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Abstract (250)

Genetic gain in breeding programs depends on the predictive skill of genotype-to-phenotype algorithms
and precision of phenotyping, both integrated with well-defined breeding objectives for a target
population of environments (TPE). The integration of physiology and genomics could improve predictive
skill by capturing additive and non-additive interaction effects of genotype (G), environment (E), and
management (M). Precision phenotyping at managed stress environments (MSESs) can elicit physiological
expression of processes that differentiate germplasm for performance in target environments, thus
enabling algorithm training. Gap analysis methodology enables design of GxM technologies for target
environments by assessing the difference between current and attainable yields within physiological
limits. Harnessing digital technologies such as crop growth model-whole genome prediction (CGM-
WGP) and gap analysis, and MSESs, can hasten genetic gain by improving predictive skill and definition
of breeding goals in the U.S. maize production TPE. A half-diallel maize experiment resulting from
crossing 9 elite maize inbreds was conducted at 17 locations in the TPE and 6 locations at MSES between
2017 and 2019. Analyses over 35 families represented by 2367 hybrids demonstrated that CGM-WGP
offered a predictive advantage (y) compared to WGP that increased with occurrence of drought as
measured by decreasing whole-season evapotranspiration (ET;
log(y) = 0.80(40.6) — 0.006(4+0.001) X ET; 2 = 0.59;df = 21).  Predictions of unobserved
physiological traits using the CGM, akin to digital phenotyping, were stable. This understanding of
germplasm response to ET enables predictive design of opportunities to close productivity gaps. We
conclude that enabling physiology through digital methods can hasten genetic gain by improving

predictive skill and defining breeding objectives bounded by physiological realities.
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Introduction

The combination of molecular technologies and digital prediction methodologies has transformed
crop improvement over the last decade (Cooper et al., 2014b; Poland, 2015; Ramirez-Villegas et al.,
2020) and increasingly enabled farmers to produce enough food, feed, fuel and fiber for society.
However, future agriculture is unlikely to balance supply and demand for food (Ray et al., 2013; Fisher et
al., 2014), even in the absence of any considerations to reduce greenhouse gas emissions (NASEM,
2019). Novel systems frameworks are required for society to accelerate genetic gain to deliver on food,
nutritional, and economic security as target environments change. Methods to effectively deal with
genotype x environment interactions (GxE), which are a major factor limiting realization of the required
increases in rate of genetic gain in all major crops (Cooper et al., 1995; Chapman et al., 2000; de la Vega
and Chapman, 2001; Cooper et al., 2014a; Mwiinga et al., 2020), have been developed (Heslot et al.
2014; Li et al., 2018; Millet et al., 2019; Monteverde et al. 2019; van Eeuwijk et al., 2019; Robert et al.
2020). However, methods to predict long-term consequences of co-selection of genotypes and optimal
agronomic management practices (M), which underpinned the historical high rates of genetic gain for
maize yield in the US corn-belt (Duvick, 2005), are only just emerging (Messina et al., 2018; Cooper et
al. 2020b). This is a super wicked problem because the information needed to train data-driven models is
only routinely available for few genotypes and creating training sets for many genotypes could be
prohibitively expensive (Fig 1). The integration of physiology-based and data-driven approaches has been
proposed as a workable solution whereby scientific understanding can effectively deal with model
underdetermination (Messina et al., 2018; Hammer et al., 2019; Messina et al., 2020b; McCormick et al.,
2020).

Crop growth models (CGM) are cognitive constructs that capture in mathematical form
physiological knowledge with various degrees of detail (Fig 2). Combining a CGM with whole-genome
prediction (CGM-WGP) is the extension of the whole-genome prediction (WGP, Meuwissen et al. 2001,
Lorenz et al. 2011; Heslot et al. 2012; Poland et al., 2012) framework to integrate plant physiology and
genomics encapsulated within crop models. This framework is unique in its conception to leverage
fundamental physiological understanding to connect genotypes and phenotypes. Previous demonstration
through simulation and empirical studies (Technow et al. 2015, Cooper et al. 2016, Messina et al. 2018),
albeit limited in scope, produced encouraging results. These examples used a maize CGM that has been
refined over decades of experimentation and contains modules to simulate yield potentials and reductions
due to intensity and timing of water stress (Hammer et al., 2009; Messina et al., 2015; Messina et al.,
2019). CGM-WGP should be seen as a physiological (Fig. 2a) and quantitative genetics integrated

framework (Cooper et al., 2020a; Fig. 2c) that could be useful for germplasm characterization and
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92  prediction, with dynamic consideration of the main and interaction effects of G, E and M on crop

93  performance.

94 In CGM-WGP, through many iterations of CGM runs housed inside of a Metropolis-Hastings-

95  within-Gibbs algorithm, the trait estimates with highest posterior probability for each genotype in a

96 training set (i.e., the set of tested genotypes used in the estimation step) are determined through sampling,

97  for a limited set of physiological traits specified by the practitioner (Messina et al. 2018). These traits

98  should express genetic variation in the target breeding populations and be highly heritable—largely

99 insensitive to the effects of environment and management. Model parameters in the photosynthesis
100  response to CO; and light (Fig. 2) are good examples of processes for which there is reasonable evidence
101  for biophysical and genetic regulation and therefore suitable targets for estimation (Leakey et al., 2006;
102  Wuetal., 2019). Yield predictions can then be generated for field tested or untested individuals, through
103  afinal set of runs of the CGM over the distribution of samples obtained in the previous step for each
104  tested or untested environment and agronomic management of interest (Fig 1). In this final prediction
105  step, marker-based estimates (e.g., Fig. 2¢) are used to calculate the appropriate value to be used for the
106  physiological trait(s) that were estimated in the training step. Any target environment for which the crop
107  growth model assumptions are appropriate can be run in the prediction step for a defined set of agronomic

108  practices.

109 Breeders conduct field trials to make inferences regarding the performance of genotypes of

110 interest in certain E and M combinations within the target population of environments (TPE; Comstock,
111 1977, Cooper and DelLacy 1994). However, even with careful experimental design, any given

112 multienvironment trial (MET) samples a relatively small and often inadequate fraction of the TPE

113 (Cooper et al., 1995; Cooper et al. 2014b; van Eeuwijk et al. 2019). That is, several testing sites that are
114  selected for their potential to represent distinct environment types in the TPE could experience highly
115  similar conditions in a given year, leaving other environment types under-represented (Cooper et al.
116  2014a). Weighting selection decisions by the frequency of occurrence of environment type was advocated
117  to overcome this problem (Podlich et al., 1999). Other approaches utilize managed stress environments
118  (MSEs) designed to emulate the timing and severity of a stressor (e.g. drought in the flowering stage of
119  development), and/or to elicit a physiological response that separates germplasm for adaptation to the
120  target environmental conditions encountered in the TPE with a high enough frequency (Cooper et al.,
121 1995; Cooper et al., 20144a,b). By generating contrasting environment types through use of MSE

122 management to discriminate germplasm, it is possible to estimate physiological trait values and marker
123 effects that give rise to the manifested norms of reactions characteristic of each genotype for the target

124  environments of the TPE.
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125 The Gap analysis methodology seeks to quantify the difference between realized crop yields and
126 what could be achieved given the availability of limiting natural resources (van Ittersum et al., 2013).

