

1 **Physically interacting beta-delta pairs in the regenerating pancreas revealed by single-**
2 **cell sequencing**

3

4 Eran Yanowski^{1,2}, Nancy - Sarah Yacovzada^{1,2}, Eyal David³, Amir Giladi³, Diego Jaitin³, Lydia
5 Farack⁴, Adi Egozi⁴, Danny Ben-Zvi⁵, Shalev Itzkovitz⁴, Ido Amit³, Eran Hornstein^{1,2*}

6

7 ¹Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001,
8 Israel

9 ¹Department of Molecular neuroscience, Weizmann Institute of Science, Rehovot
10 7610001, Israel

11 ³Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.

12 ⁴Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001,
13 Israel.

14 ⁵Department of Developmental Biology and Cancer Research, Institute for Medical
15 Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem,
16 9112102, Israel

17

18 * Correspondence should be addressed to:

19 Eran Hornstein, PhD, MD.

20 Email: eran.hornstein@weizmann.ac.il

21 Department of Molecular Genetics,

22 Weizmann Institute of Science,

23 234 Herzl St., 76100 Rehovot, Israel,

24 Phone: 0097289346215 FAX: 0097289344108

25 **Abstract**

26

27 The endocrine pancreas is able to regenerate in response to insult, including by driving
28 beta-cells into the cell division cycle. Until recently, communication between
29 neighboring cells in islets of Langerhans was overlooked by single-cell genomic
30 technologies, which require rigorous tissue dissociation into single cells. Here, we utilize
31 sorting of physically interacting cells (PICs) with single-cell RNA-sequencing to
32 systematically map cellular interactions in the regenerating endocrine pancreas. The
33 cellular landscape of the regenerated pancreas features regeneration-associated
34 endocrine populations.

35 We explore the unexpected heterogeneity of beta-cells in regeneration, including an
36 interaction-specific program between paired beta and delta-cells. Our analysis suggests
37 that the particular cluster of beta-cells that pair with delta-cells benefits from stress
38 protection, implying that the interaction between beta and delta-cells safeguards against
39 regeneration-associated challenges.

40 **Introduction**

41 Islets of Langerhans of the endocrine pancreas contain five main cell types that secrete
42 hormones, which are critical for regulating multiple aspects of metabolism. Somatostatin
43 acts in a paracrine manner to inhibit other endocrine cells, including insulin secretion
44 from beta-cells and the secretion of the counterregulatory hormone, glucagon, from
45 alpha-cells (Strowski et al., 2000). Additional endocrine cell types that express
46 somatostatin receptors, such as pancreatic-polypeptide cells, might be under paracrine
47 control of somatostatin (Ludvigsen et al., 2004).

48

49 Better understanding of the cellular and molecular mechanisms underlying pancreas
50 regenerative ability, may contribute to developing therapeutic treatment for diabetes.
51 Accordingly, several experimental paradigms were established for the study of pancreas
52 regeneration in rodents including injury models (Bonner-Weir et al., 1993), pancreatic
53 duct ligation (Xu et al., 2008), and chemical ablation of islet cells (Fernandes et al., 1997).
54 Such paradigms have been often used in concert with lineage tracing to decipher the
55 origin of regenerating endocrine cells. Thus, new insulin-producing cells arise primarily
56 from existing beta-cells (Dor et al., 2004), but in some conditions also from conversion
57 of pancreatic alpha- or delta-cells (Chera et al., 2014).

58 Partial pancreatectomy (Ppx) is a well-characterized experimental model for initiating
59 pancreas regeneration. Partial pancreatectomy, induces rapid endocrine and exocrine
60 tissue regeneration, in young rodents that peaks after a week. Animals re-gain
61 euglycemia at about 4 weeks (Jonas et al., 2001; Laybutt et al., 2002; Lee et al., 2006;
62 Peshavaria et al., 2006). However, the regeneration capacity declines sharply with age
63 (Rankin and Kushner, 2009) and is absent in adult humans (Menge et al., 2008; Zhou and
64 Melton, 2018).

65 Much is known about beta-cell mass replenishment. New beta cells are primarily
66 descendants of mature beta-cells that re-enter the cell division cycle (Dor et al., 2004;

67 Lee et al., 2006). In addition, auxiliary pathways, commit beta-cells from other
68 trajectories (Tritschler et al., 2017).

69 Delta-cells may contribute to regeneration of the endocrine pancreas in diverse ways,
70 including via paracrine somatostatin activity (Alberti et al., 1973; Fagan et al., 1998) or
71 physical cellular interaction with beta-cells (Arrojo et al., 2019). However, delta cell
72 involvement in regeneration was largely overlooked.

73

74 Single-cell transcriptomics technology enables a new and thorough understanding of
75 pancreas tissue dynamics and of cellular heterogeneity (Wang and Kaestner, 2019). Beta
76 cells display transcriptomic profiles, associated with proliferation (Wang et al., 2016) and
77 cellular stress (Baron et al., 2016; Muraro et al., 2016) and may further reveal the
78 molecular signature of type 2 diabetes (Segerstolpe et al., 2016), post-pancreatectomy
79 (Tatsuoka et al., 2020) and the aging organ (Xin et al., 2016).

80 In the current study we demonstrate that delta-cells are Sox9 descendants that
81 expand in the regenerating endocrine pancreas. We characterize regeneration-
82 associated beta cell heterogeneity at a single-cell resolution, demonstrating molecular
83 patterns that are consistent with activation of stress programs or of the cell division cycle
84 in beta-cells. Furthermore, we identify a cluster of beta-delta cell pairs that display
85 unique transcriptional profiles. Better understanding of crosstalk between endocrine cells
86 in regenerating islets of Langerhans may contribute to our understanding of how beta-
87 cells cope with stress and to development of therapy for diabetes.

88

89 **Results**

90 **Islet Sox9-descendant cells are predominantly delta-cells**

91 The transcription factor Sox9 plays critical roles in the development of the embryonic
92 pancreas, whereas it is predominantly expressed in the exocrine compartment of the
93 adult organ. Accordingly, Sox9-descendant cells contribute to the ductal and acinar
94 system. In analysis of Sox9-CreER:tdTomato allele (Soeda et al., 2010), we characterized
95 the lineage signal 30 days after labeling and observed cells within islets of Langerhans,
96 in addition to ductal and acinar cells (Figure 1A). The islet cells that are linked to the Sox9
97 lineage primarily express the hormone somatostatin (Sst), which is typical of endocrine
98 delta-cells (Figure 1B-D). Quantification of the signal demonstrated that 78% of the
99 tdTomato⁺ cells are Sst⁺, whereas 9% co-express Insulin and 13% were neither delta nor
100 beta-cells (Figure 1E, 1905 cells counted from 32 islets, obtained from 5 animals).
101 Accordingly, 18% of the delta-cells were tdTomato⁺, in contrast to only 0.4% of the beta
102 cell population (54 tdTomato⁺, Sst⁺ /295 delta-cells; 6 tdTomato⁺, Ins⁺ /1595 beta cells
103 Figure 1F). Therefore, a relatively specific activation of the endogenous Sox9 promoter
104 is evident in adult delta-cells or their ancestors, in the endocrine pancreas.

105 To uncover the nature Sox9-descendant cells, pancreata of 12 weeks old mice were
106 dissociated and MARS-seq was performed for both tdTomato⁺ and tdTomato⁻ cells (Baran
107 et al., 2019; Jaitin et al., 2014). Transcriptional profile analysis identified 5 distinct cellular
108 populations, namely, beta-, delta-, gamma- and alpha-cells and circulating leukocytes
109 (Figure 1E, F). In addition, we identified a cluster of cells holding transcriptional signature
110 that is typical of pairs of both beta and delta-cells. These were therefore regarded as
111 beta-delta doublet cells (cluster #1, Figure 1E). Notably, Sst mRNAs is enriched in lineage
112 tdTomato⁺ cells. This analysis orthogonally demonstrated that tdTomato-labelled Sox9-
113 descendants are indeed delta-cells (Figure 1G - I).

114

115 **Delta-cell expansion in pancreas regeneration**

116 The adult pancreas is capable of regenerating in response to injury. However, the
117 regeneration process is only partially characterized. Therefore, we aimed to investigate
118 the cellular dynamics of pancreas regeneration by single cell sequencing ([Figure 2A](#)).
119 Partial (subtotal) pancreatectomy (Ppx), was performed on 12 week-old Sox9-
120 CreER;tdTomato males. Excision of ~70% of the pancreas was controlled by a cohort of
121 sham operated littermates. Incomplete normalization of blood glucose levels was
122 monitored over 4 weeks after the surgical procedure ([Supplementary Figure S1A](#)). A
123 significant increase in the number of tdTomato⁺ cells, was observed in regenerating
124 pancreata, 4 weeks after pancreatectomy, relative to sham operated mice ([Figures 2, B-](#)
125 [D](#)). We have demonstrated, by single molecule fluorescent *in situ* hybridization (smFISH),
126 an increase in the number of cells expressing Sst, 4 weeks after Ppx, relative to sham
127 controls and to an earlier time point, 1 week after surgery ([Figures 2, E-G](#)). Together, the
128 delta-cell population expands during regeneration.

