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Abstract

Extensive sampling of neural activity during rich cognitive phenomena is critical for robust understanding
of brain function. We present the Natural Scenes Dataset (NSD), in which high-resolution fMRI responses
to tens of thousands of richly annotated natural scenes are measured while participants perform a
continuous recognition task. To optimize data quality, we develop and apply novel estimation and
denoising techniques. Simple visual inspections of the NSD data reveal clear representational
transformations along the ventral visual pathway. Further exemplifying the inferential power of the
dataset, we use NSD to build and train deep neural network models that predict brain activity more
accurately than state-of-the-art models from computer vision. NSD also includes substantial resting-state
and diffusion data, enabling network neuroscience perspectives to constrain and enhance models of
perception and memory. Given its unprecedented scale, quality, and breadth, NSD opens new avenues
of inquiry in cognitive and computational neuroscience.
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Introduction

Neuroscience has an insatiable appetite for data. Many ongoing efforts to extensively sample brain
activity (de Vries et al., 2020; Siegle et al., 2021; Stringer et al., 2019) and structure (Markram et al.,
2015; Van Essen et al., 2013; Zheng et al., 2018) are motivated, in part, by the availability of new
computational methods that make analysis of massive datasets feasible (Jonathan Pillow and Sahani,
2019). Equally as important is the growing desire to understand how the brain coordinates complex
sensory and motor behaviors and the realization that the neural networks supporting such behaviors span
multiple scales, from single neurons to local circuits to whole systems (Bassett and Sporns, 2017).
Understanding massive, complex networks will inevitably require commensurately massive amounts of
data.

The need for massive data is especially acute in visual neuroscience, a model system for understanding
brain function. The network that mediates our ability to flexibly and efficiently perceive the visual world
occupies approximately one-third of human cerebral cortex (Van Essen et al., 2001) and interconnects
brain areas with profoundly different functional properties (Grill-Spector and Malach, 2004). This network
both encodes visual stimuli and interfaces visual representations into a cognitive context, including
information about what one has already seen (Wheeler et al., 2000), might see (Breedlove et al., 2020),
or is selectively attending (Kay et al., 2015). Understanding vision thus means interrogating a high-
dimensional, context-dependent neural network.

Given these considerations, it is clear that extensive experimental data providing access to whole-brain
responses to complex stimuli are critical in the quest to understand the human visual system. The ideal
dataset should include naturalistic stimuli: the visual system is distributed widely across the brain, and
natural scenes, in addition to being ecologically relevant (Geisler, 2008), are effective activators of the
entire system (Huth et al., 2012). Moreover, the ideal dataset should be large: in order to take full
advantage of powerful data analysis and machine learning (ML) techniques that have recently become
available (Vu et al., 2018), we need considerably more data than is currently available. How much?
Modern ML methods used in computer vision to process natural scenes (e.g. deep convolutional neural
networks) require tens to hundreds of thousands of image samples for training (Krizhevsky, 2009; Lin et
al., 2014). A dataset that sampled brain activity at these scales would raise the exciting possibility of
exploiting these methods to develop better models of how the brain processes natural scenes (Gugli and
van Gerven, 2015; Han et al., 2019; Khaligh-Razavi and Kriegeskorte, 2014; Seeliger et al., 2021;
Stansbury et al., 2013; St-Yves and Naselaris, 2017; Yamins et al., 2014; Zhuang et al., 2021), and would
accelerate efforts to bridge computational and cognitive neuroscience (Naselaris et al., 2018).

In this paper, we present the first dataset that achieves sampling at this ambitious scale. The Natural
Scenes Dataset (NSD) consists of high-resolution (1.8 mm) whole-brain 7T fMRI of 8 carefully screened
human participants who each viewed 9,000—-10,000 color natural scenes (22,000—-30,000 trials) during
30-40 scan sessions distributed over the course of a year. Aggregated across participants, NSD includes
responses to 70,566 distinct natural scene images—this is more than an order of magnitude larger than
comparable datasets involving fMRI sampling of many images (Chang et al., 2019; Horikawa and
Kamitani, 2017; Kay et al., 2008). Moreover, as we show, the high quality of the NSD dataset (afforded, in
part, by the use of ultra-high magnetic field strength) makes it possible to leverage the full power of
modern ML methods for developing better models of visual representation.

NSD incorporates several innovations in addition to its unprecedented scale and quality. To reconcile
extensive sampling with a practical time commitment, we used an aggressive rapid event-related design.
This drove the development of new analysis techniques that accurately compensate for the overlap of
hemodynamic responses across successive trials. To ensure participant engagement and control
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cognitive state, we incorporated a continuous recognition task (Brady et al., 2008) in which participants
were instructed to indicate whether they have seen each presented image at any point in the past. In
addition to making the experiment tolerable (and even somewhat interesting) for participants, inclusion of
this task makes NSD, to our knowledge, the longest-term continuous recognition memory fMRI study in
history and, thus, a likely source of new insights into long-term memory formation and the cognitive
context of vision. Finally, to ensure the broad reach of the NSD dataset, we incorporated design input
from a large network of collaborators with diverse scientific interests (e.g., low-level vision, high-level
vision, memory, connectivity, neuroanatomy) and technical expertise (e.g., mapping, multivariate pattern
analysis, encoding models, representational similarity analysis, neural network modeling). This input
helped precipitate a carefully curated dataset with extensive auxiliary measures, thereby increasing the
likelihood that NSD will enjoy widespread application in cognitive and computational neuroscience.
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Results

Sampling thousands of images during a continuous recognition task

We obtained 73,000 color natural scenes from the richly annotated Microsoft Common Objects in Context
(COCO) image dataset (Lin et al., 2014), a dataset that is heavily used in the computer vision and
machine learning communities. Our experimental design specified that each of 8 subjects would view
10,000 distinct images and a special set of 1,000 images would be shared across subjects (8 subjects x
9,000 unique images + 1,000 shared images = 73,000 images). This sampling strategy was chosen to
maximize the number of distinct images in NSD. Each image would be presented 3 times to a given
subject. While this is a low number, we reasoned that 3 trials would be sufficient to produce robust
responses given our use of ultra-high field (7T) fMRI. Furthermore, images would be presented using a
rapid event-related design consisting of 4-s trials (Figure 1A). This was done to maximize statistical
power and to create an engaging experience for the subjects. In addition, the continuous nature of task
engagement helps avoid unwanted arousal-related fMRI signals (Roth et al., 2020).

The NSD experiment was split across 40 scan sessions for each subject (Figure 1B). To control cognitive
state and encourage deep processing of the images, subjects were instructed to perform a continuous
recognition task in which they reported whether the current image had been presented at any previous
point in the experiment. We controlled the distributions of image presentations such that both short-term
and long-term repetitions were probed (Supplementary Figure 1A). Parameters were selected such that
even in the first scan session, images were not always new, and even in the last scan session, images
were not always old (Supplementary Figure 1B).
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Figure 1. Design of the NSD experiment. A, Trial design. While maintaining central fixation,
participants viewed sequences of color natural scenes and judged whether each image had been
previously shown at any point in the past. The scenes, taken from Microsoft's COCO (Lin et al.,
2014), are richly annotated with object information (as depicted). B, Run and session design. Each
run lasted 5 minutes and consisted of 62 or 63 stimulus trials with occasional interspersed blank
trials. Each scan session consisted of 12 runs (750 stimulus trials). C, Timeline of 7T fMRI scan
sessions. Each subject participated in an initial screening session (prffloc), 30—40 NSD core
sessions, and two final sessions (nsdsynthetic, nsdimagery). The first NSD core session
corresponds to day 0. D, Behavioral compliance. Results for individual subjects (thin colored lines)
and the median across subjects (thick black line) are shown. Easy trials are defined as trials that
involved the presentation of an image that had occurred earlier in the same scan session.
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Neuroimaging data collection on carefully selected subjects

All fMRI data in NSD were collected at 7T using a whole-brain 1.8-mm 1.6-s gradient-echo EPI pulse
sequence. After verbally screening a number of potential participants with respect to basic eligibility
criteria, we recruited 14 subjects to participate in an initial 7T fMRI screening session which involved
population receptive field (pRF) (Benson et al., 2018) and category localizer (fLoc) (Stigliani et al., 2015)
experiments. Based on data from this scan session, we ranked the 14 subjects with respect to data
quality and invited the top 8 subjects to participate in the full NSD experiment (all subjects accepted). This
selection process was conducted to ensure the best possible data quality for NSD. Analyses conducted
after completion of the NSD experiment confirm that the ranking procedure successfully identified
subjects that yield high-quality data and that data quality would have suffered substantially had we
omitted the selection process (Figure 2C).

Data were collected from the 8 NSD subjects over the course of a year (Figure 1C). Subjects consistently
engaged with the task as indicated by the near perfect response rates (Figure 1D, top). Moreover, the
subjects correctly recognized items that were repeated within a given scan session (“easy trials”; Figure
1D, bottom) at rates higher than a 50/50 guess rate (for details on recognition memory, see Figure 6B).
The full NSD dataset includes a variety of anatomical neuroimaging measures (including T, T2, diffusion,
SWI, and TOF), functional neuroimaging measures (including the pRF and fLoc experiments, the NSD
experiment, resting-state data, and two additional experiments involving synthetic stimuli and visual
imagery), and behavioral measures (Figure 2A-B). In some fMRI sessions, physiological and eyetracking
data were also collected. With regards to the core NSD experiment, we completed the full set of 40 NSD
scan sessions for four of the subjects, but due to unforeseen summer absences and scheduled
decommissioning of the 7T scanner, we completed 30—32 NSD scan sessions for each of the other
subjects. A full breakdown of data collection is provided in Supplementary Figure 2.
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11 calculated on the full NSD dataset (see Figure 5). A line fit to the 8 NSD subjects (green dots) is
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15 motion for one sample run (see Supplementary Figures 3-4 for more information).
16
17 Stable high-resolution functional imaging across scan sessions
18

19  We believe visual inspection is the most effective way to assess many common aspects of fMRI pre-

20 processing (Kay et al., 2019). Accordingly, we generated a comprehensive set of movies that detail the
21 excellent quality of the pre-processed NSD dataset. These include movies that assess the co-registration
22 of the different imaging modalities (e.g. T1, T2, EPI; Supplementary Video 1); movies that assess the

23 manually-edited cortical surface reconstructions generated using FreeSurfer (Supplementary Video 2);
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movies that assess the registration of the NSD subjects to the fsaverage (Supplementary Video 3) and
MNI (Supplementary Video 4) group spaces; movies that inspect raw and pre-processed EPI volumes
(Supplementary Video 5); and movies that provide volume and surface visualizations of the stability of
mean EPI intensity across sessions (Supplementary Videos 6 and 7; Supplementary Figure 5) and the
stability of BOLD responses across sessions (Supplementary Videos 8 and 9). The movies demonstrate
that the quality of the NSD data enables precision functional mapping (Gordon et al., 2017): activity
patterns are fine-scale and highly reliable within individual subjects and these patterns are distinct across
subjects.

In addition to visual inspection, quantitative data quality metrics were computed for each NSD scan
session. This was in fact done on a rolling basis as the data were acquired, allowing us to monitor data
quality and provide performance bonuses to the subjects. Inspecting the metrics, we see that tSNR is
stable across scan sessions for each subject (Figure 2D, left). One subject, subject 8, exhibits low tSNR
compared to the other subjects; this can be attributed to higher levels of head motion for this subject
(Satterthwaite et al., 2014) (Figure 2D, middle). We also observe that BOLD responses are stable across
scan sessions for each subject, though there is substantial variation in the strength of BOLD responses
across subjects (Figure 2D, right).

One feature we implemented in the pre-processing of the fMRI data was to interpolate the data on both a
fine temporal grid and a fine spatial grid. This upsampling strategy preserves fine-scale detail that is
present in the raw fMRI data due to the temporal jitter of the acquired fMRI volumes relative to the
experimental paradigm (Watanabe et al., 2013) and the spatial jitter of the acquired fMRI volumes relative
to the brain’s anatomy (Kang et al., 2007; Kay et al., 2019). An illustration of the benefits of upsampling is
provided in Figure 3. This example highlights the existence of replicable, fine-scale detail in fMRI image
intensities as well as in BOLD responses extracted from the fMRI data.
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Figure 3. Improvements in spatial detail through upsampling. A, Comparison of approaches.
For an example coronal slice in Subject 1, we compare the non-upsampled 1.8-mm preparation of
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the data (left), the upsampled 1-mm preparation (right), and a post-hoc upsampled version of the
1.8-mm results (middle). Two quantities are shown: mean signal intensity and variance explained
by an ON-OFF GLM model. B, Zoomed view of white rectangle marked in panel A. C, Profile view
of blue dotted horizontal line marked in panel B. Error bars in the bottom plot indicate + 1 SEM
across sessions. D, Timecourse estimates for voxels marked by blue arrows in panel C. Each trace
corresponds to an estimate of the hemodynamic timecourse for a single voxel in one NSD scan
session.

Highly reliable diffusion data and derivatives

The diffusion data included with the NSD dataset complements the extensive fMRI measurements. We
pre-processed the raw diffusion data using the state-of-the-art DESIGNER pipeline methodology (Ades-
Aron et al., 2018) as implemented on brainlife.io (Avesani et al., 2019). We find that the quality of the pre-
processed diffusion data for each subject is high, as evidenced by the signal-to-noise ratio
(Supplementary Figure 6B). We then proceeded to perform diffusion signal modeling (Daducci et al.,
2015; Jensen and Helpern, 2010; Pierpaoli et al., 1996; Tournier et al., 2007; Zhang et al., 2012),
anatomically-informed tractography (Smith et al., 2012), and profilometry (Yeatman et al., 2012). White-
matter microstructural properties are found to be highly reliable for each subject (Figure 4A). Structural
connectivity matrices (Hagmann et al., 2008) derived from tractography results are also highly reliable,
both at the group level (Figure 4B-C) as well as at the single-subject level (Figure 4C, inset). The ready-
to-use diffusion derivatives provided with NSD include a variety of macrostructural and microstructural
measures, white-matter tracts, and structural connectivity matrices. These derivatives can easily
integrated into machine learning workflows, and serve as launching points for scientific investigations
seeking to apply network neuroscience perspectives (Bassett and Sporns, 2017) to understanding brain
function in the NSD dataset.
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Figure 4. Reliable diffusion derivatives facilitate investigation of white-matter connectivity.
A, Fractional anisotropy (FA). We show tractography and FA results for the optic radiation identified
in subject 7 (left), as well as reliability of FA results for all 61 identified white-matter tracts (right).
For other measures, see Supplementary Figure 6C-E. B, Structural connectivity. Using 43 visual
areas x 2 hemispheres = 86 regions from the HCP-MMP1 atlas (Glasser et al., 2016) (left), we
construct group-average connectivity matrices indicating the density of fibers connecting pairs of
regions (right). C, Quantitative summary. Each dot represents fiber density between a pair of
regions (as in panel B). Group-average results (main figure) and results for an individual subject
(inset) are shown.
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Extensive set of manually defined ROIs

To increase the value of the NSD dataset to the broader community, we performed analysis of the data
from the pRF and fLoc experiments and manually defined regions of interest (ROIs) based on the results.
The defined ROIs include retinotopic visual areas based on the pRF results (V1, V2, V3, hV4),
eccentricity-based regions based on the pRF results (bands between 0°, 0.5°, 1°, 2°, 4°, and beyond),
and category-selective regions based on the fLoc results (face-, word-, place-, and body-selective
regions). Representative examples illustrating the high quality of the localizer results and associated ROIs
are shown in Supplementary Figure 7. NSD also includes manual segmentations of the thalamus and
the medial temporal lobe. These resources reduce overhead and facilitate scientific analyses of the NSD
dataset.

Novel methods for accurate estimation of single-trial GLM betas

We performed a general linear model (GLM) analysis of the data from the NSD experiment in order to
help streamline subsequent analyses of the data. The goal of the GLM was to obtain single-trial betas
representing the estimated response of each voxel to each trial conducted. Given the low signal-to-noise
ratio of fMRI and the overlap of the hemodynamic response from trial to trial, estimating accurate betas is
a challenging endeavor. We thus developed a novel GLM approach consisting of three components. First,
we used a library of hemodynamic response functions (HRFs) derived from an initial analysis of the
dataset as an efficient and well-regularized method for estimating voxel-specific HRFs (Figure 5A-C).
Second, we adapted the GLMdenoise technique (Charest et al., 2018; Kay et al., 2013a) to the single-trial
GLM framework, thereby enabling the use of data-driven nuisance regressors (Figure 5D). Third, to
address the challenge posed by highly correlated single-trial regressors, we developed an efficient
implementation of ridge regression (Hoerl and Kennard, 1970; Rokem and Kay, 2020) and used this to
regularize and improve the accuracy of the betas (Figure 5E). To assess the efficacy of these various
GLM techniques, we generated three versions of the betas, reflecting increasing sophistication
(Supplementary Figure 8). Beta version 1 (b1) is the result of simply using a canonical HRF for all
voxels. Beta version (b2) is the result of fitting an HRF to each voxel using the library-of-HRFs approach.
Beta version (b3) uses the library-of-HRFs approach like b2 but also adds the use of GLMdenoise and
ridge regression in an attempt to improve the accuracy of the betas.

