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Abstract

Maternal loss of imprinting (LOI) at the H79/IGF?2 locus results in biallelic /GF2 and reduced
H19 expression and is associated with Beckwith Wiedemann syndrome (BWS). We use mouse
models for LOI to understand the relative importance of /gf2 and H/9 mis-expression in BWS
phenotypes. Here we focus on cardiovascular phenotypes and show that neonatal cardiomegaly
is exclusively dependent on increased Igf2. Circulating IGF2 binds cardiomyocyte receptors to
hyperactivate mTOR signaling, resulting in cellular hyperplasia and hypertrophy. These /gf2-
dependent phenotypes are transient: cardiac size returns to normal once /gf2 expression is
suppressed postnatally. However, reduced H179 expression is sufficient to cause progressive heart
pathologies including fibrosis and reduced ventricular function. In the heart, H79 expression is
concentrated predominantly in endothelial cells (ECs) and regulates EC differentiation both, in
vivo and in vitro. Finally, we establish novel mouse models to show that cardiac phenotypes

depend on H19 IncRNA interactions with let7 microRNA.

Keywords: Beckwith Wiedemann syndrome/epigenetics/H19 Inc RNA/loss of imprinting/Igf2
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Introduction

There are100-200 imprinted genes in mammals. These genes are organized into discrete
clusters where monoallelic expression is dependent upon a shared regulatory element known as
the Imprinting Control Region (ICR)(Barlow & Bartolomei, 2014). Imprinted genes are
frequently involved in human disease and developmental disorders (Eggermann et al, 2015;
Feinberg & Tycko, 2004; Horsthemke, 2014; Kalish et a/, 2014; Peters, 2014). Sometimes, these
diseases are due to inactivating point mutations of the only transcriptionally active allele.
Alternatively, imprinting diseases are caused by disruption of ICR function, leading to mis-
expression of all genes in the cluster.

One imprinted cluster is the IGF2/H19 locus on human chromosome 11p15.5. Imprinting
in this >100 kb region is determined by the H/9ICR, located just upstream of the H79 promoter
(Kaffer et al, 2000; Thorvaldsen et al, 1998). As described in Figure 1A, the H/9ICR organizes
the locus such that transcription of the /GF?2 (Insulin-like Growth Factor 2) and H19 genes are
expressed from the paternal and maternal chromosomes, respectively (Ideraabdullah et a/, 2008;
Murrell, 2011; Yoon et al, 2007). (Note that in medical genetics, the H/9ICR is also known as
Imprinting Center 1 or IC1).

IGF?2 encodes a peptide hormone that binds to and activates the Insulin receptor (InsR)
and Insulin-like growth factor 1 receptor (Igf1R) kinases to promote cell growth and
proliferation (Bergman et al, 2013). In contrast, the functional product of the H/9 gene is a 2.3
kb long non-coding RNA whose biochemical functions remain controversial (Brannan ef al,
1990; Gabory et al, 2010). Reported roles for the H/9 IncRNA include: 1) acting as the precursor
for microRNAs (miRNA-675-3p and miRNA-675-5p) (Cai & Cullen, 2007; Keniry et al, 2012),

2) regulating the bioavailability of let7 miRNAs (Gao et al, 2014; Geng et al, 2018; Kallen et al,
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2013; Li et al, 2015), 3) interacting with p53 protein to reduce its function (Hadji et al, 2016;
Park et al, 2017; Peng et al, 2017; Yang et al, 2012; Zhang et al, 2019; Zhang et al, 2017), and
4) regulating DNA methylation to thereby modulate gene expression (Zhou ef al, 2019; Zhou et
al, 2015).

In humans, disruption of the maternally inherited H/9ICR results in biallelic /GF?2 along
with reduced H79 expression and is associated with the developmental disorder, Beckwith
Wiedemann syndrome (BWS) (Jacob et al, 2013). BWS is a fetal overgrowth disorder but the
specific manifestations of overgrowth vary between patients. Cardiomegaly is a common
newborn presentation but typically resolves without treatment. Cardiomyopathies are rarer and
include ventricular dilation, valve/septal defects, fibrotic and rhabdomyoma tumors, and vascular
abnormalities (Cohen, 2005; Descartes et al, 2008; Drut et al, 2006; Elliott et al, 1994,
Greenwood et al, 1977; Knopp et al, 2015; Longardt et al, 2014; Ryan et al, 1989; Satge et al,
2005). BWS incidence correlates with artificial reproductive technologies (ART) (DeBaun ef al,
2003; Gicquel et al, 2003; Halliday et al, 2004; Hattori et al, 2019; Johnson et al, 2018; Maher et
al, 2003; Mussa et al, 2017) and among BWS patients, the frequency of heart defects is higher in
those born via ART (Tenorio et al, 2016).

We have generated a mouse model that recapitulates the molecular loss of imprinting
(LOI) phenotypes of BWS (Figure 1A) (Srivastava et al, 2000). That is, deletion of the H/9ICR
on the maternal chromosome results in biallelic /gf2 and reduced levels of H19. In this study, we
show that the LOI mouse model displays cardiovascular defects seen in BWS patients. Genetic
and developmental analyses indicate that mis-expression of /gf2 and H/9 act independently on
distinct cell types to cause the cardiac phenotypes. During fetal development, increased

circulating IGF2 activates AKT/mTOR pathways in cardiomyocytes resulting in cellular
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88  hypertrophy and hyperplasia. This neonatal hypertrophy is transient, non-pathologic, and
89  unaffected by the presence or absence of a functional H/9 gene. However, loss of H/9 IncRNA
90  results in cardiac fibrosis and hypertrophy and a progressive cardiac pathology in adult animals.
91  In both neonatal and adult hearts, /79 IncRNA expression is concentrated in endothelial cells
92 (ECs). In vivo, loss of H19 results in high incidence of ECs that co-express endothelial and
93  mesenchymal markers. Similarly, primary cardiac endothelial cells can be driven toward a
94  mesenchymal phenotype by manipulating H/9 expression levels. Thus, this research identifies a
95  novel developmental role for the /79 IncRNA in regulating cardiac endothelial cells. In fact,
96  this role for H19 in restricting endothelial cell transitions in the heart is unexpected given
97  previous analyses of H79 function in vitro in transformed cell lines. Finally, we describe
98 structure-function analyses in two novel mouse models and show in that H/9 IncRNA acts by
99  regulating let7 bioavailability.

100

101
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102 Results
103 Defective structure and function in hearts from mice with H19/Igf2 maternal loss of
104  imprinting (LOI)
A e Wild type and LOI mice were generated by
@ @R mat e
’\‘196 TR pat | Crossing HI197~"/HI9" females with wild type
C57Bl/6J males. (See Figure 1A for a description of the
o H19 mat
v QCR Pat | H19AICR allele). In mice (as in humans), maternal LOI
B < results in biallelic (2X) expression of /gf2 and reduced
Wild type ——ooo—o——1
—HHHH— .
3’52;7 *:H][H:H:H:”:ﬂ levels of H19 RNA (Supplemental Figure 1A). Hearts
11— jsolated from P1 LOI mice display cellular hyperplasia
Figure 1 — The H19/Igf2 locus.
A. Schematic of maternal (mat) and paternal e e .
(pat) chromosomes in wild type and in loss of and cellular hypertrophy. Hyperp1a51a is indicated by
imprinting (LOI) mice. Gene expression is
indicated by horizontal arrows. In wild type increased staining for Ki-67 in tissue sections (Figure
mice, the paternal copy of the imprinting
control region (ICR) is inactivated by DNA . . )
methylation (filled lollipops). B. Schematic of 2A, C) and by increased levels of Ki-67 and of cyclins
wild type, AEx1, and AlLet7 H19 alleles. H19
exons 1-5 are shown as filled rectangles. AEx1 E1l and D1 in protein extracts (Figure 2D). Cellular
is a 700 bp deletion at the 5’ end of exon 1.
Alet7 was constructed for this study by h hy is d db . £
simultaneous deletion of let7 binding sites in ypertrophy 1s demonstrated by measuring surtace
H19 exons 1 and 4. The red oval identifies
coding sequences for miR-675. Arrowheads areas of primary cardiomyocytes isolated from wild
show the direction of transcription.
I18  type and LOI neonates (Figure 2E, F). Apart from their
119  increased size, neonatal LOI hearts do not display any obvious pathologies. For example, we did
120 not see increased fibrosis or expression of protein markers associated with heart disease. (See
121 Figure 3B for markers that were assayed but did not show aberrant expression). Furthermore, by
122 2 months of age, we were unable to distinguish LOI mice by cardiomegaly.
123
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Figure 2 — Cardiac hypertrophy in neonatal LOI mice is mediated by circulating IGF2’s activation of AKT/mTOR signaling in
cardiomyocytes and is independent of H19 gene function.

