

1 ***Cardiac pathologies in mouse loss of imprinting models are due to misexpression of H19 long***
2 ***noncoding RNA***

3
4 Ki-Sun Park^{1*}, Beenish Rahat^{1*}, Zu-Xi Yu², Jacob Noeker¹, Apratim Mitra¹, Russell Knutsen³,
5 Danielle Springer⁴, Beth Kozel³, Karl Pfeifer^{1#}

6
7 ¹Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and
8 Human Development, National Institutes of Health, Bethesda MD 20892 USA

9
10 ²Pathology Core, National Heart Lung and Blood Institute, National Institutes of Health,
11 Bethesda, MD 20892 USA

12
13 ³Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, National
14 Institutes of Health, Bethesda, MD 20892 USA

15
16 ⁴Murine Phenotyping Core, National Heart Lung and Blood Institute, National Institutes of
17 Health, Bethesda, MD 20892 USA

18
19 *These authors contributed equally to this work.

20
21 #Corresponding author: pfeiferk@mail.nih.gov

26 **Abstract**

27 Maternal loss of imprinting (LOI) at the *H19/IGF2* locus results in biallelic *IGF2* and reduced
28 *H19* expression and is associated with Beckwith Wiedemann syndrome (BWS). We use mouse
29 models for LOI to understand the relative importance of *Igf2* and *H19* mis-expression in BWS
30 phenotypes. Here we focus on cardiovascular phenotypes and show that neonatal cardiomegaly
31 is exclusively dependent on increased *Igf2*. Circulating IGF2 binds cardiomyocyte receptors to
32 hyperactivate mTOR signaling, resulting in cellular hyperplasia and hypertrophy. These *Igf2*-
33 dependent phenotypes are transient: cardiac size returns to normal once *Igf2* expression is
34 suppressed postnatally. However, reduced *H19* expression is sufficient to cause progressive heart
35 pathologies including fibrosis and reduced ventricular function. In the heart, *H19* expression is
36 concentrated predominantly in endothelial cells (ECs) and regulates EC differentiation both, *in*
37 *vivo* and *in vitro*. Finally, we establish novel mouse models to show that cardiac phenotypes
38 depend on *H19* lncRNA interactions with *let7* microRNA.

39

40 Keywords: Beckwith Wiedemann syndrome/epigenetics/H19 lnc RNA/loss of imprinting/Igf2

41

42 ***Introduction***

43 There are 100-200 imprinted genes in mammals. These genes are organized into discrete
44 clusters where monoallelic expression is dependent upon a shared regulatory element known as
45 the *Imprinting Control Region (ICR)* (Barlow & Bartolomei, 2014). Imprinted genes are
46 frequently involved in human disease and developmental disorders (Eggermann *et al*, 2015;
47 Feinberg & Tycko, 2004; Horsthemke, 2014; Kalish *et al*, 2014; Peters, 2014). Sometimes, these
48 diseases are due to inactivating point mutations of the only transcriptionally active allele.
49 Alternatively, imprinting diseases are caused by disruption of ICR function, leading to mis-
50 expression of all genes in the cluster.

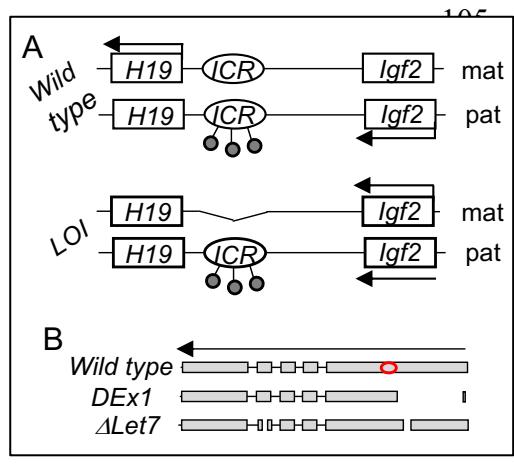
51 One imprinted cluster is the *IGF2/H19* locus on human chromosome 11p15.5. Imprinting
52 in this >100 kb region is determined by the *H19ICR*, located just upstream of the *H19* promoter
53 (Kaffer *et al*, 2000; Thorvaldsen *et al*, 1998). As described in Figure 1A, the *H19ICR* organizes
54 the locus such that transcription of the *IGF2* (*Insulin-like Growth Factor 2*) and *H19* genes are
55 expressed from the paternal and maternal chromosomes, respectively (Ideraabdullah *et al*, 2008;
56 Murrell, 2011; Yoon *et al*, 2007). (Note that in medical genetics, the *H19ICR* is also known as
57 Imprinting Center 1 or IC1).

58 *IGF2* encodes a peptide hormone that binds to and activates the Insulin receptor (InsR)
59 and Insulin-like growth factor 1 receptor (Igf1R) kinases to promote cell growth and
60 proliferation (Bergman *et al*, 2013). In contrast, the functional product of the *H19* gene is a 2.3
61 kb long non-coding RNA whose biochemical functions remain controversial (Brannan *et al*,
62 1990; Gabory *et al*, 2010). Reported roles for the *H19* lncRNA include: 1) acting as the precursor
63 for microRNAs (miRNA-675-3p and miRNA-675-5p) (Cai & Cullen, 2007; Keniry *et al*, 2012),
64 2) regulating the bioavailability of *let7* miRNAs (Gao *et al*, 2014; Geng *et al*, 2018; Kallen *et al*,

65 2013; Li *et al*, 2015), 3) interacting with p53 protein to reduce its function (Hadji *et al*, 2016;
66 Park *et al*, 2017; Peng *et al*, 2017; Yang *et al*, 2012; Zhang *et al*, 2019; Zhang *et al*, 2017), and
67 4) regulating DNA methylation to thereby modulate gene expression (Zhou *et al*, 2019; Zhou *et*
68 *al*, 2015).

69 In humans, disruption of the maternally inherited *H19ICR* results in biallelic *IGF2* along
70 with reduced *H19* expression and is associated with the developmental disorder, Beckwith
71 Wiedemann syndrome (BWS) (Jacob *et al*, 2013). BWS is a fetal overgrowth disorder but the
72 specific manifestations of overgrowth vary between patients. Cardiomegaly is a common
73 newborn presentation but typically resolves without treatment. Cardiomyopathies are rarer and
74 include ventricular dilation, valve/septal defects, fibrotic and rhabdomyoma tumors, and vascular
75 abnormalities (Cohen, 2005; Descartes *et al*, 2008; Drut *et al*, 2006; Elliott *et al*, 1994;
76 Greenwood *et al*, 1977; Knopp *et al*, 2015; Longardt *et al*, 2014; Ryan *et al*, 1989; Satge *et al*,
77 2005). BWS incidence correlates with artificial reproductive technologies (ART) (DeBaun *et al*,
78 2003; Gicquel *et al*, 2003; Halliday *et al*, 2004; Hattori *et al*, 2019; Johnson *et al*, 2018; Maher *et*
79 *al*, 2003; Mussa *et al*, 2017) and among BWS patients, the frequency of heart defects is higher in
80 those born via ART (Tenorio *et al*, 2016).

81 We have generated a mouse model that recapitulates the molecular loss of imprinting
82 (LOI) phenotypes of BWS (Figure 1A) (Srivastava *et al*, 2000). That is, deletion of the *H19ICR*
83 on the maternal chromosome results in biallelic *Igf2* and reduced levels of *H19*. In this study, we
84 show that the LOI mouse model displays cardiovascular defects seen in BWS patients. Genetic
85 and developmental analyses indicate that mis-expression of *Igf2* and *H19* act independently on
86 distinct cell types to cause the cardiac phenotypes. During fetal development, increased
87 circulating IGF2 activates AKT/mTOR pathways in cardiomyocytes resulting in cellular


88 hypertrophy and hyperplasia. This neonatal hypertrophy is transient, non-pathologic, and
89 unaffected by the presence or absence of a functional *H19* gene. However, loss of *H19* lncRNA
90 results in cardiac fibrosis and hypertrophy and a progressive cardiac pathology in adult animals.
91 In both neonatal and adult hearts, *H19* lncRNA expression is concentrated in endothelial cells
92 (ECs). *In vivo*, loss of *H19* results in high incidence of ECs that co-express endothelial and
93 mesenchymal markers. Similarly, primary cardiac endothelial cells can be driven toward a
94 mesenchymal phenotype by manipulating *H19* expression levels. Thus, this research identifies a
95 novel developmental role for the *H19* lncRNA in regulating cardiac endothelial cells. In fact,
96 this role for *H19* in restricting endothelial cell transitions in the heart is unexpected given
97 previous analyses of *H19* function in vitro in transformed cell lines. Finally, we describe
98 structure-function analyses in two novel mouse models and show in that *H19* lncRNA acts by
99 regulating *let7* bioavailability.

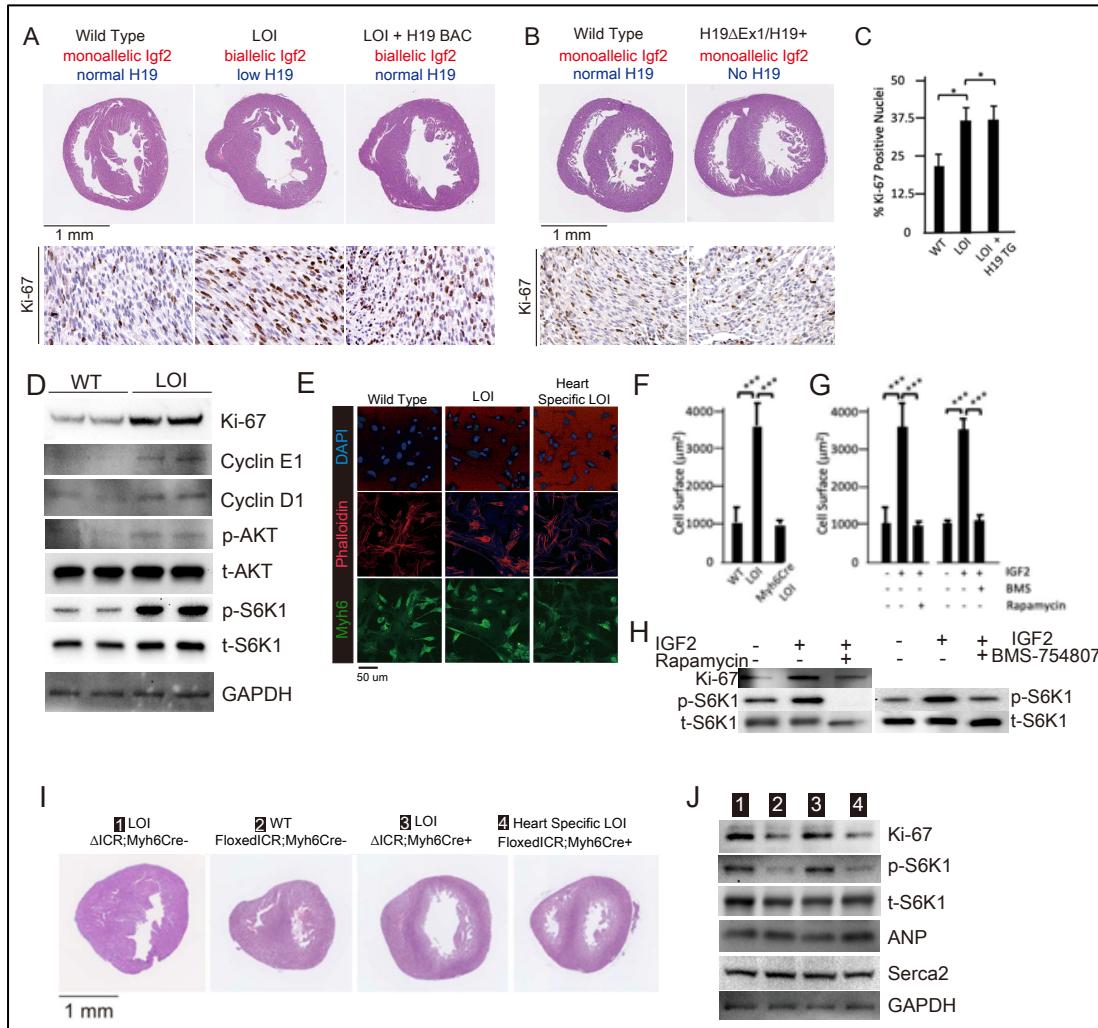
100

101

102 **Results**

103 **Defective structure and function in hearts from mice with *H19/Igf2* maternal loss of**
104 **imprinting (LOI)**

Figure 1 – The *H19/Igf2* locus.


A. Schematic of maternal (mat) and paternal (pat) chromosomes in wild type and in loss of imprinting (LOI) mice. Gene expression is indicated by horizontal arrows. In wild type mice, the paternal copy of the imprinting control region (ICR) is inactivated by DNA methylation (filled lollipops). B. Schematic of wild type, Δ Ex1, and Δ Let7 *H19* alleles. *H19* exons 1-5 are shown as filled rectangles. Δ Ex1 is a 700 bp deletion at the 5' end of exon 1. Δ Let7 was constructed for this study by simultaneous deletion of let7 binding sites in *H19* exons 1 and 4. The red oval identifies coding sequences for miR-675. Arrowheads show the direction of transcription.

118

Wild type and LOI mice were generated by crossing $H19^{\Delta ICR}/H19^+$ females with wild type C57Bl/6J males. (See Figure 1A for a description of the $H19^{\Delta ICR}$ allele). In mice (as in humans), maternal LOI results in biallelic (2X) expression of *Igf2* and reduced levels of *H19* RNA (Supplemental Figure 1A). Hearts isolated from P1 LOI mice display cellular hyperplasia and cellular hypertrophy. Hyperplasia is indicated by increased staining for Ki-67 in tissue sections (Figure 2A, C) and by increased levels of Ki-67 and of cyclins E1 and D1 in protein extracts (Figure 2D). Cellular hypertrophy is demonstrated by measuring surface areas of primary cardiomyocytes isolated from wild type and LOI neonates (Figure 2E, F). Apart from their

119 increased size, neonatal LOI hearts do not display any obvious pathologies. For example, we did
120 not see increased fibrosis or expression of protein markers associated with heart disease. (See
121 Figure 3B for markers that were assayed but did not show aberrant expression). Furthermore, by
122 2 months of age, we were unable to distinguish LOI mice by cardiomegaly.

123

Figure 2 – Cardiac hypertrophy in neonatal LOI mice is mediated by circulating IGF2's activation of AKT/mTOR signaling in cardiomyocytes and is independent of H19 gene function.

A, B. Heart morphology in wild type, LOI, and LOI + H19 BAC littermates (**A**) or in wild type and *H19*-deficient littermates (**B**). Top panels, transverse sections were taken from fixed hearts at 200 mm from the apex. Bottom panels, Ki-67 (brown stain) is a marker for cell proliferation. LOI, *H19*^{ΔEx1}/*H19*⁺; LOI + BAC, *H19*^{ΔICR}/*H19*⁺ mice that also carry a 140 kb Bacterial Artificial Chromosome transgene that restores normal *H19* expression. Notice the thickened walls, misshaped right ventricles, and high levels of Ki-67 expression in LOI and in LOI + BAC transgenic neonates. **C.** Quantitation of Ki-67 expression as assayed in panel A. (N = 4). **D.** Immunoblot analyses of heart extracts prepared from wild type and LOI littermates. LOI hearts show increased levels of proliferation markers, Ki-67, Cyclin E1, and Cyclin D1 and also increased levels of phosphorylated AKT and S6K1 (a target of mTORC1). **E, F.** Cardiomyocyte cellular hypertrophy in LOI animals is cell non-autonomous. Primary cardiomyocyte cultures were prepared from wild type, LOI, and from littermates carrying an *ICR* deletion only in cardiomyocytes (see below). Cells were cultured overnight, stained for MYH6 (to identify cardiomyocytes) and Phalloidin (to facilitate measurement of surface areas). For each culture (N= 5 per genotype), at least 30 cells were measured. **G, H.** Exogenous IGF2 peptide induces cellular hypertrophy in wild type cardiomyocytes through mTOR pathways. Primary cardiomyocytes were prepared from wild type neonates and cultured overnight with IGF2 before measurement of cell surface area (**G**) or preparation of protein extracts for immunoblotting (**H**). The effect of increased IGF2 is prevented by treatment with BMS 754807 or with Rapamycin. BMS inhibits IgfR1 and Ins2 receptor kinases (Carboni *et al*, 2009). Rapamycin blocks a subset of mTOR activities (Li *et al*, 2014). **I, J.** LOI phenotypes in cardiomyocytes are cell non-autonomous. *H19*^{ICR}/*H19*^{ICR} females were crossed with males carrying the *Myh6Cre* transgene to generate 4 kind of pups: *H19*^{ΔICR}/*H19*⁺ (#1) and *H19*^{ΔICR}/*H19*⁺ *Myh6Cre* (#3) will display LOI in all cell types; *H19*^{ICR}/*H19*⁺ (#2) will display wild type expression patterns for *Igf2* and *H19*; and *H19*^{ICR}/*H19*⁺ *Myh6Cre* mice will show LOI only in cardiomyocytes. Hearts were analyzed for cellular hypertrophy (**E**), megacardia and hyperplasia (**I**), and protein expression (**J**). In all assays, *H19*^{ICR}/*H19*⁺ *Myh6Cre* mice were indistinguishable from their wild type littermates. All bar graphs show mean \pm SEM. *, p<0.05; ***, p<0.001 (Student's t-test). LOI, Loss of imprinting (*H19*^{ΔICR}/*H19*⁺).

