

1 **Adaptive introgression and standing genetic variation, two facilitators of**
2 **adaptation to high latitudes in European aspen (*Populus tremula* L.)**

3

4

5 Martha Rendón-Anaya¹, Jonathan Wilson¹, Sæmundur Sveinsson², Aleksey
6 Fedorkov³, Joan Cottrell⁴, Mark E.S. Bailey⁵, Dainis Ruņģis⁶, Christian Lexer^{7†},
7 Stefan Jansson⁸, Kathryn M. Robinson⁸, Nathaniel R. Street⁸, Pär K. Ingvarsson^{1*}

8

9 ¹ Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter,
10 Swedish University of Agricultural Science, Uppsala, Sweden.

11

12 ² Matis Ltd. Vinlandsleid, Reykjavik Iceland.

13

14 ³ Institute of Biology, Komi Science Center, Russian Academy of Sciences,
15 Syktyvkar, Russia.

16

17 ⁴ Forest Research, Northern Research Station, Roslin, UK

18

19 ⁵ School of Life Sciences, College of Medical, Veterinary and Life Sciences,
20 University of Glasgow, Glasgow, UK.

21

22 ⁶ Genetic Resource Centre, Latvian State Forest Research Institute “Silava”, LV2169
23 Salaspils, Latvia

24

25 ⁷ Department of Botany and Biodiversity Research, University of Vienna, Vienna,
26 Austria.

27

28 ⁸ Umeå Plant Science Centre, Department of Plant Physiology, Umeå University,
29 Umeå, Sweden

30

31 [†] Deceased.

32

33 * Corresponding author: par.ingvarsson@slu.se

34

35

36

37 **Abstract**

38

39 Understanding local adaptation in plants from a genomic perspective has become a
40 key research area given the ongoing climate challenge and the concomitant
41 requirement to conserve genetic resources. Perennial plants, such as forest trees,
42 are good models to study local adaptation given their wide geographic distribution,
43 largely outcrossing mating systems and demographic histories. We evaluated
44 signatures of local adaptation in European aspen (*Populus tremula*) across Europe
45 by means of whole genome re-sequencing of a collection of 411 individual trees. We
46 dissected admixture patterns between aspen lineages and observed a strong
47 genomic mosaicism in Scandinavian trees, evidencing different colonization
48 trajectories into the peninsula from Russia, Central and Western Europe. As a
49 consequence of the secondary contacts between populations after the last glacial
50 maximum (LGM), we detected an adaptive introgression event in a genome region of
51 ~500kb in chromosome 10, harboring a large-effect locus that has previously been
52 shown to contribute to adaptation to the short growing seasons characteristic of
53 northern Scandinavia. Demographic simulations and ancestry inference suggest an
54 Eastern origin - probably Russian - of the adaptive Nordic allele which nowadays is
55 present in a homozygous state at the north of Scandinavia. The strength of
56 introgression and positive selection signatures in this region is a unique feature in the
57 genome. Furthermore, we detected signals of balancing selection, shared across
58 regional populations, that highlight the importance of standing variation as a primary
59 source of alleles that facilitate local adaptation. Our results therefore emphasize the
60 importance of migration-selection balance underlying the genetic architecture of key
61 adaptive quantitative traits.

62

63

64 **Introduction**

65 Local adaptation, the means by which populations of a species genetically adjust to
66 local environments, is a powerful process of evolution. It occurs because multiple
67 environmental factors imposing different selective pressures exist and the strength
68 of each factor varies across habitats. When a population colonizes a new habitat,
69 certain environmental conditions will impose higher selective pressures, while
70 natural selection may be relaxed for other environmental factors. The overall shift in
71 the selection landscape leads to local adaptation and consequent fitness trade-offs
72 [1]. Two fundamental genetic sources for local adaptation, particularly in temperate
73 forest trees that have large effective population size and low nucleotide substitution
74 rates per unit of time, are standing variation and intra/inter-species hybridization.
75 Hybridization occurs when reproductive isolation is not complete between species
76 or when species lineages that are separated geographically meet after a secondary
77 contact. Species capable of hybridization will therefore have access to a larger pool
78 of genetic variation that provides the raw material for selection and accelerated
79 adaptation. At the same time, standing variation can be maintained through
80 balancing selection (BS) within populations. The signatures of BS include increased
81 diversity around the target of selection, differentiation between populations
82 departing from the genome-wide average and increased linkage disequilibrium,
83 among others [2]. When selection varies geographically, it may favor locally adapted
84 alleles in the derived lineages or subpopulations, giving rise to genomic regions with
85 elevated F_{ST} and absolute divergence D_{XY} [3, 4].

86

87 Throughout the entire Pleistocene, range expansions and contractions of different
88 species occurred in Europe, influencing the current patterns of diversity in many
89 taxa [5]. Paleoclimate model simulations and pollen and plant macrofossil records
90 have revealed a long-term decline in tree populations, with a threshold at the time
91 of Heinrich Stadial (HS) 2 (24 thousand years ago [ka]), when tree populations
92 decreased dramatically and did not recover until the end of HS1 (15ka). At this point,
93 there were no refugia for temperate trees north of 45°N in Europe, which means that
94 present day populations of temperate trees in northern Europe are essentially
95 young, in contrast to conifers and other boreal tree species [6]. This also implies
96 that temperate trees in northern Europe derive from southern populations, where
97 they survived in glacial refugia until temperature and moisture conditions allowed
98 for the recolonization of higher latitudes [7]. The distribution of glacial refugia across
99 the continent and the successive contact of isolated populations following range
100 expansions often led to hybridization events that played a major role in the evolution
101 of forest trees and other plants [8, 9].

102
103 European aspen, *Populus tremula*, is a dioecious temperate angiosperm tree with a
104 very extensive range across both the European and Asian continents. Its role in many
105 ecosystems is that of a primary colonizer for forests, growing quickly and being able to
106 cover large areas across both different latitudes and elevations [10]. Natural variation
107 of *P. tremula* along a north-south gradient on the Scandinavian peninsula has been
108 widely studied. GWAS and population differentiation analyses have identified a region
109 on chromosome 10 harboring the *PtFT2* locus, a gene known to be involved in
110 controlling seasonal phenology [11], as a key contributor to climate adaptation at high
111 latitudes in Sweden. Other loci harboring genes related to senescence processes or

112 plant growth have also been proposed to have played a role in local adaptation, based
113 on differences in haplotype frequencies identified with the hapFLK statistic [12]
114 between Swedish populations originating at different latitudes [13].

115

116 Introgression has been hypothesized to be a major driver of adaptation in the genus
117 *Populus*, where the lack of reproductive barriers allows for prevalent inter-species
118 hybridizations. One such example is given by the adaptive introgression of a telomeric
119 region on chromosome 15 from *P. balsamifera* to *P. trichocarpa* that has been
120 implicated in climate adaptation in the recipient species [14]. In the case of *P. tremula*,
121 admixture in contact zones along the Scandinavian peninsula has been documented
122 and, even though different genetic lineages of *P. tremula* can be defined across Europe
123 [15], no cases of adaptive introgression have been described so far in this species.

124

125 Using whole-genome re-sequencing data from an extensive set of Eurasian samples
126 of *P. tremula* we describe different aspects of the post-glacial colonization,
127 adaptation and admixture in the species across the Eurasian continent. We dissect
128 the population structure of the species, revealing a complex and intricate genomic
129 mosaicism supporting and extending earlier results from much more limited datasets
130 [15]. Furthermore, we studied different types of selection that underlie local
131 adaptation of aspen. Interestingly, we observed a clear and unique case of adaptive
132 introgression, in which the strong selective sweep previously observed on
133 chromosome 10 that harbors a gene controlling bud set in Northern Scandinavia
134 resulted from a recent introgression event from the Russian gene pool. Overall, our
135 results highlight the importance both of standing genetic variation and of genomic
136 introgression as sources of new alleles for local adaptation.

137

138

139 **Materials and methods**

140

141 **Sample collection and sequencing**

142 The Swedish samples used in this paper belong to the SwAsp collection which has
143 been extensively described previously [11, 16]. Leaf samples were collected from the
144 common garden at Sävar [16] for all but two genotypes that were present only at the
145 Ekebo common garden, for which wood tissue was sampled. Sampled tissue was
146 stored in cool conditions until frozen at the laboratory. An additional 296 samples of
147 *P. tremula* were obtained from across Eurasia. Trees selected from the U.K. were
148 cloned from root cuttings and grown in one of two common gardens [17]: a Scottish
149 national aspen collection maintained by Forest Research at Bush, Midlothian, and
150 the Eadha Enterprises clone garden at Lochwinnoch, Renfrewshire. Leaves were
151 sampled from 125 genotypes at Bush and 15 genotypes at Lochwinnoch,
152 representing a range of national seed zones defined by the UK Forestry Commission.
153 Samples were freeze-dried prior to transportation to Sweden. In Norway and in
154 Russia, leaf material was sampled from 24 trees within a region. In Latvia, ten trees
155 were sampled in each of five regions spanning the country. Fewer samples were
156 obtained from Iceland due to the limited availability of natural stands of *P. tremula*.
157 Due to the clonal growth of *P. tremula*, individual samples were collected with
158 enough physical separation (0.3 km) between individuals to minimize the risk of
159 sampling identical genets. Leaf samples were stored in silica gel before shipping to
160 Sweden. Geographical coordinates were recorded for the sampled trees. The

161 individuals included in the study (after the quality control steps that follow) and their
162 geographic origins are listed (Additional File2: Table S1).

163

164 Total genomic DNA was extracted from frozen leaf tissue for all individuals using the
165 DNeasy plant mini prep kit (QIAGEN, Valencia, CA, USA). For the Icelandic samples,
166 library preparation and sequencing were conducted by Génome Québec, Canada.
167 Briefly, 1 µg of high-quality DNA was used for paired-end libraries construction. The
168 12 libraries were sequenced in three lanes of Illumina HiSeqv4 with read length of
169 125 bp. All other samples were subjected to paired-end sequencing using libraries
170 with an average insert size of either 350bp or 650bp and samples were sequenced
171 by the National Genomics Infrastructure at Science for Life Laboratory, Stockholm,
172 on an Illumina HiSeq 2000 or Illumina HiSeq X platform to a mean per-sample depth
173 of approximately 17X.

174

175 **Mapping and SNP calling**

176 Re-sequenced accessions were mapped against the reference genome of *P. tremula*
177 v2.0 [18], using BWA (v0.7.17; [19] – mem alignments for paired-end reads using
178 default parameters. Post-mapping filtering removed reads with MQ<20 (using
179 samtools v1.10; [20]. Depth and breadth of coverage were assessed in order to
180 confirm all samples had a minimum coverage of 8X (Additional File2: Table S1).
181 Finally, before the variant calling step, we tagged duplicate reads (using Picard
182 MarkDuplicates v2.10.3; Picard Toolkit.” 2019. Broad Institute, GitHub
183 Repository: <http://broadinstitute.github.io/picard/>) and found that they did not exceed
184 14% of the sequencing reads in individual libraries (ranging from 3 to 13.8%).

185

186 We used GATK v3.8 to call variants [21]. First, we performed a local realignment
187 around indels with RealignerTargetCreator and IndelRealigner (using default
188 parameters). We called per-sample variants using HaplotypeCaller to produce gVCF
189 files (-ERC GVCF). Given the large number of individuals, we produced intermediate
190 gVCF files using CombineGVCFs that were finally used in the joint-call step with
191 GenotypeGVCFs. From the resulting VCF file, we selected SNPs using
192 SelectVariants and filtered them with VariantFiltration (QD < 2.0; FS > 60.0; MQ <
193 40.0; ReadPosRankSum < -8.0; SOR > 3.0; MQRankSum < -12.5). At this point, the
194 filtered VCF was lifted over to version 2.2 of the genome of *P. tremula*, available at
195 ftp://plantgenie.org/Data/PopGenIE/Populus_tremula/v2.2/, using picard LiftOverVcf,
196 which allowed for better resolution at the chromosome level. Further SNP pruning
197 with vcf/bcftools removed positions with extreme depth values (min-meanDP 10,
198 max-meanDP 25; these thresholds correspond to the average depth \pm one standard
199 deviation), absent in more than 30% of the samples, non-biallelic or displaying an
200 excess of heterozygosity (FDR <0.01).

201

202

203 **Batch removal on SwAsp individuals.**

204 Given the fact that two sequencing batches from different Illumina platforms (Illumina
205 HiSeq 2000 and HiSeq X) were used to cover the SwAsp collection, we observed
206 noisy signals at the population structure level, presumably as a result of the different
207 sequencing equipment and library preparation methods. By means of principal
208 component analyses (PCA) we identified differences in the grouping of the
209 individuals where differences among samples along PC1 and, to a lesser extent, PC2
210 were explained by the sequencing platform and not the geographic origin of samples

211 (Additional File1: Figure S1A; PC1 separates the SwAsp collection in two sets, each
212 corresponding to a different Illumina sequencing platform). To address these batch
213 effects, we removed SNPs associated with both components without losing the
214 geographic structure of the Swedish population. For this purpose, we generated a
215 genotype file with vcftools for each chromosome. We ran independent PCA analyses
216 on each SNP configuration (homozygous reference, heterozygous, homozygous
217 alternative) and realized it was at the heterozygous level where the batch effect was
218 present. Using the libraries “ggfortify”, “factoextra” and “FactoMineR”, we estimated
219 the contribution of each variant to the components affected by the platform effect. We
220 started by assuming a uniform contribution of each variant to each component, and
221 removed those that would deviate from this premise in both PC1 and PC2 using the
222 following rational:

223

224 Assuming uniformity in the contribution of the variants, we calculate the expected C
225 value:

226
$$C = (1 / \text{nrow}(\text{SNPmatrix})) * 100$$

227

228 Threshold (T) of variants contribution both to PC1 and PC2 under uniformity:

229

230
$$T = ((C * \text{eig1}) + (C * \text{eig2})) / (\text{eig1} + \text{eig2})$$

231

232 (where eig1 and eig2 are the eigenvalues corresponding to PC1 and PC2)

233

234 For each variant, we calculate the contribution value:

235

236 var_contrib =((var_contrib[PC1]*eig1)+(var_contrib[PC2]*eig2))/(eig1+eig2)

237

238 We kept only those variants that did not contribute more than expected under the
239 uniformity hypothesis (var_contrib <= T). While removing the batch effect using this
240 procedure, we observed loss of more than 4e⁶ SNPs (Additional File1: Figure S1B).

241

242 In order to evaluate if we could remove the batch effect without compromising such a
243 large number of variants, we assigned a p-value to the contribution of each SNP to
244 the components using dimdesc (FactoMineR) at the chromosome level. We tested
245 different cut-offs (Additional File1: Figure S2) and observed that the batch effect was
246 removed while maintaining the geographic distribution of samples when using a p-
247 value threshold of 0.05 for PC1 and 0.01 for PC2 (Additional File1: Figure S2B). With
248 these thresholds, ~1.8 e⁶ SNPs were filtered out to remove the batch effects but
249 without compromising the overall population structure of the samples.

250

251 **Population structure and admixture in *P. tremula***

252 We used plink (v1.90b4.9; [22]) to identify linked and low frequency SNPs (--indep-
253 pairwise 100 10 0.2 –maf 0.05) that we removed with vcftools. We used the resulting
254 set of pruned positions to compute the relatedness between samples from the
255 Eurasian collection by calculating genome-wide estimates of identity by descent
256 (IBD). We removed from our downstream analyses one sample from each pair of
257 closely related individuals, using a threshold value of relatedness of 0.4.