10
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14 fsaverage and then averaged. G, Performance summary. Each bar indicates the median noise
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16
17 Massive scale and quality of NSD responses
18

19  To assess the quality of the different beta versions (b1, b2, b3), we calculated noise ceilings for individual
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voxels. Surface maps of noise ceiling results reveal locations of reliable responses to the NSD stimuli:
high noise ceilings are present in occipital cortex and extend into temporal and parietal cortex (Figure 5F
and Supplementary Video 10). Importantly, the maps reveal very large increases in noise ceilings from
bl to b2 to b3, indicating that the additional GLM techniques incorporated into b2 and b3 improve
reliability of responses. Detailed quantifications show that these improvements are highly consistent
across voxels and subjects (Figure 5G and Supplementary Figure 9).

The absolute magnitudes of the noise ceilings are noteworthy. For beta version b3, noise ceiling levels in
visual cortex are, on average, 36% (calculated by computing the median across the nsdgeneral ROI and
then averaging across subjects). This means that a typical visual cortex voxel in the NSD dataset has
associated with it a set of 10,000 responses (30,000 trials divided by 3 trials per image = 10,000 images)
and a large percentage, 36%, of the variance in these 10,000 values is a signal that is, in theory,
predictable. Expressed in terms of Pearson’s correlation (r), this is equivalent to a prediction accuracy of r
= 0.60.

To put these numbers into further perspective, we propose the concept of ‘equivalent trials’ which allows
comparison of different datasets that vary in signal-to-noise ratio and trial distribution. The next largest
data collection effort that is similar in nature to NSD is BOLD5000 (Chang et al., 2019). Using the same
GLM analysis methods on both NSD and BOLD5000, we find that the signal-to-noise ratio per trial is
approximately 0.260 for NSD and 0.187 for BOLD5000. Combining these values with the number of trials
conducted in each dataset, we estimate that the total size of the NSD dataset is 213,000 trials x (0.260)?
= 14,399 equivalent trials, whereas the total size of BOLD5000 is 18,870 trials x (0.187)? = 660 equivalent
trials. Thus, using the metric of equivalent trials, NSD can be viewed as 14,399/660 = ~22 times as large
as the BOLD5000 dataset. This is a massive increase in power. Note that even if we do not take into
account the higher SNR per trial in the NSD dataset, NSD still has substantially more subjects (8 vs. 4),
trials per subject (26,625 vs. 4,718, on average), and hours of fMRI per subject (35.5 vs. 13.7, on
average) than BOLD5000.

Successful recovery of retinotopy

Having demonstrated the quality of the NSD data, we now turn to example analyses that illustrate the rich
scientific insights that can be derived from the data. As a simple starting example, we fit a voxelwise pRF
model that uses local contrast in the NSD images to account for the NSD betas. This simple model is
expected to recover spatial tuning in early visual cortex where responses co-vary with stimulus energy
(Albrecht and Hamilton, 1982; Boynton et al., 1999). Indeed, in all eight subjects, high-quality maps of
angle and eccentricity estimates are obtained in early visual cortex, and these estimates extend all the
way to the fovea (Supplementary Figure 10). These results provide a check of the validity of the NSD
betas, and provide evidence that subjects were able to successfully maintain central fixation during the
NSD experiment.

Reliable and long-term recognition memory effects

The use of a continuous recognition task establishes NSD as one of the largest datasets relevant to
human memory. Despite the challenging nature of the task, we find that subjects were able to
successfully discriminate old images from new images (average d’ across subjects: 1.28, maximum: 1.47,
minimum: 0.94). Further, recognition memory remained above chance even at long timescales between
repetitions (Figure 6A). Specifically, for each session, we calculated a measure of recognition accuracy
accounting for guessing (adjusted hit rate: hit rate minus false alarm rate) and binned this measure by the
time since last exposure (considering only those trials involving a previously shown image). At the group
level, subjects exhibit performance levels greater than chance (adjusted hit rate > 0) in all time bins. At
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the level of individuals, all subjects show a positive adjusted hit rate in the longest time bin for which data
are available for every subject (when binning on a log scale; 7 out of 8 subjects when binning on a linear
scale). These results indicate that from its behavioral component alone, NSD is powered to address
guestions concerning human memory spanning short (seconds) to relatively long (months) timescales.
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Figure 6. Reliable and long-term recognition memory effects. A, Behavioral recognition effects.
Adjusted hit rate indicates recognition accuracy accounting for guessing (hit rate minus false alarm
rate), and is binned by time between repetitions on a linear (left) or log scale (right). Dashed line
indicates chance performance. Each dot in each bin summarizes relevant trials from one scan
session. Black line indicates the mean across subjects, with ribbon indicating + 1 SEM. B, Neural
recognition effects. We performed two-sample t-tests on NSD betas contrasting ‘hits’ > ‘correct
rejections’. All results are shown on a flattened left hemisphere fsaverage surface and thresholded
at |t| > 3. Tests were performed for trials taken from individual NSD scan sessions (columns 1
through 4) as well as for trials pooled across all NSD scan sessions (column 5). In addition, we
perform a control in which trial labels in the pooled analysis are shuffled (column 6). Results for
subject 1 (top row) and a simple average of results across subjects (bottom row) are shown.

But what about neural effects? To assess whether recognition effects are present in the fMRI
measurements, we performed two-sample t-tests contrasting NSD betas observed for hits with NSD betas
observed for correct rejections (the so-called ‘old/new effect’; (Wagner et al., 2005)). We find highly
consistent old/new effects at the level of individual scan sessions (Figure 6B, top; see also
Supplementary Figure 11). Moreover, these effects occur in expected frontal and parietal regions
(Spaniol et al., 2009), and persist at the group level (Figure 6B, bottom). The scale and statistical power
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afforded by the NSD dataset also provides novel insight. Whereas old/new effects are typically studied
using group-level analyses, the quality of the NSD dataset reveals highly statistically significant results at
the level of individual subjects. Indeed, when pooling trials across all NSD scan sessions, several
subjects exhibit statistically significant activity differentiating hits and correct rejections in nearly the entire
cerebral cortex (see results for a representative subject in Figure 6B, top). Reminiscent of past datasets
employing extensive sampling of individuals (Gonzalez-Castillo et al., 2012), the current results suggest
that the extent of cortex engaged by basic memory processes is much more widespread than previously
appreciated.

Richness of stimulus sampling

NSD samples a huge variety of natural scenes. To gain insight into the breadth of stimulus sampling
available, we constructed representational dissimilarity matrices from the NSD betas and performed t-
distributed stochastic neighbor embedding (Maaten and Hinton, 2008) (t-SNE) to visualize the underlying
representations. We computed t-SNE embeddings in different regions along the ventral visual pathway
(Figure 7A). By color-coding the resulting embeddings according to animacy attributes (Figure 7B), we
find that in posterior ventral temporal cortex (pVTC), there is a clear large-scale pattern progressing from
images containing people (gray dots; lower left), images containing animals (red dots; middle), and
images containing inanimate objects (blue dots; upper right). This progression is not present in early
visual areas V1, V2, and V3. In anterior ventral temporal cortex (aVTC), the animacy progression is
present to some extent, but a different, more clustered representation emerges that presumably reflects
more complex categorical and semantic clusters. Indeed, zooming in on small sections of the t-SNE
embedding for aVTC reveals that these clusters contain images with relatively homogeneous semantic
content (Figure 7C): the blue cluster is dominated by images of round edible objects, while the gray
cluster is dominated by images of people interacting with objects. Overall, these results demonstrate the
rich inferential power of the NSD dataset and indicate that the dataset can be readily exploited to
characterize how visual representations arise in the human brain.
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Figure 7. Representational similarity analysis (RSA) reveals transformations of
representations along the ventral visual stream. A, lllustration of fsaverage ROIs used for the
RSA analysis. B, t-SNE embedding for each ROI in an example subject (subject 1). Each dot
represents a distinct image (total 10,000). Using category labels from the COCO image dataset, we
color each dot according to whether the associated image contains particular combinations of
people, animals, and inanimates. C, t-SNE embedding for anterior ventral temporal cortex with
actual images depicted. Insets highlight an inanimate cluster (blue inset) and a cluster of people
with inanimate objects (gray inset).

A brain-optimized neural network model of the visual system

One of the main motivations for NSD was to amass sufficient sampling of brain activity to be able to drive
data-hungry machine learning techniques. As an intriguing test case, we specifically investigated whether
we could successfully use the scale of NSD to train, from scratch, a deep convolutional neural network
(CNN) to accurately predict brain activity (Seeliger et al., 2021). Adopting the framework of encoding
models (Naselaris et al., 2011), we took NSD betas from visual areas V1-hV4, divided these data into a
training set and validation set, and evaluated how accurately different computational models predict brain
responses in the validation set based on the presented image. The primary encoding model of interest is
based on a new network we refer to as ‘GNet’, a brain-optimized CNN whose parameters are trained
using image-response pairings observed in the training set. For comparison, we also evaluated an
encoding model based on AlexNet (Krizhevsky et al., 2012), a task-optimized CNN whose parameters are
pre-trained using explicit labels of objects taken from an image database. AlexNet has been previously
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shown to provide state-of-the-art performance in modeling visual responses (Gii¢li and van Gerven,
2015; St-Yves and Naselaris, 2017). Finally, we included a simple V1-like control model based on
oriented Gabor filters (Kay et al., 2008).

Varying the amount of training data provided to the models, we find that the performance of the GNet-
based encoding model is relatively poor when only small amounts of training data are available (Figure
8A, orange arrows). This is expected since the feature extractors in GNet (see Methods) are not pre-
trained and thus require data for tuning. However, when large amounts of training data are available, the
GNet model exhibits an impressive increase in performance, achieving approximate parity with the
AlexNet-based encoding model (Figure 8A, blue arrows). Interestingly, by implementing a variant of
GNet that is able to exploit data from multiple subjects, we demonstrate that the GNet model is able to
outperform the AlexNet model (two-tailed paired t-test across subjects, p = 0.013), albeit modestly
(Figure 8A, red arrows). For additional insight into model performance, we compared voxel-wise
performance levels to noise ceiling estimates (Figure 8B). Across voxels, prediction accuracy is tightly
correlated with the noise ceiling, suggesting that voxel-wise differences in prediction accuracy simply
reflect differences in signal-to-noise ratio. In addition, performance levels are close to, but do not reach,
the noise ceiling.
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Figure 8. Prediction of brain activity using a brain-optimized neural network. We used
encoding models (Naselaris et al., 2011) to predict voxel activity in V1-hV4. NSD betas were
divided into a training set and validation set, and the accuracy of different encoding models was
guantified as the voxel-wise correlation between model predictions and responses observed in the
validation set. A, Performance as a function of amount of training data used. Models include an
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encoding model based on AlexNet which is a task-optimized neural network (blue); encoding
models based on GNet which is a brain-optimized neural network trained using data from single
subjects (orange) or data from multiple subjects (red); and a V1-like control model based on Gabor
filters (purple). Error bars reflect one standard deviation across results obtained from different
bootstrap samples of the data. B, Detailed view of the performance of the multi-subject GNet model
for a representative subject. C, Surface maps depicting spatial distribution of validation accuracy for
the multi-subject GNet model.

The demonstration that an encoding model based on a brain-optimized CNN (GNet) outperforms an
encoding model based on a task-optimized CNN (AlexNet) is significant, as it indicates NSD is large
enough to successfully train a complex neural network architecture. Had the NSD dataset been smaller in
scale or lower in quality, qualitatively different patterns of model performance would have been obtained
(in Figure 8A, compare orange arrows reflecting a few thousand trials to red arrows reflecting tens of
thousands of trials). The availability of NSD thus opens the door to using brain activity to directly guide
the optimization of deep neural networks. Brain-optimized networks (Seeliger et al., 2021) are a useful
alternative to task-optimized networks (Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014), as
the narrowly defined tasks that such networks are typically trained to solve do not necessarily respect the
diversity of functions supported by the human visual system (Wang et al., 2019) nor necessarily match
properties found in biological visual systems (Sinz et al., 2019). In this regard, NSD is a resource that will
contribute to a virtuous cycle of competition between models derived from biological and artificial
intelligence. In principle, brain-optimized networks might prove to be more effective for solving computer
vision tasks (Cox and Dean, 2014; Fong et al., 2018; Toneva and Wehbe, 2019; van de Ven et al., 2020).
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Discussion

In the last several years, there have been a number of large-scale neuroimaging datasets that have been
made publicly available for re-use (Aliko et al., 2020; Gordon et al., 2017; Nastase et al., 2020; Taylor et
al., 2017; Van Essen et al., 2013). Several distinguishing aspects of the present work set NSD apart from
past datasets. One is the unprecedented scale of the dataset. NSD shares the motivation of recent ‘deep’
(or ‘precision’) neuroimaging efforts (Bellec and Boyle, 2019; Filevich et al., 2017; Gordon et al., 2017,
Pinho et al., 2018; Poldrack et al., 2015; Seeliger et al., 2019) seeking to amass large amounts of data
from individual subjects, as opposed to modest amounts of data on a large number of subjects. In this
context, NSD is, to our knowledge, the most extensive fMRI data collection effort that has been performed
to date. This can be gauged not only in terms of the number of hours of fMRI data acquisition per subject
(30—40 hours of data for each of 8 subjects on the core NSD experiment) and the high spatial resolution
of the acquired data (1.8 mm), but also the wealth of additional measures beyond the core experiment,
including substantial amounts of resting-state and diffusion data, physiological data, and functional
localizers. The availability of extensive measures provides the opportunity to build complete models of
how individual brains support vision and memory (Naselaris et al., 2021).

A second aspect is the unusually high quality of the data. Although quality of neuroimaging data is more
complex to assess than quantity, assessment of data quality is essential since MRI data have relatively
low sensitivity and are prone to errors and artifacts. In particular, when acquiring massive datasets, there
is a risk of accumulating unknown sources of noise and artifact. The work presented in this paper (and in
the accompanying files in the data release) guards against this possibility by crafting a customized and
highly optimized approach to pre-processing the NSD data and providing comprehensive documentation
of the high data quality (see also Supplementary Discussion). Several factors likely contributed to the
high data quality: these include the use of ultra-high magnetic field strength (7T) which enhances BOLD
contrast-to-noise ratio; the screening, training, and incentivization of participants; the detailed inspection
and supervision of data processing; and the large network of collaborators who helped guide the design
and trajectory of the dataset.

A third aspect of the present work lies in the novel analysis techniques developed for improved GLM
analysis of fMRI time-series data. These include (i) an efficient and robust method to estimate voxel-
specific HRFs, (ii) adaptation of the GLMdenoise technique (Kay et al., 2013a) to a single-trial GLM
framework, and (iii) development of ridge regression as an effective method for regularizing single-trial
response estimates. These three techniques have been integrated into a toolbox that can be applied to
other neuroimaging datasets, and are the subject of a forthcoming paper. An important lesson stemming
from our results is that well-executed data collection is important but not the only factor to consider: data
preparation methods exert a major influence on the quality of a dataset and hence its scientific value. One
can view improvements in data quality as equivalent to increases in data quantity, in the sense that
analysis methods that reduce unwanted variability (noise) can be interpreted as increasing the effective
amount of data collected (Kay et al., 2013a). Thus, by improving data quality, the methods introduced
with NSD are contributing to the massive scale of the dataset.

The NSD dataset has many potential applications in cognitive and computational neuroscience. Given its
extensive sampling of natural scenes (70,566 distinct images aggregated across 8 subjects) and high
signal-to-noise ratio, the dataset will be useful for investigating a variety of phenomena in low-, mid-, and
high-level vision. In addition, the memory component of the NSD experiment provides a unique
opportunity to study the neural mechanisms of both short- and long-term memory (ranging from seconds
to many months), as well as potential interactions between vision and memory. From a methodological
perspective, the repeated scanning of individuals using a consistent experimental manipulation (up to 40
scan sessions of the NSD experiment per subject) provides a unique opportunity for development and

18


https://doi.org/10.1101/2021.02.22.432340
http://creativecommons.org/licenses/by/4.0/

O ~NO U WN P

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.22.432340; this version posted February 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

evaluation of neuroimaging pipelines. Finally, perhaps the most exciting use of NSD is as a common
dataset to bridge the disciplines of cognitive science, neuroscience, and artificial intelligence (Naselaris et
al., 2018). As we have shown in the context of deep neural network modeling (see Figure 8), there are
sufficient data in NSD to successfully drive the training of neural network models with thousands of free
parameters. This demonstration exemplifies how NSD—uwith its large amounts of carefully curated fMRI
data collected during a rich cognitive paradigm—enables data-driven approaches towards understanding
the complexities of information processing in the brain.
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Methods

Subject recruitment

The NSD study was advertised to the University of Minnesota community. We sought to recruit right-
handed individuals (18—65 years old) with no known cognitive deficits nor color blindness and with normal
or corrected-to-normal vision. Those who were interested in participating were contacted for a phone
interview to explain the nature of the study and to screen them for eligibility. We discussed the long-term
nature of the study, the time commitment it would involve, and the feasibility of traveling to the scanner on
a regular basis. We paid attention to the communicativeness of potential participants and their general
attitude towards study participation. Selecting participants whom we were confident would provide high-
guality data was more important to us than obtaining a random sample of the general population. Based
on the phone interviews, we invited 14 people who we felt were strong candidates to participate in an
initial 7T fMRI screening session. Of these, 8 were selected to participate in the full NSD experiment.