129

130 **Single-cell characterization of the regenerating endocrine pancreas**

131 Next, we dissociated islets from regenerating pancreata, annotated tdTomato by flow
132 cytometry, and performed single-cell RNA sequencing. Four endocrine cellular
133 populations, (alpha, beta, gamma and delta-cells), leukocytes, endothelial and
134 mesenchymal cells were detected ([Figure 3A, B](#)), consistent with the profiling at basal
135 conditions in [Figure 1](#).

136 The enrichment of delta-cells in this study, via Sox9 tracing, enabled analysis of the delta-
137 cell population at unmet sensitivity ([Figure 3C](#)), while highlighting the source of cells
138 according to their experimental groups (sham/ ppx) revealed relative depletion of alpha
139 cells in ppx samples (only 20% originate from ppx samples), enrichment of gamma-cells
140 (~80% originate from ppx samples) and regeneration-driven heterogeneity within the
141 beta-cell population ([Figure 3D](#)).

142 **Heterogeneity of beta-cells during recovery period after pancreatectomy**

143 In-depth analysis of beta-cell mRNA profiles revealed acquired heterogeneity in response
144 to regeneration. In addition to a relatively-stable beta-cells that do not transcriptionally
145 change in response to regeneration ([Figure 4A](#)), other beta cells feature elevated levels
146 of stress-associated transcripts (Fkbp11, Dapl1, Creld2, Sdf2l1, Pdia4 & Derl3. [Figure 4B](#)),
147 whereas other beta cells can be denoted by cell-cycle-associated transcripts (e.g., Top2a,
148 Ccna2, Ube2c, Cenpf & Nusap1. [Figure 4C](#)). The three signatures feature tonic expression
149 of Ins1, but can be further distinguished by discrete levels of ins2 expression ([Figure 4D](#)).
150 Thus, beta cells with stress-associated transcripts also possess relatively low levels of
151 Ins2 mRNA ([Figure 4D, E](#)). In summary, beta-cell heterogeneity increases in the
152 regenerating pancreas denoting three primary transcriptional states: stress-associated,
153 cell-cycle-associated or basal state.

154

155 Overall, our data reveal previously-overlooked cellular dynamics of the regenerating
156 endocrine pancreas, including relative alpha-cell depletion, relative gamma-cell
157 enrichment, considerable beta-cell heterogeneity and beta-delta pairs ([Figure 3](#)).

158 **Physically-interacting beta-delta cell pairs**

159 We unexpectedly identified a relatively large number of beta-delta pairs and alpha-delta
160 pairs that is untypical for MARS-seq data (Keren-Shaul et al., 2019); MARS-seq2.0). We
161 sought to establish that these are indeed genuine doublets.

162 Because the typical number of transcripts is significantly larger than any single endocrine
163 cell type, we excluded the possibility of a polyhormonal phenotype (Tukey's multiple
164 comparisons test of UMI distribution, p-value<<0.0001, [Supplementary figure S2 A and](#)
165 [B](#)). In addition, because the transcriptome is predominated by beta-cell mRNAs, it is
166 unlikely that data is gained from delta-cells contaminated by cell-free RNA from
167 fragmented beta-cells.

168 We demonstrated that the pairing of delta to beta cells is specific and is significantly
169 enriched, relative to other endocrine cell couples (randomization permutation test (R, v.
170 4.0.3), 10,000 iteration, p<0.0001). Since, beta-delta pairs are observed more than can
171 be expected at random, it is unlikely to result from cell-cell adhesion in the tube after
172 dissociation.

173 Then, we simulated *in silico* synthetic doublets, by summing the transcriptome of beta
174 and delta cells ([Supplementary figure S3 A and B](#)). The gained synthetic transcriptome
175 differs from real doublets. Thus, the expression of 21 mRNAs that are expressed >
176 twofold in real pairs (Chi² statistics, p-value<0.01, ([Supplementary Figure S4](#))). mRNAs
177 enriched in doublets more than expected include Dock3, a regulator of cytoskeletal
178 organization and cell-cell interactions(Caspi and Rosin-Arbesfeld, 2008; Chen et al.,
179 2009; Kashiwa et al., 2001) and several transcription factors of the zinc finger protein
180 family (Ferguson et al., 2009) ([Supplementary Figure S4](#)). Overall, the study reveals
181 genuine pairs of beta and delta cells in the endocrine pancreas.

182

183

184

185 **Delta-cells interact with particular beta-cell types**

186 Several studies have described physical interactions of delta-cells with adjacent alpha or
187 beta-cells in the tissue (Arrojo et al., 2019; Rorsman and Huisng, 2018). We sought to
188 interrogate the nature of physically interacting beta-delta conjugates, by an analytical
189 pipeline for physically interacting cells, PIC-seq (Giladi et al., 2020). Evolution of 20,000
190 synthetic pairs within the PIC-seq QC process, reveals that they are conceivably similar
191 to real pairs ((Giladi et al., 2020) Supplementary Figures S5 A-C).

192 PIC-seq characterized pure beta or delta cellular subsets (Figure 5A-E), and a joint
193 signature of beta-delta pairs (Figure 5F), noting the relative contribution of beta- and
194 delta- cell mRNAs to the superimposed profile was quantified (Figure 5G). Intriguingly,
195 delta-cells consistently paired to one particular subset of beta cells, dubbed “int-beta”
196 (interacting beta-cells). Enrichment of beta-delta pairs in the regenerating pancreas,
197 proposes that such interactions may be beneficial in coping with the tissue or metabolic
198 challenges, imposed by injury or regeneration.

199 **Beta-cells, juxtaposed to delta-cells, display a specific molecular signature**

200 To validate the single-cell sequencing results, we orthogonally performed a single-
201 molecule fluorescence *in situ* hybridization (smFISH) study for the detection of
202 Somatostatin and Insulin2 (Figure 6 A-C). In addition, we studied stress-related Fkbp11
203 mRNA, which was suggested by the single cell sequencing to be one of the markers of
204 regenerating beta-cells (Figure 4). The quantification revealed that beta-cells juxtaposed
205 to delta-cells express less of the stress-related marker, Fkbp11 and more Ins2, relative
206 to beta-cells distant from delta-cells in the regenerating pancreas, and relative to beta-
207 cells that are paired to delta-cells under non-regeneration basal conditions (Figure 6 D,
208 E, quantification of smFISH signal in 1361 cells, derived from 16 islets/ 6 pancreata. non-
209 parametric Kolmogorov-Smirnov test). Together, two orthogonal approaches
210 demonstrate that stress signature is dampened and Insulin expression is upregulated in
211 beta-cells that are at physical interaction with delta-cells and that this is a molecular
212 response that is observed specifically during regeneration.

213 **Discussion**

214 The emergence of single-cell transcriptome profiling paves the way to studies of
215 endocrine pancreas heterogeneity at unprecedented cellular resolution. The current
216 study reveals the cellular dynamics of the regenerating pancreas after surgical resection.
217 It resonates some of the observations reporter by Tatsuoka et al (2020), were self-
218 duplicating beta-cells were observed following partial pancreatectomy. Our work further
219 enables a new look into beta-cell heterogeneity following regeneration and physically
220 interacting endocrine cells, which were overlooked until the recent development of
221 computational methods for discrimination of true interactions from sorting doublet
222 artifacts.

223

224 We report that during regeneration there is a relative reduction in alpha-cell
225 populations, accompanied by relative expansion of gamma-cells. In addition, beta-cell
226 diversify. Thus, regeneration-associated beta-cell heterogeneity, appears to progress
227 threefold: featuring ER-stress –associated markers (e.g., Fkbp11, Dapl1, Creld2), cell
228 division cycle markers (e.g., Top2a, Ccna2, Ube2c) or beta-cell activity markers (high Ins2
229 along with Mt1, Mt2, ATF5 and Nupr1) accompanied with low ER stress markers.

230

231 We further report the unexpected dynamics in the delta-beta axis. We demonstrate that
232 delta-cells of the regenerating pancreas can be denoted by the activation of a lineage
233 tracer that is driven by the endogenous promoter of the transcription factor Sox-9. It is
234 noticeable because in the mature organ Sox9 is primarily expressed in ductal and
235 centro-acinar cells (Kopp et al., 2012; Seymour, 2014; Seymour et al., 2007). However,
236 based on careful analysis we suggest that Sox9 descendant are most likely intrinsically
237 endocrine, and we did not find any evidence that the source of the Sox-9 descendants
238 might be of non-endocrine origin.