258

259 Next, we used vcftools to output the genotype likelihood information contained in the
260 pruned VCF file; the resulting beagle-formatted file was input into NGSAdmix to

261 estimate individual admixture proportions across a varying number of ancestral
262 populations (K=3 to K=6).

263

264 Finally, we assessed individual ancestries using EIGMIX implemented in SNPRelate.
265 This eigen analysis, developed by [23], is computationally efficient for estimating
266 ancestral proportions by making assumptions of surrogate samples for ancestral
267 populations. For this, we chose the Latvian, Scottish and Russian populations as
268 proxies of the ancestral populations (referred to as Central European, Western
269 European and Siberian, respectively) from which admixture was to be estimated,
270 based on earlier estimates of the post-glacial colonization history of *P. tremula*
271 across Europe [15]. We used the LD/MAF pruned SNPs and produced a GDS object
272 for the analysis [24].

273

274 **Gene flow**

275 We combined several statistics developed to identify introgressed genomic regions.
276 These included the classic ABBA-BABA test in its developed F_d statistic form. For
277 these calculations we used the popgen pipeline developed by Simon Martin,
278 available at https://github.com/simonhmartin/genomics_general. We treated each
279 chromosome independently; the corresponding vcf file was converted to .geno format
280 using parseVCF.py. From these files, we calculated diversity and divergence values
281 for each subpopulation (D_{XY} , F_{ST} and π) in non-overlapping 10 Kb windows, using the
282 script genomics.py (Additional File2: Table S2). Finally, we used the script
283 ABBABABAwindows.py to compute the four-taxon D statistic and f estimators in non-
284 overlapping windows of 10 Kb as well. For these calculations, we tested gene flow
285 from the Russian subpopulation (P3; 23 individuals) into Northern Scandinavia (P2;

286 56 individuals: 34 from Northern Sweden and 22 from Norway), setting the Chinese
287 (O; 15 individuals) samples as the outgroup, and the Latvian (45 individuals) or
288 Southern Scandinavian (50 from Sweden and 23 from Norway) groups as the other
289 potential receptors (P1). Since we were interested in estimating shared variation
290 between Russian and Northern Scandinavian individuals, we focused on the f_{dM}
291 introgression statistic, described by [25]. f_{dM} gives positive values when introgression
292 occurred between P3 and P2, and negative values if it occurred between P3 and P1.
293 In order to avoid stochastic errors that could produce meaningless values, we only
294 considered windows with at least 100 biallelic SNPs.

295

296 We also calculated the basic distance fraction, Bd_f (PopGenome; v2.7.1; [26], which
297 combines both f_d and distances estimations and that is less sensitive to the time of
298 gene-flow. Just as in the previous analysis, we set a four-taxon tree hypothesis to
299 estimate the proportion of introgression from Russia into Northern Scandinavia. We
300 calculated Bd_f in 10 Kb windows treating each chromosome independently. We
301 combined all 19 chromosome estimations and assigned a Z-score and p-value to
302 each Bd_f value using genome-wide results and did an extra FDR correction. We
303 selected those regions that had an FDR<0.05.

304

305 Finally, we ran the Efficient local ancestry inference (ELAI) method [27] to confirm the
306 introgression event on chromosome 10. We used two upper-layer clusters and 10
307 lower-level clusters; 20 Expectation-Maximization steps and 100 generations of
308 admixture between the ancestral populations, that corresponded to the Russian and
309 Latvian aspen populations. The plotted allele dosages correspond to the average

310 over all the Swedish individuals from the northern population. We ran five
311 independent EM runs.

312

313 **Positive and balancing selection**

314 We scanned the genome of *P. tremula* for signals of positive selection using a newly
315 developed strategy called “integrated selection of alleles favoured by evolution”,
316 iSAFE [28]. This method first calculates haplotype allele frequency scores based on
317 the presence of derived alleles in a particular haplotype, which is then used to
318 calculate SAFE scores. These SAFE scores are in turn calculated across a region
319 of given size in 50% overlapping windows of 300 bp to culminate in an iSAFE signal.
320 These statistics can be calculated for large regions of phased haplotypes, which we
321 obtained with BEAGLE v.4.1 [29], so chromosomes were divided into 3 Mb windows
322 for each iSAFE iteration. The iSAFE software can be set to run under a case-control
323 mode, with the case populations being, for example, the Northern Scandinavian
324 population, and the control population being all remaining individuals not used in the
325 case population. We ran this screening for Northern and Southern Scandinavia,
326 Russia, and combining all the Nordic individuals from Norway, Sweden and Russia
327 together. As recommended by the authors, we considered iSAFE values significant
328 when they were >0.1.

329

330 In addition, we ran betascan [30], to detect possible signals of balancing selection,
331 by dividing the collection in geographic zones: Northern Scandinavia (Sweden and
332 Norway), Central Europe (Latvia and Southern Sweden), Western Europe
333 (Scotland) and Southwestern Scandinavia (Southern Norway and Iceland), and
334 using the following parameters: -fold -m 0.1 -p 20. To avoid any bias due to the

335 unbalanced number of individuals in each group, we randomly chose 55 individuals
336 from each geographic cluster. In order to avoid spurious signals of balancing
337 selection, we binned SNPs with high beta-scores (FDR<0.01) into 50 Kb windows
338 and searched for genes encoded within bins having at least 100 significant SNPs.
339 Functional enrichments were obtained using topGO v.2.36.0 [31].

340

341 **Population demographics**

342 We chose StairwayPlot [32] to infer changes in effective population sizes in the past.
343 For this, the folded site frequency spectrum (SFS) for the tested subpopulation was
344 calculated using ANGSD v.0.920 [33] using the LD-pruned SNPs (plink --indep-
345 pairwise 100 10 0.2). We ran independent analyses for Scandinavia, Russia, Latvia
346 and for a set of 50 randomly selected individuals from the entire collection. We
347 generated 100 bootstrap replicates and assumed a mutation rate (μ) of 2.5e-9 and
348 a generation time of 15 years [34].

349

350 In addition, we aimed to confirm the directionality of the gene flow events we
351 detected on chromosome 10 between the Russian and Scandinavian individuals. For
352 this, we explored alternative demographic models using the diffusion approximation
353 method of dadi [35] to analyze the site frequency spectra of our aspen
354 subpopulations. We used two chromosomes for this purpose, chromosome 10 and
355 chromosome 8, since there is strong evidence of synteny between both
356 chromosomes deriving from the 40 My old genome duplication that are shared by all
357 member of the genus *Populus* [36]. We ran analyses independently for chromosome
358 8 and 10 using all LD pruned, biallelic sites including all biallelic sites present in the
359 putatively selective sweep/introgressed region on chromosome 10. We fit 19

360 demographic models (Additional File1: Figure S3) for the Russian and Scandinavian
361 subpopulations using the demographic modelling workflow (dadi_pipeline) from [37].
362 We tested different classes of models: simple models of divergence with and without
363 migration; simple models plus instantaneous size changes, ancient migration or
364 secondary contact, ancient migration plus instantaneous size change, and island
365 models of vicariance and founder events. In total, we tested 19 different demographic
366 scenarios using all polymorphic sites on chromosome 10. First, we ran the general
367 optimization routine (dadi_Run_Optimizations.py), which includes fitting the model
368 using particular settings for a given number of replicates, then using the parameters
369 from the best scoring replicate to seed a subsequent round of model fitting using
370 updated settings. We used four rounds, with 10, 20, 30 and 40 replicates. The
371 arguments controlling the steps of the optimization algorithm and the perturbation of
372 starting parameters were maxiter=[3,5,10,15] and folds=[3,2,2,1]; we defined the
373 extrapolation grid size to pts = [80,90,100] and projection sizes to proj = [15,15]. The
374 optimization routine with four rounds had an important effect in minimizing
375 differences in the likelihoods achieved at the end of the runs (Additional File1: Figure
376 S4).

377

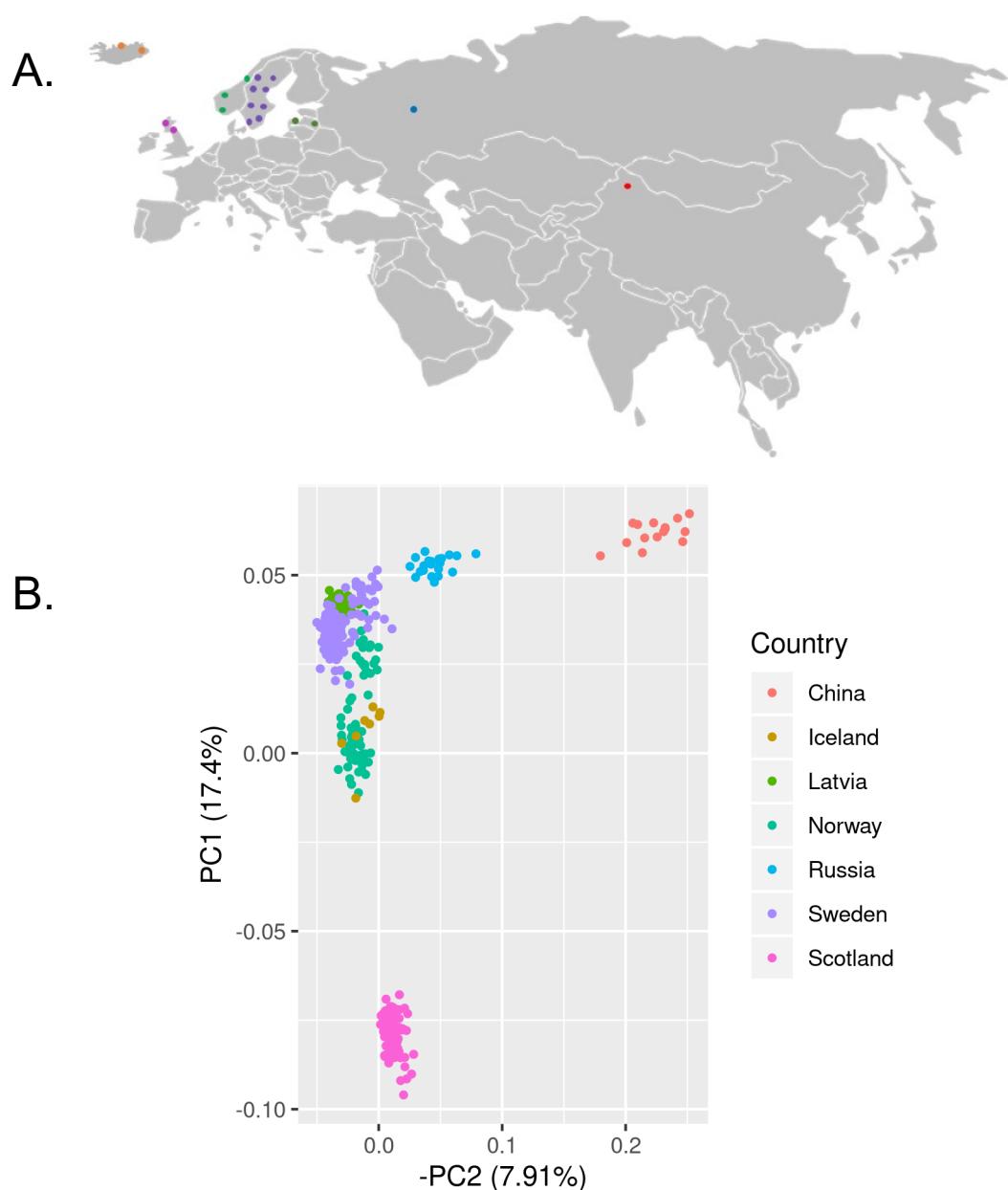
378 In order to generate confidence intervals for the parameters estimated from the
379 demographic models with the highest likelihood, we created 100 bootstrap
380 replicates of the spectra and calculated the standard deviations of the best-fit
381 parameters using the Godambe methods [38].

382

383

384 **Results**

385

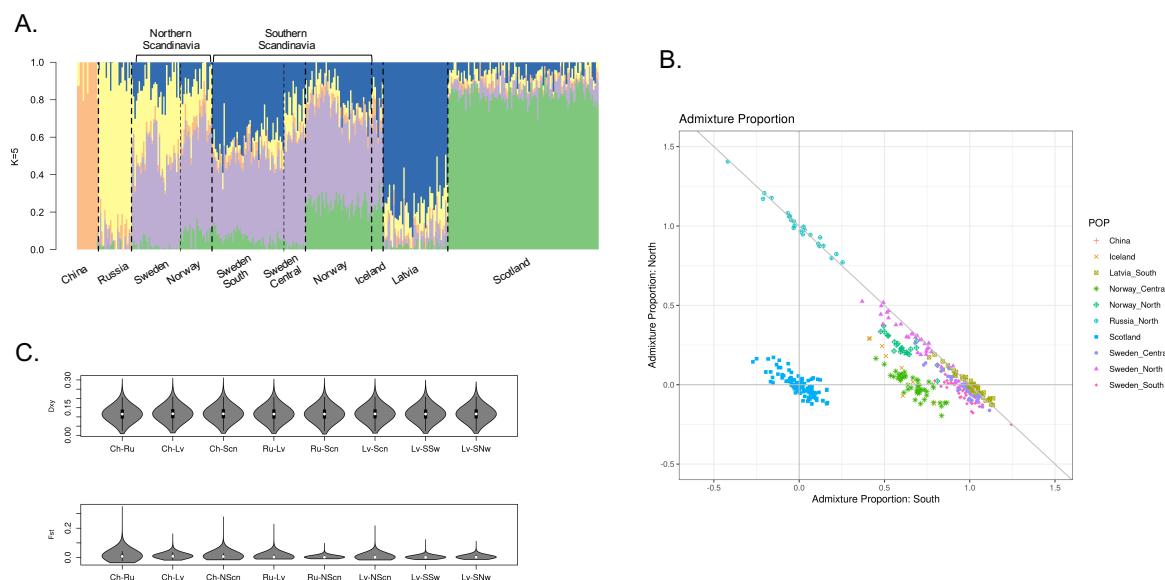

386 **Population structure and admixture**

387

388 In order to elucidate demographic and adaptive events that have accompanied the
389 post-glacial radiation of European aspen, we re-sequenced a large collection of
390 individuals, covering a wide geographic range across the Eurasian continent. Our
391 collection comprises 411 *P. tremula* individuals sampled from China [39], Russia,
392 Latvia, Norway, Sweden, Iceland and Scotland (Figure 1A; Additional File2: Table
393 S1). Sequencing reads for all individuals were mapped against the reference *P.*
394 *tremula* v2.0 genome [18] and obtained $\sim 20.8e^6$ SNPs after several filtering steps
395 (depth of coverage, missingness, level of heterozygosity and batch effect caused by
396 the incorporation of samples in the Swedish collection from two different sequencing
397 platforms; Additional File1: Figure S1,2). It should be highlighted that the removal of
398 false heterozygous positions did not alter the results of the downstream analyses
399 (Additional File1: Figure S5). Finally, we removed 48 samples that were possible
400 hybrids or that were highly related samples, yielding a total of 363 individuals for all
401 downstream analyses.

