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Abstract (250) 37 
 38 
Genetic gain in breeding programs depends on the predictive skill of genotype-to-phenotype algorithms 39 

and precision of phenotyping, both integrated with well-defined breeding objectives for a target 40 

population of environments (TPE). The integration of physiology and genomics could improve predictive 41 

skill by capturing additive and non-additive interaction effects of genotype (G), environment (E), and 42 

management (M). Precision phenotyping at managed stress environments (MSEs) can elicit physiological 43 

expression of processes that differentiate germplasm for performance in target environments, thus 44 

enabling algorithm training. Gap analysis methodology enables design of GxM technologies for target 45 

environments by assessing the difference between current and attainable yields within physiological 46 

limits. Harnessing digital technologies such as crop growth model-whole genome prediction (CGM-47 

WGP) and gap analysis, and MSEs, can hasten genetic gain by improving predictive skill and definition 48 

of breeding goals in the U.S. maize production TPE. A half-diallel maize experiment resulting from 49 

crossing 9 elite maize inbreds was conducted at 17 locations in the TPE and 6 locations at MSEs between 50 

2017 and 2019. Analyses over 35 families represented by 2367 hybrids demonstrated that CGM-WGP 51 

offered a predictive advantage (𝑦) compared to WGP that increased with occurrence of drought as 52 

measured by decreasing whole-season evapotranspiration (ET; 53 

log(𝑦) = 0.80(±0.6) − 0.006(±0.001) × 𝐸𝑇; 𝑟2 = 0.59; 𝑑𝑓 = 21). Predictions of unobserved 54 

physiological traits using the CGM, akin to digital phenotyping, were stable. This understanding of 55 

germplasm response to ET enables predictive design of opportunities to close productivity gaps. We 56 

conclude that enabling physiology through digital methods can hasten genetic gain by improving 57 

predictive skill and defining breeding objectives bounded by physiological realities.  58 
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Introduction  59 

The combination of molecular technologies and digital prediction methodologies has transformed 60 

crop improvement over the last decade (Cooper et al., 2014b; Poland, 2015; Ramirez-Villegas et al., 61 

2020) and increasingly enabled farmers to produce enough food, feed, fuel and fiber for society. 62 

However, future agriculture is unlikely to balance supply and demand for food (Ray et al., 2013; Fisher et 63 

al., 2014), even in the absence of any considerations to reduce greenhouse gas emissions (NASEM, 64 

2019). Novel systems frameworks are required for society to accelerate genetic gain to deliver on food, 65 

nutritional, and economic security as target environments change. Methods to effectively deal with 66 

genotype x environment interactions (GxE), which are a major factor limiting realization of the required 67 

increases in rate of genetic gain in all major crops (Cooper et al., 1995; Chapman et al., 2000; de la Vega 68 

and Chapman, 2001; Cooper et al., 2014a; Mwiinga et al., 2020), have been developed (Heslot et al. 69 

2014; Li et al., 2018; Millet et al., 2019; Monteverde et al. 2019; van Eeuwijk et al., 2019; Robert et al. 70 

2020). However, methods to predict long-term consequences of co-selection of genotypes and optimal 71 

agronomic management practices (M), which underpinned the historical high rates of genetic gain for 72 

maize yield in the US corn-belt (Duvick, 2005), are only just emerging (Messina et al., 2018; Cooper et 73 

al. 2020b). This is a super wicked problem because the information needed to train data-driven models is 74 

only routinely available for few genotypes and creating training sets for many genotypes could be 75 

prohibitively expensive (Fig 1). The integration of physiology-based and data-driven approaches has been 76 

proposed as a workable solution whereby scientific understanding can effectively deal with model 77 

underdetermination (Messina et al., 2018; Hammer et al., 2019; Messina et al., 2020b; McCormick et al., 78 

2020).  79 

Crop growth models (CGM) are cognitive constructs that capture in mathematical form 80 

physiological knowledge with various degrees of detail (Fig 2). Combining a CGM with whole-genome 81 

prediction (CGM-WGP) is the extension of the whole-genome prediction (WGP, Meuwissen et al. 2001; 82 

Lorenz et al. 2011; Heslot et al. 2012; Poland et al., 2012) framework to integrate plant physiology and 83 

genomics encapsulated within crop models. This framework is unique in its conception to leverage 84 

fundamental physiological understanding to connect genotypes and phenotypes. Previous demonstration 85 

through simulation and empirical studies (Technow et al. 2015, Cooper et al. 2016, Messina et al. 2018), 86 

albeit limited in scope, produced encouraging results. These examples used a maize CGM that has been 87 

refined over decades of experimentation and contains modules to simulate yield potentials and reductions 88 

due to intensity and timing of water stress (Hammer et al., 2009; Messina et al., 2015; Messina et al., 89 

2019). CGM-WGP should be seen as a physiological (Fig. 2a) and quantitative genetics integrated 90 

framework (Cooper et al., 2020a; Fig. 2c) that could be useful for germplasm characterization and 91 
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prediction, with dynamic consideration of the main and interaction effects of G, E and M on crop 92 

performance. 93 

In CGM-WGP, through many iterations of CGM runs housed inside of a Metropolis-Hastings-94 

within-Gibbs algorithm, the trait estimates with highest posterior probability for each genotype in a 95 

training set (i.e., the set of tested genotypes used in the estimation step) are determined through sampling, 96 

for a limited set of physiological traits specified by the practitioner (Messina et al. 2018). These traits 97 

should express genetic variation in the target breeding populations and be highly heritable—largely 98 

insensitive to the effects of environment and management. Model parameters in the photosynthesis 99 

response to CO2 and light (Fig. 2) are good examples of processes for which there is reasonable evidence 100 

for biophysical and genetic regulation and therefore suitable targets for estimation (Leakey et al., 2006; 101 

Wu et al., 2019). Yield predictions can then be generated for field tested or untested individuals, through 102 

a final set of runs of the CGM over the distribution of samples obtained in the previous step for each 103 

tested or untested environment and agronomic management of interest (Fig 1). In this final prediction 104 

step, marker-based estimates (e.g., Fig. 2c) are used to calculate the appropriate value to be used for the 105 

physiological trait(s) that were estimated in the training step. Any target environment for which the crop 106 

growth model assumptions are appropriate can be run in the prediction step for a defined set of agronomic 107 

practices. 108 

Breeders conduct field trials to make inferences regarding the performance of genotypes of 109 

interest in certain E and M combinations within the target population of environments (TPE; Comstock, 110 

1977, Cooper and DeLacy 1994). However, even with careful experimental design, any given 111 

multienvironment trial (MET) samples a relatively small and often inadequate fraction of the TPE 112 

(Cooper et al., 1995; Cooper et al. 2014b; van Eeuwijk et al. 2019). That is, several testing sites that are 113 

selected for their potential to represent distinct environment types in the TPE could experience highly 114 

similar conditions in a given year, leaving other environment types under-represented (Cooper et al. 115 

2014a). Weighting selection decisions by the frequency of occurrence of environment type was advocated 116 

to overcome this problem (Podlich et al., 1999). Other approaches utilize managed stress environments 117 