239

240 Delta cell population is expanding, approximately twofold, during regeneration. It
241 inhabits the islet circumference in a zonated manner. These post-injury regeneration-
242 related changes may be consistent with delta-cell hyperplasia in rodent diabetes models
243 (Alan et al., 2015; Leiter et al., 1979).

244

245 Beta cells re-enter the cell division cycle in the regenerating pancreas, peaking at the first
246 week after injury (Ackermann Misfeldt et al., 2008; Dor et al., 2004; Teta et al., 2007;
247 Togashi et al., 2014) and were recently suggested to be associated with intricate
248 activation of stress response, cell cycle progression effectors and tumor suppressors
249 (Tatsuoka et al., 2020). Our analysis reveals a residual replicating beta cells, even 4 weeks
250 following surgery, indicative of a prolonged replication phase than previously
251 appreciated (Togashi et al., 2014).

252 We demonstrate an increase in the number of physically-pairing beta- and delta-cells in
253 response to regeneration. This is in accordance with the increase in delta cell numbers.
254 The distinctive molecular signature of beta-delta pairs in regeneration differs from beta-
255 delta pairs under basal conditions, suggesting a regeneration-associated crosstalk. We
256 demonstrate that only a particular subset, interacting beta cells (“Int-beta”), is capable
257 of pairing to delta-cells. These beta cells display broad transcriptomic differences with
258 reference to other beta cell subsets. However, it is unknown if the physical interaction
259 with delta cell imposes broad transcriptional changes to beta-cells and / or that only
260 specific subtypes of beta-cells are molecularly competent to induce beta-delta
261 interactions.

262 Beta-delta proximity and crosstalk in the regenerating pancreas was described (Arrojo et
263 al., 2019; Leiter et al., 1979), but could not be systematically quantified. Our study
264 reveals that physical interaction with delta-cells is associated with reduced expression of
265 stress markers and with augmented expression of mRNAs, typical of beta cell function.
266 These two entities may be linked by the fact that high demand of insulin secretion
267 imposes stress on beta-cells (Fonseca et al., 2011).

268 In summary we suggest that physically interacting delta-cells provide a unique protective
269 niche that safeguards beta-cells from exhaustion. However, it is unknown if paracrine
270 somatostatin or other means of cellular communication play a role in establishing the
271 protective niche.

272 **Limitations:**

273 The study is first to perform analysis of cellular pairs in the endocrine pancreas. However,
274 the functional importance of beta-delta crosstalk requires additional studies. Plausibly
275 paracrine somatostatin plays a role in controlling beta-cell transcriptome and
276 presumably function. However, non-secreted membrane-bound molecules might be
277 additionally considered as means of communication. Our study focuses on a defined time
278 point, 4 weeks after pancreatectomy, encouraging detailed future studies of the
279 dynamics of beta-delta pairing in earlier phases of regeneration.

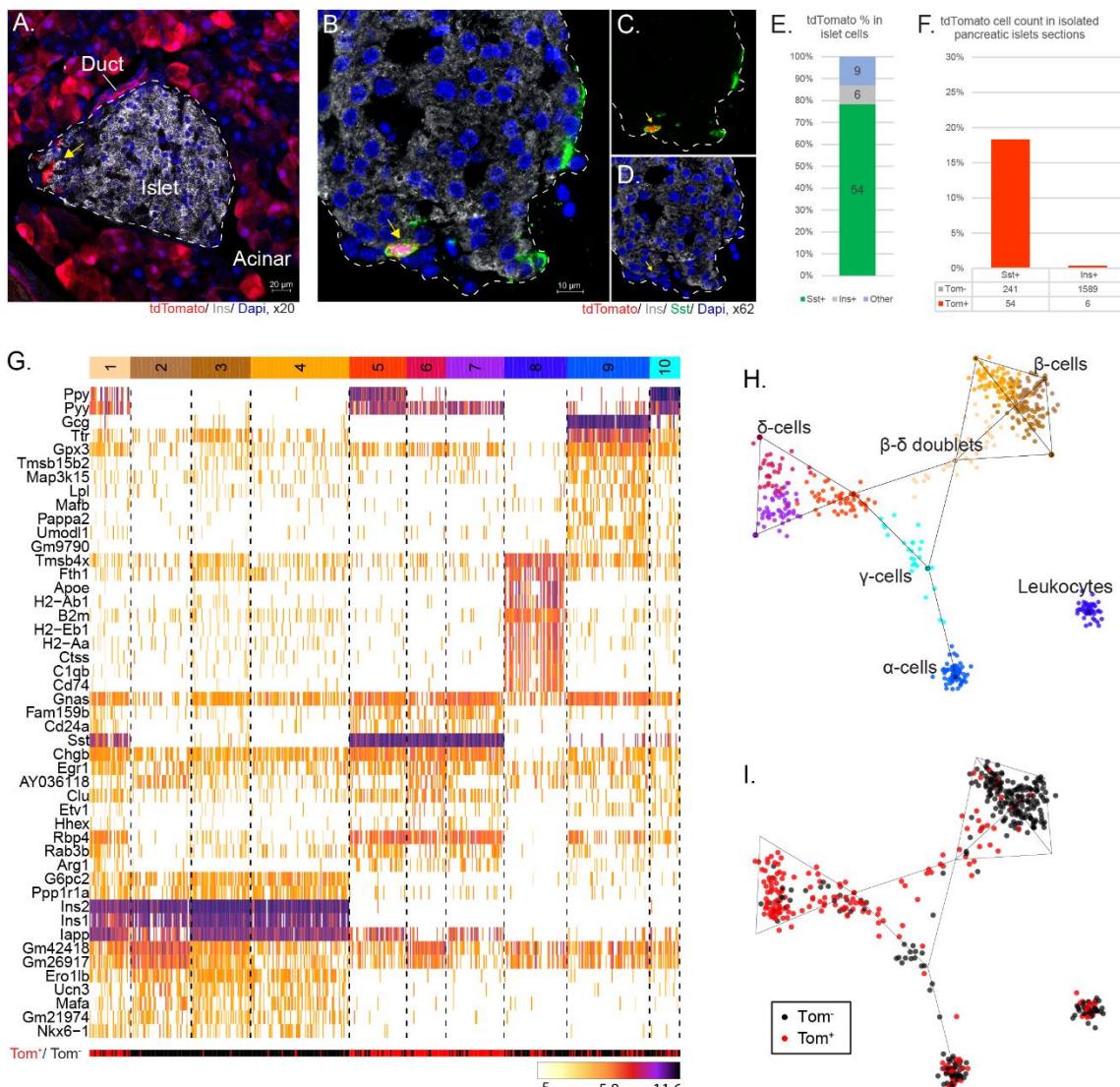
280 Delta cells extend compound filopodia-like protrusions to communicate with cells in
281 their vicinity (Arrojo, 2019). Therefore, quantified pairing of beta and delta cells by
282 microscopy and taking into account the potential of delta cells to affect beta cells that
283 are considered by our calculation as 'distant, non-interacting beta cells', might
284 underestimate the real effect of beta-delta pairing events.

285 In summary, the cellular dynamics of the regenerating endocrine pancreas are unfolded
286 by single cell sequencing. Regeneration-associated heterogeneity of beta-cell, involves
287 defined physical interactions with delta-cells that attenuate the load of stress and enable
288 more robust beta cell function.

289 **Methods**

290 **Animal experiments.** Animal experiments were approved by the institutional Animal
291 Care and Use Committee of the Weizmann Institute of Science. Mice were housed in a
292 specific pathogen-free facility in individually ventilated cages on a strict 12-h light–dark
293 cycle. C57BL/6 strain was purchased from Envigo. For lineage tracing, Sox9-Cre^{ERT2} mice
294 (Soeda et al., 2010) were crossed on to R26R-tdTomato conditional reporter [B6;129S6-
295 Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J; (Madisen et al., 2010)]. 10 weeks old Sox9-
296 Cre^{ERT2};tdTomato males were injected subcutaneously with tamoxifen (0.2-0.4 mg /g
297 body weight 20-25 gr body weight, T5648, Sigma). Full clearance of residual tissue
298 tamoxifen was allowed over 14 days, before any additional procedure. Subtotal surgical
299 resection of the pancreas (partial pancreatectomy), was performed on isoflurane-
300 anesthetized 12-week-old male mice, via midline abdominal incision, removing ~70% of
301 the pancreas tissue, while preserving the pancreatic duct and splenic artery. Sham
302 laparotomy and minimal rubbing of the pancreas with sterile q-tips served as control
303 procedure. Abdominal muscles and skin were sutured using absorbable PGA 5/0 sutures
304 (Intrag Medical Techs Co/ Ltd.). 0.1 mg/kg buprenorphine-HCl in normal saline was
305 injected subcutaneously for analgesia, and enrofloxacin (2ml/400ml) given as
306 prophylaxis oral antibiotic in drinking water for 7 days.