A, B. Heart morphology in wild type, LOI, and LOI + H19 BAC littermates (A) or in wild type and H19-deficient littermates (B).
Top panels, transverse sections were taken from fixed hearts at 200 mm from the apex. Bottom panels, Ki-67 (brown stain) is a
marker for cell proliferation. LOI, H/9**"/H19+; LOI + BAC, H194¢?/H19* mice that also carry a 140 kb Bacterial Artificial
Chromosome transgene that restores normal H19 expression. Notice the thickened walls, misshaped right ventricles, and high
levels of Ki-67 expression in LOIl and in LOI + BAC transgenic neonates. C. Quantitation of Ki-67 expression as assayed in panel
A. (N =4). D. Immunoblot analyses of heart extracts prepared from wild type and LOI littermates. LOI hearts show increased
levels of proliferation markers, Ki-67, Cyclin El, and Cyclin D1 and also increased levels of phosphorylated AKT and S6K1 (a
target of mTORC1). E, F. Cardiomyocyte cellular hypertrophy in LOI animals is cell non-autonomous. Primary cardiomyocyte
cultures were prepared from wild type, LOI, and from littermates carrying an ICR deletion only in cardiomyocytes (see below).
Cells were cultured overnight, stained for MYH6 (to identify cardiomyocytes) and Phalloidin (to facilitate measurement of
surface areas). For each culture (N=5 per genotype), at least 30 cells were measured. G, H. Exogenous IGF2 peptide induces
cellular hypertrophy in wild type cardiomyocytes through mTOR pathways. Primary cardiomyocytes were prepared from wild
type neonates and cultured overnight with IGF2 before measurement of cell surface area (G) or preparation of protein extracts
for immunoblotting (H). The effect of increased IGF2 is prevented by treatment with BMS 754807 or with Rapamycin. BMS
inhibits IgfR1 and Ins2 receptor kinases (Carboni et al, 2009). Rapamcyin blocks a subset of mTOR activities (Li et al, 2014).

1, ). LOI phenotypes in cardiomyocytes are cell non-autonomous. H19/CRflox/H19PICk females were crossed with males carrying
the Myh6Cre transgene to generate 4 kind of pups: H194R/H19+ (#1) and H19%R/H19+ Myh6Cre (#3) will display LOI in all cell
types; H19/CRflox/H19+ (#2) will display wild type expression patterns for Igf2 and H19; and H19/Rflox/H19+ Myh6Cre mice will
show LOI only in cardiomyocytes. Hearts were analyzed for cellular hypertrophy (E), megacardia and hyperplasia (1), and
protein expression (J). In all assays, H19/CRflox/H19+ Myh6Cre mice were indistinguishable from their wild type littermates.

All bar graphs show mean + SEM. *, p<0.05; ***, p<0.001 (Student’s t-tes). LOI, Loss of imprinting (H194/?/H19*).
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We continued to monitor cardiovascular phenotypes in LOI and wild type mice until 19

months of age. By 6 months, LOI mice displayed cardiac hypertrophy as measured by a 28%

increase in heart weight/tibia length ratios (wild type = 10.0 + 1.7 mg/mm, N=§; LOI = 12.8 +

0.2 mg/mm, N=10; p = 0.005). Transverse sections revealed increased fiber diameter in LOI

hearts (wild type = 10.2 + 0.7 um; LOI = 14.4 + 0.8 um; p = 0.007) (Figure 3A). Cardiac

hypertrophy is often a poor prognostic sign and is associated with most forms of heart failure

(Heinzel et al, 2015; Vakili et al, 2001). However, hypertrophy can also be physiologic

(McMullen & Jennings, 2007; Shimizu & Minamino, 2016). The hypertrophy in LOI mice might

be considered pathologic based on increased levels of ANP, Myh7, cleaved Caspace-3, cleaved

Caspace-7, and cleaved PARP proteins as well as decreased levels of Serca2 protein in all LOI

mice by 1 year of age (Figure 3B) (Mitra et al, 2013; van Empel et al, 2005). Finally, both

interstitial and perivascular fibrosis are prominent in LOI animals by 6 months of age (Figure

3C, D).
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Figure 3. Cardiomyopathies in adult LOI mice.

A. Transverse sections were collected midway along the longitudinal axis from hearts collected from 6-month-old wild type
(WT) and LOI mice and stained with hematoxylin and eosin. B. Immunoblot analyses of whole heart extracts prepared from 1-
yeart WT and LOI mice. Note the altered expression of ANP (Atrial Natriuretic Peptide), Myh7 (Myosin Heavy Chain 7), Serca2
(Sarco/endoplasmic reticulum Ca*+ ATPase), Cleaved Caspase-3, and Cleaved Poly ADP Ribose Polymerase (PARP). b-tubulin is
a loading control. C, D. Masson’s trichrome staining of sections described in panel A. Red, muscle fibers; blue, collagen.
Sections from 5 wild type and 5 LOI animals were used to calculate fibrosis. Bar graphs show mean + SEM. Data were analyzed
by Student’s t-test. E, F. Ascending aortas were isolated from 10 wild type and 8 LOI mice and pressure-diameter curves
generated. E. Increased diameters across a wide range of applied pressures. F. Increased segmental distensibility across
physiologically relevant pressures. Data were analyzed by two-way repeated measure ANOVA.

For all panels: *, P<0.05; **, P<0.01; ***, P<0.001; **** P<0.0001.

Table 1 summarizes echocardiography phenotypes from 13-month-old mice. Left
ventricles (LV) from LOI mice are dilated (as measured by increased LV volumes at both systole
and diastole), mildly hypertrophic (as measured by increased wall thickness, LVAW diastole and
LVPW diastole), and show diminished function (as measured by reduced ejection fractions, %
EF). LOI mice showed large increases in velocity and turbulence of blood flow from the LV

outflow tract. Finally, major vessel lumen diameters (measured at the aortic arch and the first

brachial arch) were >30% larger in LOI mice.
13 months 16 months
Phenotype wr (N'\:'elalr; il_g:s?l/l\l ) P-value | % Change | (N“:ialr; iLSOEI“(AN _9) P-value | % Change

Heart rate (bpm) 504 + 12 499 + 11 0.77 -1 529 + 20 540 + 16 0.77 2
LV Volume Systole (ul) | 24.1+15 | 39.2+4.7 0.01 63 283+1.4 | 466+1.6 | <0.001 65
LV Volume Diastole (ul) | 67.9+3.0 | 79.8+4.6 0.05 17 742+28 | 91.3+3.3 | <0.001 23
LV EF (%) 64.7+1.2 | 51.9+3.38 <0.01 -19 62.5+0.9 | 486+1.7 <0.001 -22
LVAW Systole (mm) 1.40+0.01 | 1.44 +0.02 0.09 3 1.39+0.01 | 1.52 + 0.04 0.01 8
LVAW Diastole (mm) | 0.88+0.01 [ 1.01+0.03| <0.01 15 0.91+0.01|1.08+0.04| <0.001 20
LVPW Systole (mm) 1.35+0.01 | 1.39 + 0.02 0.17 3 1.34+0.01 | 1.42 + 0.03 0.4 6
LVPW Diastole (mm) 0.87+0.02 [ 0.98 + 0.04 0.02 12 0.88+0.02 | 1.08 + 0.04 <0.001 19
LVOT mean gradient 24+0.2 6.8+1.8 0.04 185 23+0.2 49+1.1 0.04 115
LOVT mean velocity 768 +30 | 1211 + 162 0.02 58 750 +37 | 1066 + 112 0.02 42
LVOT peak gradient 58+0.3 | 15.7+3.7 0.03 170 55+0.5 | 13.3+3.3 0.04 143
LVOT peak velocity 1201 +35 | 1870 + 215 0.01 56 1158 +52 | 1732 + 200 0.02 50
Aorta Systole (mm) 1.65+0.04 | 2.14 +0.10 <0.01 30 1.70+0.04 | 2.25+0.12 0.002 32
Aorta Diastole (mm) 1.44 +0.04 | 1.86 + 0.07 <0.01 30 1.48 +0.04 | 2.07 +0.13 0.002 40
First Brachial Arch (mm)| 0.78 £ 0.03 | 1.06 + 0.07 <0.01 36 0.78 +0.02 | 1.09 + 0.08 0.004 40
Table 1. Echocardiography of wild type (WT) and loss of imprinting (LOI) mice at 13 and at 16 months. LV, left
ventricle; EF, ejection fraction; AW, anterior wall; PW, posterior wall; OT, outflow tract. P-value is by Student’s t-test.
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158 Scatterplots of echocardiography data from 13 month animals show that most LOI

159  phenotypes are heterogeneous and are not normally distributed (Supplemental Figure 2). Rather
160  phenotypes for volume, mass, ejection fraction, and outflow tract velocity and turbulence are all
161  bimodal: 6-7 animals display mild phenotypes and 3-4 animals display extreme pathologies

162 (Supplemental Figure 2A-D). The only exception to this pattern is seen in arterial diameter

163 phenotypes. In this case, the variance among LOI animals is low (like their WT cohorts) and all

164  the LOI animals display a pathologic phenotype (Supplemental Figure 2E, F).