127  This methodology provides an estimate for the realization of both the genetic and environmental potential
128  atany given site and year. Cooper et al. (2020b) proposed to use this framework to design GxM

129  technologies to close productivity gaps; breeding objectives are set relative to potential and realized yields
130 in the context of both genetic and management technologies conditional to the frequency of environment
131  types encountered in the TPE. Using ANOVA, it was possible to define domains of application where the
132 opportunity for this approach to close production gaps increase with increasing environmental variability
133 and occurrence of drought stress (Cooper et al., 2020Db).

134 Applications of the CGM-WGP methodology have thus far focused for the most part on field

135  evaluations of a smaller number of populations from maize drought programs (Cooper et al. 2016;

136  Messina et al. 2018). Methodologies that span the scale of the breeding program have been mentioned to
137  be important (Cooper et al. 2016). Complementarily, gap analysis methodologies have been demonstrated
138  in long-term studies for genetic gain but have not been linked to WGP prediction (Cooper et al. 2020b).
139  We propose herein an integrated approach that links the digital tools of CGM-WGP and Gap analysis

140  with MSEs to increase the number of opportunities to realize faster rates of genetic gain in the TPE (Fig
141  1). Specific objectives of the study were, in the context of a very large breeding half-diallel GXE

142  experiment for maize, to: (1) introduce a strategy for the use of MSEs and MET data in CGM-WGP

143  training and assess CGM-WGP predictive abilities in this context, (2) to introduce the concept of in-silico
144  germplasm characterization, and (3) to connect the Gap analysis and CGM-WGP methodologies to create
145  atool through which breeders could select the best combinations of genotype and management to close

146  productivity gaps in the TPE.

147

148  Results

149  Training strategy: Simulating average performance of genotypes and environment types in MSE and MET

150 Complex systems modeling can generate mathematical artifacts. A first evaluation of the

151  underlying CGM consists of using parameters known for commercial hybrids or the maturity of the

152  breeding population to check for simulation accuracy across environment types. Baseline simulations of
153  vyield (Ys) in each environment (Table 1) approximated mean yield of the population (Y,) within 15%
154  error (Y, = 93(+£122) + 0.95(+0.08) X Y,; df = 21; r? = 0.86). Using CGM outputs such as the soil
155  water supply that depends on determinants of water balance and root exploration, and the plant demand

156  for water that depends on potential growth and vapor pressure deficit (VPD), it is possible to calculate a
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157  daily water supply/demand ratio (S/D) to characterize environmental drought status. Figure 3 shows the
158  daily S/D dynamics for each environment included in the study. Based on the intensity of the stress

159  (reduction of S/D) and the timing relative to the critical developmental period for kernel set determination
160  in maize, it was plausible to identify three water deficit (WD) environments with low S/D values around
161  flowering time at MSE sites, three well-watered (WW) environments at MSE sites, and 17 TPE

162  environments (Figure 3). The WD environments experienced a decrease in water S/D ratio around

163 flowering that was not observed in the WW and TPE environments, except for E9. Therefore, the

164  multienvironment testing in the TPE under sampled drought environments (Fig. 3b).
165
166  Training strategy: Harnessing MSE, physiological knowledge, and digital tools to train CGM-WGP

167 A procedure to make physiological knowledge revealed through CGM-WGP accessible to

168  decision makers and to inform selection decisions is proposed. Similar to forward variable selection in
169  linear regression, a scan of physiological traits is conducted and followed by the combination of these
170  until a parsimonious and physiologically plausible set of traits that minimize the prediction error is

171  identified, and a clear advantage in predictive skill is demonstrated. The selection of candidate traits is
172 informed by observed genotypic variation, as characterized by prior probability distributions. Predictive
173 skill advantage is defined as the difference between the correlation coefficients between observations and
174  predictions for CGM-WGP and WGP at each environment. From the initial scan of 12 model parameters
175  representing key physiological traits, a minimal set was identified that exhibited high correlations

176  between fitted and observed values for yield across environments (Figure 4). This minimum set was

177  comprised of number of kernel rings per ear (NRINGS; high values indicating more kernel rings and sink
178  potential), husk length (HLENGTH; high values indicating long husks), senescence response to water
179  deficit (SENS; low values indicating staygreen), and root elongation rate (RER; high values indicating
180  rapid root elongation). This four-trait CGM-WGP model exhibited correlations between model-generated
181  and observed values that were greater than or at parity with those of WGP (Figure 4); the latter is

182  representative of BayesA. The predictive skill measure clearly demonstrates that for specific population
183  and environment combinations integrating plant physiology into the prediction algorithm contributed to
184  the enhanced modeling of GXE by CGM-WGP in this large experiment.

185  Training assessment: Predictive skill advantage increased with increasing water deficit

186 Experimentation in MSEs brings the opportunity to improve phenotyping by eliciting targeted
187  physiological responses in the germplasm subject to selection. Expressed trait phenotypes resulting from

188 the differential management realized in the MSEs (Fig. 3a) enables the estimation of CGM parameters
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189 that encapsulates the mechanisms that underpin germplasm performance in the TPE, which include

190  environments with various types of water deficit (Fig. 3b). Goodness-of-fit and predictive ability

191  advantage of the four-trait CGM-WGP model relative to WGP was highest when both tested genotypes
192  and environments were included as part of the subset of data used for training the algorithms (Table 2).
193  Goodness-of-fit and predictive ability advantage decreased, similarly for any combination of untested
194  genotypes, environments and their combination. The difference in the correlation coefficients (rcom-wop —
195 rwep) varied between 0.17 and 0.19 when training the model using data from both water deficit and

196  irrigated experiments at MSEs (Table 2). Excluding water deficit data from the training data set increased
197  goodness-of-fit and predictive ability of WGP (Table 2) because of the contrasting genetic correlations
198  (rg) between irrigated and TPE (rg=0.68) and water deficit and TPE experiments (r=0.0003), and the
199  under sampling of water deficit environments in the TPE (Fig. 3a).

200 Training the model with data from all 23 environments, within-family predictive abilities were
201  also high with the four-trait CGM-WGP model and tended to be either at parity with those of WGP or
202  greater—with the latter particularly being the case in WD environments (Fig 4b). Taken together, the
203  results show that for this large MET, the predictive skill advantage of CGM-WGP over WGP increased
204  with increasing severity of water deficit (Fig. 5). Whole season total evapotranspiration was used as a
205  measure of the severity of water deficit for each environment. Analyses over 35 families and 23

206  environments demonstrated that CGM-WGP offered a predictive advantage (Y, "copm—wep — Y'wep)
207  compared to WGP that increased with decreasing evapotranspiration (ET; log(y) = 0.80(£0.6) —

208 0.006(40.001) X ET; r2 = 0.59; df = 21).