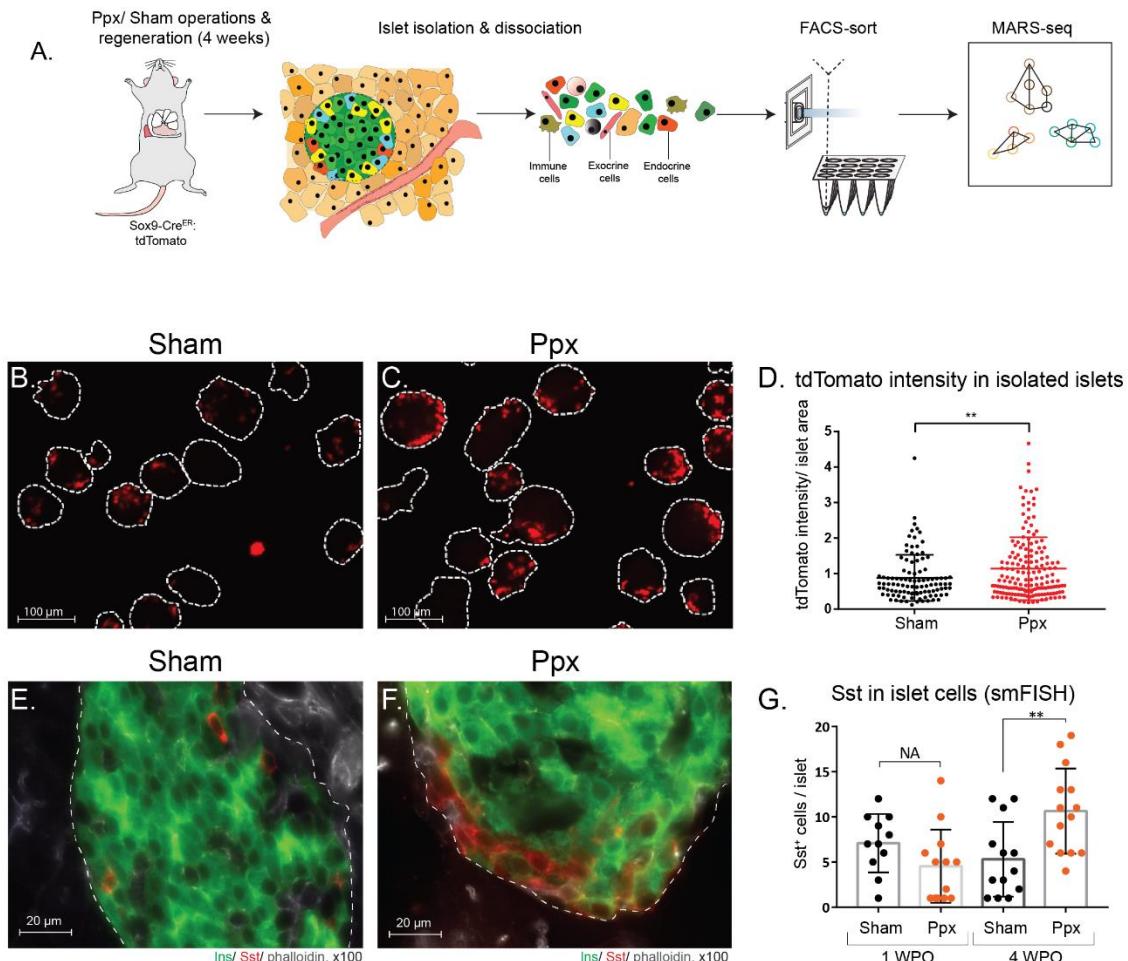
307 **Tissue microscopy.** Islets of Langerhans were isolated by retrograde intra-ductal
308 perfusion of pancreata with 5 ml 0.8 mg/ml Collagenase P following protocol described
309 in (Szot et al., 2007). Freshly isolated islets of Langerhans or whole pancreata were fixed
310 in 4% paraformaldehyde (PFA)/PBS at 4°C overnight, dehydrated in 30% sucrose, soaked
311 in OCT (Tissue-Tek), frozen in mold on dry ice. Cryosections of 8 µm (Cryostat M3050S,
312 Leica) were mounted onto Superfrost plus slides. For immunofluorescence, cryosections
313 were air-dried for 30 min, permeabilized with 0.2% Triton/TBS, incubated with Cas-block
314 (008120 Thermo-fisher) for 10 min. and then incubated overnight at 4°C with primary
315 antibodies, diluted in CAS-block. Sections were washed in PBS and incubated with
316 secondary fluorescent antibody, mounted on glass slides with DAPI-mounting medium
317 (Fluoroshield™ with DAPI, Sigma). Slides were air-dried over-night and examined with


318 LSM 800 laser-scanning confocal microscope (Carl Zeiss), equipped with a Zeiss camera
319 with $\times 20$ / $\times 40$ or $\times 63$ magnification (Thornwood, NY, USA). The following primary
320 antibodies were used: guinea-pig anti Insulin (ab7842; Abcam, 1:200), goat anti-Sst (SC-
321 7819; Santa Cruz biotechnology, 1:200) or rabbit anti-Sox9 (AB5535; Millipore, 1:200).
322 All antibodies were previously validated, and immunostaining included negative controls
323 (no primary antibody). Single Molecule FISH was performed as described in (Farack et al.,
324 2018; Farack and Itzkovitz, 2020; Itzkovitz et al., 2011) using the Stellaris FISH Probe
325 libraries (Biosearch Technologies, Inc., Petaluma, CA), coupled to Cy5 (GE Healthcare,
326 PA25001), Alexa594 (Thermo Fisher, A37572) or TMR (Molecular Probes, C6123). (Table
327 of probes TBD). Wash buffer and hybridization buffer contained 30% Formamide. Nuclei
328 were counterstained with Dapi (Sigma-Aldrich, D9542) and cell borders, counterstained
329 with alexa fluor 488 conjugated phalloidin (Thermo Fisher, A12379). Slides were
330 mounted using ProLong Gold (Molecular Probes, P36934). Endocrine cells were detected
331 by insulin or somatostatin signal. Micrographs captured by Nikon inverted fluorescence
332 microscope eclipse ti2 series, equipped with a $100\times$ oil-immersion objective and ixon
333 ultra 888camera using NIS elements advanced research (Nikon). The image-plane pixel
334 dimension was $0.13\text{ }\mu\text{m}$. Quantification was performed on stacks of five optical sections,
335 at $0.3\text{ }\mu\text{m}$ intervals, in which not more than a single cell was observed.

