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25 Abstract
26

27 The endocrine pancreas is able to regenerate in response to insult, including by driving
28 beta-cells into the cell division cycle. Until recently, communication between
29 neighboring cells in islets of Langerhans was overlooked by single-cell genomic
30 technologies, which require rigorous tissue dissociation into single cells. Here, we utilize
31 sorting of physically interacting cells (PICs) with single-cell RNA-sequencing to
32 systematically map cellular interactions in the regenerating endocrine pancreas. The
33 cellular landscape of the regenerated pancreas features regeneration-associated

34 endocrine populations.

35 We explore the unexpected heterogeneity of beta-cells in regeneration, including an
36 interaction-specific program between paired beta and delta-cells. Our analysis suggests
37 that the particular cluster of beta-cells that pair with delta-cells benefits from stress
38 protection, implying that the interaction between beta and delta-cells safeguards against

39 regeneration-associated challenges.
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40 Introduction
41 Islets of Langerhans of the endocrine pancreas contain five main cell types that secrete
42 hormones, which are critical for regulating multiple aspects of metabolism. Somatostatin

43 acts in a paracrine manner to inhibit other endocrine cells, including insulin secretion
44 from beta-cells and the secretion of the counterregulatory hormone, glucagon, from
45 alpha-cells (Strowski et al., 2000). Additional endocrine cell types that express
46 somatostatin receptors, such as pancreatic-polypeptide cells, might be under paracrine

47 control of somatostatin (Ludvigsen et al., 2004).
48

49 Better understanding of the cellular and molecular mechanisms underlying pancreas
50 regenerative ability, may contribute to developing therapeutic treatment for diabetes.
51 Accordingly, several experimental paradigms were established for the study of pancreas
52 regeneration in rodents including injury models (Bonner-Weir et al., 1993), pancreatic
53 duct ligation (Xu et al., 2008), and chemical ablation of islet cells (Fernandes et al., 1997).
54 Such paradigms have been often used in concert with lineage tracing to decipher the
55 origin of regenerating endocrine cells. Thus, new insulin-producing cells arise primarily
56 from existing beta-cells (Dor et al., 2004), but in some conditions also from conversion

57 of pancreatic alpha- or delta-cells (Chera et al., 2014).

58 Partial pancreatectomy (Ppx) is a well-characterized experimental model for initiating
59 pancreas regeneration. Partial pancreatectomy, induces rapid endocrine and exocrine
60 tissue regeneration, in young rodents that peaks after a week. Animals re-gain
61 euglycemia at about 4 weeks (Jonas et al., 2001; Laybutt et al., 2002; Lee et al., 2006;
62 Peshavaria et al., 2006). However, the regeneration capacity declines sharply with age
63 (Rankin and Kushner, 2009) and is absent in adult humans (Menge et al., 2008; Zhou and
64 Melton, 2018).

65 Much is known about beta-cell mass replenishment. New beta cells are primarily

66 descendants of mature beta-cells that re-enter the cell division cycle (Dor et al., 2004;
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67 Lee et al.,, 2006). In addition, auxiliary pathways, commit beta-cells from other

68 trajectories (Tritschler et al., 2017).

69 Delta-cells may contribute to regeneration of the endocrine pancreas in diverse ways,

70 including via paracrine somatostatin activity (Alberti et al., 1973; Fagan et al., 1998) or
71 physical cellular interaction with beta-cells (Arrojo et al., 2019). However, delta cell
72 involvement in regeneration was largely overlooked.

73

74 Single-cell transcriptomics technology enables a new and thorough understanding of
75 pancreas tissue dynamics and of cellular heterogeneity (Wang and Kaestner, 2019). Beta
76 cells display transcriptomic profiles, associated with proliferation (Wang et al., 2016) and
77 cellular stress (Baron et al., 2016; Muraro et al., 2016) and may further reveal the
78 molecular signature of type 2 diabetes (Segerstolpe et al., 2016), post-pancreatectomy

79 (Tatsuoka et al., 2020) and the aging organ (Xin et al., 2016).

80 In the current study we demonstrate that delta-cells are Sox9 descendants that
81 expandin the regenerating endocrine pancreas. We characterize regeneration-

82 associated beta cell heterogeneity at a single-cell resolution, demonstrating molecular

83 patterns that are consistent with activation of stress programs or of the cell division cycle
84 in beta-cells. Furthermore, we identify a cluster of beta-delta cell pairs that display
85 unique transcriptional profiles. Better understating of crosstalk between endocrine cells
86 in regenerating islets of Langerhans may contribute to our understanding of how beta-

87 cells cope with stress and to development of therapy for diabetes.