402

403 Due to the broad geographic coverage of *P. tremula*, we first focused on estimating
404 the population structure of the species. As depicted in Fig 1B, a principal component
405 analysis (PCA) using $2.8e^5$ pruned, unlinked SNPs clearly separated at least three
406 independent clusters of individuals, one corresponding to samples of Chinese origin,
407 another comprising all samples collected across continental European and a third
408 comprising samples collected on the British Isles (primarily Scotland). A deeper
409 analysis of the composition of the species structure with NGSAdmix revealed five



410

411 **Figure 1.** *P. tremula* collection. A. Sampling sites across the Eurasian continent. B. PCA of
412 Principal component analysis of *P. tremula* individuals, using 283,505 pruned sites across the 19
413 chromosomes.
414
415 different ancestral populations and different levels of hybridization in particular
416 geographic regions. Chinese and Russian samples, represented by solid colors in
417 Figure 2A (orange and yellow, respectively), did not show strong signs of admixture

418 with European samples. However, when moving towards Western Europe, admixture
419 events occur and we can recognize three additional populations: a Scandinavian
420 (purple), a Central-European (Latvia, blue) and a Western European (Scottish,
421 green) population. Interestingly, the genomic background of the Scandinavian
422 samples (from Norway and Sweden) is a complex mosaic of up to four populations,
423 confirming earlier results based on microsatellite data [15] and providing additional
424 evidence for several waves of migration that led to the colonization of the
425 Scandinavian peninsula.

426

427

428 **Figure 2.** Population structure and admixture proportion. A. NGSadmix plot (K=5) showing the
429 hybrid genetic background of the European populations. B. Admixture plot (EIGMIX) where the
430 Russian, Scottish and Latvian populations where selected as proxies of the ancestral gene-pools
431 in Europe and thus, are located at the vertices of the plot. C. Diversity and differentiation
432 estimators between aspen subpopulations.

433

434 Given these observations, we took a closer look at the genomic mosaicism of the
435 Scandinavian population. We used EIGMIX, taking Russian, Scottish and Latvian

436 populations as proxies of the ancestral Siberian, Western and Central European
437 populations, respectively (Figure 2B, see also [15]). These populations correspond to
438 the vertices of the graph in Figure 2B, while the remaining samples were positioned
439 according to their level of admixture along the sides of the triangle. This analysis,
440 consistent with the observations derived from the NGSadmix analysis, shows that
441 individuals collected in Northern Scandinavia have on average 26% of Russian origin
442 with a maximum value of 52% in Sweden (SWASP_108 and SWASP_115) and 37%
443 in Norway (NO_MIR20). While the second highest ancestral component ($\bar{x}=0.66$) in
444 Northern Scandinavia corresponds to the Central European population, in the
445 samples from northern Norway there is up to 20% of ancestry from the Western
446 European population. The opposite trend was observed in Southern Scandinavia,
447 where the dominant ancestral component is Central European ($\bar{x}=0.75$), with less
448 than 10% of Russian admixture and up to 18% and 44% of Western European
449 ancestry in samples from Sweden and Norway, respectively. This Western European
450 genomic component (colored in green in Figure 2A), which is strongly represented
451 among the Scottish and Norwegian samples, derives from an additional ancestral
452 population, probably located between the Iberian and Italian peninsulas that we did
453 not cover in our sampling. These observations also fit the results from earlier
454 analyses based on microsatellite data [15]. Icelandic samples largely overlap with
455 Norwegian individuals, suggesting that the population in Iceland has been recently
456 introduced and has a clear Norwegian origin.

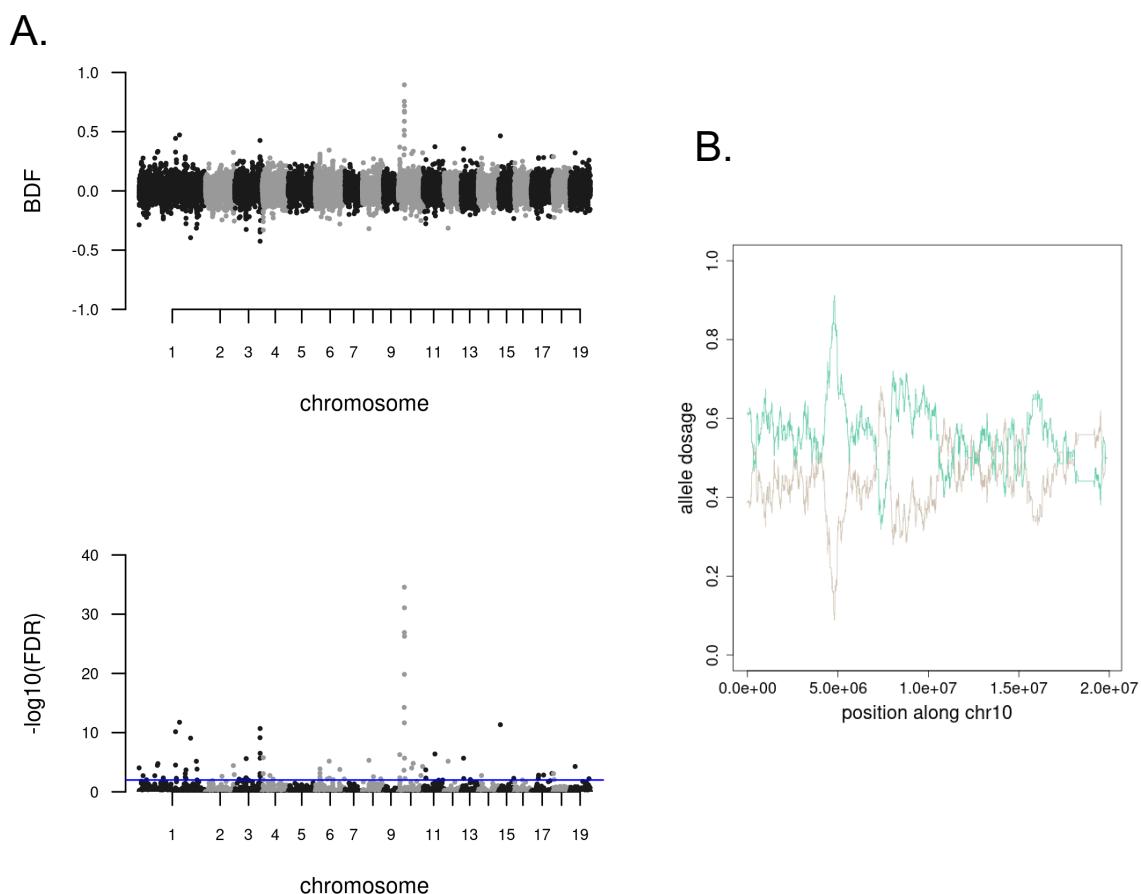
457
458 These observations were also supported by F_{ST} estimations (Figure 2C, Table 1), as
459 we obtained a small dispersion of values when calculating pairwise comparisons
460 between Russia and Northern Scandinavia (mean $F_{ST}=0.003$, maximum at 0.09), or

461 Latvia and Southern Scandinavia (mean F_{ST} between Latvia and Sweden of 0.002,
462 maximum at 0.07 and between Latvia and Norway of 0.004, maximum at 0.1), while
463 comparisons between populations without signs of admixture, such as China and
464 Russia, reached values as high as 0.35, which approach F_{ST} values observed
465 between closely related aspen species [39].

466

467 **Gene flow.**

468


469 We scanned the genome of *P. tremula* for potential introgression events that could
470 have occurred given the admixed background we observed in Scandinavia. We

471

472 **Table 1.** Genome-wide F_{ST} comparison.

	CH	ICE	LV	NOC	NON	NOS	RU	SWC	SWN	SWS	UK
CH	-										
ICE	0,014	-									
LV	0,012	0,003	-								
NOC	0,016	0,003	0,005	-							
NON	0,013	0,002	0,004	0,003	-						
F_{ST}	NOS	0,016	0,003	0,004	0,003	0,003	-				
	RU	0,012	0,006	0,005	0,007	0,005	0,007	-			
	SWC	0,016	0,004	0,003	0,004	0,003	0,003	0,006	-		
	SWN	0,012	0,003	0,004	0,004	0,002	0,003	0,004	0,001	-	
	SWS	0,011	0,002	0,002	0,003	0,002	0,002	0,005	0,001	0,002	-
	UK	0,010	0,002	0,009	0,004	0,005	0,004	0,008	0,004	0,007	0,008

473 CH:China; ICE: Iceland; LV: Latvia; NOC: Central Norway; NOCN: Northern Norway; NOS: Southern Norway;
474 RU: Russia; SWC: Central Sweden; SWN: Northern Sweden; SWS: Southern Sweden; UK: Scotland.
475
476 followed a four-taxon approach for these scans, keeping the Chinese population as
477 an outgroup in all our comparisons. We calculated the f_{dM} introgression statistic [25],
478 and the basic distance fraction, Bd_f (PopGenome; v2.7.1), which combines both f_d
479 and distance estimations and that is less sensitive to the timing of gene-flow. Both
480 estimators give positive values when introgression occurs between P3 (donor
481 population: Russia or Latvia) and P2 (Northern Scandinavia), and negative values if it
482 occurred between P3 and P1 (Southern Scandinavia), on a scale from -1 to 1. When
483 evaluating gene flow from Russia into Scandinavia, we obtained f_{dM} and Bd_f mean
484 genomic values of -0.008 and 0.014, respectively (Figure 3A). After FDR correction
485 at a threshold of 0.01, one region on chromosome 10, spanning from 4.5 to 4.9 Mb
486 had a highly significant introgression signal, reaching values of $f_{dM} = 0.85$ (FDR=3.6e-
487 3) and $Bd_f = 0.89$ (FDR=1.33e- 50). As expected, there were differences in D_{XY} and F_{ST}
488 patterns between subpopulations at this region: F_{ST} is remarkably high between
489 Nordic subpopulations and any other geographic location, while D_{XY} decreases when
490 northern Norwegian, Swedish and Russian subpopulations are contrasted (Additional
491 File1: Figure S6,7). Introgression on chromosome 10 was further validated applying
492 ELAI on each individual from the north of Sweden. This method implements a two-
493 layer HMM (hidden Markov model) to infer local ancestry of admixed individuals
494 without prior definition of window sizes or haplotype phasing, returning the most likely

496 **Figure 3.** Introgression signals between Scandinavia and its ancestral gene pools. A. Gene flow
497 from Russia using a four-taxon tree hypothesis. B. Allele dosage along chromosome 10
498 estimated with ELAI. In green, the dosage from the ancestral Russian population; in brown from
499 the Latvian population.

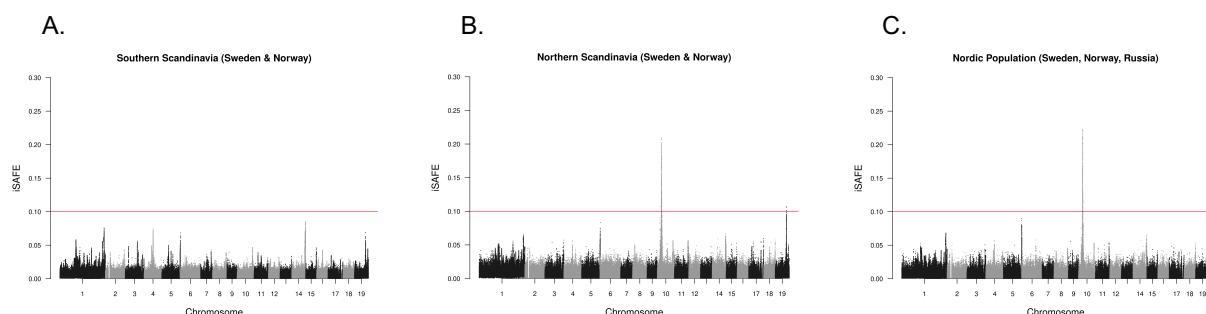
500
501 proportions of ancestry at each variable position of the chromosome. ELAI confirmed
502 that, while chromosome 10 shares alleles from both ancestral or training populations
503 and on average, northern individuals have 44% and 56% admixture proportions from
504 Latvian and Russian populations respectively, the region encompassing 4.5-4.9 Mb
505 has a predominant Russian ancestry (Figure 3B; Additional file 1: Figure S8).

506

507 In terms of gene content, two relevant loci annotated as Heading-date 3A-like, or
508 Flowering Locus T (PtFT2) genes, are encoded in this introgressed genomic block:
509 Potra2n10c20839 (4772117 - 4776457 bp) and Potra2n10c20842 (4789807 –
510 4792846 bp) and the region surrounding these two genes is known to have been
511 subject to a selective sweep in the northern Swedish population [11].

512

513


514 **Alleles favored by evolution or positive selection.**

515

516 A good way to understand local adaptation without necessarily having phenotypic
517 data is to look for signs of positive selection in different populations across a species
518 range. Previous evidence of selective sweeps has shown a particularly strong signal
519 on chromosome 10, in a region encompassing the two Flowering Locus T homologs
520 [11]. This region is strongly implicated in the capacity of Nordic populations to adapt
521 their seasonal phenology to the more variable day lengths and shorter growth
522 seasons experienced at norther latitudes. We scanned the genome of *P. tremula*
523 using a novel method to detect mutations favored by selection, iSAFE (integrated
524 selection of alleles favored by evolution; [28]. We calculated iSAFE scores for each
525 European population, and also contrasted Northern vs. Southern populations in
526 Scandinavia in a case/control analysis mode. The highest iSAFE signal
527 (iSAFE=0.22) was located on chromosome 10, in the region spanning 4.5 to 4.9 Mb
528 where iSAFE values reached the recommended threshold of 0.1. The high iSAFE
529 values were reached not only in Swedish individuals, but also when we combined
530 samples originating in Northern Norway, Northern Sweden and Russia (Figure 4),
531 implying that the sweep is shared among these populations derived from more

532 northern latitudes in the Eurasian continent. As mentioned before, this region is
533 centered around two loci annotated as Heading-date 3A-like, or *PtFT2*, in
534 agreement with previous analyses that have associated *PtFT2* with climate
535 adaptation in *P. tremula* [11].

