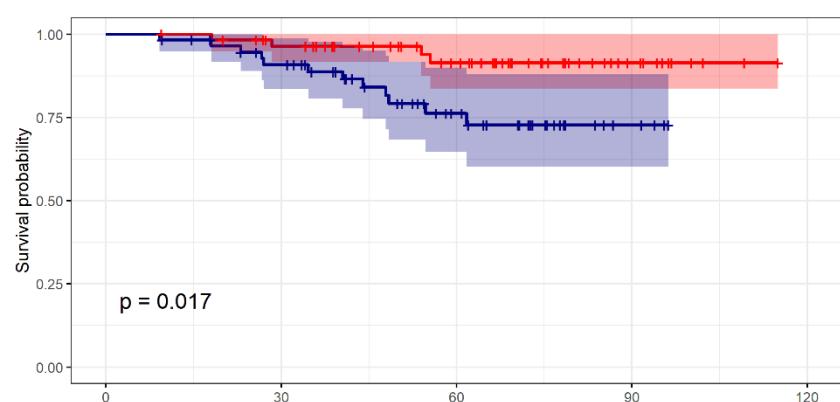


Number at risk

	high	45	32	10	0
	low	58	38	18	2
0	59				
30	45				
60	32				
90	10				
120	0				

F**OS**

Treg (% of Total) high low



Number at risk

	high	59	52	35	10	0
	low	58	48	23	4	0
0	59					
30	52					
60	35					
90	10					
120	0					