Subjects

Eight subjects (two males, six females; age range 19-32) participated in the NSD dataset (subjo1—
subj08). There were six additional subjects (four males, two females; age range 20-53) who participated
in the initial 7T fMRI screening session but not in the remainder of data collection. Subjects were naive
and were not involved in the design nor planning of the NSD dataset. All subjects had normal or
corrected-to-normal visual acuity. Informed written consent was obtained from all subjects, and the
experimental protocol was approved by the University of Minnesota Institutional Review Board. Additional
subject information including height, weight, handedness, and visual acuity was logged and is available
online.

Subjects participated in a number of neuroimaging and behavioral data collection sessions (a full
breakdown is provided in Supplementary Figure 2). Neuroimaging included 3T structural scan sessions
and 7T functional scan sessions. The 7T functional scan sessions included an initial screening session
termed ‘prffloc’, referring to the population receptive field (pRF) and functional localizer (fLoc) experiments
conducted in that session. The 7T sessions also included, for each subject, 30—40 sessions in which the
main NSD experiment was conducted (‘'nsd01-nsd40’). These sessions are collectively termed the ‘NSD
core’. In some of these sessions, resting-state data were acquired before and after the NSD experiment.
Finally, the 7T sessions also included two sessions conducted after completion of the NSD core; these
sessions, termed ‘nsdsynthetic’ and ‘nsdimagery’, involved measuring responses to synthetic stimuli and
cognitive task manipulations (including mental imagery), respectively. The total number of 7T fMRI scan
sessions were 43, 43, 35, 33, 43, 35, 43, and 33 for subj01-subj08, respectively. The average number of
hours of resting-state fMRI conducted for each subject was 2.0 hours, and the average number of hours
of task-based fMRI conducted for each subject was 38.5 hours. Each subject also participated in several
behavioral assessments after scanning was complete. These included a variety of behavioral measures
(‘nsdpostbehavior’), a final memory test (‘nsdmemory’), and an image-similarity assessment
(‘nsdmeadows’).

MRI data acquisition
MRI data were collected at the Center for Magnetic Resonance Research at the University of Minnesota.
Some data were collected using a combination of a 3T Siemens Prisma scanner and a standard Siemens

32-channel RF head coil. Most data were collected using a combination of a 7T Siemens Magnetom
passively-shielded scanner and a single-channel-transmit, 32-channel-receive RF head coil (Nova
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Medical, Wilmington, MA). lllustrations of the different types of MRI data acquired are provided in Figure
2B. Below we summarize the scanning protocols (full protocol printouts are available online).

At 3T, we collected a number of anatomical measures (T1, T2, diffusion, angiogram). The motivation for
collecting data at 3T was to ensure acquisition of T1 volumes with good gray/white-matter contrast and
homogeneity, which is difficult to achieve at ultra-high field (Polimeni et al., 2018). To increase contrast-
to-noise ratio and enable the ability to assess reliability, we acquired several repetitions of T1- and T2-
weighted volumes. For each subject, we collected between 6-10 scans of a whole-brain Ti1-weighted
MPRAGE sequence (0.8-mm isotropic resolution, TR 2400 ms, TE 2.22 ms, Tl 1000 ms, flip angle 8°,
bandwidth 220 Hz/pixel, no partial Fourier, in-plane acceleration factor (iPAT) 2, TA 6.6 min/scan) and 2—
3 scans of a whole-brain T2-weighted SPACE sequence (0.8-mm isotropic resolution, TR 3200 ms, TE
563 ms, bandwidth 744 Hz/pixel, no partial Fourier, in-plane acceleration factor (iPAT) 2, TA 6.0
min/scan). In addition to T1 and T2 data, we also acquired 4 high angular resolution diffusion-weighted
spin-echo EPI scans, varying the number of diffusion directions and the phase-encode direction (1.5-mm
isotropic resolution, TR 3230 ms, TE 89.20 ms, flip angle 78°, refocusing flip angle 160°, bandwidth 1700
Hz/pixel, echo spacing 0.69 ms, partial Fourier 6/8, no in-plane acceleration, multiband slice acceleration
factor 4, TA 5.6 min/scan for 99 directions, TA 5.7 min/scan for 100 directions). The 4 scans included 99
directions AP (anterior-to-posterior phase-encode direction), 99 directions PA (posterior-to-anterior
phase-encode direction), 100 directions AP, and 100 directions PA. Diffusion volumes were acquired at b-
values of 0, 1,500, or 3,000 s/fmm?. We also acquired an angiogram using a time-of-flight (TOF) multi-slab
3D sequence (0.39 mm x 0.39 mm x 0.5 mm resolution, TR 19.0 ms, TE 2.91 ms, flip angle 18°,
bandwidth 186 Hz/pixel, phase partial Fourier 6/8, slice partial Fourier 6/8, in-plane acceleration factor
(iPAT) 2, TA 5.5 min).

At 7T, we collected functional data and associated fieldmaps and a few additional anatomical measures
(venogram, high-resolution Tz). Functional data were collected using gradient-echo EPI at 1.8-mm
isotropic resolution with whole-brain (including cerebellum) coverage (84 axial slices, slice thickness 1.8
mm, slice gap 0 mm, field-of-view 216 mm (FE) x 216 mm (PE), phase-encode direction anterior-to-
posterior, matrix size 120 x 120, TR 1600 ms, TE 22.0 ms, flip angle 62°, echo spacing 0.66 ms,
bandwidth 1736 Hz/pixel, partial Fourier 7/8, in-plane acceleration factor (iPAT) 2, multiband slice
acceleration factor 3). The use of moderate spatial resolution capitalizes on the signal-to-noise ratio
benefits provided by ultra-high magnetic field strength. At the beginning of each 7T session, we acquired
a short test EPI scan and adjusted the gain factor (FFT scale factor) accordingly to ensure large dynamic
range while avoiding clipping. Empirical measurements indicate that the acoustic noise caused by the EPI
sequence is 112 dBA; assuming a conservative noise reduction estimate of 26 dB for the earplugs that
we used, the resulting noise level is 86 dBA, which can be safely endured for approximately 8—16
continuous hours according to guidelines from the National Institute for Occupational Safety and Health
(NIOSH) 1998 and Occupational Safety and Health Administration (OSHA) 2009.

In addition to the EPI scans, the 7T sessions also included dual-echo fieldmaps for post-hoc correction of
EPI spatial distortion (same overall slice slab as the EPI data, 2.2 mm x 2.2 mm x 3.6 mm resolution, TR
510 ms, TE1 8.16 ms, TE2 9.18 ms, flip angle 40°, bandwidth 301 Hz/pixel, partial Fourier 6/8, TA 1.3
min/scan). Fieldmaps were periodically acquired over the course of each scan session to track changes
in the magnetic field (details provided below). In one of the 7T sessions held for each subject, we
acquired a venogram using a susceptibility-weighted imaging (SWI) 3D sequence (0.5625 mm x 0.5625
mm x 0.6 mm resolution, TR 28 ms, TE 21 ms, flip angle 17°, bandwidth 120 Hz/pixel, phase partial
Fourier 6/8, slice partial Fourier 6/8, in-plane acceleration factor (iPAT) 3, TA 10.1 min). In addition, for
the purposes of hippocampal segmentation, we acquired in one of the 7T sessions a high-resolution T2-
weighted TSE scan (0.357 mm x 0.357 mm x 1.5 mm resolution, 56 oblique slices oriented perpendicular
to the long axis of the hippocampus, field-of-view 160 mm (FE) x 156.4 mm (PE), TR 16000 ms, TE 53
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ms, bandwidth 100 Hz/pixel, no partial Fourier, in-plane acceleration factor (iPAT) 2, turbo factor 15, TA
4.5 min).

In the prffloc 7T fMRI session, the acquisition structure was [F BWLL F BWLL F BWLL F], where F
indicates a fieldmap, B indicates a multibar run of the pRF experiment (188 TRs), W indicates a
wedgering run of the pRF experiment (188 TRs), and L indicates a run of the fLoc experiment (195 TRs).
In the NSD 7T fMRI sessions, the acquisition structure was either [F NNNN F NNNN F NNNN F] or [F
RNNNN F NNNN F NNNNR F], where F indicates a fieldmap, N indicates a run of the NSD experiment
(188 TRs), and R indicates a resting-state run (188 TRs).

Stimulus display and scanner peripherals

Ear plugs were used to reduce acoustic noise experienced by the subjects. To minimize head motion, we
acquired a headcase (Power et al., 2019) for each of the 8 NSD subjects (Caseforge, Berkeley, CA;
http://caseforge.co) and deployed the headcases starting from the second NSD core scan session
(nsd02). To ensure maximal subject comfort, only the posterior half of the headcases were used (omitting
the anterior half). Standard foam padding was used to mitigate head motion prior to that point (prffloc,
nsd01l).

Stimuli were presented using a Cambridge Research Systems BOLDscreen 32 LCD monitor positioned at
the head of the 7T scanner bed, placed flush against the scanner bore. We chose to use an LCD monitor
because it delivers a sharp, high-quality image, in contrast to typical scanner setups involving projectors
and backprojection screens. The monitor operated at a resolution of 1920 pixels x 1080 pixels at 120 Hz.
The size of the full monitor image was 69.84 cm (width) x 39.29 cm (height). Subjects viewed the monitor
via a mirror mounted on the RF coil. The viewing distance was 5 cm from the subjects’ eyes to the mirror
+171.5 cm from the mirror to the monitor image = 176.5 cm total. Measurements of the display spectral
power density were obtained using a PR-655 spectroradiometer (Photo Research). The BOLDscreen is
designed by the manufacturer to behave as a linear display device, and our measurements confirmed this
to be the case.

We determined the maximum square extent visible in both eyes given the constraints of the RF coil to be
8.4° x 8.4° (714 pixels x 714 pixels). Thus, stimuli from the various experiments (e.g., pRF, fLoc, NSD)
were adjusted to fill 8.4° of visual angle (details provided below). At the beginning of each scan session,
we made an effort to position the monitor in the same location relative to the scanner and to position the
subject’s head and RF coil in the same location relative to the scanner. We also used a calibration square
(8.4° in size) to determine any incidental horizontal or vertical offsets needed in that session in order for
the participant to see the entire square in each eye, unobstructed. Given these efforts, we believe that
consistent and high-quality visual stimulation was achieved across scan sessions. Nonetheless, we
caution that due to limitations in positioning and/or potential drift over the course of a scan session, some
slight occlusion of the corners of the 8.4° x 8.4° square extent may have occurred some of the time.

A Mac Pro computer controlled stimulus presentation using code based on Psychophysics Toolbox 3.0.14
(Brainard, 1997; Pelli, 1997). Behavioral responses were recorded using a button box (Current Designs,
Philadelphia, PA). In some scan sessions (nsd21-nsd30, the same sessions in which the primary set of
resting-state data were acquired), physiological data were collected using a pulse oximeter and a
respiratory belt (stock Siemens equipment). Care was taken to secure the oximeter with tape to the left
index finger of the subject and to secure the respiratory belt snugly to the subject’s torso. Visual
inspections of the physiological data (available online) suggest that the data are of excellent quality and
that more than 90% of the pulse data and more than 95% of the respiratory data are usable. These
physiological data are valuable for identifying potential contaminants of resting-state fMRI signals (Lynch
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et al., 2020). Physiological data were carefully synchronized with the fMRI data and cropped, but are not
further described in this paper.

In several scan sessions (see Supplementary Figure 2 for details), eyetracking was performed using an
EyeLink 1000 system (SR Research, Mississauga, Ontario, Canada) combined with a custom infrared
illuminator mounted on the RF coil. Eyetracking was performed for the left eye, and eyetracking data were
obtained at 2000 Hz using the Pupil-CR centroid mode. We caution that the eyetracking data are variable
in quality, as achieving sufficient pupil contrast was often difficult. For complementary information, we also
captured video recordings of the eyetracker computer display (see Figure 2B) using a cell phone secured
to a mount. Eyetracking data and video recordings were carefully synchronized with the fMRI data and
cropped accordingly (analysis_eyetracking.m), but are not further described in this paper. Note that it may
be possible to infer eye gaze from fMRI signal intensities in and around the eyeballs (Frey et al., 2020;
Son et al., 2020).

Day-to-day acquisition procedures

Participants were scanned roughly once a week, with attempts to keep a regular weekly scan time. At the
beginning of each session (starting at approximately nsd07), participants were asked to rate on a five-
point scale how well they slept the night before, their mood, how hungry they were, and their stress level.
We also asked whether they had had caffeine in the past three hours. At the end of each scan session,
participants were asked to rate how comfortable they were during the session and to provide any general
feedback they had about the session. These various measures, as well as any technical issues that arose
during the session, were logged onto a spreadsheet (available online).

In the first several scan sessions, we emphasized the importance of fixation and performed simple tests
prior to scanning in which we watched the subject’s eyes while they attempted to fixate and while they
deliberately broke fixation. This was done to help subjects understand what good fixation feels like. In
every scan session, we reminded subjects about the importance of fixation and about the correct
mapping between buttons and responses.

During data collection, we monitored aspects of data quality including overall image quality, head motion,
quality of physiological data, and behavioral performance. Between functional runs, we checked in with
the subject to assess their energy level, enthusiasm, and compliance. If we noticed any substantial drops
in response rate, we politely notified the subject and offered short breaks before continuing.

To promote subject engagement and retention, participants were given the opportunity to earn monetary
bonuses that gradually increased in size over the course of the NSD study. These bonuses were
contingent on achieving certain performance levels on data quality metrics such as head motion and
response rate. Information regarding performance was supplied to participants in the form of a continually
updated “leaderboard” figure. We found that this figure greatly helped to motivate participants.

The NSD experiment
Basic design

In the NSD experiment, participants performed a long-term continuous recognition task while viewing a
large number of color natural scenes. We chose this recognition task because it engages and challenges
the observer and is unbiased with respect to the specific content of the images (unlike other tasks such
as animacy judgment). In addition, it infuses the experiment with a rich memory dimension that is likely of
interest to memory researchers. A total of 73,000 distinct images were prepared. We intended that the 8
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NSD subjects would each view 10,000 distinct images presented 3 times each over the course of 40 scan
sessions. We designated a special set of 1,000 images as shared images that would be seen by all
subjects (‘shared1000’); all other images would be mutually exclusive across subjects. The distribution of
the 3 presentations of each image was tightly controlled, and subjects were naive as to both the number
and distribution of the presentations.

Images were presented using a 3-s ON / 1-s OFF trial structure (Figure 1A). In informal piloting, we found
that this pacing made the recognition task feasible and not overly taxing. In addition, we reasoned that the
relatively long stimulus duration would increase neural activity and that the rapidity of the design would
allow more trials to be collected and thereby increase overall experimental power. Finally, we speculated
that the 3/1 trial structure would yield a pleasant experience for participants, at least compared to slow
event-related designs where most experimental time is spent viewing a blank screen.

Image preparation

The NSD stimuli are prepared as a single brick of RGB images with dimensionality 425 pixels x 425 pixels
x 3 RGB channels x 73,000 images and unsigned 8-bit integer format.

Images were taken from Microsoft's Common Objects in Context (COCO) image database (Lin et al.,
2014). COCO images are photographs harvested from online repositories; each image is supplemented
by a rich set of annotations (e.g., boundary polygons around objects, natural language captions, body-
pose estimates). We used NSD images in the 2017 train/val split (Lin et al., 2014), and restricted
selection to the subset of images for which pixel-level annotations of “stuff’ (Caesar et al., 2018) (e.g.,
sky, land, wall, road) in addition to “things” (e.g., car, skateboard, hat) were available.

We selected only images whose smaller dimension (height or width) was at least 425 pixels. Where
necessary, we squared image dimensions by cropping out pixels along the largest dimension. For
example, if the original image was 425 x 585, we cropped away 160 pixels from the larger dimension,
resulting in an image that is 425 x 425. The median number of pixels cropped per image was 160. After
cropping, images were downsampled, if needed, to 425 x 425.

Cropping an image can change the way the viewer interprets it. We refer to this effect of cropping as
“semantic loss”. In order to be able to take full advantage of the rich annotations available for the COCO
images, we attempted to minimized semantic loss when cropping images. For landscape-oriented images,
we selected between a center, left, or right crop. For portrait-oriented images, we selected between a
center, top, or bottom crop (finer grids of cropping options had little effect on results). Selection of crops
were carefully performed based on quantitative analysis and visual inspection (details provided in online
materials).