(MSEs) designed to emulate the timing and severity of a stressor (e.g. drought in the flowering stage of 118 

development), and/or to elicit a physiological response that separates germplasm for adaptation to the 119 

target environmental conditions encountered in the TPE with a high enough frequency (Cooper et al., 120 

1995; Cooper et al., 2014a,b). By generating contrasting environment types through use of MSE 121 

management to discriminate germplasm, it is possible to estimate physiological trait values and marker 122 

effects that give rise to the manifested norms of reactions characteristic of each genotype for the target 123 

environments of the TPE. 124 
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The Gap analysis methodology seeks to quantify the difference between realized crop yields and 125 

what could be achieved given the availability of limiting natural resources (van Ittersum et al., 2013). 126 

This methodology provides an estimate for the realization of both the genetic and environmental potential 127 

at any given site and year. Cooper et al. (2020b) proposed to use this framework to design GxM 128 

technologies to close productivity gaps; breeding objectives are set relative to potential and realized yields 129 

in the context of both genetic and management technologies conditional to the frequency of environment 130 

types encountered in the TPE. Using ANOVA, it was possible to define domains of application where the 131 

opportunity for this approach to close production gaps increase with increasing environmental variability 132 

and occurrence of drought stress (Cooper et al., 2020b).  133 

Applications of the CGM-WGP methodology have thus far focused for the most part on field 134 

evaluations of a smaller number of populations from maize drought programs (Cooper et al. 2016; 135 

Messina et al. 2018). Methodologies that span the scale of the breeding program have been mentioned to 136 

be important (Cooper et al. 2016). Complementarily, gap analysis methodologies have been demonstrated 137 

in long-term studies for genetic gain but have not been linked to WGP prediction (Cooper et al. 2020b). 138 

We propose herein an integrated approach that links the digital tools of CGM-WGP and Gap analysis 139 

with MSEs to increase the number of opportunities to realize faster rates of genetic gain in the TPE (Fig 140 

1). Specific objectives of the study were, in the context of a very large breeding half-diallel GxE 141 

experiment for maize, to: (1) introduce a strategy for the use of MSEs and MET data in CGM-WGP 142 

training and assess CGM-WGP predictive abilities in this context, (2) to introduce the concept of in-silico 143 

germplasm characterization, and (3) to connect the Gap analysis and CGM-WGP methodologies to create 144 

a tool through which breeders could select the best combinations of genotype and management to close 145 

productivity gaps in the TPE. 146 

 147 

Results 148 

Training strategy: Simulating average performance of genotypes and environment types in MSE and MET  149 

Complex systems modeling can generate mathematical artifacts. A first evaluation of the 150 

underlying CGM consists of using parameters known for commercial hybrids or the maturity of the 151 

breeding population to check for simulation accuracy across environment types. Baseline simulations of 152 

yield (Ys) in each environment (Table 1) approximated mean yield of the population (Yo) within 15% 153 

error (𝑌𝑜 = 93(±122) + 0.95(±0.08) × 𝑌𝑠; 𝑑𝑓 = 21; 𝑟2 = 0.86). Using CGM outputs such as the soil 154 

water supply that depends on determinants of water balance and root exploration, and the plant demand 155 

for water that depends on potential growth and vapor pressure deficit (VPD), it is possible to calculate a 156 
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daily water supply/demand ratio (S/D) to characterize environmental drought status. Figure 3 shows the 157 

daily S/D dynamics for each environment included in the study. Based on the intensity of the stress 158 

(reduction of S/D) and the timing relative to the critical developmental period for kernel set determination 159 

in maize, it was plausible to identify three water deficit (WD) environments with low S/D values around 160 

flowering time at MSE sites, three well-watered (WW) environments at MSE sites, and 17 TPE 161 

environments (Figure 3). The WD environments experienced a decrease in water S/D ratio around 162 

flowering that was not observed in the WW and TPE environments, except for E9. Therefore, the 163 

multienvironment testing in the TPE under sampled drought environments (Fig. 3b). 164 

   165 

Training strategy: Harnessing MSE, physiological knowledge, and digital tools to train CGM-WGP 166 

A procedure to make physiological knowledge revealed through CGM-WGP accessible to 167 

decision makers and to inform selection decisions is proposed. Similar to forward variable selection in 168 

linear regression, a scan of physiological traits is conducted and followed by the combination of these 169 

until a parsimonious and physiologically plausible set of traits that minimize the prediction error is 170 

identified, and a clear advantage in predictive skill is demonstrated. The selection of candidate traits is 171 

informed by observed genotypic variation, as characterized by prior probability distributions. Predictive 172 

skill advantage is defined as the difference between the correlation coefficients between observations and 173 

predictions for CGM-WGP and WGP at each environment. From the initial scan of 12 model parameters 174 

representing key physiological traits, a minimal set was identified that exhibited high correlations 175 

between fitted and observed values for yield across environments (Figure 4). This minimum set was 176 

comprised of number of kernel rings per ear (NRINGS; high values indicating more kernel rings and sink 177 

potential), husk length (HLENGTH; high values indicating long husks), senescence response to water 178 

deficit (SENS; low values indicating staygreen), and root elongation rate (RER; high values indicating 179 

rapid root elongation). This four-trait CGM-WGP model exhibited correlations between model-generated 180 

and observed values that were greater than or at parity with those of WGP (Figure 4); the latter is 181 

representative of BayesA. The predictive skill measure clearly demonstrates that for specific population 182 

and environment combinations integrating plant physiology into the prediction algorithm contributed to 183 

the enhanced modeling of GxE by CGM-WGP in this large experiment. 184 

Training assessment: Predictive skill advantage increased with increasing water deficit 185 

Experimentation in MSEs brings the opportunity to improve phenotyping by eliciting targeted 186 

physiological responses in the germplasm subject to selection. Expressed trait phenotypes resulting from 187 

the differential management realized in the MSEs (Fig. 3a) enables the estimation of CGM parameters 188 
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that encapsulates the mechanisms that underpin germplasm performance in the TPE, which include 189 

environments with various types of water deficit (Fig. 3b). Goodness-of-fit and predictive ability 190 

advantage of the four-trait CGM-WGP model relative to WGP was highest when both tested genotypes 191 

and environments were included as part of the subset of data used for training the algorithms (Table 2). 192 

Goodness-of-fit and predictive ability advantage decreased, similarly for any combination of untested 193 

genotypes, environments and their combination. The difference in the correlation coefficients (rCGM-WGP – 194 

rWGP) varied between 0.17 and 0.19 when training the model using data from both water deficit and 195 

irrigated experiments at MSEs (Table 2). Excluding water deficit data from the training data set increased 196 

goodness-of-fit and predictive ability of WGP (Table 2) because of the contrasting genetic correlations 197 

