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Abstract

Colorectal cancer (CRC) has one of the highest cancer incidences and mortality rates. In stage
I, postoperative chemotherapy benefits <20% of patients, while more than 50% will develop
distant metastases. Predictive biomarkers for identification of patients with increased risk for
disease recurrence are currently lacking, with progress in biomarker discovery hindered by
the disease’s inherent heterogeneity. The immune profile of colorectal tumors has previously
been found to have prognostic value. The aims of this study were to evaluate immune
signatures in the tumor microenvironment (TME) using an in situ multiplexed
immunofluorescence imaging and single cell analysis technology (Cell DIVE™). Tissue
microarrays (TMASs) with up to three 1mm diameter cores per patient were prepared from 117
stage Ill CRC patients treated with adjuvant fluoropyrimidine/oxaliplatin chemotherapy. Single
sections underwent multilplexed immunofluorescence with Cy3- and Cy5-conjugated
antibodies for immune cell markers (CD45, CD3, CD4, CD8, FOXP3, PD1) and cell
segmentation markers (DAPI, pan-cytokeratin, AE1, NaKATPase and S6). We applied a
probabilistic multi-class, multi-label classification algorithm based on multi-parametric models
to build statistical models of protein expression to classify immune cells. Expert annotations
of immune cell markers were made on a range of images, and Support Vector Machines
(SVM) were used to derive a statistical model for cell classification. Images were also manually
scored independently by a Pathologist as ‘high’, ‘moderate’ or ‘low’, for stromal and total
immune cell content. Excellent agreement was found between manual and total automated
scores (p<0.0001). Higher levels of multi-marker classified regulatory T cells
(CD3+CD4+FOXP3+PD1-) were significantly associated with disease-free survival (DFS) and
overall-survival (OS) (p=0.049 and 0.032), compared to FOXP3 alone. Our results also
showed that PD1- Tregs rather than PD1+ Tregs were associated with improved survival.
Overall, compared to single markers, multi-marker classification provided more accurate

guantitation of immune cells with greater potential for predicting patient outcomes.
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Introduction

For early and locally advanced (stage | and Il) colorectal cancer (CRC), the standard treatment
of choice for low risk patients is surgical resection. Subsequent oncological treatment
decisions for non-metastatic CRC are based largely on the anatomical AJCC/UICC TNM
staging classification®. After the MOSAIC study in 2004, patients with stage Il CRC now
commonly receive oxaliplatin/fluoropyrimidine/leucovorin (5-fluorouracil (5FU), FOLFOX; or
xeloda/capecitabine, XELOX) as standard adjuvant treatment 2. Of patients with stage 1l CRC
treated with adjuvant chemotherapy, only ~20% will benefit from adjuvant FOLFOX, and 30%
relapse within 2 to 3 years after surgery. Consequently, 80% of patients receive chemotherapy
(and endure unnecessary toxicities) that yields no benefit 3. However, improvements in the
understanding of CRC heterogeneity are paving the way for more personalized approaches
that combine both histological and molecular data intelligence for patient stratification and
therapy selection, including selecting which patients will benefit from adjuvant

chemotherapy*®.

In the past decade, there has been an increasing interest in the impact of the tumor
microenvironment (TME) on patient prognosis. Decreased risk of tumor progression and
improved survival have been observed in solid tumors with high T cell infiltration®. For CRC,
the concept of an “Immunoscore” was introduced by Galon et al; this evaluates CD3- and
CD8-positive immune infiltrates in the tumor core (TC) and tumor margin (TM) to classify
“TNM-immune scores” for tumors’. In addition to Immunoscore, there have been numerous
studies that reinforce the importance of tumor-infiltrating lymphocytes (TILs) as indicators of
prognosis in CRC®°. The importance of the immune contexture in CRC for patient prognosis
logically suggests that immunotherapy could be a promising therapeutic approach?.
Responsiveness to immunotherapy depends on several key factors, including high mutational
loads (leading to high levels of tumor neoantigens), which are found in MMR-deficient (dAMMR)
microsatellite instability-high (MSI-high) CRC'*2, The immune checkpoint inhibitor (ICI)

pembrolizumab has been approved by the US Food Drug Administration (FDA) for patients


https://doi.org/10.1101/2021.02.24.432210
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432210; this version posted February 25, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

87  with metastatic dMMR/MSI-high CRC. However, the majority of colorectal tumors are
88  microsatellite stable (MSS), with low mutational burdens and exhibit no response to ICI

89 therapy. Thus, chemotherapy remains the backbone therapy for MSS CRC.

90  With the unmet clinical need to better stratify stage Il patients for possible adjuvant (or neo-
91 adjuvant) chemotherapy and the opportunity to better quantify immune response using newer
92 cell quantification method, our goal was: 1) to compare multi-marker immune cell classification
93  (using Cell DIVE) with immune cell scores determined by a pathologist and 2) investigate the
94  association between single-marker and multi-marker immune cell classification and patient

95 outcomes.