In addition to screening to minimize semantic loss, we implemented a screening procedure to remove
duplicate images. Some of the COCO images are extremely similar to each other, differing only by a post-
processing operation (i.e., grayscaling or sharpening) or by a few frames in a motion-capture sequence.
To remove these near-duplicates, we downsampled all images to 40 x 40 and then computed the
correlation of grayscale pixel intensities between all image pairs. We manually inspected the image pairs
with the 500 highest correlation values. Of these, 38 image pairs were observed to be near duplicates.
We randomly selected another image from the COCO dataset to replace one image in each near-
duplicate pair. Finally, we screened captions for all images for indications of violent or salacious content.
No images were deemed too offensive to include in the experiment.
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The distribution of “thing” categories across the final images selected for NSD was nearly identical to
distribution in the full COCO dataset. As a result, the “person” category was over-represented; however,
with a few exceptions, all 80 COCO object categories are displayed in at least 100 images to each
subject. Note that images tend to depict more than one category, so that a given object category
frequently appeared in the same image with other categories. For each subject’s images, at least 90% of
the images contain 2 or more of the 80 COCO categories.

Distribution of image presentations

We determined the ordering of the 10,000 images x 3 trials = 30,000 trials in advance and kept the
ordering fixed across subjects. The idea is that these 10,000 images are actually treated as slots into
which different NSD images are inserted. We designated the first 1,000 slots as corresponding to the
special shared1000 images; the remaining 9,000 slots were filled with unique images for each subject.
Note that because the trial ordering and repetition structure are identical across subjects, the difficulty of
the recognition task is comparable across subjects (up to the fact that some images might be more
difficult to remember than others).

We controlled the distribution of image presentations in order to prevent the recognition task from
becoming too difficult (and risking loss of subject morale). In the procedure, we conceptualized the task of
determining the trial ordering as equivalent to placing image presentations on a circle that would
eventually be cut and unraveled. To determine presentation times, we created a circular probability
distribution by mixing a von Mises distribution and a uniform distribution (Supplementary Figure 1A).
Using random draws from the resulting distribution (positioning the distribution at a random location on
the circle for each image), we determined 3 presentation times for each of the 10,000 images. After
completing the placement of all 30,000 trials, we then cut the circle, unraveled it into a linear sequence of
image presentations, and divided this sequence into 40 consecutive segments corresponding to the 40
NSD scan sessions (750 trials per session).

We chose specific parameters for the probability distribution: we used a von Mises distribution with
concentration parameter of 3¢ and a mixing ratio of 60% and 40% for the von Mises and uniform
distributions, respectively. This choice of parameters yields appealing properties. First, the distribution is
relatively narrow (see Supplementary Figure 1A) and therefore ensures that there will be many trials
involving an image that has been presented in the recent past (thus, making the trials easy), while still
allowing the probing of more distant memory events. Second, there is minimal “burn-in” time at the
beginning of the experiment: even in the first scan session, there is still a substantial number of trials
involving old images (see Supplementary Figure 1B, blue line). Third, there is minimal “dead” time at
the end of the experiment: even in the last scan session, there is still a substantial number of trials
involving new images (see Supplementary Figure 1B, blue line).

To provide a sense of the overall experimental design, we computed basic statistics on each NSD scan
session. For a typical session, the total number of distinct images shown once, twice, and all three times
within that session is 437, 106, and 34, respectively (these numbers reflect the mean across scan
sessions, rounding to the nearest integer).

Trial and run design

Each trial lasted 4 s, and consisted of the presentation of an image for 3 s, followed by a 1-s gap. A total
of 75 trials were conducted in a run; thus, each run lasted 300 s. The first 3 trials (12 s) and last 4 trials
(16 s) were blank trials. The remaining 68 trials were divided into 63 stimulus trials and 5 blank trials. The
blank trials were randomly positioned in each run such that the minimum and maximum continuous
number of stimulus trials was 9 trials (36 s) and 14 trials (56 s), respectively (see Figure 1B). For even-
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numbered runs, the 63 stimulus trial was designated to be a blank trial. A total of 12 NSD runs were
collected in one NSD session, yielding a total of (63 + 62) x 6 = 750 stimulus trials. Moreover, this design
was repeated for all 40 NSD sessions: 750 stimulus trials x 40 sessions = 30,000 stimulus trials. The
temporal ordering of stimulus and blank trials was generated once and kept fixed across subjects.

Stimulus presentation and task

Since the BOLDscreen is calibrated to behave as a linear display device, we used a squaring luminance
response when presenting the NSD experiment in order to simulate the typical viewing of digital images.
At time of presentation, the prepared NSD images (425 pixels x 425 pixels) were resized to fill 8.4° x 8.4°
(714 pixels x 714 pixels) using linear interpolation. Throughout each run (including blank trials), a small
semi-transparent red fixation dot (0.2° x 0.2°; 50% opacity) was present at the center of the stimuli
(Figure 1A). Stimuli were shown against a gray background with RGB value (127,127,127).

Subjects were instructed to fixate the central dot and to press button 1 using the index finger of their right
hand if the presented image was new, i.e. the image had never been presented before, or button 2 using
the middle finger of their right hand if the presented image was old, i.e. the image is identical to one that
had been presented before, either in the current scan session or any previous scan session. Subjects
were additionally instructed to continue to fixate and wait for the next image in the event of blank trials.

Before the start of the NSD experiment, we showed the subjects a version of the experiment involving
cartoon images in order for them to become familiarized with the feel and timing of the task. During the
NSD experiment, minimal feedback was provided to the subjects regarding their performance on the
recognition task. Participants were blind to the precise details of the NSD experiment (e.g., total number
of images, total number of presentations per image). Participants were informed only about their
response rate (fraction of trials on which they successfully made a response) and a vague “performance
metric” which, unbeknownst to them, quantified their percent correct for easy trials (trials that involved the
presentation of an image that had occurred earlier in the same scan session). A postmortem held after
the completion of the NSD experiment revealed the nature of the design (details below).

Details on experiment timing

Stimulus presentation was locked to the refresh rate of the BOLDscreen monitor. Empirical
measurements confirmed that the monitor refresh rate was nearly exactly 120 Hz: duration of runs were
highly reliable, ranging from 299.95-299.98 s. To compensate for the slight offset from 300 s, the fMRI
data were pre-processed to achieve a sampling rate of 0.999878 s (high-resolution preparation) or
0.999878 s x (4/3) = 1.333171 s (standard-resolution preparation). For brevity, we refer to these numbers
as 1.000 s and 1.333 s. Experimental runs were started by a trigger issued by the MR scanner. Due to
input polling and monitor refresh, there was slight variability in the delay between trigger detection and the
presentation of the first stimulus frame, ranging from 3-22 ms. We did not attempt to compensate for this
delay.

Acquisition

Due to constraints on subject availability (including unplanned out-of-town absences in the summer of
2019) and due to constraints on scanner availability (the 7T scanner was decommissioned in November
2019), we did not complete the full NSD experiment for every participant. Fortunately, we were able to
collect a sizable amount of data: 40, 40, 32, 30, 40, 32, 40, and 30 NSD sessions for subj01-subj08,
respectively. In these collected data, each subject viewed 9,209-10,000 distinct images and participated
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in 22,500-30,000 trials. Aggregated across subjects, the total number of distinct images shown was
70,566, and the total number of trials was 213,000.

Postmortem

After completion of the final memory test (details below), participants filled out a post-NSD questionnaire.
This questionnaire probed topics such as strategies used for performing the NSD task and estimates for
the number of images viewed and the number of image repetitions. After filling out this questionnaire, the
design of the NSD experiment was then revealed to the participants.

Other experiments

Population receptive field (pRF) experiment

We adapted the experiment used in the Human Connectome Project (HCP) 7T Retinotopy Dataset
(Benson et al., 2018). Stimuli consisted of slowly moving apertures filled with a dynamic colorful texture
(see Figure 2A). Apertures and textures were updated at a rate of 15 Hz. Two run types were used. The
first, termed ‘multibar’, involves bars sweeping in multiple directions (same as RETBAR in the HCP 7T
Retinotopy Dataset). The second, termed ‘wedgering’, involves a combination of rotating wedges and
expanding and contracting rings. Both run types included blank periods.

For consistency with the NSD experiment, stimuli were resized to fill a circular region with diameter 8.4°.
Each run lasted 300 s (exact empirical timings were highly accurate and ranged between 299.95-300.00
s). Throughout stimulus presentation, a small semi-transparent dot (0.2° x 0.2°) was present at the center
of the stimuli. The color of the central dot switched randomly to one of three colors (black, white, or red)
every 1-5 s. Subjects were instructed to maintain fixation on the dot and to press a button whenever the
color of the dot changed. To further aid fixation, a semi-transparent fixation grid was superimposed on the
stimuli and was present throughout the experiment (Schira et al., 2009). A total of 6 runs (3 multibar, 3
wedgering) were collected in the first 7T fMRI session (prffloc).

Functional localizer (fLoc) experiment

This experiment was developed by the Grill-Spector lab (Stigliani et al., 2015) (stimuli and presentation
code available at http://vpnl.stanford.edu/fLoc/). The experiment consisted of the presentation of
grayscale images depicting different stimulus categories (see Figure 2A). There were 10 categories,
grouped into 5 stimulus domains: characters (word, number), bodies (body, limb), faces (adult, child),
places (corridor, house), and objects (car, instrument). Stimuli were presented on a scrambled
background (different backgrounds for different stimuli). Stimuli were presented in 4-s trials. In a trial, 8
images from a given category were sequentially presented (image duration 0.5 s). Each run included 6
presentations of each of the 10 categories as well as blank trials (also of 4-s duration).

For consistency with the NSD experiment, stimuli were resized to fill a square region filling 8.4° x 8.4° of
visual extent. Each run lasted 300 s (exact empirical timings were highly accurate and ranged between
300.000-300.002 s). Throughout stimulus presentation, a small red fixation dot was present at the center
of the stimuli. Subjects were instructed to maintain fixation on the dot and to press a button whenever
they noticed an image in which only the background was present (“oddball” task). A total of 6 runs were
collected in the first 7T fMRI session (prffloc).

Resting-state experiment
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Stimuli consisted of a white fixation cross (0.5° x 0.5°) on a gray background (see Figure 2A). Each
resting-state run lasted 300 s. In the second resting-state run held within a given scan session, the
fixation cross turned red after 12 s had elapsed and remained red for 4 s before returning to white.

Resting-state data were acquired in several NSD core scan sessions: nsd21-nsd38 for subjol and
subj05, and nsd21-nsd30 for all other subjects. Thus, a total of 100 or 180 minutes of resting-state data
were acquired for each subject; this large amount of data is appealing as it enables stable estimates of
resting-state correlations (Laumann et al., 2015). In each session, one resting-state run was acquired at
the beginning of the session (prior to the NSD runs) and another resting-state run was acquired at the
end of the session (after the NSD runs).

In the first resting-state run, subjects were instructed to stay awake and fixate the cross but otherwise
rest. In the second resting-state run, subjects were additionally instructed to inhale deeply when the
fixation cross turned red. This instructed breath was designed to aid analysis of the physiological data
collected concomitantly with the resting-state data. Prior to each resting-state run, subjects were asked to
report their current sleepiness level using the Stanford Sleepiness Scale (Shahid et al., 2012) (1-7 where
1 is most active and 7 is most sleepy). After each resting-state run, subjects were asked to report their
sleepiness level during the run that had just completed.

After the last scan session involving resting-state data, participants filled out a post-resting-state
guestionnaire. This questionnaire queried what the participants were doing during the resting-state runs
and whether they thought about the images from the NSD experiment.

Synthetic stimuli experiment (nsdsynthetic)

After completion of the NSD experiment, we conducted an additional 7T fMRI scan session in which
responses were measured to a variety of carefully controlled synthetic (non-naturalistic) stimuli while the
subject performed either a fixation task or a one-back task. These data will be described and released in
a forthcoming manuscript.

Visual imagery experiment (nsdimagery)

After completion of the nsdsynthetic experiment, we conducted an additional 7T fMRI scan session in
which responses were measured while participants engaged in visual imagery and other cognitive tasks.
These data will be described and released in a forthcoming manuscript.

Additional behavioral measures (nsdpostbehavior, nsdmemory, nsdmeadows)

A number of behavioral assessments were conducted after completion of the NSD experiment. Several of
these were relatively brief, and included the following (nsdpostbehavior): open-ended questions regarding
language ability; the Vividness of Visual Imagery Questionnaire (Marks, 1973); the Test of Word Reading
Efficiency (Torgesen et al., 2012), including both Sight Word Efficiency and Phonemic Decoding
Efficiency; the Cambridge Memory Test for Faces (Duchaine and Nakayama, 2006); ultra-fast
measurement of contrast sensitivity (Tardif et al., 2016); and an assessment of chromatic sensitivity
(participants adjusted intensities of red, green, and blue channels on the BOLDscreen display until
minimal luminance flicker was perceived).

We also conducted a final memory test in which we collected various memory-related measures

regarding the images shown to the subjects during the NSD experiment (nsdmemory). These data will be
described and released in a forthcoming manuscript.
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Finally, using the web-based Meadows platform (http:/meadows-research.com), we conducted an
assessment of how the NSD subjects perceive and interpret the NSD images (nsdmeadows). First, we
selected a small set of images that maximally span semantic space. This was done by isolating the 515
images (out of the shared 1,000 NSD images) that were viewed all 3 times by all 8 NSD subjects during
the NSD experiment; computing shifted inverse frequency sentence embeddings for the sentence
captions provided by the COCO dataset (Arora et al., 2017); and using a greedy approach to determine
the subset of 100 images that maximize the average distance between each image’s embedding and its
closest neighbor. We then asked participants to perform a Multiple Arrangements Task (Kriegeskorte and
Mur, 2012) in which they arrange using a drag-and-drop interface the 100 images within a white circular
arena according to the similarity of their content. Using an adaptive procedure, subsequent arrangements
were conducted using subsets of the images in order to maximize information gain. This was done until
45 minutes had elapsed. Using a similar interface on Meadows, participants then provided valence and
arousal ratings for the 100 images as well as 3 additional images pulled from the 515 images. Ratings
were performed separately for valence and arousal, and were accomplished by freely arranging using a
drag-and-drop interface the images (delivered in small batches) along a one-dimensional axis ranging
from low to high. This assessment took about 15 minutes.

Overview of data analysis

We designed custom analysis strategies to maximize the quality of derived measures from the NSD data.
A number of methods are based on recent work in the lab where further details can be found (Kay et al.,
2020, 2019). Data analysis and visualization were performed using custom code in MATLAB and Python
as well as tools from various packages such as FreeSurfer, SPM, FSL, ANTs (Avants et al., 2011), and
ITK-SNAP (Yushkevich et al., 2006). An archive of code used is provided online, and specific code files
are referenced in the text below.

The analysis of the NSD data can be divided into three components: (i) pre-processing of the anatomical,
diffusion, and functional data, (ii) time-series analysis of the fMRI data to estimate trial-wise betas, and (iii)
further analyses of the trial-wise betas to answer specific scientific questions. The first two components
produce the so-called ‘prepared data’ that are generally useful to the community, whereas the third
component refers to analyses performed for the purposes of this paper (pRF estimation, univariate
memory analysis, representational similarity analysis, end-to-end neural-network training).

The pre-processing approach that we designed for the NSD dataset prioritizes accuracy and preservation
of information (e.g. avoiding spatial smoothing). We avoid “baking in” unnecessary assumptions (e.g.
aggressively removing signal fluctuations without careful assessment of validity), and care is taken to
manually inspect each pre-processing step to ensure satisfactory results. While we believe our pre-
processing is general and likely suitable for most downstream uses of the data, the raw data are also
available for those who wish to explore other pre-processing approaches such as fmriprep (Esteban et
al., 2019). We note several aspects of the NSD dataset that may render the dataset challenging from a
pre-processing standpoint: the relatively high spatial resolution of the fMRI data (1.8 mm) places higher
demands on spatial accuracy, the ultra-high field strength (7T) used for the fMRI data yields higher levels
of EPI spatial distortion compared to lower field strengths, and the emphasis on many repeated scans of
individuals heightens the importance of achieving consistent imaging results across scan sessions.

Pre-processing of anatomical data

T1 and T2 volumes
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T1- and T2-weighted volumes were corrected for gradient nonlinearities using a custom Python script
(https://github.com/Washington-University/gradunwarp) and the proprietary Siemens gradient coefficient
file retrieved from the scanner. The multiple T1 and T2 volumes acquired for a given subject were then co-
registered (preprocess_nsd_structuralalignment.m). This was accomplished by first co-registering the T1
volumes to each other (rigid-body transformation; correlation metric; the first T: volume serving as the
target) and then by co-registering the T2 volumes to the T1 volumes (rigid-body transformation; mutual
information metric; the prepared T1 data serving as the target). In the estimation of registration
parameters, a manually defined 3D ellipse was used to focus the cost metric on brain tissue. Individual
volumes were manually inspected and rejected if substantial image artifacts were visible (only the 2nd
and 4th T1 volumes for subject 8 were rejected). The final T: and T2 data were created by performing
cubic interpolation at a resolution of 0.5 mm. Results for the multiple acquired volumes were averaged
(within modality) to increase contrast-to-noise ratio. Finally, the 0.5-mm volumes were resampled to
create alternative 0.8-mm and 1.0-mm versions.

SWI volume

We co-registered the SWI volume (magnitude component only; corrected for gradient nonlinearities) to
the prepared 1.0-mm EPI volume (preprocess_nsd_SWI.m). To compensate for the acquisition being
performed on different scanners, we used a slightly flexible nonlinear warp as implemented in ANTs 2.1.0
(BSplineSyN with parameters [0.1, 400, 0, 3]). The final SWI volume was prepared in the subject-native
anatomical space by performing B-spline interpolation at a resolution of 0.5 mm. The resulting volume
was then resampled to create alternative 0.8-mm and 1.0-mm versions.