165 Supplemental Table 1 summarizes correlations between the various phenotypes identified
166 by echocardiography. Cardiac function as measured by ejection fraction is inversely correlated
167  with LV volume (RR = 0.81). However, function correlates only moderately with wall thickness
168  (RR =0.53) and not at all with outflow tract defects (RR = 0.02), or with aortic diameter (RR
169  <0.01). Thus, LOI associated phenotypes are not uniformly penetrant. Rather, each mouse

170  presents a distinct array of defects. The only invariant is that all LOI mice have arterial diameters

171  larger than their wild type counterparts.

172 The right-hand columns in Table 1 summarize echocardiography results from the same
173 mice at 16 months of age. We observed the same ventricular abnormalities: reduced ejection
174  fraction, increased chamber size, and increased wall thickness. However, on scatter plots we see
175  that wild type and mutant animals now show non-overlapping phenotypes, consistent with the
176  idea that ventricular failure is progressing in LOI mice (Supplemental Figure 2). Note that the
177  LOI mouse with the poorest function at 13 months (25 % EF) died prior to this second analysis.
178 Finally, in vivo analyses at 19 months identified significant pathological reductions in

179  both systolic blood pressure (WT = 105 +2, LOI =93 + 3, p=0.01) and pulse pressure (WT =

10
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180 37+ 1,LOI=28+ 1, p <0.001) in mutant mice (Supplemental Figure 3). These data confirm that
181  HI19/Igf2 LOI has a substantial effect on cardiovascular function.

182 As described above, increased artery diameter is a phenotype where by 13 months, LOI
183  and WT mice sorted into phenotypically distinct cohorts. This suggested that abnormal blood
184  wvessel structure might be a relatively primary defect. We focused additional attention to this

185  phenotype and measured outer diameters of isolated ascending aorta and carotid arteries in

186  response to applied pressures on a pressure myograph (Figure 3E, Supplemental Figure 4A).

187  Arteries from LOI mice are larger in diameter across all applied pressures. Moreover, across

188  normal physiological pressure ranges (75-125 mmHg) arteries from mutant mice are more

189  sensitive to changes in pressure and lumens reach their maximum diameter at lower pressures.
190  They are appropriately distensible at low (elastic) pressures but are stiffer than WT vessels over
191  higher pressure intervals, including most physiologic pressures (Figure 3F, Supplemental Figure
192  4B).

193 In sum, H79/Igf2 LOI in mice results in transient neonatal cardiomegaly and then a

194  progressive cardiomyopathy. Note that results shown in Figure 3 and in Table 1 describe

195  comparisons of age-matched male mice. Adult LOI females consistently showed relatively weak
196  phenotypes and p values were not significant (data now shown). However, neonatal hypertrophy
197  and hyperplasia occurs in both male and female pups. This apparent paradox was the first clue
198 that the relationship between the neonatal hypertrophy and the adult disease phenotypes was not
199  straightforward.

200  Hypertrophy and hyperplasia in neonatal LOI mice is dependent on hyperactivation of

201  mTOR/AKT signaling by increased dosage of IGF2 peptide.
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202  To understand the specific roles for mis-expression of /gf2 and of H/9 in neonatal cardiomegaly
203  we performed two genetic analyses. First, we rescued H179 expression in an LOI background by
204  introducing a 140 kb H19 Bacterial Artificial Chromosome (H19 BAC) (Kaffer ef al, 2001;

205  Kaffer et al., 2000) but still saw cardiomyocyte hypertrophy and hyperplasia in neonates (Figure

206  2A, C). Second, we tested the effect of removing H79 in a background where /gf2 remains
207  monoallelic by comparing H1 9AE 1 9* pups (Figure 1B) with wild type littermates. Loss of

208  HI9 IncRNA does not result in neonatal cardiomyocyte hypertrophy or hyperplasia (Figure 2B).
209  Altogether, we conclude that loss of 79 IncRNA does not contribute to neonatal hypergrowth.
210  Rather, this neonatal hypertrophy is dependent only upon biallelic (2X dosage) Igf2 transcription.
211 IGF2 peptide works by binding and activating InsR and IgfR kinases and mTOR/AKT
212 signaling is a known downstream target of these receptor kinases (Bergman et al., 2013). In

213 addition, studies document the role of AKT/mTOR signaling in cardiomyocyte cell division and
214 hypertrophy (Sciarretta ef a/, 2014). Consistent with a critical role for AKT/mTOR signaling in
215  LOI-dependent neonatal hypertrophy, hearts from LOI neonates show increased levels of

216  phosphorylated AKT and of phosphorylated S6K 1, a downstream marker for mTORC1 activity
217  (Figure 2D). Moreover, the LOI cellular hypertrophy and pAKT hyperactivation phenotypes can
218  be phenocopied by treatment of wild type primary cardiomyocytes with IGF2 peptide. However,
219  IGF2 action is blocked by BMS-754807, a specific inhibitor of the receptor kinase, or by

220  treatment with rapamycin, an mTOR signaling pathway inhibitor (Figure 3G, H).

221 Igf2 is widely expressed in the embryo. In fact, expression of /gf2 is low in the heart

222 relative to other tissues, especially liver and skeletal muscle (Supplemental Figure 1B). To assess

223 the role of biallelic Igf2 in the cardiomyocytes themselves, we crossed H194CR /1 9/CRflox

224  females with H19"/HI19" males carrying the Myh6Cre transgene. H1 9ICRflox i an allele where
Irying y
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225  the HI19ICR is flanked with loxP sites so that cre recombination results in deletion of the /CR
226  (Srivastava et al., 2000). We used PCR analyses to demonstrate that the Myh6Cre transgene

227  drives efficient ICR deletion in the heart but not in other tissues tested (skeletal muscle, liver,

228  kidney, brain, thymus, spleen, and lung). Our cross generated wild type mice (H! 9ICRAlox 7 9™y

229  and two kinds of LOI controls (H/ 9MCR 19+, +Myh6Cre and HI QAR 9") that we

230  compared with experimental mice that had cardiomyocyte specific LOI

231 (HI9R%/H 19" -+ Myh6Cre). Cardiomyocyte specific ICR deletion does not cause

232 hypertrophy. Rather, H19* CRElox/171 9% Myh6Cre mice were indistinguishable from their wild

233 type littermates (Figure 2E, F, L, J).

234 Cardiac disease in adults is dependent only upon loss of H19 IncRNA expression. Biallelic
235  Igf2 and the resultant hypertrophy in neonatal hearts are not relevant to the adult LOI

236  phenotype.

237  While the H/9 BAC transgene does not prevent neonatal cardiomegaly, it does successfully

238  prevent adult pathologies. That is, hearts from 6-month LOI mice carrying the H79 transgene are
239  not enlarged as determined by heart weight/tibia length ratios (LOI = 12.9+0.6 mg/mm, N=3;
240 LOI+ H19 BAC Transgene = 11.5+0.7, N=3; p <0.05), are not fibrotic (Figure 4A, B), and do
241  not express cardiomyopathy markers (Figure 4C). Thus, loss of H19 is necessary to induce LOI
242 cardiomyopathies.