(rG) between irrigated and TPE (rG=0.68) and water deficit and TPE experiments (rG=0.0003), and the 198 

under sampling of water deficit environments in the TPE (Fig. 3a).  199 

Training the model with data from all 23 environments, within-family predictive abilities were 200 

also high with the four-trait CGM-WGP model and tended to be either at parity with those of WGP or 201 

greater—with the latter particularly being the case in WD environments (Fig 4b). Taken together, the 202 

results show that for this large MET, the predictive skill advantage of CGM-WGP over WGP increased 203 

with increasing severity of water deficit (Fig. 5). Whole season total evapotranspiration was used as a 204 

measure of the severity of water deficit for each environment. Analyses over 35 families and 23 205 

environments demonstrated that CGM-WGP offered a predictive advantage (y, 𝑟𝐶𝐺𝑀−𝑊𝐺𝑃 − 𝑟𝑊𝐺𝑃) 206 

compared to WGP that increased with decreasing evapotranspiration (ET; log(𝑦) = 0.80(±0.6) −207 

0.006(±0.001) × 𝐸𝑇; 𝑟2 = 0.59; 𝑑𝑓 = 21). 208 

Training assessment: Predictive skill in CGM-WGP correlate with robustness of trait estimate 209 

Two of the four estimated traits, NRINGS and SENS, were further examined for the purpose of 210 

determining extent of trait stability, when varying the environment types included in the training set and 211 

the number of traits being estimated simultaneously. Both of these methodological points are important in 212 

the training and application of CGM-WGP and Gap methodology. When including all of the data 213 

generated in the MSE environments (WW + WD) in the training set, the posterior ranges for the mean of 214 

NRINGS and SENS corresponded closely to their respective prior ranges for the mean. When estimating 215 

only one of these traits at a time, use of all MSE environments (WW + WD) vs. only WW environments 216 

in the training set produced similar NRINGS estimates (r=0.99) but vastly different SENS estimates 217 

(r=0.26). In the opposite scenario, use of all MSE environments (WW + WD) vs. only WD environments 218 

in the training set produced similar SENS estimates (r~1.0) but vastly different NRINGS estimates 219 

(r=0.49), when estimating only one of these traits at a time. A similar pattern in stability of trait estimates 220 

within and across environment types was observed when estimating both NRINGS and SENS 221 
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simultaneously. To examine from the perspective of number of estimated traits when including only WW 222 

environments in the training set, NRINGS estimates were stable whether estimating only NRINGS or 223 

both NRINGS and SENS (r=0.99). The same was found for WD environments and the stability of SENS 224 

estimates, whether estimating only SENS or both NRINGS and SENS (r=0.99). When using only the TPE 225 

environments as the training set, estimates of NRINGS in the 2017 vs. 2018 TPE environments were 226 

moderately to highly stable (r=0.90). 227 

 228 

In silico germplasm characterization: relating genetic with functional diversity as determinants of yield 229 

Estimated physiological traits were weakly correlated with each other in pairwise examinations 230 

(Table 3) and principal component analysis (PCA) biplots (Fig. 6). NRINGS was positively correlated 231 

with SENS and HLENGTH, indicating that a stronger sink was associated with higher senescence and 232 

longer husks. RER was positively correlated with SENS, suggesting rapid root elongation was associated 233 

with reduced staygreen, and negatively correlated with HLENGTH, suggesting rapid root elongation was 234 

associated with improved synchrony of silk exertion and pollen release in WD. Yield under WW 235 

conditions in both MSEs and the TPE was strongly correlated with NRINGS (Fig. 3A, Table 3), a 236 

determinant of sink potential in the CGM, but not under WD. Yield under WD in MSE was strongly 237 

correlated with SENS when severe stress occurred prior to flowering or grain filling, indicating a 238 

limitation in source (Fig. 3A, E1 and E3, Table 3). In contrast, SENS and yield in the TPE were positively 239 

correlated, suggesting that SENS captured the remobilization due to the establishment of a strong sink 240 

rather than a source limitation. When WD occurred around flowering time (Fig. 3A, E2), yield under WD 241 

was negatively associated with HLENGTH due to the relationship between silk elongation rate under 242 

water deficit and the distance required for silk exposure to pollen (HLENGTH). Timing of water deficit in 243 

the MSE around silking (Fig. 3, E2) likely exposed genetic variation in husk length affecting the timing 244 

and synchrony of pollination akin to the negative relationship between anthesis-silking interval and grain 245 

yield. 246 

PCA biplots were used to visualize the relationship among traits with yield in four contrasting 247 

populations resulting from crossing high yielding (NSS8 and NSS5) and drought tolerant parents (NSS7 248 

and NSS9) in three environment types (Fig. 6). The first, second and third components explained 39.9%, 249 

26.8% and 16.7% of total G+GxE variance, respectively. PCA1 discriminated hybrids for yield under 250 

WW, TPE and NRINGS. PCA2 discriminated hybrids for yield under WD and SENS. PCA3 251 

discriminated hybrids for RER and HLENGTH. Most hybrids from the cross NSS8/NSS5 were high 252 

yielding under TPE and WW but low yielding under WD (Fig. 6a,b). Most hybrids had low scores for 253 

RER and SENS, with SENS and yield under WD being negatively correlated (Fig. 6b). Crossing NSS8 254 
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with drought tolerant parent NSS7 generated a population of hybrids with high scores for yield in the 255 

TPE, about 50% of hybrids with high scores for yield under WD (Fig. 6c), RER and HLENGTH, and 256 

most hybrids having low scores for SENS, which translates in maintenance of a green canopy under water 257 

deficit (Fig. 6d). The population NSS8/NSS9, another cross of NSS8 with a drought tolerant parent, 258 

produced a high frequency of hybrids with high scores for yield in both the TPE and WD (Fig. 6e), and 259 

consistently low scores of SENS (Fig. 6f). In comparing NSS8/NSS9 with the other crosses with NSS8, 260 

the scores for HLENGTH were not changed relative to NSS8/NSS5 but decreased relative to NSS8/NSS7 261 

(Fig. 6b,f). Hybrids resulting from crossing two drought tolerant parents (NSS9/NSS7) had consistently 262 

high scores for yield under WD (Fig.6g) and RER (Fig. 6h), and low scores for SENS and HLENGTH 263 

(Fig. 6h).  264 

Overall, different traits contribute to germplasm adaptation to water deficit and well-watered 265 

conditions in MSE and the TPE, and the germplasm sampled in this study exposed genetic variation for 266 

these traits. The examples presented showed the possibility to improve yield under WD by improving 267 

simultaneously at least two traits related to capture of water (RER), maintenance of the canopy (SENS) 268 

and synchronous timely pollinations, in this case expressed by low HLENGTH. It appears as well that 269 

improvement for yield potential via NRINGS could indeed incur benefits for yield int the TPE. 270 

Adaptation and expression of GxE for yield emerge from different physiological pathways. 271 

 272 

Integrated framework: Gap analysis and CGM-WGP methodologies can help breeders close the 273 

productivity gap 274 

Grain yields in the TPE and the two well-watered environments were all near the 80% quantile 275 

front used to define the realistic bound for efficient production agriculture. Average evapotranspiration 276 

(ET) was between 492 and 649 mm in the TPE environments, while it increased to 700-800 mm in the 277 

MSE well-watered environments (Fig 7a). This sample of environments is highly biased when 278 

considering the types and frequency of environments expected in the TPE (Fig. 3; Cooper et al., 2020b). 279 