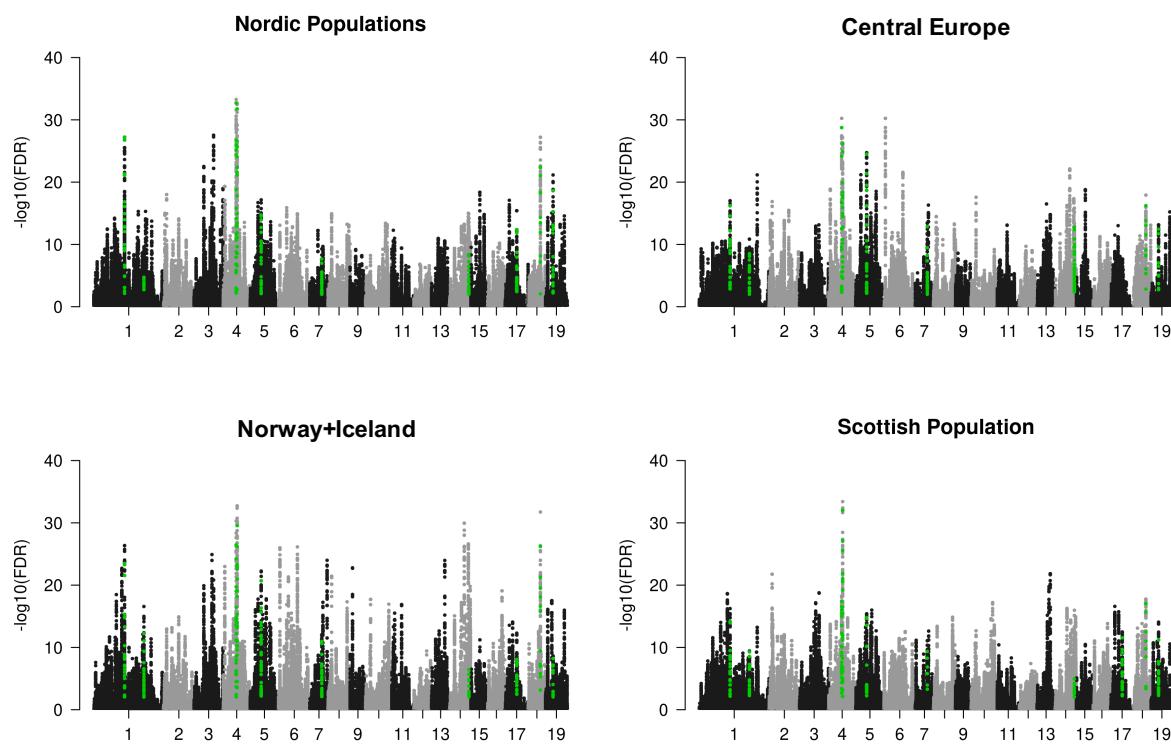
536

537

538 **Figure 4.** Selective sweep in chromosome 10 in Nordic populations. A. iSAFE scan of individuals
539 from the southern part of Scandinavia. B. iSAFE scan of individuals from the northern part of
540 Scandinavia. C. iSAFE scan of chromosome 10 grouping Swedish, Norwegian and Russian
541 individuals.

542

543


544 **Balancing selection and functional enrichments.**

545

546 A closer look at the iSAFE patterns in the different subpopulations revealed several
547 strong signals that a) did not reach the accepted significance threshold to be
548 confidently classified as regions targeted by positive selection or b) were not
549 geographically limited, i.e., they are present in at least two distant subpopulations
550 (Additional File1: Figure S9). This suggests that another selective force may be
551 acting to maintain alleles at high frequencies, for instance balancing selection (BS).
552 In order to evaluate this possibility, we ran betascan [30] on all 19 chromosomes,

553 dividing the collection in geographic zones: Northern Scandinavia (Northern Norway
554 and Sweden), Central Europe (Latvia and Southern Sweden), Western Europe
555 (Scotland) and Southwestern Scandinavia (Southern Norway and Iceland). We
556 hypothesized that some genomic tracts with a high beta-score would match regions
557 that we previously classified as iSAFE candidates for positive selection across
558 multiple populations. This pattern was evident on chromosomes 1 (23.4-23.5 and
559 38.2-38.35 Mb), 4 (9.9-10Mb), 5 (8.35-8.4 Mb), 7 (9.1-9.15 Mb), 14 (14,7-14.8 Mb), 17
560 (8.85-8.9 Mb), 18 (9.4-9.45 Mb) and 19 (5.6-5.65 Mb) (Figure 5). A further validation
561 of the effect of BS on these regions comes from the comparison of π and D_{XY}
562 patterns. While the average of genome wide, pairwise D_{XY} was around 0.12, the
563 average value obtained when considering only the chromosome tracts affected by
564 BS was close to 0.14 (t-test, $p<0.01$; Additional File2: Table S3), while π values also
565 increased in BS targeted regions compared to genome-wide average (Additional
566 File2: Table S3). Average F_{ST} values did not differ between BS affected regions and
567 genome wide estimations, however.

568
569 Furthermore, we also observed significant bins that were unique to a specific
570 population and we therefore ran independent functional enrichment tests for
571 biological processes affected by balancing selection for each of these regions.
572 Interestingly, we found a few common terms with significant p-values (Fisher test,
573 $p<0.05$), such as ethylene metabolic and biosynthetic processes ($p_{Nordic}=1,4e^{-3}$;
574 $p_{CentralEurope}=9.7e^{-4}$), jasmonic acid mediated signaling pathways
575 ($p_{SouthWestScandinavia}=1.8e^{-2}$; $p_{CentralEurope}=4.7e^{-3}$; $p_{Scotland}=1.5e^{-2}$), and intramembrane
576

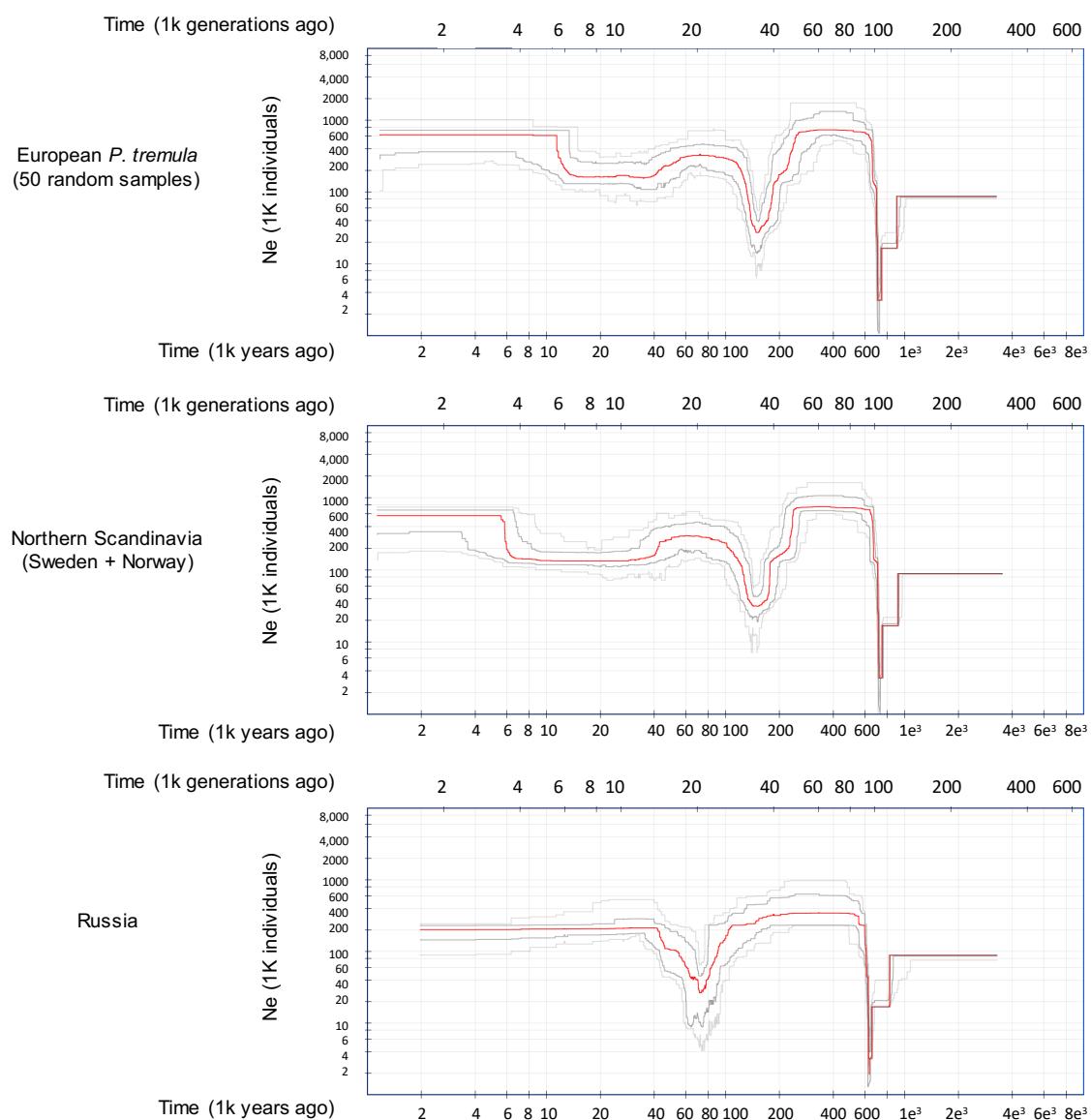
577

578 **Figure 5.** Balancing selection. Green dots highlight shared signals between subpopulations.

579

580 Golgi-vacuolar transport ($p_{\text{Nordic}}=2e^{-3}$; $p_{\text{SouthWestScandinavia}}=4.3e^{-3}$; $p_{\text{Scotland}}=1.8e^{-2}$). Other
581 relevant processes particular to a specific subpopulation include alkene biosynthesis
582 ($p_{\text{Nordic}}=1.4e^{-3}$; $p_{\text{CentralEurope}}=9.7e^{-4}$), water transport ($p_{\text{SouthWestScandinavia}}=6.8e^{-3}$) or
583 secondary shoot formation ($p_{\text{CentralEurope}}=3e^{-3}$).

584


585 **Demography and secondary contacts.**

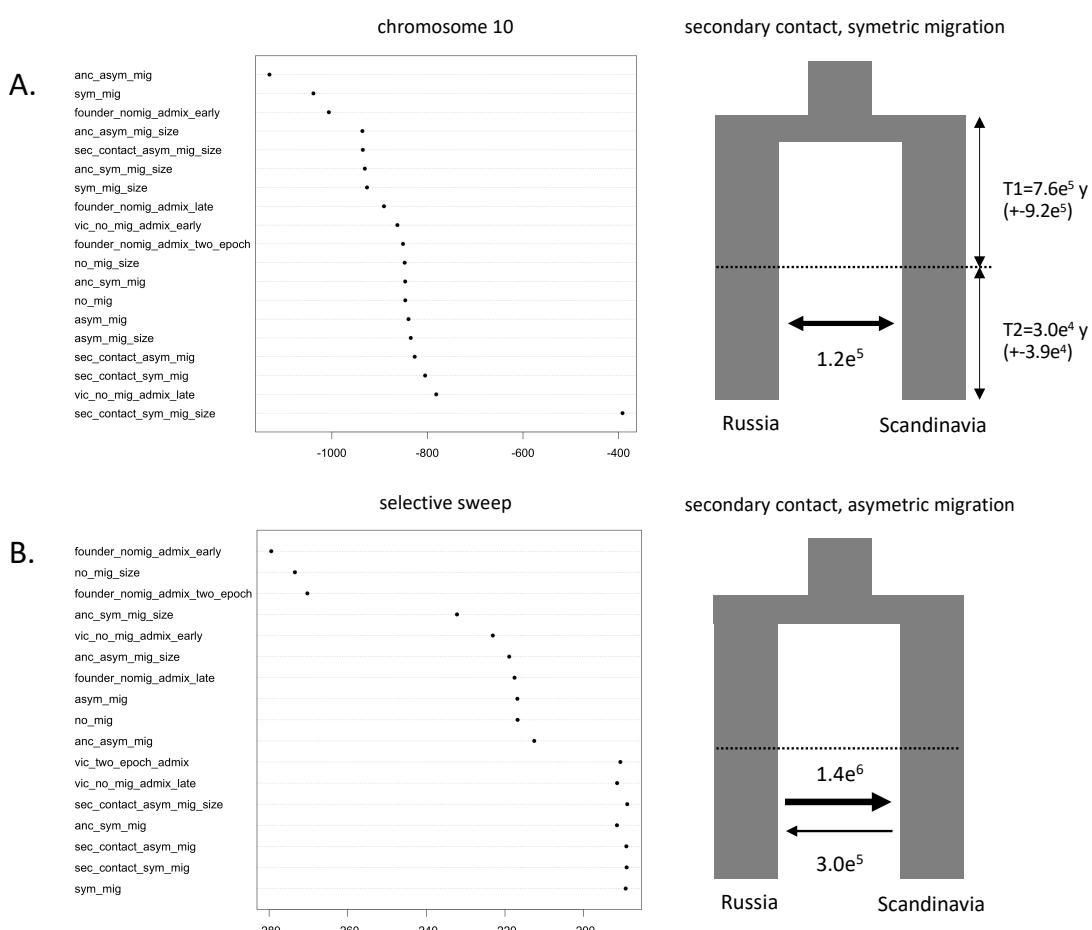
586

587 The expansion of *P. tremula* across the Eurasian continent provides a good scenario
588 to test for changes in population sizes across time. We evaluated population size
589 changes through time using the stairway plot method, which is based on the
590 composite likelihood of the SFS of the species and/or selected subpopulations. We
591 used 50 random samples from our collection to generate the overall behavior of the

592 species, as well as for specific collection sites (Russia and Northern Scandinavia).
593 We observed the strongest reduction in N_e around ~700-800 ka this sharp decrease
594 in N_e was observed across all subpopulations, which means it was a bottleneck that
595 affected the entire species and that predicated its dispersal in the Eurasian continent.
596 A second bottleneck occurred approximately ~150-170 ka in the populations from
597 Central Europe and Scandinavia, and a third, mild bottleneck spanned from ~10-35
598 ka, a period representing the last glacial era in the Northern hemisphere. These two
599 bottlenecks were not present in the Russian subpopulation and instead, we only
600 observed a second decrease of N_e around 60-80 ka in this population (Figure 6).

601
602 Given the admixed nature of the Scandinavian individuals, we also evaluated 19
603 different demographic models including simple models of divergence with and
604 without migration, models with instantaneous size changes, ancient migration or
605 secondary contact, ancient migration plus instantaneous size change, and island
606 models of vicariance and founder events. We used two levels of resolution for this
607 analysis: we ran the 19 models at the chromosome level, using unlinked sites from
608 chromosomes 8 and 10, and also, at a region-targeted level, using the SNPs derived
609 from the segment of chromosome 10 that we hypothesize is the result of adaptive
610 introgression in the Northern Scandinavian population. For these analyses, we
611 considered two populations from our collection, Scandinavia and Russia, in order to
612 identify the most probable site of origin of the selective sweep on chromosome 10.
613 While using all unlinked polymorphic sites on chromosomes 8 and 10 (Figure 7;

614


615 **Figure 6.** Demographic changes in *P. tremula*.

616

617 Additional File1: Figure S10), we consistently observed that the most strongly
618 supported model included divergence in isolation with continuous symmetrical
619 secondary contact and an instantaneous size change (sec_contact_sum_mig_size).
620 Interestingly, at the sweep level, several models were equally supported, with
621 divergence in isolation with continuous asymmetrical secondary contact (with or
622 without instantaneous size change) being the most significant models. Not only was

623 asymmetrical migration detected, but it was stronger from Russia into Scandinavia
 624 than in the other direction (Additional File1: Figure S11). After extrapolating the
 625 results of these simulations to time units, the secondary contact between Russian
 626 and Scandinavian populations was dated to around 30 ka ($\pm 3.9 \times 10^4$), while the
 627 divergence of both lineages occurred 760 ka, consistent with the first bottleneck seen
 628 at the species level in the stairway plot analyses.

629

630

631 **Figure 7.** Likelihood of demographic models fitting the SNP data. A. SNPs observed in
 632 chromosome 10 are evaluated. B. SNPs comprised within the selective sweep in chromosome 10
 633 are tested.