88
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89 Results
90 Islet Sox9-descendant cells are predominantly delta-cells

91 The transcription factor Sox9 plays critical roles in the development of the embryonic
92 pancreas, whereas it is predominantly expressed in the exocrine compartment of the
93 adult organ. Accordingly, Sox9-descendant cells contribute to the ductal and acinar
94 system. In analysis of Sox9-CreER:tdTomato allele (Soeda et al., 2010), we characterized
95 the lineage signal 30 days after labeling and observed cells within islets of Langerhans,
96 in addition to ductal and acinar cells (Figure 1A). The islet cells that are linked to the Sox9
97 lineage primarily express the hormone somatostatin (Sst), which is typical of endocrine
98 delta-cells (Figure 1B-D). Quantification of the signal demonstrated that 78% of the
99 tdTomato* cells are Sst*, whereas 9% co-express Insulin and 13% were neither delta nor
100 beta-cells (Figure 1E, 1905 cells counted from 32 islets, obtained from 5 animals).
101 Accordingly, 18% of the delta-cells were tdTomato*, in contrast to only 0.4% of the beta
102 cell population (54 tdTomato*, Sst* /295 delta-cells; 6 tdTomato*, Ins* /1595 beta cells
103 Figure 1F). Therefore, a relatively specific activation of the endogenous Sox9 promoter

104 is evident in adult delta-cells or their ancestors, in the endocrine pancreas.

105 To uncover the nature Sox9-descendant cells, pancreata of 12 weeks old mice were
106 dissociated and MARS-seq was performed for both tdTomato*and tdTomato cells (Baran
107 etal., 2019; Jaitin et al., 2014). Transcriptional profile analysis identified 5 distinct cellular
108 populations, namely, beta-, delta-, gamma- and alpha-cells and circulating leukocytes
109 (Figure 1E, F). In addition, we identified a cluster of cells holding transcriptional signature
110 that is typical of pairs of both beta and delta-cells. These were therefore regarded as
111 beta-delta doublet cells (cluster #1, Figure 1E). Notably, Sst mRNAs is enriched in lineage
112 tdTomato+ cells. This analysis orthogonally demonstrated that tdTomato-labelled Sox9-

113 descendants are indeed delta-cells (Figure 1G - 1).
114

115 Delta-cell expansion in pancreas regeneration
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116 The adult pancreas is capable of regenerating in response to injury. However, the
117 regeneration process is only partially characterized. Therefore, we aimed to investigate
118 the cellular dynamics of pancreas regeneration by single cell sequencing (Figure 2A).
119 Partial (subtotal) pancreatectomy (Ppx), was performed on 12 week-old Sox9-
120 CreER;tdTomato males. Excision of ~70% of the pancreas was controlled by a cohort of
121 sham operated littermates. Incomplete normalization of blood glucose levels was
122 monitored over 4 weeks after the surgical procedure (Supplementary Figure S1A). A
123 significant increase in the number of tdTomato™* cells, was observed in regenerating
124 pancreata, 4 weeks after pancreatectomy, relative to sham operated mice (Figures 2, B-
125 D). We have demonstrated, by single molecule fluorescent in situ hybridization (smFISH),
126 an increase in the number of cells expressing Sst, 4 weeks after Ppx, relative to sham
127 controls and to an earlier time point, 1 week after surgery (Figures 2, E-G). Together, the

128 delta-cell population expands during regeneration.

129
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130 Single-cell characterization of the regenerating endocrine pancreas

131 Next, we dissociated islets from regenerating pancreata, annotated tdTomato by flow
132 cytometry, and performed single-cell RNA sequencing. Four endocrine cellular
133 populations, (alpha, beta, gamma and delta-cells), leukocytes, endothelial and
134 mesenchymal cells were detected (Figure 3A, B), consistent with the profiling at basal

135 conditions in Figure 1.