125 We continued to monitor cardiovascular phenotypes in LOI and wild type mice until 19
126 months of age. By 6 months, LOI mice displayed cardiac hypertrophy as measured by a 28%
127 increase in heart weight/tibia length ratios (wild type = 10.0 ± 1.7 mg/mm, N= 8; LOI = $12.8 \pm$
128 0.2 mg/mm, N=10; p = 0.005). Transverse sections revealed increased fiber diameter in LOI
129 hearts (wild type = 10.2 ± 0.7 μ m; LOI = 14.4 ± 0.8 μ m; p = 0.007) (Figure 3A). Cardiac
130 hypertrophy is often a poor prognostic sign and is associated with most forms of heart failure
131 (Heinzel *et al*, 2015; Vakili *et al*, 2001). However, hypertrophy can also be physiologic
132 (McMullen & Jennings, 2007; Shimizu & Minamino, 2016). The hypertrophy in LOI mice might
133 be considered pathologic based on increased levels of ANP, Myh7, cleaved Caspace-3, cleaved
134 Caspace-7, and cleaved PARP proteins as well as decreased levels of Serca2 protein in all LOI
135 mice by 1 year of age (Figure 3B) (Mitra *et al*, 2013; van Empel *et al*, 2005). Finally, both
136 interstitial and perivascular fibrosis are prominent in LOI animals by 6 months of age (Figure
137 3C, D).

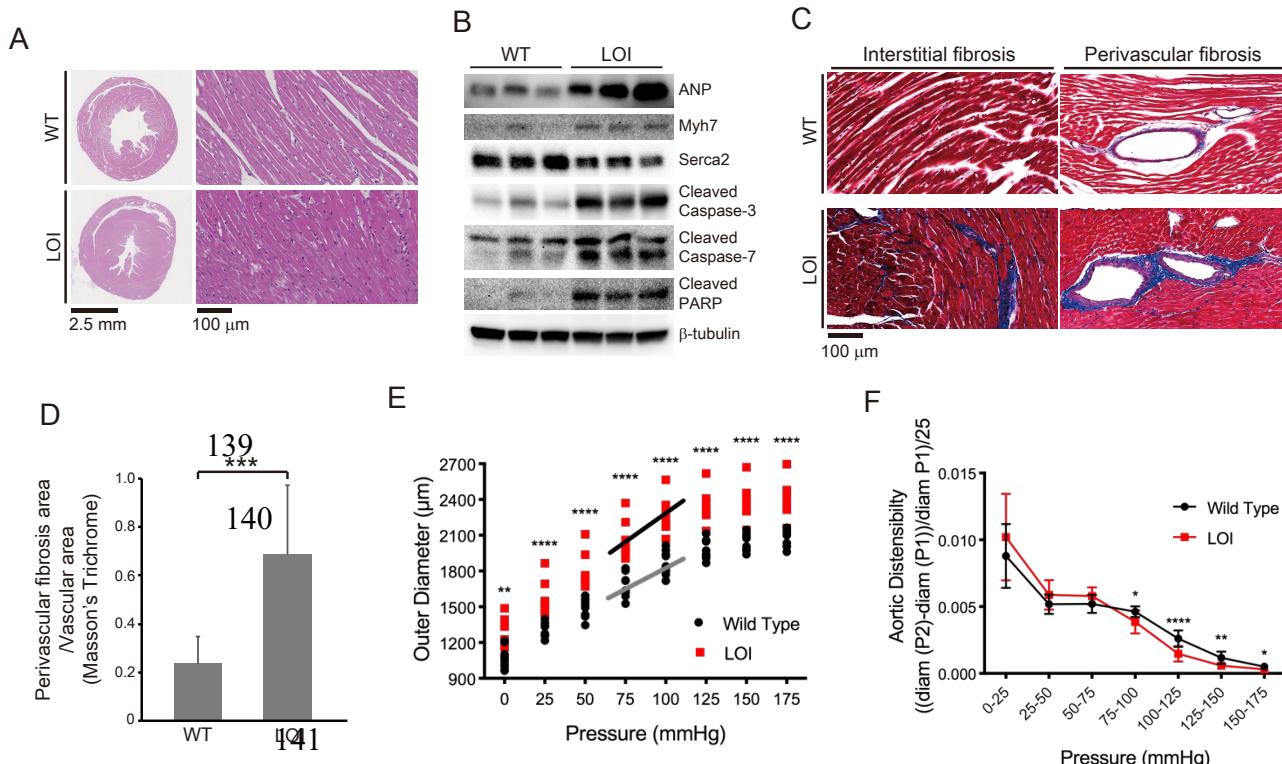


Figure 3. Cardiomyopathies in adult LOI mice.

142

Figure 3. Cardiomyopathies in adult LOI mice.

143

A. Transverse sections were collected midway along the longitudinal axis from hearts collected from 6-month-old wild type (WT) and LOI mice and stained with hematoxylin and eosin. **B.** Immunoblot analyses of whole heart extracts prepared from 1-year WT and LOI mice. Note the altered expression of ANP (Atrial Natriuretic Peptide), Myh7 (Myosin Heavy Chain 7), Serc2 (Sarco/endoplasmic reticulum Ca⁺⁺ ATPase), Cleaved Caspase-3, and Cleaved Poly ADP Ribose Polymerase (PARP). b-tubulin is a loading control. **C, D.** Masson's trichrome staining of sections described in panel **A**. Red, muscle fibers; blue, collagen. Sections from 5 wild type and 5 LOI animals were used to calculate fibrosis. Bar graphs show mean \pm SEM. Data were analyzed by Student's t-test. **E, F.** Ascending aortas were isolated from 10 wild type and 8 LOI mice and pressure-diameter curves generated. **E.** Increased diameters across a wide range of applied pressures. **F.** Increased segmental distensibility across physiologically relevant pressures. Data were analyzed by two-way repeated measure ANOVA.

144

For all panels: *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001.

145

146

147

148

149

150

151

152

153

154

155

Table 1 summarizes echocardiography phenotypes from 13-month-old mice. Left

Phenotype	13 months			16 months				
	Mean \pm SEM WT (N = 11)	Mean \pm SEM LOI (N = 10)	P-value	% Change	Mean \pm SEM WT (N= 11)	Mean \pm SEM LOI (N = 9)	P-value	% Change
Heart rate (bpm)	504 \pm 12	499 \pm 11	0.77	-1	529 \pm 20	540 \pm 16	0.77	2
LV Volume Systole (μ l)	24.1 \pm 1.5	39.2 \pm 4.7	0.01	63	28.3 \pm 1.4	46.6 \pm 1.6	<0.001	65
LV Volume Diastole (μ l)	67.9 \pm 3.0	79.8 \pm 4.6	0.05	17	74.2 \pm 2.8	91.3 \pm 3.3	<0.001	23
LV EF (%)	64.7 \pm 1.2	51.9 \pm 3.8	<0.01	-19	62.5 \pm 0.9	48.6 \pm 1.7	<0.001	-22
LVAW Systole (mm)	1.40 \pm 0.01	1.44 \pm 0.02	0.09	3	1.39 \pm 0.01	1.52 \pm 0.04	0.01	8
LVAW Diastole (mm)	0.88 \pm 0.01	1.01 \pm 0.03	<0.01	15	0.91 \pm 0.01	1.08 \pm 0.04	<0.001	20
LVPW Systole (mm)	1.35 \pm 0.01	1.39 \pm 0.02	0.17	3	1.34 \pm 0.01	1.42 \pm 0.03	0.4	6
LVPW Diastole (mm)	0.87 \pm 0.02	0.98 \pm 0.04	0.02	12	0.88 \pm 0.02	1.08 \pm 0.04	<0.001	19
LVOT mean gradient	2.4 \pm 0.2	6.8 \pm 1.8	0.04	185	2.3 \pm 0.2	4.9 \pm 1.1	0.04	115
LOVT mean velocity	768 \pm 30	1211 \pm 162	0.02	58	750 \pm 37	1066 \pm 112	0.02	42
LVOT peak gradient	5.8 \pm 0.3	15.7 \pm 3.7	0.03	170	5.5 \pm 0.5	13.3 \pm 3.3	0.04	143
LVOT peak velocity	1201 \pm 35	1870 \pm 215	0.01	56	1158 \pm 52	1732 \pm 200	0.02	50
Aorta Systole (mm)	1.65 \pm 0.04	2.14 \pm 0.10	<0.01	30	1.70 \pm 0.04	2.25 \pm 0.12	0.002	32
Aorta Diastole (mm)	1.44 \pm 0.04	1.86 \pm 0.07	<0.01	30	1.48 \pm 0.04	2.07 \pm 0.13	0.002	40
First Brachial Arch (mm)	0.78 \pm 0.03	1.06 \pm 0.07	<0.01	36	0.78 \pm 0.02	1.09 \pm 0.08	0.004	40

156

157

Table 1. Echocardiography of wild type (WT) and loss of imprinting (LOI) mice at 13 and at 16 months. LV, left ventricle; EF, ejection fraction; AW, anterior wall; PW, posterior wall; OT, outflow tract. P-value is by Student's t-test.

158 Scatterplots of echocardiography data from 13 month animals show that most LOI
159 phenotypes are heterogeneous and are not normally distributed (Supplemental Figure 2). Rather
160 phenotypes for volume, mass, ejection fraction, and outflow tract velocity and turbulence are all
161 bimodal: 6-7 animals display mild phenotypes and 3-4 animals display extreme pathologies
162 (Supplemental Figure 2A-D). The only exception to this pattern is seen in arterial diameter
163 phenotypes. In this case, the variance among LOI animals is low (like their WT cohorts) and all
164 the LOI animals display a pathologic phenotype (Supplemental Figure 2E, F).

165 Supplemental Table 1 summarizes correlations between the various phenotypes identified
166 by echocardiography. Cardiac function as measured by ejection fraction is inversely correlated
167 with LV volume (RR = 0.81). However, function correlates only moderately with wall thickness
168 (RR = 0.53) and not at all with outflow tract defects (RR = 0.02), or with aortic diameter (RR
169 <0.01). Thus, LOI associated phenotypes are not uniformly penetrant. Rather, each mouse
170 presents a distinct array of defects. The only invariant is that all LOI mice have arterial diameters
171 larger than their wild type counterparts.

172 The right-hand columns in Table 1 summarize echocardiography results from the same
173 mice at 16 months of age. We observed the same ventricular abnormalities: reduced ejection
174 fraction, increased chamber size, and increased wall thickness. However, on scatter plots we see
175 that wild type and mutant animals now show non-overlapping phenotypes, consistent with the
176 idea that ventricular failure is progressing in LOI mice (Supplemental Figure 2). Note that the
177 LOI mouse with the poorest function at 13 months (25 % EF) died prior to this second analysis.

178 Finally, *in vivo* analyses at 19 months identified significant pathological reductions in
179 both systolic blood pressure (WT = 105 ± 2 , LOI = 93 ± 3 , $p = 0.01$) and pulse pressure (WT =

180 37 ± 1 , LOI = 28 ± 1 , $p < 0.001$) in mutant mice (Supplemental Figure 3). These data confirm that
181 *H19/Igf2* LOI has a substantial effect on cardiovascular function.

182 As described above, increased artery diameter is a phenotype where by 13 months, LOI
183 and WT mice sorted into phenotypically distinct cohorts. This suggested that abnormal blood
184 vessel structure might be a relatively primary defect. We focused additional attention to this
185 phenotype and measured outer diameters of isolated ascending aorta and carotid arteries in
186 response to applied pressures on a pressure myograph (Figure 3E, Supplemental Figure 4A).
187 Arteries from LOI mice are larger in diameter across all applied pressures. Moreover, across
188 normal physiological pressure ranges (75-125 mmHg) arteries from mutant mice are more
189 sensitive to changes in pressure and lumens reach their maximum diameter at lower pressures.
190 They are appropriately distensible at low (elastic) pressures but are stiffer than WT vessels over
191 higher pressure intervals, including most physiologic pressures (Figure 3F, Supplemental Figure
192 4B).

193 In sum, *H19/Igf2* LOI in mice results in transient neonatal cardiomegaly and then a
194 progressive cardiomyopathy. Note that results shown in Figure 3 and in Table 1 describe
195 comparisons of age-matched male mice. Adult LOI females consistently showed relatively weak
196 phenotypes and p values were not significant (data now shown). However, neonatal hypertrophy
197 and hyperplasia occurs in both male and female pups. This apparent paradox was the first clue
198 that the relationship between the neonatal hypertrophy and the adult disease phenotypes was not
199 straightforward.

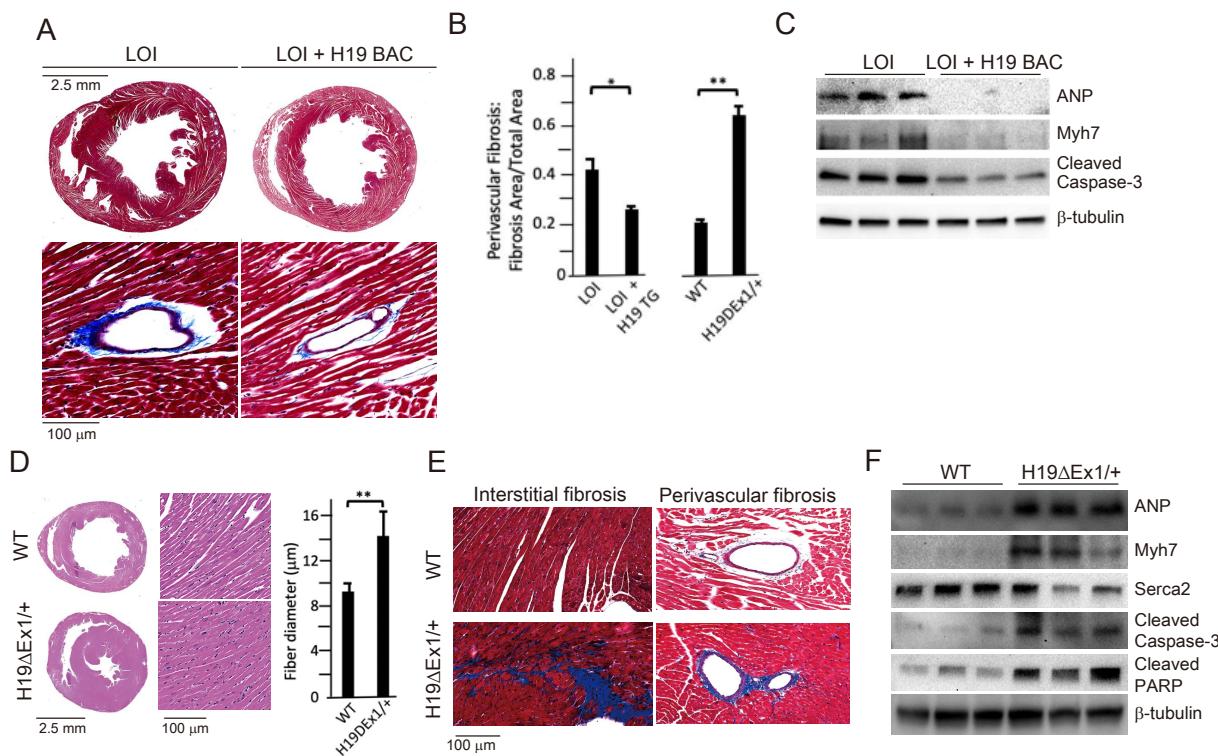
200 ***Hypertrophy and hyperplasia in neonatal LOI mice is dependent on hyperactivation of
201 mTOR/AKT signaling by increased dosage of IGF2 peptide.***

202 To understand the specific roles for mis-expression of *Igf2* and of *H19* in neonatal cardiomegaly
203 we performed two genetic analyses. First, we rescued *H19* expression in an LOI background by
204 introducing a 140 kb *H19* Bacterial Artificial Chromosome (*H19* BAC) (Kaffer *et al.*, 2001;
205 Kaffer *et al.*, 2000) but still saw cardiomyocyte hypertrophy and hyperplasia in neonates (Figure
206 2A, C). Second, we tested the effect of removing *H19* in a background where *Igf2* remains
207 monoallelic by comparing *H19*^{ΔEx1}/*H19*⁺ pups (Figure 1B) with wild type littermates. Loss of
208 *H19* lncRNA does not result in neonatal cardiomyocyte hypertrophy or hyperplasia (Figure 2B).
209 Altogether, we conclude that loss of *H19* lncRNA does not contribute to neonatal hypergrowth.
210 Rather, this neonatal hypertrophy is dependent only upon biallelic (2X dosage) *Igf2* transcription.