Deviations of the average yields relative to the 80% quantile front indicated gaps in yield productivity 280 

across all environments but were more evident under low ET (Fig. 7a). Cross-over GxE interactions for 281 

yield performance were observed across ET levels among the families. For example, the NSS8/NSS5 282 

family had low mean yield at low ET levels (806 g m-2 for ET < 480 mm) and higher mean yield at high 283 

ET levels (1635 g m-2) relative to other crosses between NSS8 with drought tolerant parents; yield at low 284 

and high ET levels were in the range 892-978 g m-2 and 1575-1607 g m-2, respectively (Fig 7). Under low 285 

ET the yield advantage (291 g m-2) of crosses with drought tolerant parents relative to NSS8/NSS5 was 286 

highest in E3 (Fig. 3) when severe water deficit occurred preflowering. In contrast, because water deficit 287 
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occurred around flowering time in E2 (Fig. 3), yield advantage varied among crosses: -68, 3 and 14 g m-2 288 

for NSS8/NSS7, NSS8/NSS9 and NSS9/NSS7, respectively. The full expression of drought tolerance 289 

related to high RER scores in NSS8/NSS7 (Fig. 6d) did not occur until it was combined with a reduced 290 

HLENGTH (Fig. 6h) that enabled a timely pollination (NSS9/NSS7) and with consistent low SENS 291 

values (Fig 6g). Note that the yield advantage for NSS9/NSS7 was greater than those of the NSS8/NSS7 292 

and NSS8/NSS9 crosses (Fig. 6). This result demonstrates the opportunity to be purposeful about closing 293 

productivity gaps with respect to limited natural/production resources by means of crop improvement. 294 

Because hybrids were characterized genetically and physiologically, it is possible to use the predictors 295 

from CGM-WGP to simulate the performance of each hybrid under different managements to identify 296 

opportunities to further close the production gap (Fig 1). 297 

 298 

Discussion 299 

Here we demonstrated an integrated approach that links digital and field experimental approaches 300 

using in combination CGM-WGP, Gap analysis, and MSEs to hasten genetic gain (Fig 1). Using a large 301 

dataset comprising of 23 locations that exposed 2367 maize hybrids to a range of water deficit and well-302 

watered environments, we estimated that the average out-of-sample predictive skill, both genotype and 303 

environment, for WGP and CGM-WGP were 0.25 and 0.42, respectively (Table 2). Here we provide 304 

empirical evidence for the robustness of predictive ability of CGM-WGP with changing environments, in 305 

contrast with WGP, that is consistent with results from simulation (Messina et al., 2018). Considering the 306 

genomic breeder’s equation as a valid framework to quantify the value of the information and the 307 

prediction approach (Voss-Fels et al., 2019), the gain in predictive skill due to the use of physiological 308 

knowledge to model GxE translates into an average differential response to selection (∆
𝜕𝑔

𝜕𝑠
) =309 

 𝑖×𝜎𝐴×(𝑟𝐶𝐺𝑀−𝑊𝐺𝑃−𝑟𝑊𝐺𝑃)

𝜕𝑡
, where ∆

𝜕𝑔

𝜕𝑠
 is the average differential genetic gain per unit cycle of selection, i is 310 

the standardized selection differential, 𝜎𝐴 is the square root of the additive genetic variance in the training 311 

population, and 𝑟𝑘 are the average correlations between the predicted yields for method k  and the 312 

corresponding values in the TPE. A positive difference in the correlations implies a gain in skill due to 313 

modeling main effects and GxE interactions. Because for the germplasm used in this study the gain in 314 

predictive skill increased with increasing water deficit (Fig. 5), the gains are dependent on the frequency 315 

of environment types and magnitude of GxE. Considering these and prior results (Cooper et al., 2016; 316 

Messina et al., 2018) we propose that with access to a suitable CGM, linking genomics and physiology 317 

should lead to (∆
𝜕𝑔

𝜕𝑠
) ≥ 0. The introduction of a method for model selection, akin to forward variable 318 

selection in statistics, enables practitioners other than physiologists to apply CGM-WGP in breeding 319 
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programs thus increasing the opportunities to expand the application of the method to other germplasm 320 

and crops and geographies. The CGM-WGP framework enables the integration of phenomic data that will 321 

contribute to overcoming limitations to translate advanced phenomics into genetic gain (Araus et al., 322 

2018). The use of MSE to generate appropriate environmental conditions to elicit physiological responses 323 

is a core requirement to generate stable parameters for the selected model and the associated estimation of 324 

allelic effects, and to generate environments that expose productivity gaps to inform selection decisions. 325 

Over three years of experimentation (Fig 7a) most of the MET results sampled well-watered 326 

environmental conditions conducive to high yields (Fig 3a,b). While these experiments are useful for 327 

selection, ignoring the biased sampling of the TPE is conducive to missing opportunities to accelerate 328 

genetic gain either due to underestimating G, GxE, and prediction accuracy of methods such as CGM-329 

WGP. The integration of Gap analysis with a simulation step, using allelic effects estimated for each G, 330 

and E and M intensively sampled from the TPE (e.g., 108; Cooper et al., 2020b), enables implementation 331 

of a weighted selection methodology to account for the sampling bias, as advocated by Podlich et al. 332 

(1999). Current computing capabilities should be adequate to implement digital phenotyping as proposed 333 

here on millions of G, E and M combinations for any crop for which only genetic information on 334 

relatedness to tested genotypes information is available. Finally, the CGM-WGP approach can assist in 335 

starting answering questions regarding the adaptation of any G or GxM combination to current and/or 336 

future climates and production systems, which is not possible using conventional empirical sampling 337 

approaches but requires connecting genomics and physiology as demonstrated here. 338 

 339 

Strategy for the use of MSEs and MET data in CGM-WGP training for prediction 340 

This study tested the empirical application of CGM-WGP in a large maize breeding population, 341 

with yield as the observed emergent property to be used in model training. The approach is generalizable 342 

to the use of a combination of complex traits such as grain yield across diverse environments, moderately 343 

complex traits such as leaf area, and directly measured constants for simple traits such as parameters for 344 

light response curves (Fig 2). Runs of the CGM, parameterized for checks or more generally the 345 

germplasm of interest, were conducted to examine baseline yield simulation and confirm the 346 

reasonableness of environmental inputs. Estimation of model parameter vectors in the G, E, and M 347 

scenarios of interest were key to implementation of the predictions for physiological traits segregating in 348 

the breeding populations. The feasibility of identifying a minimum parsimonious set of parameters for 349 

genetic modeling greatly facilitates the routine application of the approach when compared with previous 350 

efforts (Cooper et al., 2016; Messina et al., 2018). The use of MSE provided critical information to 351 

improve the estimation of CGM parameters, in agreement with prior results (Messina et al., 2018). 352 
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Estimation of yield in METs can also help with trait parameterization and model identifiability (Technow 353 

et al. 2015), which could be particularly pertinent in instances where influences of emergent properties 354 

other than yield cannot be observed, e.g. the influence of enhanced rate of silk elongation and kernel set 355 

in low ET drought affected environments contained within the MET. 356 

With the incorporation of WGP and a sampling component, attributes of plant growth that were 357 

not measured in the field but that were influential to yield can be appropriately approximated in genotype-358 

specific fashion by integrating over time the rates of growth, development and biomass partitioning. This 359 

sampling procedure can be trained on yield alone, with few additional field measurements needed for the 360 