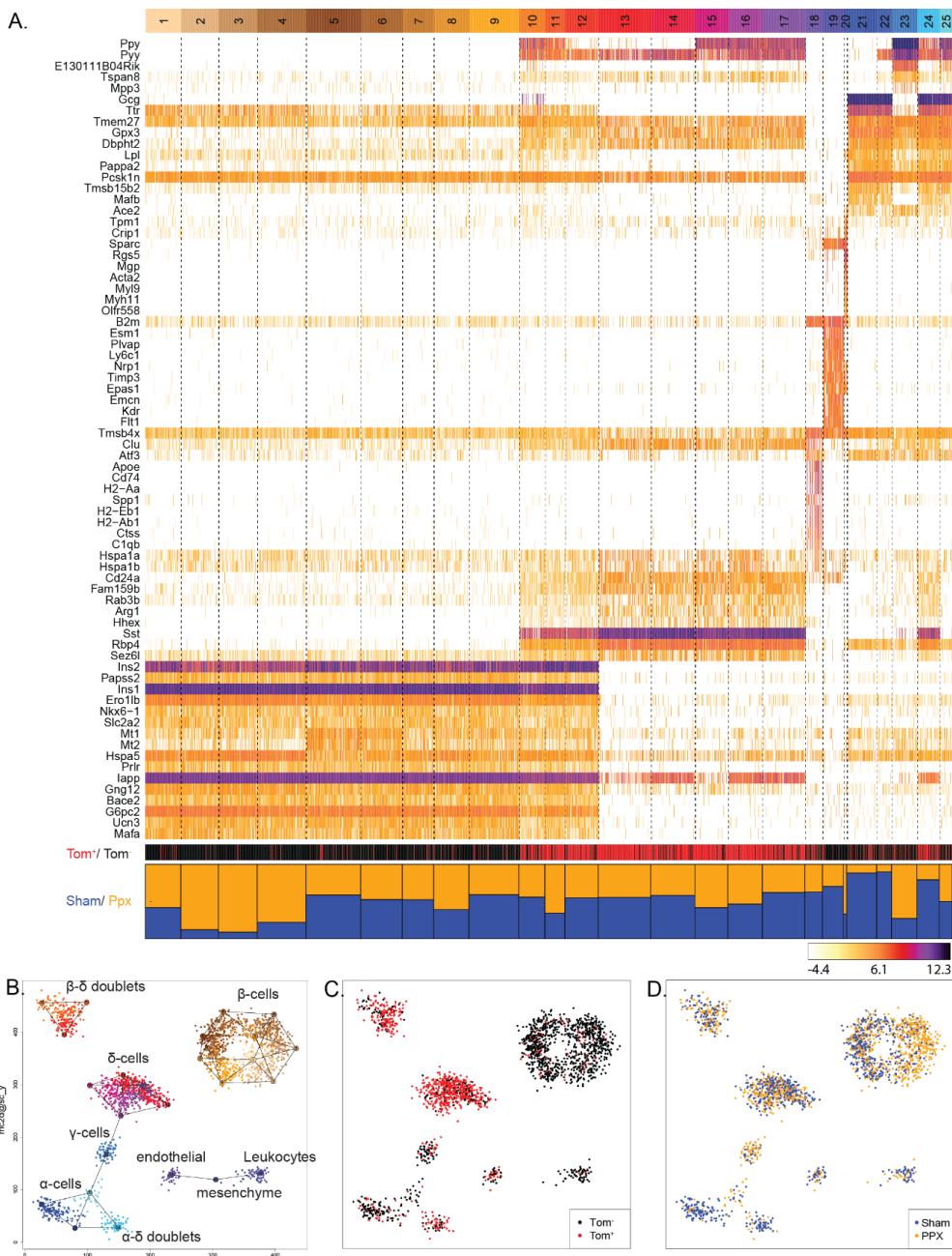
336 **Endocrine single-cell studies.** Isolated Islets of Langerhans were dispersed to single-cell
337 suspensions by incubation in a solution of 50% trypsin-EDTA (GIBCO) at 37°C for 3 min
338 followed by gentle mechanic agitation, and stopped by adding 10% RPMI 1640 / FBS
339 (vol/vol). For cell-sorting, islet cells were suspended in ice-cold sorting buffer (PBS
340 supplemented with 0.2 mM ethylenediaminetetraacetic acid, pH 8 and 0.5% BSA),
341 filtered through a 50- μm cell strainer and stained for viability by DAPI (1 $\mu\text{g}/\text{ml}$). Flow
342 cytometry analysis and sorting were performed on a BD FACSaria Fusion instrument (BD
343 Immunocytometry Systems), using a 100- μm nozzle, controlled by BD FACS Diva
344 software v8.0.1 (BD Biosciences). Further analysis was performed using FlowJo software
345 v10.2 (Tree Star). Either unstained, single stained tdTomato or DAPI only control cells
346 were used for configuration and determining gates boundaries. tdTomato $^+$ / DAPI $^-$

347 target cells were sorted into 384-well cell-capture plates containing 2 μ l lysis solution
348 and barcoded poly(T) reverse-transcription primers for single-cell RNA-seq. Empty wells
349 in the 384-well plates served a no-cell controls. Immediately after sorting, each plate was
350 spun down to ensure cell immersion into the lysis solution, and frozen at -80°C until
351 processed. Single-cell libraries cDNA were prepared reverse-transcribed from messenger
352 RNA of islet cells barcodes (Jaitin et al., 2014; Keren-Shaul et al., 2019). ScRNA-seq
353 libraries were pooled at equimolar concentrations and sequenced on an Illumina
354 NextSeq 500 at a median sequencing depth of 24,500 reads per cell. Sequences were
355 mapped to the mouse genome (mm10) using HISAT2 (Kim et al., 2019), demultiplexed
356 and filtered to exclude reads outside exons or with multiple mapping positions. Cell
357 libraries with 500 - 500,000 UMIs and <20% mitochondrial mRNAs were included in
358 downstream MetaCell analysis (Baran et al., 2019), which derives cohesive groups of
359 cellular profiles. To study physical-interaction between cells, we employed PIC-seq
360 (Giladi et al., 2020) on single-cell data.

361


Figures:

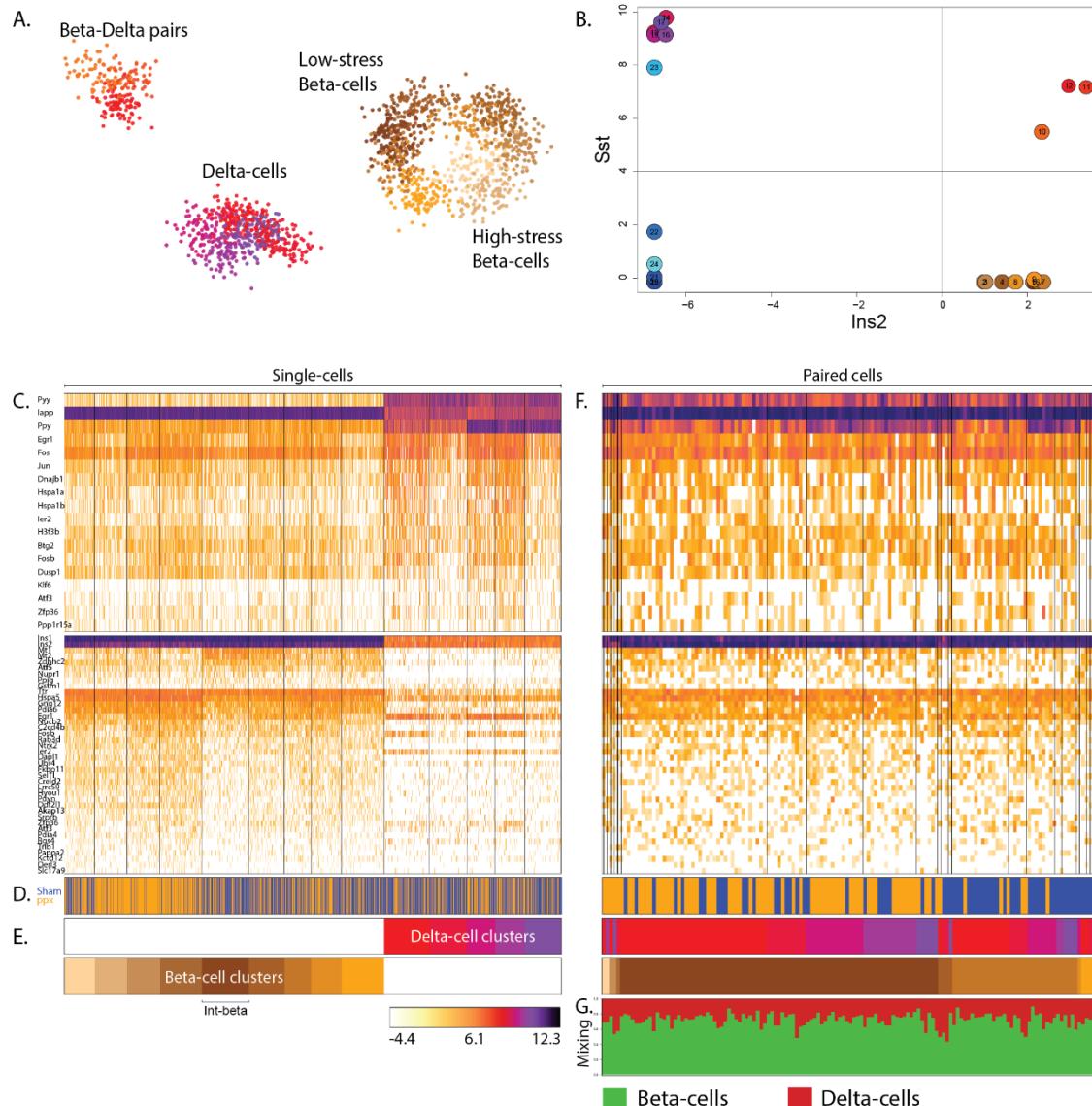
362


Figure1. Delta-cells are Sox9 descendants. Confocal micrographs demonstrating that **(A)** Sox9 lineage tracing marks duct and acinar cells and some cells at the periphery of Islets of Langerhans (Marked by yellow arrow). Islet border is marked by white dashed line. **(B)** Sst+ delta-cells are Sox-9 descendant cells. tdTomato signal (red, yellow arrow), insulin (white) Sst (green) and nuclei (blue) co-staining. **(C)**, compared to Insulin immunostaining and DAPI **(D)**. The Islet border is marked by a white dashed line. **(E)** Quantification of Sox-9 descendant fractional enrichment in endocrine populations: delta-cells (78%), beta-cells (9%) or other islet cells (13%). **(F)** 20% of Sst+ cells (54 of 295 cells) and ~0.4% of Ins+ cells (6 of 1595 cells) are Sox9- descendants (tdTomato+). **(G)** Heatmap of unsupervised clustering of single endocrine cell transcriptome from 590 dissociated cells from 6 pancreata of Sox9 lineage-tracer mice. Analysis reveals that Ppy, Pyy and Sst mRNAs are enriched in lineage traced tdTomato+ cells (bottom red / black bar). Ten key cell type clusters coded by a spectral bar. **(H)** Dimensional reduction of transcriptomic data, with cell-types spectral color, corresponding to Fig. 1G. **(I)** Color coded SOX9-descendants (red) or cells unlabeled with tdTomato during the course of the experiment, superimposed on the dimensional reduction map, highlights the enrichment of Sox9-descendant delta-cells.