211 IGF2 peptide works by binding and activating InsR and IgfR kinases and mTOR/AKT
212 signaling is a known downstream target of these receptor kinases (Bergman *et al.*, 2013). In
213 addition, studies document the role of AKT/mTOR signaling in cardiomyocyte cell division and
214 hypertrophy (Sciarretta *et al.*, 2014). Consistent with a critical role for AKT/mTOR signaling in
215 LOI-dependent neonatal hypertrophy, hearts from LOI neonates show increased levels of
216 phosphorylated AKT and of phosphorylated S6K1, a downstream marker for mTORC1 activity
217 (Figure 2D). Moreover, the LOI cellular hypertrophy and pAKT hyperactivation phenotypes can
218 be phenocopied by treatment of wild type primary cardiomyocytes with IGF2 peptide. However,
219 IGF2 action is blocked by BMS-754807, a specific inhibitor of the receptor kinase, or by
220 treatment with rapamycin, an mTOR signaling pathway inhibitor (Figure 3G, H).

221 *Igf2* is widely expressed in the embryo. In fact, expression of *Igf2* is low in the heart
222 relative to other tissues, especially liver and skeletal muscle (Supplemental Figure 1B). To assess
223 the role of biallelic *Igf2* in the cardiomyocytes themselves, we crossed *H19*^{ΔICR}/*H19*^{ICRflox}
224 females with *H19*⁺/*H19*⁺ males carrying the Myh6Cre transgene. *H19*^{ICRflox} is an allele where

225 the *H19ICR* is flanked with *loxP* sites so that cre recombination results in deletion of the *ICR*
226 (Srivastava *et al.*, 2000). We used PCR analyses to demonstrate that the *Myh6Cre* transgene
227 drives efficient ICR deletion in the heart but not in other tissues tested (skeletal muscle, liver,
228 kidney, brain, thymus, spleen, and lung). Our cross generated wild type mice (*H19*^{*ICR**flox*}/*H19*⁺)
229 and two kinds of LOI controls (*H19*^{*ΔICR*}/*H19*⁺; +*Myh6Cre* and *H19*^{*ΔICR*}/*H19*⁺) that we
230 compared with experimental mice that had cardiomyocyte specific LOI
231 (*H19*^{*ICR**flox*}/*H19*⁺; +*Myh6Cre*). Cardiomyocyte specific ICR deletion does not cause
232 hypertrophy. Rather, *H19*^{*ICR**flox*}/*H19*⁺ *Myh6Cre* mice were indistinguishable from their wild
233 type littermates (Figure 2E, F, I, J).


234 ***Cardiac disease in adults is dependent only upon loss of H19 lncRNA expression. Biallelic***
235 ***Igf2 and the resultant hypertrophy in neonatal hearts are not relevant to the adult LOI***
236 ***phenotype.***

237 While the *H19* BAC transgene does not prevent neonatal cardiomegaly, it does successfully
238 prevent adult pathologies. That is, hearts from 6-month LOI mice carrying the *H19* transgene are
239 not enlarged as determined by heart weight/tibia length ratios (LOI = 12.9 \pm 0.6 mg/mm, N=3;
240 LOI + H19 BAC Transgene = 11.5 \pm 0.7, N=3; p <0.05), are not fibrotic (Figure 4A, B), and do
241 not express cardiomyopathy markers (Figure 4C). Thus, loss of *H19* is necessary to induce LOI
242 cardiomyopathies.

243 We next investigated whether loss of *H19* is sufficient to induce pathologies and also
244 investigated exactly which *H19* RNA was important. The *H19* gene encodes a 2.3 kb lncRNA
245 which is exported to the cytoplasm but also is the precursor for microRNAs, *miR-675-5p* and
246 *miR-675-3p* (Cai & Cullen, 2007). Since LOI mice show reduced levels of both the lncRNA and the
247 of *miR-675* and because the H19 BAC transgene restores expression of both the lncRNA and the

248 *miR-675* microRNAs, these models were not helpful in determining which RNA species prevents
249 cardiac pathology. The *H19ΔEx1* allele is a 700 bp deletion of the 5' end of exon 1 that leaves
250 bases encoding the *miR-675* intact (Figure 1B). This *ΔEx1* deletion does not prevent *H19*
251 transcription but rather, reduces *H19* lncRNA levels by destabilizing the truncated transcript
252 (Srivastava *et al*, 2003), raising the possibility that the *ΔEx1* mutation might affect only the
253 lncRNA. In fact, we show here that levels of *miR-675-5p* and *-3p* are unaltered in *H19ΔEx1/H19⁺*
254 hearts (Supplemental Figure 5). Yet, 6 month old *H19ΔEx1/H19⁺* male mice display LOI cardiac
255 pathologies including hypertrophy (Figure 4D), fibrosis (Figure 4B, E), and expression of
256 disease markers (Figure 4F). Thus, we conclude that loss of *H19* lncRNA is sufficient to induce
257 cardiomyopathy in adult mice.

258

259

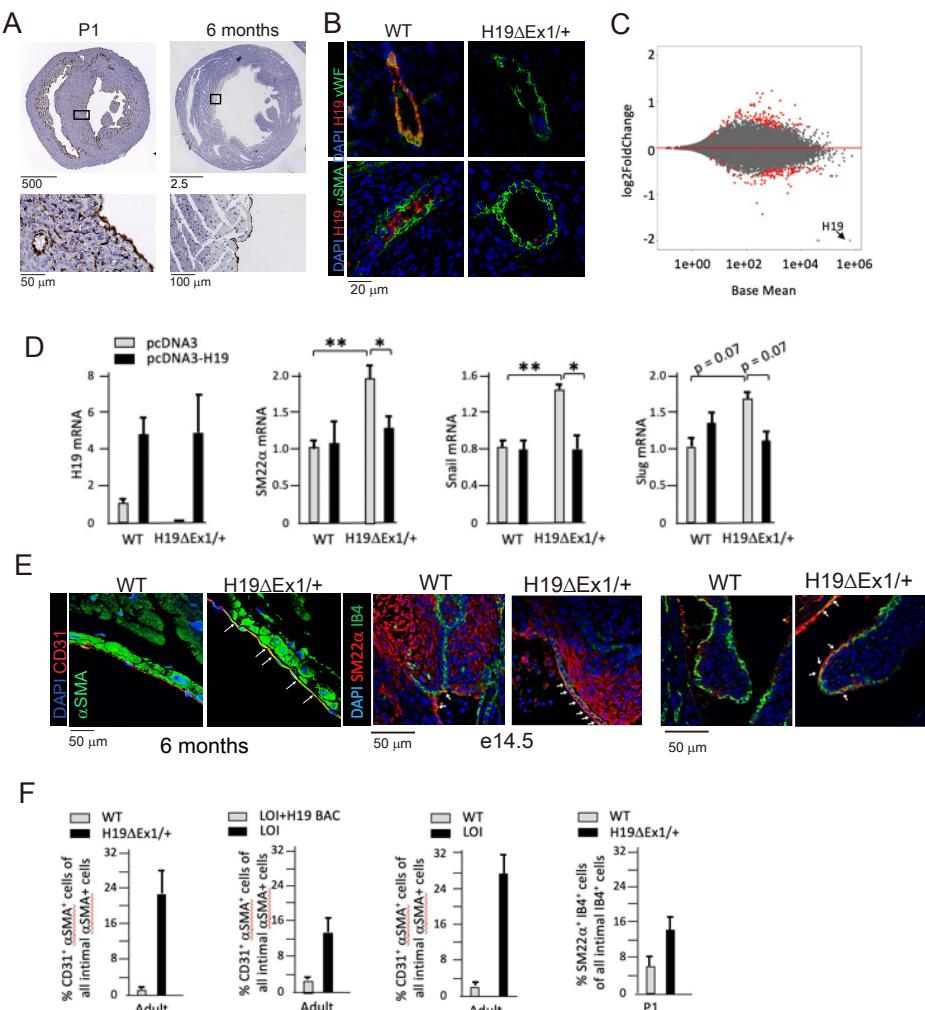
Figure 4. LOI pathologies in adult mice are *H19*-dependent.

Figure 4. LOI pathologies in adult mice are *H19*-dependent.

A, B, C An *H19* transgene rescues pathologies in LOI mice. Phenotypes of LOI mice or their LOI littermates that also carry an *H19* Bacterial Artificial Chromosome transgene that restores wild type levels of *H19* RNA (LOI + *H19* BAC). **D, E, F** *H19* deletion is sufficient to cause cardiac pathologies. Phenotypes in wild type (WT) mice and in littermates carrying the *H19ΔEx1* deletion.

For histology (**A, B, D, E**) hearts were isolated from 6-month old animals and transverse sections collected midway along the longitudinal axes before staining with hematoxylin and eosin (**D**) or with Masson's trichrome (**A, B, E**). Bar graphs show mean \pm SEM. *, P<0.05; **, P<0.01 (Student's t-test). For immunoblotting (**C, F**), hearts were isolated from 1-year animals and investigated for ANP, Myh7, Serca2, Cleaved Caspase-3, and Cleaved PARP. b-tubulin is a loading control.

260


261 In addition to establishing the critical importance of *H19* lncRNA, these genetic
262 experiments also uncouple neonatal hypertrophy and adult pathology: neonatal LOI + *H19* BAC
263 mice show hypertrophy but do not develop adult pathologies while neonatal *H19ΔEx1/H19⁺* mice
264 have normal sized hearts but do develop pathologies. Thus, neonatal cardiomegaly is not a risk
265 factor for adult pathologies.

266

267 ***H19* lncRNA regulates the frequency of endothelial to mesenchymal transition in mice and in**
268 ***isolated primary endothelial cell cultures.***

269 *H19* expression is not uniform throughout the heart but rather restricted to endothelial cells (ECs)
270 (Figure 5A, 5B). In fetal and neonatal hearts *H19* is expressed in all endothelial cells including
271 microvasculature. In adults, *H19* expression is restricted to endocardium and endothelial cells
272 lining major coronary vessels (Figure 5A) (Supplemental Figure 1B). Localization was
273 confirmed in vasculature by co-staining for both endothelial and smooth muscle markers. For
274 example, in coronary vessels, *H19* RNA expression exclusively overlapped with endothelial
275 specific marker von-Willebrand's factor (Figure 5B).

276

277

Figure 5. H19 influences gene expression and cell fate in cardiac endothelial cells.

A. In situ staining for H19 (brown) in hearts from wild type P1 neonates or 6-month adults. **B.** Combined in situ and immunohistochemistry for hearts isolated from wild type and $H19^{\Delta Ex1}/H19^+$ littermates at 6 months shows expression of H19 is concentrated in endothelial cells. Sections were stained for H19 lncRNA and then with antibodies to the endothelial marker, vWF (von Willebrand Factor), or to the smooth muscle marker, α -SMA (alpha smooth muscle actin). **C.** MA plot showing differences in expression of polyadenylated RNAs in H19-deficient endothelial cells. Endothelial cells were isolated from wild type (N = 4) and $H19^{\Delta Ex1}/H19^+$ (N = 3) P2 neonatal hearts based on CD31 expression. RNAs were isolated and polyadenylated transcripts were quantitated. Genes marked in red are significantly differentially expressed at FDR<0.05. **D.** Transient transfection of $H19^{\Delta Ex1}/H19^+$ cardiac endothelial cells with an H19-expression vector rescues expression of key EndMT genes. Cardiac endothelial cells were isolated from wild type and H19-deficient P2 hearts as described in **D** and transfected with empty expression vector (pcDNA3) or with pcDNA3 carrying mouse H19 gDNA (pcDNA3-H19). After 24 hours in culture, RNA was extracted and cDNAs synthesized and analyzed for H19, SM22 α , Snail, or Slug. For each gene, cDNA levels were normalized to GAPDH and then to the levels seen in wild type cells transfected with pcDNA3 only. **E, F.** Increased frequency of EndMT transitioning cells in H19-deficient mice. **E.** Hearts from wild type and $H19^{\Delta Ex1}/H19^+$ littermates were isolated at e14.5, P1, and at 6 months. Sections were probed for endothelial cell markers (CD31 or IB4) and for mesenchymal markers (α SMA or SM22 α) to identify cells co-expressing these genes. **F.** Frequencies of cells co-expressing endothelial and mesenchymal markers in adult and P1 hearts. The role of H19 was determined by three independent comparisons: wild type vs. $H19^{\Delta Ex1}/H19^+$, LOI vs LOI + H19 BAC, wild type vs LOI. **D, F**, means \pm SEM. are depicted. *, P<0.5; **, P<0.01, ***, P<0.001 (Student's t-test).

278

279 To identify a possible function for *H19* RNA, we performed transcriptomic analyses
280 comparing RNAs isolated from wild type and *H19*-deficient P1 hearts. Using whole heart
281 extracts, we did not identify significant differences in gene expression. We next compared RNAs
282 isolated from purified ECs. Hearts were dissociated into single cells using enzyme digestion and
283 mechanical agitation and then endothelial cells were isolated based on expression of CD31
284 antigen. About 30,000 cells per neonatal heart were isolated to >95% purity. RNA sequencing
285 identified 228 differentially expressed genes (DEGs) with adjusted p values of <0.1, including
286 111 upregulated and 117 downregulated transcripts (Figure 5C). GO analysis for biological,
287 cellular, and molecular pathways give evidence for a change in cellular identity (Supplemental
288 Figure 6). Specifically, enriched biological pathways included positive regulation of
289 mesenchymal cell proliferation, positive regulation of endothelial cell migration, and cell
290 adhesion (n = 36, p-adj = 0.003). Cellular pathways showed enrichment for genes coding for
291 extracellular matrix (n = 42, p-adj = 1.83E-10). Enriched molecular function categories include
292 extracellular matrix binding and TGF β binding (n = 7, p-adj = 0.0001; n = 5, p-adj = 0.1), as well
293 as other pathways that are especially active during endothelial to mesenchymal transition
294 (EndMT). EndMT is not an identifiable GO term, however, we conducted a PubMed search of
295 the 188 DEGs described in the PubMed literature database and noted that 63 DEGs were
296 implicated in EndMT as either players in driving the transition or as markers. Some examples
297 include *Transforming growth factor beta receptor 3* (*Tgfb3*, up 1.5X, padj = 0.01), *Collagen*
298 *Type XIII $\alpha 1$ chain* (*Col13a1*, up 2.0X, padj = 4.2E-09), *Bone Morphogenic Protein 6* (*bmp6*,
299 down 0.6X, padj = 7.0E-05), *Latent Transforming Growth Factor Binding Protein 4* (*Ltbp4*,
300 down 0.5x, padj = 0.008), *Connective Tissue Growth Factor* (*Ctgf*, down 0.7X, padj = 0.06), *Slit*
301 *Guidance Ligand 2*, (*Slit2*, up 1.6X, padj = 2.5E-05, $\alpha 2$ macroglobin (*$\alpha 2m$* , down 0.6X, 5.6E-

302 05). Due to the results of the GO term analysis as well as the PubMed search, we speculated that
303 *H19* might play a role in regulating EndMT.

304 To directly test the role of *H19* in regulating EC gene biology, we isolated primary ECs
305 from wild type and *H19*-deficient P2 littermates and transfected with an *H19* expression vector
306 or with an empty control vector and then assayed gene expression after 24 hours. *H19* expression
307 reduces expression of a mesenchymal cell marker (*SM22 α*) and of genes encoding transcription
308 factors critical for EndMT (*Snail* and *Slug*) (Figure 5D).

309 EndMT is an essential part of the normal development of many tissues/organs including
310 heart. For example, EndMT is critical in cardiac valve development (Kisanuki *et al*, 2001;
311 Markwald *et al*, 1977). Studies also report that EndMT contributes to cardiac diseases including
312 cardiac fibrosis, valve calcification, and endocardial elastofibrosis (Evrard *et al*, 2016; Goumans
313 *et al*, 2008; Piera-Velazquez *et al*, 2011; Zeisberg *et al*, 2007). During the actual EC transition,
314 cells will transiently express endothelial markers (like CD31 or IB4) simultaneously with
315 mesenchymal markers (like aSMA or SM22a). To understand the impact of *H19*-deficiency on
316 EC transition *in vivo* we fixed and sectioned hearts isolated at several developmental stages from
317 *H19*^{ΔEx1}/*H19*⁺ mice and their wild type littermates mice and looked for co-staining of these
318 endothelial and mesenchymal markers. At each stage, we focused on the regions of the heart
319 where *H19* expressing cells were particularly abundant, assuming that this is where a phenotype
320 would be most readily observed. In e14.5 embryos we looked at endocardium, epicardium,
321 valves, and blood vessels. In P1 embryos we looked at endocardium, valves, and blood vessels.
322 In adult hearts we looked at endocardium. Comparable sections for wild type and mutant mice
323 were identified by a cardiac pathologist blinded to genotype before we stained for EC and
324 mesenchymal markers. In each stage we noted significant changes in co-staining frequency

325 indicating that the likelihood of EC cell transition is increased in the absence of *H19* (Figure E,
326 F). We confirmed these results through independent analyses that compared LOI mice with their
327 wild type littermates (*H19^{ΔICR}*/*H19⁺* vs. *H19⁺*/*H19⁺*) and that compared LOI mice with LOI
328 littermates that also carried the *H19* BAC transgene (*H19^{ΔICR}*/*H19⁺* vs *H19^{ΔICR}*/*H19⁺* + *H19*
329 BAC Transgene (Figure 5F).