CGM-WGP to be used. The refinement of priors for physiological traits can be conducted on a small 361 

subsample of individuals that are representative of the breeding population. The parameterization of 362 

variation for physiological traits through CGM-WGP is contrasted with more intensive approaches in 363 

which all individuals in a breeding population are directly phenotyped for the physiological traits of 364 

interest (Yin et al., 2000; Reymond et al. 2003, Messina et al., 2006, Chenu et al. 2009, Messina et al. 365 

2011). The CGM-WGP framework can thus be used to introduce, —following initial experimentation to 366 

refine priors,—a physiological component into the analysis of field trials in one or multiple stages of 367 

breeding programs (Fig. 1), where in a typical season it may only be economical and/or logistically 368 

feasible to quantify yield for the majority of the tested genotypes. Further, advancements in high 369 

throughput phenotyping for canopy (Rutkoski et al., 2016; Crain et al., 2017), photosynthesis (Yendrek et 370 

al., 2017; Cotrozzi et al., 2020), reproductive (Gage et al., 2017; Berghoefer et al., 2020), and quality 371 

(Tillman et al., 2006) traits can create opportunities for a hybrid approach between direct phenotyping at 372 

the field level (Messina et al., 2011) and digital characterization of germplasm as demonstrated in the 373 

present study (Fig. 6). This integration can address what was recognized as a problem of translating 374 

phenomics into decisions in breeding (Araus et al., 2018).  We hypothesize that such an approach can 375 

increase predictive skill by reducing the underspecification of data-driven models and facilitating a deeper 376 

understanding of the physiological determinants of adaptation in the germplasm, and genetic determinants 377 

of physiological processes. 378 

 379 

Evaluating CGM-WGP accuracy using a very large breeding half-diallel GxE experiment 380 

The WGP approach used herein represents a reasonable benchmark for CGM-WGP, in that it 381 

reflects contemporary, purely statistical methods for prediction of yield from marker effects (Meuwissen 382 

et al. 2001; Lorenz et al. 2011; Voss-Fels et al. 2019) as they are applied in commercial maize breeding 383 

(Cooper et al. 2014b). The results presented in this study are applied to a significantly larger set of G and 384 

E scenarios for the TPE than previous studies that used MSE data for at most four populations (Cooper et 385 
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al., 2016; Messina et al., 2018). For an experiment comprising 23 locations and 2367 maize hybrids, 386 

representing 35 populations, we demonstrated a decrease in the accuracy difference between BayesA, a 387 

widely used method, and CGM-WGP with decreasing water deficit (Fig. 5). However, in agreement with 388 

previous studies (Cooper et al., 2016; Messina et al., 2018), whenever GxE was small, CGM-WGP still 389 

performed at parity with linear models (Fig. 4; Table 2). Therefore, in agreement with a previous study 390 

(Messina et al., 2018), it was possible to obtain a robust estimation of physiological traits with the use of 391 

multiple environment types, ranging from drought to well-watered, in the training set. Together, these 392 

findings suggest that CGM-WGP offers utility in incorporating signals from multiple environment types, 393 

and that the difference between benchmark methods and a form of CGM-WGP (Messina et al., 2018; 394 

Millet et al., 2019; van Eeuwijk et al., 2019) will increase with the increasing importance of GxE, GxM, 395 

and GxExM interactions in the determination of yield. 396 

 397 

inSilico germplasm characterization for hasten genetic gain 398 

Understanding physiology at the level of individual genotypes offers utility both in germplasm 399 

characterization and in making selections that maintain physiological diversity, for risk management in 400 

the short, medium, and long term (Hammer et al. 2020). However, physiological experiments often focus 401 

on few genotypes, due to the intensiveness of the phenotyping methods and/or the systems-level of detail 402 

that is required to build a comprehensive mechanistic understanding. Linking genomics and physiology 403 

through CGM-WGP brings opportunities to generate hypotheses about the mechanisms of adaptation for 404 

millions of untested individuals for which only marker information is available (Fig. 1). Here we focused 405 

on four traits for estimation using the CGM-WGP model: NRINGS, HLENGTH, SENS, and RER, and 406 

estimated values for 2367 hybrids at 23 locations (Fig 6). A principal component analysis showed that 407 

estimated parameters using the CGM-WGP are physiologically sound, and exposed genotypic variation 408 

within the germplasm (Fig 6, Table 4).  409 

 Because NRINGS affects the potential number of silks, it is an important trait in defining yield 410 

potential (Messina et al., 2019). Results conform to the expected positive relationship between NRINGS 411 

and yield when water deficit is low (Fig 3; Fig 6). Because silks must extend beyond the husk, for a given 412 

elongation rate husk length can determine protandry, failure in pollination and low yields (Hall et al., 413 

1982; Messina et al. 2019) as exposed by the trait relationships depicted in PCA biplots (Fig 6). 414 

HLENGTH and tightness can also determine susceptibility to ear diseases, which was not considered in 415 

the model. This trait could thus be somewhat informative for differential yield performance in TPE 416 

environments, and a weak positive correlation was indeed observed (Fig. 6). SENS models the response 417 

of leaf area loss to water S/D, and contributes to maintenance of photosynthetic rates, grain growth and 418 
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yield under certain water deficit environments (Borrell et al., 2000; Duvick et al., 2005; Messina et al., 419 

2020a). RER can impact the timing and volume of soil water available to the plant (Hammer et al. 2009, 420 

Lynch 2013). Since the introduction of the hypothesis that deep roots contribute to long-term genetic gain 421 

for yield of maize in the US corn-belt, two studies (Reyes et al., 2015; Messina et al. 2020a) have shown 422 

that total water extraction itself was not found to have changed over 50 years of maize breeding despite 423 

substantial genetic gain for yield, such that other mechanisms of yield optimization were likely exploited 424 

by breeding (Reyes et al. 2015; Messina et al., 2020a). 425 

Because RER varied among populations (Table 2), water deficit was imposed during the critical 426 

window for yield determination in the Woodland MSE (Fig. 3a, E2) and the depth of water extraction in 427 

Woodland can occur to depths greater than 2.5 m (Table 1, Reyes et al., 2015), results from this 428 

experiment allowed testing of the hypothesis that RER is correlated with yield under WD in deep soils. 429 

On average, the yield difference between NSS8/NSS7 and NSS8/NSS5, which have contrasting scores for 430 

yield under WD and RER, was negative (-67 g m-2) and consistent with prior results (Reyes et al., 2015). 431 

However, the yield advantage due in part to high scores in RER (Fig. 6d) was not fully expressed but 432 

except in a population (NSS9/NSS7) with low scores for HLENGTH and SENS (Fig. 6g,h). HLENGTH 433 

and other traits are determinants of a timely pollination (Messina et al., 2019) contributing to reproductive 434 

resilience. These results suggest the hypothesis that in the absence of limitations to root growth in the soil 435 

profile (Ordóñez et al. 2018, Osborne et al. 2020, Fan et al. 2016), and considering that reproductive 436 

resilience underpins long-term genetic gain (Messina et al., 2020a), the maintenance of gains in 437 

reproductive resilience will hasten genetic gain for yield when combined with positive selection for RER.  438 