243 We next investigated whether loss of H179 is sufficient to induce pathologies and also
244  investigated exactly which H/9 RNA was important. The /79 gene encodes a 2.3 kb IncRNA
245  which is exported to the cytoplasm but also is the precursor for microRNAs, miR-675-5p and
246  miR-675-3p (Cai & Cullen, 2007). Since LOI mice show reduced levels of both the IncRNA and

247  of miR-675 and because the H19 BAC transgene restores expression of both the IncRNA and the
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miR-675 microRNAs, these models were not helpful in determining which RNA species prevents

cardiac pathology. The H19A4Ex] allele is a 700 bp deletion of the 5’ end of exon 1 that leaves
bases encoding the miR-675 intact (Figure 1B). This AEx/ deletion does not prevent H/9
transcription but rather, reduces 479 IncRNA levels by destabilizing the truncated transcript

(Srivastava et al, 2003), raising the possibility that the AEx/ mutation might affect only the

IncRNA. In fact, we show here that levels of miR-675-5p and -3p are unaltered in H194E//H19*

hearts (Supplemental Figure 5). Yet, 6 month old H7945//H19" male mice display LOI cardiac

pathologies including hypertrophy (Figure 4D), fibrosis (Figure 4B, E), and expression of

disease markers (Figure 4F). Thus, we conclude that loss of H/9 IncRNA is sufficient to induce

cardiomyopathy in adult mice.
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Figure 4. LOI pathologies in adult mice are H19-dependent.

A, B, C An H19 transgene rescues pathologies in LOI mice. Phenotypes of LOI mice or their LOI littermates that also carry an H19
Bacterial Artificial Chromosome transgene that restores wild type levels of H19 RNA (LOI + H19 BAC). D, E, F H19 deletion is
sufficient to cause cardiac pathologies. Phenotypes in wild type (WT) mice and in littermates carrying the H194Ex1 deletion.

For histology (A, B, D, E) hearts were isolated from 6-month old animals and transverse sections collected midway along the
longitudinal axes before staining with hematoxylin and eosin (D) or with Masson’s trichrome (A, B, E). Bar graphs show mean +
SEM. *, P<0.05; **, P<0.01 (Student’s t-test). For immunoblotting (C, F), hearts were isolated from 1-year animals and
investigated for ANP, Myh7, Serca2, Cleaved Caspase-3, and Cleaved PARP. b-tubulin is a loading control.

260

261 In addition to establishing the critical importance of H79 IncRNA, these genetic

262  experiments also uncouple neonatal hypertrophy and adult pathology: neonatal LOI + H19 BAC
263  mice show hypertrophy but do not develop adult pathologies while neonatal H194*!/H19" mice
264  have normal sized hearts but do develop pathologies. Thus, neonatal cardiomegaly is not a risk
265  factor for adult pathologies.

266

267  HI19 IncRNA regulates the frequency of endothelial to mesenchymal transition in mice and in
268  isolated primary endothelial cell cultures.

269  HI9 expression is not uniform throughout the heart but rather restricted to endothelial cells (ECs)
270  (Figure 5A, 5B). In fetal and neonatal hearts /19 is expressed in all endothelial cells including
271  microvasculature. In adults, H/9 expression is restricted to endocardium and endothelial cells
272  lining major coronary vessels (Figure SA) (Supplemental Figure 1B). Localization was

273 confirmed in vasculature by co-staining for both endothelial and smooth muscle markers. For
274  example, in coronary vessels, 79 RNA expression exclusively overlapped with endothelial
275  specific marker von-Willebrand’s factor (Figure 5B).

276
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Figure 5. H19 influences gene expression and cell fate in cardiac endothelial cells.

A. In situ staining for H19 (brown) in hearts from wild type P1 neonates or 6-month adults. B. Combined in situ and
immunohistochemistry for hearts isolated from wild type and H194Ex1/H19+ littermates at 6 months shows expression of
H19 is concentrated in endothelial cells. Sections were stained for H19 IncRNA and then with antibodies to the endothelial
marker, VWF (von Willebrand Factor), or to the smooth muscle marker, a-SMA (alpha smooth muscle actin). C. MA blot
showing differences in expression of polyadenylated RNAs in H19-deficient endothelial cells. Endothelial cells were isolated
from wild type (N = 4) and H1946x,/H19* (N = 3) P2 neonatal hearts based on CD31 expression. RNAs were isolated and
polyadenylated transcripts were quantitated. Genes marked in red are significantly differentially expressed at FDR<0.05. D.
Transient transfection of H19“1/H19+ cardiac endothelial cells with an H19-expression vector rescues expression of key
EndMT genes. Cardiac endothelial cells were isolated from wild type and H19-deficient P2 hearts as described in D and
transfected with empty expression vector (pcDNA3) or with pcDNA3 carrying mouse H19 gDNA (pcDNA3-H19). After 24 hours
in culture, RNA was extracted and cDNAs synthesized and analyzed for H19, SM22a, Snail, or Slug. For each gene, cDNA levels
were normalized to GAPDH and then to the levels seen in wild type cells transfected with pcDNA3 only. E, F. Increased
frequency of EndMT transitioning cells in H19-deficient mice. E. Hearts from wild type and H1946x/H19* littermates were
isolated at e14.5, P1, and at 6 months. Sections were probed for endothelial cell markers (CD31 or IB4) and for mesenchymal
markers (aSMA or SM22a) to identify cells co-expressing these genes. F. Frequencies of cells co-expressing endothelial and
mesenchymal markers in adult and P1 hearts. The role of H19 was determined by three independent comparisons: wild type
vs. H19%x1/H19*, LOI vs LOI + H19 BAC, wild type vs LOI. D, F, means + SEM. are depicted. *, P<0.5; **, P<0.01, ***, P<0.001
(Student’s t-test).
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279 To identify a possible function for H79 RNA, we performed transcriptomic analyses

280  comparing RNAs isolated from wild type and H/9-deficient P1 hearts. Using whole heart

281  extracts, we did not identify significant differences in gene expression. We next compared RNAs
282  isolated from purified ECs. Hearts were dissociated into single cells using enzyme digestion and
283  mechanical agitation and then endothelial cells were isolated based on expression of CD31

284  antigen. About 30,000 cells per neonatal heart were isolated to >95% purity. RNA sequencing
285  identified 228 differentially expressed genes (DEGs) with adjusted p values of <0.1, including
286 111 upregulated and 117 downregulated transcripts (Figure 5C). GO analysis for biological,

287  cellular, and molecular pathways give evidence for a change in cellular identity (Supplemental
288  Figure 6). Specifically, enriched biological pathways included positive regulation of

289  mesenchymal cell proliferation, positive regulation of endothelial cell migration, and cell

290  adhesion (n = 36, p-adj = 0.003). Cellular pathways showed enrichment for genes coding for
291  extracellular matrix (n = 42, p-adj = 1.83E-10). Enriched molecular function categories include
292  extracellular matrix binding and TGFf binding (n =7, p-adj = 0.0001; n =5, p-adj = 0.1), as well
293  as other pathways that are especially active during endothelial to mesenchymal transition

294  (EndMT). EndMT is not an identifiable GO term, however, we conducted a PubMed search of
295  the 188 DEGs described in the PubMed literature database and noted that 63 DEGs were

296  implicated in EndMT as either players in driving the transition or as markers. Some examples
297  include Transforming growth factor beta receptor 3 (Tgfbr3, up 1.5X, padj = 0.01), Collagen
298  Type XIII al chain (Coll3al, up 2.0X, padj = 4.2E-09), Bone Morphogenic Protein 6 (bmp6,
299  down 0.6X, padj = 7.0E-05), Latent Transforming Growth Factor Binding Protein 4 (Ltbp4,

300 down 0.5x, padj = 0.008), Connective Tissue Growth Factor (Ctgf, down 0.7X, padj = 0.06), S/it

301  Guidance Ligand 2, (Slit2, up 1.6X, padj = 2.5E-05, a2 macroglobin (a2m, down 0.6X, 5.6E-
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302 05). Due to the results of the GO term analysis as well as the PubMed search, we speculated that
303  HI9 might play a role in regulating EndMT.

304 To directly test the role of H79 in regulating EC gene biology, we isolated primary ECs
305  from wild type and H19-deficient P2 littermates and transfected with an H/9 expression vector
306  or with an empty control vector and then assayed gene expression after 24 hours. H/9 expression
307  reduces expression of a mesenchymal cell marker (SM22¢«) and of genes encoding transcription
308  factors critical for EndMT (Snail and Slug) (Figure 5D).