96

97 Materials and Methods:

98 Patient Cohort: Tissue microarrays (TMAs) from formalin-fixed paraffin-embedded (FFPE)
99 tissue blocks with up to three Imm diameter cores per patient were prepared from 170 patients
100 with stage Il CRC. The punches were taken from the center of the tumor based on
101 identification by a pathologist (Prof Manuel Salto-Tellez, Queen’s University Belfast). The
102  patient samples were collected from three Research Centres: Beaumont Hospital (RCSI
103  Hospital Group, Ireland), Queen’s University Belfast (UK) and Paris Descartes University
104 (France) and the TMAs were constructed at Queen’s University Belfast. By design, the TMAs
105 from 91 patients had 2 or 3 cores from each tumor. Pathological stage was determined by the
106 AJCC TNM staging version applicable at the time of the reporting. All Centres provided ethical
107  approval for this study and informed consent was obtained from all participants (NIB12-0034).
108  Patients were recruited during 2005-2012.
109
110
111 At the patient level, the exclusion criteria based on tissue block or clinical data were: i) poor

112 tissue quality or no tumor cells in tissue, ii) loss of follow-up or recurrence and/or death within
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113  less than two months from surgical resection, iii) absence of chemotherapy treatment, iv)
114  positive resection margins, v) tumor site was appendix, vi) stage Il or IV disease, vii) only one
115 assessable core remaining after applying all exclusion criteria. At the tissue core level,
116  individual cores on the TMA were excluded for assessment after pathology TMA slide review
117  if no or minimal viable tumor was present for evaluation (i.e. minimal or no tumor tissue, heavily
118  artefacted tissue, extensive tumor necrosis, extensive presence of normal adjacent tissue).
119  After applying exclusion criteria from the original patient cohort, the remaining data comprised
120 117 stage Il patients, who were all treated with 5FU-based adjuvant chemotherapy
121  (predominantly FOLFOX or XELOX).

122

123 KRAS status: A MassARRAY system (Sequenom) was used to detect somatic point
124  mutations of KRAS.

125

126 Multiplexed immunofluorescence analysis of TMAs: Multiplexed immunofluorescence
127  staining of the CRC TMAs was performed as previously described® using Cell DIVE™ Cytiva,
128 Issaquah, WA), a multiplexed immunofluorescence microscopy method allowing for multiple
129  protein markers to be imaged and quantified at cell level in a single tissue section. Briefly,
130 formalin-fixed, paraffin-embedded (FFPE) tissue slides were de-paraffinized and rehydrated,
131  underwent a two-step antigen retrieval and were then stained for 1 hour at room temperature
132 using a Leica Bond autostainer. All antibodies were characterized per the previously described
133 protocol® and when possible, antibodies in routine clinical use were employed. After down-
134  selection, each antibody was conjugated with either Cy3 or Cy5 bis-NHS-ester dyes using
135 standard protocols as previously described®®. All sections underwent multiplexed
136  immunofluorescence for a total of 24 markers listed on Supplementary Table 1. The markers
137  of interest for this study included CD3, CD4, CD8, FOXP3, CD45, NaKATPase, S6, pan-
138  cytokeratin and AE1 and DAPI nuclear stain. All samples underwent DAPI imaging in every

139  round, and background imaging for the first five rounds and every three rounds thereafter.
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140 Image processing, single cell segmentation: Using Cell DIVE automated image pre-
141  processing software, all images were registered to baseline using DAPI and underwent
142  autofluorescence subtraction, illumination and distortion correction. DAPlI and Cy3
143  autofluorescence images were used to generate a pseudo-colored image, which visually
144  resembles a Hematoxylin and Eosin (H&E) stained image, which we refer to as a virtual H&E
145  (vH&E). This visualization format helps tissue QC review and facilitated review of tumor
146 morphology and lymphocytes. All cells in the epithelial and stromal compartments were
147  segmented using DAPI and pan-cytokeratin, while S6, and NaKATPase were used for
148  subcellular analysis of epithelial cells. Each segmented cell was assigned an individual ID and
149  spatial coordinate, as previously described3. Post segmentation, several quality control (QC)
150 steps were conducted, including visual review and manual scoring of tissue quality and
151  segmentation for every image, also described elsewhere!“. Briefly, each image was reviewed
152  for completeness and accuracy of segmentation masks in each subcellular compartment and
153  tumor and stroma separation. Average biomarker intensity was calculated for each cell and
154  the following additional cell filtering criteria were applied: 1) epithelial cells were required to
155  have either 1-2 nuclei; 2) each sub-cellular compartment (nucleus, membrane, cytoplasm)
156  area had to have > 10 pixels and < 1500 pixels; 3) cells had to have excellent alignment with
157  the first round of staining (round 0) ; 4) cells were at >25 pixels distance from the image

158  margins; 5) cell area for nuclear segmentation mask was >100 or <3000 pixels.

159 Immune cell classification: A customized machine learning based algorithm?® developed as
160 a Fiji (ImageJ) plug-in was used for immune cell classification. This is a probabilistic multi-
161  class, multi-label classification algorithms based on multi-parametric models to build statistical
162  models of protein expression and classify immune cells. The images were first segmented into
163  epithelial and stromal regions or masks using a combination of PCK26 and AE1 (expressed
164  in epithelial cells). Nuclei were segmented using DAPI signal and a wavelet-based algorithm?®
165 and assigned to the epithelium or stromal regions based on co-localization of the nuclei with

166  the epithelial or stromal masks. Manual expert annotations of the following markers associated
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167  with each segmented cell were made: AE1+, CD45+ CD3+, CD4+, CD8+, FOXP3+ and PD1+
168 and negative cells. Support Vector Machines (SVM) were used to derive a statistical model
169  for cell classification. This multi-marker, annotation driven workflow was custom designed as
170  an FUJI plug-in and allows analysis of complex multi-class models (up to 27 markers)!"5,
171  Following classification, counts for both single-marker and multi-marker immune cell types

172  were determined.

173  Pathologist Scoring: A gastrointestinal pathologist (Maurice B. Loughrey, MBL) performed
174  visual inspection of the virtual H&E slides generated from the DAPI and autofluorescence
175 images®*8 forthe 419 TMA cores. After applying exclusion criteria described earlier, 28 cores
176  were excluded and 391 cores were assessed. MBL assigned two qualitative scores to each
177  core comprising either ‘high’, ‘moderate’ or ‘low’ score, one for stromal cell content and one
178  for immune cell content. For stroma, a high score was assigned when the stromal area was
179  higher than the epithelial area; a moderate score was assigned when the stromal and the
180 epithelial areas were equivalent; and a low score was assigned when the stromal area was
181 lower than the epithelial area. The immune score was based on lymphoid cell abundance in

182 the tissue core.