634

635

636 **Discussion**

637

638 **Aspen populations: a mosaic of ancestral gene pools**

639

640 The large number of aspen individuals included in our collection allowed us to dissect
641 the genetic mosaicism of the species across a large geographic scale. Intra-species
642 admixture in *Populus tremula* is not a novel idea, in fact, it has previously been
643 documented between divergent lineages in Europe using data from microsatellite loci
644 [15]. These results, first described in 2010, are, to a certain extent, corroborated by
645 our current analyses but we have also been able to study the hybridization and
646 introgression patterns at much finer scales across the genome of *P. tremula*. The
647 NGSAdmix analysis identified five genetic components that explain the population
648 structure along the East-West geographic axis in Eurasia, corresponding to Eastern
649 Asia (China), Russia, Scandinavia (Sweden and Norway), Eastern European (Latvia)
650 and what we suggest may correspond to Central and Western Europe (Scotland and
651 Southern Norway + Iceland). While Chinese and Russian individuals appear to be
652 partly isolated from Western populations (genome wide F_{ST} values between China
653 and Western Europe ~0.01, an order of magnitude higher than any other intra-
654 species pairwise comparison), the genomic mosaicism is evident particularly in
655 Scandinavia, where the population can be divided into at least two different groups
656 that follow the latitudinal gradient along the peninsula. Individuals from Northern
657 Scandinavia have a strong Russian ancestral component, whereas those from
658 Southern Scandinavia have strong influence from both Eastern and Central/Western
659 European population. The observations of two independent routes of colonization of
660 Scandinavia, one from the south and another one from the northeast along the ice-

661 free Norwegian Atlantic coast, agree with findings in other organisms, such as brown
662 bears (reviewed by [40]) and humans [41].

663
664 de Carvalho and collaborators [15] considered Scottish and Russian subpopulations
665 as proxies for the ancestral populations contributing to the admixed Swedish
666 population. In our analyses we extended this idea by using the Russian, Latvian and
667 Scottish populations in a triple model of hybridization that gave us a higher resolution
668 for identifying admixture routes of the Scandinavian population. In the south of
669 Scandinavia, we could differentiate two groups of individuals: one in Sweden with a
670 clear Latvian component, and one in Norway, with Latvian but also with a Scottish
671 component. This could likely be explained by independent waves of colonization from
672 the south of the peninsula, where Swedish and Norwegian populations were kept
673 partially isolated by the Scandinavian Mountains, or Scandes, that run along the
674 entire peninsula. In line with previous observations, the individuals from the Scottish
675 populations are largely independent from individuals derived from Central Europe.
676 Unfortunately, the lack of samples from Central Europe and the Iberian Peninsula in
677 our collection make it difficult to identify the origin of this population, although de
678 Carvalho et al (2010) identified that trees from Spain constitute a different lineage
679 themselves, possibly due to human-mediated disturbance. Finally, it is clear that the
680 relatively few aspen clones that occur in Iceland are all recent introductions to the
681 island of individuals with a Norwegian origin.

682 Many very interesting discussions have been carried out in recent years regarding
683 paleographic migration trajectories of trees in Europe [42, 43]. By tracking plant
684 macrofossil and pollen records, it has been suggested that a long-term decline in tree
685 populations occurred around 24 ka followed by a recovery in population sizes

686 approximately 15 ka [7]. The demographic changes that have affected *P. tremula*
687 across the Eurasian continent vary along the East-West axis. The populations from
688 Western Europe have undergone two episodes of bottleneck and subsequent
689 recovery, one around 150 ka and another one during the Middle Pleniglacial period,
690 from which it recovered to its current effective population size between 12-15 ka
691 (Figure 6). On the other hand, the Russian population experienced a single severe
692 bottleneck around 80 ka, from which it recovered before the LGM (Figure 6). The
693 asymmetry in the distributions of tree species along the West to East axis in Europe
694 has been also highlighted by paleobotanical evidence and climate simulations.
695 Western Europe generally lacked tree species north of 46N while higher growing-
696 season warmth in Eastern Europe resulted in increased permafrost thaw and higher
697 water availability so that small populations of boreal trees were able to survive up to
698 approximately 49.8N. The lack of a second bottleneck during the LGM in Russia
699 suggests that the split of the European lineages of aspen predated the glacial
700 maximum and suggests different colonization routes of Russia from southern aspen
701 populations located in far eastern Europe and central Asia.

702

703 **Gene flow from the East facilitated adaptation to extreme latitudes.**

704

705 Evidence of inter-species hybridization in poplars has been extensively documented
706 in recent years [14, 44] as well as intra-species gene flow in *P. tremula* [45]. Under
707 these circumstances, we can think of two opposite outcomes of gene flow: it can
708 either homogenize populations, and thus interfere with processes of local adaptation,
709 or it can introduce genetic variation at higher rates than mutation would in the same
710 time frame, providing a source of novel alleles. If any of those foreign alleles are

711 permanently incorporated in a population as a result of gene flow and successive
712 backcrossing, a process defined as introgression, this can increase the fitness of the
713 recipient population and thus, can be referred to as adaptive introgression.
714 Compared to neutral introgression, where alleles can be lost by drift, adaptively
715 introgressed alleles are maintained by selection that can lead to fixation in the
716 recipient population [46]. The role of introgression for species adaptation and
717 evolution has been recognized in animals (reviewed by [47], humans [48], and plants
718 [49, 50]. A recent clear example of adaptive introgression was reported between two
719 species of cypress in the mountainous region of the eastern Qinghai-Tibet Plateau,
720 where loci from *Cupressus gigantea* introgressed into *C. duclouxiana* and thereby
721 facilitated adaptation in *C. duclouxiana* to cooler and drier conditions at higher
722 latitudes and elevations [51].

723
724 As several of the populations in our aspen collection are hybrids, we evaluated the
725 occurrence of adaptive introgression events between lineages. One noteworthy
726 genomic region was identified as it displayed clear patterns of introgression between
727 Northern Scandinavia and Russia that were detected using different estimators of
728 introgression (B_{dF} , f_{dM} , and local ancestry; Figure 3) and that we could validate using
729 patterns of genetic diversity and differentiation (Additional File1: Figure S6,7). This
730 genomic tract is located on chromosome 10 and comprises ~500 Kb surrounding two
731 FT homologs that have already been implicated as a key component for seasonal
732 adaptation of phenology in aspens to high latitudes in Sweden [11]. Not only did the
733 genomic tract display a clear signal of positive selection in Sweden, corroborating
734 earlier studies [11], it also showed strong signs of selection in other high-latitude
735 populations, including northern Norway and Russia (iSAFE>0.2; Figure 4).

736 In order to determine the population of origin of the adaptive allele in this region on
737 chromosome 10, we used demographic modeling to test for different patterns of
738 contact between ancestral populations and directionality of the hypothesized gene
739 flow. First, using a set of unlinked SNPs derived from two independent aspen
740 chromosomes (chr10 and chr8), we observed that Russian and Northern
741 Scandinavian populations have experienced symmetric migration following a
742 secondary contact, making it possible for backcrossing to occur and thereby
743 promoting introgression between the two populations. Second, using information only
744 from the adaptively introgressed region on chromosome 10, we confirmed that,
745 indeed, the secondary contact models are the most strongly supported (together with
746 vicariance and late admixture) and that the migration in this region was stronger from
747 Russia into Scandinavia than in the opposite direction (Additional File1: Figure
748 S10,11). These analyses strongly suggest that regions surrounding the two FT
749 homologs have been adaptively introgressed from the Russian population into
750 Northern Scandinavia in the recent past, thereby facilitating adaptation in *P. tremula*
751 to grow under high latitude conditions.

752 At the phenotypic level, there is convincing evidence that the *FT2* allele present in
753 northern Scandinavia displays partial dominance [11]. Trees in the northern part of
754 Scandinavia carrying the northern *FT2* allele initiate growth cessation about 30 days
755 earlier than trees carrying the southern allele. Trees carrying the northern allele
756 cannot grow in Southern Scandinavia as their critical photoperiod for growth is never
757 reached [52]. This implies that the Nordic allele could have emerged and been kept
758 in the Russian population in a heterozygous form during the last glaciation. The
759 degree of dominance influences the evolutionary dynamics of alleles in diploid
760 populations as the fixation probability of a newly arise (partially) dominant beneficial

761 allele is higher than for a recessive allele in static or slowly changing environments, a
762 process known as Haldane's sieve [53]. Furthermore, recent modelling suggests that
763 the relationship between dominance and selection coefficients arose as a natural
764 outcome of the functional importance of genes (i.e., degree of connectivity in protein
765 networks) and their optimal expression levels [54]. Given the central role of *FT2* in
766 regulating the plant phenology signaling pathways and the fine tuning of its
767 expression along plant development, we can speculate that the effect on fitness of
768 the Nordic allele allowed a rapid increase in frequency after the colonization of the
769 Scandinavian peninsula, where it was strongly selected for, allowing a rapid local
770 adaptation to high latitudes. It is worth noting that despite the high recombination rate
771 in *P. tremula* [55], the introgression signal has not been broken and is detectable in a
772 long tract of ~500 Kb, reinforcing the idea of recent contacts and hybridizations
773 between Nordic populations.

774 **Other paths to local adaptation.**

775
776 A major genetic process contributing to local adaptation in many populations is that of
777 selective sweeps. Selective sweeps result in the loss of genetic variation in the
778 neighboring regions of a newly adaptive allele or mutation as selection drives this allele
779 to fixation. Selective sweeps generally fall into two categories, hard sweeps and soft
780 sweeps, depending on the origin of the adaptive allele. Hard sweeps are the result of
781 positive selection acting upon a newly arisen beneficial mutation before divergence of
782 lineages, thus the same variation in neighboring haplotypes is driven to high
783 frequencies alongside the adaptive allele. Conversely, a soft sweep occurs from
784 standing variation so that haplotypes surrounding a future beneficial allele have had
785 time to diverge before the onset of positive selection, meaning that the haplotypes that

786 hitchhike together with the beneficial allele may differ between lineages or populations
787 [56, 57].

788 Our scans for positive selection using the iSAFE algorithm revealed a very strong
789 signal of a selective sweep located on chromosome 10. While we also observed
790 other regions across the aspen genome that seemly have experienced selective
791 sweeps, the calculated iSAFE values in these regions were generally too weak to
792 pass the significance threshold and did not display a clear geographic pattern, which
793 precluded them from being interpreted as selective sweeps involved in conferring
794 local adaptation. A natural conclusion from the lack of non-neutral outliers in our
795 analyses is that local adaptation in aspens is primarily polygenic and/or driven by
796 natural selection acting on standing variation rather than from new mutations that
797 would induce hard sweeps, as is the case for the hard sweep identified on
798 chromosome 10.

799 The role of standing variation in adaptive evolution has been widely debated. As
800 highlighted by [15], beneficial alleles that are present as standing variation are
801 generally older than new mutations, implying they could have undergone a selective
802 filter during past environmental conditions or in different parts of a species range.
803 These polymorphisms can be maintained for a long time due to balancing selection
804 that persists for many generations and minimizes the effect of drift. When we think of
805 temperate tree species, such as aspens, that have experienced several population
806 contraction and expansion cycles throughout the last millennia, such “pre-selected”
807 standing variation could represent a very useful pool for adaptive alleles that can
808 rapidly be brought together to mediate local adaptation to novel environmental
809 conditions encountered during range expansion. For instance, one climatic

810 consequence for plants during the LGM was water stress due to low CO₂
811 concentrations and the presence of permafrost. Even if boreal trees can grow on
812 continuous permafrost, other factors such as soil texture or timing of the spring-
813 summer thaw determine the amount of water available for growth, thus influencing
814 the species distribution [7].

815 We evaluated the importance of standing variation for local adaptation in aspen by
816 scanning the genome for signals of balancing selection (BS). The combination of
817 significant beta-scores and the increased genetic diversity (π) and pairwise absolute
818 divergence (D_{XY}) in several regions across multiple chromosomes, shared by at least
819 two aspen lineages, indicated that BS has maintained ancestral polymorphisms in
820 the species. Indeed, excess diversity around selected loci may be due to the
821 retention of ancestral polymorphisms or due to the accumulation of derived
822 polymorphisms, which happens faster than expected under neutrality. The former is
823 expected if the same allelic lineages have been evolving under BS for a long time,
824 with drift and mutation determining polymorphism within each lineage. The latter
825 would occur if new, more recent instances of BS appear, facilitating the
826 establishment of new neutral polymorphisms [2]; given that our sampling belongs to
827 one single species across the Eurasian continent, we can speculate it is the second
828 scenario which has produced the excess of diversity. Even though gene flow is an
829 important process that could mimic trans-lineage polymorphisms and shared
830 haplotypes between subpopulations, our scans of genomic introgression showed no
831 evidence of such pervasive events, except for the Scandinavian and Siberian
832 lineages.

833

834 As reported in other species, the BS regions identified in aspens harbor potentially
835 interesting genes for mediating local adaptation. Of particular relevance was the
836 observation of an enrichment of genes in these genomic regions related to ethylene
837 metabolic and biosynthetic processes. This is of note given that this phytohormone
838 plays a pivotal role in defense responses, plant growth and senescence [58] and,
839 most importantly, in xylem development and the formation of tension wood in aspens
840 [59, 60]. Other functional categories such as jasmonic acid mediated signaling
841 pathways and endo-membrane trafficking suggest differential responses to abiotic
842 stresses that have been favored by the maintenance of advantageous alleles across
843 the species range. In addition, the observation of an enrichment of alkene
844 biosynthesis related genes is intriguing, as a significant association between the
845 presence of alkenes in cuticular waxes and tree growth and resistance to leaf spot
846 have been reported in *P. trichocarpa* [61]. Thus, we suggest that standing variation
847 and balancing selection have shaped the capacity of aspen populations to adapt to a
848 wide range of environmental conditions during the post-glacial colonization of
849 Europe.

850

851

852 Conclusion

853 Our large panel of re-sequenced aspen individuals allowed us to unravel key
854 genomic aspects behind local adaptation across the Eurasian continent. It is clear
855 from our results that intra-species hybridization has played a major role
856 homogenizing the genomic background of the species and has promoted the
857 movement of adaptive alleles between populations. Of major relevance is the
858 observation of a recent adaptive introgression event between Nordic populations

859 around the *Flowering locus T*, that has facilitated the survival of aspens in high
860 latitudes. This event is however the only such event that can be detected in the
861 species, showing that the emergence of advantageous alleles and their propagation
862 is rather rare. Standing variation and its conservation through balancing selection
863 across lineages seems to be a more efficient way of keeping advantageous alleles
864 and maintaining high levels of diversity. This combination of evolutionary scenarios
865 suggests that aspens may have the capacity to adapt rapidly to new challenging
866 environments, and this augurs well for the survival of the species under a range of
867 possible future climate conditions.

868

869

870 **Acknowledgments**

871 The SwAsp common garden was maintained by Skogforsk. The Scottish clone
872 collection was commissioned by Forest Research and NatureScot, and planted and
873 maintained by Forest Research Technical Services Unit, with funding from the
874 Forestry Commission. We thank Peter Livingston and Eadha Enterprises for the
875 samples from the EADHA clone collection. We are grateful to the Bioinformatics
876 facility at Umeå Plant Science Centre for curation of sequencing data. SJ, KMR and
877 NRS are supported by the Trees for the Future (T4F) project. PKI, SJ and KMR are
878 supported by the Knut and Alice Wallenberg Foundation (KAW). The research was
879 also supported by grants from the Swedish Research Council (VR) to PKI and to SJ,
880 and by Formas to SJ. Part of the data generated for the study was supported by
881 Science for Life Laboratory and the National Genomics Infrastructure (NGI, as a
882 SciLifeLab National project) which provided access to massive parallel sequencing.
883 All analyses were performed on resources provided by the Swedish National

884 Infrastructure for Computing (SNIC) at Uppsala Multidisciplinary Centre for Advanced
885 Computational Science (UPPMAX) under compute projects 2017/7-219, 2018/3-552,
886 2019/3-597, 2020/5-621 and storage projects sllstore2017050, sllstore2017059.