TOF volume

We co-registered the TOF volume to the prepared 1.0-mm T1 volume (preprocess_nsd_TOF.m). This was
accomplished using a slightly flexible nonlinear warp as implemented in ANTs 2.1.0 (BSplineSynN with
parameters [0.1, 200, 0, 3]). To aid estimation of registration parameters, a temporary version of the TOF
volume was used in which extremely bright pixels were dampened. The final TOF volume was prepared
in the subject-native anatomical space by performing B-spline interpolation at a resolution of 0.5 mm. The
resulting volume was then resampled to create alternative 0.8-mm and 1.0-mm versions.

High-resolution T2 volume

We co-registered the high-resolution T2 volume to the prepared 0.5-mm T2 volume (external_mtl.m).
Given that these volumes were acquired on different scanners, we evaluated several strategies for
achieving accurate co-registration. We obtained the best results by performing a simple linear co-
registration (affine transformation; correlation metric) in combination with a rectangular box that focused
the cost metric on regions of interest in the medial temporal lobe. The estimated registration was
subsequently used to map labels defined on the high-resolution T2 volume to the subject-native
anatomical space.

De-identification
We mapped a liberal brain mask defined in MNI space to the subject-native anatomical space, and then
used the result to mask and thus de-identify the anatomical volumes

(preprocess_nsd_applybrainmask.m).

FreeSurfer processing
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The prepared 0.8-mm T volume was processed using FreeSurfer version 6.0.0 with the -hires option
(analysis_freesurfer.m). Manual edits of tissue segmentation (labeling voxels as gray matter, white
matter, or cerebrospinal fluid) were performed for each of the eight subjects to optimize the accuracy of
the cortical surface representations generated by FreeSurfer. The prepared 0.8-mm T2 volume was used
to inform manual segmentation decisions, but was not explicitly used in the FreeSurfer processing. We
also manually marked surface imperfections that remained even after manual edits; these are labeled in
the surface inspections (Supplementary Video 2) and are largely confined to a few difficult regions
located in the inferior aspects of the temporal and frontal lobes (see Figure 5F).

Several additional FreeSurfer processing steps were performed. Using mris_expand, we generated
cortical surfaces positioned at 25%, 50%, and 75% of the distance between the pial surface and the
boundary between gray and white matter. These surfaces are useful for creating surface representations
of the fMRI data. Multiple surfaces at different gray-matter depths were created given the relatively high
spatial resolution of the fMRI data (1.8-mm acquisition). We also generated several flattened surface
representations: for each hemisphere in each subject, we created a flattened version of the entire cortical
sheet (using manually defined cuts) as well as flattened versions of cortical patches covering ventral
temporal cortex and early visual cortex (patches were determined automatically based on a set of cortical
patches defined on fsaverage). Finally, in line with the ‘surface voxels’ visualization technique (Kay et al.,
2019), we sampled 1-, 2-, and 3-mm volumetric test patterns onto surface vertices using nearest-neighbor
interpolation (analysis_surfacevoxels.m). The test patterns are useful for understanding the impact of
cortical curvature on surface visualizations.

Pre-processing of the diffusion data

Code scripts used to analyze the diffusion data are accessible via the hyperlinks indicated below, which
refer to brainlife.io apps (http://brainlife.io) (Avesani et al., 2019).

The prepared 0.8-mm Ti-weighted volume for each subject was segmented into different tissue types
using MRTrix3 (Tournier et al., 2019) (brainlife.app.239). The gray- and white-matter interface mask was
subsequently used as a seed mask for white-matter tractography. For network generation, the HCP-MMP
cortical parcellation (Glasser et al., 2016) was mapped to subject-native surfaces and then to the
volumetric Freesurfer segmentation (ribbon.mgz) for each subject (brainlife.app.23).

The raw data from the four diffusion scans (99 AP, 99 PA, 100 AP, 100 PA) were corrected for gradient
nonlinearities, concatenated, and then pre-processed following a published protocol (Ades-Aron et al.,
2018). Specifically, diffusion volumes were denoised and cleaned with respect to Gibbs ringing using
MRTrix3 before being corrected for susceptibility, motion, and eddy distortions using FSL’s topup and
eddy functions (brainlife.app.287). Following these corrections, the diffusion volumes were bias-corrected
and had background noise removed using MRTrix3. Finally, the diffusion volumes were co-registered to
the 0.8-mm Ti-weighted anatomical volume using FSL'’s epi_reg (rigid-body transformation, boundary-
based registration), and then resliced to 0.8-mm isotropic voxels. The diffusion data were organized into
two runs: data from the 99 AP and 99 PA scans constitute ‘Run 1’ and data from the 100 AP and 100 PA
scans constitute ‘Run 2’ (brainlife.app.371). To assess data quality, we calculated signal-to-noise ratio in
the corpus callosum using workflow provided by Dipy (Garyfallidis et al., 2014) (brainlife.app.120).

Following pre-processing, brain masks were generated using Dipy’s median_otsu (brainlife.app.70). This
mask was used in subsequent model fitting and tractography. Multiple models of myelinated
microstructural organization were fit to the diffusion data from each run. This included the diffusion tensor
(DTI) model (Pierpaoli et al., 1996), diffusion kurtosis (DKI) model (Jensen and Helpern, 2010), and the
neurite orientation dispersion and density imaging (Daducci et al., 2015; Zhang et al., 2012) (NODDI)
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models (brainlife.app.9, brainlife.app.365). The NODDI model was fit twice for each run: once for white-
matter tract microstructure using an intrinsic free diffusivity parameter (d,) of 1.7 x 10 mm?/s, and once
for cortical microstructure using d, = 1.1 x 103 mm?/s, following previously described procedures
(Fukutomi et al., 2018). The constrained spherical deconvolution (Tournier et al., 2007) (CSD) model was
fit for 4 spherical harmonic orders (Lmax = 2, 4, 6, 8) using MRTrix3 (brainlife.app.238). The fiber
orientation distribution functions for Lmax = 6 and Lmax = 8 were subsequently used to guide anatomically-
constrained probabilistic tractography (Smith et al., 2012) using MRTrix3 (brainlife.app.297). A total of 3
million streamlines across Lmax = 6 and Lmax = 8 for each run were generated, using a step size of 0.2 mm,
minimum length of 25 mm, maximum length of 250 mm, and a maximum angle of curvature of 35°.
Finally, structural connectivity matrices representing fiber density were generated using a combination of
SIFT2 (Smith et al., 2015) and MRTrix3 (brainlife.app.394). Fiber density was quantified as the number of
streamlines connecting two regions divided by the average volume of the two regions.

Following model fitting and tractography, 61 major white-matter tracts were segmented for each run using
a customized version of the white matter query language (Bullock et al., 2019) (brainlife.app.188). Then,
using Vistasoft (https://github.com/vistalab/vistasoft), outlier streamlines were removed (brainlife.app.195)
and tract profiles (each tract sampled with 200 nodes) were generated for DTI, DKI, and NODDI
measures (brainlife.app.361). Finally, these measures were mapped to the cortical surface following
previously published procedures (Fukutomi et al., 2018) using FreeSurfer and Connectome Workbench
(https://github.com/Washington-University/workbench) (brainlife.app.379).

Pre-processing of functional data
Overall strategy

We implemented a pre-processing approach that aimed to preserve as much spatial and temporal detail
as possible. In short, the fMRI data were pre-processed by performing one temporal resampling to correct
for slice time differences and one spatial resampling to correct for head motion within and across scan
sessions, EPI distortion, and gradient nonlinearities. This produced volumetric fMRI time-series data in
subject-native space for each NSD subject. The functional data were pre-processed independently of the
anatomical data; this was done intentionally in order to avoid dependence of the pre-processed functional
data on choices such as how to co-register the functional and anatomical data and how to map the
functional data to cortical surface representations. Also, to minimize the risk of inaccurate or unwanted
assumptions, we did not include any temporal filtering (e.g. detrending, confound regression, censoring).
Pre-processing results were carefully visually inspected to ensure quality control. There were a few
anomalous cases, such as acquisition being split across two different scan sessions; special
modifications were made to the pre-processing to accurately compensate for these occurrences (see
online notes for details).

First-stage pre-processing

Given the fMRI data acquired in a scan session, a series of steps were performed (preprocess_nsd.m,
preprocessfmri.m):

1. Temporal resampling. A cubic interpolation of each voxel’s time-series data in each run was
performed. This interpolation corrected differences in slice acquisition times (as determined from
the DICOM header) and also upsampled the data (in the same step) to either 1.333 s (standard-
resolution preparation) or 1.000 s (high-resolution preparation). Data were prepared such that the
first time-series data point coincides with the acquisition time of the first slice acquired in the first
volume of each run. The upsampling exploits the benefits of temporal jitter between the
acquisition and the experiment and synchronizes the time-series data to convenient multiples of
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the experiment trial structure (Kay et al., 2020). For example, in the standard-resolution
preparation, there are 3 time points for each 4-s trial in the NSD experiment.

2. Fieldmap preparation. The multiple fieldmaps acquired in the scan session (3.6-mm slices) were
upsampled using nearest-neighbor interpolation to match the slice resolution of the fMRI data
(1.8-mm slices). The fieldmaps were then phase-unwrapped using the FSL utility prelude and
regularized by performing 3D local linear regression using an Epanechnikov kernel with radius 5
mm. Values in the magnitude component of the fieldmaps were used to regularize the fieldmaps
and the regression in order to improve robustness of the field estimates. Finally, the fieldmaps
were linearly interpolated over time, producing an estimate of the field for each fMRI volume
acquired.

3. Spatial undistortion. The temporally resampled volumes from Step 1 were undistorted based on
the field estimates from Step 2 using the standard unwarping method (Jezzard, 2012).
Undistorted volumes were generated using cubic interpolation.

4. Motion estimation. The undistorted volumes from Step 3 were used to estimate rigid-body motion
parameters using the SPM5 utility spm_realign (the first fMRI volume in the scan session served
as the reference). A manually defined 3D ellipse was used to focus the cost metric on brain
regions unaffected by gross susceptibility effects. Note that the estimated motion parameters
reflect temporally upsampled data and should be interpreted accordingly (e.g. when assessing
framewise displacement). Also, note that the motion parameters may reflect apparent image
motion due to respiration-induced Bo fluctuations (Gratton et al., 2020); this was particularly
apparent in subject 3.

5. Spatial resampling. A single cubic interpolation was performed on the temporally resampled
volumes from Step 1 in order to correct for the combined effects of head motion and spatial
distortion.

Gradient nonlinearity correction and session registration

Given the results of the first-stage pre-processing, we computed the mean fMRI volume and corrected
this volume for gradient nonlinearities (preprocess_nsd_epigradunwarp.m). We then co-registered this
gradient-corrected volume to the gradient-corrected volume from the first NSD scan session (affine
transformation, correlation metric). Thus, the first NSD scan session determined the target space for
preparing fMRI data from different scan sessions (preprocess_nsd_epialignment.m).

Second-stage pre-processing

We repeated the pre-processing steps (Steps 1-5 above) but with the final spatial resampling step
incorporating the effects of the gradient nonlinearity correction and the session registration
(preprocess_nsd_secondstage.m). In this way, a single cubic interpolation is used to compensate for the
effects of head mation, spatial distortion, gradient nonlinearities, and session registration. For this final
interpolation step, we used either a 1.8-mm grid (standard-resolution preparation) or a 1.0-mm grid (high-
resolution preparation). The latter approach intentionally upsamples the data in order to exploit the
benefits of small head displacements and preserve as much spatial detail as possible (Kang et al., 2007;
Kay et al., 2019). To minimize storage requirements, the interpolations were performed within a 3D box
that was just large enough to cover the brain of each subject.

To facilitate assessment of T2* effects, we created a bias-corrected version of the mean EPI volume
(analysis_biascorrection.m). For each preparation, we took the mean EPI volume and fit a 5th-degree 3D
polynomial, considering only voxels labeled as cortical or cerebellar gray matter in the FreeSurfer aseg
file. The fitted volume (‘coilbias’) was then divided from the mean EPI volume, producing the bias-
corrected volume (‘bc’).
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Final outputs

The final result of pre-processing was volumetric fMRI time-series data in subject-native space. Two
versions were generated: the standard-resolution version was prepared at a spatial resolution of 1.8 mm
and a temporal resolution of 1.333 s, whereas the high-resolution version was prepared at a spatial
resolution of 1 mm and a temporal resolution of 1.000 s.

Mapping between spaces

We performed several analyses related to mapping data between different spaces:

e Mapping between functional and anatomical spaces. We co-registered the mean fMRI volume (1-
mm preparation; mean of first five NSD sessions) to the prepared 1.0-mm T2 volume
(preprocess_nsd_functionaltostructuralalignment.m). To compensate for acquisition on different
scanners, we used a slightly flexible nonlinear warp as implemented in ANTs 2.1.0 (BSplineSyN
with parameters [0.1, 400, 0, 3]). A small amount of nonlinearity was necessary to achieve
accurate co-registration (see inspections provided online).

¢ Changing resolutions in anatomical space. For resampling data to different anatomical resolutions
(0.5-, 0.8-, or 1.0-mm), we used an ideal Fourier filter (10th-order low-pass Butterworth filter)
followed by cubic interpolation (changevolumeres.m).

e Mapping to and from fsaverage. We calculated the indexing information that maps subject-native
surfaces to and from fsaverage using nearest-neighbor interpolation in the spherical space
defined by FreeSurfer. Visual inspections confirm the quality of the folding-based alignment
achieved by FreeSurfer (Supplementary Video 3).

e Mapping to and from MNI. Using FSL’s utility fnirt, we co-registered the subject-native prepared
1.0-mm T1 volume to the MNI152 T: 1-mm template provided by FSL
(preprocess_nsd_MNIlandbrainmask.m). Visual inspections confirm the quality of the registration
(Supplementary Video 4).

e Converting surface data to volumetric format. We implemented a method that, for a given target
anatomical volume with resolution R mm, allows each surface vertex to contribute a triangular
(linear) kernel of size +/— R mm and then calculates a weighted average of data values at the
position of each voxel in the volume (cvnmapsurfacetovolume_helper.m).

Based on the results of the above analyses, we calculated coordinate transformations that indicate how to
map between the functional spaces, the anatomical spaces, the subject-native surfaces, fsaverage, and
MNI space (preprocess_nsd_calculatetransformations.m). Finally, we created a lightweight utility
(nsd_mapdata.{m,py}) that uses the coordinate transformations to map user-supplied data from one
space to another space under a given interpolation scheme (nearest-neighbor, linear, cubic, winner-take-
all). For example, data in subject-native functional space can be mapped to MNI space using a single
interpolation of the functional data. We used this utility to perform a number of mundane but useful
transformations, such as generating versions of the anatomical volumes that are matched to the
functional volumes (analysis_transforms.m). Label data (e.g. ROI labels) were transformed by performing
a separate interpolation for each label and then a winner-take-all operation.

Data quality metrics

Several data quality metrics were calculated (export_runmetrics.m) and summarized in Figures 1D and
2D. Temporal signal-to-noise ratio (tSNR) was computed from raw fMRI volumes (no pre-processing) by
first detrending the time-series data from each voxel (quadratic polynomial fit) and then dividing the mean
signal intensity by the standard deviation of signal intensity values (autogc_fmri.m). We calculated the
median tSNR across voxels within a simple brain mask (mean volume thresholded at 1/10th of the 99th
percentile of values) and then computed the median across runs. Head motion was quantified by
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calculating framewise displacement (FD) (Power et al., 2012) based on motion parameter estimates (1.8-
mm preparation). We calculated the mean FD across volumes in a run and then computed the median
across runs. BOLD response was quantified by calculating the percentage of variance explained by a
simple ON-OFF GLM model (1.8-mm preparation). We calculated the median variance explained across
voxels within the nsdgeneral ROI and then computed the median across runs. Response rate was
guantified by calculating the percentage of trials for which the subject pressed a button and then
computing the mean across runs. Percent correct for easy trials was quantified by calculating the
percentage of trials for which the subject gave the correct response, considering only those trials for
which the presented image had been previously presented in the same scan session.

To identify EPI signal dropout regions (export_signaldropout.m), we divided the T2 volume (resampled to
match the EPI data) by the mean EPI volume (1-mm preparation). The resulting volume is useful as it
indicates which voxels have high signal intensity in the T2 but are corrupted by signal dropout in the EPI.
We mapped the volume to the cortical surface (cubic interpolation; mean across depth), transformed the
result to fsaverage, and then used a data-driven threshold to mark atypically high values. Vertices marked
in at least four of the eight subjects are indicated in Figure 5F. To visualize surface imperfections, we
took the voxels that were marked in the 0.8-mm anatomical space (during the inspection of surface
quality), smoothed this binary volume with a 3D Gaussian with full-width-half-max of 2 mm, mapped the
result to the cortical surface (cubic interpolation; max across depth), and then transformed the result to
fsaverage. Vertices exceeding 0.01 in at least one of the eight subjects are indicated in Figure 5F.