183  For equivalent comparison of the pathologist stroma and immune score with Cell DIVE
184  automated scores the following steps were taken: 1) “Stromal cells” were defined as DAPI
185  positive cells that were negative for all markers and outside the epithelial segmentation mask.
186 The stroma score was calculated as the percentage of non-immune stromal cells in all
187  segmented cells in the non-epithelial region; 2) “Immune cells” were defined as segmented
188  cells that were positive for any of the immune markers (CD45, CD3, CD4, CD8) and negative
189  for the AE1 epithelial marker. The immune scores were calculated from the counts of all
190 segmented immune cells. 3) “Epithelial cells” were defined as segmented cells that were

191  positive for AE1 staining and were within the Epithelial Segmentation Mask?®.

192
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193  Statistical Analysis: For comparison of Cell DIVE quantitative stroma and immune scores
194  with the pathologist scores, the Cell DIVE scores were categorized based on the pathologist’s
195 three qualitative groups (high — moderate — low). Statistical analysis for comparison of group
196 means was performed using Welch’'s ANOVA and pairwise t-test. The association of the
197  single-marker and multi-marker classified immune cells with clinical outcome was evaluated
198 using both univariate and multivariate analyses with adjustment for clinico-pathological
199 confounders (T, N, age, sex, nodal count, positive nodes, lymphovascular invasion,
200 differentiation) in the multivariate Cox proportional hazards models. For the final multivariate
201 models, the variables were subjected to backward elimination and the variables that did not
202  contribute to model fit were removed. The final multivariate model was tested for multi-
203  collinearity and proportional Hazards assumption. Variables with variance inflation factor > 2
204  were removed, and the remaining variables were re-subjected to backward elimination. The
205 relative quality and goodness-of-fit of models was examined using Harrell's C-index, and the
206 model choice was determined by the Akaike Information Criterion (AIC). The T cell subtypes
207  were counted and analysed as continuous variables after being transformed to ‘Percent of
208  total’ tissue segmented cells, per patient. When the patients had multiple cores, the average
209 percent of the assessable cores was calculated, unless stated otherwise. For survival
210 analyses, the T cell subtypes calculated as % of total tissue cells were dichotomised at the
211  median, and the Kaplan-Meier method was used to plot survival curves with the log-rank test
212 used for comparisons. No adjustments were made for multiple comparisons. Hypothesis

213  testing was performed at the 5% significance level.

214  The end-points studied were disease-free survival (DFS) and overall-survival (OS). DFS was
215 the time between the study entry and either the date of the first recurrence, or the date that
216  the last follow-up took place. OS was the time between the date of study entry and either the
217  date of death from any cause, or the date of the last follow-up. All statistical analyses were
218  performed in R Version 3.5.1 (https://cran.r-project.org).

219
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220 RESULTS

221  Pathologist scoring versus automated immune cell classification

222 The TMA cores form the patients were assessed by the pathologist (MBL) and, after exclusion
223 criteria, 62 patients had 3 assessable cores, 99 had 2 assessable cores whereas 7 patients
224  had only 1 assessable core. Intra-tumor heterogeneity was reflected in intra-patient
225  differences between the pathologist’s immune and stroma scores. Specifically, from the 62
226  patients with 3 assessable cores, only 13 (19%) had the same immune score and 18 (29%)
227  the same stroma score for all three cores. For 5 (8%) patients, the immune score was different
228 in each of the three cores, while for 6 (10%) patients, the stroma score was different in each
229  of the three cores. This is to be expected given tumor histology variation in different core
230  punches. From the 99 patients with two cores, 44 (44%) had the same immune score and 42
231  (42%) had the same stroma score in both tissue cores. In summary, for the 161 patients with
232 more than one core, 104 (65%) showed immune heterogeneity and 101 (63%) showed stroma
233 heterogeneity between their tissue cores. This highlights the inherent high degree of intra-

234 tumor heterogeneity in CRC.

235  MBL performed visual inspection of the virtual H&E slides and assigned scores to each core
236 of ‘high’, ‘moderate’ or ‘low’, for both stromal and immune cell content. We used the machine
237  learning workflow to create a quantitative cell classification-based immune and stroma score
238  (Figure 1A) to compare with the pathologist’'s scores. The Cell DIVE immune (p < 0.001;
239  Figure 1B) and stromal (p < 0.001; Figure 1C) score values were significantly associated with
240 the corresponding pathologist’s scores. Therefore, the machine-learning-based Cell DIVE cell

241  classification has potential to be used to evaluate tumor immune and stromal content.

242

243 T cell classification for single-marker and multi-marker (multiplexed) classification
244  models. In order to study the impact of different T cell subtypes on patient prognosis in this

245  adjuvant chemotherapy-treated cohort, we used a panel of T cell biomarkers as described
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246  earlier. In addition, to single marker analyses (CD3, CD4, CD8, FOXP3, PD1), multi-marker
247  combinations were used to define subtypes (Tc, TcPD1, Th, ThPD1, Treg, TregPD1, Figure
248  2A). In the single-marker classification workflow, each one of these immune markers was
249  analysed individually, and each segmented cell was classified as either positive or negative
250 for each marker. Since the individual markers are used to generate the multi-marker
251  classification, it is not surprising that they were significantly correlated (p<0.001;
252  Supplementary Figure 3). The demographic data of the patient cohort are summarized in

253 Table 1.

254  Representative immunofluorescent images of a single tissue core for the individual markers
255  and the corresponding Segmentation Masks are illustrated in Supplementary Figure 1. In
256  the multi-marker classification workflow all markers were assessed simultaneously (Figure
257  2A(@)) and, depending on marker co-localization, segmented cells were assigned to the
258  following classes (Figure 2A(b)): PD1-negative T-helper (Th), PD1-positive Th (ThPD1), PD1-
259  negative cytotoxic T cells (Tc), PD1-positive Tc (TcPD1), PD1-negative Treg and PD1-positive