330

331 ***Let-7 binding sites on the *H19* lncRNA are essential for normal cardiac physiology.***
332 *H19* lncRNA is known to physically bind *let-7g* and *-7i* in exon 1 and *let-7e* in exon 4 in mice
333 (Kallen *et al.*, 2013). One proposed mechanism for *H19* lncRNA function is that it regulates *let-7*
334 microRNAs via these interactions to modulate their biological activities. *Let-7* miRNAs are
335 known to play a role in cardiovascular diseases including cardiac hypertrophy, cardiac fibrosis,
336 dilated cardiomyopathy and myocardial infarction (Bao *et al.*, 2013).

337 To test the role of *H19*'s *let-7* binding in preventing cardiomyopathy, we used
338 CRISPR/Cas9 genome editing to delete *let-7* binding sites in the *H19* gene (Figure 1A, 6A).
339 Mice carrying this mutation (*H19ΔLet7*/*H19⁺*) express *H19* at wild type levels (Figure 6B),
340 which shows that the deletions do not disrupt lncRNA expression or stability. Adult *H19ΔLet*
341 /*H19⁺* mice displayed cardiomegaly as measured by increased heart weight/tibia length ratios
342 (wild type = 7.5 ± 1.7 mg/mm, N= 4; *H19ΔLet*/*H19⁺* = 9.9 ± 2.2 mg/mm, N=5; p = 0.007).
343 Transverse sections also suggested hypertrophy (Figure 6C), which was quantified as increased
344 fiber diameter (Figure 6D). The cardiac hypertrophy in *H19ΔLet7*/*H19⁺* mice was accompanied
345 by increased interstitial and perivascular fibrosis (Figure 6E, F). The pathologic nature of the
346 observed cardiac myopathies in these mutant mice was confirmed by the increased levels of

347 cardiomyopathy markers (Figure 6G). Our results support a role for *let-7* miRNA binding to *H19*
 348 *lncRNA* in preventing cardiomyopathies.

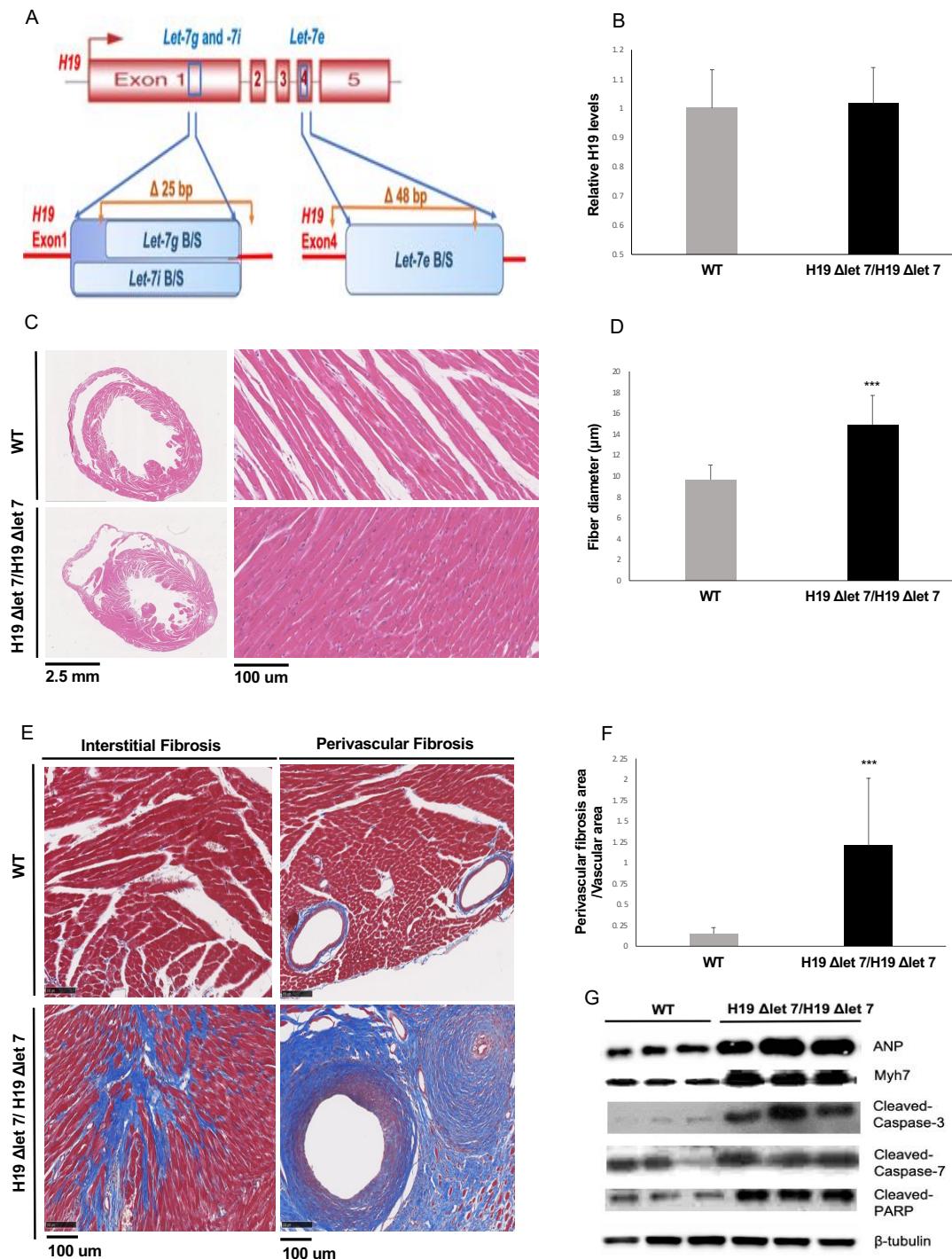


Figure 6. *H19*'s *let7* binding domains are essential for normal function.

349
 350

351

Figure 6. *H19*'s let7 binding domains are essential for normal function.

A. The *H19ΔLet7* allele was generated by deleting 25 and 48 bp sequences within exons 1 and exon 4 to eliminate binding sites for *let-7g*, *let-7i*, and *let-7e* miRNAs. **B.** The *H19ΔLet7* allele is expressed at wild type levels. RNAs were isolated from hearts from *H19ΔLet7/H19⁺* neonates and quantitated by qRT-PCR, normalizing first to *GAPDH* and then to the levels of *H19* observed in *H19⁺/H19⁺* littermates. **C.** Transverse sections were collected midway along the longitudinal axis from hearts collected from 12-15 month old wild type (N = 4) and mutant (N = 3) littermates and stained with hematoxylin and eosin. **D.** Fiber diameters were quantitated using 3 sections per mouse. **E, F.** Masson's trichrome staining of sections described in panel **C**. Red, muscle fibers; blue, collagen. Sections from 3 wild type and 4 mutant littermates were used to calculate fibrosis. **G.** Immunoblot analyses of whole heart extracts prepared from 12-15 month WT (N = 3) and mutant littermates (N = 3). Altered expression of ANP, Myh7, Cleaved Caspase-3, Cleaved Caspase-7, and Cleaved PARP. β -tubulin is a loading control.

For all bar graphs, data are presented as mean \pm SEM. ***, p<0.001 (Student's t-test).

352 **Discussion**

353 BWS is an overgrowth disorder with significant patient to patient variation in disease
354 symptoms(Jacob *et al.*, 2013). An explanation for some of this variability is that independent
355 molecular mechanisms for BWS exist(Weksberg *et al*, 2010). More than 50% of BWS cases are
356 associated with epigenetic lesions that disrupt expression of *CDKN1C*, an imprinted gene closely
357 linked to *IGF2/H19* but under control of its own *ICR* (*IC2*). (More rarely, BWS cases are
358 associated with pathogenic lesions in the *CDKN1C* peptide coding sequences). About 5% of
359 BWS cases are associated with disrupted imprinting at the *IGF2/H19* locus. About 20% of cases
360 are associated with paternal uniparental disomy of the entire region (potentially affecting both
361 *CDKN1C* and *IGF2/H19*) (*IC1* and *IC2*), and another 20% of cases are of unknown origin. Use
362 of artificial reproductive technologies (ART) is a 6-10-fold risk factor for BWS specifically
363 because of the increased chance that *IGF2/H19* imprinting is disrupted (Hattori *et al.*, 2019;
364 Johnson *et al.*, 2018; Mussa *et al.*, 2017). Interestingly, BWS patients associated with ART are
365 more likely to show cardiac problems (Tenorio *et al.*, 2016), suggesting a role for *IGF2/H19*
366 expression in normal heart development and function. In this study we characterize a mouse
367 model for *Igf2/H19* loss of imprinting (LOI). This model deletes the *Imprinting Control Region*
368 upstream of the *H19* promoter and recapitulates the molecular phenotype of BWS patients:
369 biallelic (i.e. 2X dosage) *IGF2* and reduced *H19* RNA. Here we show that this model
370 phenocopies the transient cardiomegaly observed in neonates but also displays cardiovascular
371 dysfunctions that are only rarely observed in patients.

372 To elucidate the molecular and developmental etiology of these cardiovascular
373 phenotypes we characterized two additional mouse models that independently altered expression
374 of *Igf2* and of *H19*. These genetic analyses demonstrated that overexpression of *Igf2* and loss of

375 *H19* play distinct roles in driving BWS cardiac phenotypes. In neonates, increased levels of
376 circulating IGF2 results in hyperactivation of mTOR signaling in cardiomyocytes and thus leads
377 to cardiomyocyte hyperplasia and cellular hypertrophy but the resultant cardiomegaly in mice is
378 transient. As in humans, expression of *Igf2* in mice is strongly downregulated after birth and
379 organ sizes return toward normal. Loss of *H19*, however, results in progressive cardiac
380 pathology. Aged *H19* deficient mice show increased fibrosis, expression of markers indicative of
381 cardiac failure, abnormal echocardiography phenotypes, low blood pressure, and aberrant
382 vasculature. Thus in the mouse LOI BWS model, disease phenotypes are not restricted to fetal
383 and neonatal stages. It will be interesting and important to assess whether this is true in other
384 mammals.

385 In hearts, *H19* expression is concentrated in endothelial cells. To understand the
386 significance of *H19* expression we isolated cardiac ECs from wild type and mutant neonates.
387 Transcriptome analyses showed altered expression of genes associated with endothelial to
388 mesenchymal transition suggesting that *H19* might help regulate EC cell fate. Supporting this
389 idea, we saw that forcing expression of *H19* in primary ECs prevents activation of mesenchymal
390 gene expression patterns. Finally, we saw that *H19*-deficient mice show significant increases in
391 the frequency of EC cells simultaneously expressing mesenchymal markers.

392 The ability of some ECs to transition of mesenchymal cells is necessary for normal
393 development and thus can be assumed to be an essential property of ECs. The phenotypes of
394 *H19*-deficient mice do not suggest that *H19* lncRNA is the single key molecule regulating EC
395 cell fate: Even in LOI mice, EndMT is almost always occurring only when developmentally
396 appropriate. Rather, our data indicate that *H19* RNA levels play a role in modulating the fate
397 decision so that cells lacking *H19* are modestly but measurably more likely to switch toward a

398 transitional state where both EC and mesenchymal markers are expressed. It is interesting to note
399 one commonality of key pathways disrupted by loss of *H19* lncRNA is that they share regulation
400 by TGF β signaling, suggesting that the observed 50% reduction in expression of TGF β receptors
401 might be a key phenotype in *H19*-deficient ECs (Goumans *et al.*, 2008).

402 Our findings extend earlier studies showing patterns of *H19* expression in development
403 and in response to injury suggesting a role for *H19* in vascular physiology and pathology (Jiang
404 *et al.*, 2016; Kim *et al.*, 1994). Moreover, Voellenkle *et al.* recently described a role for lncRNAs
405 including *H19* in the physiology of umbilical vein endothelial cell (Voellenkle *et al.*, 2016).

406 Our results also agree with in vitro studies that demonstrated an important role for *H19* in
407 regulating EMT in cancer cells (Li *et al.*, 2019; Ma *et al.*, 2014; Matouk *et al.*, 2016; Matouk *et al.*,
408 2014; Wu *et al.*, 2019; Zhang *et al.*, 2018) In these previous analyses, *H19* function was
409 determined by transfecting cancer cells with *H19*-expression vectors and analyzing cell motility
410 and gene expression. However, in contrast to our findings that activation of mesenchymal
411 expression is associated with loss of *H19*, these in vitro analyses find EMT is induced by
412 increasing *H19* RNA. This discrepancy emphasizes the useful role for genetic animal models in
413 addressing developmental disorders where phenotypes are coming from cumulative changes in
414 multiple cell types and over long periods of time.

415 In animal models, observed phenotypes are due to the cumulative effect of the mutation
416 in many cell types and over developmental time. In vitro studies of *H19* have focused on the
417 effect of acute changes in levels of *H19* in a single cell type. Th

418 Our analyses cannot address the fate of these cells that co-express EC and

419 mesenchymal markers. Do they all proceed toward full EndMT, do they return toward EC fates,
420 or do they teeter in between? These questions can be addressed in future experiments using
421 conditional *H19* deletion alleles and cell fate markers.

422 *H19* can be a very abundant transcript. In neonatal ECs, *H19* lncRNA represents about
423 1% of all polyadenylated RNA. Yet its biochemical functions remain unclear. Various studies
424 support the idea that *H19* functions as a microRNA precursor (Cai & Cullen, 2007; Dey *et al.*,
425 2014; Keniry *et al.*, 2012), a p53 protein inhibitor (Hadji *et al.*, 2016; Park *et al.*, 2017; Yang *et*
426 *al.*, 2012; Zhang *et al.*, 2017), a regulator of DNA methylation (Zhou *et al.*, 2019; Zhou *et al.*,
427 2015), and as a modulator of *let7* microRNA functions (Gao *et al.*, 2014; Geng *et al.*, 2018;
428 Kallen *et al.*, 2013; Peng *et al.*, 2017; Zhang *et al.*, 2019; Zhang *et al.*, 2017). It is possible that
429 *H19* functions vary from cell type to cell type (Raveh *et al.*, 2015). Alternatively, these functions
430 might co-exist in a single cell but analyses to date have only looked at *H19* function from single
431 perspectives and have missed its ability to perform in multiple pathways. To address this issue,
432 we have begun to generate mutant *H19* alleles that disrupt specific functions. Here we show that
433 *H19ΔEx1/H19⁺* mice have 100X reduced levels of lncRNA but almost normal levels of *mi675*
434 and still show cardiac pathology. Thus, the pathologies in LOI mice depend on the loss of *H19*
435 lncRNA. To then address how the lncRNA might function, we generated mice carrying an *H19*
436 allele missing *let7* binding sites. These mice show cardiac pathologies including extreme
437 fibrosis. We find the fibrosis phenotype in *H19ΔLet7* mice to be especially interesting. We
438 speculate that intensity relative to that seen in an *H19* null is most consistent with the idea that
439 *H19* lncRNA has multiple roles in the cell and by disrupting only one role we have altered some
440 balance so that the animal is worse off than having no *H19* at all.

441 The strong phenotype in *H19ΔLet7* mice is consistent with several previous studies that
442 emphasize the importance of *H19* lncRNA interactions with *let-7* miRNAs but it is also
443 paradoxical in that multiple studies of *let7* function in hearts indicate that *let-7* functions as an
444 anti-fibrotic factor. That is, reduced *let-7* is a risk factor for fibrosis and fibrosis induces *let-7*,
445 presumably as a corrective measure (Bao *et al.*, 2013; Elliot *et al*, 2019; Sun *et al*, 2019; Wang *et*
446 *al*, 2015). The increased fibrosis in *H19ΔLet7*-mice suggests that the simple model (that *H19*
447 binds to and reduces *let-7* bioavailability) is not correct or, more likely, that complex
448 developmental interactions play critical roles that determine phenotypes in ways that are not yet
449 understood. Either way, our results confirm the importance of animal models and the need for
450 even more sophisticated conditional deletions.

451 *H19* and *Igf2* are generally thought of as fetal genes since their expression is so strongly
452 repressed after birth. This fact might suggest that the adult phenotypes in *H19*-deficient mice are
453 downstream effects of the loss of *H19* in the developing heart. However, as already mentioned,
454 at peak expression, *H19* levels are extraordinarily high. Thus, even after 100-fold
455 developmentally regulated decrease, *H19* remains one of the top 100 genes in terms of RNA
456 levels. For this reason, conditional ablation models will be needed to determine exactly when
457 *H19* expression is important.

458

459 **Materials and Methods**

460 *Animal Studies*

461 All mice were bred and housed in accordance with National Institutes of Health and United
462 States Public Health Service policies. Animal research was performed only after protocols were
463 approved by the National Institute of Child Health and Human Development Animal Care and
464 Use Committee.