309 EndMT is an essential part of the normal development of many tissues/organs including
310  heart. For example, EndMT is critical in cardiac valve development (Kisanuki et al, 2001;

311  Markwald et al, 1977). Studies also report that EndMT contributes to cardiac diseases including
312  cardiac fibrosis, valve calcification, and endocardial elastofibrosis (Evrard et al, 2016; Goumans
313 et al, 2008; Piera-Velazquez et al, 2011; Zeisberg et al, 2007). During the actual EC transition,
314 cells will transiently express endothelial markers (like CD31or IB4) simultaneously with

315  mesenchymal markers (like aSMA or SM22a). To understand the impact of H/9-deficiency on

316  EC transition in vivo we fixed and sectioned hearts isolated at several developmental stages from
317 HI19!/H19" mice and their wild type littermates mice and looked for co-staining of these

318 endothelial and mesenchymal markers. At each stage, we focused on the regions of the heart
319  where H19 expressing cells were particularly abundant, assuming that this is where a phenotype
320  would be most readily observed. In e14.5 embryos we looked at endocardium, epicardium,

321  wvalves, and blood vessels. In P1 embryos we looked at endocardium, valves, and blood vessels.
322 In adult hearts we looked at endocardium. Comparable sections for wild type and mutant mice
323 were identified by a cardiac pathologist blinded to genotype before we stained for EC and

324  mesenchymal markers. In each stage we noted significant changes in co-staining frequency
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325 indicating that the likelihood of EC cell transition is increased in the absence of H19 (Figure E,
326  F). We confirmed these results through independent analyses that compared LOI mice with their
327  wild type littermates (HI194“R/HI19+ vs. H19"/HI19") and that compared LOI mice with LOI
328 littermates that also carried the H19 BAC transgene (H194“®/H19" vs HI9A®/H19* + H19

329  BAC Transgene (Figure 5F).

330

331  Let-7 binding sites on the H19 IncRNA are essential for normal cardiac physiology.

332 HI9 IncRNA is known to physically bind /et-7g and -7i in exon 1 and /e-7e in exon 4 in mice
333 (Kallen et al., 2013). One proposed mechanism for /9 IncRNA function is that it regulates let-7
334  microRNAs via these interactions to modulate their biological activities. Let-7 miRNAs are

335  known to play a role in cardiovascular diseases including cardiac hypertrophy, cardiac fibrosis,
336  dilated cardiomyopathy and myocardial infarction (Bao et a/, 2013).

337 To test the role of H19’s let-7 binding in preventing cardiomyopathy, we used

338  CRISPR/Cas9 genome editing to delete /et-7 binding sites in the H79 gene (Figure 1A, 6A).

339  Mice carrying this mutation (H19ALet7 /HI19+) express H19 at wild type levels (Figure 6B),
340  which shows that the deletions do not disrupt IncRNA expression or stability. Adult H/9ALet
341 /HI9+mice displayed cardiomegaly as measured by increased heart weight/tibia length ratios
342 (wild type = 7.5+1.7 mg/mm, N=4; H19ALet/H19+= 9.9+2.2 mg/mm, N=5; p = 0.007).

343  Transverse sections also suggested hypertrophy (Figure 6C), which was quantified as increased
344  fiber diameter (Figure 6D). The cardiac hypertrophy in H19ALet7/H19+ mice was accompanied
345 by increased interstitial and perivascular fibrosis (Figure 6E, F). The pathologic nature of the

346  observed cardiac myopathies in these mutant mice was confirmed by the increased levels of
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347  cardiomyopathy markers (Figure 6G). Our results support a role for /et-7 miRNA binding to H19

348  IncRNA in preventing cardiomyopathies.
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Figure 6. H19's let7 binding domains are essential for normal function.
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351 Figure 6. H19's let7 binding domains are essential for normal function.

A. The H194Let7 allele was generated by deleting 25 and 48 bp sequences within exons 1 and exon 4 to eliminate
binding sites for let-7g, let-7i, and let-7e miRNAs. B. The H19ALet7 allele is expressed at wild type levels. RNAs were
isolated from hearts from H19%¢t7/H19* neonates and quantitated by gRT-PCR, normalizing first to GAPDH and then
to the levels of H19 observed in H19*/H19* littermates. C. Transverse sections were collected midway along the
longitudinal axis from hearts collected from 12-15 month old wild type (N = 4) and mutant (N = 3) littermates and
stained with hematoxylin and eosin. D. Fiber diameters were quantitated using 3 sections per mouse. E, F. Masson’s
trichrome staining of sections described in panel C. Red, muscle fibers; blue, collagen. Sections from 3 wild type and 4
mutant littermates were used to calculate fibrosis. G. Immunoblot analyses of whole heart extracts prepared from
12-15 month WT (N = 3) and mutant littermates (N = 3). Altered expression of ANP, Myh7, Cleaved Caspase-3,
Cleaved Caspase-7, and Cleaved PARP. B-tubulin is a loading control.

For all bar graphs, data are presented as mean + SEM. ***, p<0.001 (Student’s t-test).
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352  Discussion

353  BWS is an overgrowth disorder with significant patient to patient variation in disease

354  symptoms(Jacob et al., 2013). An explanation for some of this variability is that independent
355  molecular mechanisms for BWS exist(Weksberg et al, 2010). More than 50% of BWS cases are
356  associated with epigenetic lesions that disrupt expression of CDKNIC, an imprinted gene closely
357 linked to /GF2/H19 but under control of its own ICR (IC2). (More rarely, BWS cases are

358  associated with pathogenic lesions in the CDKNIC peptide coding sequences). About 5% of
359  BWS cases are associated with disrupted imprinting at the /IGF2/H19 locus. About 20% of cases
360 are associated with paternal uniparental disomy of the entire region (potentially affecting both
361 CDKNIC and IGF2/H19) (IC1 and IC2), and another 20% of cases are of unknown origin. Use
362  of artificial reproductive technologies (ART) is a 6-10-fold risk factor for BWS specifically

363  because of the increased chance that IGF2/H19 imprinting is disrupted (Hattori et al., 2019;

364  Johnson et al., 2018; Mussa et al., 2017). Interestingly, BWS patients associated with ART are
365  more likely to show cardiac problems (Tenorio et al., 2016), suggesting a role for IGF2/H19
366  expression in normal heart development and function. In this study we characterize a mouse

367  model for Igf2/H19 loss of imprinting (LOI). This model deletes the Imprinting Control Region
368  upstream of the H79 promoter and recapitulates the molecular phenotype of BWS patients:

369  biallelic (i.e. 2X dosage) /GF2 and reduced H7/9 RNA. Here we show that this model

370  phenocopies the transient cardiomegaly observed in neonates but also displays cardiovascular
371  dysfunctions that are only rarely observed in patients.

372 To elucidate the molecular and developmental etiology of these cardiovascular

373  phenotypes we characterized two additional mouse models that independently altered expression

374  of Igf2 and of H19. These genetic analyses demonstrated that overexpression of /gf2 and loss of

22


https://doi.org/10.1101/2021.02.23.432554
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.23.432554; this version posted February 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

375  HI9 play distinct roles in driving BWS cardiac phenotypes. In neonates, increased levels of
376  circulating IGF2 results in hyperactivation of mTOR signaling in cardiomyocytes and thus leads
377  to cardiomyocyte hyperplasia and cellular hypertrophy but the resultant cardiomegaly in mice is
378  transient. As in humans, expression of /gf2 in mice is strongly downregulated after birth and
379  organ sizes return toward normal. Loss of H79, however, results in progressive cardiac

380 pathology. Aged H19 deficient mice show increased fibrosis, expression of markers indicative of
381  cardiac failure, abnormal echocardiography phenotypes, low blood pressure, and aberrant

382  wvasculature. Thus in the mouse LOI BWS model, disease phenotypes are not restricted to fetal
383  and neonatal stages. It will be interesting and important to assess whether this is true in other
384  mammals.

385 In hearts, H19 expression is concentrated in endothelial cells. To understand the

386  significance of H19 expression we isolated cardiac ECs from wild type and mutant neonates.
387  Transcriptome analyses showed altered expression of genes associated with endothelial to

388  mesenchymal transition suggesting that /779 might help regulate EC cell fate. Supporting this
389  idea, we saw that forcing expression of H/9 in primary ECs prevents activation of mesenchymal
390  gene expression patterns. Finally, we saw that H79-deficient mice show significant increases in
391  the frequency of EC cells simultaneously expressing mesenchymal markers.