Regions of interest (ROIs)
Volume-based subject-native ROIs

The thalamus ROI collection consists of ROIs related to the lateral geniculate nucleus, pulvinar, and
superior collicus (external_subcortical.m). Manual labeling of these ROIs was performed by an expert (M.
Arcaro) based on the T1 and T2 anatomical volumes obtained for each subject as well as functional
results obtained in prior studies (Arcaro et al., 2015), projected from MNI space to the native space of
each subject. Labels were defined in 0.5-mm anatomical space and were resampled to create alternative
0.8-mm and 1.0-mm versions. To provide labels in functional space, the 0.8-mm anatomical volume was
mapped to the 1.0-mm functional space, and the 1.0-mm anatomical volume was mapped to the 1.8-mm
functional space.

The MTL ROI collection consists of ROIs related to the hippocampus and surrounding brain regions in the
medial temporal lobe (external_mtl.m). Manual labeling of these ROIs was performed by an expert (W.
Guo) based on the high-resolution T2 volume obtained for each subject, following a published protocol
(Berron et al., 2017). Labels were defined on the raw high-resolution volume, and were mapped to 0.5-
mm anatomical space using the previously determined affine transformation. Note that the resulting labels
have some amount of jaggedness due to the anisotropy of the voxels in the high-resolution T2 volume.
Alternative versions of the labels were created in the same way as described for the thalamus labels.

Surface-based subject-native ROIs

Results of the pRF experiment were used to define prf-visualrois, a collection of ROIs consisting of the
dorsal and ventral subdivisions of V1, V2, and V3, and area hV4 (analysis_drawrois_prf*.m). These ROls
were manually drawn on cortical surfaces by experts (K. Kay, J. Winawer) based on pRF angle and
eccentricity estimates, following common practices (Winawer and Witthoft, 2017). The ROIs extended to
the fovea (0° eccentricity) but were restricted to the extent of cortex stimulated by the pRF experiment.
The pRF results were also used to define prf-eccrois, a collection of ROIs consisting of concentric regions
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with increasing eccentricity coverage (0.5°, 1°, 2°, 4°, >4°). Labeled regions were confined to the same
cortical extent labeled in prf-visualrois.

Results of the fLoc experiment were used to define several collections of category-selective ROIs
(analysis_drawrois*.m). These ROIs were manually drawn on cortical surfaces by experts (K. Kay, A.
White, A. Bratch) based on a combination of anatomical location and stimulus selectivity t-values
obtained from the fLoc experiment, following general procedures used in prior studies (Gomez et al.,
2018; Kay and Yeatman, 2017; Stigliani et al., 2015). For each ROI collection (floc-bodies, floc-faces,
floc-places, floc-words), several ROls exhibiting preference for the associated category were defined
(e.g., floc-faces was based on t-values for the contrast of faces > non-faces). ROIs were defined by
drawing a polygon around a given patch of cortex and then restricting the ROI to vertices within the
polygon that satisfy t > 0. This liberal criterion was used to provide maximum flexibility (the user can
simply restrict the ROI further to a specific desired threshold).

Surface-based atlas ROIs

To help summarize results in this paper, we defined nsdgeneral, an ROI in occipital cortex reflecting
regions generally responsive in the NSD experiment (analysis_drawnsdgeneral.m). This ROl was drawn
on fsaverage based on group-average results for variance explained by the b3 version of the GLM. The
ROl is shown in Figure 5F.

To provide anatomical reference, we defined corticalsulc, a collection of ROIs consisting of major sulci
and gyri, and streams, a collection of ROIs reflecting large-scale divisions of visual cortex (early,
midventral, midlateral, midparietal, ventral, lateral, parietal). These ROI collections were manually drawn
on fsaverage. Annotations reflecting several of the corticalsulc ROIls are shown in Figure 5F.
Abbreviations: CGS = cingulate sulcus, PrCS = precentral sulcus, CS = central sulcus, PoCS =
postcentral sulcus, SFRS = superior frontal sulcus, IFRS = inferior frontal sulcus, LS = lateral sulcus, Calc
= calcarine sulcus, OTS = occipitotemporal sulcus, CoS = collateral sulcus, STS = superior temporal
sulcus, IPS = intraparietal sulcus.

For convenience, the NSD dataset also includes a few publicly available atlases. These include
Kastner2015 (Wang et al., 2015), an atlas of visual topography, and HCP_MMP1 (Glasser et al., 2016), a
whole-brain cortical parcellation based on multimodal measures. Both atlases were prepared in fsaverage
and converted as described below.

Conversion of surface-based ROIls

A number of conversions were performed to prepare volumetric versions of surface-based ROIs
(analysis_surfaceroistovolume.m). ROIs defined on fsaverage were mapped to subject-native surfaces
using nearest-neighbor interpolation. ROIs defined on subject-native surfaces were mapped to 0.8-mm
anatomical space by assigning labels to the 3 depth-dependent surfaces and then performing weighted
linear conversion (as described earlier). The 0.8-mm volume was then mapped to the 1.0-mm and 1.8-
mm functional spaces.

Analysis of the pRF experiment

The pre-processed fMRI data from the pRF experiment were analyzed using the Compressive Spatial
Summation model (Kay et al., 2013b) as implemented in analyzePRF (analysis_prf.m). First, the time-
series data from the three repetitions of each run type (multibar, wedgering) were averaged. Stimulus
apertures indicating the position of the texture were prepared at a resolution of 200 pixels x 200 pixels.
We then used analyzePRF (http://cvnlab.net/analyzePRF/) to estimate pRF parameters for each voxel
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(canonical hemodynamic response function; seedmode 2). Results were mapped to the cortical surface
by performing linear interpolation on the volumes (1-mm preparation) and then averaging across cortical
depth. To quantify behavioral performance, we calculated, for each run, (A — B)/C x 100, where A
indicates the number of successful detections of color changes (button pressed within 1 s of a color
change), B indicates the number of extraneous button presses, and C indicates the total number of color
changes. Performance averaged across the six runs ranged between 93.5-98.9% for the eight NSD
subjects.

Analysis of the fLoc experiment

The pre-processed fMRI data from the fLoc experiment were analyzed using GLMdenoise (Charest et al.,
2018; Kay et al., 2013a), a data-driven denoising method that derives estimates of correlated noise from
the data and incorporates these estimates as nuisance regressors in a general linear model (GLM)
analysis of the data (analysis_floc.m). We coded the 10 stimulus categories using a “condition-split”
strategy (Kay et al., 2019) in which the trials associated with each category were split into separate
conditions in each run. We used six condition-splits, thereby producing six response estimates (betas) for
each category. After fitting the GLM, t-values were computed from the GLM betas in order to quantify
selectivity for different categories and domains (e.g., selectivity for faces was quantified by perfoming a t-
test that contrasts adult and child faces vs. all other categories). Results were mapped to the cortical
surface by performing linear interpolation on the volumes (1-mm preparation) and then averaging across
cortical depth. To quantify behavioral performance, we calculated the hit rate for each run (button pressed
within 1 s of an oddball image). Performance averaged across the six runs ranged between 90.8-97.5%
for the eight NSD subjects.

Rankings from the 7T fMRI screening session

Six quality measures (pRF BOLD, fLoc BOLD, pRF behavior, fLoc behavior, raw motion, detrended
motion) were computed for each of the 14 subjects who participated in the screening session. BOLD
quality was quantified as the percentage of voxels for which variance explained by modeling the fMRI
time-series data (either pRF model fitting or GLM model fitting) exceeded 20%. Behavior quality was
guantified as described above. Motion was quantified by calculating the median voxel displacement
relative to the reference volume used for motion correction, computing the median of this quantity across
volumes, and then computing the mean across runs. This motion quantification was performed using raw
motion parameter estimates (thereby providing a measure of global head displacement over the course of
the session) as well as using motion parameter estimates that are linearly detrended within each run
(thereby providing a measure of within-run head instability). Each of the six measures was linearly scaled
to span the range 1-5 where 1 corresponds to the worst performance and 5 corresponds to the best
performance observed across subjects. Finally, the normalized measures were averaged to produce an
overall ranking for each subject, as depicted in Figure 2C.

Analysis of behavioral data from the NSD experiment

The behavioral data from the NSD experiment were lightly reformatted for the convenience of subsequent
analyses (analyzebehavior_nsd.m). We first checked whether the subject had accidentally positioned
their fingers on incorrect buttons on the button box, and compensated for this if necessary. (In a few
instances, we deliberately instructed subjects to use alternative buttons due to hardware malfunction of
the button box.) We then recorded, for each stimulus trial, several quantities including time of image
presentation, whether the image presented was new or old, whether the response was correct or
incorrect, and the reaction time. Button responses were extracted from a time window extending 250—
4250 ms after image onset. In the case of multiple buttons pressed during a trial, we scored the final
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button pressed, excluding any redundant presses of that button (subjects sometimes repeated button
presses for good measure).

GLM analysis of the NSD experiment

Overview of approach

We performed a GLM analysis of the pre-processed time-series data from the NSD experiment. To
maximize flexibility for subsequent analyses, the GLM approach was designed to provide estimates of
BOLD response amplitudes (‘betas’) for single trials. Due to low signal-to-noise ratio, single-trial
estimation in fMRI is challenging. We therefore developed several analysis components in order to
optimize the quality of single-trial betas. These components are packaged into a tool called GLMsingle,
and is the subject of a forthcoming manuscript where additional details and discussion can be found.

The first analysis component of GLMsingle is the use of a library of hemodynamic response functions
(HRFs) whereby the best-fitting HRF from the library is chosen for each voxel. This simple approach for
compensating for differences in hemodynamic timecourses across voxels (Handwerker et al., 2012) has
several appealing features: it is efficient and can be executed with little computational cost (and hence
can accommodate the massive scale of NSD); and it invariably provides well-regularized HRF estimates.
The second analysis component is an adaptation of GLMdenoise to a single-trial GLM framework.
GLMdenoise (Kay et al., 2013a) is a technique in which data-derived nuisance regressors are identified
and used to remove noise from—and therefore improve the accuracy of—beta estimates. The third
component is an application of ridge regression (Hoerl and Kennard, 1970) as a method for dampening
the noise inflation caused by correlated single-trial GLM predictors. To determine the optimal level of
regularization for each voxel, we make use of a recently developed efficient re-parameterization of ridge
regression called ‘fractional ridge regression’ (Rokem and Kay, 2020).

Derivation of the library of HRFs

To generate a library of HRFs that accurately capture empirically occurring timecourse variation, we
performed an initial analysis of data from the first NSD core session (nsd01). The first step was to create
a comprehensive summary of observed timecourses (hrf_derivecanonicalpcs.m). The time-series data
from each subject’s nsd01 session was fit using a finite impulse response model (0—30 s) where all of the
stimulus trials are treated as instances of a single experimental condition (this simplification is necessary
to make estimation feasible). We identified voxels for which model variance explained (R?) was greater
than 10%, and from these voxels randomly drew 20,000 voxels (with replacement). Pooling across
subjects, timecourse estimates from the resulting 160,000 voxels were subjected to singular value
decomposition to determine the top 3 principal components (shown in Figure 5B, inset). To fine-tune
timecourse estimates, we re-fit the time-series data from the nsd01 session using these 3 principal
components as the basis (as opposed to the finite impulse response basis). Finally, adopting the
visualization approach of the Temporal Decomposition Method (Kay et al., 2020), we projected voxel
timecourse estimates onto the unit sphere (using the same voxel selection criterion of R? > 10%), and
constructed a 2D histogram for each subject (shown in Figure 5A).

The second step was to define a set of timecourses that span the observed timecourse variation
(hrf_constructmanifold.m). To do this, we converted the 2D histograms to units of relative frequency and
then averaged the histograms across subjects. Inspecting the group-average histogram (shown in Figure
5B), we manually clicked a sequence of points on the unit sphere that follow the data density as closely
as possible. We then parameterized the path traced by these points (a simple 1D manifold) by positioning
regularly spaced points where successive points are separated by six angular degrees (Figure 5B, cyan
dots). The timecourses corresponding to the resulting set of 20 points were cubic interpolated to a
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sampling rate of 0.1 s and normalized to peak at 1 (Figure 5C). Finally, we fit each timecourse using a
double-gamma function as implemented in SPM’s spm_hrf.m (hrf_fitspmhrftomanifold.m). This yielded a
library of 20 canonical HRFs that may be useful for application to other experimental datasets
(getcanonicalhrflibrary.m).

Cross-validation framework for single-trial GLM

The GLMdenoise and ridge regression analysis components of GLMsingle both require tuning of
hyperparameters. To determine the optimal setting of hyperparameters, we use a cross-validation
approach in which out-of-sample predictions are made for single-trial beta estimates, as opposed to time-
series data. This simplifies and reduces the computational requirements of the cross-validation
procedure. Note that because of cross-validation, although GLMsingle produces estimates of responses
to single trials, it does require the existence of and information regarding repeated trials, i.e., trials for
which the stimulus is the same.

The first step of the cross-validation procedure is to analyze all of the available data using no
regularization. In the case of GLMdenoise, this amounts to the inclusion of zero nuisance regressors; in
the case of ridge regression, this amounts to the use of a shrinkage fraction of one, indicating ordinary
least-squares regression. In both cases, the analysis produces a full set of unregularized single-trial betas
(e.g., in one NSD session, there are 750 single-trial betas distributed across 12 runs). The second step of
the procedure is to systematically evaluate different settings of the hyperparameter (e.g., number of
nuisance regressors; shrinkage fraction), each time assessing how well the resulting beta estimates
generalize to left-out runs. For example, in leave-one-run-out cross-validation, one run is held out as the
validation run, stimuli that occur in both the training runs and the validation run are identified, and squared
errors between the regularized beta estimates from the training runs and the unregularized beta
estimates from the validation run are calculated. This procedure is iterated with each run serving as the
validation run, and errors are summed across iterations.

The GLMsingle algorithm

Given the procedures described above, we now turn to the steps in the GLMsingle algorithm. GLMsingle
involves fitting several different GLM variants. Each variant includes polynomial regressors to
characterize the baseline signal level: for each run, we include polynomials of degrees 0 through
round(L/2) where L is the duration in minutes of the run.

1. Fita simple ON-OFF GLM. In this model, stimulus trials are treated as instances of a single
experimental condition, and a canonical HRF is used (getcanonicalhrf.m). Thus, there is a single
“ON-OFF” predictor that attempts to capture signals driven by the experiment. The utility of this
simple model is to provide variance explained (R?) values that help indicate which voxels carry
experiment-driven signals.

2. Fit a baseline single-trial GLM. In this model, each stimulus trial is modeled separately using the
canonical HRF. This model provides a useful baseline for comparison.

3. ldentify HRF for each voxel. We fit the data multiple times with a single-trial GLM, each time using
a different HRF from the library of HRFs. For each voxel, we identify which HRF provides the best
fit to the data (highest variance explained), and inherit the single-trial betas associated with that
HRF.

4. Use GLMdenoise to determine nuisance regressors to include in the model. We define a pool of
noise voxels (brain voxels that have low ON-OFF R?) and then perform principal components
analysis. The top principal components are added one at a time to the GLM until cross-validation
performance is maximized on-average across voxels.

5. Use fractional ridge regression to regularize single-trial betas. With the nuisance regressors
determined, we use fractional ridge regression (Rokem and Kay, 2020) to estimate the single-trial
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betas, systematically evaluating different shrinkage fractions. Cross-validation is used to select
the optimal shrinkage fraction for each voxel. To mitigate bias on the overall scale of betas, we
apply a post-hoc scaling and offset on betas obtained for a given voxel in order to match, in a
least-squares sense, the unregularized betas obtained for that voxel.

Application of GLMsingle to the NSD data

We used GLMsingle to analyze the time-series data from each NSD scan session (glm_nsd.m). Major
algorithmic parameters included the following: we evaluated up to 10 nuisance regressors; we evaluated
shrinkage fractions from 0.05 to 0.90 in increments of 0.05 and from 0.91 to 1 in increments of 0.01
(representing a finer grain for voxels with the best signal-to-noise ratio); we performed 6-fold cross-
validation (consecutive pairs of runs) for Steps 4 and 5; and we used an ON-OFF R? threshold of 5% in
Step 4.

Three different versions of the single-trial betas were computed and saved. The first beta version (b1,
‘betas_assumehrf’) is the result of Step 2, and reflects the use of a canonical HRF. The second beta
version (b2, ‘betas_fithrf’) is the result of Step 3, and reflects the result of voxel-wise HRF estimation. The
third beta version (b3, ‘betas_fithrf_ GLMdenoise_RR’) is the result of Step 5, and reflects the additional
GLMdenoise and ridge regression procedures. Betas were converted to units of percent BOLD signal
change by dividing amplitudes by the mean signal intensity observed at each voxel and multiplying by
100.

For user convenience, we created preparations of the single-trial betas in additional spaces other than the
native 1.8-mm and 1.0-mm functional spaces. For the ‘nativesurface’ preparation, we performed cubic
interpolation of the 1.0-mm betas onto each of the 3 cortical surface depths and averaged across depths
(analysis_transformfsaverage.m). The result was then mapped using nearest-neighbor interpolation to
fsaverage space to create the ‘fsaverage’ preparation. For the ‘MNI’ preparation, we mapped the 1.0-mm
betas to MNI space using cubic interpolation (analysis_transformMNI.m).