136 The enrichment of delta-cells in this study, via Sox9 tracing, enabled analysis of the delta-
137 cell population at unmet sensitivity (Figure 3C), while highlighting the source of cells
138 according to their experimental groups (sham/ ppx) revealed relative depletion of alpha
139 cells in ppx samples (only 20% originate from ppx samples), enrichment of gamma-cells
140 (~80% originate from ppx samples) and regeneration-driven heterogeneity within the

141 beta-cell population (Figure 3D).
142 Heterogeneity of beta-cells during recovery period after pancreatectomy

143 In-depth analysis of beta-cellMRNA profiles revealed acquired heterogeneity in response
144 to regeneration. In addition to a relatively-stable beta-cells that do not transcriptionally
145 change in response to regeneration (Figure 4A), other beta cells feature elevated levels
146 of stress-associated transcripts (Fkbp11, Dapl1, Creld2, Sdf2l1, Pdia4 & Derl3. Figure 4B),
147 whereas other beta cells can be denoted by cell-cycle-associated transcripts (e.g., Top2a,
148 Ccna2, Ube2c, Cenpf & Nusapl. Figure 4C). The three signatures feature tonic expression
149 of Ins1, but can be further distinguished by discrete levels of ins2 expression (Figure 4D).
150 Thus, beta cells with stress-associated transcripts also possess relatively low levels of
151 Ins2 mRNA (Figure 4D, E). In summary, beta-cell heterogeneity increases in the
152 regenerating pancreas denoting three primary transcriptional states: stress-associated,

153 cell-cycle-associated or basal state.
154

155 Overall, our data reveal previously-overlooked cellular dynamics of the regenerating
156 endocrine pancreas, including relative alpha-cell depletion, relative gamma-cell

157 enrichment, considerable beta-cell heterogeneity and beta-delta pairs (Figure 3).
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158 Physically-interacting beta-delta cell pairs

159 We unexpectedly identified a relatively large number of beta-delta pairs and alpha-delta
160 pairs that is untypical for MARS-seq data (Keren-Shaul et al., 2019); MARS-seq2.0). We

161 sought to establish that these are indeed genuine doublets.

162 Because the typical number of transcripts is significantly larger than any single endocrine
163 cell type, we excluded the possibility of a polyhormonal phenotype (Tukey's multiple
164 comparisons test of UMI distribution, p-value<<0.0001, Supplementary figure S2 A and
165 B). In addition, because the transcriptome is predominated by beta-cell mRNAs, it is
166 unlikely that data is gained from delta-cells contaminated by cell-free RNA from

167 fragmented beta-cells.

168 We demonstrated that the pairing of delta to beta cells is specific and is significantly
169 enriched, relative to other endocrine cell couples (randomization permutation test (R, v.
170 4.0.3), 10,000 iteration, p<0.0001). Since, beta-delta pairs are observed more than can
171 be expected at random, it is unlikely to result from cell-cell adhesion in the tube after

172 dissociation.

173 Then, we simulated in silico synthetic doublets, by summing the transcriptome of beta
174 and delta cells (Supplementary figure S3 A and B). The gained synthetic transcriptome
175 differs from real doublets. Thus, the expression of 21 mRNAs that are expressed >
176 twofold in real pairs (Chi*2 statistics, p-value<0.01, (Supplementary Figure S4). mRNAs
177 enriched in doublets more than expected include Dock3, a regulator of cytoskeletal
178 organization and cell—cell interactions(Caspi and Rosin-Arbesfeld, 2008; Chen et al.,,
179 2009; Kashiwa et al., 2001) and several transcription factors of the zinc finger protein
180 family (Ferguson et al., 2009) (Supplementary Figure S4). Overall, the study reveals

181 genuine pairs of beta and delta cells in the endocrine pancreas.
182
183

184
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185 Delta-cells interact with particular beta-cell types

186 Several studies have described physical interactions of delta-cells with adjacent alpha or
187 beta-cells in the tissue (Arrojo et al., 2019; Rorsman and Huising, 2018). We sought to
188 interrogate the nature of physically interacting beta-delta conjugates, by an analytical
189 pipeline for physically interacting cells, PIC-seq (Giladi et al., 2020). Evolution of 20,000
190 synthetic pairs within the PIC-seq QC process, reveals that they are conceivably similar

191 to real pairs ((Giladi et al., 2020) Supplementary Figures S5 A-C).