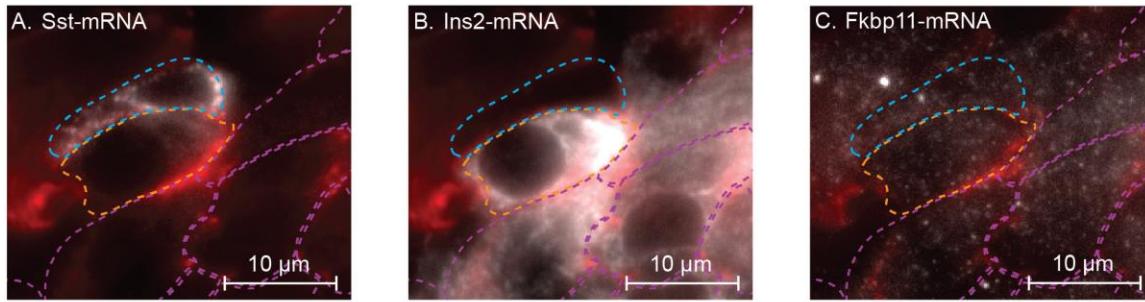
377

378

379 **Figure 2. Delta-cells expand following partial pancreatectomy. (A)** Diagram of experimental setup for
380 single cell RNA sequencing of endocrine cells from the regenerating pancreas. Confocal micrographs of
381 Sox9-descendant (tdTomato⁺) cells enrichment in islets of sham operated mice **(B)**, relative to after
382 pancreatectomy **(C)**. White line - islet border. **(D)** Quantification of tdTomato intensity in isolated islets,
383 normalized to islet area. tdTomato signal in sham: 0.88 ± 0.06 (pixels, fluorescence intensity mean value),
384 n=102 and Ppx: 1.14 ± 0.07 (pixels, fluorescence intensity mean value), n=165. Two-tailed T-test p = 0.0059.
385 Confocal micrographs demonstrating delta cell hyperplasia (red) in **(E)** sham-operated mice and **(F)**
386 regenerating islets, 4-weeks post pancreatectomy. **(G)** Bar graph quantification of Sst⁺ cells per islet in
387 sham or Ppx operated mice, following one- or four-weeks post operations (WPO). One-way ANOVA, p-
388 value = 0.0016. 355 Sst⁺ cells recorded in 51 islets from the 4 experimental groups.


390 **Figure 3. Single-cell map of the regenerating islet. (A)** Heatmap of clustered islet cells

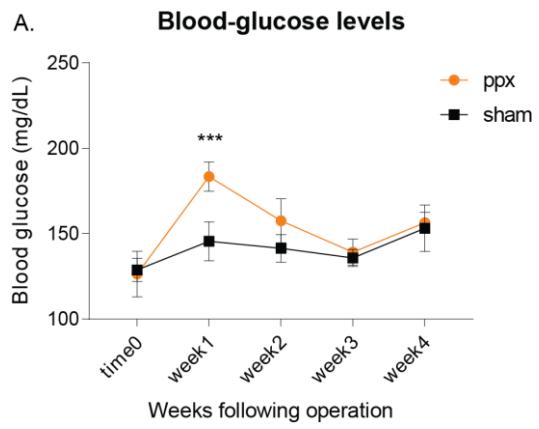
391 RNA-sequencing data from 2300 cells collected from Sox9 lineage-traced 6 pancreata, 4 weeks after partial
 392 pancreatectomy. Sham-operated mice and pancreata without lineage tracing included in the same
 393 analysis. Meta-cells (columns) and maximally enriched gene markers (rows) analyzed as in (Baran et al.,
 394 2019). Color-bars indicate cell partitioning (Sham (blue) or ppx (orange)) and the presence of tdTomato
 395 (Tom, red, marker of lineage traced Sox9 descendants). Two-dimensional projection of Meta-cells and
 396 inferred cell-types (B), lineage traced Sox9 descendants (tdTomato, red, C) and by source from sham
 397 operated or regenerating pancreata (D).


398

399 **Figure 4. Heterogeneity of beta-cells in the regenerating endocrine pancreas. (A)** Dimension reduction
400 map depicting beta cell heterogeneity after regeneration with enrichment of two subsets (a, orange; b, blue)
401 and a single subset that persists in basal conditions (c, red). Scatter plots of differential mRNA
402 expression between beta-cell subsets highlights enrichment of stress-related mRNAs (B, subset a vs. c) and
403 cell-division-cycle mRNAs (C, subset b vs. c) in regeneration. (D) Scatter-plot of *Ins2* mRNA (y axis) versus
404 *Ins1* mRNA (x axis) in beta-cells reveals heterogeneity. Log2 of read counts. Cells colored according to
405 clusters in Figure 4A. (E) Differential mRNA expression between beta-cells that express low and high levels
406 of *Ins2* mRNA. Unique molecular identifier (UMIs) normalized to total reads and to cell numbers.