 439 

On the future of Gap analysis and CGM-WGP digital methodologies 440 

The CGM-WGP framework unifies the extent of physiological detail developed regarding crop 441 

growth and development on a daily timescale, with the germplasm testing and selection strategies that 442 

already take place within plant breeding pipelines (Technow et al. 2015, Messina et al. 2011). Here we 443 

extended the system to consider the Gap between attained and potential yield for a given availability of a 444 

yield limiting resource, in this case water. We demonstrated that Gap analysis was useful in examining 445 

levels of yield performance in the various environments analyzed in this study, and in identifying families 446 

that tended to display more or less stability in yield performance across water availability levels measured 447 

by crop ET. These findings related to yield performance and stability can also be examined in light of the 448 

characterizations provided by the CGM-WGP model. For example, certain combinations of parents may 449 

tend to alleviate or exacerbate one or more trait vulnerabilities (e.g. for NSS8/NSS5, in the case of SENS) 450 

or bolster or weaken certain strengths. Continued integration of gap analysis methodologies with CGM-451 

WGP could thus provide insight into specific targets for improvement of yield and yield stability across 452 
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environmental gradients in the TPE. Considering the farming system context can provide a productive 453 

next methodological step to realize crop improvement gains through changes in root systems (Thorup-454 

Kristensen and Kirkegaard, 2016; Bančič et al., 2021), which so far have been elusive in maize (Reyes et 455 

al., 2015; Messina et al., 2020a).  456 

Robust predictive abilities of the CGM-WGP methodology were observed both across and within 457 

families (Fig. 4), and predictive abilities and physiological trait estimates were stable upon inclusion of 458 

data from multiple environment types in the model training data set. The outputs of the CGM-WGP 459 

framework additionally enabled germplasm characterization and gap analysis, which provided insight into 460 

opportunities for further improvement of yield and yield stability through breeding and/or agronomy. 461 

These findings suggest the multi-faceted utility of CGM-WGP in large breeding populations and early 462 

stages of the breeding process and later stages of product placement (Fig. 1) for the continued 463 

improvement—with potential increases in efficiency and genetic gain, as is enabled by predictive skill—464 

of yield and yield stability in the TPE. 465 

 466 

Conclusion 467 

Based on the results from the analyses of a very large maize dataset we conclude that the 468 

integration of physiological understanding improves predictive skill for the TPE. The advantage of the 469 

CGM-WGP approach increased when water deficit environments were involved and decreased with 470 

decreasing water deficit, or with more generally decreasing contributions of GxE, GxM, or GxExM to the 471 

total variance. Integrated systems approaches can facilitate the application of physiological knowledge in 472 

breeding via CGM-WGP. Because plants and breeding systems are evolving complex systems and yield, 473 

and other phenotypes of interest are emergent phenotypes of those systems, ongoing research is needed to 474 

increase relevant understanding of the physiological basis of adaptation. We have combined physiology 475 

and breeding through the CGM-WGP methodology and demonstrated the emerging opportunity to 476 

leverage more digital technologies for digital phenotyping for characterization and prediction of 477 

germplasm, and to dedicate more resources to advance the scientific understanding of the links between 478 

genomics and physiology through modeling.  479 

 480 

Materials and Methods 481 

Data 482 

A maize breeding and genetics experiment was conducted by crossing nine non-stiff stalk (NSS) 483 

inbred parents, denoted as NSS1, NSS2, …, NSS9, in a half-diallel mating design. The resulting 35 484 

families, each of which included about 75 doubled haploids (DHs), were crossed to a common stiff stalk 485 

inbred tester resulting in 2367 hybrids in total. These hybrids were evaluated in 23 environments (herein 486 
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E1 through E23) from 2017 to 2019. Six environments were from managed stress environments (MSE) 487 

located at Corteva research stations in Woodland, CA and Viluco, Chile. Planting density, planting date 488 

and crop husbandry followed best local practices (Table 1). Planting spacing was 0.76 m for all 489 

environments. Irrigation was managed to impose water stress at different times of development including 490 

flowering (E1-3; Fig. 3). Well-watered (WW) irrigated controls were included. Irrigation was applied 491 

using drip tape buried at 20 cm deep (E21-23, Fig. 3; Table 1). The remaining 17 environments were in 492 

the US corn belt states. Yield was measured at each location using mechanical combines and adjusted to 493 

150 g kg-1 grain moisture. 494 

Soil data required to run simulations using the CGM were from in-field measurements. Daily 495 

weather data (solar radiation, maximum and minimum temperature, and precipitation) were from nearby 496 

weather stations from the National Oceanic and Atmospheric Administration (Bell et al., 2013; Table 1). 497 

Environment and management parameters such as plant population (plants per square meter), and planting 498 

date were also included (Table 1). 499 

 500 

Experimental design and statistical analyses 501 

The experimental design in each environment was a row-column design with diagonal checks. 502 

The grain yield data were analyzed using the ASREML mixed model software (Gilmour et al. 2009) for 503 

each environment with genotype as a fixed effect, row/column as random effects and AR1xAR1 residual 504 

structure, 505 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝑔𝑖 + 𝑟𝑗 + 𝑐𝑘 + 𝜖𝑖𝑗𝑘  , 

 506 

where 𝑦𝑖𝑗𝑘  is the yield for genotype i in row j and column k, 𝜇 is the overall mean, 𝑔𝑖 is effect of 507 

genotype i, 𝑟𝑗  is the effect of row j, 𝑐𝑘 is the effect of column k and , 𝜖𝑖𝑗𝑘 are the residual effects. 𝜇 and 𝑔𝑖 508 

are fixed effects,  𝑟𝑗 and 𝑐𝑘 are assumed to be randomly normally distributed variables with mean 0 while 509 

𝜖𝑖𝑗𝑘 are assumed to be randomly normally distributed variables with mean 0 and variance matrix 𝑅 =510 

 𝜎𝑒
2[𝐴𝑅1(𝜌𝑟) ⊗ 𝐴𝑅1(𝜌𝑐)], representing the Kronecker product of first-order autoregressive processes 511 

across rows and columns, respectively, with the spatial residual variance 𝜎𝑒
2.  Best linear unbiased 512 

estimators (BLUEs) for each genotype and for each environment were produced after adjusting for spatial 513 

effects and were used for subsequent analyses. Linear regressions were conducting using R (R Core 514 

Team, 2020). Principal component analyses were used to characterize physiological parameters estimated 515 

for the 35 families and 2367 hybrids and yields under different environment types. Analyses were 516 

conducted using the prcomp function in R package stats (R Core Team, 2020).   517 

 518 

Genotyping 519 
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Each DH was genotyped with approximately 2935 single-nucleotide polymorphism (SNP) 520 

markers. Missing SNP allele calls were imputed based on parent-progeny relationship and founder allele 521 

frequency.  522 

 523 

CGM-WGP configurations 524 

This research used the CGM-WGP methodology described by Messina et al. (2018). Descriptions 525 

for the CGM were reported (Messina et al., 2015; Cooper et al., 2016). An algorithm was included in the 526 