209  Training assessment: Predictive skill in CGM-WGP correlate with robustness of trait estimate

210 Two of the four estimated traits, NRINGS and SENS, were further examined for the purpose of
211  determining extent of trait stability, when varying the environment types included in the training set and
212 the number of traits being estimated simultaneously. Both of these methodological points are important in
213 the training and application of CGM-WGP and Gap methodology. When including all of the data

214  generated in the MSE environments (WW + WD) in the training set, the posterior ranges for the mean of
215  NRINGS and SENS corresponded closely to their respective prior ranges for the mean. When estimating
216 only one of these traits at a time, use of all MSE environments (WW + WD) vs. only WW environments
217  inthe training set produced similar NRINGS estimates (r=0.99) but vastly different SENS estimates

218  (r=0.26). In the opposite scenario, use of all MSE environments (WW + WD) vs. only WD environments
219  inthe training set produced similar SENS estimates (r~1.0) but vastly different NRINGS estimates

220  (r=0.49), when estimating only one of these traits at a time. A similar pattern in stability of trait estimates

221 within and across environment types was observed when estimating both NRINGS and SENS
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222 simultaneously. To examine from the perspective of number of estimated traits when including only WW
223 environments in the training set, NRINGS estimates were stable whether estimating only NRINGS or

224 both NRINGS and SENS (r=0.99). The same was found for WD environments and the stability of SENS
225  estimates, whether estimating only SENS or both NRINGS and SENS (r=0.99). When using only the TPE
226 environments as the training set, estimates of NRINGS in the 2017 vs. 2018 TPE environments were

227  moderately to highly stable (r=0.90).

228
229  Insilico germplasm characterization: relating genetic with functional diversity as determinants of yield

230 Estimated physiological traits were weakly correlated with each other in pairwise examinations
231 (Table 3) and principal component analysis (PCA) biplots (Fig. 6). NRINGS was positively correlated
232 with SENS and HLENGTH, indicating that a stronger sink was associated with higher senescence and
233 longer husks. RER was positively correlated with SENS, suggesting rapid root elongation was associated
234 with reduced staygreen, and negatively correlated with HLENGTH, suggesting rapid root elongation was
235  associated with improved synchrony of silk exertion and pollen release in WD. Yield under WW

236  conditions in both MSEs and the TPE was strongly correlated with NRINGS (Fig. 3A, Table 3), a

237  determinant of sink potential in the CGM, but not under WD. Yield under WD in MSE was strongly

238  correlated with SENS when severe stress occurred prior to flowering or grain filling, indicating a

239  limitation in source (Fig. 3A, E1 and E3, Table 3). In contrast, SENS and yield in the TPE were positively
240  correlated, suggesting that SENS captured the remobilization due to the establishment of a strong sink
241  rather than a source limitation. When WD occurred around flowering time (Fig. 3A, E2), yield under WD
242 was negatively associated with HLENGTH due to the relationship between silk elongation rate under

243 water deficit and the distance required for silk exposure to pollen (HLENGTH). Timing of water deficit in
244  the MSE around silking (Fig. 3, E2) likely exposed genetic variation in husk length affecting the timing
245  and synchrony of pollination akin to the negative relationship between anthesis-silking interval and grain
246  yield.

247 PCA biplots were used to visualize the relationship among traits with yield in four contrasting
248  populations resulting from crossing high yielding (NSS8 and NSS5) and drought tolerant parents (NSS7
249  and NSS9) in three environment types (Fig. 6). The first, second and third components explained 39.9%,
250  26.8% and 16.7% of total G+GXE variance, respectively. PCA1 discriminated hybrids for yield under
251  WW, TPE and NRINGS. PCA2 discriminated hybrids for yield under WD and SENS. PCA3

252 discriminated hybrids for RER and HLENGTH. Most hybrids from the cross NSS8/NSS5 were high
253  yielding under TPE and WW but low yielding under WD (Fig. 6a,b). Most hybrids had low scores for
254  RER and SENS, with SENS and yield under WD being negatively correlated (Fig. 6b). Crossing NSS8
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255  with drought tolerant parent NSS7 generated a population of hybrids with high scores for yield in the

256  TPE, about 50% of hybrids with high scores for yield under WD (Fig. 6¢), RER and HLENGTH, and

257  most hybrids having low scores for SENS, which translates in maintenance of a green canopy under water
258  deficit (Fig. 6d). The population NSS8/NSS9, another cross of NSS8 with a drought tolerant parent,

259  produced a high frequency of hybrids with high scores for yield in both the TPE and WD (Fig. 6e), and
260  consistently low scores of SENS (Fig. 6f). In comparing NSS8/NSS9 with the other crosses with NSS8,
261  the scores for HLENGTH were not changed relative to NSS8/NSS5 but decreased relative to NSS8/NSS7
262  (Fig. 6b,f). Hybrids resulting from crossing two drought tolerant parents (NSS9/NSS7) had consistently
263  high scores for yield under WD (Fig.6g) and RER (Fig. 6h), and low scores for SENS and HLENGTH
264  (Fig. 6h).

265 Overall, different traits contribute to germplasm adaptation to water deficit and well-watered
266  conditions in MSE and the TPE, and the germplasm sampled in this study exposed genetic variation for
267  these traits. The examples presented showed the possibility to improve yield under WD by improving
268  simultaneously at least two traits related to capture of water (RER), maintenance of the canopy (SENS)
269  and synchronous timely pollinations, in this case expressed by low HLENGTH. It appears as well that
270  improvement for yield potential via NRINGS could indeed incur benefits for yield int the TPE.

271 Adaptation and expression of GXE for yield emerge from different physiological pathways.
272

273  Integrated framework: Gap analysis and CGM-WGP methodologies can help breeders close the

274  productivity gap

275 Grain yields in the TPE and the two well-watered environments were all near the 80% quantile
276  front used to define the realistic bound for efficient production agriculture. Average evapotranspiration
277  (ET) was between 492 and 649 mm in the TPE environments, while it increased to 700-800 mm in the
278  MSE well-watered environments (Fig 7a). This sample of environments is highly biased when

279  considering the types and frequency of environments expected in the TPE (Fig. 3; Cooper et al., 2020b).
280  Deviations of the average yields relative to the 80% quantile front indicated gaps in yield productivity
281  across all environments but were more evident under low ET (Fig. 7a). Cross-over GxE interactions for
282  yield performance were observed across ET levels among the families. For example, the NSS8/NSS5
283  family had low mean yield at low ET levels (806 g m™ for ET < 480 mm) and higher mean yield at high
284  ET levels (1635 g m™) relative to other crosses between NSS8 with drought tolerant parents; yield at low
285  and high ET levels were in the range 892-978 g m™ and 1575-1607 g m, respectively (Fig 7). Under low
286  ET the yield advantage (291 g m™) of crosses with drought tolerant parents relative to NSS8/NSS5 was