465 *H19^{ΔICR}/H19⁺* (Srivastava *et al.*, 2000) and wild type littermates or *H19^{ΔEx1}/H19⁺*
466 (Srivastava *et al.*, 2003) and wild type littermates were generated by backcrossing heterozygous
467 females with C57BL/6J males (Jackson Labs 000664). For tissue specific LOI, we crossed
468 *H19^{ΔICR}/H19^{ICRflox}* females (Srivastava *et al.*, 2000) with males hemizygous for the *Myh6Cre*
469 transgene (Jackson Labs 011038) (Agah *et al.*, 1997). The H19 BAC transgene was generated as
470 described (Kaffer *et al.*, 2001; Kaffer *et al.*, 2000) and used to generate *H19^{ΔICR}/H19⁺ BAC+*
471 females for backcrosses with C57BL/6J males.

472 The *H19ΔLet7* allele was generated using CRISPR/Cas9 gene editing of RI mouse
473 embryonic stem cells (ESCs). In step 1, we used gRNAs 5'-
474 CACCGAGGGTTGCCAGTAAAGACTG-3' and 5'-CACCGCTGCCTCCAGGGAGGTGAT -
475 3' to delete 25 bp (AGACTGAGGCCGCTGCCTCCAGGGAGGTGAT) in exon 1. In step 2, we
476 used gRNAs: 5'-CACCGCTTCTTGATTCAAGAACGAGA-3' and 5'-
477 CACCGACCACTACACTACCTGCCTC-3' to delete 48 bp
478 (CGTTCTGAATCAAGAAGATGCTGCAATCAGAACCACTACACTACCTGC) in exon 4.
479 Positive clones were identified by PCR screens and then confirmed by sequencing 686 bp
480 spanning the exon 1 deletion and 1086 bp spanning the exon 4 deletion. Founder mice were

481 obtained by injecting mutated ESCs into C57BL/6J blastocysts and then backcrossed twice to
482 C57BL/6J females.

483 Genotypes were determined by PCR analyses of gDNAs extracted from ear punch
484 biopsies (Supplemental Table 2).

485 *Electrocardiography measurements*

486 Transthoracic echocardiography was performed using a high-frequency linear array ultrasound
487 system (Vevo 2100, VisualSonics) and the MS-400 Transducer (VisualSonics) with a center
488 operating frequency of 30 MHz, broadband frequency of 18 to 38 MHz, axial resolution of 50
489 mm, and footprint of 20x5 mm. M-mode images of the left ventricle were collected from the
490 parasternal short-axis view at the midpapillary muscles at a 90° clockwise rotation of the imaging
491 probe from the parasternal long-axis view. Form the M-mode images, the left ventricle systolic
492 and diastolic posterior and anterior wall thicknesses and end-systolic and -diastolic internal left
493 ventricle chamber dimensions were measured using the leading-edge method. Left ventricular
494 functional values of fractional shortening and ejection fraction were calculated from the wall
495 thicknesses and chamber dimension measurements using system software. Mice were imaged in
496 the supine position while placed on heated platform after light anesthesia using isoflurane
497 delivered by nose cone.

498 *Blood Pressure measurements*

499 After sedation with isoflurane, a pressure catheter (1.0-Fr, model SPR1000, Millar Instruments,
500 Houston, TX) was inserted into the right carotid and advanced to the ascending aorta. After 5-
501 minute acclimation, pressures were recorded using Chart 5 software (AD Instruments, Colorado
502 Springs, CO) (Knutsen *et al*, 2018).

503 *Arterial Pressure-Diameter Testing*

504 Ascending aortas (from the root to just distal to the innominate branch point) and left carotid
505 arteries (from the transverse aorta to 6 mm up the common carotid) were dissected and mounted
506 on a pressure arteriograph (Danish Myotechnology, Copenhagen, Denmark) in balanced
507 physiological saline (130 mM NaCl, 4.7 mM KCl, 1.6 mM CaCl₂, 1.18 mM MgSO₄·7H₂O, 1.17
508 mM KH₂PO₄, 14.8 mM NaHCO₃, 5.5 mM dextrose, and 0.026 mM EDTA, pH 7.4) at 37°C.
509 Vessels were transilluminated under a microscope connected to a charge-coupled device camera
510 and computerized measurement system (Myoview, Danish Myotechnology) to allow continuous
511 recording of vessel diameters. Prior to data capture vessels were pressurized and stretched to in
512 vivo length(Wagenseil *et al*, 2005). Intravascular pressure was increased from 0 to 175 mmHg in
513 25-mmHg steps. At each step, the outer diameter (OD) of the vessel was measured and manually
514 recorded. Segmental distensibility was calculated from the pressure diameter curves as follows:
515 distensibility (SD₂₅) over a 25-mmHg interval = [OD_{Higher Pressure (H)} – OD_{Lower Pressure(L)}]/OD_(L)/25.
516 (Knutsen *et al.*, 2018).

517 *Histological Analyses*

518 Hearts from adult mice were fixed by Langendorff perfusion or by transcardiac perfusion using
519 4% paraformaldehyde ((PFA) and embedded in paraffin. Fetal and neonatal hearts were isolated
520 and then fixed by submersion in 4% PFA before embedding. From embedded hearts, we
521 obtained 5 mm transverse sections for analysis. Masson's Trichrome (Sigma Aldrich, HT15, St.
522 Louis Missouri) and Picosirius Red (Sigma Aldrich, 365548) staining were according to
523 supplier's instructions. Fiber diameter index was quantitated using Hamamatsu-NDP software.

524 *Immunofluorescence and Immunohistochemistry*

525 Primary myocytes and H19C2 cells were fixed with 4% PFA, permeabilized with 0.5% Triton,
526 and blocked with 10% normal serum before incubation with antibodies. Paraffin sections were

527 deparaffinized and rehydrated according to standard protocols. Antigen retrieval was applied
528 using citrate buffer (Abcam, 1b93679, Cambridge, MA) for 20 minutes and then maintained at a
529 sub-boiling temperature for 10 minutes. Sections were treated with serum-free blocking solution
530 (DAKO, X0909, Santa Clara, CA) and all antibodies (Supplemental Table 3) diluted in antibody
531 diluent solution (DAKO, S0809). Secondary staining was performed for 30 min. at RT. Samples
532 were imaged with a Carl Zeiss 880 laser scanning microscope using a 40X oil immersion
533 objective. Images were composed and edited in ZEN&LSM image software provided by Carl
534 Zeiss or Illustrator 6.0 (Adobe).

535 *RNA in situ hybridization*

536 Single color probes for H19 were purchased from Advanced Cell Diagnostics (ACD 423751,
537 Newark, CA). RNA in-situ hybridization was performed on paraffin sections using the 2.5 HD
538 Brown Detection Kit (ACD 322310). For dual staining with antibodies, we used H19-RD
539 chromagen kit (ACD 322360).

540 *Immunoblotting*

541 Cell extracts and tissue extracts were prepared using M-PER mammalian protein extraction
542 buffer (Thermo Fisher 78501, Waltham, MA) or T-PER tissue protein extraction buffer (Thermo
543 Fisher 78510), respectively. Protein concentrations were assayed using a BCA Protein Assay Kit
544 (Pierce 23227, Waltham, MA). Proteins were fractionated by electrophoresis on 12% or on 4-
545 20% SDS-PAGE gels and then transferred to nitrocellulose. Antibodies (Supplemental Table 3)
546 were diluted in antibody enhancer buffer (Pierce 46644).

547 *Cell culture*

548 Primary cardiomyocytes were isolated form P1 pups using the Pierce Primary Cardiomyocyte
549 Isolation Kit (Thermo Fisher 88281). H19c2 cells were purchased from ATCC (CXRL-1446).

550 and grown at 37°C in 5% CO₂ in DMEM + 10% FBS. Cell surface index was quantitated using
551 Carl Zeiss-LSM software (n = 50 for each of 3 independent experiments).

552 To prepare primary endothelial cells, neonatal hearts were isolated and dissociated into
553 single cells using Miltenyi Biotec Neonatal Heart Dissociation Kit (130-098-373, Gaithersburg,
554 MD) but omitting the Red Cell Lysis step. Endothelial cells were purified based on CD31
555 expression (Miltenyi Biotec Neonatal Cardiac Endothelial Cell Isolation Kit, 130-104-183).

556 *Quantitative real-time PCR for RNA samples*

557 Conventional RNAs were prepared from 3-5 independent biological samples, analyzed using a
558 Thermo Fisher NANODROP 2000c to evaluate purity and yield, and then stored at -70°C. cDNA
559 samples were prepared with and without reverse transcriptase using oligo-dT primers (Roche, 04
560 887 352 001). cDNAs were analyzed using SYBR Green (Roche, 04 887 352 001) on the Roche
561 Light Cycler 480 II (45 cycles with annealing at 60C) using primers described in Supplemental
562 Table 2. For each primer pair, we established standard curves to evaluate slope, y-intercepts, and
563 PCR efficiency and to determine the dynamic range of the assay. Assay specificity was
564 determined by melting point analyses and gel electrophoresis.

565 For microRNA analyses we used mirVanaTM miRNA Isolation Kit and TaqMan
566 MicroRNA Assays (Thermo Fisher, 4437975; Assay ID 001973 (U6), 001940 (miR-675-5p),
567 001941 (miR-675-3p)).

568 *ELISA*

569 IGF2 secreted peptide was assayed with the Mouse IGF2 ELISA KIT (Abcam, ab100696) on 10
570 independent samples.

571 *RNA sequencing and analyses*

572 For analyses in adult animals, RNAs were isolated from 6-month H19 Δ ICR/H19 Δ ICR and
573 H19 $^+$ /H19 $^+$ littermates (2 per genotype) using RNeasy Plus Mini Kit (Qiagen). Samples with
574 RNA Integrity numbers >9 were Ribosomal RNA depleted using RiboZero Gold Kit (Illumina).
575 Libraries were prepared using an RNA Sample Prep V2 Kit (Illumina), were sequenced (Illumina
576 HiSeq2500) to generate paired-end 101 bp reads that were aligned to the mouse genome version
577 mm10 using STAR v2.5.3a (Dobin et al 2013). Differential expression analyses were performed
578 using DESeq2 (Love *et al*, 2014).

579 For analyses in neonates, RNAs were isolated from purified cardiac endothelial cells
580 isolated from H19 $^{\Delta Ex1}$ /H19 $^+$ (N=3) and H19 $^+$ /H19 $^+$ (N=4) littermates. Libraries were generated
581 from samples with RNA Integrity Numbers >9 and were sequenced and analyzed as described
582 above.

583

584 **Acknowledgements**

585 We thank Victoria Biggs and Jeanne Yimdjo for animal husbandry. This work was supported by

586 the Division of Intramural Research of the Eunice Kennedy Shriver National Institute of Child

587 Health and Human Development.

588

589 **Author Contributions**

590 Ki-Sun Park, Beenish Rahat, Russell Knutsen, and Karl Pfeifer designed and performed
591 experiments, analyzed data, and wrote the manuscript. Zu-Xi Yu and Danielle Springer designed
592 and performed experiments and analyzed data. Jacob Noeker analyzed data and wrote the
593 manuscript. Apratim Mitra analyzed data. Beth Kozel analyzed data and wrote the manuscript.

594

595 **Conflict of Interest**

596 The authors have no conflicts of interest to report.

597

598 **Data Availability**

599 RNA sequencing data are deposited in the NCBI Gene Expression Omnibus (GEO) under Series
600 Accession number GSE111418.

601

602

603

604 *Data access*

605 RNA sequencing data are deposited in the NCBI Gene Expression Omnibus (GEO) under Series

606 Accession number GSE111418.

607

608

609 **References**

610 Agah R, Frenkel PA, French BA, Michael LH, Overbeek PA, Schneider MD (1997) Gene
611 recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-
612 restricted, site-specific rearrangement in adult ventricular muscle in vivo. *J Clin Invest* 100: 169-
613 179

614 Bao MH, Feng X, Zhang YW, Lou XY, Cheng Y, Zhou HH (2013) Let-7 in cardiovascular diseases,
615 heart development and cardiovascular differentiation from stem cells. *Int J Mol Sci* 14: 23086-
616 23102

617 Barlow DP, Bartolomei MS (2014) Genomic imprinting in mammals. *Cold Spring Harb Perspect
618 Biol* 6

619 Bergman D, Halje M, Nordin M, Engstrom W (2013) Insulin-like growth factor 2 in development
620 and disease: a mini-review. *Gerontology* 59: 240-249

621 Brannan CI, Dees EC, Ingram RS, Tilghman SM (1990) The product of the H19 gene may function
622 as an RNA. *Mol Cell Biol* 10: 28-36

623 Cai X, Cullen BR (2007) The imprinted H19 noncoding RNA is a primary microRNA precursor.
624 *RNA* 13: 313-316

625 Carboni JM, Wittman M, Yang Z, Lee F, Greer A, Hurlburt W, Hillerman S, Cao C, Cantor GH,
626 Dell-John J *et al* (2009) BMS-754807, a small molecule inhibitor of insulin-like growth factor-
627 1R/IR. *Mol Cancer Ther* 8: 3341-3349

628 Cohen MM, Jr. (2005) Beckwith-Wiedemann syndrome: historical, clinicopathological, and
629 etiopathogenetic perspectives. *Pediatr Dev Pathol* 8: 287-304

630 DeBaun MR, Niemitz EL, Feinberg AP (2003) Association of in vitro fertilization with Beckwith-
631 Wiedemann syndrome and epigenetic alterations of LIT1 and H19. *Am J Hum Genet* 72: 156-160

632 Descartes M, Romp R, Franklin J, Biggio JR, Zehnbauer B (2008) Constitutional H19
633 hypermethylation in a patient with isolated cardiac tumor. *Am J Med Genet A* 146A: 2126-2129

634 Dey BK, Pfeifer K, Dutta A (2014) The H19 long noncoding RNA gives rise to microRNAs miR-675-
635 3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. *Genes Dev* 28:
636 491-501

637 Drut R, Quijano G, Altamirano ME, Jones MC, Maffessoli OB (2006) Vascular malformation and
638 choroid plexus adrenal heterotopia: new findings in Beckwith-Wiedemann syndrome? *Fetal
639 Pediatr Pathol* 25: 191-197

640 Eggermann T, Perez de Nanclares G, Maher ER, Temple IK, Tumer Z, Monk D, Mackay DJ,
641 Gronskov K, Riccio A, Linglart A *et al* (2015) Imprinting disorders: a group of congenital
642 disorders with overlapping patterns of molecular changes affecting imprinted loci. *Clin
643 Epigenetics* 7: 123

644 Elliot S, Periera-Simon S, Xia X, Catanuto P, Rubio G, Shahzeidi S, El Salem F, Shapiro J, Briegel K,
645 Korach KS *et al* (2019) MicroRNA let-7 Downregulates Ligand-Independent Estrogen Receptor-
646 mediated Male-Predominant Pulmonary Fibrosis. *Am J Respir Crit Care Med* 200: 1246-1257

647 Elliott M, Bayly R, Cole T, Temple IK, Maher ER (1994) Clinical features and natural history of
648 Beckwith-Wiedemann syndrome: presentation of 74 new cases. *Clin Genet* 46: 168-174

649 Evrard SM, Lecce L, Michelis KC, Nomura-Kitabayashi A, Pandey G, Purushothaman KR,
650 d'Escamard V, Li JR, Hadri L, Fujitani K *et al* (2016) Endothelial to mesenchymal transition is

651 common in atherosclerotic lesions and is associated with plaque instability. *Nat Commun* 7:
652 11853

653 Feinberg AP, Tycko B (2004) The history of cancer epigenetics. *Nat Rev Cancer* 4: 143-153

654 Gabory A, Jammes H, Dandolo L (2010) The H19 locus: role of an imprinted non-coding RNA in
655 growth and development. *Bioessays* 32: 473-480

656 Gao Y, Wu F, Zhou J, Yan L, Jurczak MJ, Lee HY, Yang L, Mueller M, Zhou XB, Dandolo L *et al*
657 (2014) The H19/let-7 double-negative feedback loop contributes to glucose metabolism in
658 muscle cells. *Nucleic Acids Res* 42: 13799-13811

659 Geng H, Bu HF, Liu F, Wu L, Pfeifer K, Chou PM, Wang X, Sun J, Lu L, Pandey A *et al* (2018) In
660 Inflamed Intestinal Tissues and Epithelial Cells, Interleukin 22 Signaling Increases Expression of
661 H19 Long Noncoding RNA, Which Promotes Mucosal Regeneration. *Gastroenterology* 155: 144-
662 155

663 Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y (2003) In vitro fertilization
664 may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of
665 the KCN1OT gene. *Am J Hum Genet* 72: 1338-1341

666 Goumans MJ, van Zonneveld AJ, ten Dijke P (2008) Transforming growth factor beta-induced
667 endothelial-to-mesenchymal transition: a switch to cardiac fibrosis? *Trends Cardiovasc Med* 18:
668 293-298

669 Greenwood RD, Somer A, Rosenthal A, Craenen J, Nadas AS (1977) Cardiovascular abnormalities
670 in the Beckwith-Wiedemann syndrome. *Am J Dis Child* 131: 293-294

671 Hadji F, Boulanger MC, Guay SP, Gaudreault N, Amella S, Mkannez G, Bouchareb R, Marchand
672 JT, Nsaibia MJ, Guauque-Olarde S *et al* (2016) Altered DNA Methylation of Long Noncoding RNA
673 H19 in Calcific Aortic Valve Disease Promotes Mineralization by Silencing NOTCH1. *Circulation*
674 134: 1848-1862