260 Treg (TregPD1).

261  To account for tumor heterogeneity, only patients with more than 1 core were used for the
262  analysis (117 patients). Each T cell subtype was calculated as a percentage of total cells per
263 core and the average percentage per patient was calculated. The distribution of T cell
264  subtypes across the cohort is shown in Figure 2B; Tc and TcPD1 cells were the most
265 abundant subtype associated with the epithelial compartment; however, overall and as
266  expected, the majority of each T cell subtype was located in the stroma (Figure 2C). All T cell
267  subtypes were generally positively correlated with each other, except TcPD1 had minimal
268  correlation with Th and Treg (Figure 2D). Hierarchical clustering was used to assess the
269 immune landscape of the patient cohort (Figure 2E). Separation into two clusters, immune
270  “hot” (higher immune cells) and “cold” (lower immune cells), showed that nearly 50% of
271  patients were low in all T cell subtypes; however, Kaplan-Meier analyses showed that their

272 prognosis was similar to patients with higher level of T cells (Supplementary Figure 2A).
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273 After separating into three clusters, the “immune-hot” cluster of patients with highest infiltration
274  of T cell subtypes showed improved DFS and OS compared to the other 2 groups that had
275 lower T cell levels; however this did not reach statistical significance (Supplementary Figure
276  2B). Detailed summary statistics for T cells for the multi-marker classifications and single

277  marker classifications are presented in Table 2.

278 In Supplementary Figure 4 representative images of virtual H&Es, immunofluorescent
279  images and tissue mappings with color-coded cell classifications are illustrated. The selected
280 images are representative of all 9 Stroma-Score/lmmune-Score combinations from the
281  pathologist review. This shows that multiplexing can be used to identify multiple subtypes of
282  immune cells simultaneously, allowing for associations and potential cross-talk between

283  distinct cell subtypes in the TME to be assessed.

284

285 T cell infiltration and patient prognosis. As proof-of-concept for the applicability of this
286  approach for identification of prognostic immune biomarkers, we next determined the
287  prognostic value of the single and multiplexed markers in this FOLFOX-treated stage Il patient
288  cohort. The correlation of each T cell type with clinical endpoints (DFS and OS) was analysed
289  using univariate and multivariate Cox proportional hazards models and Kaplan-Meier

290 analyses.

291 In the univariate analyses, the forest plots in Figure 3 demonstrate that none of the single
292  immune markers was significantly associated with DFS (Figure 3A) or OS (Figure 3B),
293  whereas the level of Treg cells (CD3+/CD4+/FOXP3+/PD1-) from the multi-marker machine-
294  learning classification was significantly associated with longer DFS (HR =0.37, 95% CI = 0.14-

295  0.99, p = 0.047).

296  For the multivariate analysis, the model initially included the clinical variables: T, N, age, sex,
297  nodal count, positive nodes, differentiation and lymphovascular invasion together with single-

298 and multi-marker immune scores. Backward elimination was used to select variables for the


https://doi.org/10.1101/2021.02.24.432210
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432210; this version posted February 25, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

299 final model. For DFS in the single-marker model, CD8 remained in the final model and was
300 positively associated with longer DFS (multivariate adjusted HR = 0.78, 95% CI = 0.6 - 1.0, p
301 =0.048; Figure 3C) and in the multi-marker model Tregs remained positively associated with
302 longer DFS (multivariate adjusted HR = 0.34, 95% CIl = 0.12 - 1.0, p = 0.049; Figure 3C). For
303 OS in the single-marker model, FOXP3 remained in the final model but did not reach
304  significance (multivariate adjusted HR = 0.56, 95% CI = 0.297 — 1.06, p = 0.074; Figure 3D)
305 and in the multi-marker model Tregs remained positively associated with longer OS
306  (multivariate adjusted HR = 0.08, 95% CI = 0.0079 — 0.8, p = 0.032; Figure 3D). The detailed
307  Forest plots for the multivariate models for clinical variables only are shown in Supplementary

308 Figure 5.

309 In order to facilitate comparison with previously published results, Treg levels were divided
310 into high and low groups using the sample median as the cut-off and Kaplan-Meier analyses
311  were performed for curves for DFS and OS (Figure 3E and F). Similar to the univariate and
312  multivariate analyses above, Treg-high patients had improved DFS (p = 0.019) and OS (p =
313  0.017) than Treg-low patients. Kaplan-Meier curves for all single-marker and multi-marker
314  classes dichotomized on the median are included in Supplementary Figure 6. Sub-regional
315 analysis based on the percentage of immune cell subtypes located in the stroma or located
316  within/associated with the epithelial compartment and association with outcome are shown in

317 Supplementary Table 2.

318

319 Tcellinfiltration and patient prognosis for immune hot-spot. In order to account for tumor
320 immune heterogeneity, the average percent T cells in multiple cores was used for the above
321 data analyses. However, this could dilute the impact of very high but very localised immune
322 cell infiltrates. We hypothesised that by focusing our analyses on the available cores with

323  highest tumor immune regions, we might uncover additional prognostic information; therefore,
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324  we repeated the above analyses for the one core per patient with maximum T cell density for

325  each subtype.

326  We calculated the total counts of T cells in each core (CD3 counts for single markers and sum
327 of all T cell subtypes for the multiplexed model). From the 117 patients, the cores with the
328  highest number of CD3 or T cells (immune hot-spot core) was selected for further analysis.
329 Cox proportional hazards regression analysis and Kaplan-Meier plots were performed as
330 above. In the univariate analysis none of the single markers was significantly associated with
331  survival. For the multi-marker classification Treg levels were significantly associated with DFS
332 (HR =0.51, 95% CI = 0.27-0.97, p = 0.04; Figure 4A) and were borderline significant for OS

333 (HR =0.24, 95% Cl = 0.059-1, p = 0.05; Figure 4B).