CGM to simulate silk elongation and response to S/D ratio. The algorithm is based on cohorting 527 

floret/kernel rings in the ear, and pollination after silk emergence from tip of the husk based on pollen 528 

availability (Oury et al., 2016; Turc et al., 2016; Messina et al., 2019). Briefly, the maximum number of 529 

silks is determined by the number of rings per ear (NRINGS) and kernels per ring (KRINGS). Silk 530 

emergence depends on the average rate of silk elongation, its response to water deficit, and the average 531 

distance that the average silks needs to travel along the husk (HLENGTH). The availability of pollen at 532 

any time follows a Gaussian distribution centered shortly after the time of anthesis/shedding of the main 533 

culm (Uribelarrea et al. 2002). Changes with ages in silk receptivity follows Anderson et al., 2004. The 534 

simulated total number of embryos determined the attainable harvest index as described in Cooper et al. 535 

(2016). The maximum daily leaf senescence fraction response to water deficit is set to 0.05 and decreases 536 

with increasing S/D up to zero when S/D equals 1.  537 

The Bayesian hierarchical model was used to model allele effects for physiological traits as 538 

described in Messina et al. (2018) with the extension to model soil properties such as depth, which is 539 

estimated independently for each location but held constant for all genotypes evaluated at a given 540 

location. The rationale for modeling soil factors as a variable is that for many environments sampled in a 541 

plant breeding trial these model inputs are either unknown or known with under-desired precision. 542 

Inaccurate environmental inputs directly impact the accuracy of crop growth model simulation and thus 543 

prevent the accurate estimation of physiological traits and the genetic determinants. Allowing important 544 

environmental inputs to be estimated jointly with physiological traits prevents the model from exploring 545 

unrealistic physiological trait space because of biased environmental inputs. Prior distributions were from 546 

Messina et al. (2018). The prior for soil depth was a truncated normal distribution with 0 m as the lower 547 

bound and 2000 mm as the upper bound for each location, and variance of 25 cm. The Metropolis-548 

Hastings-within-Gibbs algorithm was used to sample all parameters, including soil depth. 549 

 550 

Model evaluation and selection 551 

Models, which herein refer to a CGM-WGP models for which different CGM parameters were 552 

estimated using marker data, were evaluated for their capacity to describe and predict observed trait 553 
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phenotypes. The metric to compare simulations and observations was the Pearson correlation coefficient. 554 

Evaluations were conducted for the prediction of mean yield performance for all genotypes across 555 

locations, for the prediction of family means across environment types (water deficit, corn belt trials/TPE, 556 

irrigated), and for the prediction of hybrids across environment types. Comparisons between WGP and 557 

CGM-WGP were conducted to assess advantages of using MSEs and CGM-WGP in prediction. Eight 558 

cases (Table 2) stem from the prediction of family means for the observations in the corn belt (or TPE) 559 

using data collected in MSEs (irrigated, and irrigated plus water deficit data): the combination of tested 560 

environments and genotypes (included in the training of CGM-WGP or WGP), untested (or out-of-561 

sample; not included during the training process) environments and genotypes. Genotypes used to train 562 

the model were a random sample of 250 out of the total of 2467 hybrids.   563 

A trait selection scheme was designed to identify feasible sets of physiological traits that have 564 

acceptable predictive skill. This method is deemed necessary both biologically and computationally. 565 

Biologically, not all twelve traits are relevant in the present data set. If all environments were well-566 

watered, traits related to yield potential should be more informative whereas if all environment were 567 

water-limited, traits related to drought tolerance should be more informative. In the case of sets of 568 

environments comprised of contrasting water conditions, both yield potential traits and drought tolerance 569 

traits should be needed to understand and model the GxE variation. Moreover, traits impacting different 570 

physiological processes in the CGM may result in similar yield variation observed and thus may have 571 

similar importance. Including multiple or all traits may result in model unidentifiability issues given that 572 

different combinations of traits could tend to result in similar model likelihoods. The trait selection 573 

scheme can be viewed as a nonlinear analog of forward variable selection in multiple linear regression. 574 

Since this model evaluation procedure involved many runs of CGM-WGP, only 250 randomly chosen 575 

genotypes were used in the trait selection procedure to reduce run time. This procedure starts with only 576 

one trait in the model. To evaluate the fitness of each of the twelve one-trait models, by-location accuracy 577 

was calculated as the correlation between the predicted yield and observed yield and compared with 578 

BayesA by-location accuracy where the BayesA WGP model (Meuwissen et al. 2001) was applied 579 

directly to the by-location BLUEs for yield averaged over all locations. The results can be inspected in 580 

scatterplots with BayesA by-location accuracy on the x-axis and the one-trait model by-location 581 

accuracies on the y-axis. Upon inspection and calculation of prediction accuracies, the most predictive 582 

one-trait model is selected. Other traits are selected in an iterative manner for their potential to increase 583 

the model goodness of fit. A limited number of candidate multi-trait models were evaluated, and one 584 

parsimonious set was selected for the purpose of comparing CGM-WGP with BayesA results. 585 
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Twelve CGM parameters coding for rates regulating physiological processes were tested as the 586 

candidate traits driving the yield variation and GxE: 1) leaf appearance rate (Muchow et al. 1990; based 587 

on analysis of data from Messina et al., (2011);  𝜇 = 0.00275, 𝜎2 =  1.62 10−8; leaf °C-1), 2) thermal 588 

time using base temperature 0 for grain fill duration (based on Gambín et al. (2006); 𝜇 = 1300, 𝜎2 =589 

2603; °C), 3) radiation use efficiency (based on Messina et al. (2018); 𝜇 = 1.85, 𝜎2 = 0.16; g MJ-1), 4) 590 

area of the largest leaf in the canopy (based on Messina et al. (2018); 𝜇 = 850, 𝜎2 = 650; cm2), 5) 591 

number of rings per ear (NRINGS; based on analysis of data from Messina et al. (2011) assuming 16 592 

kernels per ring;  𝜇 = 45, 𝜎2 = 6.5), 6) slope above breakpoint describing the relative (0-1 where 1=no 593 

response) transpiration response to VPD (informed by results from Choudhary et al. (2014) expressed on 594 

relative scale; 𝜇 = 0.5, 𝜎2 = 0.0026), 7) breakpoint of transpiration response to VPD (informed by 595 

Messina et al. (2015); 𝜇 = 2, 𝜎2 = 0.065; kPa), 8) senescence coefficient (SENS) which reduces leaf 596 

area in a linear manner in accordance with the water S/D (𝜇 = 0.05, 𝜎2 = 0.0001; dimensionless), 9) 597 

maximum silk elongation rate per hour (informed by results from Turc et al. (2016); 𝜇 = 1.5, 𝜎2 =598 

0.065 cm h-1), 10) fraction of total soil water when silk elongation rate was reduced to 50% of maximum 599 

(informed by results from Turc et al. (2016); 𝜇 = 0.5, 𝜎2 = 0.01; dimensionless), 11) husk length 600 