GLM analysis of the resting-state experiment

As an optional resource, we fit the time-series data from the resting-state experiment using methods that
parallel those used for the NSD experiment (glm_nsdresting.m). For each scan session involving resting-
state, we took the two resting-state runs (first and last run acquired) and analyzed the data using the
design matrix of the neighboring NSD runs and the same voxel-wise HRFs determined from analyzing the
NSD runs in that scan session (this is analogous to beta version b2). Although there is no reason to think
that spontaneous resting-state activity conforms to the 4-s trial structure of the NSD experiment, these
resting-state betas may be useful as a direct comparison for the NSD betas.

Noise ceiling estimation

To obtain a measure of data quality, noise ceilings were estimated for the NSD betas
(export_noiseceiling.m). The noise ceiling for a given voxel is defined as the maximum percentage of
variance in the voxel’'s responses that can in theory be explained, given the presence of measurement
noise. Our method for estimating the noise ceiling follows the general framework laid out in previous
studies (Kay et al., 2013b; Lage-Castellanos et al., 2019). Several assumptions are made: (i) the signal
contained in the voxel’s response is determined solely by the presented image, (ii) the variability of the
signal across different images is Gaussian-distributed, (iii) the noise is Gaussian-distributed with zero
mean, and (iv) the response to an image is equal to the signal plus noise:

RESP = N(Ilsignazrffsignaz) + N (0, Oppise)
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where RESP indicates the NSD beta observed on a given trial, usignar is the mean signal across different
images, osignal is the standard deviation of the signal across different images, and cnoise is the standard
deviation of the noise. Note that the first Gaussian distribution characterizes true signal variability,
whereas the second Gaussian characterizes variability due to noise. Also, note that this framework treats
response variability unrelated to the stimulus as “noise”, but such variability may in fact reflect “signal”
from the perspective of functional connectivity (Biswal et al., 1995).

To compute the noise ceiling, we first take the trial-wise NSD betas for each voxel and z-score these
betas within each scan session. This simple normalization compensates for nonstationarities that may
exist across sessions. We then calculate the variance of the betas across the three presentations of each
image (using the unbiased estimator that normalizes by n—1 where n is the sample size), average this
variance across images (thus, stabilizing the variance estimates), and then compute the square-root of
the result. This produces an estimate of the noise standard deviation:

~ 2
Onoise = A mean(ﬁu )

where S, indicates the variance across the betas obtained for a given image. Next, given that the
variance of the z-scored betas is 1, we estimate the signal standard deviation as follows:

~ PN 2

o-signal = |1 — Onoise |+

where ||, indicates positive half-wave rectification. Finally, we simplify by calculating a single scalar
guantity:

_ 5signal

nesnr = ——

Onoise

where ncsnr indicates the noise ceiling signal-to-noise ratio.

Given the framework described above, the noise ceiling can be calculated as the amount of variance
contributed by the signal expressed as a percentage of the total amount of variance in the data:
Usignalz

NC =100 x . >
o-signal + Onoise

where NC indicates the noise ceiling. We would like to be able to calculate the noise ceiling based on the
single scalar ncsnr. Moreover, since a researcher may wish to average across multiple presentations of
each image before attempting to explain the NSD betas, we would like a method for flexibly expressing
the noise ceiling for different levels of trial-averaging. With some algebra, it can be shown that the noise

ceiling can be expressed as follows:

nesnr?
NC =100 x

nesnr? +%
where n indicates the number of trials that are averaged together (see online notes for additional details).
We note that there is a direct relationship between the metric of split-half reliability and the noise ceiling: if
a voxel has two sets of responses that reflect the same image presentations, then the correlation
between the two sets of responses multiplied by 100 is equal to the noise ceiling for single-trial responses
expressed in percent variance explained.

Using the above methods, we calculated noise ceilings for each of the beta versions and for each of
various spatial preparations (1.8-mm, 1-mm, fsaverage, nativesurface). For simplicity, noise ceiling
estimates were calculated using betas associated with images with all three presentations available. The
noise ceiling results shown in Figure 5F—G were computed assuming n = 3, reflecting the scenario in
which trial-wise betas are averaged across three trials for each image.

Note that our noise ceiling metric refers to activity levels in individual voxels in individual subjects. It is
thus quite different from, for example, noise ceiling metrics computed for group-average representational
dissimilarity matrices (Nili et al., 2014). The latter are more abstracted away from the data given that they
summarize properties observed across a collection of voxels, reflect second-order computations on

47


https://doi.org/10.1101/2021.02.22.432340
http://creativecommons.org/licenses/by/4.0/

© 00 NO U WN P

WNDNDNDNDNNMNMNNNNMNNNRPRPPRPERPEPPEPRPRERERERERE
O ©W O ~NO O, WNEPOOOONOD OGM~MAWDNEO

w
[y

A b S DDA DSDMDSDDOOWWWWWW
O ©W O ~NOU S WNPEPOOO~NOOOGRWNDN

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.22.432340; this version posted February 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

activity levels and not activity levels themselves, and probe responses at the group level and not at the
individual level.

Calculation of equivalent trials

To provide a common basis for comparing different datasets, we define the number of equivalent trials
present in a dataset as N x ncsnr? where N indicates the number of trials conducted and ncsnr is the
noise ceiling signal-to-noise ratio (as defined earlier). The assumptions here are that (i) every trial has
equal value, irrespective of whether it is used to measure brain responses to an image that has already
been shown or a new image (e.g., two trials for one image is equivalent to one trial for two distinct
images), and (ii) increases in signal-to-noise ratio (SNR) are equivalent to the collection of additional trials
(e.g., doubling SNR is equivalent to collecting 4 times as many trials).

We conducted an auxiliary analysis that directly compares NSD against the BOLD5000 dataset (Chang et
al., 2019). The goal of this analysis was to calculate a summary ncsnr value for each dataset, so that the
number of equivalent trials can be calculated. For fair comparison, both NSD and BOLD5000 were
analyzed using the exact same GLM methods described in this paper (beta version b3). We then defined
a common brain region on which data quality can be compared. This was done by transforming the
nsdgeneral ROI to MNI space and then mapping the resulting MNI mask to each subject in the two
datasets. Finally, we computed the median ncsnr observed across voxels in the mask in each subject.

The median ncsnr, averaged across subjects, was 0.260 for NSD (averaged across the first four NSD
subjects), and 0.187 for BOLD5000 (averaged across the four subjects in BOLD5000). This indicates
that, despite the longer time duration allocated per trial in BOLD5000 (10 s) compared to NSD (4 s), the
guality of a single-trial beta in NSD is higher than that in BOLD5000. Specifically, one NSD trial is
approximately equivalent to (0.260)%/(0.187)? = 1.93 BOLD500O0 trials. This increase in quality is likely
due, in part, to the screening of subjects and the ultra-high magnetic field strength (7T) used in NSD.
Note that the ncsnr metric quantifies the SNR per trial and is expected to be unbiased with respect to the
number of repeated trials used to calculate it. Thus, although the exact number of trials per image is
different in the NSD and BOLD5000 datasets, the ncsnr values can still be directly compared.

pRF estimation

For this analysis (results shown in Supplementary Figure 10), we used version 3 of the NSD betas (b3)
in the nativesurface preparation. Betas for each surface vertex were z-scored within each scan session,
concatenated across sessions, averaged across repeated trials for each distinct image, and then re-
normalized using a scale and offset such that O corresponds to 0% BOLD signal change and the standard
deviation of the betas equals 1.

To prepare stimuli for pRF estimation, the NSD images were converted to grayscale, resized to 800 pixels
x 800 pixels (cubic interpolation), and squared to mimic the luminance response of the display. The
images were then placed against the gray background and divided into a 51 x 51 grid such that the first
and last grid elements were centered at the edges of the stimulus (each grid element spanned 0.168° x
0.168°). Finally, to quantify local contrast, we computed the standard deviation of pixel values within each
grid element.

Based on the local-contrast preparation of the NSD images, we used analyzePRF
(http://cvnlab.net/analyzePRF/) to fit the Compressive Spatial Summation pRF model (Kay et al., 2013b)
to the trial-averaged betas obtained for each vertex. The non-shared NSD images were used as training
data; the shared NSD images were used as validation data. pRFs were constrained to have non-negative
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gain. No offset term was included in the model (opt.maxpolydeg = NaN); thus, the model necessarily
predicts a response of 0 for an image with zero contrast. For model fitting, an initial gridding of model
parameters was performed (opt.seedmode = 2), and parameter optimization started from the best
parameter combination (opt.modelmode = 2; opt.algorithm = 'trust-region-reflective’). Model fitting
produced, for each vertex, an estimate of pRF angle, eccentricity, size, exponent, and gain, as well as
variance explained in the training data and the validation data.

Univariate analysis of memory recognition

For this analysis (results shown in Figure 6B), we used version 3 of the NSD betas (b3) in the fsaverage
preparation. Betas for each surface vertex were kept in percent signal change units. Using the behavioral
responses, we identified trials involving hits (subjects responded ‘old’ to a previously presented image)
and trials involving correct rejections (subjects responded ‘new’ to a novel image). Then, for each subject,
two-sample t-tests were performed at each surface vertex. This was done both for trials pooled within
individual NSD scan sessions as well as for trials pooled across all sessions.

Representational similarity analysis

For this analysis (results shown in Figure 7), we used version 3 of the NSD betas (b3) in the fsaverage
preparation. Betas for each surface vertex were z-scored within each scan session, concatenated across
sessions, and averaged across repeated trials for each distinct image. To support the representational
similarity analysis (Kriegeskorte et al., 2008), we defined a set of ROIs (V1, V2, V3, pVTC, aVTC) on the
fsaverage surface. This was done by mapping the manually-defined V1, V2, and V3 from each subject to
fsaverage, averaging across subjects, and using the result to guide the definition of group-level ROIs. We
also defined a posterior and anterior division of ventral temporal cortex (pVTC and aVTC, respectively)
based on anatomical criteria.

For each subject, we extracted betas for vertices within each ROI (concatenating across hemispheres).
We then computed Pearson's correlation between beta patterns across all possible pairs of images. This
yielded representational dissimilarity matrices (RDMs) with rows and columns indexing distinct images
(e.g., the RDMs for subject 1 have dimensionality 10,000 x 10,000 with correlations corresponding to
49,995,000 possible pairs). To help visualize and interpret these large dissimilarity matrices, we
performed t-distributed stochastic neighbor embedding (Maaten and Hinton, 2008; Pedregosa et al.,
2011) (t-SNE) using a perplexity level of 100. This projects the high-dimensional representations onto a
two-dimensional plane such that the distance of a given pair on the plane reflects that pair's distance in
the high-dimensional representation as accurately as possible.

Encoding models based on deep convolutional neural networks

For this analysis (results shown in Figure 8), we used version 3 of the NSD betas (b3) in the 1.8-mm
volume-based preparation. Before modeling, betas for each voxel were z-scored within each scan
session and concatenated across sessions. Models were implemented using PyTorch (code available
online).

Model architecture
We considered several variants of voxel-wise encoding models (Naselaris et al., 2011) that attempt to
predict the NSD betas. All three models consist of (i) a feature extractor implemented as a convolutional

neural network (CNN) and (ii) a network-to-brain coupling model that maps extracted features into
predictions of activity observed for individual voxels.
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In the first model (AlexNet), the feature extractor is the AlexNet CNN (Krizhevsky et al., 2017), a task-
optimized network that has been trained to classify object categories in the ImageNet database (Deng et
al., 2009). In the second model (GNet), the feature extractor is a different CNN—referred to here as
‘GNet'—a brain-optimized network that is trained to directly predict brain activity in the NSD dataset. The
third model is a simple control model in which the feature extractor consists of a single fixed layer of
Gabor filters (Kay et al., 2008). The specific network architectures for AlexNet and GNet are illustrated in
Supplementary Figure 12.

To facilitate direct comparison, all models are designed to have comparable coupling models. For GNet,
both the feature extractor and coupling model are trained jointly using brain data; for AlexNet and the
Gabor models, the feature extractors are fixed and only the coupling model is trained using brain data.

The CNNs in the AlexNet, GNet, and Gabor models consist of hierarchically composed functions of an
input image x:

er(x) =ngoe_q1(x)
where 7, is a feature extractor that operates at layer [ on the output of e;_; (x) (also a composite function).
e; may denote an arbitrary sequence of transformations. The encoding models leverage the intermediate
representations e;(x), which are feature maps with pixels denoted by [e;(x)];;, where (i, j) is the location
of the pixel in the kth feature map. Predicted brain activity for voxel v, 7,
is given by the expression:

fo=by+ ) Woef (04(0)
k
where w,,;, are feature weights for voxel v and feature k, b,, is a bias term,

Dy (x) = Zf([e1(x)]k1ji)911:ji @ ---Zf([eL(x)]iji)géji
i,j ij

f () is typically a compressive nonlinearity, g},ﬁ indicates a weight assigned to pixel (i, j) in the [th feature
map, and @ denotes summation along the feature axis k = (k, ... k;). Note that this formulation
incorporates feature-space separability, which reduces overfitting and generally improves prediction
accuracy for brain activity (St-Yves and Naselaris, 2017).

In the Gabor model, the feature extractor consists of a single fixed set of convolutions involving 12 log-
spaced spatial frequency Gabor wavelets between 3 and 72 cycles/stimulus and constructed at 6 evenly
spaced orientations between 0 and m (St-Yves and Naselaris, 2017).

Spatial pooling fields

Constraints were placed on the weights (g},ﬁ)—termed ‘spatial pooling fields’—that couple the feature
maps to voxel activity. For the AlexNet- and Gabor-based encoding models, the spatial pooling field for
each voxel was a 2D isotropic Gaussian that was applied to all feature maps (see Supplementary Figure
12B, middle). We find that this constrained model of spatial pooling typically yields better prediction
accuracy (relative to other possible variants) in the scenario where feature extraction parameters are
fixed (St-Yves and Naselaris, 2017). For the GNet-based encoding model, the weights of the spatial
pooling fields were independently adjustable; hence, we refer to these as flexible spatial pooling fields
(see Supplementary Figure 12B, left). Feature maps with the same spatial resolution were grouped
together, and a distinct, independently optimized spatial pooling field was applied to each group. Thus,
the GNet model for each voxel was specified by multiple, independently optimized spatial pooling fields.

50


https://doi.org/10.1101/2021.02.22.432340
http://creativecommons.org/licenses/by/4.0/

© 0 N O WN PR

O e N N T
O © O ~NO UK WNIERO

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.22.432340; this version posted February 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Model training and validation

Given the demanding memory requirements of training large-scale neural networks to jointly predict tens
of thousands of voxels, we selected the four NSD subjects with the highest noise ceilings (see Figure
5G). For the selected subjects (1, 2, 5, 6), NSD betas were extracted from visual areas V1-hV4. These
betas were separated into those evoked by the shared1000 images and those that were not; the former
were designated as the validation set, while the latter were designated as the training set. For example,
for subject 1, there were 9,000 images x 3 trials = 27,000 samples in the training set, and 1,000 images x
3 trials = 3,000 samples in the validation set. After model training, accuracy was quantified as the voxel-
wise correlation between model predictions and observed responses in the validation set.

For the AlexNet-based encoding model, parameters of the feature extractors were pre-trained based on
classification of objects in the ImageNet database (Krizhevsky et al., 2012). For both the AlexNet- and
Gabor-based encoding models, feature weights for the coupling model were optimized via ridge
regression, with the ridge parameter selected to maximize accuracy on a held-out subset (20%) of the
training data. Line search was used to optimize the position and size of the Gaussian spatial pooling field
for each voxel (see Supplementary Figure 12B, right).

For the GNet-based encoding model, parameters of the feature extractors, spatial pooling fields, and
feature weights were all optimized via stochastic gradient descent of an L,-norm weighted loss function:
Zvl_pvzj(rv - @)2

Zolpv?l
where |p,?] is the batchwise prediction accuracy for a given voxel v with an imposed floor of 0.1 in order
to permit contribution of yet-to-be-predicted voxels.

L(r, %) =

Two versions of the GNet model were developed and evaluated. In the single-subject GNet model,
different instantiations of GNet were created for different subjects, and only the data from a given subject
were used to train the GNet-based encoding model for that subject. In the multiple-subject GNet model, a
single instantiation of GNet was created for all four subjects, and data from all subjects were used to train
the GNet-based encoding models. In this scheme, all subjects share a common feature extractor, but
each subject has independently adjusted coupling models and feature weights.

To train the GNet-based encoding model, stochastic gradient descent with early stopping was performed
using the ADAM optimizer (Kingma and Ba, 2017) (Ir = 1073, 3; = 0.99, B, = 0.99). Parameter updates for
feature extractors, spatial pooling fields, and feature weights were alternated to promote stability of the
training procedure.