192 PIC-seq characterized pure beta or delta cellular subsets (Figure 5A-E), and a joint
193 signature of beta-delta pairs (Figure 5F), noting the relative contribution of beta- and
194 delta- cell mRNAs to the superimposed profile was quantified (Figure 5G). Intriguingly,
195 delta-cells consistently paired to one particular subset of beta cells, dubbed “int-beta”
196 (interacting beta-cells). Enrichment of beta-delta pairs in the regenerating pancreas,
197 proposes that such interactions may be beneficial in coping with the tissue or metabolic

198 challenges, imposed by injury or regeneration.
199 Beta-cells, juxtaposed to delta-cells, display a specific molecular signature

200 To validate the single-cell sequencing results, we orthogonally performed a single-
201 molecule fluorescence in situ hybridization (smFISH) study for the detection of
202 Somatostatin and Insulin2 (Figure 6 A-C). In addition, we studied stress-related Fkbp11
203 mRNA, which was suggested by the single cell sequencing to be one of the markers of
204 regenerating beta-cells (Figure 4). The quantification revealed that beta-cells juxtaposed
205 to delta-cells express less of the stress-related marker, Fkbp1l1l and more Ins2, relative
206 to beta-cells distant from delta-cells in the regenerating pancreas, and relative to beta-
207 cells that are paired to delta-cells under non-regeneration basal conditions (Figure 6 D,
208 E, quantification of smFISH signal in 1361 cells, derived from 16 islets/ 6 pancreata. non-
209 parametric Kolmogorov-Smirnov test). Together, two orthogonal approaches
210 demonstrate that stress signature is dampened and Insulin expression is upregulated in
211 beta-cells that are at physical interaction with delta-cells and that this is a molecular

212 response that is observed specifically during regeneration.
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213 Discussion

214 The emergence of single-cell transcriptome profiling paves the way to studies of
215 endocrine pancreas heterogeneity at unprecedented cellular resolution. The current
216 study reveals the cellular dynamics of the regenerating pancreas after surgical resection.
217 It resonates some of the observations reporter by Tatsuoka et al (2020), were self-
218 duplicating beta-cells were observed following partial pancreatectomy. Our work further
219 enables a new look into beta-cell heterogeneity following regeneration and physically
220 interacting endocrine cells, which were overlooked until the recent development of
221 computational methods for discrimination of true interactions from sorting doublet

222 artifacts.
223

224 We report that during regeneration there is a relative reduction in alpha-cell
225 populations, accompanied by relative expansion of gamma-cells. In addition, beta-cell
226 diversify. Thus, regeneration-associated beta-cell heterogeneity, appears to progress
227 threefold: featuring ER-stress —associated markers (e.g., Fkbp11, Dapll, Creld2), cell
228 division cycle markers (e.g., Top2a, Ccna2, Ube2c) or beta-cell activity markers (high Ins2

229 along with Mt1, Mt2, ATF5 and Nuprl) accompanied with low ER stress markers.
230

231 We further report the unexpected dynamics in the delta-beta axis. We demonstrate that
232 delta-cells of the regenerating pancreas can be denoted by the activation of a lineage
233 tracer that is driven by the endogenous promoter of the transcription factor Sox-9. It is
234 noticeable because in the mature organ Sox9 is primarily expressed in ductal and
235 centero-acinar cells (Kopp et al., 2012; Seymour, 2014; Seymour et al., 2007). However,
236 based on careful analysis we suggest that Sox9 descendant are most likely intrinsically
237 endocrine, and we did not find any evidence that the source of the Sox-9 descendants

238 might be of non-endocrine origin.

239
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240 Delta cell population is expanding, approximately twofold, during regeneration. It
241 inhabits the islet circumference in a zonated manner. These post-injury regeneration-
242 related changes may be consistent with delta-cell hyperplasia in rodent diabetes models

243 (Alan et al., 2015; Leiter et al., 1979).
244

245 Beta cells re-enter the cell division cycle in the regenerating pancreas, peaking at the first
246 week after injury (Ackermann Misfeldt et al., 2008; Dor et al., 2004; Teta et al., 2007;
247 Togashi et al.,, 2014) and were recently suggested to be associated with intricate
248 activation of stress response, cell cycle progression effectors and tumor suppressors
249 (Tatsuoka et al., 2020). Our analysis reveals a residual replicating beta cells, even 4 weeks
250 following surgery, indicative of a prolonged replication phase than previously

251 appreciated (Togashi et al., 2014).

252 We demonstrate an increase in the number of physically-pairing beta- and delta-cells in
253 response to regeneration. This is in accordance with the increase in delta cell numbers.
254 The distinctive molecular signature of beta-delta pairs in regeneration differs from beta-
255 delta pairs under basal conditions, suggesting a regeneration-associated crosstalk. We
256 demonstrate that only a particular subset, interacting beta cells (“Int-beta”), is capable
257 of pairing to delta-cells. These beta cells display broad transcriptomic differences with
258 reference to other beta cell subsets. However, it is unknown if the physical interaction
259 with delta cell imposes broad transcriptional changes to beta-cells and / or that only
260 specific subtypes of beta-cells are molecularly competent to induce beta-delta

261 interactions.