287  highest in E3 (Fig. 3) when severe water deficit occurred preflowering. In contrast, because water deficit
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288  occurred around flowering time in E2 (Fig. 3), yield advantage varied among crosses: -68, 3 and 14 g m™
289  for NSS8/NSS7, NSS8/NSS9 and NSS9/NSS7, respectively. The full expression of drought tolerance
290 related to high RER scores in NSS8/NSS7 (Fig. 6d) did not occur until it was combined with a reduced
291  HLENGTH (Fig. 6h) that enabled a timely pollination (NSS9/NSS7) and with consistent low SENS

292  values (Fig 69). Note that the yield advantage for NSS9/NSS7 was greater than those of the NSS8/NSS7
293  and NSS8/NSS9 crosses (Fig. 6). This result demonstrates the opportunity to be purposeful about closing
294  productivity gaps with respect to limited natural/production resources by means of crop improvement.
295  Because hybrids were characterized genetically and physiologically, it is possible to use the predictors
296  from CGM-WGP to simulate the performance of each hybrid under different managements to identify
297  opportunities to further close the production gap (Fig 1).

298

299 Discussion

300 Here we demonstrated an integrated approach that links digital and field experimental approaches
301  using in combination CGM-WGP, Gap analysis, and MSEs to hasten genetic gain (Fig 1). Using a large
302  dataset comprising of 23 locations that exposed 2367 maize hybrids to a range of water deficit and well-
303  watered environments, we estimated that the average out-of-sample predictive skill, both genotype and
304  environment, for WGP and CGM-WGP were 0.25 and 0.42, respectively (Table 2). Here we provide

305  empirical evidence for the robustness of predictive ability of CGM-WGP with changing environments, in
306  contrast with WGP, that is consistent with results from simulation (Messina et al., 2018). Considering the
307  genomic breeder’s equation as a valid framework to quantify the value of the information and the

308  prediction approach (Voss-Fels et al., 2019), the gain in predictive skill due to the use of physiological

309  knowledge to model GXE translates into an average differential response to selection (A g—“‘j) =

iXaaX (T, _ -r
310 A (cczvgtwcp wGP)

, Where AZ—? is the average differential genetic gain per unit cycle of selection, i is

311  the standardized selection differential, o4 is the square root of the additive genetic variance in the training
312 population, and 7, are the average correlations between the predicted yields for method k and the

313  corresponding values in the TPE. A positive difference in the correlations implies a gain in skill due to
314  modeling main effects and GxE interactions. Because for the germplasm used in this study the gain in
315  predictive skill increased with increasing water deficit (Fig. 5), the gains are dependent on the frequency
316  of environment types and magnitude of GXE. Considering these and prior results (Cooper et al., 2016;

317  Messina et al., 2018) we propose that with access to a suitable CGM, linking genomics and physiology

318  should lead to (A Z—‘Z) > 0. The introduction of a method for model selection, akin to forward variable

319  selection in statistics, enables practitioners other than physiologists to apply CGM-WGP in breeding
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320  programs thus increasing the opportunities to expand the application of the method to other germplasm
321  and crops and geographies. The CGM-WGP framework enables the integration of phenomic data that will
322  contribute to overcoming limitations to translate advanced phenomics into genetic gain (Araus et al.,

323  2018). The use of MSE to generate appropriate environmental conditions to elicit physiological responses
324  is acore requirement to generate stable parameters for the selected model and the associated estimation of
325 allelic effects, and to generate environments that expose productivity gaps to inform selection decisions.
326  Over three years of experimentation (Fig 7a) most of the MET results sampled well-watered

327  environmental conditions conducive to high yields (Fig 3a,b). While these experiments are useful for

328  selection, ignoring the biased sampling of the TPE is conducive to missing opportunities to accelerate
329  genetic gain either due to underestimating G, GXE, and prediction accuracy of methods such as CGM-
330 WGP. The integration of Gap analysis with a simulation step, using allelic effects estimated for each G,
331 and E and M intensively sampled from the TPE (e.g., 10°%; Cooper et al., 2020b), enables implementation
332 of a weighted selection methodology to account for the sampling bias, as advocated by Podlich et al.

333 (1999). Current computing capabilities should be adequate to implement digital phenotyping as proposed
334 here on millions of G, E and M combinations for any crop for which only genetic information on

335 relatedness to tested genotypes information is available. Finally, the CGM-WGP approach can assist in
336  starting answering questions regarding the adaptation of any G or GXxM combination to current and/or
337  future climates and production systems, which is not possible using conventional empirical sampling

338  approaches but requires connecting genomics and physiology as demonstrated here.
339
340  Strategy for the use of MSEs and MET data in CGM-WGP training for prediction

341 This study tested the empirical application of CGM-WGP in a large maize breeding population,
342  with yield as the observed emergent property to be used in model training. The approach is generalizable
343  to the use of a combination of complex traits such as grain yield across diverse environments, moderately
344  complex traits such as leaf area, and directly measured constants for simple traits such as parameters for
345  light response curves (Fig 2). Runs of the CGM, parameterized for checks or more generally the

346 germplasm of interest, were conducted to examine baseline yield simulation and confirm the

347  reasonableness of environmental inputs. Estimation of model parameter vectors in the G, E, and M

348  scenarios of interest were key to implementation of the predictions for physiological traits segregating in
349 the breeding populations. The feasibility of identifying a minimum parsimonious set of parameters for
350  genetic modeling greatly facilitates the routine application of the approach when compared with previous
351  efforts (Cooper et al., 2016; Messina et al., 2018). The use of MSE provided critical information to

352  improve the estimation of CGM parameters, in agreement with prior results (Messina et al., 2018).
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353  Estimation of yield in METS can also help with trait parameterization and model identifiability (Technow
354  etal. 2015), which could be particularly pertinent in instances where influences of emergent properties
355  other than yield cannot be observed, e.g. the influence of enhanced rate of silk elongation and kernel set

356 inlow ET drought affected environments contained within the MET.

357 With the incorporation of WGP and a sampling component, attributes of plant growth that were
358  not measured in the field but that were influential to yield can be appropriately approximated in genotype-
359  specific fashion by integrating over time the rates of growth, development and biomass partitioning. This
360  sampling procedure can be trained on yield alone, with few additional field measurements needed for the
361 CGM-WGP to be used. The refinement of priors for physiological traits can be conducted on a small

362  subsample of individuals that are representative of the breeding population. The parameterization of

363  variation for physiological traits through CGM-WGP is contrasted with more intensive approaches in

364  which all individuals in a breeding population are directly phenotyped for the physiological traits of

365 interest (Yin et al., 2000; Reymond et al. 2003, Messina et al., 2006, Chenu et al. 2009, Messina et al.