Note that the NSD subjects view largely non-overlapping sets of images. Thus, when training GNet on
data from multiple subjects, we used a modified procedure for selecting batches of training data. For each
iteration of training, we first extracted a batch of training samples from one subject’s data and calculated
the gradient with respect to the loss function. Coupling model parameters for that subject and feature
extractor parameters were then updated and the process was repeated until all batches from all subjects
were used. This corresponded to one training epoch.
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Supplementary Discussion

Our examination of the NSD data did not reveal any severe problems or artifacts that could not be compensated for in
data pre-processing. Nonetheless, there are several known limitations of the data that should be considered. EPI pulse
sequences invariably suffer from signal dropout and spatial distortion in locations with magnetic field inhomogeneties. The
NSD data exhibit signal dropout in typical locations such as near the ear canals and the frontal sinuses (see Figure 5F),
and our approach for distortion correction may have some imperfections (see Supplementary Video 6). While we
stressed the importance of central fixation to the NSD subjects, some inadvertent eye movements are likely present in the
data. Methods for retrospectively estimating eye position from imaging data (Frey et al., 2020; Son et al., 2020) might
prove useful. In a few fMRI scan sessions (6 out of 308; 1.9%), the subject exited the scanner and re-entered either on
the same day or a different day to complete the session. We compensated for these occurrences in the pre-processing of
the data, but they nonetheless contribute some variability. Due to hardware errors, behavioral responses are missing for a
few of the NSD runs (2 out of 3,408; 0.06%). Finally, a few fMRI scan sessions (4 out of 308; 1.3%) had slightly
incomplete brain coverage due to subject motion. A comprehensive summary of data anomalies is available in the online
materials.
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Supplementary Figures
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Supplementary Figure 1. Design of the NSD experiment. A, Image presentations. Each of 10,000 distinct images was
placed 3 times on a circle according to a probability distribution created by mixing a relatively narrow von Mises
distribution and a uniform distribution. The resulting image sequence was divided into 40 equally-sized segments for the
40 NSD scan sessions. B, Basic statistics of image repetitions. We define new trial as a trial involving an image never
shown before, old trial as a trial that is not a new trial, and easy trial as an old trial for which the presented image had
been shown previously in the same scan session.
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Supplementary Figure 2. Overview of data collection. This table summarizes the overall NSD data collection effort.
Structural and diffusion MRI data were collected at 3T. Functional MRI data were collected at 7T. The breakdown of the
7T fMRI scan sessions is indicated: for example, subject 2 participated in 1 (prffloc) + 40 (nsd01-nsd40) + 1
(nsdsynthetic) + 1 (nsdimagery) = 43 7T fMRI scan sessions. Additional behavioral data were acquired outside of the
scanner (nsdpostbehavior, nsdmemory, nsdmeadows). Note that scan sessions were occasionally split across multiple
magnet entries (see aquamarine and yellow cells). For simplicity, we treat these cases as if they represent single scan
sessions.

54



https://doi.org/10.1101/2021.02.22.432340
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.22.432340; this version posted February 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Subject 1 2 3 4 5 6 7 8

Mean
EPI

tSNR

Mask

Mean
EPI

tSNR

Mask

Mean
EPI

tSNR

Mask

tSNR I ___am
0 20 40 60 80

Supplementary Figure 3. Details on the quantification of tSNR. This figure shows example tSNR results (nsd20 scan
session, first NSD run). The middle slice in each of three orthogonal views (axial, sagittal, coronal) is displayed. To
compute tSNR, the raw fMRI volumes from a given run are obtained, and the mean across volumes is computed (Mean
EPI). A brain mask is computed by identifying voxels whose intensity is at least 10% of the 99th percentile of intensities in
the mean volume (Mask). tSNR is calculated by quadratically detrending the time-series of each voxel (preserving the
mean) and then computing the mean divided by the standard deviation of the time-series values (tSNR). A summary tSNR
value is determined by calculating the median tSNR across voxels within the brain mask. This corresponds to the
summary metric shown in Figure 2D, left (the inset shows results from subject 2).
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Supplementary Figure 4. Details on the quantification of head motion. This figure shows example motion parameter
estimates obtained during data pre-processing (nsd20 scan session, first NSD run, 1.8-mm data preparation). The rotation
parameters, originally in radian units, are multiplied by 50 in order to allow interpretation in terms of millimeters of
displacement for a circle of diameter 100 mm (Power et al., 2012). Motion parameters are relative to the reference volume
which is the first volume in each scan session. Framewise displacement (FD), calculated as the sum of the absolute
differences of the motion parameters for successive pairs of volumes, is also plotted. The mean FD across volumes is
indicated in the plot titles, and corresponds to the summary metric shown in Figure 2D, middle (the inset shows results
from subject 5).
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Supplementary Figure 5. Quantification of functional imaging stability. We took the mean fMRI volume (1-mm
preparation) in each scan session, bias-corrected the volume by dividing by a fitted 3D polynomial (autogc_nsd_grand.m),
and then computed pairwise correlation across sessions. Dotted white lines mark increments of five NSD scan sessions.
Inspection of similarity of the mean EPI volume across sessions reveals a few minor anomalies. We investigated these
cases further and determined the following: the nsd36 scan session in subject 7 involved a poor scanner shim, which was
largely but not fully corrected by the fieldmap-based processing; the nsd01 scan session in subject 8 involved an
unusually large amount of head motion, which resulted in some residual spatial distortion; and the nsd12—-nsd16 scan
sessions in subject 8 involved a temporary sinus infection near frontal cortex that manifested as bright signal intensities in
the EPI volumes outside the brain but otherwise did not cause any data problems. For visual inspection of these effects,
see Supplementary Videos 6-7.
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Supplementary Figure 6. Diffusion processing for investigation of white-matter connectivity. A, Schematic of the
diffusion pre-processing pipeline. Diffusion volumes were corrected for noise, Gibbs ringing, susceptibility, motion, eddy
currents, and bias fields before being co-registered to the T1 anatomy. Following pre-processing, the data were organized
into two runs (corresponding to the 99-direction and 100-direction scans, respectively). B, Signal-to-noise ratio, computed
in the corpus callosum. C, White-matter tract segmentation from an example subject (subject 7). White-matter tracts are
organized based on typical anatomical and functional definitions into associative (left), projection (middle), and callosal
(right) tracts and overlaid on the T1 anatomy. D, Reliability of MD, ODI, NDI, ISOVF, Mean Kurtosis (MK), Axial Kurtosis
(AK), and fiber count, length, and volume. Each dot indicates results averaged along a single tract. Pearson’s correlation
(r) and root-mean-squared error (RMSE) for each measure are indicated in the inset. E, Macrostructural and
microstructural properties observed for different tracts. Error bars indicate + 1 SEM across subjects. F, Microstructural
properties of cortical regions. Shown are tensor (FA; left), NODDI (ODI; middle), and kurtosis (MK; right) results mapped
to the cortical surface of the example subject, with dorsal (top) and ventral (bottom) viewpoints of occipital cortex.
Quantitative results are shown on the right, where each dot indicates results obtained for a single region in the HCP-
MMP1 parcellation.
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Supplementary Figure 7. Regions of interest (ROIs) provided with NSD. A variety of ROIs were defined based on
auxiliary fMRI experiments (pRF, fLoc). Here we show example results for subject 3, right hemisphere. A, Early visual
areas. Results are shown on FreeSurfer’s sphere surface as well as in the 0.8-mm anatomical volume space. B,
Eccentricity-based regions. Similar format to panel A. Note that the total stimulus extent is 8.4° x 8.4° in the pRF, fLoc,
and NSD experiments. C, Face-selective regions. Regions were defined based on t-values computed for the contrast of
faces against all other categories. Results are shown on FreeSurfer’s inflated surface as well as in the 0.8-mm anatomical
space. Calc = calcarine sulcus, OTS = occipitotemporal sulcus, CoS = collateral sulcus.
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Supplementary Figure 8. Detailed visualization of NSD betas. We prepared three beta versions (b1, b2, b3) reflecting
GLM analyses of increasing sophistication. A, Inspection of NSD betas. The full set of estimated single-trial responses
(betas) is shown for voxels in subject 1, right hemisphere, FFA-1 (1.8-mm preparation, bl). B, Zoomed view of one scan
session. Shown are all three beta versions, as well as the result of z-scoring betas within each scan session. C, Detailed
inspection of one voxel. To assess the reliability of evoked responses, we group trials according to the image presented.
The estimated signal standard deviation (osignar) and noise standard deviation (cnoise) are illustrated at the right of each
subplot. In these visualizations, we observe horizontal stripes (panel A), indicative of gross variation in percent BOLD
signal change across voxels. We find that the different beta versions generally resemble one another (panel B, left
column), implying that the variations in GLM methods do not drastically change the data. Vertical stripes visible in the
visualizations (panel B, left column) tend to decrease from bl to b2, suggesting that fitting voxel-wise HRFs reduces
artifacts. Vertical stripes also tend to decrease from b2 to b3, which might reflect the reduction of correlated noise
achieved by GLMdenoise. In general, we suggest that users may wish to z-score each voxel’s responses within each
scan session in order to eliminate potential non-stationarities and to equalize units across voxels. The effect of such
normalization is depicted (panel B, right column). Finally, quantitative inspection of the beta versions for a single voxel
indicates that b2 and b3 reduce variability of betas across the 3 trials associated with each image (panel C).
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Supplementary Figure 9. Detailed comparison of noise ceiling results for different beta versions. This figure

provides additional detail on results shown in Figure 5F—G. Each subplot is a 2D histogram comparing noise ceilings for
two different beta versions. Improvements in noise ceilings are consistent across voxels and subjects.
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Supplementary Figure 10. Angle and eccentricity estimates from the NSD data. Here we show results from the
analysis of the pRF experiment and results from an analogous analysis performed on trial-averaged NSD betas (see
Methods for details). Each panel shows an occipital view of FreeSurfer’'s sphere surface, and white lines indicate borders
of visual areas V1-hV4 (defined based on results of the pRF experiment). Angle and eccentricity estimates are plotted
using the same colormaps as in Benson et al. (Benson et al., 2018). We also plot the amount of time-series variance
explained in the pRF data (variance relative to the mean signal level) and the amount of variance explained in the NSD
betas (variance relative to 0% BOLD signal change). Clear retinotopic maps in early visual cortex are visible in the NSD
results, including robust angle estimates even in foveal regions. In addition, there is high consistency of retinotopic
estimates across the pRF and NSD datasets. There is some discrepancy in absolute eccentricity estimates at peripheral
locations; this is likely due to technical differences in how modeling procedures behave for voxels near the stimulus edge.
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Supplementary Figure 11. Recognition memory effects in the NSD data. Same format as Figure 6B, but showing
results for all individual subjects. Note that positive values indicate BOLD responses are greater for hits than for correct
rejections, whereas negative values indicate BOLD responses are greater for correct rejections than for hits. The
observed decrease in the magnitudes of the t-values (e.g. from nsd05 to nsd20) likely reflects a decrease in the subjects’
recognition accuracy over the course of the NSD experiment.
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Supplementary Figure 12. Design of AlexNet- and GNet-based encoding models. A, lllustration of an encoding
model that predicts brain activity in a given voxel (r;,,) in response to images (x;). Images are passed to nonlinear feature
extractors, 7, (trapezoids), that output feature maps (grey cuboids). Feature maps are grouped, passed through an
element-wise nonlinearity, f(-), and then multiplied pixel-wise by a spatial pooling field (g1, ..., g¥ where superscripts index
distinct groups of feature maps) that determines the region of visual space that drives voxel activity. The weighted pixel
values in each feature map are then summed, reducing each feature map to a scalar value. These scalar values are
concatenated across all feature maps, forming a single feature vector that is passed through another element-wise
nonlinearity (left black rectangle) and then weighted by a set of feature weights, w (right black rectangle), to yield
predicted voxel activity. Note that for each type of encoding model (e.g., AlexNet-based encoding model, GNet-based
encoding model), the feature extractors are identical for all voxels, but the spatial pooling fields and feature weights are
optimized and may vary across voxels. For the AlexNet-based encoding model, the feature extractors were pre-specified,
the spatial pooling fields were optimized via line search, and the feature weights w were optimized via ridge regression.
For the GNet-based encoding model, stochastic gradient descent with early stopping was used to optimize the
parameters of the feature extractors 7,, the spatial pooling fields g7, ..., gV, and the feature weights w. B, lllustration of
spatial pooling fields. For the AlexNet model, a single isotropic 2D Gaussian pooling field (middle) selected from a set of
candidates (right) was applied to all feature maps. For the GNet model, an independent, flexible pooling field (left) was
applied to each group of feature maps. Applying flexible pooling fields to AlexNet leads to lower prediction accuracy
overall (results not shown), so we present the version that uses isotropic 2D Gaussian fields. C, Comparative architecture
of AlexNet and GNet. AlexNet and GNet are both deep convolutional neural networks, but differ in the types and
sequencing of layers (rows of the table). The first three layers are the same for both networks and correspond to the first
three layers of an AlexNet trained to classify objects in the ImageNet dataset. For both networks, these shared “pre-
filtering” layers are followed by sequences of convolutional layers (rows labeled “conv”; values indicate feature depth and
convolutional filter resolution; “str” = filter stride, “pad” = convolutional padding), max-pooling layers (“maxpool”), batch-
normalization and weight-dropout layers (“batchnorm + dropout”), adaptive averaging layers (“adaptive avg”), and fully-
connected layers (“fully con.”; value indicates number of units). Feature maps in the convolutional or fully connected
layers (indicated by red arrows; resolution of the feature maps in parentheses) are used as predictors of brain activity in
the context of an encoding model (see panel A).
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Supplementary Videos

subj0l, EPI subj05, EPI

Supplementary Video 1. Inspection of image quality and co-registration quality. Videos available online
(https://osf.io/tg5dw/, https://osf.io/g86ep/, https://osf.io/s7b2a/). Three videos are provided. One video cycles between the
Ti, T2, and EPI volumes, another cycles between the T2 and SWI volumes, and the third cycles between the T: and TOF
volumes. All volumes have been transformed to a common anatomical space (set by the T1 volume) in the course of data
pre-processing.

Supplementary Video 2. Inspection of cortical surfaces. Videos available online (https://osf.io/zyb3t/; see files named
subj{01-08}_{axial,coronal,sagittal}.mp4). These videos show the FreeSurfer cortical surface reconstructions
superimposed on the T1 volume. Left hemisphere white and pial surfaces are colored blue and cyan, respectively; right
hemisphere white and pial surfaces are colored red and yellow, respectively. Blue voxels indicate locations that have
been judged to have surface imperfections.
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Supplementary Video 3. Inspection of fsaverage alignment. Video available online (https://osf.io/gh5bs/). This video
cycles through (i) the binarized curvature of each of the NSD subjects mapped via nearest-neighbor interpolation to
fsaverage, (ii) the average of this binarized curvature across subjects, and (iii) the fsaverage binarized curvature. The
video is useful for assessing the quality of the folding-based alignment performed by FreeSurfer.
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Supplementary Video 4. Inspection of MNI alignment. Video available online (https://osf.io/p3zam/). This video cycles
through the T1 volumes of the NSD subjects after nonlinear warping to MNI space and the MNI template volume. The
video is useful for assessing the quality of the nonlinear volume-based alignment.

200m to fit 430184

Supplementary Video 5. Inspection of raw and pre-processed EPI volumes. Videos available online
(https://osf.io/zyb3t/; see files named subj{01-08} nsd10 run06_{raw,pp}.mp4). These videos quickly scroll through all
EPI volumes in a sample run. This is useful for assessing quality and stability of the functional imaging.
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Supplementary Video 6. Inspection of mean EPI across scan sessions (volume visualization). Video available
online (https://osf.io/ydf9j/). Each frame shows the mean EPI volume from a single scan session (1-mm data preparation).
Note that session 0 corresponds to the prffloc scan session and the last two scan sessions from each subject correspond
to the nsdsynthetic and nsdimagery scan sessions. This video is useful for assessing overall image quality and the
stability of functional imaging across scan sessions. For quantitative analysis, see Supplementary Figure 5.

subj0l, session 10

Supplementary Video 7. Inspection of mean EPI across scan sessions (surface visualization). Video available
online (https://osf.io/ytjk4/). This is similar in spirit to Supplementary Video 6, except that the mean EPI volumes have
been projected onto each subject's cortical surface and then transferred to the fsaverage surface.
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Supplementary Video 8. Inspection of BOLD signal strength across scan sessions (volume visualization). Video
available online (https://osf.io/kwxta/). Each frame shows the amount of variance explained by the ON-OFF GLM model
(1-mm data preparation; fixed color range). This video is useful for assessing the overall strength and stability of BOLD

responses in the NSD dataset.

subj0l, session 10
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Supplementary Video 9. Inspection of BOLD signal strength across scan sessions (surface visualization). Video
available online (https://osf.io/gu9wx/). This is similar in spirit to Supplementary Video 8, except that the variance
explained volumes have been projected onto each subject's cortical surface and then transferred to the fsaverage
surface.
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Supplementary Video 10. Inflated surface visualization of noise ceilings. Video available online
(https://osf.io/lz3wxn/). This video shows the group-average b3 noise ceiling (see Figure 5F) on a rotating, inflated
fsaverage surface. Values below 15% are thresholded away in order to show the underlying curvature. This video is
useful for identifying brain regions whose activity is strongly related to the sensory content presented in the NSD
experiment.
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