334  In the multivariate analysis, for DFS in the single-marker model, FOXP3 remained in the final
335 model (multivariate adjusted HR = 0.75, 95% CI = 0.56-1.0, p = 0.05) and had borderline
336  statistical significance (Figure 4C), and in the multi-marker model Treg and TcPD1 remained
337 inthe final model and Treg remained statistically significant (for TcPD1: multivariate adjusted
338 HR = 0.68, 95% CI = 0.38-1.22, p = 0.194; for Treg: multivariate adjusted HR = 0.44, 95% CI
339 =0.20-0.95, p = 0.038). For OS, none of the single markers remained in the final model. In
340 the multi-marker model, Treg levels remained in the final model and were significantly
341  associated with improved OS (multivariate adjusted HR = 0.14, 95% CI = 0.026-0.78, p =

342  0.025) (Figure 4D).

343  As previously, Kaplan-Meier curves for all single marker and multi-marker classes
344  dichotomized on the median are included in Supplementary Figure 7. Sub-regional analysis
345 based on the percentage of immune cell subtypes located in the stroma or located
346  within/associated with the epithelial compartment and association with outcome are shown in

347  Supplementary Table 3.

348
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349  Association of KRAS status with survival and distribution of T cell subtypes. In adjuvant
350 FOLFOX/XELOX-treated stage lll colorectal cancer patients, KRAS mutations have been
351 associated with shorter time to recurrence (TTR) and OS?°. We performed survival analysis
352  for the patients with known KRAS status (108 out of 117 patients tested) to study the effect of
353  this mutation in our cohort and its interaction with T cell subtype levels. Survival curves for
354  colorectal cancer DFS and OS were plotted using the Kaplan-Meier method and compared by
355 the log rank test using the KRAS mutation status as the stratification variable. KRAS status
356  was not significantly associated with prognosis in our cohort, although, interestingly, there was
357 anon-significant trend (p = 0.07) for KRAS mutant tumors to be associated with better DFS in
358 this FOLFOX-treated cohort (Supplementary Figure 8). KRAS mutation has also been
359 reported to have an immunosuppressive effect in the tumor microenvironment of colorectal
360 cancer?l. Summary statistics for the clinicopathological data of the patients grouped by KRAS
361 status are shown in Table 3. No differences of T cell subtypes were observed between KRAS
362  WT and mutant patients, for any of the classes tested for multiplexed classification or single
363  marker classification. Collectively, these results indicate that the prognostic impact of T cell

364  subtypes is not associated with KRAS mutational status.
365
366 DISCUSSION

367  Currently 5FU-based chemotherapy (usually FOLFOX or XELOX) is used as adjuvant
368 treatment for stage-lll CRC patients?. However, only 20% of patients benefit, while 30% will
369  experience recurrence?. Therefore, reliable biomarkers that can predict which stage Il patients

370  would benefit from adjuvant chemotherapy is an urgent unmet clinical need in CRC.

371 A large number of multigene signatures using tumor gene expression profiles have emerged
372  in the last decade, such as Consensus Molecular Subgroups (CMS) and CRC Intrinsic
373  Subtypes (CRIS), which classify patients into molecular subtypes for risk prediction?22324,

374  However, this approach is therapeutically valuable only under the assumption that highest risk
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375  patients will also be the most responsive to chemotherapy. This is not the case and, in fact,
376 CMS4 patients who are predicted to have poor prognosis do not benefit from intensive
377  adjuvant chemotherapy®. We recently reported that stage-Il patients with CMS2/CRIS-C
378  tumors, which demonstrate low levels of CD8-positive tumor-infiltrating lymphocytes benefit
379  from adjuvant chemotherapy. In stage Il patients, benefit from chemotherapy was particularly
380 apparent in CMS2/CRIS-C and CMS2/CRIS-D patients®. However, transcriptional profiling is
381 not routinely available or applied in clinical practice. Ideally, a clinical test to triage patients for
382  adjuvant chemotherapy that could be performed rapidly on a single FFPE tumor section would

383  be extremely useful.

384  Herein, we explored the potential of the Cell DIVE platform for enumerating several key
385 immune cell populations previously linked with patient outcome in CRC. Using FFPE tissue
386 samples, Cell DIVE can measure up to 60 markers within a single histological section,
387 whereas standard IHC would require multiple sections to achieve similar result. This
388  requirement would introduce the problem of cellularity changes through the sequential
389  sections, as well as require extensive use of often limited valuable biological material. In
390 addition, with Cell DIVE, multiple markers can be visualized simultaneously, thus increasing
391  specificity for cell classification and providing a molecular signature within a histological
392 content. In concert with user-friendly machine-learning methodologies, Cell DIVE has the
393  potential to become a routine digital pathology platform for clinical laboratory settings. To
394 demonstrate this, we compared immune and stroma scoring from the visual inspection of all
395 tissues by a gastrointestinal pathologist with the corresponding Cell DIVE-derived immune
396 and stroma scoring. Cell DIVE scoring showed significant association with the pathologist’s
397  scores, suggesting that the Cell DIVE platform provides robust immune and stroma scoring

398 for tumor tissue sections.

399 Using the Cell DIVE platform and a segmentation and classification workflow involving 10
400 markers, we show that we were able to detect 6 classes of T cells and associate them with

401  patient prognosis using a single section from TMAs of FOLFOX/XELOX-treated stage llI
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402  patients. Our results showed that high levels of Treg cells (CD3+/CD4+/FOXP3+/PD1-) were
403  associated with improved survival in this cohort and were distinct from their PD1+

404 counterparts.