366  2011). The CGM-WGP framework can thus be used to introduce, —following initial experimentation to
367  refine priors,—a physiological component into the analysis of field trials in one or multiple stages of

368  breeding programs (Fig. 1), where in a typical season it may only be economical and/or logistically

369 feasible to quantify yield for the majority of the tested genotypes. Further, advancements in high

370  throughput phenotyping for canopy (Rutkoski et al., 2016; Crain et al., 2017), photosynthesis (Yendrek et
371  al., 2017; Cotrozzi et al., 2020), reproductive (Gage et al., 2017; Berghoefer et al., 2020), and quality

372 (Tillman et al., 2006) traits can create opportunities for a hybrid approach between direct phenotyping at
373  the field level (Messina et al., 2011) and digital characterization of germplasm as demonstrated in the

374  present study (Fig. 6). This integration can address what was recognized as a problem of translating

375  phenomics into decisions in breeding (Araus et al., 2018). We hypothesize that such an approach can

376  increase predictive skill by reducing the underspecification of data-driven models and facilitating a deeper
377  understanding of the physiological determinants of adaptation in the germplasm, and genetic determinants
378  of physiological processes.

379

380  Evaluating CGM-WGP accuracy using a very large breeding half-diallel GXE experiment

381 The WGP approach used herein represents a reasonable benchmark for CGM-WGP, in that it
382  reflects contemporary, purely statistical methods for prediction of yield from marker effects (Meuwissen
383  etal. 2001; Lorenz et al. 2011; Voss-Fels et al. 2019) as they are applied in commercial maize breeding
384  (Cooper et al. 2014b). The results presented in this study are applied to a significantly larger set of G and

385  E scenarios for the TPE than previous studies that used MSE data for at most four populations (Cooper et
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386  al., 2016; Messina et al., 2018). For an experiment comprising 23 locations and 2367 maize hybrids,

387  representing 35 populations, we demonstrated a decrease in the accuracy difference between BayesA, a
388  widely used method, and CGM-WGP with decreasing water deficit (Fig. 5). However, in agreement with
389 previous studies (Cooper et al., 2016; Messina et al., 2018), whenever GXE was small, CGM-WGP still
390 performed at parity with linear models (Fig. 4; Table 2). Therefore, in agreement with a previous study
391 (Messina et al., 2018), it was possible to obtain a robust estimation of physiological traits with the use of
392  multiple environment types, ranging from drought to well-watered, in the training set. Together, these
393  findings suggest that CGM-WGP offers utility in incorporating signals from multiple environment types,
394  and that the difference between benchmark methods and a form of CGM-WGP (Messina et al., 2018;
395  Milletetal., 2019; van Eeuwijk et al., 2019) will increase with the increasing importance of GXE, GxM,
396  and GXExM interactions in the determination of yield.

397

398 inSilico germplasm characterization for hasten genetic gain

399 Understanding physiology at the level of individual genotypes offers utility both in germplasm
400  characterization and in making selections that maintain physiological diversity, for risk management in
401  the short, medium, and long term (Hammer et al. 2020). However, physiological experiments often focus
402  on few genotypes, due to the intensiveness of the phenotyping methods and/or the systems-level of detail
403  thatis required to build a comprehensive mechanistic understanding. Linking genomics and physiology
404  through CGM-WGP brings opportunities to generate hypotheses about the mechanisms of adaptation for
405  millions of untested individuals for which only marker information is available (Fig. 1). Here we focused
406  on four traits for estimation using the CGM-WGP model: NRINGS, HLENGTH, SENS, and RER, and
407  estimated values for 2367 hybrids at 23 locations (Fig 6). A principal component analysis showed that
408  estimated parameters using the CGM-WGP are physiologically sound, and exposed genotypic variation
409  within the germplasm (Fig 6, Table 4).

410 Because NRINGS affects the potential number of silks, it is an important trait in defining yield
411  potential (Messina et al., 2019). Results conform to the expected positive relationship between NRINGS
412  and yield when water deficit is low (Fig 3; Fig 6). Because silks must extend beyond the husk, for a given
413  elongation rate husk length can determine protandry, failure in pollination and low yields (Hall et al.,
414  1982; Messina et al. 2019) as exposed by the trait relationships depicted in PCA biplots (Fig 6).

415 HLENGTH and tightness can also determine susceptibility to ear diseases, which was not considered in
416  the model. This trait could thus be somewhat informative for differential yield performance in TPE

417  environments, and a weak positive correlation was indeed observed (Fig. 6). SENS models the response

418  of leaf area loss to water S/D, and contributes to maintenance of photosynthetic rates, grain growth and
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419  vyield under certain water deficit environments (Borrell et al., 2000; Duvick et al., 2005; Messina et al.,
420  2020a). RER can impact the timing and volume of soil water available to the plant (Hammer et al. 2009,
421  Lynch 2013). Since the introduction of the hypothesis that deep roots contribute to long-term genetic gain
422  foryield of maize in the US corn-belt, two studies (Reyes et al., 2015; Messina et al. 2020a) have shown
423 that total water extraction itself was not found to have changed over 50 years of maize breeding despite
424  substantial genetic gain for yield, such that other mechanisms of yield optimization were likely exploited
425 by breeding (Reyes et al. 2015; Messina et al., 2020a).

426 Because RER varied among populations (Table 2), water deficit was imposed during the critical
427  window for yield determination in the Woodland MSE (Fig. 3a, E2) and the depth of water extraction in
428  Woodland can occur to depths greater than 2.5 m (Table 1, Reyes et al., 2015), results from this

429  experiment allowed testing of the hypothesis that RER is correlated with yield under WD in deep soils.
430  On average, the yield difference between NSS8/NSS7 and NSS8/NSS5, which have contrasting scores for
431  vyield under WD and RER, was negative (-67 g m™) and consistent with prior results (Reyes et al., 2015).
432  However, the yield advantage due in part to high scores in RER (Fig. 6d) was not fully expressed but

433 exceptin a population (NSS9/NSS7) with low scores for HLENGTH and SENS (Fig. 6g,h). HLENGTH
434 and other traits are determinants of a timely pollination (Messina et al., 2019) contributing to reproductive
435  resilience. These results suggest the hypothesis that in the absence of limitations to root growth in the soil
436  profile (Ordoriez et al. 2018, Osborne et al. 2020, Fan et al. 2016), and considering that reproductive

437  resilience underpins long-term genetic gain (Messina et al., 2020a), the maintenance of gains in

438  reproductive resilience will hasten genetic gain for yield when combined with positive selection for RER.
439

440  On the future of Gap analysis and CGM-WGP digital methodologies

441 The CGM-WGP framework unifies the extent of physiological detail developed regarding crop
442  growth and development on a daily timescale, with the germplasm testing and selection strategies that
443  already take place within plant breeding pipelines (Technow et al. 2015, Messina et al. 2011). Here we
444  extended the system to consider the Gap between attained and potential yield for a given availability of a
445  yield limiting resource, in this case water. We demonstrated that Gap analysis was useful in examining
446  levels of yield performance in the various environments analyzed in this study, and in identifying families
447  that tended to display more or less stability in yield performance across water availability levels measured
448 by crop ET. These findings related to yield performance and stability can also be examined in light of the
449  characterizations provided by the CGM-WGP model. For example, certain combinations of parents may
450  tend to alleviate or exacerbate one or more trait vulnerabilities (e.g. for NSS8/NSS5, in the case of SENS)
451  or bolster or weaken certain strengths. Continued integration of gap analysis methodologies with CGM-

452 WGP could thus provide insight into specific targets for improvement of yield and yield stability across
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453  environmental gradients in the TPE. Considering the farming system context can provide a productive
454  next methodological step to realize crop improvement gains through changes in root systems (Thorup-
455  Kristensen and Kirkegaard, 2016; Bancic et al., 2021), which so far have been elusive in maize (Reyes et
456 al., 2015; Messina et al., 2020a).