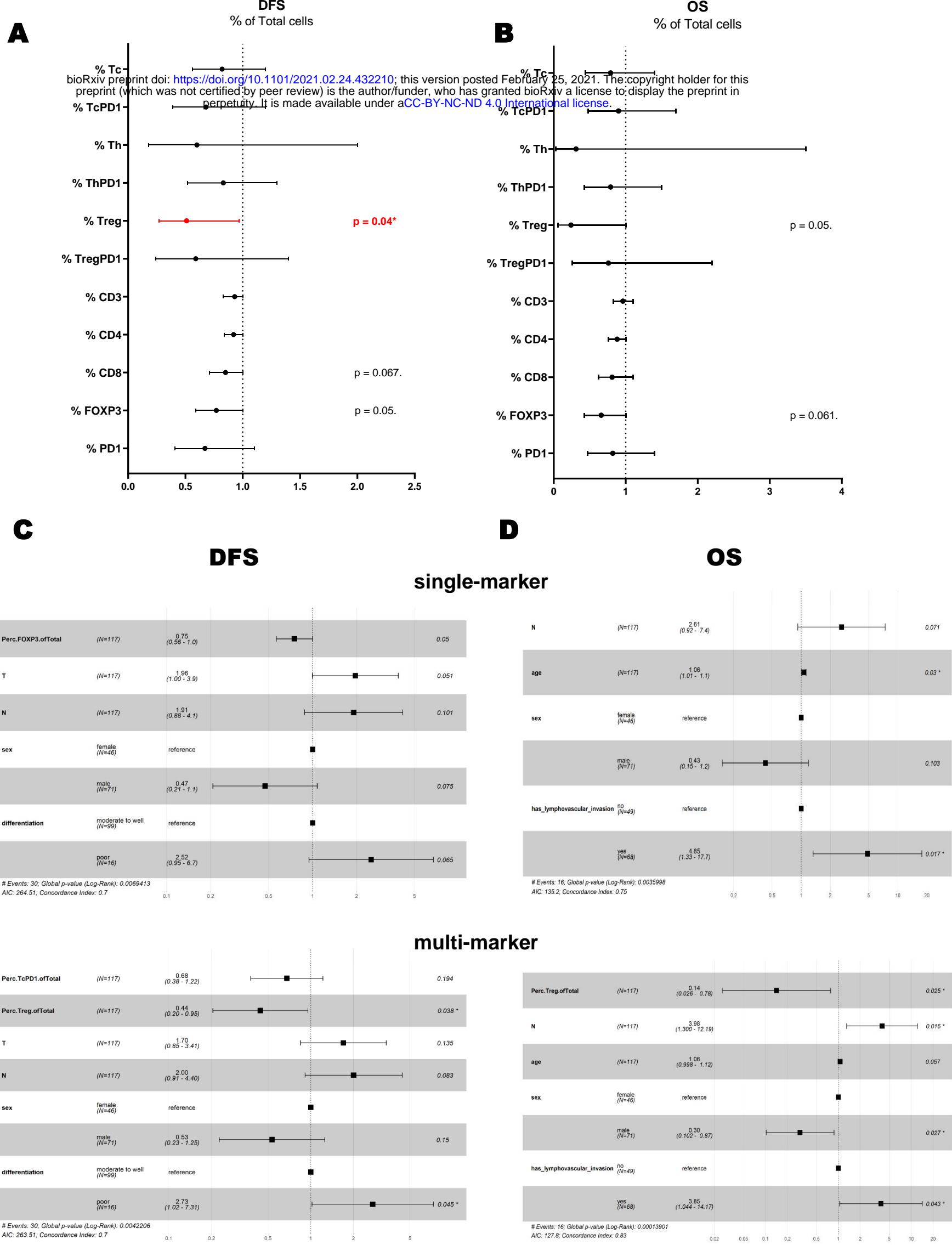


Table 1: Demographic data of patient cohort

Overall	
(N=117)	
DFS (months)	
Mean (SD)	51.7 (27.9)
Median [Min, Max]	50.7 [2.40, 115]
OS (months)	
Mean (SD)	58.5 (24.7)
Median [Min, Max]	59.1 [9.20, 115]
sex	
female	46 (39.3%)
male	71 (60.7%)
T	
2	10 (8.5%)
3	70 (59.8%)
4	37 (31.6%)
N	
1	83 (70.9%)
2	34 (29.1%)
age (years)	
Mean (SD)	59.2 (11.2)
Median [Min, Max]	61.0 [26.0, 79.0]
LNC	
Mean (SD)	21.3 (11.0)
Median [Min, Max]	19.0 [5.00, 73.0]
PLN	
Mean (SD)	3.05 (2.49)
Median [Min, Max]	2.00 [1.00, 13.0]
LVI	
no	49 (41.9%)
yes	68 (58.1%)
differentiation	
moderate to well	99 (84.6%)
poor	16 (13.7%)

*LNC=Lymph Node Count, *PLN=Positive Lymph Nodes, *LVI=Lymphovascular Invasion

Table 2: Summary statistics for multi-marker and single-marker subtypes.

Overall	
(N=117)	
% Tc (of total cells)	
Mean (SD)	0.693 (0.925)
Median [Min, Max]	0.423 [0.0111, 6.49]
% TcPD1	
Mean (SD)	0.477 (0.619)
Median [Min, Max]	0.197 [0, 3.06]
% Th	
Mean (SD)	0.133 (0.251)
Median [Min, Max]	0.0511 [0, 1.62]
% ThPD1	
Mean (SD)	0.559 (0.593)
Median [Min, Max]	0.394 [0.0222, 3.57]
% Treg	
Mean (SD)	0.568 (0.732)
Median [Min, Max]	0.312 [0, 4.88]
% TregPD1	
Mean (SD)	0.262 (0.275)
Median [Min, Max]	0.166 [0.00471, 1.48]
% CD3	
Mean (SD)	3.18 (2.88)
Median [Min, Max]	2.52 [0.221, 22.3]
% CD4	
Mean (SD)	3.64 (3.52)
Median [Min, Max]	2.67 [0.126, 23.3]
% CD8	
Mean (SD)	2.17 (2.42)
Median [Min, Max]	1.35 [0.0283, 12.3]
% FOXP3	
Mean (SD)	1.58 (1.46)
Median [Min, Max]	1.19 [0.0114, 8.57]
% PD1	
Mean (SD)	0.669 (0.694)
Median [Min, Max]	0.395 [0.00943, 3.41]

Table 3: Demographic data and summary statistics of multi-marker model based on KRAS status

	WT (N=64)	mutant (N=44)	p-value
sex			
female	24 (37.5%)	20 (45.5%)	0.53
male	40 (62.5%)	24 (54.5%)	
T			
2	4 (6.2%)	6 (13.6%)	0.342
3	37 (57.8%)	26 (59.1%)	
4	23 (35.9%)	12 (27.3%)	
N			
1	42 (65.6%)	34 (77.3%)	0.277
2	22 (34.4%)	10 (22.7%)	
age scores			
<50	18 (28.1%)	7 (15.9%)	0.296
>70	14 (21.9%)	7 (15.9%)	
51-60	11 (17.2%)	11 (25.0%)	
61-70	21 (32.8%)	19 (43.2%)	
LNC			
<12	8 (12.5%)	5 (11.4%)	0.919
>20	28 (43.8%)	21 (47.7%)	
Dec-20	28 (43.8%)	18 (40.9%)	
PLN			
N>7	6 (9.4%)	2 (4.5%)	0.393
N1-3	42 (65.6%)	34 (77.3%)	
N4-6	16 (25.0%)	8 (18.2%)	
LVI			
no	21 (32.8%)	23 (52.3%)	0.0683
yes	43 (67.2%)	21 (47.7%)	
% Tc (of total cells)			
Mean (SD)	0.636 (0.728)	0.848 (1.20)	0.355
Median [Min, Max]	0.421 [0.0111, 3.02]	0.475 [0.0199, 6.49]	
% TcPD1			
Mean (SD)	0.550 (0.670)	0.411 (0.546)	0.606
Median [Min, Max]	0.215 [0, 3.06]	0.254 [0, 2.63]	
% Th			
Mean (SD)	0.107 (0.215)	0.191 (0.309)	0.0721
Median [Min, Max]	0.0393 [0, 1.62]	0.115 [0, 1.47]	
% ThPD1			
Mean (SD)	0.547 (0.538)	0.634 (0.695)	0.63
Median [Min, Max]	0.407 [0.0222, 3.56]	0.416 [0.0564, 3.57]	
% Treg			
Mean (SD)	0.525 (0.669)	0.680 (0.862)	0.371
Median [Min, Max]	0.303 [0.0319, 3.49]	0.352 [0.00996, 4.88]	
% TregPD1			
Mean (SD)	0.287 (0.312)	0.245 (0.227)	0.778
Median [Min, Max]	0.182 [0.00471, 1.48]	0.166 [0.0253, 0.910]	

*LNC=Lymph Node Count, *PLN=Positive Lymph Nodes, *LVI=Lymphovascular Invasion