887

888

889 **Data accessibility**

890 All raw read data have been uploaded to NCBI/ENA and can be found under
891 Bioproject IDs PRJNA297202 and PRJEB42846.

892

893 **Author contributions**

894 PKI, NRS, KR, SJ and MR-A planned and designed the research. MR-A, JW and PKI
895 performed experiments and analyzed data. SS, AF, JC, MESB, CL, DR, KR and NRS
896 provided biological material and performed field work. MR-A and PKI wrote the
897 manuscript with input from NRS and KR. All authors read and approved of the final
898 version of the manuscript.

899

900

901 **References**

902

- 903 1. VanWallendael A, Soltani A, Emery NC, Peixoto MM, Olsen J, Lowry DB: **A Molecular**
904 **View of Plant Local Adaptation: Incorporating Stress-Response Networks.** *Annu Rev*
905 *Plant Biol* 2019, **70**:559-583.
- 906 2. Fijarczyk A, Babik W: **Detecting balancing selection in genomes: limits and**
907 **prospects.** *Mol Ecol* 2015, **24**:3529-3545.
- 908 3. Guerrero RF, Hahn MW: **Speciation as a sieve for ancestral polymorphism.** *Mol Ecol*
909 2017, **26**:5362-5368.
- 910 4. Wang B, Mojica JP, Perera N, Lee CR, Lovell JT, Sharma A, Adam C, Lipzen A, Barry K,
911 Rokhsar DS, et al: **Ancient polymorphisms contribute to genome-wide variation by**
912 **long-term balancing selection and divergent sorting in *Boechera stricta*.** *Genome*
913 *Biol* 2019, **20**:126.

914 5. Widmer A, Lexer C: **Glacial refugia: sanctuaries for allelic richness, but not for gene**
915 **diversity.** *Trends in Ecology & Evolution* 2001, **16**:267-269.

916 6. Svenning J-C, Normand S, Kageyama M: **Glacial refugia of temperate trees in Europe: insights from species distribution modelling.** *Journal of Ecology* 2008, **96**:1117-1127.

917 7. Tzedakis PC, Emerson BC, Hewitt GM: **Cryptic or mystic? Glacial tree refugia in**
918 **northern Europe.** *Trends Ecol Evol* 2013, **28**:696-704.

919 8. Canestrelli D, Porretta D, Lowe WH, Bisconti R, Carere C, Nascetti G: **The Tangled**
920 **Evolutionary Legacies of Range Expansion and Hybridization.** *Trends Ecol Evol* 2016,
921 **31**:677-688.

922 9. Hewitt GM: **Genetic consequences of climatic oscillations in the Quaternary.** *Philos*
923 *Trans R Soc Lond B Biol Sci* 2004, **359**:183-195; discussion 195.

924 10. WORRELL R: **European aspen (Populus tremula L.): a review with particular**
925 **reference to Scotland II. Values, silviculture and utilization.** *Forestry: An*
926 *International Journal of Forest Research* 1995, **68**:231-244.

927 11. Wang J, Ding J, Tan B, Robinson KM, Michelson IH, Johansson A, Nystedt B, Scofield
928 DG, Nilsson O, Jansson S, et al: **A major locus controls local adaptation and adaptive**
929 **life history variation in a perennial plant.** *Genome Biol* 2018, **19**:72.

930 12. Fariello MI, Boitard S, Naya H, SanCristobal M, Servin B: **Detecting signatures of**
931 **selection through haplotype differentiation among hierarchically structured**
932 **populations.** *Genetics* 2013, **193**:929-941.

933 13. Ingvarsson PK, Bernhardsson C: **Genome-wide signatures of environmental**
934 **adaptation in European aspen (Populus tremula) under current and future climate**
935 **conditions.** *Evol Appl* 2020, **13**:132-142.

936 14. Suarez-Gonzalez A, Hefer CA, Christe C, Corea O, Lexer C, Cronk QCB, Douglas CJ:
937 **Genomic and functional approaches reveal a case of adaptive introgression from**
938 **Populus balsamifera (balsam poplar) in P. trichocarpa (black cottonwood).**
939 *Molecular Ecology* 2016, **25**:2427-2442.

940 15. de Carvalho D, Ingvarsson PK, Joseph J, Suter L, Sedivy C, Macaya-Sanz D, Cottrell J,
941 Heinze B, Schanzer I, Lexer C: **Admixture facilitates adaptation from standing**
942 **variation in the European aspen (Populus tremula L.), a widespread forest tree.** *Mol*
943 *Ecol* 2010, **19**:1638-1650.

944 16. Luquez V, Hall D, Albrechtsen BR, Karlsson J, Ingvarsson P, Jansson S: **Natural**
945 **phenological variation in aspen (Populus tremula): the SwAsp collection.** *Tree*
946 *Genetics & Genomes* 2008, **4**:279-292.

947 17. Harrison A: **Aspen growth trials: showing the species' potential in Scotland. .** In *The*
948 *biodiversity and management of aspen woodlands.* Edited by Cosgrove PaA, Andy.
949 UK: The Cairngorms Local Biodiversity Action Plan, Grantown-on-Spey; 2009: 49-51

950 18. Schiffthaler B, Delhomme N, Bernhardsson C, Jenkins J, Jansson S, Ingvarsson P,
951 Schmutz J, Street N: **An Improved Genome Assembly of the European Aspen**
952 **Populus tremula.** *bioRxiv* 2019:805614.

953 19. Li H, Durbin R: **Fast and accurate short read alignment with Burrows-Wheeler**
954 **transform.** *Bioinformatics* 2009, **25**:1754-1760.

955 20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,
956 Durbin R, Genome Project Data Processing S: **The Sequence Alignment/Map format**
957 **and SAMtools.** *Bioinformatics* 2009, **25**:2078-2079.

958 21. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del
959 Angel G, Rivas MA, Hanna M, et al: **A framework for variation discovery and**

960

961 1. **genotyping using next-generation DNA sequencing data.** *Nature Genetics* 2011,
962 43:491-498.

963 2. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P,
964 de Bakker PI, Daly MJ, Sham PC: **PLINK: a tool set for whole-genome association and**
965 **population-based linkage analyses.** *Am J Hum Genet* 2007, 81:559-575.

966 3. Zheng X, Weir BS: **Eigenanalysis of SNP data with an identity by descent**
967 **interpretation.** *Theor Popul Biol* 2016, 107:65-76.

968 4. Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS: **A high-performance**
969 **computing toolset for relatedness and principal component analysis of SNP data.**
970 *Bioinformatics* 2012, 28:3326-3328.

971 5. Malinsky M, Challis RJ, Tyers AM, Schiffels S, Terai Y, Ngatunga BP, Miska EA, Durbin
972 R, Genner MJ, Turner GF: **Genomic islands of speciation separate cichlid ecomorphs**
973 **in an East African crater lake.** *Science* 2015, 350:1493-1498.

974 6. Pfeifer B, Wittelsburger U, Ramos-Onsins SE, Lercher MJ: **PopGenome: an efficient**
975 **Swiss army knife for population genomic analyses in R.** *Mol Biol Evol* 2014, 31:1929-
976 1936.

977 7. Guan Y: **Detecting structure of haplotypes and local ancestry.** *Genetics* 2014,
978 196:625-642.

979 8. Akbari A, Vitti JJ, Iranmehr A, Bakhtiari M, Sabeti PC, Mirarab S, Bafna V: **Identifying**
980 **the favored mutation in a positive selective sweep.** *Nat Methods* 2018, 15:279-282.

981 9. Browning SR, Browning BL: **Rapid and accurate haplotype phasing and missing-data**
982 **inference for whole-genome association studies by use of localized haplotype**
983 **clustering.** *Am J Hum Genet* 2007, 81:1084-1097.

984 10. Siewert KM, Voight BF: **Detecting Long-Term Balancing Selection Using Allele**
985 **Frequency Correlation.** *Mol Biol Evol* 2017, 34:2996-3005.

986 11. Alexa AR, Jorg: **topGO: Enrichment Analysis for Gene Ontology.** R package version
987 2.36.0. edition; 2019.

988 12. Liu X, Fu YX: **Exploring population size changes using SNP frequency spectra.** *Nat*
989 *Genet* 2015, 47:555-559.

990 13. Korneliussen TS, Albrechtsen A, Nielsen R: **ANGSD: Analysis of Next Generation**
991 **Sequencing Data.** *BMC Bioinformatics* 2014, 15:356.

992 14. Ingvarsson PK: **Multilocus patterns of nucleotide polymorphism and the**
993 **demographic history of *Populus tremula*.** *Genetics* 2008, 180:329-340.

994 15. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD: **Inferring the joint**
995 **demographic history of multiple populations from multidimensional SNP frequency**
996 **data.** *PLoS Genet* 2009, 5:e1000695.

997 16. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph
998 S, Rombauts S, Salamov A, et al: **The genome of black cottonwood, *Populus***
999 ***trichocarpa* (Torr. & Gray).** *Science* 2006, 313:1596-1604.

1000 17. Portik DM, Leaché AD, Rivera D, Barej MF, Burger M, Hirschfeld M, Rödel M-O,
1001 Blackburn DC, Fujita MK: **Evaluating mechanisms of diversification in a Guineo-**
1002 **Congolian tropical forest frog using demographic model selection.** *Molecular*
1003 *Ecology* 2017, 26:5245-5263.

1004 18. Coffman AJ, Hsieh PH, Gravel S, Gutenkunst RN: **Computationally Efficient**
1005 **Composite Likelihood Statistics for Demographic Inference.** *Mol Biol Evol* 2016,
1006 33:591-593.

1007 39. Shang HR-A, M.; Paun, O.; Field, D.; Hess, J.; Vogl, C.; Ingvarsson, P.K.; Leroy, T.;
1008 Christian Lexer, C. : **Conserved genomic landscapes of differentiation over the**
1009 ***Populus* speciation continuum** *in prep* 2021.

1010 40. Rosengren E: **The Colonisation History of the Scandinavian Fauna Presented**
1011 **through Subfossil Finds along One of Its Major Immigration Routes; Scania,**
1012 **Southern Sweden.** *Environment and Ecology Research* 2015, **3**:143-149.

1013 41. Gunther T, Malmstrom H, Svensson EM, Omrak A, Sanchez-Quinto F, Kilinc GM,
1014 Krzewinska M, Eriksson G, Fraser M, Edlund H, et al: **Population genomics of**
1015 **Mesolithic Scandinavia: Investigating early postglacial migration routes and high-**
1016 **latitude adaptation.** *PLoS Biol* 2018, **16**:e2003703.

1017 42. Wetterich S, Rudaya N, Tumskoy V, Andreev AA, Opel T, Schirrmeyer L, Meyer H:
1018 **Last Glacial Maximum records in permafrost of the East Siberian Arctic.** *Quaternary*
1019 *Science Reviews* 2011, **30**:3139-3151.

1020 43. Westergaard KB, Zemp N, Bruederle LP, Stenoien HK, Widmer A, Fiori S: **Population**
1021 **genomic evidence for plant glacial survival in Scandinavia.** *Mol Ecol* 2019, **28**:818-
1022 832.

1023 44. Chhatre VE, Evans LM, DiFazio SP, Keller SR: **Adaptive introgression and**
1024 **maintenance of a trispecies hybrid complex in range-edge populations of *Populus*.**
1025 *Molecular Ecology* 2018, **27**:4820-4838.

1026 45. Fussi B, Lexer C, Heinze B: **Phylogeography of *Populus alba* (L.) and *Populus tremula***
1027 **(L.) in Central Europe: secondary contact and hybridisation during recolonisation**
1028 **from disconnected refugia.** *Tree Genetics & Genomes* 2010, **6**:439-450.

1029 46. Burgarella C, Barnaud A, Kane NA, Jankowski F, Scarcelli N, Billot C, Vigouroux Y,
1030 Berthouly-Salazar C: **Adaptive Introgression: An Untapped Evolutionary Mechanism**
1031 **for Crop Adaptation.** *Front Plant Sci* 2019, **10**:4.

1032 47. Hedrick PW: **Adaptive introgression in animals: examples and comparison to new**
1033 **mutation and standing variation as sources of adaptive variation.** *Mol Ecol* 2013,
1034 **22**:4606-4618.

1035 48. Gouy A, Excoffier L: **Polygenic Patterns of Adaptive Introgression in Modern**
1036 **Humans Are Mainly Shaped by Response to Pathogens.** *Mol Biol Evol* 2020, **37**:1420-
1037 1433.

1038 49. Bechsgaard J, Jorgensen TH, Schierup MH: **Evidence for Adaptive Introgression of**
1039 **Disease Resistance Genes Among Closely Related *Arabidopsis* Species.** *G3*
1040 *(Bethesda)* 2017, **7**:2677-2683.

1041 50. Hohmann N, Koch MA: **An *Arabidopsis* introgression zone studied at high spatio-**
1042 **temporal resolution: interglacial and multiple genetic contact exemplified using**
1043 **whole nuclear and plastid genomes.** *BMC Genomics* 2017, **18**:810.

1044 51. Ma Y, Wang J, Hu Q, Li J, Sun Y, Zhang L, Abbott RJ, Liu J, Mao K: **Ancient**
1045 **introgression drives adaptation to cooler and drier mountain habitats in a cypress**
1046 **species complex.** *Commun Biol* 2019, **2**:213.

1047 52. Michelson IH, Ingvarsson PK, Robinson KM, Edlund E, Eriksson ME, Nilsson O, Jansson
1048 S: **Autumn senescence in aspen is not triggered by day length.** *Physiol Plant* 2018,
1049 **162**:123-134.

1050 53. Devi A, Jain K: **The Impact of Dominance on Adaptation in Changing Environments.**
1051 *Genetics* 2020, **216**:227-240.

1052 54. Huber CD, Durvasula A, Hancock AM, Lohmueller KE: **Gene expression drives the**
1053 **evolution of dominance.** *Nat Commun* 2018, **9**:2750.

1054 55. Apuli RP, Bernhardsson C, Schiffthaler B, Robinson KM, Jansson S, Street NR,
1055 Ingvarsson PK: **Inferring the Genomic Landscape of Recombination Rate Variation in**
1056 **European Aspen (Populus tremula)**. *G3 (Bethesda)* 2020, **10**:299-309.

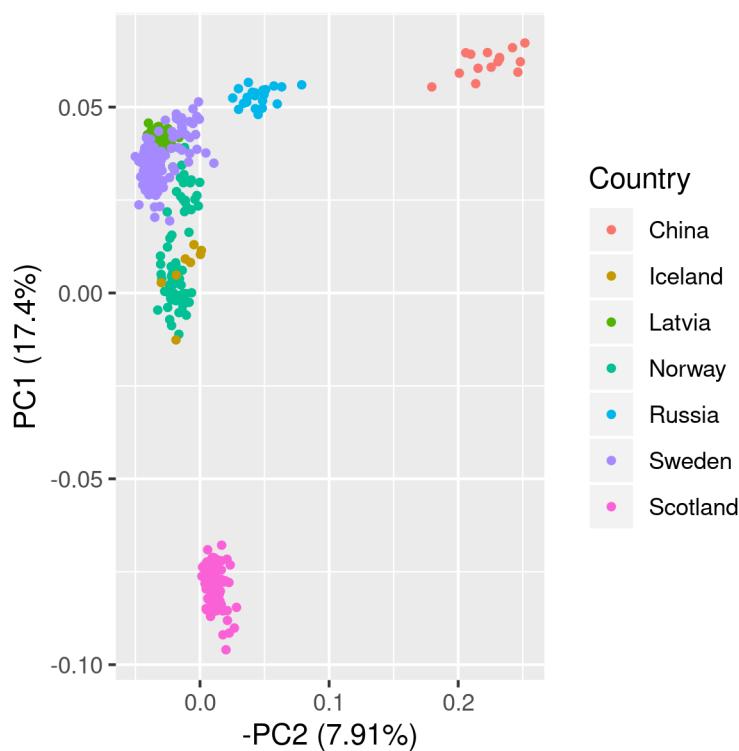
1057 56. Messer PW, Petrov DA: **Population genomics of rapid adaptation by soft selective**
1058 **sweeps**. *Trends in Ecology & Evolution* 2013, **28**:659-669.