675 Halliday J, Oke K, Breheny S, Algar E, D JA (2004) Beckwith-Wiedemann syndrome and IVF: a
676 case-control study. *Am J Hum Genet* 75: 526-528

677 Hattori H, Hiura H, Kitamura A, Miyauchi N, Kobayashi N, Takahashi S, Okae H, Kyono K, Kagami
678 M, Ogata T *et al* (2019) Association of four imprinting disorders and ART. *Clin Epigenetics* 11: 21

679 Heinzel FR, Hohendanner F, Jin G, Sedej S, Edelmann F (2015) Myocardial hypertrophy and its
680 role in heart failure with preserved ejection fraction. *J Appl Physiol* (1985) 119: 1233-1242

681 Horsthemke B (2014) In brief: genomic imprinting and imprinting diseases. *J Pathol* 232: 485-
682 487

683 Iderabdullah FY, Vigneau S, Bartolomei MS (2008) Genomic imprinting mechanisms in
684 mammals. *Mutat Res* 647: 77-85

685 Jacob KJ, Robinson WP, Lefebvre L (2013) Beckwith-Wiedemann and Silver-Russell syndromes:
686 opposite developmental imbalances in imprinted regulators of placental function and
687 embryonic growth. *Clin Genet* 84: 326-334

688 Jiang X, Yan Y, Hu M, Chen X, Wang Y, Dai Y, Wu D, Wang Y, Zhuang Z, Xia H (2016) Increased
689 level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of
690 glioblastoma cells. *J Neurosurg* 2016: 129-136

691 Johnson JP, Beischel L, Schwanke C, Styren K, Crunk A, Schoof J, Elias AF (2018)
692 Overrepresentation of pregnancies conceived by artificial reproductive technology in prenatally
693 identified fetuses with Beckwith-Wiedemann syndrome. *J Assist Reprod Genet* 35: 985-992

694 Kaffer CR, Grinberg A, Pfeifer K (2001) Regulatory mechanisms at the mouse Igf2/H19 locus.
695 *Mol Cell Biol* 21: 8189-8196

696 Kaffer CR, Srivastava M, Park KY, Ives E, Hsieh S, Batlle J, Grinberg A, Huang SP, Pfeifer K (2000)
697 A transcriptional insulator at the imprinted H19/Igf2 locus. *Genes Dev* 14: 1908-1919

698 Kalish JM, Jiang C, Bartolomei MS (2014) Epigenetics and imprinting in human disease. *Int J Dev
699 Biol* 58: 291-298

700 Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H *et al* (2013) The
701 imprinted H19 lncRNA antagonizes let-7 microRNAs. *Mol Cell* 52: 101-112

702 Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W (2012) The H19 lncRNA is a
703 developmental reservoir of miR-675 that suppresses growth and Igf1r. *Nat Cell Biol* 14: 659-665

704 Kim DK, Zhang L, Dzau VJ, Pratt RE (1994) H19, a developmentally regulated gene, is
705 reexpressed in rat vascular smooth muscle cells after injury. *J Clin Invest* 93: 355-360

706 Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M (2001) Tie2-Cre
707 transgenic mice: a new model for endothelial cell-lineage analysis in vivo. *Dev Biol* 230: 230-242

708 Knopp C, Rudnik-Schoneborn S, Zerres K, Gencik M, Spengler S, Eggermann T (2015) Twenty-
709 one years to the right diagnosis - clinical overlap of Simpson-Golabi-Behmel and Beckwith-
710 Wiedemann syndrome. *Am J Med Genet A* 167A: 151-155

711 Knutsen RH, Beeman SC, Broekelmann TJ, Liu D, Tsang KM, Kovacs A, Ye L, Danback JR, Watson
712 A, Wardlaw A *et al* (2018) Minoxidil improves vascular compliance, restores cerebral blood
713 flow, and alters extracellular matrix gene expression in a model of chronic vascular stiffness.
714 *Am J Physiol Heart Circ Physiol* 315: H18-H32

715 Li C, Lei B, Huang S, Zheng M, Liu Z, Li Z, Deng Y (2015) H19 derived microRNA-675 regulates cell
716 proliferation and migration through CDK6 in glioma. *Am J Transl Res* 7: 1747-1764

717 Li J, Kim SG, Blenis J (2014) Rapamycin: one drug, many effects. *Cell Metab* 19: 373-379

718 Li L, Han T, Liu K, Lei CG, Wang ZC, Shi GJ (2019) LncRNA H19 promotes the development of
719 hepatitis B related hepatocellular carcinoma through regulating microRNA-22 via EMT pathway.
720 *Eur Rev Med Pharmacol Sci* 23: 5392-5401

721 Longardt AC, Nonnenmacher A, Graul-Neumann L, Opgen-Rhein B, Henrich W, Buhrer C,
722 Huseman D (2014) Fetal intracardiac rhabdomyoma in beckwith-wiedemann syndrome. *J Clin
723 Ultrasound* 42: 569-573

724 Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for
725 RNA-seq data with DESeq2. *Genome Biol* 15: 550

726 Ma C, Nong K, Zhu H, Wang W, Huang X, Yuan Z, Ai K (2014) H19 promotes pancreatic cancer
727 metastasis by derepressing let-7's suppression on its target HMGA2-mediated EMT. *Tumour
728 Biol* 35: 9163-9169

729 Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, Macdonald F, Sampson JR,
730 Barratt CL, Reik W *et al* (2003) Beckwith-Wiedemann syndrome and assisted reproduction
731 technology (ART). *J Med Genet* 40: 62-64

732 Markwald RR, Fitzharris TP, Manasek FJ (1977) Structural development of endocardial cushions.
733 *Am J Anat* 148: 85-119

734 Matouk IJ, Halle D, Raveh E, Gilon M, Sorin V, Hochberg A (2016) The role of the oncofetal H19
735 lncRNA in tumor metastasis: orchestrating the EMT-MET decision. *Oncotarget* 7: 3748-3765

736 Matouk IJ, Raveh E, Abu-lail R, Mezan S, Gilon M, Gershtain E, Birman T, Gallula J, Schneider T,
737 Barkali M *et al* (2014) Oncofetal H19 RNA promotes tumor metastasis. *Biochim Biophys Acta*
738 1843: 1414-1426

739 McMullen JR, Jennings GL (2007) Differences between pathological and physiological cardiac
740 hypertrophy: novel therapeutic strategies to treat heart failure. *Clin Exp Pharmacol Physiol* 34:
741 255-262

742 Mitra A, Basak T, Datta K, Naskar S, Sengupta S, Sarkar S (2013) Role of alpha-crystallin B as a
743 regulatory switch in modulating cardiomyocyte apoptosis by mitochondria or endoplasmic
744 reticulum during cardiac hypertrophy and myocardial infarction. *Cell Death Dis* 4: e582

745 Murrell A (2011) Setting up and maintaining differential insulators and boundaries for genomic
746 imprinting. *Biochem Cell Biol* 89: 469-478

747 Mussa A, Molinatto C, Cerrato F, Palumbo O, Carella M, Baldassarre G, Carli D, Peris C, Riccio A,
748 Ferrero GB (2017) Assisted Reproductive Techniques and Risk of Beckwith-Wiedemann
749 Syndrome. *Pediatrics* 140

750 Park KS, Mitra A, Rahat B, Kim K, Pfeifer K (2017) Loss of imprinting mutations define both
751 distinct and overlapping roles for misexpression of IGF2 and of H19 lncRNA. *Nucleic Acids Res*
752 45: 12766-12779

753 Peng F, Li TT, Wang KL, Xiao GQ, Wang JH, Zhao HD, Kang ZJ, Fan WJ, Zhu LL, Li M *et al* (2017)
754 H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell
755 maintenance. *Cell Death Dis* 8: e2569

756 Peters J (2014) The role of genomic imprinting in biology and disease: an expanding view. *Nat
757 Rev Genet* 15: 517-530

758 Piera-Velazquez S, Li Z, Jimenez SA (2011) Role of endothelial-mesenchymal transition
759 (EndoMT) in the pathogenesis of fibrotic disorders. *Am J Pathol* 179: 1074-1080

760 Raveh E, Matouk IJ, Gilon M, Hochberg A (2015) The H19 Long non-coding RNA in cancer
761 initiation, progression and metastasis - a proposed unifying theory. *Mol Cancer* 14: 184

762 Ryan CA, Boyle MH, Burggraf GW (1989) Reversible obstructive hypertrophic cardiomyopathy in
763 the Beckwith-Wiedemann syndrome. *Pediatr Cardiol* 10: 225-228

764 Satge D, Vidalo E, Desfarges F, de Geeter B (2005) A third case of cardiac neoplasm in a fetus
765 with Beckwith-Wiedemann syndrome: epicardial angiomyoma. *Fetal Diagn Ther* 20: 44-47

766 Sciarretta S, Volpe M, Sadoshima J (2014) Mammalian target of rapamycin signaling in cardiac
767 physiology and disease. *Circ Res* 114: 549-564

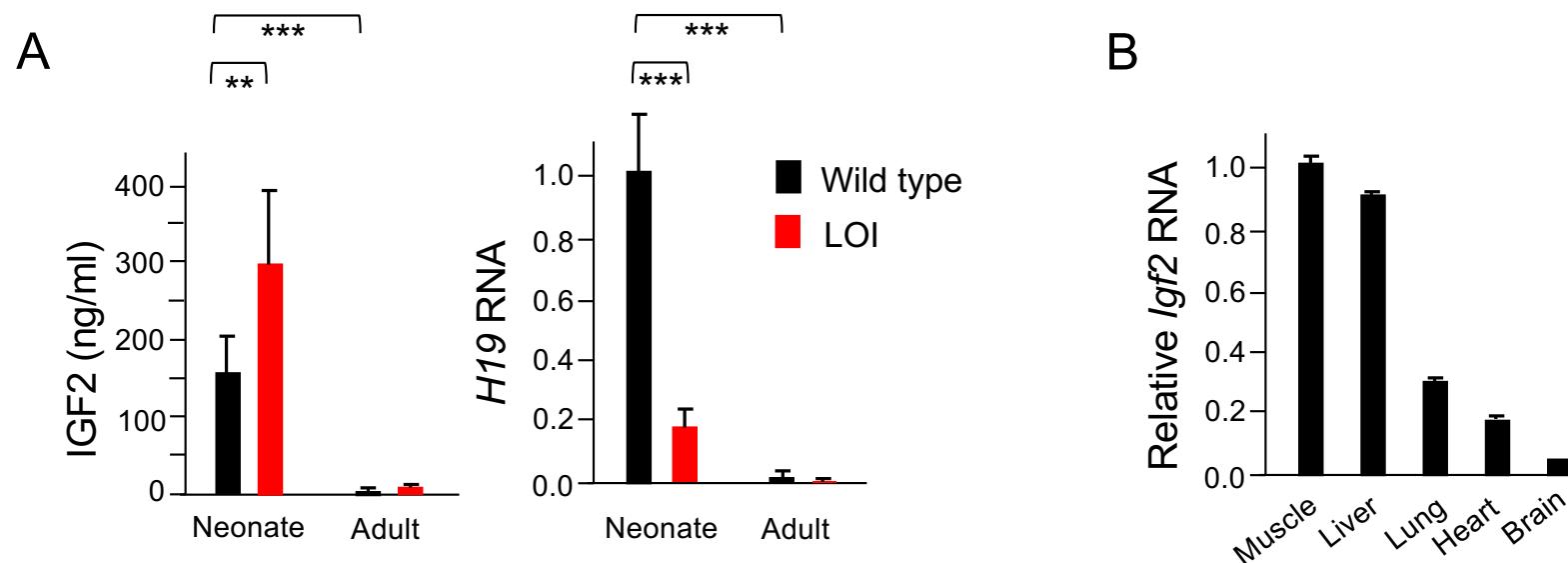
768 Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. *J Mol Cell
769 Cardiol* 97: 245-262

770 Srivastava M, Frolova E, Rottinghaus B, Boe SP, Grinberg A, Lee E, Love PE, Pfeifer K (2003)
771 Imprint control element-mediated secondary methylation imprints at the Igf2/H19 locus. *J Biol
772 Chem* 278: 5977-5983

773 Srivastava M, Hsieh S, Grinberg A, Williams-Simons L, Huang SP, Pfeifer K (2000) H19 and Igf2
774 monoallelic expression is regulated in two distinct ways by a shared cis acting regulatory region
775 upstream of H19. *Genes Dev* 14: 1186-1195

776 Sun L, Zhu M, Feng W, Lin Y, Yin J, Jin J, Wang Y (2019) Exosomal miRNA Let-7 from Menstrual
777 Blood-Derived Endometrial Stem Cells Alleviates Pulmonary Fibrosis through Regulating
778 Mitochondrial DNA Damage. *Oxid Med Cell Longev* 2019: 4506303

779 Tenorio J, Romanelli V, Martin-Trujillo A, Fernandez GM, Segovia M, Perandones C, Perez
780 Jurado LA, Esteller M, Fraga M, Arias P *et al* (2016) Clinical and molecular analyses of Beckwith-
781 Wiedemann syndrome: Comparison between spontaneous conception and assisted
782 reproduction techniques. *Am J Med Genet A* 170: 2740-2749
783 Thorvaldsen JL, Duran KL, Bartolomei MS (1998) Deletion of the H19 differentially methylated
784 domain results in loss of imprinted expression of H19 and Igf2. *Genes Dev* 12: 3693-3702
785 Vakili BA, Okin PM, Devereux RB (2001) Prognostic implications of left ventricular hypertrophy.
786 *Am Heart J* 141: 334-341
787 van Empel VP, Bertrand AT, Hofstra L, Crijns HJ, Doevedans PA, De Windt LJ (2005) Myocyte
788 apoptosis in heart failure. *Cardiovasc Res* 67: 21-29
789 Voellenkle C, Garcia-Manteiga JM, Pedrotti S, Perfetti A, De Toma I, Da Silva D, Maimone B,
790 Greco S, Fasanaro P, Creo P *et al* (2016) Implication of Long noncoding RNAs in the endothelial
791 cell response to hypoxia revealed by RNA-sequencing. *Sci Rep* 6: 24141
792 Wagenseil JE, Nerurkar NL, Knutson RH, Okamoto RJ, Li DY, Mecham RP (2005) Effects of elastin
793 haploinsufficiency on the mechanical behavior of mouse arteries. *Am J Physiol Heart Circ
794 Physiol* 289: H1209-1217
795 Wang X, Wang HX, Li YL, Zhang CC, Zhou CY, Wang L, Xia YL, Du J, Li HH (2015) MicroRNA Let-7i
796 negatively regulates cardiac inflammation and fibrosis. *Hypertension* 66: 776-785
797 Weksberg R, Shuman C, Beckwith JB (2010) Beckwith-Wiedemann syndrome. *Eur J Hum Genet*
798 18: 8-14
799 Wu Y, Zhou Y, He J, Sun H, Jin Z (2019) Long non-coding RNA H19 mediates ovarian cancer cell
800 cisplatin-resistance and migration during EMT. *Int J Clin Exp Pathol* 12: 2506-2515
801 Yang F, Bi J, Xue X, Zheng L, Zhi K, Hua J, Fang G (2012) Up-regulated long non-coding RNA H19
802 contributes to proliferation of gastric cancer cells. *FEBS J* 279: 3159-3165
803 Yoon YS, Jeong S, Rong Q, Park KY, Chung JH, Pfeifer K (2007) Analysis of the H19ICR insulator.
804 *Mol Cell Biol* 27: 3499-3510
805 Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A,
806 Yuan X, Pu WT, Roberts AB *et al* (2007) Endothelial-to-mesenchymal transition contributes to
807 cardiac fibrosis. *Nat Med* 13: 952-961
808 Zhang L, Yang Z, Huang W, Wu J (2019) H19 potentiates let-7 family expression through
809 reducing PTBP1 binding to their precursors in cholestasis. *Cell Death Dis* 10: 168
810 Zhang L, Zhou Y, Huang T, Cheng AS, Yu J, Kang W, To KF (2017) The Interplay of LncRNA-H19
811 and Its Binding Partners in Physiological Process and Gastric Carcinogenesis. *Int J Mol Sci* 18
812 Zhang Q, Li X, Li X, Li X, Chen Z (2018) LncRNA H19 promotes epithelial-mesenchymal transition
813 (EMT) by targeting miR-484 in human lung cancer cells. *J Cell Biochem* 119: 4447-4457
814 Zhou J, Xu J, Zhang L, Liu S, Ma Y, Wen X, Hao J, Li Z, Ni Y, Li X *et al* (2019) Combined Single-Cell
815 Profiling of lncRNAs and Functional Screening Reveals that H19 Is Pivotal for Embryonic
816 Hematopoietic Stem Cell Development. *Cell Stem Cell* 24: 285-298 e285
817 Zhou J, Yang L, Zhong T, Mueller M, Men Y, Zhang N, Xie J, Jiang K, Chung H, Sun X *et al* (2015)
818 H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine
819 hydrolase. *Nat Commun* 6: 10221
820


Supplemental Figure 1. *Igf2* and *H19* expression in wild type and LOI mice.