262 Beta-delta proximity and crosstalk in the regenerating pancreas was described (Arrojo et
263 al., 2019; Leiter et al., 1979), but could not be systematically quantified. Our study
264 reveals that physical interaction with delta-cells is associated with reduced expression of
265 stress markers and with augmented expression of mRNAs, typical of beta cell function.
266 These two entities may be linked by the fact that high demand of insulin secretion

267 imposes stress on beta-cells (Fonseca et al., 2011).
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268 In summary we suggest that physically interacting delta-cells provide a unique protective
269 niche that safeguards beta-cells from exhaustion. However, it is unknown if paracrine
270 somatostatin or other means of cellular communication play a role in establishing the

271 protective niche.
272 Limitations:

273 The study is first to perform analysis of cellular pairs in the endocrine pancreas. However,
274 the functional importance of beta-delta crosstalk requires additional studies. Plausibly
275 paracrine somatostatin plays a role in controlling beta-cell transcriptome and
276 presumably function. However, non-secreted membrane-bound molecules might be
277 additionally considered as means of communication. Our study focuses on a defined time
278 point, 4 weeks after pancreatectomy, encouraging detailed future studies of the

279 dynamics of beta-delta pairing in earlier phases of regeneration.

280 Delta cells extend compound filopodia-like protrusions to communicate with cells in
281 their vicinity (Arrojo, 2019). Therefore, quantified pairing of beta and delta cells by
282 microscopy and taking into account the potential of delta cells to affect beta cells that
283 are considered by our calculation as ‘distant, non-interacting beta cells’, might

284 underestimate the real effect of beta-delta pairing events.

285 In summary, the cellular dynamics of the regenerating endocrine pancreas are unfolded
286 by single cell sequencing. Regeneration-associated heterogeneity of beta-cell, involves
287 defined physical interactions with delta-cells that attenuate the load of stress and enable

288 more robust beta cell function.
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289 Methods

290 Animal experiments. Animal experiments were approved by the institutional Animal
291 Care and Use Committee of the Weizmann Institute of Science. Mice were housed in a
292 specific pathogen-free facility in individually ventilated cages on a strict 12-h light—dark
293 cycle. C57BL/6 strain was purchased from Envigo. For lineage tracing, Sox9-Cre ER™2 mice
294 (Soeda et al., 2010) were crossed on to R26R-tdTomato conditional reporter [B6;129S6-
295 Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J; (Madisen et al., 2010)]. 10 weeks old Sox9-
296 CrefRT2:tdTomato males were injected subcutaneously with tamoxifen (0.2-0.4 mg /g
297 body weight 20-25 gr body weight, T5648, Sigma). Full clearance of residual tissue
298 tamoxifen was allowed over 14 days, before any additional procedure. Subtotal surgical
299 resection of the pancreas (partial pancreatectomy), was performed on isoflurane-
300 anesthetized 12-week-old male mice, via midline abdominal incision, removing ~70% of
301 the pancreas tissue, while preserving the pancreatic duct and splenic artery. Sham
302 laparotomy and minimal rubbing of the pancreas with sterile g-tips served as control
303 procedure. Abdominal muscles and skin were sutured using absorbable PGA 5/0 sutures
304 (Intrag Medical Techs Co/ Ltd.). 0.1 mg/kg buprenorphine-HCl in normal saline was
305 injected subcutaneously for analgesia, and enrofloxacin (2ml/400ml) given as

306 prophylaxis oral antibiotic in drinking water for 7 days.

307 Tissue microscopy. Islets of Langerhans were isolated by retrograde intra-ductal
308 perfusion of pancreata with 5 ml 0.8 mg/ml Collagenase P following protocol described
309 in (Szot et al., 2007). Freshly isolated islets of Langerhans or whole pancreata were fixed
310 in 4% paraformaldehyde (PFA)/PBS at 4°C overnight, dehydrated in 30% sucrose, soaked
311 in OCT (Tissue-Tek), frozen in mold on dry ice. Cryosections of 8 um (Cryostat M3050S,
312 Leica) were mounted onto Superfrost plus slides. For immunofluorescence, cryosections
313 were airdried for 30 min, permeabilized with 0.2% Triton/TBS, incubated with Cas-block
314 (008120 Thermo-fisher) for 10 min. and then incubated overnight at 4°C with primary
315 antibodies, diluted in CAS-block. Sections were washed in PBS and incubated with
316 secondary fluorescent antibody, mounted on glass slides with DAPI-mounting medium