457 Robust predictive abilities of the CGM-WGP methodology were observed both across and within
458  families (Fig. 4), and predictive abilities and physiological trait estimates were stable upon inclusion of
459  data from multiple environment types in the model training data set. The outputs of the CGM-WGP

460  framework additionally enabled germplasm characterization and gap analysis, which provided insight into
461  opportunities for further improvement of yield and yield stability through breeding and/or agronomy.

462  These findings suggest the multi-faceted utility of CGM-WGP in large breeding populations and early
463  stages of the breeding process and later stages of product placement (Fig. 1) for the continued

464  improvement—with potential increases in efficiency and genetic gain, as is enabled by predictive skill—
465  of yield and yield stability in the TPE.

466

467  Conclusion

468 Based on the results from the analyses of a very large maize dataset we conclude that the

469 integration of physiological understanding improves predictive skill for the TPE. The advantage of the
470 CGM-WGP approach increased when water deficit environments were involved and decreased with

471  decreasing water deficit, or with more generally decreasing contributions of GXE, GxM, or GXEXM to the
472  total variance. Integrated systems approaches can facilitate the application of physiological knowledge in
473 breeding via CGM-WGP. Because plants and breeding systems are evolving complex systems and yield,
474  and other phenotypes of interest are emergent phenotypes of those systems, ongoing research is needed to
475  increase relevant understanding of the physiological basis of adaptation. We have combined physiology
476  and breeding through the CGM-WGP methodology and demonstrated the emerging opportunity to

477  leverage more digital technologies for digital phenotyping for characterization and prediction of

478  germplasm, and to dedicate more resources to advance the scientific understanding of the links between

479  genomics and physiology through modeling.

480

481  Materials and Methods

482  Data

483 A maize breeding and genetics experiment was conducted by crossing nine non-stiff stalk (NSS)

484  inbred parents, denoted as NSS1, NSS2, ..., NSS9, in a half-diallel mating design. The resulting 35
485  families, each of which included about 75 doubled haploids (DHs), were crossed to a common stiff stalk

486  inbred tester resulting in 2367 hybrids in total. These hybrids were evaluated in 23 environments (herein
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487  E1 through E23) from 2017 to 2019. Six environments were from managed stress environments (MSE)
488  located at Corteva research stations in Woodland, CA and Viluco, Chile. Planting density, planting date
489  and crop husbandry followed best local practices (Table 1). Planting spacing was 0.76 m for all

490  environments. Irrigation was managed to impose water stress at different times of development including
491  flowering (E1-3; Fig. 3). Well-watered (WW) irrigated controls were included. Irrigation was applied
492  using drip tape buried at 20 cm deep (E21-23, Fig. 3; Table 1). The remaining 17 environments were in
493  the US corn belt states. Yield was measured at each location using mechanical combines and adjusted to
494 150 g kg™ grain moisture.

495 Soil data required to run simulations using the CGM were from in-field measurements. Daily
496  weather data (solar radiation, maximum and minimum temperature, and precipitation) were from nearby
497  weather stations from the National Oceanic and Atmospheric Administration (Bell et al., 2013; Table 1).
498  Environment and management parameters such as plant population (plants per square meter), and planting
499  date were also included (Table 1).

500

501  Experimental design and statistical analyses

502 The experimental design in each environment was a row-column design with diagonal checks.
503  The grain yield data were analyzed using the ASREML mixed model software (Gilmour et al. 2009) for
504  each environment with genotype as a fixed effect, row/column as random effects and AR1XARL1 residual

505 structure,

Yijk = H+Gi T 15+ C + Eijic

506

507  where y; is the yield for genotype i in row j and column k, u is the overall mean, g; is effect of

508  genotype i, 7; is the effect of row j, ¢ is the effect of column k and , €, are the residual effects. u and g;
509 are fixed effects, 7; and ¢, are assumed to be randomly normally distributed variables with mean 0 while
510 €y are assumed to be randomly normally distributed variables with mean 0 and variance matrix R =
511 d2[AR1(p,) ® AR1(p.)], representing the Kronecker product of first-order autoregressive processes
512  across rows and columns, respectively, with the spatial residual variance o2. Best linear unbiased

513  estimators (BLUES) for each genotype and for each environment were produced after adjusting for spatial
514  effects and were used for subsequent analyses. Linear regressions were conducting using R (R Core

515  Team, 2020). Principal component analyses were used to characterize physiological parameters estimated
516  for the 35 families and 2367 hybrids and yields under different environment types. Analyses were

517  conducted using the prcomp function in R package stats (R Core Team, 2020).

518

519  Genotyping
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520 Each DH was genotyped with approximately 2935 single-nucleotide polymorphism (SNP)
521  markers. Missing SNP allele calls were imputed based on parent-progeny relationship and founder allele

522  frequency.

523
524  CGM-WGP configurations
525 This research used the CGM-WGP methodology described by Messina et al. (2018). Descriptions

526  for the CGM were reported (Messina et al., 2015; Cooper et al., 2016). An algorithm was included in the
527  CGM to simulate silk elongation and response to S/D ratio. The algorithm is based on cohorting

528  floret/kernel rings in the ear, and pollination after silk emergence from tip of the husk based on pollen
529  availability (Oury et al., 2016; Turc et al., 2016; Messina et al., 2019). Briefly, the maximum number of
530  silks is determined by the number of rings per ear (NRINGS) and kernels per ring (KRINGS). Silk

531  emergence depends on the average rate of silk elongation, its response to water deficit, and the average
532  distance that the average silks needs to travel along the husk (HLENGTH). The availability of pollen at
533  any time follows a Gaussian distribution centered shortly after the time of anthesis/shedding of the main
534  culm (Uribelarrea et al. 2002). Changes with ages in silk receptivity follows Anderson et al., 2004. The
535  simulated total number of embryos determined the attainable harvest index as described in Cooper et al.
536  (2016). The maximum daily leaf senescence fraction response to water deficit is set to 0.05 and decreases
537  with increasing S/D up to zero when S/D equals 1.