A Maternal Loss of Imprinting (LOI) results in 2X IGF2 and reduced *H19* lncRNA. IGF2 peptide levels in serum were measured by ELISA (N=10). To quantitate *H19*, RNAs were extracted from total hearts, analyzed by qRT-PCR, normalized to GAPDH, and then normalized to RNA levels observed in wild type neonates (N \geq 4). Despite the dramatic postnatal repression, *H19* expression in adults remains substantial and *H19* RNA is among the top 10-percentile of all RNAs.

B *Igf2* levels vary by tissue. RNAs were extracted from hind limb muscle, liver, lung, whole heart, and brain from P2 neonates and quantitated as above but normalized to *Igf2* levels in hind limb muscle.

A, B Data are presented as mean \pm SEM. **, p<0.01; ***, p<0.001 (Student's t-test).

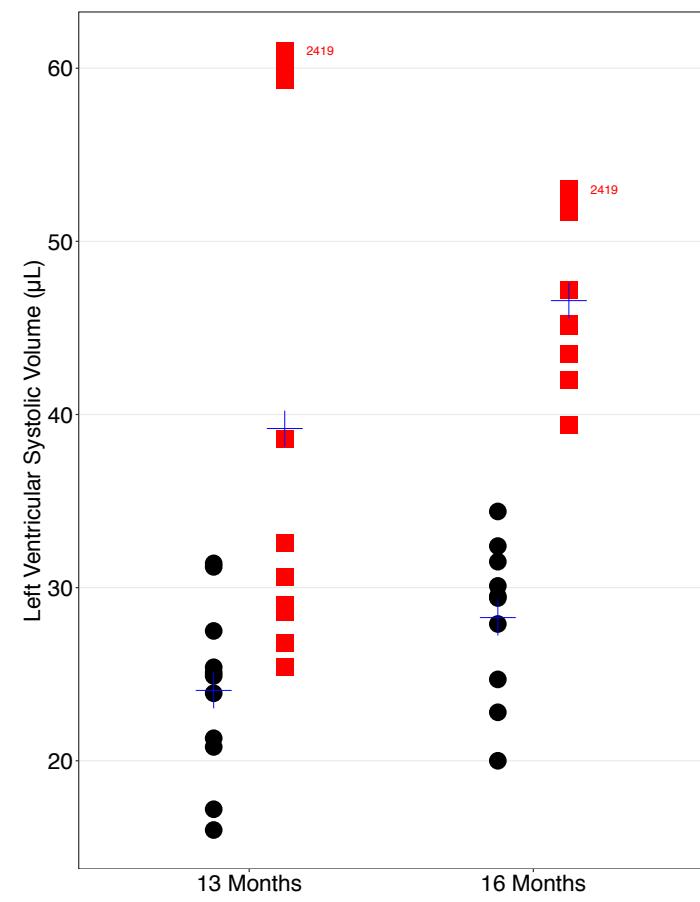
Park_Supplemental Figure 1

Supplemental Figure 2. Echocardiography measures from 11 wild type and 10 LOI mice at 13 months and for 11 wild type and 9 LOI mice at 16 months. Loss of imprinting results in independent functional and vascular phenotypes.

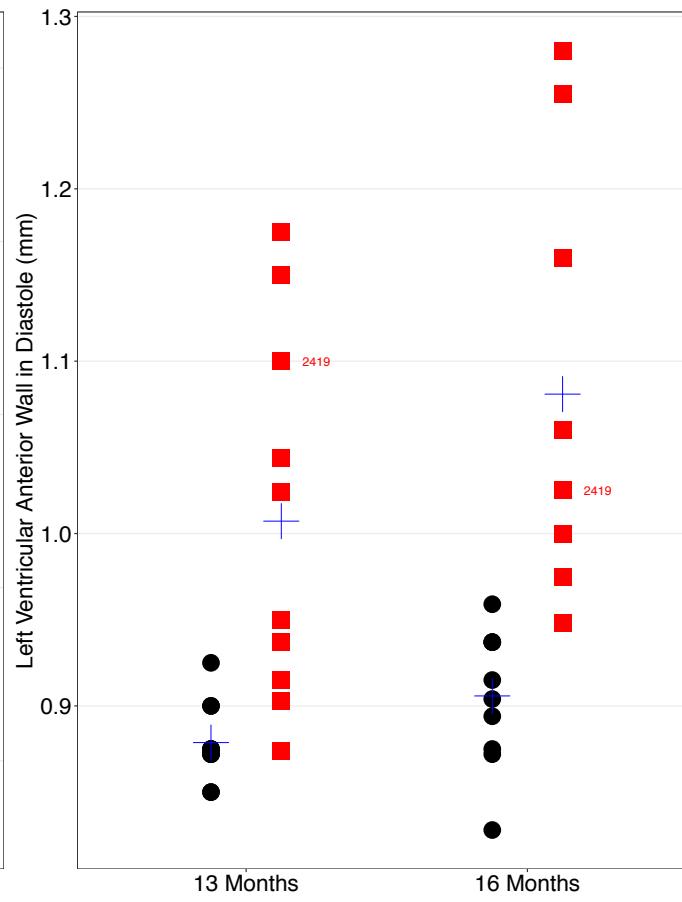
A, B, C Left ventricular phenotypes are progressive and stratify with time.

D, E, F Arterial defects, abnormal outflow and increased artery diameters, do not progress.

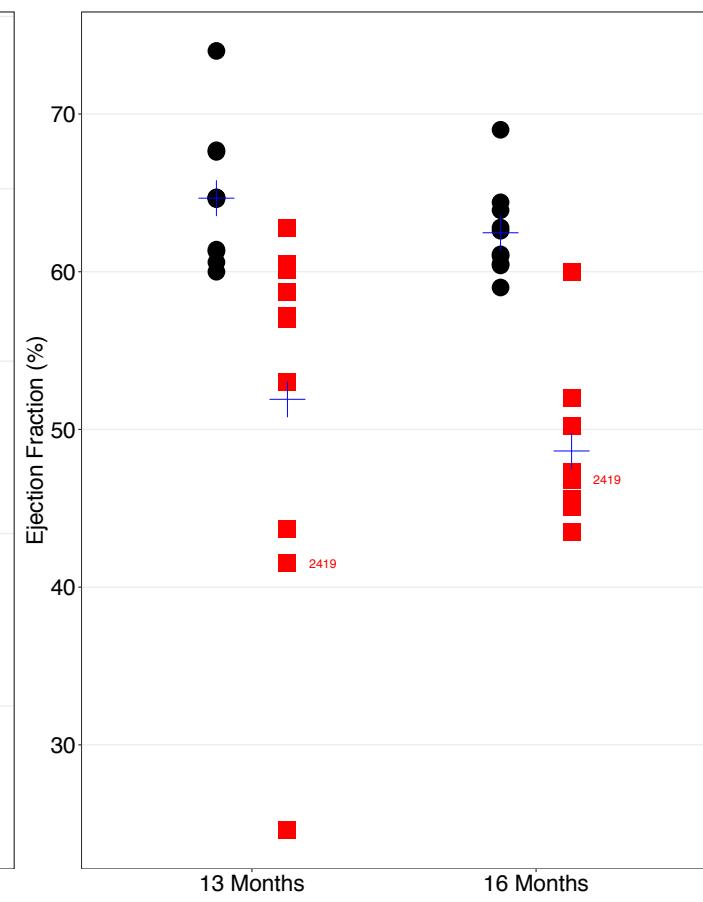
Arterial diameter phenotypes are already stratified at 13 months.


A-F Black dots represent wild type and red squares represent LOI mice. Blue crosses represent mean. One sample (mouse 2419) is labelled to show that extreme phenotypes do not correlate.

B *Igf2* levels vary by tissue. RNAs were extracted from hind limb muscle, liver, lung, whole heart, and brain from P2 neonates and quantitated as above but normalized to *Igf2* levels in hind limb muscle.

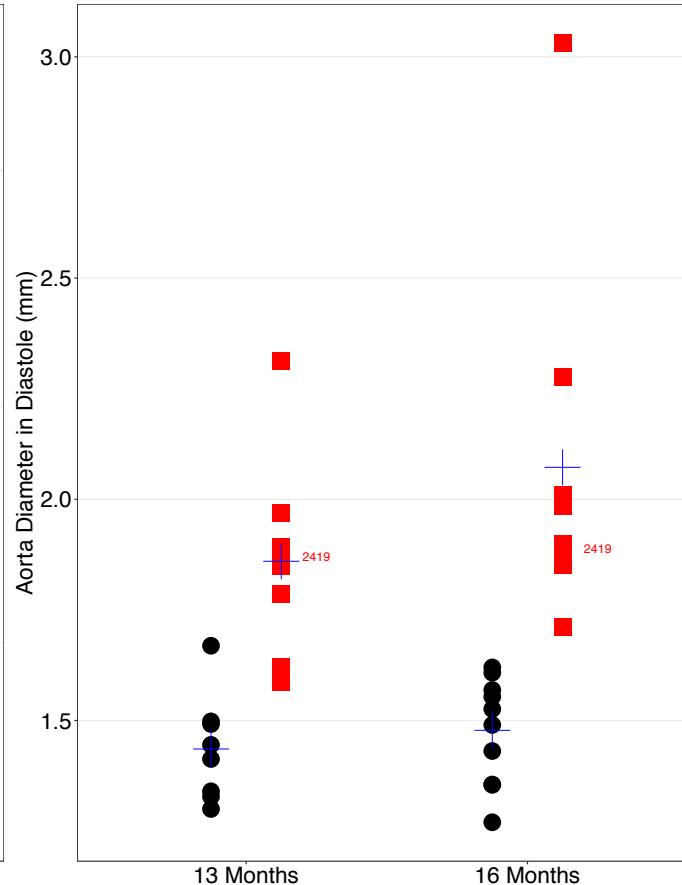

A, B Data are presented as mean \pm SEM. **, p<0.01; ***, p<0.001 (Student's t-test).

Park_Supplemental Figure 2

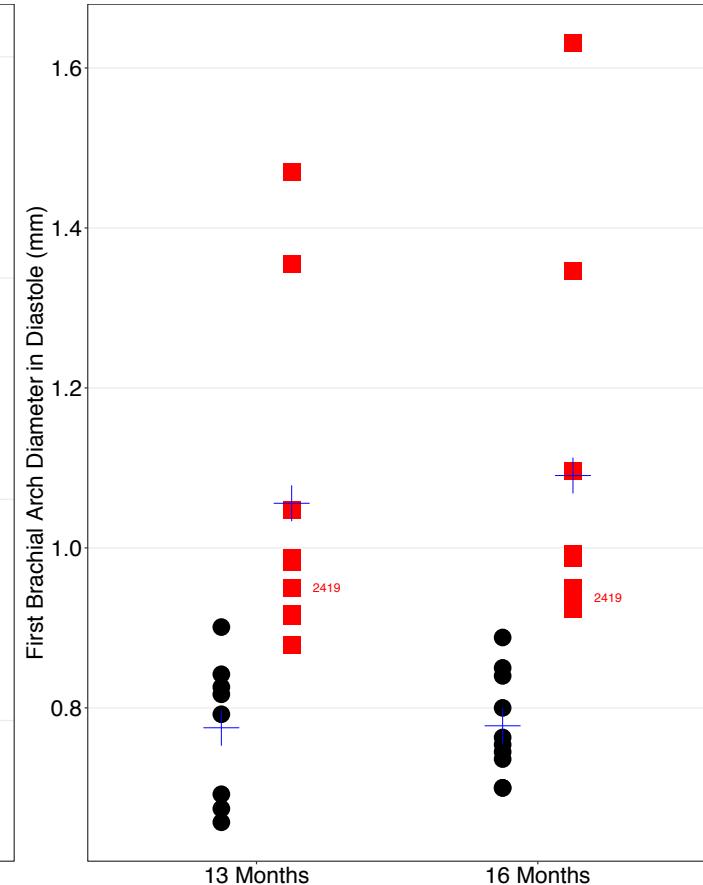

A

B

C


Genotype

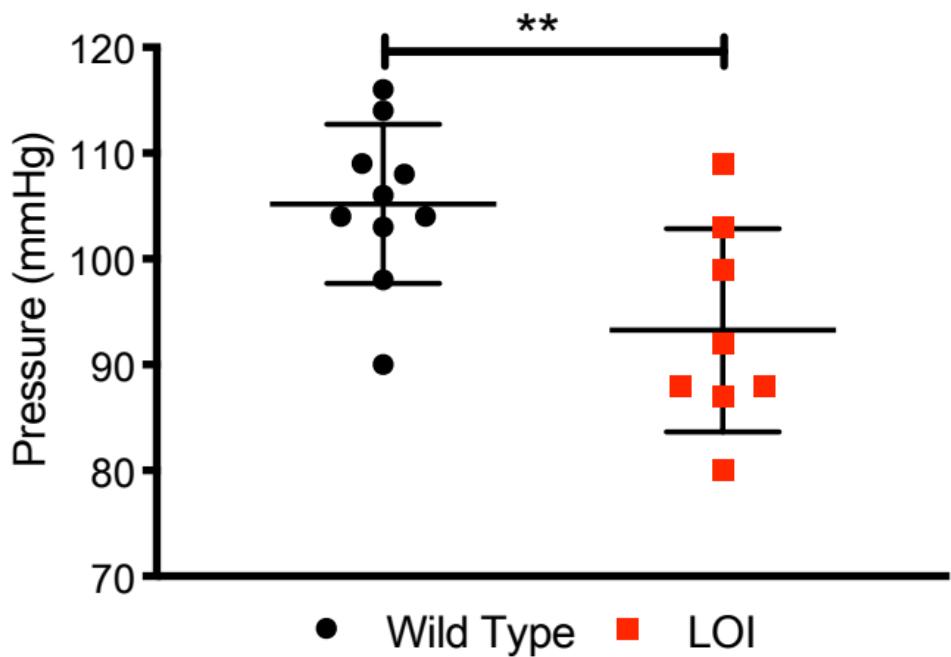
- Wild Type
- LOI


D

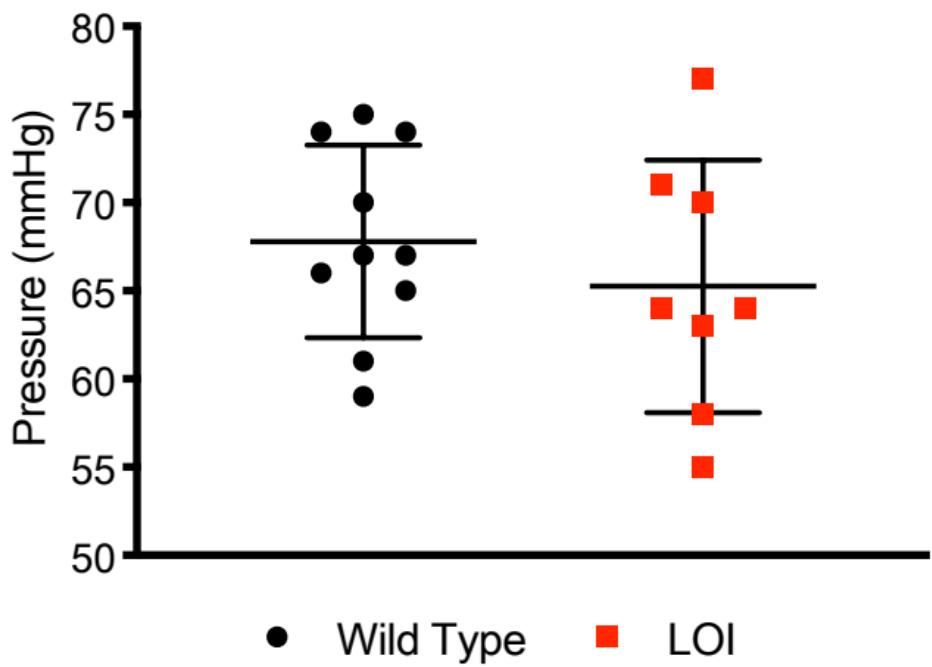
E

F

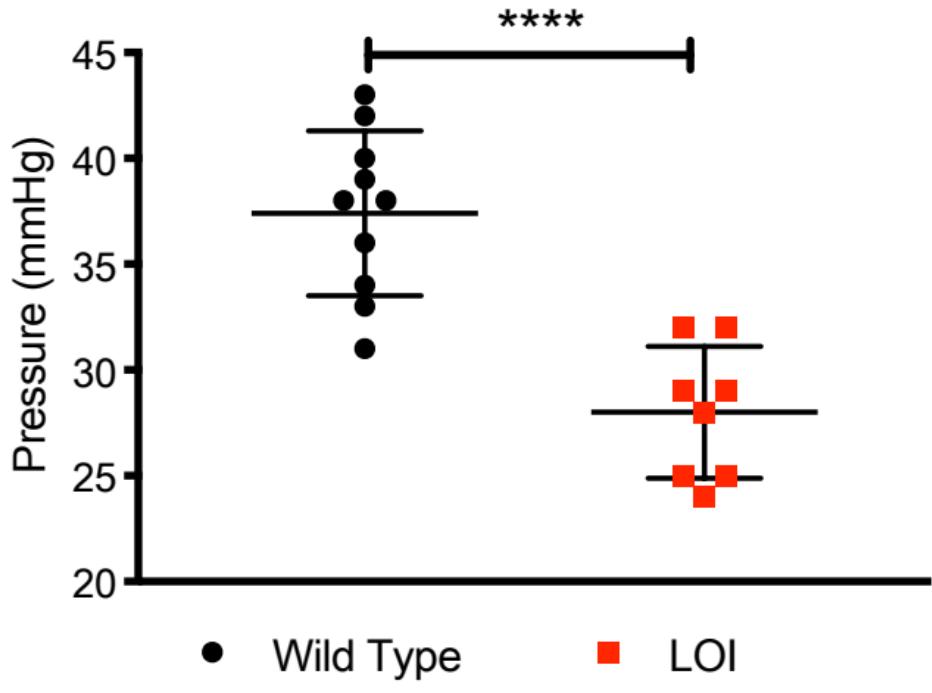
Supplemental Figure 3. Decreased systolic and pulse pressures in LOI mice.