317 (Fluoroshield™ with DAPI, Sigma). Slides were air-dried over-night and examined with
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318 LSM 800 laser-scanning confocal microscope (Carl Zeiss), equipped with a Zeiss camera
319 with x20 / x40 or x63 magnification (Thornwood, NY, USA). The following primary
320 antibodies were used: guinea-pig anti Insulin (ab7842; Abcam, 1:200), goat anti-Sst (SC-
321 7819; Santa Cruz biotechnology, 1:200) or rabbit anti-Sox9 (AB5535; Millipore, 1:200).
322 All antibodies were previously validated, and immunostaining included negative controls
323 (no primary antibody). Single Molecule FISH was performed as described in(Farack et al.,
324 2018; Farack and Itzkovitz, 2020; ltzkovitz et al., 2011) using the Stellaris FISH Probe
325 libraries (Biosearch Technologies, Inc., Petaluma, CA), coupled to Cy5 (GE Healthcare,
326 PA25001), Alexa594 (Thermo Fisher, A37572) or TMR (Molecular Probes, C6123). (Table
327 of probes TBD). Wash buffer and hybridization buffer contained 30% Formamide. Nuclei
328 were counterstained with Dapi (Sigma-Aldrich, D9542) and cell borders, counterstained
329 with alexa fluor 488 conjugated phalloidin (Thermo Fisher, A12379). Slides were
330 mounted using ProLong Gold (Molecular Probes, P36934). Endocrine cells were detected
331 by insulin or somatostatin signal. Micrographs captured by Nikon inverted fluorescence
332 microscope eclipse ti2 series, equipped with a 100xoil-immersion objective and ixon
333 ultra 888camera using NIS elements advanced research (Nikon). The image-plane pixel
334 dimension was 0.13 um. Quantification was performed on stacks of five optical sections,

335 at 0.3 um intervals, in which not more than a single cell was observed.

336 Endocrine single-cell studies. Isolated Islets of Langerhans were dispersed to single-cell
337 suspensions by incubation in a solution of 50% trypsin-EDTA (GIBCQO) at 37°C for 3 min
338 followed by gentile mechanic agitation, and stopped by adding 10% RPMI 1640 / FBS
339 (vol/vol). For cell-sorting, islet cells were suspended in ice-cold sorting buffer (PBS
340 supplemented with 0.2 mM ethylenediaminetetraacetic acid, pH 8 and 0.5% BSA),
341 filtered through a 50-um cell strainer and stained for viability by DAPI (1 ug/ml). Flow
342 cytometry analysis and sorting were performed on a BD FACSAria Fusion instrument (BD
343 Immunocytometry Systems), using a 100-um nozzle, controlled by BD FACS Diva
344 software v8.0.1 (BD Biosciences). Further analysis was performed using FlowJo software
345 v10.2 (Tree Star). Either unstained, single stained tdTomato or DAPI only control cells

346 were used for configuration and determining gates boundaries. tdTomato* / DAPI ~
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347 target cells were sorted into 384-well cell-capture plates containing 2 pl lysis solution
348 and barcoded poly(T) reverse-transcription primers for single-cell RNA-seq. Empty wells
349 in the 384-well plates served a no-cell controls. Immediately after sorting, each plate was
350 spun down to ensure cell immersion into the lysis solution, and frozen at -80 °C until
351 processed. Single-cell libraries cDNA were prepared reverse-transcribed from messenger
352 RNA of islet cells barcodes (Jaitin et al., 2014; Keren-Shaul et al., 2019). ScRNA-seq
353 libraries were pooled at equimolar concentrations and sequenced on an lllumina
354 NextSeq 500 at a median sequencing depth of 24,500 reads per cell. Sequences were
355 mapped to the mouse genome (mm10) using HISAT2 (Kim et al., 2019), demultiplexed
356 and filtered to exclude reads outside exons or with multiple mapping positions. Cell
357 libraries with 500 - 500,000 UMIs and <20% mitochondrial mRNAs were included in
358 downstream MetaCell analysis (Baran et al., 2019), which derives cohesive groups of
359 cellular profiles. To study physical-interaction between cells, we employed PIC-seq