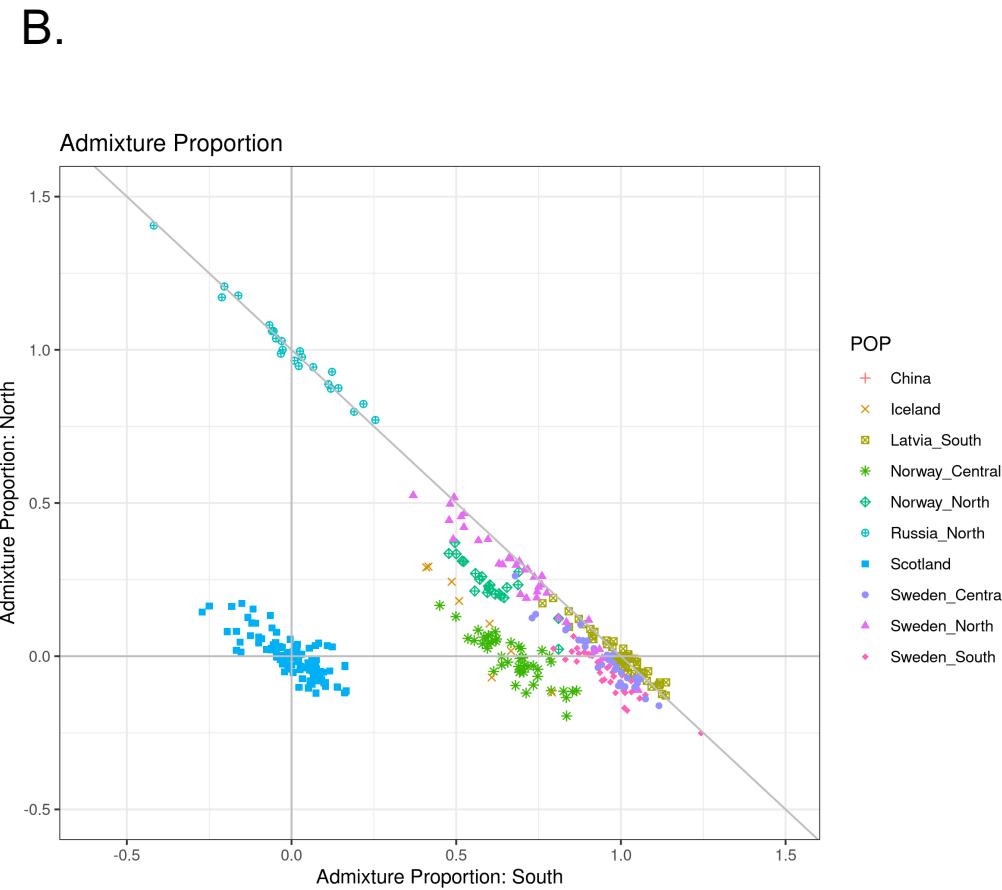
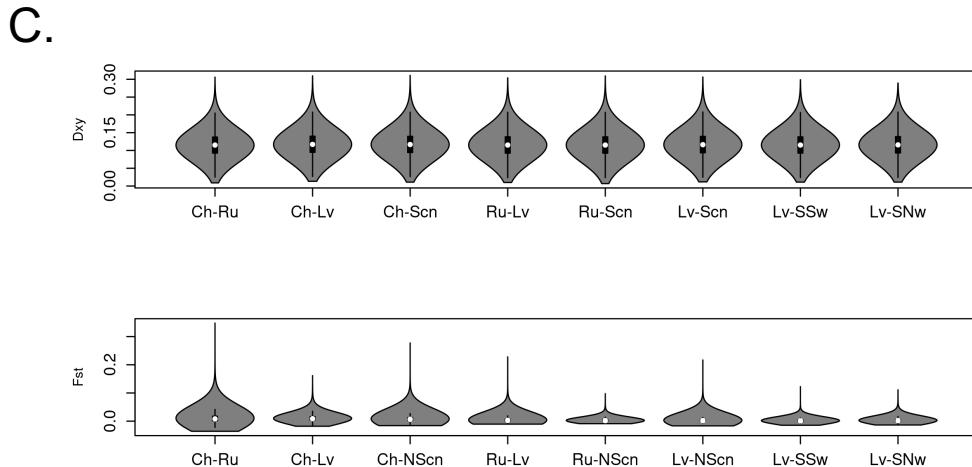
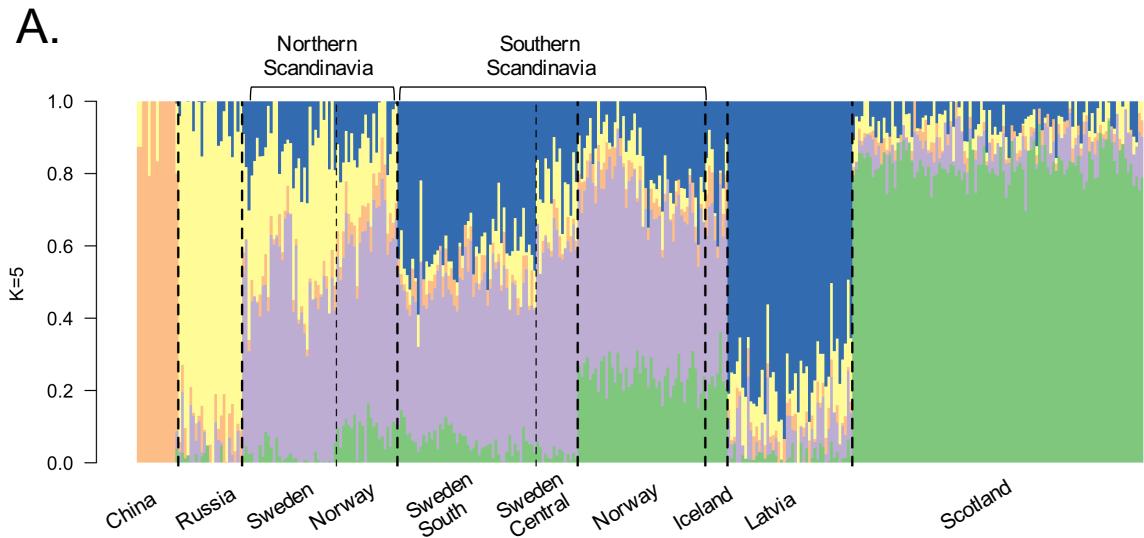
1059 57. Hermisson J, Pennings PS, Kelley J: **Soft sweeps and beyond: understanding the**
1060 **patterns and probabilities of selection footprints under rapid adaptation**. *Methods*
1061 *in Ecology and Evolution* 2017, **8**:700-716.

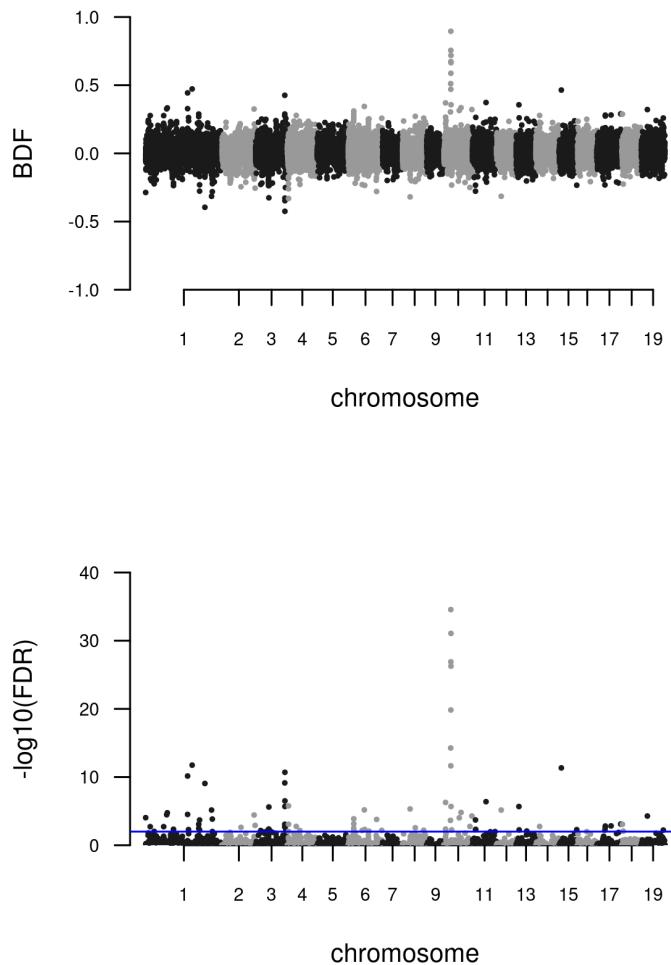
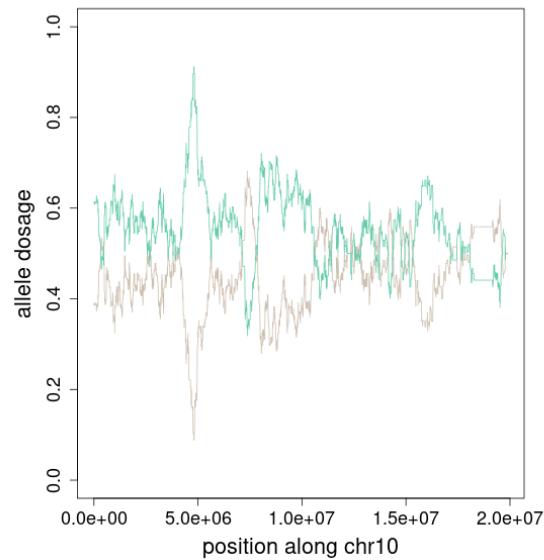
1062 58. Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR: **Ethylene Role in**
1063 **Plant Growth, Development and Senescence: Interaction with Other**
1064 **Phytohormones**. *Front Plant Sci* 2017, **8**:475.

1065 59. Felten J, Vahala J, Love J, Gorzsás A, Gerber L, Kumar M, Kangasjärvi J, Sundberg B:
1066 **Ethylene signaling via Ethylene Response Factors (ERFs) modifies wood**
1067 **development in hybrid aspen**. *BMC Proceedings* 2011, **5**.

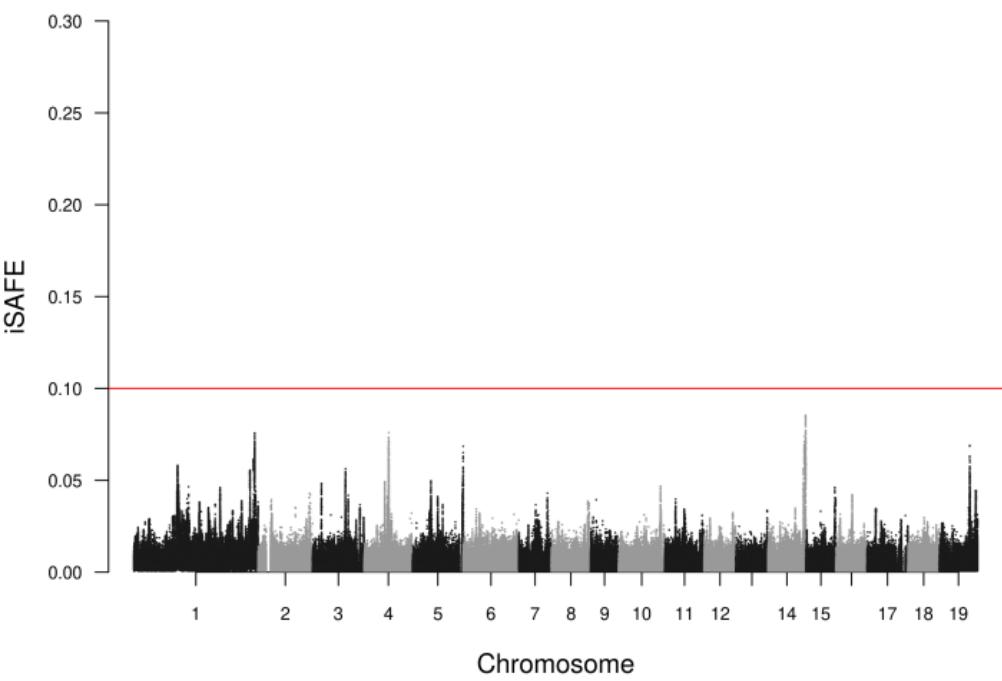
1068 60. Love J, Bjorklund S, Vahala J, Hertzberg M, Kangasjarvi J, Sundberg B: **Ethylene is an**
1069 **endogenous stimulator of cell division in the cambial meristem of Populus**. *Proc*
1070 *Natl Acad Sci U S A* 2009, **106**:5984-5989.

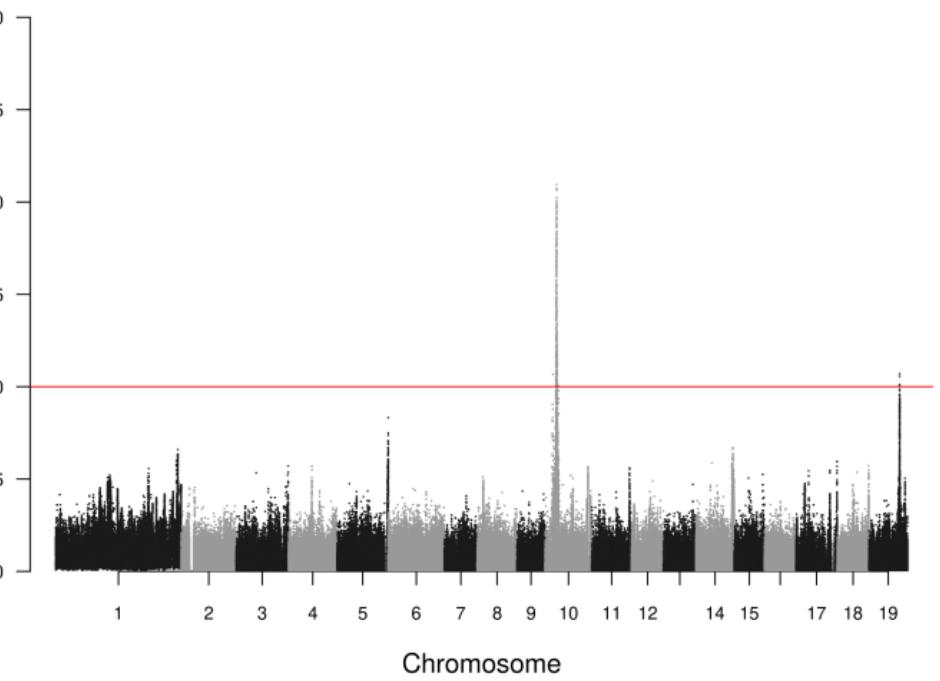

1071 61. Gonzales-Vigil E, Hefer CA, von Loessl ME, La Mantia J, Mansfield SD: **Exploiting**
1072 **Natural Variation to Uncover an Alkene Biosynthetic Enzyme in Poplar**. *Plant Cell*
1073 **2017**, **29**:2000-2015.