Blood pressures from 10 wild type and 8 LOI sedated mice were measured as described in Methods. Means and standard deviation are shown as whiskers underlying the data points. Systolic and diastolic blood pressure data were analyzed by Tukey's test; pulse pressure data were analyzed using one-way ANOVA. **, $P < 0.01$; ****, $P < 0.0001$. Diastolic pressures were not significantly different.

A-F Black dots represent wild type and red squares represent LOI mice. Blue crosses represent mean. One sample (mouse 2419) is labelled to show that extreme phenotypes do not correlate.


B *Igf2* levels vary by tissue. RNAs were extracted from hind limb muscle, liver, lung, whole heart, and brain from P2 neonates and quantitated as above but normalized to *Igf2* levels in hind limb muscle.

A, B Data are presented as mean \pm SEM. **, $p < 0.01$; ***, $p < 0.001$ (Student's t-test).

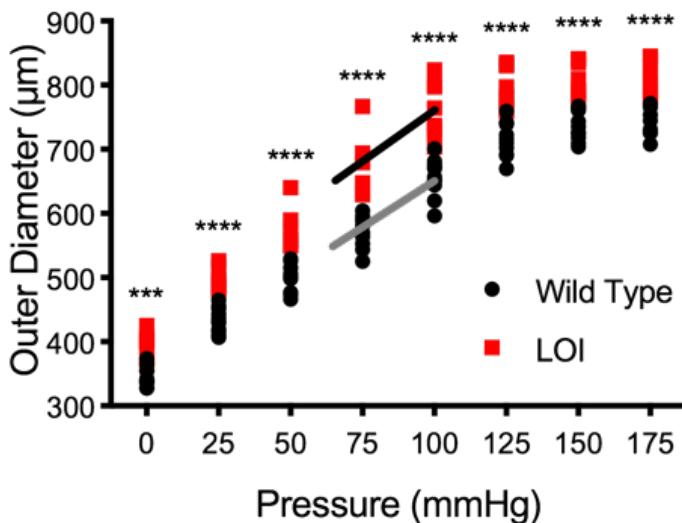

Systolic BP 1%

Diastolic BP 1%

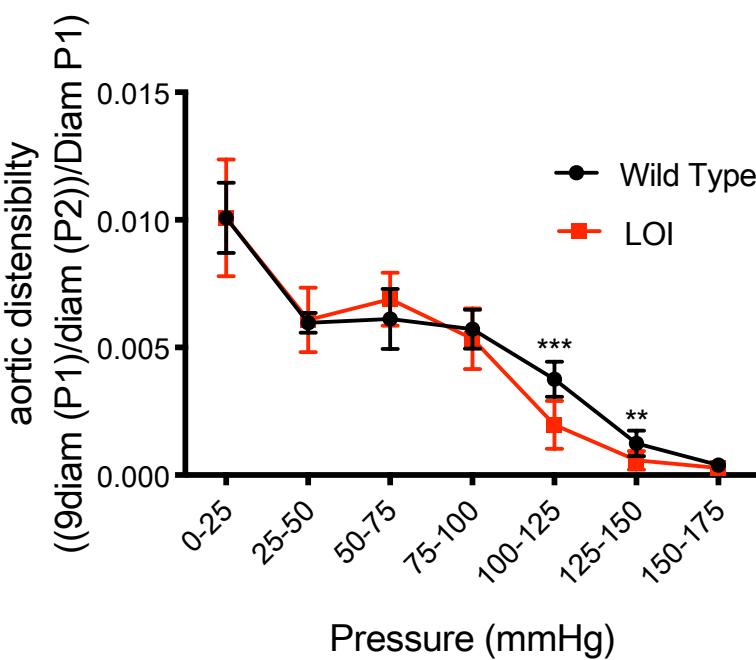
Pulse Pressure

Supplemental Figure 4. Increased vessel diameter and distensibility in carotid arteries isolated from 10 wild type and 8 LOI mice at 16-months.

A Increased diameters across a wide range of applied pressures.


B Increased segmental distensibility across physiologically relevant pressures.

A, B **, P<0.01; ***, P<0.001; ****, P<0.0001 (Two-way repeated measure ANOVA).


B *Igf2* levels vary by tissue. RNAs were extracted from hind limb muscle, liver, lung, whole heart, and brain from P2 neonates and quantitated as above but normalized to *Igf2* levels in hind limb muscle.

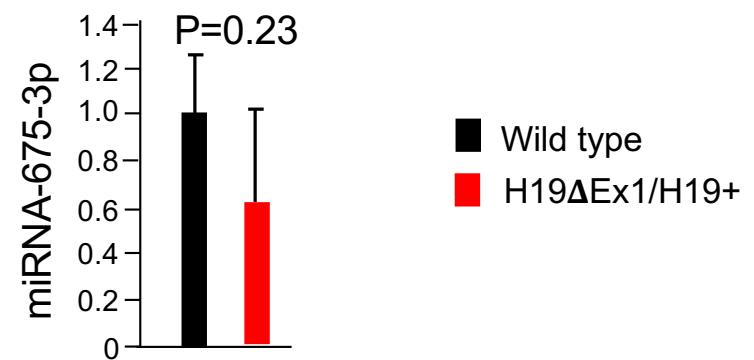
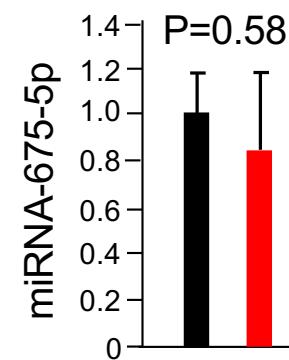
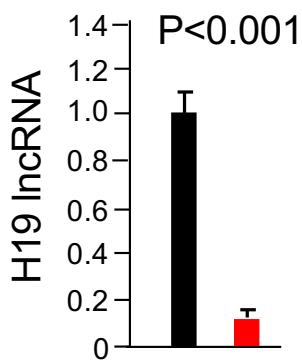
A, B Data are presented as mean \pm SEM. **, p<0.01; ***, p<0.001 (Student's t-test).

A

B

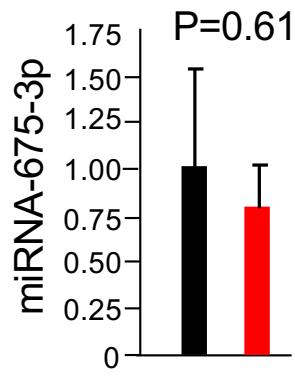
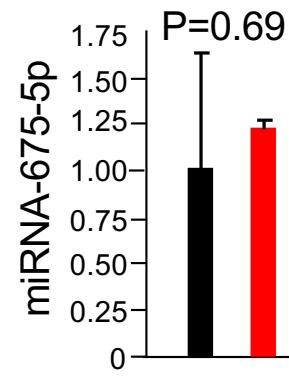
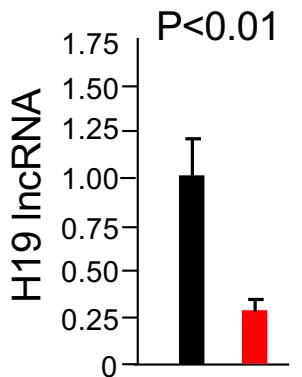
Supplemental Figure 5. The H19ΔEx1 deletion specifically reduces H19 lncRNA.

RNAs were extracted from whole hearts isolated from wild type and from $H19^{\Delta Ex1}/H19^+$ littermates at e17.5 and at 1 year of age. $H19$ lncRNA levels were normalized to GAPDH. mi675 levels were normalized to U6 miRNA. In each experiment, expression in $H19^{\Delta Ex1}/H19^+$ is normalized to the wild type littermates. Data are presented as mean \pm SEM (Student's t-test). N ≥ 3 .




B $Igf2$ levels vary by tissue. RNAs were extracted from hind limb muscle, liver, lung, whole heart, and brain from P2 neonates and quantitated as above but normalized to $Igf2$ levels in hind limb muscle.

A, B Data are presented as mean \pm SEM. **, p<0.01; ***, p<0.001 (Student's t-test).

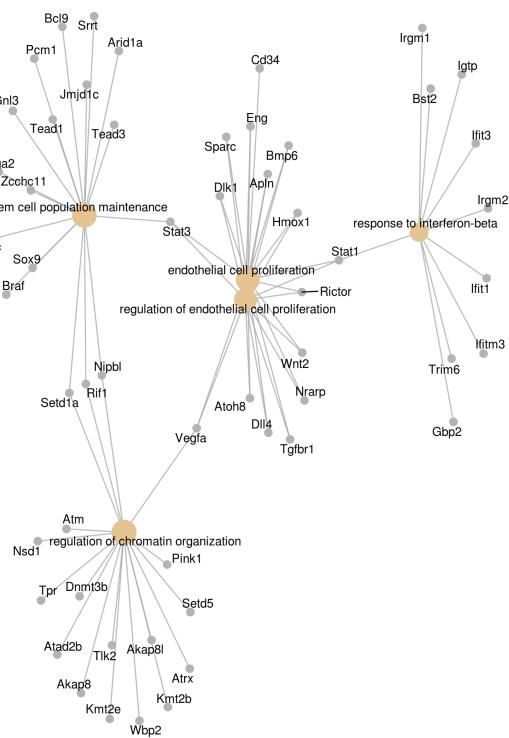
Park_Supplemental Figure 5




A

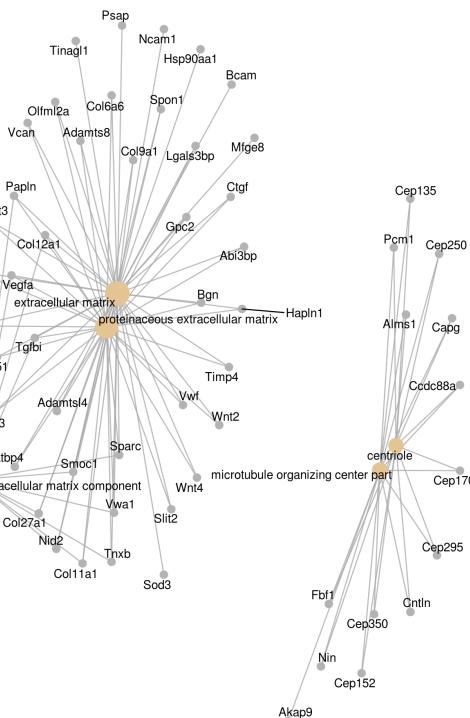
E17.5

B

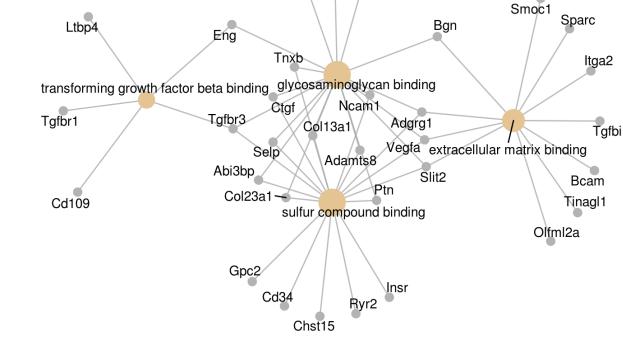
Adult



Supplemental Figure 6. Visual representation of Gene Ontology analysis for endothelial cells isolated from wild type (N = 4) and H19ΔEx1/H19+ (N = 3) P2 neonatal hearts.


RNAs were isolated and polyadenylated transcripts were quantitated. Cnetplot depicts linkages of genes and biological concepts as a network. Nodes identify complex associations of genes that contribute to a functional term within a pathway. GO: Biological Process indicates enriched mesenchymal biological markers and regulation of endothelial proliferation genes. GO: Cellular Components indicate enrichment in extracellular matrix genes. GO: Molecular function indicates enrichment in extracellular matrix and TGF-beta binding genes.

Park_Supplemental Figure 6


GO: Biological Process

GO: Cellular Components

GO: Molecular Function

	Ejection Fraction (%)	LV Volume (sys)	LVAW (dia)	LVOT mean velocity	Aorta diameter lsys)	Brachial Arch diameter (syst)
Ejection Fraction (%)	1.000	0.810	0.526	0.024	0.005	0.155
LV Volume (sys)		1.000	0.495	0.002	0.097	0.158
LVAW (dia)			1.000	0.287	0.068	0.441
LVOT mean velocity				1.000	0.430	0.623
Aorta diameter lsys)					1.000	0.680
Brachial Arch diameter (sys)						1.000

Supplemental Table 1. Correlations between echocardiography phenotypes in 13 month old mice. As displayed in Supplemental Figure 2, each mouse presents a unique array of phenotypes. Increased diameter sizes for major vessels is

Primers for qPCR		
Gene	Primers	Product size
H19	5'-GCACTAAGTCGATTGCACTGG 5'-GCCTCAAGCACACGGGCCACA	164
Igf2	5'-GAGCTTGTGACACGCTTC 5'-ACGTTGGCCTCTGAAC	129
GAPDH	5'-TCAATGAAGGGGTCGTTGAT 5'-CGTCCCGTAGACAAAATGGT	125
Sm22a	5'-GACTGCACTCTCGGCTCAT 5'-CCGAAGCTACTCTCCTCCA	100
Snail	5'-AGTGGGAGCAGGAGAATGG 5'CTTGTGTCACGACCTGT	102
Slug	5'-GATGTGCCCTCAGGTTGAT 5'-GGCTGCTCAAGGACACATT	102
Primers for genotyping		
Allele	Primers	Product size
H19+	5-AGCATCCACAAATCAGGGCA	153
H19 Δ ICR	5'-CCTACCTGCTTCTC CCAAGC	200
H19ICR flox	5'-TGATGGTGGTGTCTGCATCC	290
H19+	5'-GGGGACCCATCTGTGTCCTG	257
H19 Δ Ex1	5'-CGGAGCCACTCCAGTTAGAA 5'-AAAGGAGACATCGTCTCGGG	170
Myh6+	5'-TAGAGTCCTGGTGGGAGAGC	208
Myh6Cre	5'-CTTCGGAGGTACTGGGCTG 5'-GCATCGACCGGTAATGCAGGC	385
H19+	5'-AAAGGAGACATCGTCTCGGG	193
H19Let7	5'-TTCTGCTGGATCCATGGTC	168

Table 2. Primers used for qRT-PCR and for genotyping.

Antibody	Company	Catalog #	Dilution
ANP	Abcam	ab91250	1:1000
Myh7	Santa Cruz	sc52089	1:200
Serca2	Abcam	ab2861	1:1000
Cleaved Caspase 3	Abcam	ab9664	1:1000
Cleaved Caspase 7	Abcam	ab8438	1:1000
Cleaved Parp	Abcam	ab5625	1:1000
β-tubulin	Abcam	ab6046	1:2000
Ki-67	Abcam	ab15580	1:1000
Cyclin E1	Abcam	ab3927	1:100
Cyclin D1	Abcam	ab134175	1:1000
GAPDH	Cell Signalling	2118	1:2000
Myh6	Santa Cruz	sc168676	1:100
Phalloidin	Cell Signalling	8593	1:200
p-AKT	Cell Signalling	4060	1:1000
t-AKT	Cell Signalling	9272	1:1000
p-S6K1	Cell Signalling	9234	1:1000
t-S6K1	Cell Signalling	2708	1:1000
p-rpS6	Cell Signalling	4858	1:1000
t-rpS6	Cell Signalling	2317	1:1000
CD31	Abcam	ab28364	1:50
αSMA	Abcam	1b21027	1:100
αSMA	GeneTex	GTX25694	1:500
vWF	DAKO	A0082	1:1000
488 Goat anti-rabbit	Life Technology	A11008	1:500
488 Goat anti-mouse	Life Technology	A11001	1:500
488 Donkey anti-goat	Life Technology	A11055	1:500
<u>555 Goat anti-mouse</u>	<u>Life Technology</u>	<u>A21424</u>	<u>1:500</u>
<u>555 Donkey anti-Rabbit</u>	<u>Life Technology</u>	<u>A31572</u>	<u>1:500</u>
DAPI	Life Technology	D3571	1:1000

Supplemental Table 3. Antibodies used in this study.