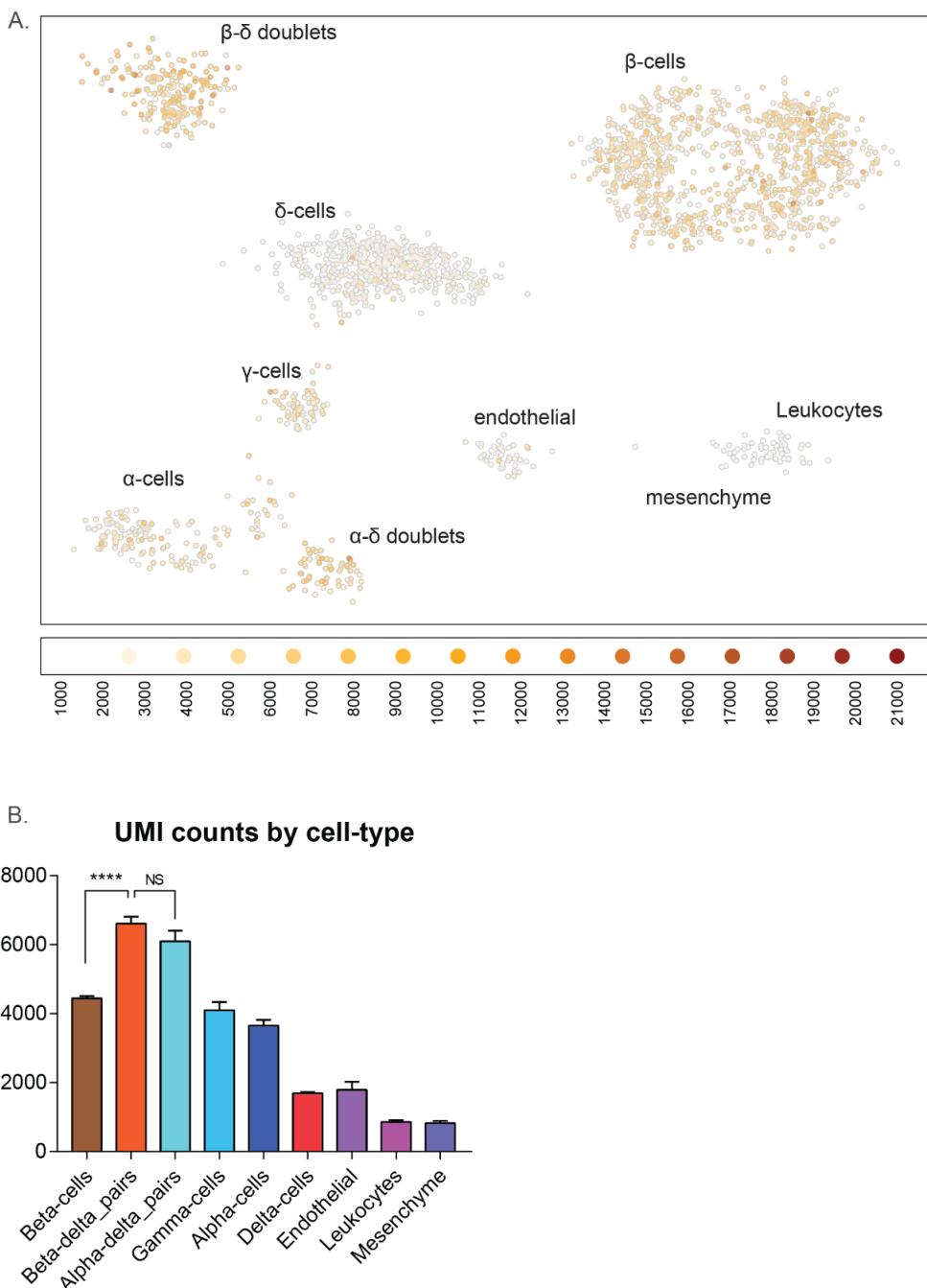
407

408 **Figure 5. Physically interacting beta-delta cell pairs. (A)** Two-dimensional projection of beta-cells, delta-
 409 cells, and beta-delta cell pairs. **(B)** Scatter-plot of 14 cellular subsets, demonstrating identification of pure
 410 beta or delta cell, by *Ins2*, or *Sst* and a joint signature with high expression of both hormones (subsets
 411 10,11,12). **(C)** Heatmap of clustered RNA-sequencing data, 4 weeks after partial pancreatectomy defines
 412 9 beta-cell subsets and 5 delta-cell subsets. Upper and lower panels indicate identity genes in delta- and
 413 beta-cell clusters, respectively. Data of 1500 cells collected from 6 pancreata analyzed by MetaCell (Barann
 414 et al., 2019). Sham-operated mice and mice lacking of lineage tracing included in the same analysis. Meta-
 415 cells (columns) and maximally enriched gene markers (rows). Color-bar indicators of **(D)** partitioning of
 416 cells derived from sham (blue) or ppx (orange) pancreata or **(E)** beta / delta meta-cells. Int-beta are
 417 interacting beta-cells. **(F)** Heatmap of clustered RNA-sequencing data, of 212 physically interacting beta-
 418 delta cell pairs, grouped by their contributing beta- and delta-cell identities. **(G)** Annotation and estimation
 419 of relative transcriptome contribution, derived from beta/delta cells (green/red).



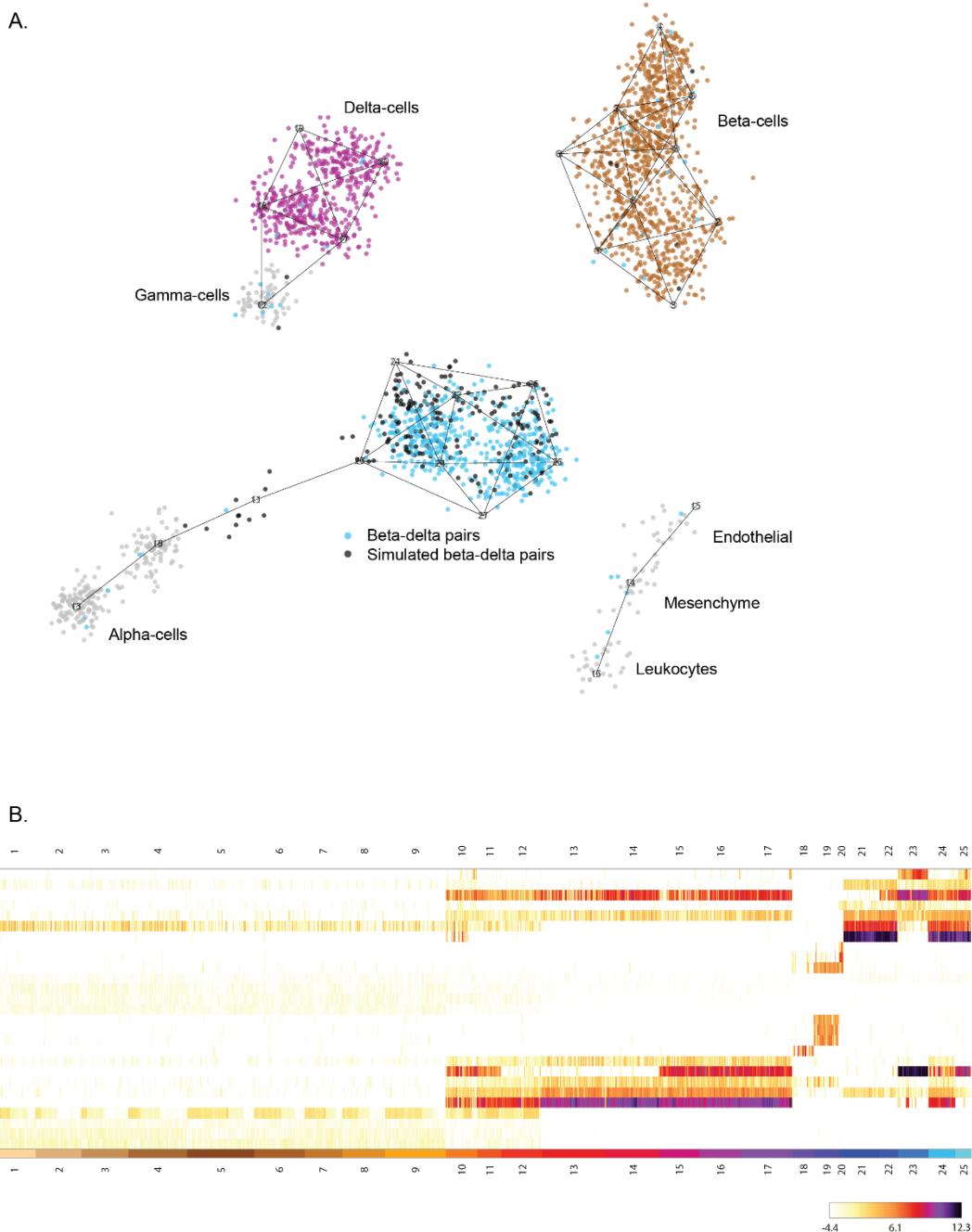
Standardized smFISH signal in beta-cell, physically interacting or distant from delta-cells

420


421 **Figure 6. Molecular signature of physically interacting beta-delta cell pairs.** smFISH study micrographs of
422 Sst (**A**), Ins2 (**B**) and Fkbp11 (**C**) mRNAs in islets of Langerhans. Beta-cells, juxtaposing delta-cells (orange),
423 distant from delta-cells (purple), and delta-cells (blue). Cell membrane demonstrated by Phalloidin staining
424 (red), smFISH signal (white). Density map of standardized Fkbp11 mRNA (x-axis) vs. Ins2 mRNA (y-axis) in
425 1361 cells, derived from 16 islets/ 6 pancreata. Beta-cells, juxtaposing delta-cells (orange, PIC) and beta-
426 cells distant from delta-cells (purple), in islets from sham-operated mice (sham, **D**) or following
427 pancreatectomy (Ppx, **E**). Data gained by quantification of smFISH signal in 1361 cells, derived from 16
428 islets/ 6 pancreata. P-values calculated by non-parametric Kolmogorov-Smirnov test (between distant vs.
429 PICs for Fkbp11 and Ins2 transcript levels.