360 (Giladi et al., 2020) on single-cell data.
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Figurel. Delta-cells are Sox9 descendants. Confocal micrographs demonstrating that (A) Sox9 lineage
tracing marks duct and acinar cells and some cells at the periphery of Islets of Langerhans (Marked by
yellow arrow). Islet border is marked by white dashed line. (B) Sst+ delta-cells are Sox-9 descendant cells.
tdTomato signal (red, yellow arrow), insulin (white) Sst (green) and nuclei (blue) co-staining. (C), compared
to Insulin immunostaining and DAPI (D). The Islet border is marked by a white dashed line. (E)
Quantification of Sox-9 descendant fractional enrichment in endocrine populations: delta-cells (78%),
beta-cells (9%) or other islet cells (13%) (. (F) 20% of Sst+ cells (54 of 295 cells) and ~0.4% of Ins+ cells (6
of 1595 cells) are Sox9- descendants (tdTomato+). (G) Heatmap of unsupervised clustering of single
endocrine cell transcriptome from 590 dissociated cells from 6 pancreata of Sox9 lineage-tracer mice.
Analysis reveals that Ppy, Pyy and Sst mRNAs are enriched in lineage traced tdTomato+ cells (bottom red
/ black bar). Ten key cell type clusters coded by a spectral bar. (H) Dimensional reduction of transcriptomic
data, with cell-types spectral color, corresponding to Fig. 1G. (1) Color coded SOX9-descendants (red) or
cells unlabeled with tdTomato during the course of the experiment, superimposed on the dimensional
reduction map, highlights the enrichment of Sox9-descendant delta-cells.
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379 Figure 2. Delta-cells expand following partial pancreatectomy. (A) Diagram of experimental setup for
380 single cell RNA sequencing of endocrine cells from the regenerating pancreas. Confocal micrographs of
381 Sox9-descendant (tdTomato*) cells enrichment in islets of sham operated mice (B), relative to after
382 pancreatectomy (C). White line - islet border. (D) Quantification of tdTomato intensity in isolated islets,
383 normalized to islet area. tdTomato signal in sham: 0.88 + 0.06 (pixels, fluorescence intensity mean value),
384 n=102 and PPX: 1.14+ 0.07(pixels, fluorescence intensity mean value), n=165. Two-tailed T-test p = 0.0059.
385 Confocal micrographs demonstrating delta cell hyperplasia (red) in (E) sham-operated mice and (F)
386 regenerating islets, 4-weeks post pancreatectomy. (G) Bar graph quantification of Sst+ cells per islet in
387 sham or Ppx operated mice, following one- or four-weeks post operations (WPO). One-way ANOVA, p-

388 value = 0.0016. 355 Sst+ cells recorded in 51 islets from the 4 experimental groups.
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390 Figure 3. Single-cell map of the regenerating islet. (A) Heatmap of clustered islet cells
391 RNA-sequencing data from 2300 cells collected from Sox9 lineage-traced 6 pancreata, 4 weeks after partial
392 pancreatectomy. Sham-operated mice and pancreata without lineage tracing included in the same
393 analysis. Meta-cells (columns) and maximally enriched gene markers (rows) analyzed as in (Baran et al.,
394 2019). Color-bars indicate cell partitioning (Sham (blue) or ppx (orange)) and the presence of tdTomato
395 (Tom, red, marker of lineage traced Sox9 descendants). Two-dimensional projection of Meta-cells and
396 inferred cell-types (B), lineage traced Sox9 descendants (tdTomato, red, C) and by source from sham

397 operated or regenerating pancreata (D).
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Figure 4. Heterogeneity of beta-cells in the regenerating endocrine pancreas. (A) Dimension reduction
map depicting beta cell heterogeneity after regeneration with enrichment of two subsets (a, orange; b,
blue) and a single subset that persists in basal conditions (c, red). Scatter plots of differential mRNA
expression between beta-cell subsets highlights enrichment of stress-related mRNAs (B, subset a vs. c) and
cell-division-cycle mRNAs (C, subset b vs. c) in regeneration. (D) Scatter-plot of Ins2 mRNA (y axis) versus
Ins1 mRNA (x axis) in beta-cells reveals heterogeneity. Log2 of read counts. Cells colored according to
clusters in Figure 4A. (E) Differential mRNA expression between beta-cells that express low and high levels
of Ins2 mRNA. Unique molecular identifier (UMIs) normalized to total reads and to cell numbers.
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408 Figure 5. Physically interacting beta-delta cell pairs. (A) Two-dimensional projection of beta-cells, delta-
409 cells, and beta-delta cell pairs. (B) Scatter-plot of 14 cellular subsets, demonstrating identification of pure
410 beta or delta cell, by Ins2, or Sst and a joint signature with high expression of both hormones (subsets
411 10,11,12). (C) Heatmap of clustered RNA-sequencing data, 4 weeks after partial pancreatectomy defines
412 9 beta-cell subsets and 5 delta-cell subsets. Upper and lower panels indicate identity genes in delta- and
413 beta-cell clusters, respectively. Data of 1500 cells collected from 6 pancreata analyzed by MetaCell (Baran
414 et al., 2019). Sham-operated mice and mice lacking of lineage tracing included in the same analysis. Meta-
415 cells (columns) and maximally enriched gene markers (rows). Color-bar indicators of (D) partitioning of
416 cells derived from sham (blue) or ppx (orange) pancreata or (E) beta / delta meta-cells. Int-beta are
417 interacting beta-cells. (F) Heatmap of clustered RNA-sequencing data, of 212 physically interacting beta-