538 The Bayesian hierarchical model was used to model allele effects for physiological traits as

539  described in Messina et al. (2018) with the extension to model soil properties such as depth, which is
540  estimated independently for each location but held constant for all genotypes evaluated at a given

541  location. The rationale for modeling soil factors as a variable is that for many environments sampled in a
542  plant breeding trial these model inputs are either unknown or known with under-desired precision.

543  Inaccurate environmental inputs directly impact the accuracy of crop growth model simulation and thus
544  prevent the accurate estimation of physiological traits and the genetic determinants. Allowing important
545  environmental inputs to be estimated jointly with physiological traits prevents the model from exploring
546  unrealistic physiological trait space because of biased environmental inputs. Prior distributions were from
547  Messina et al. (2018). The prior for soil depth was a truncated normal distribution with 0 m as the lower
548  bound and 2000 mm as the upper bound for each location, and variance of 25 cm. The Metropolis-

549  Hastings-within-Gibbs algorithm was used to sample all parameters, including soil depth.

550

551  Model evaluation and selection

552 Models, which herein refer to a CGM-WGP models for which different CGM parameters were

553  estimated using marker data, were evaluated for their capacity to describe and predict observed trait
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554  phenotypes. The metric to compare simulations and observations was the Pearson correlation coefficient.
555  Evaluations were conducted for the prediction of mean yield performance for all genotypes across

556 locations, for the prediction of family means across environment types (water deficit, corn belt trials/TPE,
557 irrigated), and for the prediction of hybrids across environment types. Comparisons between WGP and
558 CGM-WGP were conducted to assess advantages of using MSEs and CGM-WGP in prediction. Eight
559  cases (Table 2) stem from the prediction of family means for the observations in the corn belt (or TPE)
560  using data collected in MSEs (irrigated, and irrigated plus water deficit data): the combination of tested
561  environments and genotypes (included in the training of CGM-WGP or WGP), untested (or out-of-

562  sample; not included during the training process) environments and genotypes. Genotypes used to train
563  the model were a random sample of 250 out of the total of 2467 hybrids.

564 A trait selection scheme was designed to identify feasible sets of physiological traits that have
565  acceptable predictive skill. This method is deemed necessary both biologically and computationally.
566  Biologically, not all twelve traits are relevant in the present data set. If all environments were well-

567  watered, traits related to yield potential should be more informative whereas if all environment were
568  water-limited, traits related to drought tolerance should be more informative. In the case of sets of

569  environments comprised of contrasting water conditions, both yield potential traits and drought tolerance
570 traits should be needed to understand and model the GXE variation. Moreover, traits impacting different
571  physiological processes in the CGM may result in similar yield variation observed and thus may have
572  similar importance. Including multiple or all traits may result in model unidentifiability issues given that
573  different combinations of traits could tend to result in similar model likelihoods. The trait selection

574  scheme can be viewed as a nonlinear analog of forward variable selection in multiple linear regression.
575  Since this model evaluation procedure involved many runs of CGM-WGP, only 250 randomly chosen
576  genotypes were used in the trait selection procedure to reduce run time. This procedure starts with only
577  one trait in the model. To evaluate the fitness of each of the twelve one-trait models, by-location accuracy
578  was calculated as the correlation between the predicted yield and observed yield and compared with

579  BayesA by-location accuracy where the BayesA WGP model (Meuwissen et al. 2001) was applied

580 directly to the by-location BLUEs for yield averaged over all locations. The results can be inspected in
581  scatterplots with BayesA by-location accuracy on the x-axis and the one-trait model by-location

582  accuracies on the y-axis. Upon inspection and calculation of prediction accuracies, the most predictive
583  one-trait model is selected. Other traits are selected in an iterative manner for their potential to increase
584  the model goodness of fit. A limited number of candidate multi-trait models were evaluated, and one

585  parsimonious set was selected for the purpose of comparing CGM-WGP with BayesA results.
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586 Twelve CGM parameters coding for rates regulating physiological processes were tested as the
587  candidate traits driving the yield variation and GxE: 1) leaf appearance rate (Muchow et al. 1990; based
588  on analysis of data from Messina et al., (2011); u = 0.00275, 02 = 1.62 1078; leaf °C™), 2) thermal
589  time using base temperature O for grain fill duration (based on Gambin et al. (2006); u = 1300, o2 =
590 2603; °C), 3) radiation use efficiency (based on Messina et al. (2018); u = 1.85, ¢% = 0.16; g MJ™), 4)
591  area of the largest leaf in the canopy (based on Messina et al. (2018); 4 = 850, g2 = 650; cm?), 5)

592  number of rings per ear (NRINGS; based on analysis of data from Messina et al. (2011) assuming 16
593  kernels per ring; u = 45, o2 = 6.5), 6) slope above breakpoint describing the relative (0-1 where 1=no
594  response) transpiration response to VPD (informed by results from Choudhary et al. (2014) expressed on
595 relative scale; u = 0.5, 02 = 0.0026), 7) breakpoint of transpiration response to VPD (informed by
596  Messinaetal. (2015); u = 2, 02 = 0.065; kPa), 8) senescence coefficient (SENS) which reduces leaf
597 areain a linear manner in accordance with the water S/D (1 = 0.05, o2 = 0.0001; dimensionless), 9)
598  maximum silk elongation rate per hour (informed by results from Turc et al. (2016); u = 1.5, ¢? =

599  0.065 cm h™), 10) fraction of total soil water when silk elongation rate was reduced to 50% of maximum
600  (informed by results from Turc et al. (2016); « = 0.5, o2 = 0.01; dimensionless), 11) husk length

601  (HLENGTH; informed by Messina et al. (2019); u = 200, % = 104; mm), 12) root elongation rate
602  (RER, informed by data from Dardanelli et al. (1997), Hammer et al. (2009), Singh et al. (2010), van
603  Oosterom et al. (2016) and Orddfiez et al. (2018); u = 25, 02 = 6.5; mm d™).