392 The ability of some ECs to transition of mesenchymal cells is necessary for normal

393  development and thus can be assumed to be an essential property of ECs. The phenotypes of
394  HI9-deficient mice do not suggest that /79 IncRNA is the single key molecule regulating EC
395  cell fate: Even in LOI mice, EndMT is almost always occurring only when developmentally

396  appropriate. Rather, our data indicate that /9 RNA levels play a role in modulating the fate

397  decision so that cells lacking H/9 are modestly but measurably more likely to switch toward a
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398 transitional state where both EC and mesenchymal markers are expressed. It is interesting to note
399  one commonality of key pathways disrupted by loss of H79 IncRNA is that they share regulation
400 by TGFp signaling, suggesting that the observed 50% reduction in expression of TGFf receptors
401  might be a key phenotype in H/9-deficient ECs (Goumans et al., 2008).

402 Our findings extend earlier studies showing patterns of /79 expression in development
403  and in response to injury suggesting a role for 79 in vascular physiology and pathology (Jiang
404 et al,2016; Kim et al, 1994). Moreover, Voellenkle et al. recently described a role for IncRNAs
405  including H19 in the physiology of umbilical vein endothelial cell (Voellenkle ef al, 2016).

406 Our results also agree with in vitro studies that demonstrated an important role for 79 in
407  regulating EMT in cancer cells (Li et al, 2019; Ma et al, 2014; Matouk et al, 2016; Matouk et al,
408  2014; Wu et al, 2019; Zhang et al, 2018) In these previous analyses, H/9 function was

409  determined by transfecting cancer cells with H79-expression vectors and analyzing cell motility
410  and gene expression. However, in contrast to our findings that activation of mesenchymal

411  expression is associated with loss of H79, these in vitro analyses find EMT is induced by

412 increasing H19 RNA. This discrepancy emphasizes the useful role for genetic animal models in
413  addressing developmental disorders where phenotypes are coming from cumulative changes in
414  multiple cell types and over long periods of time.

415 In animal models, observed phenotypes are due to the cumulative effect of the mutation
416  in many cell types and over developmental time. In vitro studies of H19 have focused on the
417  effect of acute changes in levels of H79 in a single cell type. Th

418 Our analyses cannot address the fate of these cells that co-express EC and
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419  mesenchymal markers. Do they all proceed toward full EndMT, do they return toward EC fates,
420  or do they teeter in between? These questions can be addressed in future experiments using

421  conditional H79 deletion alleles and cell fate markers.

422 H19 can be a very abundant transcript. In neonatal ECs, H79 IncRNA represents about
423 1% of all polyadenylated RNA. Yet its biochemical functions remain unclear. Various studies
424  support the idea that H/9 functions as a microRNA precursor (Cai & Cullen, 2007; Dey et al,
425  2014; Keniry et al., 2012), a p53 protein inhibitor (Hadji et al., 2016; Park et al., 2017; Yang et
426  al.,2012; Zhang et al., 2017), a regulator of DNA methylation (Zhou et al., 2019; Zhou et al.,
427  2015), and as a modulator of /et7 microRNA functions (Gao et al., 2014; Geng et al., 2018;

428  Kallen et al., 2013; Peng et al., 2017; Zhang et al., 2019; Zhang et al., 2017). It is possible that
429  HI19 functions vary from cell type to cell type (Raveh ef al, 2015). Alternatively, these functions
430  might co-exist in a single cell but analyses to date have only looked at /79 function from single
431  perspectives and have missed its ability to perform in multiple pathways. To address this issue,
432 we have begun to generate mutant H/9 alleles that disrupt specific functions. Here we show that
433 HI9AExI/HI19" mice have 100X reduced levels of IncRNA but almost normal levels of mi675
434 and still show cardiac pathology. Thus, the pathologies in LOI mice depend on the loss of H79
435  IncRNA. To then address how the IncRNA might function, we generated mice carrying an H/9
436  allele missing /et7 binding sites. These mice show cardiac pathologies including extreme

437  fibrosis. We find the fibrosis phenotype in H/94Let7 mice to be especially interesting. We

438  speculate that intensity relative to that seen in an 79 null is most consistent with the idea that
439  HI9 IncRNA has multiple roles in the cell and by disrupting only one role we have altered some

440  balance so that the animal is worse off than having no H/9 at all.
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441 The strong phenotype in H/9ALet7 mice is consistent with several previous studies that
442  emphasize the importance of 79 IncRNA interactions with /et-7 miRNAs but it is also

443  paradoxical in that multiple studies of let7 function in hearts indicate that /ez-7 functions as an
444  anti-fibrotic factor. That is, reduced let-7 is a risk factor for fibrosis and fibrosis induces /et-7,
445  presumably as a corrective measure (Bao et al., 2013; Elliot et a/, 2019; Sun et al, 2019; Wang et
446  al, 2015). The increased fibrosis in H19ALet7-mice suggests that the simple model (that H/9
447  binds to and reduces /et-7 bioavailability) is not correct or, more likely, that complex

448  developmental interactions play critical roles that determine phenotypes in ways that are not yet
449  understood. Either way, our results confirm the importance of animal models and the need for
450  even more sophisticated conditional deletions.

451 H19 and Igf2 are generally thought of as fetal genes since their expression is so strongly
452  repressed after birth. This fact might suggest that the adult phenotypes in H79-deficient mice are
453  downstream effects of the loss of H179 in the developing heart. However, as already mentioned,
454  at peak expression, H19 levels are extraordinarily high. Thus, even after 100-fold

455  developmentally regulated decrease, H/9 remains one of the top 100 genes in terms of RNA
456  levels. For this reason, conditional ablation models will be needed to determine exactly when
457  HI9 expression is important.

458
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459  Materials and Methods

460  Animal Studies

461  All mice were bred and housed in accordance with National Institutes of Health and United

462  States Public Health Service policies. Animal research was performed only after protocols were
463  approved by the National Institute of Child Health and Human Development Animal Care and
464  Use Committee.

465 HI94R/H 19" (Srivastava et al., 2000) and wild type littermates or H194E!/H]9*

466  (Srivastava et al., 2003) and wild type littermates were generated by backcrossing heterozygous
467  females with C57BL/6J males (Jackson Labs 000664). For tissue specific LOI, we crossed

468  HI9YCR/H9ICRox females (Srivastava ef al., 2000) with males hemizygous for the Myh6Cre
469  transgene (Jackson Labs 011038) (Agah et al, 1997). The H19 BAC transgene was generated as
470  described (Kaffer et al., 2001; Kaffer et al., 2000) and used to generate H194“R/H19* BAC+
471  females for backcrosses with C57BL/6J males.

472 The HI19ALet7 allele was generated using CRISPR/Cas9 gene editing of RI mouse

473  embryonic stem cells (ESCs). In step 1, we used gRNAs 5’-

474  CACCGAGGGTTGCCAGTAAAGACTG-3’ and 5’-CACCGCTGCCTCCAGGGAGGTGAT -
475  3’to delete 25 bp (AGACTGAGGCCGCTGCCTCCAGGGAGGTGAT) in exon 1. In step 2, we
476  used gRNAs: 5’-CACCGCTTCTTGATTCAGAACGAGA-3’ and 5°-

477 CACCGACCACTACACTACCTGCCTC-3’ to delete 48 bp

478 (CGTTCTGAATCAAGAAGATGCTGCAATCAGAACCACTACACTACCTGC) in exon 4.
479  Positive clones were identified by PCR screens and then confirmed by sequencing 686 bp

480  spanning the exon 1 deletion and 1086 bp spanning the exon 4 deletion. Founder mice were
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481  obtained by injecting mutated ESCs into C57BL/6J blastocyts and then backcrossed twice to
482  C57BL/6J females.

483 Genotypes were determined by PCR analyses of gDNAs extracted from ear punch

484  biopsies (Supplemental Table 2).

485  Electrocardiography measurements

486  Transthoracic echocardiography was performed using a high-frequency linear array ultrasound
487  system (Vevo 2100, VisualSonics) and the MS-400 Transducer (VisualSonics) with a center
488  operating frequency of 30 MHz, broadband frequency of 18 to 38 MHz, axial resolution of 50
489  mm, and footprint of 20x5 mm. M-mode images of the left ventricle were collected from the
490  parasternal short-axis view at the midpapillary muscles at a 90° clockwise rotation of the imaging
491  probe from the parasternal long-axis view. Form the M-mode images, the left ventricle systolic
492  and diastolic posterior and anterior wall thicknesses and end-systolic and -diastolic internal left
493  ventricle chamber dimensions were measured using the leading-edge method. Left ventricular
494  functional values of fractional shortening and ejection fraction were calculated from the wall
495  thicknesses and chamber dimension measurements using system software. Mice were imaged in
496  the supine position while placed on heated platform after light anesthesia using isoflurane

497  delivered by nose cone.