405  Treg cells are key mediators of self-tolerance, regulating multiple immune cells, such as CD4+
406 and CD8+ effector cells, macrophages and dendritic cells®. In the thymus, CD25+/CD4+
407 thymocytes can become Treg precursors, which, after stimulation with IL-2 and TGF-f, will
408 differentiate into natural thymic FOXP3+ Tregs?”-%. Natural Tregs can recognize self-antigens
409 and migrate to damaged tissues to supress the activity of other T cells and prevent an
410  uncontrolled inflammatory response?®®°, Outside the thymus, in secondary lymphoid organs
411  and peripheral tissues, Tregs are derived from differentiation of naive conventional CD4+ T
412  cells in response to cytokines that induce FOXP3 expression®32, In CRC, there are higher
413  levels of Tregs in the tumor than in healthy tissue. Recently, it has been shown that tumor-
414  associated Tregs have distinct differences from normal peripheral Tregs3*3*. In cancer, Tregs
415  can suppress anti-tumor immune responses® or have protective roles by controlling cancer-
416  associated inflammation®3”. Within the intestine, immune cells reside within the mucosa® and
417  are tightly associated with the intestinal microbiome, thus intestinal Treg depletion can lead to

418 unresolved inflammation?8-3.

419 High Treg levels have been associated with poor clinical outcomes in different cancers,
420 including CRC3340 in contrast to our findings; other studies have associated high Treg levels
421  with better prognosis in CRC patients*42434445 There are a number of reasons that could be
422  responsible for these apparently contradictory results. For example, differences in the study
423  cohorts, most notably, stage and whether patients were treated with chemotherapy, but also
424  cohort size, variable thresholds for scoring, technical differences in detection and scoring
425  between laboratories and different follow-up times* may contribute to these findings. In
426 addition, the conflicting results may be due to lack of robust biomarkers that can reflect the
427  Treg versatility and plasticity, and the best classification method for Treg is still under active

428 debate. FOXP3 is a biomarker with high selectivity for Treg identification that is routinely used
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429 as a Treg biomarker in clinical studies. However, it has limitations since it is not exclusively
430 expressed by Treg cells. FOXP3 can also be expressed in dividing, activated T effector
431  cells*"“8, Apart from FOXP3, some Treg subtypes can express other molecules that increase
432  their immuno-suppressive capacity, and these highly suppressive Treg cells have been
433  detected in CRC patients*®°%5, Therefore, relying solely on FOXP3 as a marker of Tregs may
434  be the cause of some of the inconsistencies in the literature regarding Treg and CRC

435  prognosis.

436  Recently, it was shown that the majority of intra-tumoral T cells in the TME are CD4+ with co-
437  expression of PD1 molecules®?°3, which is similar to our findings. PD-1 expression on T cells
438  can be sign of early activation or exhaustion and reduced effector functions, due to prolonged
439  exposure to tumor antigens®*. Our results show that PD1- Tregs rather than PD1+ Tregs are
440  associated with improved survival. Overall, the presence of Treg correlates with the presence
441  of T effector cells in inflamed tissues. Given that CRC is a highly inflammatory type of tumor,
442  PD1-Treg enrichment may not be associated with pro-tumorigenic immunosuppression, but
443  rather are recruited as a result of an active immune response; this would explain the
444  association which we observed with improved prognosis in this chemotherapy-treated stage-
445 |l cohort. Lastly, one limitation of our study is the lack of untreated patients for comparison.
446  Therefore, we cannot evaluate the potential of Tregs as a prognostic biomarker. Of note, Tregs

447  have been associated with better prognosis both for treated*! and untreated patients®®.

448  The association of T cell infiltration with patient prognosis was assessed using: i) the average
449  of two or three available TMA cores, and ii) the core with the highest T cell infiltration (or the
450 “immune hot-spot” core). While using the core average can better account for TME
451  heterogeneity and may be more representative of an entire tumor section, the immune hot
452  spot core could better reveal subtle immune signatures of distinct T cell subtypes and
453  infiltration levels that would have otherwise been attenuated or lost by averaging. Comparing
454  the two workflows, the results were similar, especially in the univariate analysis, where none

455  of the single markers was significant, while Treg cells were significantly associated with DFS


https://doi.org/10.1101/2021.02.24.432210
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432210; this version posted February 25, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

456 in both workflows. In the multivariate analysis, the results were comparable for the multi-
457  marker classes, with Treg cells remaining significant, while the single markers were
458  inconsistent between workflows. In addition, when using hierarchical clustering for the immune
459  hot-spot core we were unable to discover a distinct immune signature that was significantly
460  associated with survival (data not shown). Since the TMA cores were randomly selected from
461  the tumor center, it is unknown whether the immune hot -pot represents the entire tumor or is
462  random event. Considering these limitations, averaging may be a superior sampling approach
463  for assessing tumor immune infiltration than selecting the hot-spot for the purposes of this

464  study.

465 KRAS status has been reported to be a biomarker for outcome in MSS stage Ill CRC?°. KRAS
466  mutational status was not significantly associated with outcome in our study, although there
467 was a non-significant association for improved DFS in the KRAS mutant group. KRAS
468  mutation has been associated with an immunosuppressive TME in MSS CRC?!. However, no
469  differences were observed in the levels of any the T cell subtypes examined between KRAS

470  WT and mutant tumors in our study.

471  In summary, we show that multiplexed analysis of tissue and multi-marker cell classification
472  can be used to accurately determine immune cells in tumor and stroma in colorectal tumor
473  cores. We also provide proof-of-concept evidence for its utility to identify highly specific

474  immune subsets that have clinical relevance.