604

605 Data

606  The data can be made available through https://openinnovation.corteva.com/ upon reasonable request for

607  public research purposes and project evaluation.
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613 Tables

614  Table 1. Soil properties and management practices by environment. SWHC: soil water holding capacity

Soil _ Management
properties
Environment  Depth SWHC Drainage Planting date Density  Irrigation
(m) (cm’/cm?) (pl m?)  (mm)
E1l (MSE) 15 0.10 0.8 10/31/2017 8 506
E2 (MSE) 2.0 0.15 0.5 5/22/2017 8 165
E3 (MSE) 1.0 0.10 0.8 10/11/2018 8 589
E4 (TPE) 2.0 0.10 0.5 5/8/2017 8 449
E5 (TPE) 2.0 0.16 0.5 5/9/2017 6
E6 (TPE) 2.0 0.15 0.5 4/12/2017 8
E7 (TPE) 2.0 0.16 0.6 4/22/2017 8
E8 (TPE) 2.0 0.14 0.5 4/22/2017 8
E9 (TPE) 2.0 0.14 0.5 4/21/2017 7
E10 (TPE) 2.0 0.15 0.5 4/18/2017 8
E11 (TPE) 2.0 0.14 0.5 5/17/2017 7
E12 (TPE) 2.0 0.14 0.5 5/16/2018 8
E13 (TPE) 2.0 0.14 0.6 4/25/2018 7
El4 (TPE) 2.0 0.17 0.1 4/28/2018 8
E15 (TPE) 2.0 0.14 0.5 4/25/2018 8
E16 (TPE) 2.0 0.14 0.1 4/25/2019 8
E17 (TPE) 2.0 0.14 0.5 5/5/2018 8
E18 (TPE) 2.0 0.14 0.6 4/29/2019 7
E19 (TPE) 2.0 0.15 0.3 4/21/2019 8
E20 (TPE) 2.0 0.13 0.1 5/17/2019 8
E21 (MSE) 1.5 0.10 0.8 10/30/2017 8 677
E22 (MSE) 2.0 0.15 0.5 5/2/2017 8 567
E23 (MSE) 2.0 0.15 0.5 5/9/2018 8 699
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616  Table 2. Average predictive skill of crop growth model wholegenome prediction (CGM-WGP) and
617  wholegenome prediction (WGP) for cases resulting from the combination of: tested (T) and untested (U;

618  not included in the training of the model) genotypes and tested and untested environments

Well-watered data Well-watered & water deficit data

CGM-WGP WGP CGM-WGP WGP
Environment  Genotype Genotype Genotype Genotype

T U T U T U T U
T 0.79 0.61 0.72 0.61 0.80 0.58 0.49 0.42
U 0.42 0.42 0.41 0.41 0.43 0.42 0.24 0.25
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Table 3. Genetic variance (upper triangle) and Pearson correlation coefficients (lower grid; all pairwise

combinations) for estimated physiological traits number of rings per ear (NRINGS), leaf senescence
response to water deficit (SENS), root elongation rate (RER) and length of husk (HLENGTH), and yield

under water deficit, well-watered conditions, and in the multienvironment trial (MET) conducted in the

target population of environments (TPE)

NRINGS SENS RER HLENGTH

NRINGS 10.6 0.24 0.10 0.28
SENS 5.1x10° 0.32 -0.07
RER 0.25 -0.27
HLENGTH 56.6
Yield water deficit  Chile -0.05 -0.80 -0.07 0.06

USA -0.02 -0.05 0.04 -0.66
Yield well-watered USA & Chile 0.72 -0.07 -0.03 0.11
Yield MET USA TPE 0.96 0.20 0.03 0.35

22


https://doi.org/10.1101/2021.02.23.432477
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.23.432477; this version posted February 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

626  Figure captions

627  Fig 1. Diagram of order of magnitude for hybrids advancing through product development along with
628  processes to improve breeding efficiencies, Gap analyses and crop growth model — whole-genome

629  prediction (CGM-WGP).

630

631  Figure 2. Diagram of a crop growth model (A), leaf emergence and light interception diagrams (B), and
632  genotype->phenotype connection through an example mapping maximum photosynthesis (Pmax), canopy
633  photosynthesis (Pcan) and radiation use efficiency (RUE). Genotype marker (z) and effects (u) at genome
634  positions (i), QE: quantum efficiency, LAI: Leaf Area Index, I: Light Interception.

635

636  Figure 3. Daily sequences of water supply to demand ratio (S/D, 1=no stress) centered at flowering by
637  environment (E1-E23). Dashed lines indicate flowering. Because S/D was equal to 1 throughout the
638  season E6, 11, 12, 15, 18, 19, 20 were grouped together. Environment types shown in thermal time

639  centered at flowering time (adapted from Cooper et al.,2014b; B). Corn belt testing locations shown in
640  panel C.

641

642  Figure 4. Across family (A) and within family (B) prediction accuracies estimated by the Pearson

643  correlation coefficient (r) for whole-genome prediction (WGP) and crop growth model — whole-genome
644  prediction (CGM-WGP) by environment type; water deficit (WD), Target Population of Environments
645  (TPE), and well-watered (WW).

646

647  Figure 5. Predictive skill difference in an across-family context estimated by the difference in Pearson
648  correlation coefficients (r, observed vs. predicted yield) for each of crop growth model — whole-genome
649  prediction (CGM-WGP) and whole-genome prediction (WGP) methodologies (i.e., rcem-wep — F'wep) as a
650  function of evapotranspiration. Each point represents the mean difference in prediction accuracy for
651  across families in a single environment. All environments were included for training and prediction

652

653  Figure 6. Biplots for principal components (PC) 1, 2 and 3. All hybrids included in the study are

654  represented by grey dots. Selected crosses shown as red dots and visualized in different panels. Vectors
655  are for yield under well-watered conditions, water deficit at flowering time (WD), and in the target

656  population of environments (TPE), and for estimated physiological traits: number of rings per ear

657  (NRINGS), leaf senescence response to water deficit (SENS; negative values indicate staygreen), root
658  elongation rate (RER) and length of husk (HLENGTH).

659
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660  Figure 7. Gap analyses relative to the 80th percentile yield front demonstrated for the average yields
661  across families at each environment (A, Cooper et al., 2020b), and for four contrasting crosses along an
662  evapotranspiration gradient: NSS8/NSS7 (B), NSS8/NSS9 (C), NSS9/NSS7 (D), and NSS8/NSS5 (B-D;
663  open symbol).
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Figure 2. Diagram of a crop growth model (A), leaf
emergence and light interception diagrams (B), and
genotype—>phenotype connection through an example
mapping maximum photosynthesis (Pmax), canopy
photosynthesis (Pcan) and radiation use efficiency
(RUE). Genotype marker (z) and effects (u) at genome
positions (i), OF: quantum efficiency, LAI: Leaf Area
Index, 1: Light Interception.
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Figure 3. Daily sequences of water supply to demand ratio (S/D, 1=no stress) centered at flowering by
environment (E1-E23). Dashed lines indicate flowering. Because S/D was equal to 1 throughout the
season E6, 11, 12, 15, 18, 19, 20 were grouped together. Environment types shown in thermal time
centered at flowering time (adapted from Cooper et al.,2014b; B). Corn belt testing locations shown in
panel C.
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Figure 4. Across family (A) and within family (B)
prediction accuracies estimated by the Pearson
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(WGP) and crop growth model — whole-genome
prediction (CGM-WGP) by environment type; water
deficit (WD), Target Population of Environments
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Figure 7. Gap analyses relative to the 80th percentile
yield front demonstrated for the average yields across
families at each environment (A, Cooper et al., 2020),
and for four contrasting crosses along an
evapotranspiration gradient: NSS8/NSS7 (B),
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