498  Blood Pressure measurements

499  After sedation with isoflurane, a pressure catheter (1.0-Fr, model SPR1000, Millar Instruments,
500  Houston, TX) was inserted into the right carotid and advanced to the ascending aorta. After 5-
501  minute acclimation, pressures were recorded using Chart 5 software (AD Instruments, Colorado
502  Springs, CO) (Knutsen et al, 2018).

503  Arterial Pressure-Diameter Testing
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504  Ascending aortas (from the root to just distal to the innominate branch point) and left carotid
505 arteries (from the transverse aorta to 6 mm up the common carotid) were dissected and mounted
506  on a pressure arteriograph (Danish Myotechnology, Copenhagen, Denmark) in balanced

507  physiological saline (130 mM NaCl, 4.7 mM KCI, 1.6 mM CaCl,, 1.18 mM MgSO.-7H,0, 1.17
508 mM KH,PO.,, 14.8 mM NaHCOs, 5.5 mM dextrose, and 0.026 mM EDTA, pH 7.4) at 37°C.

509  Vessels were transilluminated under a microscope connected to a charge-coupled device camera
510  and computerized measurement system (Myoview, Danish Myotechnology) to allow continuous
511  recording of vessel diameters. Prior to data capture vessels were pressurized and stretched to in
512 vivo length(Wagenseil ef al, 2005). Intravascular pressure was increased from 0 to 175 mmHg in
513 25-mmHg steps. At each step, the outer diameter (OD) of the vessel was measured and manually
514  recorded. Segmental distensibility was calculated from the pressure diameter curves as follows:
515  distensibility (SD»s) over a 25-mmHg interval = [ODuigher pressure 1 — ODrower pressurety [/ODa/25.

516  (Knutsen et al., 2018).

517  Histological Analyses

518  Hearts from adult mice were fixed by Langendorff perfusion or by transcardiac perfusion using
519 4% paraformaldehyde ((PFA) and embedded in paraffin. Fetal and neonatal hearts were isolated
520  and then fixed by submersion in 4% PFA before embedding. From embedded hearts, we

521  obtained 5 mm transverse sections for analysis. Masson’s Trichrome (Sigma Aldrich, HT15, St.
522 Louis Missouri) and Picosirius Red (Sigma Aldrich, 365548) staining were according to

523  supplier’s instructions. Fiber diameter index was quantitated using Hamamatsu-NDP software.
524 Immunofluorescence and Immunohistochemistry

525  Primary myocytes and H19C2 cells were fixed with 4% PFA, permeabilized with 0.5% Triton,

526  and blocked with 10% normal serum before incubation with antibodies. Paraffin sections were
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527  deparaffinized and rehydrated according to standard protocols. Antigen retrieval was applied
528  using citrate buffer (Abcam, 1b93679, Cambridge, MA) for 20 minutes and then maintained at a
529  sub-boiling temperature for 10 minutes. Sections were treated with serum-free blocking solution
530 (DAKO, X0909, Santa Clara, CA) and all antibodies (Supplemental Table 3) diluted in antibody
531  diluent solution (DAKO, S0809). Secondary staining was performed for 30 min. at RT. Samples
532 were imaged with a Carl Zeiss 880 laser scanning microscope using a 40X oil immersion

533  objective. Images were composed and edited in ZEN&LSM image software provided by Carl
534  Zeiss or Illustrator 6.0 (Adobe).

535  RNA in situ hybridization

536  Single color probes for H19 were purchased from Advanced Cell Diagnostics (ACD 423751,
537  Newark, CA). RNA in-situ hybridization was performed on paraffin sections using the 2.5 HD
538  Brown Detection Kit (ACD 322310). For dual staining with antibodies, we used H19-RD

539  chromagen kit (ACD 322360).

540  Immunoblotting

541  Cell extracts and tissue extracts were prepared using M-PER mammalian protein extraction

542  buffer (Thermo Fisher 78501, Waltham, MA) or T-PER tissue protein extraction buffer (Thermo
543  Fisher 78510), respectively. Protein concentrations were assayed using a BCA Protein Assay Kit
544  (Pierce 23227, Waltham, MA). Proteins were fractionated by electrophoresis on 12% or on 4-
545  20% SDS-PAGE gels and then transferred to nitrocellulose. Antibodies (Supplemental Table 3)
546  were diluted in antibody enhancer buffer (Pierce 46644).

547  Cell culture

548  Primary cardiomyocytes were isolated form P1 pups using the Pierce Primary Cardiomyocyte

549  Isolation Kit (Thermo Fisher 88281). H19¢2 cells were purchased from ATCC (CXRL-1446).

30


https://doi.org/10.1101/2021.02.23.432554
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.23.432554; this version posted February 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

550  and grown at 37°C in 5% CO2 in DMEM + 10% FBS. Cell surface index was quantitated using
551  Carl Zeiss-LSM software (n = 50 for each of 3 independent experiments).

552 To prepare primary endothelial cells, neonatal hearts were isolated and dissociated into
553  single cells using Miltenyi Biotec Neonatal Heart Dissociation Kit (130-098-373, Gaithersburg,
554  MD) but omitting the Red Cell Lysis step. Endothelial cells were purified based on CD31

555  expression (Miltenyi Biotec Neonatal Cardiac Endothelial Cell Isolation Kit, 130-104-183).

556  Quantitative real-time PCR for RNA samples

557  Conventional RNAs were prepared from 3-5 independent biological samples, analyzed using a
558  Thermo Fisher NANODROP 2000c to evaluate purity and yield, and then stored at -70°C. cDNA
559  samples were prepared with and without reverse transcriptase using oligo-dT primers (Roche, 04
560 887352 001). cDNAs were analyzed using SYBR Green (Roche, 04 887 352 001) on the Roche
561  Light Cycler 480 II (45 cycles with annealing at 60C) using primers described in Supplemental
562  Table 2. For each primer pair, we established standard curves to evaluate slope, y-intercepts, and
563  PCR efficiency and to determine the dynamic range of the assay. Assay specificity was

564  determined by melting point analyses and gel electrophoresis.

565 For microRNA analyses we used mirVanaTM miRNA Isolation Kit and TagMan

566  MicroRNA Assays (Thermo Fisher, 4437975; Assay ID 001973 (U6), 001940 (miR-675-5p),
567 001941 (miR-675-3p).

568  ELISA

569  IGF2 secreted peptide was assayed with the Mouse IGF2 ELISA KIT (Abcam, ab100696) on 10
570  independent samples.

571  RNA sequencing and analyses
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For analyses in adult animals, RNAs were isolated from 6-month HI9AICR/H19AICR and
H19+/H19+ littermates (2 per genotype) using RNeasy Plus Mini Kit (Qiagen). Samples with
RNA Integrity numbers >9 were Ribosomal RNA depleted using RiboZero Gold Kit (Illumina).
Libraries were prepared using an RNA Sample Prep V2 Kit (Illumina), were sequenced (Illumina
HiSeq2500) to generate paired-end 101 bp reads that were aligned to the mouse genome version
mm10 using STAR v2.5.3a (Dobin et al 2013). Differential expression analyses were performed
using DESeq?2 (Love et al, 2014).

For analyses in neonates, RNAs were isolated from purified cardiac endothelial cells
isolated from HI1945¥/H19* (N=3) and H19*/H19" (N=4) littermates. Libraries were generated
from samples with RNA Integrity Numbers >9 and were sequenced and analyzed as described

above.
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Supplemental Figure 1. Igf2 and H19 expression in wild type and LOI mice.

A Maternal Loss of Imprinting (LOI) results in 2X IGF2 and reduced /79 IncRNA. IGF2
peptide levels in serum were measured by ELISA (N=10). To quantitate H/9, RNAs were
extracted from total hearts, analyzed by qRT-PCR, normalized to GAPDH, and then normalized
to RNA levels observed in wild type neonates (N > 4). Despite the dramatic postnatal repression,

H19 expression in adults remains substantial and 79 RNA is among the top 10-percentile of all

RNA:s.