475

476  Supplementary information is available at Modern Pathology’s website
477
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646

647 LEGENDS OF FIGURES

648  Figure 1: A) Cell DIVE workflow: immunofluorescence staining with overlaying segmentation
649  masks and resulting classification. Based on the classification data, an immune and stroma
650 score was calculated per TMA core. B.) The immune score was calculated from the immune
651  cell density as counts of segmented cells that were positive for any of the immune markers
652 (CD45, CD3, CD4, CD8) in each core. The cores were grouped based on the pathologist’s
653  high-medium-low immune scores (x-axis) and each dot was the value of the Cell DIVE immune
654  score (y-axis) per core. C.) The stroma score for each TMA core was calculated by counting

655 segmented cells outside the epithelial mask that were negative for AE1 and immune markers,
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656  and converting to ‘percent of total’ cells. The cores were grouped based on the pathologist’s
657  high-medium-low stroma scores (x-axis) and with each dot indicating stroma score (y-axis)
658  per core. Statistical analysis was performed using Welch’s ANOVA and pairwise t-test

659  (***P <0.001 for all comparisons).

660 Figure 2: A(a) Representative multiplexed immunofluorescent tissue images and
661 segmentation masks that were used for the multi marker classification workflow. For single
662  marker classification, the immune markers were assessed individually (CD3, CD4, CDS8,
663 FOXP3, PD1) and each cell was classified as positive or negative for each marker. A(b)
664  Marker combination (AE1l, CD3, CD4, CD8, FOXP3, PD1) was used for multi-marker
665  classification workflow and based on the marker co-staining each cell was assigned a cell
666  subtype as shown in the table. The eight multi marker T cell subtypes were: T helper cells
667  (Th), T helper PD1 (ThPD1), T cytotoxic (Tc), T cytotoxic PD1+ (TcPD1), T regulatory (Treg),
668 T regulatory PD1 positive (TregPD1), Epithelial and Other (non-lymphocyte, non-epithelial)
669  cells. A(c) lllustration of the resulting multi-marker classification for the nuclear mask. B)
670  Distribution of calculated values for % of Total for each T cell subtype, per patient. Each value
671  represents the average of 2-3 assessable cores, per patient. C) Total counts from all patients
672  grouped as epithelial-associated cells (red) and stromal cells (green) for each multi-marker T
673  cell subtype. D) Correlation matrix showing the relationship between different T cell subtypes
674  (Spearman’s correlation coefficients). A color-coded correlation scale is provided and blue
675 ellipses represent positive correlations, while darker color and narrower ellipses correspond
676  to larger correlation coefficient magnitudes. E) Heatmap showing separation and clustering of
677  patients based on % T cells of Total cells in tumor cores. Clusters based on the Ward.D

678  agglomerative clustering method with Euclidean correlation distance measure.

679  Figure 3: Survival estimates for DFS and OS for Average of cores. Forest plots for multi-
680 marker classification (Tc, TcPD1, Th, ThPD1, Treg, TregPD1) and single-marker classification
681 (CD3, CD4, CD8, FOXP3, PD1) for the patient cohort. Estimated HRs, 95% Cls, and p values

682  from likelihood ratio tests from univariate Cox proportional hazards models demonstrated the
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683  associations between the percent of total classified cells with the risks of recurrence (DFS)
684 (A) and death (OS) (B). In the multivariate analysis the biomarkers were adjusted for clinical
685 variables (T, N, age, sex, nodal count, positive nodes, differentiation, lymphovascular
686  invasion) for DFS (C) and OS (D). Kaplan—Meier curves demonstrating univariate survival
687  analysis for percent of total for Treg dichotomized at the median for DFS (E) and OS (F).

688  Differences in Kaplan—Meier survival curves are presented as log- rank P value.

689  Figure 4: Survival estimates for DFS and OS for immune hot-spot: Forest plots for multi-
690  marker classification (Tc, TcPD1, Th, ThPD1, Treg, TregPD1) and single-marker classification
691 (CD3, CD4, CD8, FOXP3, PD1) for the patient cohort. Estimated HRs, 95% Cls, and P values
692  from likelihood ratio tests from univariate Cox proportional hazards models demonstrated the
693  associations between the percent of total classified cells with the risks of recurrence (DFS)
694  (A) and death (OS) (B). In the multivariate analysis the biomarkers were adjusted for clinical
695 variables (T, N, age, sex, nodal count, positive nodes, differentiation, lymphovascular

696 invasion) for DFS (C) and OS (D).

697  Supplementary Figure 1: Panel of representative multiplexed image with the corresponding
698  segmentation masks and individual staining for each antibody used for T cell classification

699  and segmentation in this study.

700 Supplementary Figure 2: Heatmap showing separation and clustering of patients based on
701  %T cells of Total T cell subtypes in tumor cores. Clusters based on the Ward.D agglomerative
702  clustering method with Euclidean correlation distance measure. Kaplan-Meier curves color-
703  coded for the corresponding 2 (A) and 3 (B) clusters of patients, demonstrating univariate
704  survival analysis for DFS and OS. Differences in Kaplan—Meier survival curves are presented

705  as log- rank p value.

706  Supplementary Figure 3: Pearson Correlation between cell counts for single marker model
707  and multi marker classification. CD3: CD3 vs Tc+TcPD1+Th+ThPD1+Treg+TregPD1, CDA4:

708 CD4 vs Th+ThPD1+Treg+TregPD1l, CD8: CD8 vs Tc+TcPD1l, FOXP3: FOXP3 vs
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709  Treg+TregPD1, PD1: PD1vs TcPD1+ThPD1+TregPD1. The average counts of % of Total per

710  patient were used for the analysis.

711  Supplementary Figure 4: Representative VHE images and the corresponding multiplexed

712 immunofluorescence and tissue mappings after classification.