418 delta cell pairs, grouped by their contributing beta- and delta-cell identities. (G) Annotation and estimation
419 of relative transcriptome contribution, derived from beta/delta cells (green/red).
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421 Figure 6. Molecular signature of physically interacting beta-delta cell pairs. smFISH study micrographs of
422 Sst (A), Ins2 (B) and Fkbp11 (C) mRNAs in islets of Langerhans. Beta-cells, juxtaposing delta-cells (orange),
423 distant from delta-cells (purple), and delta-cells (blue). Cell membrane demonstrated by Phalloidin staining
424 (red), smFISH signal (white). Density map of standardized Fkbp11l mRNA (x-axis) vs. Ins2 mRNA (y-axis) in
425 1361 cells, derived from 16 islets/ 6 pancreata. Beta-cells, juxtaposing delta-cells (orange, PIC) and beta-
426 cells distant from delta-cells (purple), in islets from sham-operated mice (sham, D) or following
427 pancreatectomy (Ppx, E). Data gained by quantification of smFISH signal in 1361 cells, derived from 16
428 islets/ 6 pancreata. P-values calculated by non-parametric Kolmogorov-Smirnov test (between distant vs.

429 PICs for Fkbp11 and Ins2 transcript levels.
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431 Weeks following operation
432 Supplementary Figure 1A. Blood glucose levels in partially-pancreatectomized (orange) or sham-operated
433 mice (black), in the course of four weeks, following surgical procedure. 2way anova, Sidak's multiple

434 comparisons test, *** p-value = 0.0001. Data obtained from 5 mice from 2 experimental groups.
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436 Supplementary Figure 2 (A). Dimensional reduction map from MetaCell analysis, illustrating UMI counts
437 of single cells across MetaCells. (B) Bar-plot of cell-type specific mean UMI-counts. Data of 2104 cells
438 following MetaCell analysis. Tukey's multiple comparisons test. **** p-value <0.0001. NS = non-significant.

439 Cell-types were inferred according to unique transcripts. 974 beta-cells, 207 beta-delta pairs, 58 alpha-
440 delta pairs, 66 gamma-cells, 151 alpha-cells, 539 delta-cells, 46 Endothelial cells, 54 Leukocytes, and 9

441 mesenchyme cells.
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444 Supplementary Figure 3 (A). Dimensional reduction map from MetaCell analysis, illustrating simulated

445 doublets (black dots) from single beta- (brown dots) and delta-cells (purple dots). Blue dots represent
446 beta-delta cell pairs. (B) Heatmap of clustered RNA-sequencing data from Sox9 lineage-traced islet cells, 4
447 weeks following partial pancreatectomy. Data of 2300 cells collected from 6 pancreata analyzed by

448 MetaCell. Data includes 515 simulated beta-delta cells.
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450 Sim.Doublets
451 Supplementary Figure 4. Scatter plots of differential mMRNA expression between simulated beta-delta pairs
452 (x axis) and observed beta-delta pairs (y-axis) highlights enrichment of genes supporting beta-cell function

453 and cellular adhesion molecules.
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455 Supplementary Figure 5 (A). Performance of the linear regression model, used to estimate the mixing

456 factor of 20,000 synthetic PICs. (B, C) Performance of the (B) beta-cell and (C) Delta-cell MetaCell

457 assignments of PIC-seq over 5,000 synthetic PICs. Each row summarizes all synthetic PICs originating from
458 one MetaCell and their assignments to MetaCell by PIC-seq (columns. Data is row-normalized).
459
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