B Igf2 levels vary by tissue. RNAs were extracted from hind limb muscle, liver, lung, whole

heart, and brain from P2 neonates and quantitated as above but normalized to /gf2 levels in hind

limb muscle.

A, B Data are presented as mean + SEM. ** p<0.01; *** p<0.001 (Student’s t-test).
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Supplemental Figure 2. Echocardiography measures from 11 wild type and 10 LOI mice at
13 months and for 11 wild type and 9 LOI mice at 16 months. Loss of imprinting results in

independent functional and vascular phenotypes.

A, B, C Left ventricular phenotypes are progressive and stratify with time.

D, E, F Arterial defects, abnormal outflow and increased artery diameters, do not progress.

Arterial diameter phenotypes are already stratified at 13 months.

A-F Black dots represent wild type and red squares represent LOI mice. Blue crosses represent

mean. One sample (mouse 2419) is labelled to show that extreme phenotypes do not correlate.

B Igf2 levels vary by tissue. RNAs were extracted from hind limb muscle, liver, lung, whole

heart, and brain from P2 neonates and quantitated as above but normalized to /gf2 levels in hind

limb muscle.

A, B Data are presented as mean + SEM. ** p<0.01; *** p<0.001 (Student’s t-test).
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Supplemental Figure 3. Decreased systolic and pulse pressures in LOI mice.

Blood pressures from 10 wild type and 8 LOI sedated mice were measured as described in
Methods. Means and standard deviation are shown as whiskers underlying the data points.
Systolic and diastolic blood pressure data were analyzed by Tukey’s test; pulse pressure data
were analyzed using one-way ANOVA. ** P <0.01; **** P <(0.0001. Diastolic pressures were

not significantly different.

A-F Black dots represent wild type and red squares represent LOI mice. Blue crosses represent

mean. One sample (mouse 2419) is labelled to show that extreme phenotypes do not correlate.

B Igf2 levels vary by tissue. RNAs were extracted from hind limb muscle, liver, lung, whole

heart, and brain from P2 neonates and quantitated as above but normalized to /gf2 levels in hind

limb muscle.

A, B Data are presented as mean + SEM. ** p<0.01; *** p<0.001 (Student’s t-test).
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Supplemental Figure 4. Increased vessel diameter and distensibility in carotid arteries

isolated from 10 wild type and 8 LOI mice at 16-months.

A Increased diameters across a wide range of applied pressures.

B Increased segmental distensibility across physiologically relevant pressures.

A, B ** P<0.01; *** P<0.001; **** P<(0.0001 (Two-way repeated measure ANOVA).

B Igf2 levels vary by tissue. RNAs were extracted from hind limb muscle, liver, lung, whole

heart, and brain from P2 neonates and quantitated as above but normalized to /gf2 levels in hind

limb muscle.

A, B Data are presented as mean + SEM. ** p<0.01; *** p<0.001 (Student’s t-test).
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Supplemental Figure 5. The HI9AEx1 deletion specifically reduces H19 IncRNA.

RNAs were extracted from whole hearts isolated from wild type and from H194E//H]9*
littermates at e17.5 and at 1 year of age. H19 IncRNA levels were normalized to GAPDH. mi675
levels were normalized to U6 miRNA. In each experiment, expression in H194E//HI9" is

normalized to the wild type littermates. Data are presented as mean + SEM (Student’s t-test). N

> 3.

B Igf2 levels vary by tissue. RNAs were extracted from hind limb muscle, liver, lung, whole

heart, and brain from P2 neonates and quantitated as above but normalized to /gf2 levels in hind

limb muscle.

A, B Data are presented as mean + SEM. ** p<0.01; *** p<0.001 (Student’s t-test).
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Supplemental Figure 6. Visual representation of Gene Ontology analysis for endothelial

cells isolated from wild type (N =4) and HI194Ex1/H19+ (N = 3) P2 neonatal hearts.

RNAs were isolated and polyadenylated transcripts were quantitated. Cnetplot depicts linkages
of genes and biological concepts as a network. Nodes identify complex associations of genes that
contribute to a functional term within a pathway. GO: Biological Process indicates enriched
mesenchymal biological markers and regulation of endothelial proliferation genes. GO: Cellular
Components indicate enrichment in extracellular matrix genes. GO: Molecular function indicates

enrichment in extracellular matrix and TGF-beta binding genes.
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Ejection Fraction (%) LV Volume (sys) LVAW (dia) LVOT mean velocity Aorta diameter Isys) Brachial Arch diameter (syst)
Ejection Fraction (%) 1.000 0.810 0.526 0.024 0.005 0.155
LV Volume (sys) 1.000 0.495 0.002 0.097 0.158
LVAW (dia) 1.000 0.287 0.068 0.441
LVOT mean velocity 1.000 0.430 0.623
Aorta diameter Isys) 1.000 0.680
Brachial Arch diameter (sys) 1.000

Supplemental Table 1. Correlations between echocardiography phenotypesin 13 month old mice. Asdisplayed in Supplemental Figure 2, each mouse presents a unique array of phenotypes. Increased diameter sizes for major vessels is
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Primers for qPCR
Gene Primers Product size
H19 5'-GCACTAAGTCGATTGCACTGG 164
5'-GCCTCAAGCACACGGCCACA
Igf2 5'-GAGCTTGTTGACACGCTTC 129
5'-ACGTTGGCCTCTCTGAAC
GAPDH |5'-TCAATGAAGGGGTCGTTGAT 125
5'-CGTCCCGTAGACAAAATGGT
Sm22a |5'-GACTGCACTTCTCGGCTCAT 100
5'-CCGAAGCTACTCTCCTTCCA
Snail 5'-AGTGGGAGCAGGAGAATGG 102
5'CTTGTGTCTGCACGACCTGT
Slug 5'-GATGTGCCCTCAGGTTTGAT 102
5'-GGCTGCTTCAAGGACACATT

Primers for genotyping

Allele Primers Product size
H19+ 5-AGCATCCACAAATCAGGGCA 153
H19AICR 5’-CCTACCTGCTTCTC CCAAGC 200
H19ICRflox 5-TGATGGTGGTGTCTGCATCC 290
H19+ 5'-GGGGACCCATCTGTGTCTTG 257
H19AEx1 5-CGGAGCCACTCCAGTTAGAA 170
5'-AAAGGAGACATCGTCTCGGG
Myh6+  5-TAGAGTCCTGGTGGGAGAGC 208
Myh6Cre 5'-CTTTCGGAGGTACTGGGCTG 385
5’-GCATCGACCGGTAATGCAGGC
H19+ 5'-AAAGGAGACATCGTCTCGGG 193
H19Let7 5'-TTCTTGCTGGATCCCATGGTC 168

Table 2. Primers used for gRT-PCR and for genotyping.
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Antibody Company Catalog # Dilution
ANP Abcam ab91250 1:1000
Myh7 Santa Cruz sc52089 1:200
Serca2 Abcam ab2861 1:1000
Cleaved Caspase 3 Abcam ab9664 1:1000
Cleaved Caspase 7 Abcam ab8438 1:1000
Cleaved Parp Abcam ab5625 1:1000
B-tubulin Abcam ab6046 1:2000
Ki-67 Abcam ab15580 1:1000
Cyclin E1 Abcam ab3927 1:100
Cyclin D1 Abcam ab134175 1:1000
GAPDH Cell Signalling 2118 1:2000
Myh6 Santa Cruz sc168676 1:100
Phallodin Cell Signalling 8593 1:200
p-AKT Cell Signalling 4060 1:1000
t-AKT Cell Signalling 9272 1:1000
p-S6K1 Cell Signalling 9234 1:1000
t-S6K1 Cell Signalling 2708 1:1000
p-rpS6 Cell Signalling 4858 1:1000
t-rpS6 Cell Signalling 2317 1:1000
CD31 Abcam ab28364 1:50
aSMA Abcam 1b21027 1:100
aSMA GeneTex GTX25694 1:500
vWF DAKO A0082 1:1000
488 Goat anti-rabbit Life Technology| A11008 1:500
488 Goat anti-mouse | Life Technology| A11001 1:500
488 Donkey anti-goat | Life Technology| A11055 1:500
555 Goat anti-mouse | Life Technology| A21424 1:500
555 Donkey anti-Rabbit | Life Technology| A31572 1:500
DAPI Life Technology D3571 1:1000

Supplemental Table 3. Antibodies used in this study.
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