713  Supplementary Figure 5: Forest plots of multivariate Cox proportional hazards models for

714 clinical variables after backward elimination.

715  Supplementary Figure 6: Univariate survival analysis using Kaplan-Meier curves for single-
716  marker and multi-marker T cell subtypes as percent of Total for average. The patients were

717  separated in two groups using the median as cut-off.

718  Supplementary Figure 7: Univariate survival analysis using Kaplan-Meier curves for single-
719  marker and multi-marker T cell subtypes as percent of Total for immune hot-spot cores. The

720  patients were separated in two groups using the median as cut-off.

721  Supplementary Figure 8: A) Association of Kras status with survival for treated patients for

722 DFS and OS.

723

724
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Table 1: Demographic data of patient cohort

Overall
(N=117)
DFS (months)
Mean (SD) 51.7 (27.9)

Median [Min, Max]
OS (months)

Mean (SD)

Median [Min, Max]
sex

female

male

w

1

2
age (years)

Mean (SD)

Median [Min, Max]
LNC

Mean (SD)

Median [Min, Max]
PLN

Mean (SD)

Median [Min, Max]
LVI

no

yes
differentiation

moderate to well

poor

50.7 [2.40, 115]

58.5 (24.7)
59.1[9.20, 115]

46 (39.3%)
71 (60.7%)

10 (8.5%)
70 (59.8%)
37 (31.6%)

83 (70.9%)
34 (29.1%)

59.2 (11.2)
61.0 [26.0, 79.0]

21.3 (11.0)
19.0 [5.00, 73.0]

3.05 (2.49)
2.00 [1.00, 13.0]

49 (41.9%)
68 (58.1%)

99 (84.6%)
16 (13.7%)

*LNC=Lymph Node Count, *PLN=Positive Lymph Nodes, *LVI=Lymphovascular Invasion
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Table 2: Summary statistics for multi-marker and single-marker subtypes.

Overall
(N=117)

% Tc (of total cells)
Mean (SD)
Median [Min, Max]

% TcPD1
Mean (SD)
Median [Min, Max]

% Th
Mean (SD)
Median [Min, Max]

% ThPD1
Mean (SD)
Median [Min, Max]

% Treg
Mean (SD)
Median [Min, Max]

% TregPD1
Mean (SD)
Median [Min, Max]

% CD3
Mean (SD)
Median [Min, Max]

% CD4
Mean (SD)
Median [Min, Max]

% CD8
Mean (SD)
Median [Min, Max]

% FOXP3
Mean (SD)
Median [Min, Max]

% PD1
Mean (SD)
Median [Min, Max]

0.693 (0.925)
0.423[0.0111, 6.49]

0.477 (0.619)
0.197 [0, 3.06]

0.133 (0.251)
0.0511 [0, 1.62]

0.559 (0.593)
0.394 [0.0222, 3.57]

0.568 (0.732)
0.312 [0, 4.88]

0.262 (0.275)
0.166 [0.00471, 1.48]

3.18 (2.88)
2.52[0.221, 22.3]

3.64 (3.52)
2.67 [0.126, 23.3]

2.17 (2.42)
1.35[0.0283, 12.3]

1.58 (1.46)
1.19[0.0114, 8.57]

0.669 (0.694)
0.395 [0.00943, 3.41]
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Table 3: Demographic data and summary statistics of multi-marker model based
on KRAS status

WT mutant p-value
(N=64) (N=44)

sex
female 24 (37.5%) 20 (45.5%) 0.53
male 40 (62.5%) 24 (54.5%)

T
2 4 (6.2%) 6 (13.6%) 0.342
3 37 (57.8%) 26 (59.1%)
4 23 (35.9%) 12 (27.3%)

N
1 42 (65.6%) 34 (77.3%) 0.277
2 22 (34.4%) 10 (22.7%)

age scores
<50 18 (28.1%) 7 (15.9%) 0.296
>70 14 (21.9%) 7 (15.9%)
51-60 11 (17.2%) 11 (25.0%)
61-70 21 (32.8%) 19 (43.2%)

LNC
<12 8 (12.5%) 5 (11.4%) 0.919
>20 28 (43.8%) 21 (47.7%)
Dec-20 28 (43.8%) 18 (40.9%)

PLN
N>7 6 (9.4%) 2 (4.5%) 0.393
N1-3 42 (65.6%) 34 (77.3%)
N4-6 16 (25.0%) 8 (18.2%)

LVI
no 21 (32.8%) 23 (52.3%) 0.0683
yes 43 (67.2%) 21 (47.7%)

% Tc (of total cells)
Mean (SD) 0.636 (0.728) 0.848 (1.20) 0.355
Median [Min, Max] 0.421[0.0111, 3.02] 0.475[0.0199, 6.49]

% TcPD1
Mean (SD) 0.550 (0.670) 0.411 (0.546) 0.606
Median [Min, Max] 0.215 [0, 3.06] 0.254 [0, 2.63]

% Th
Mean (SD) 0.107 (0.215) 0.191 (0.309) 0.0721
Median [Min, Max] 0.0393 [0, 1.62] 0.115[0, 1.47]

% ThPD1
Mean (SD) 0.547 (0.538) 0.634 (0.695) 0.63
Median [Min, Max] 0.407 [0.0222, 3.56] 0.416 [0.0564, 3.57]

% Treg
Mean (SD) 0.525 (0.669) 0.680 (0.862) 0.371
Median [Min, Max] 0.303 [0.0319, 3.49] 0.352 [0.00996, 4.88]

% TregPD1
Mean (SD) 0.287 (0.312) 0.245 (0.227) 0.778
Median [Min, Max] 0.182[0.00471, 1.48] 0.166 [0.0253, 0.910]

*LNC=Lymph Node Count, *PLN=Positive Lymph Nodes, *LVI=Lymphovascular Invasion
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