1074

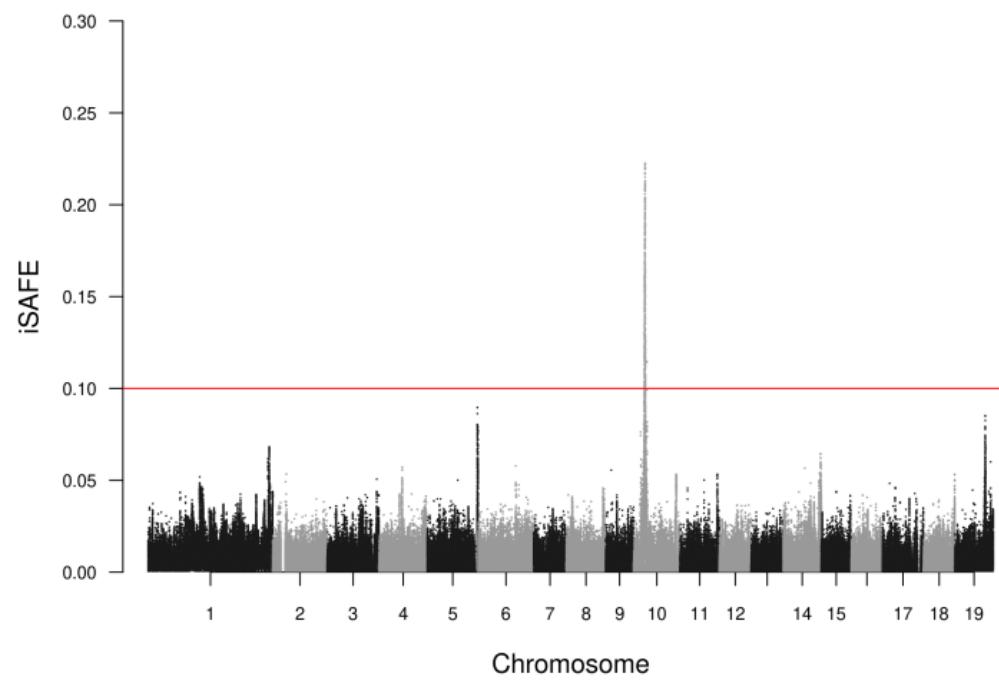


A.

B.

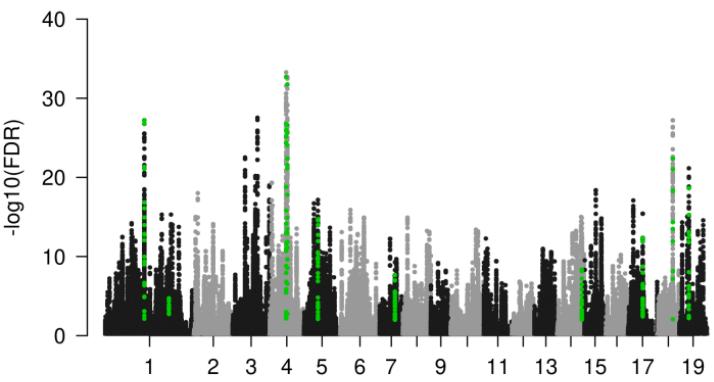



A.**B.**

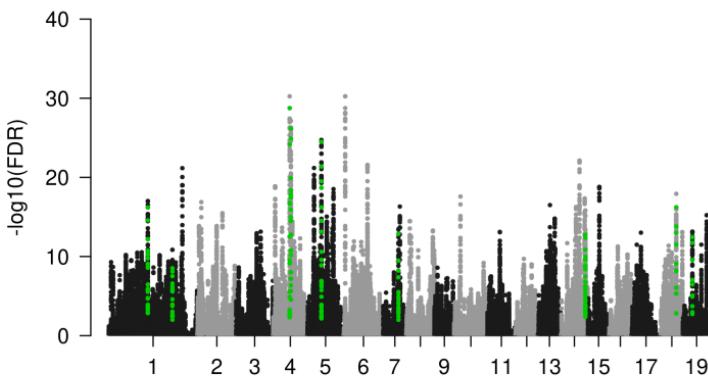
A.

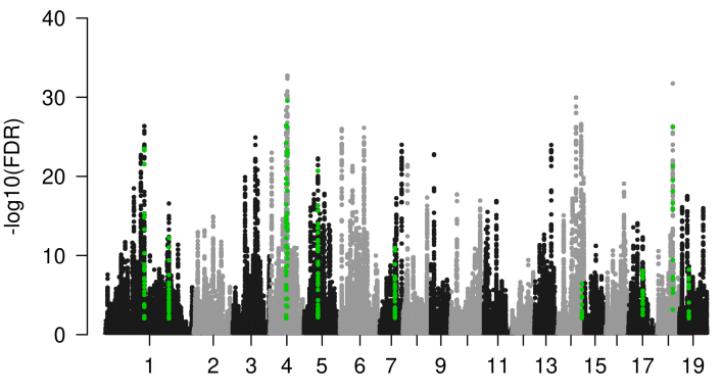

Southern Scandinavia (Sweden & Norway)

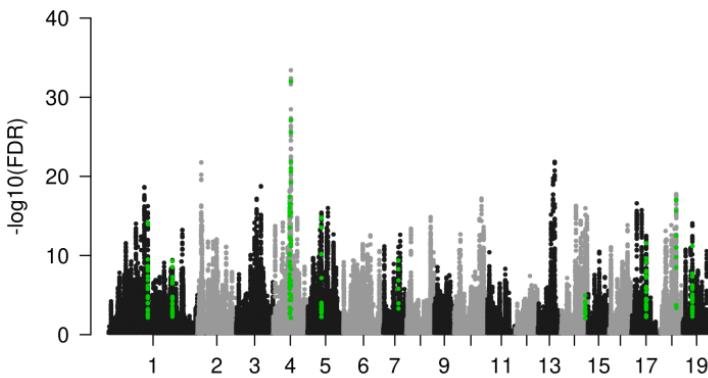
B.

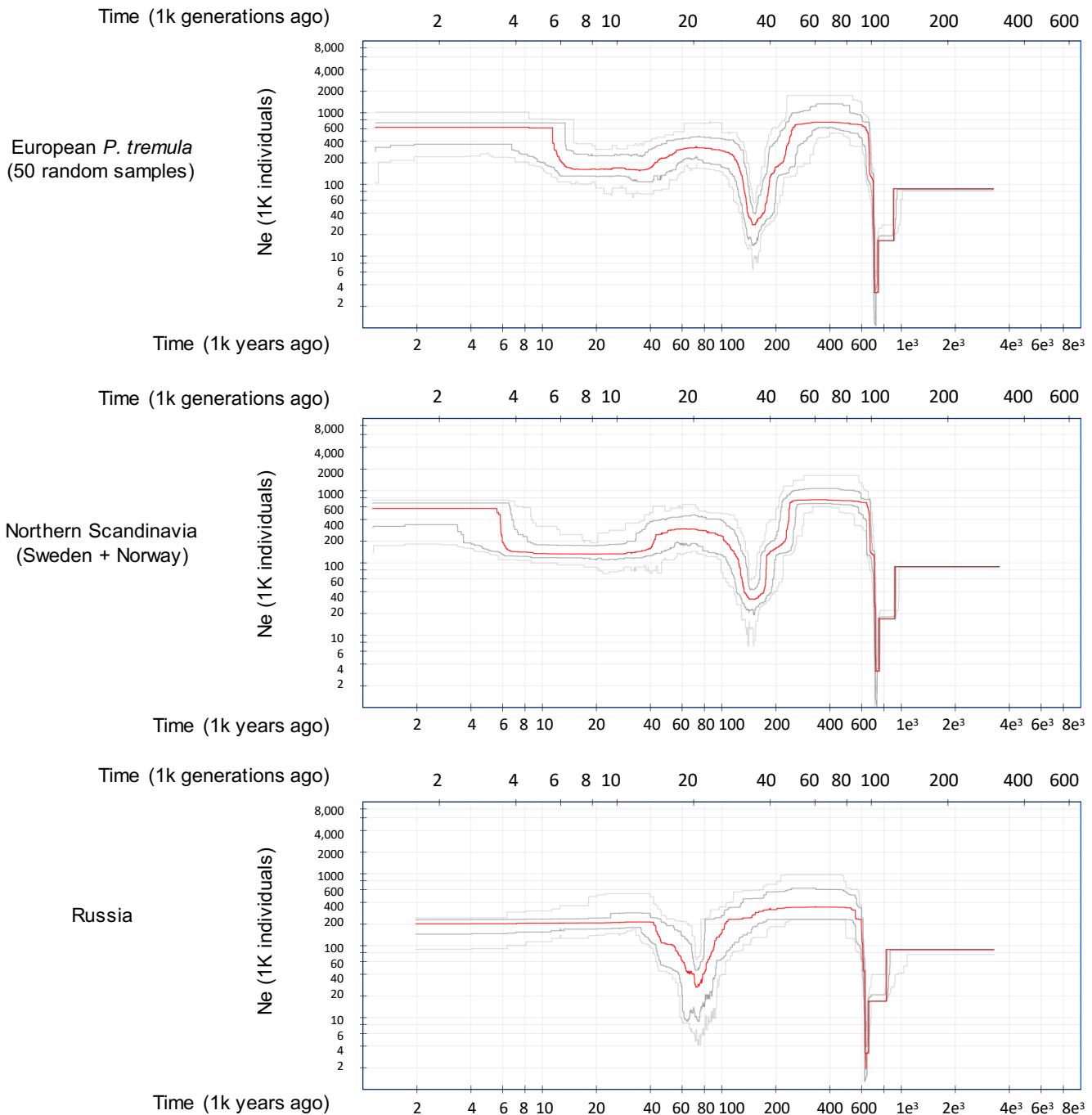

Northern Scandinavia (Sweden & Norway)

C.


Nordic Population (Sweden, Norway, Russia)

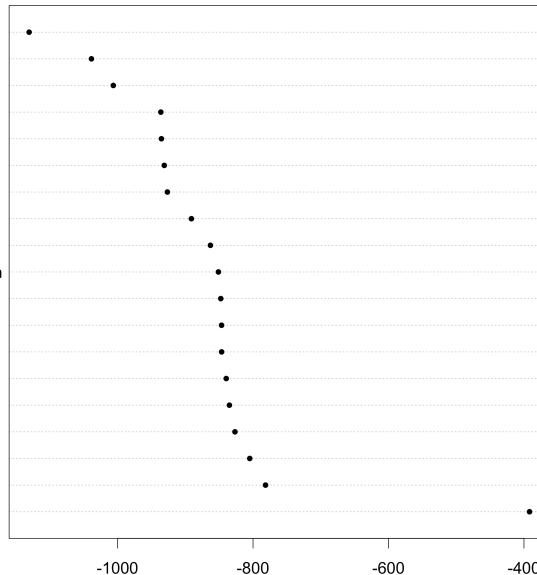

Nordic Populations

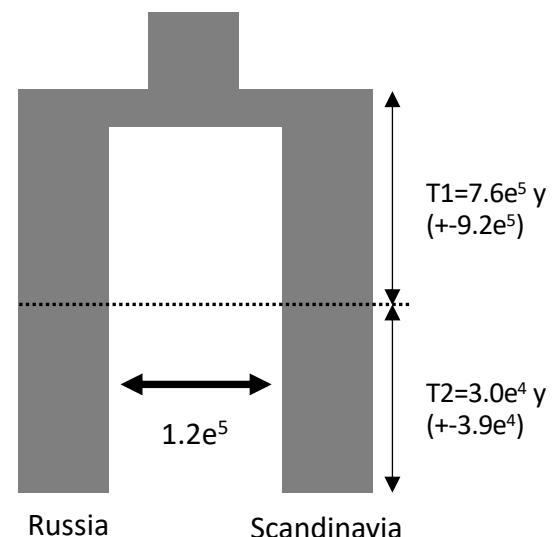

Central Europe



Norway+Iceland

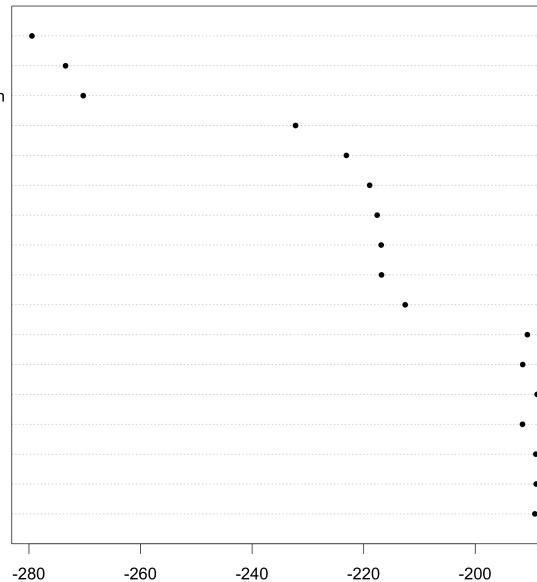
Scottish Population

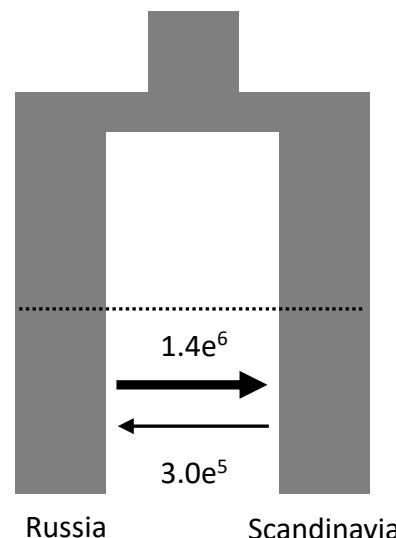



chromosome 10

A.

anc_asym_mig
 sym_mig
 founder_nomig_admix_early
 anc_asym_mig_size
 sec_contact_asym_mig_size
 anc_sym_mig_size
 sym_mig_size
 founder_nomig_admix_late
 vic_no_mig_admix_early
 founder_nomig_admix_two_epoch
 no_mig_size
 anc_sym_mig
 no_mig
 asym_mig
 asym_mig_size
 sec_contact_asym_mig
 sec_contact_sym_mig
 vic_no_mig_admix_late
 sec_contact_sym_mig_size


secondary contact, symmetric migration


selective sweep

B.

founder_nomig_admix_early
 no_mig_size
 founder_nomig_admix_two_epoch
 anc_sym_mig_size
 vic_no_mig_admix_early
 anc_asym_mig_size
 founder_nomig_admix_late
 asym_mig
 no_mig
 anc_asym_mig
 vic_two_epoch_admix
 vic_no_mig_admix_late
 sec_contact_asym_mig_size
 anc_sym_mig
 sec_contact_asym_mig
 sec_contact_sym_mig
 sym_mig

secondary contact, asymmetric migration