(HLENGTH; informed by Messina et al. (2019); 𝜇 = 200, 𝜎2 = 104; mm), 12) root elongation rate 601 

(RER, informed by data from Dardanelli et al. (1997), Hammer et al. (2009), Singh et al. (2010), van 602 

Oosterom et al. (2016) and Ordóñez et al. (2018); 𝜇 = 25, 𝜎2 = 6.5; mm d-1). 603 

 604 

Data 605 

The data can be made available through https://openinnovation.corteva.com/ upon reasonable request for 606 

public research purposes and project evaluation. 607 
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Tables 613 

Table 1.  Soil properties and management practices by environment. SWHC: soil water holding capacity 614 

 Soil 

properties 

   Management   

Environment Depth 

(m) 

SWHC 

(cm3/cm3) 

Drainage  Planting date Density 

(pl m-2) 

Irrigation 

(mm) 

E1 (MSE) 1.5 0.10 0.8  10/31/2017 8 506 

E2 (MSE) 2.0 0.15 0.5  5/22/2017 8 165 

E3 (MSE) 1.0 0.10 0.8  10/11/2018 8 589 

E4 (TPE) 2.0 0.10 0.5  5/8/2017 8 449 

E5 (TPE) 2.0 0.16 0.5  5/9/2017 6  

E6 (TPE) 2.0 0.15 0.5  4/12/2017 8  

E7 (TPE) 2.0 0.16 0.6  4/22/2017 8  

E8 (TPE) 2.0 0.14 0.5  4/22/2017 8  

E9 (TPE) 2.0 0.14 0.5  4/21/2017 7  

E10 (TPE) 2.0 0.15 0.5  4/18/2017 8  

E11 (TPE) 2.0 0.14 0.5  5/17/2017 7  

E12 (TPE) 2.0 0.14 0.5  5/16/2018 8  

E13 (TPE) 2.0 0.14 0.6  4/25/2018 7  

E14 (TPE) 2.0 0.17 0.1  4/28/2018 8  

E15 (TPE) 2.0 0.14 0.5  4/25/2018 8  

E16 (TPE) 2.0 0.14 0.1  4/25/2019 8  

E17 (TPE) 2.0 0.14 0.5  5/5/2018 8  

E18 (TPE) 2.0 0.14 0.6  4/29/2019 7  

E19 (TPE) 2.0 0.15 0.3  4/21/2019 8  

E20 (TPE) 2.0 0.13 0.1  5/17/2019 8  

E21 (MSE) 1.5 0.10 0.8  10/30/2017 8 677 

E22 (MSE) 2.0 0.15 0.5  5/2/2017 8 567 

E23 (MSE) 2.0 0.15 0.5  5/9/2018 8 699 

  615 
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Table 2. Average predictive skill of crop growth model wholegenome prediction (CGM-WGP) and 616 

wholegenome prediction (WGP) for cases resulting from the combination of: tested (T) and untested (U; 617 

not included in the training of the model) genotypes and tested and untested environments 618 

 Well-watered data  Well-watered & water deficit data 

 CGM-WGP  WGP  CGM-WGP  WGP 

Environment Genotype  Genotype  Genotype  Genotype 

 T U  T U  T U  T U 

T  0.79 0.61  0.72 0.61  0.80 0.58  0.49 0.42 

U  0.42 0.42  0.41 0.41  0.43 0.42  0.24 0.25 

  619 
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Table 3. Genetic variance (upper triangle) and Pearson correlation coefficients (lower grid; all pairwise 620 

combinations) for estimated physiological traits number of rings per ear (NRINGS), leaf senescence 621 

response to water deficit (SENS), root elongation rate (RER) and length of husk (HLENGTH), and yield 622 

under water deficit, well-watered conditions, and in the multienvironment trial (MET) conducted in the 623 

target population of environments (TPE) 624 

  NRINGS SENS RER HLENGTH 

NRINGS  10.6 0.24 0.10 0.28 

SENS   5.1x10-5 0.32 -0.07 

RER    0.25 -0.27 

HLENGTH     56.6 

Yield water deficit Chile -0.05 -0.80 -0.07  0.06 

 USA -0.02 -0.05  0.04 -0.66 

Yield well-watered USA & Chile  0.72 -0.07 -0.03  0.11 

Yield MET USA TPE  0.96  0.20  0.03  0.35 

  625 
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Figure captions 626 

Fig 1. Diagram of order of magnitude for hybrids advancing through product development along with 627 

processes to improve breeding efficiencies, Gap analyses and crop growth model – whole-genome 628 

prediction (CGM-WGP). 629 

 630 

Figure 2. Diagram of a crop growth model (A), leaf emergence and light interception diagrams (B), and 631 

genotypephenotype connection through an example mapping maximum photosynthesis (Pmax), canopy 632 

photosynthesis (Pcan) and radiation use efficiency (RUE). Genotype marker (z) and effects (u) at genome 633 

positions (i), QE: quantum efficiency, LAI: Leaf Area Index, I: Light Interception. 634 

 635 

Figure 3. Daily sequences of water supply to demand ratio (S/D, 1=no stress) centered at flowering by 636 

environment (E1-E23). Dashed lines indicate flowering. Because S/D was equal to 1 throughout the 637 

season E6, 11, 12, 15, 18, 19, 20 were grouped together. Environment types shown in thermal time 638 

centered at flowering time (adapted from Cooper et al.,2014b; B). Corn belt testing locations shown in 639 

panel C.   640 

 641 

Figure 4. Across family (A) and within family (B) prediction accuracies estimated by the Pearson 642 

correlation coefficient (r) for whole-genome prediction (WGP) and crop growth model – whole-genome 643 

prediction (CGM-WGP) by environment type; water deficit (WD), Target Population of Environments 644 

(TPE), and well-watered (WW). 645 

 646 

Figure 5. Predictive skill difference in an across-family context estimated by the difference in Pearson 647 

correlation coefficients (r, observed vs. predicted yield) for each of crop growth model – whole-genome 648 

prediction (CGM-WGP) and whole-genome prediction (WGP) methodologies (i.e., rCGM-WGP – rWGP) as a 649 

function of evapotranspiration. Each point represents the mean difference in prediction accuracy for 650 

across families in a single environment. All environments were included for training and prediction  651 

 652 

Figure 6. Biplots for principal components (PC) 1, 2 and 3. All hybrids included in the study are 653 

represented by grey dots. Selected crosses shown as red dots and visualized in different panels. Vectors 654 

are for yield under well-watered conditions, water deficit at flowering time (WD), and in the target 655 

population of environments (TPE), and for estimated physiological traits: number of rings per ear 656 

(NRINGS), leaf senescence response to water deficit (SENS; negative values indicate staygreen), root 657 

elongation rate (RER) and length of husk (HLENGTH). 658 

 659 
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Figure 7. Gap analyses relative to the 80th percentile yield front demonstrated for the average yields 660 

across families at each environment (A, Cooper et al., 2020b), and for four contrasting crosses along an 661 

evapotranspiration gradient: NSS8/NSS7 (B), NSS8/NSS9 (C), NSS9/NSS7 (D), and NSS8/NSS5 (B-D; 662 

open symbol).  663 
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