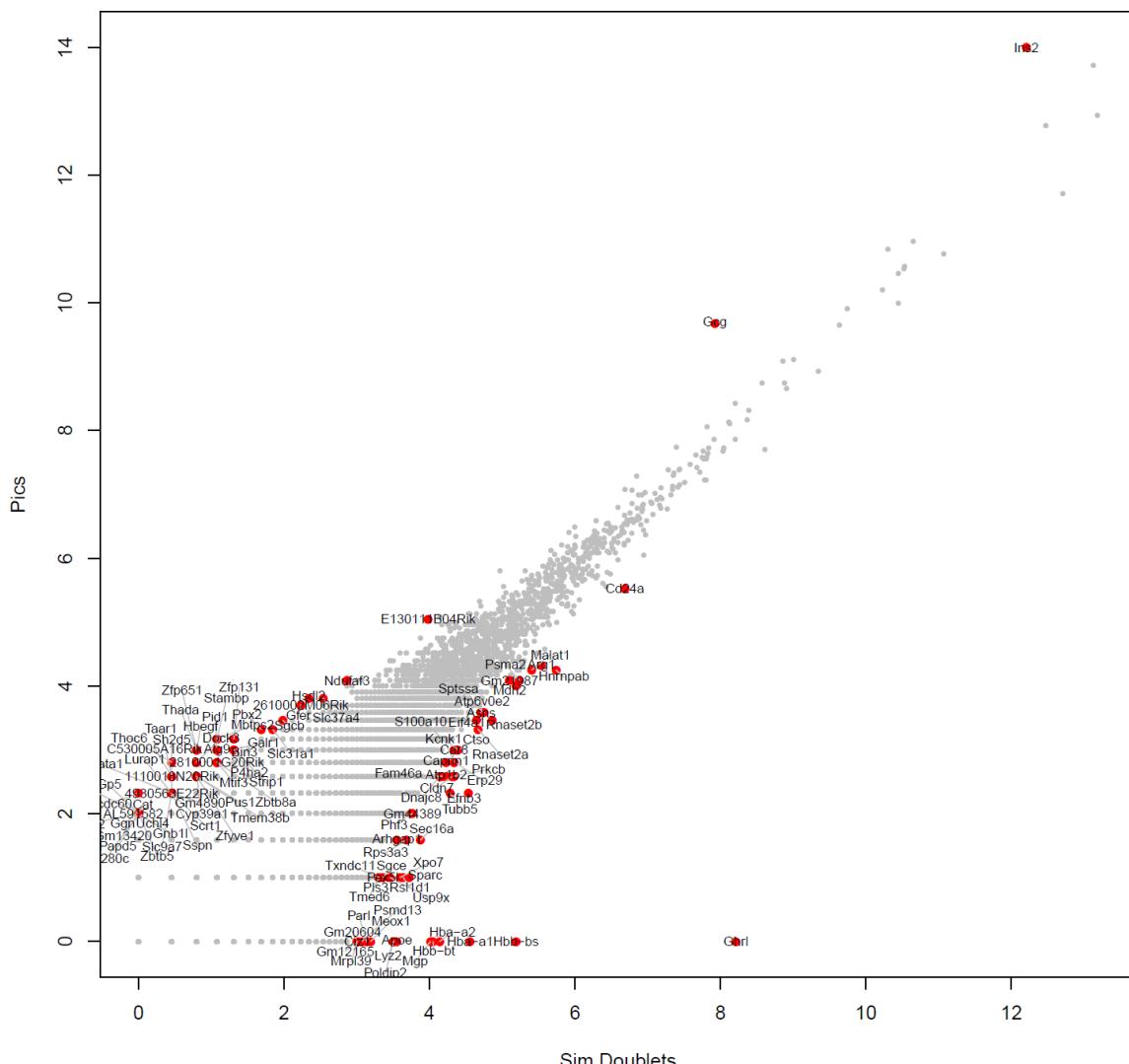
430 **Supplementary figures:**

431


432 **Supplementary Figure 1A.** Blood glucose levels in partially-pancreatectomized (orange) or sham-operated
433 mice (black), in the course of four weeks, following surgical procedure. 2way anova, Sidak's multiple
434 comparisons test, *** p-value = 0.0001. Data obtained from 5 mice from 2 experimental groups.

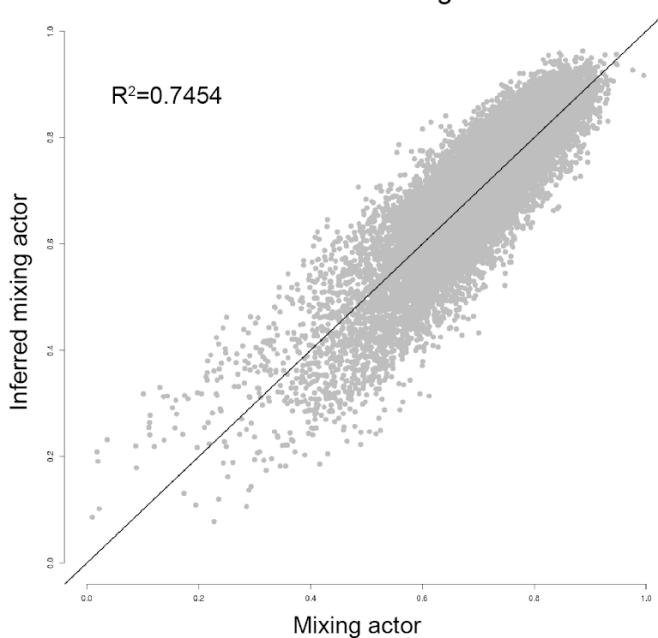
435

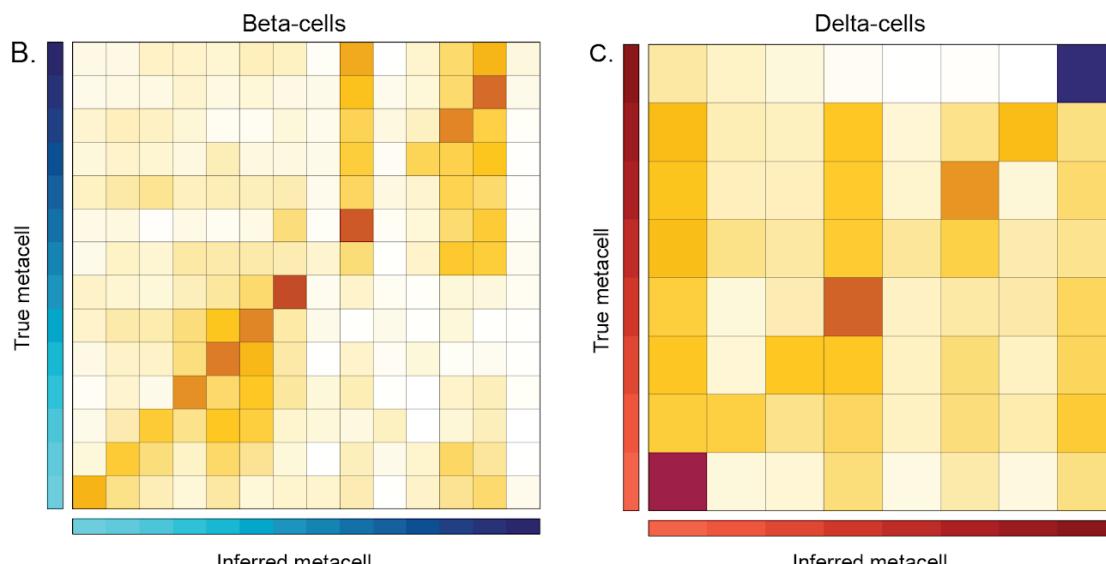
436 **Supplementary Figure 2 (A).** Dimensional reduction map from MetaCell analysis, illustrating UMI counts
437 of single cells across MetaCells. **(B)** Bar-plot of cell-type specific mean UMI-counts. Data of 2104 cells
438 following MetaCell analysis. Tukey's multiple comparisons test. **** p-value <0.0001. NS = non-significant.
439 Cell-types were inferred according to unique transcripts. 974 beta-cells, 207 beta-delta pairs, 58 alpha-
440 delta pairs, 66 gamma-cells, 151 alpha-cells, 539 delta-cells, 46 Endothelial cells, 54 Leukocytes, and 9
441 mesenchyme cells.


442

443

444 **Supplementary Figure 3 (A).** Dimensional reduction map from MetaCell analysis, illustrating simulated
445 doublets (black dots) from single beta- (brown dots) and delta-cells (purple dots). Blue dots represent
446 beta-delta cell pairs. **(B)** Heatmap of clustered RNA-seq data from Sox9 lineage-traced islet cells, 4
447 weeks following partial pancreatectomy. Data of 2300 cells collected from 6 pancreata analyzed by
448 MetaCell. Data includes 515 simulated beta-delta cells.


449


450

451 **Supplementary Figure 4.** Scatter plots of differential mRNA expression between simulated beta-delta pairs
452 (x axis) and observed beta-delta pairs (y-axis) highlights enrichment of genes supporting beta-cell function
453 and cellular adhesion molecules.

A. Performance of the linear regression model

Performance of cell-type metacell assignments of PIC-seq over 5,000 synthetic PICs

454

455 **Supplementary Figure 5 (A).** Performance of the linear regression model, used to estimate the mixing
456 factor of 20,000 synthetic PICs. **(B, C)** Performance of the **(B)** beta-cell and **(C)** Delta-cell MetaCell
457 assignments of PIC-seq over 5,000 synthetic PICs. Each row summarizes all synthetic PICs originating from
458 one MetaCell and their assignments to MetaCell by PIC-seq (columns. Data is row-normalized).

459

460

461 **Acknowledgments:**

462 E.H. is the Mondry Family Professorial Chair and head of the Nella and Leon Benoziyo
463 Center for Neurological Diseases at Weizmann Institute of Science. We thank members of
464 the Hornstein lab for helpful critiques. We would like to thank Dr. Tomer-Meir Salame,
465 Dana Hirsch and Dr. Liat Fellus-Alyagor, from the Life Sciences Core Facilities, Weizmann
466 Institute of Science, for technical support. The work was funded by European Research
467 Council under the European Union's Seventh Framework Programme (FP7/2007-
468 2013)/ERC grant agreement 617351 and the Israel Science Foundation (135/16); Research
469 in the Hornstein lab is further supported by Radala Foundation; Minerva Foundation with
470 funding from the Federal German Ministry for Education and Research, ISF Legacy grant
471 828/17; Yeda-Sela, Yeda-CEO; Benoziyo Center Neurological Disease; Weizmann - Brazil
472 Center for Research on Neurodegeneration at The Weizmann Institute of Science, Vener
473 New Scientist Fund; Julius and Ray Charlestein Foundation; Fraida Foundation; Wolfson
474 Family Charitable Trust; Abney Foundation; Merck; Maria Halphen and the estates of
475 Fannie Sherr, Lola Asseof, Lilly Fulop, and E. and J. Moravitz and by Dr. Sydney Brenner
476 and friends.

477

478

479 **References:**

480 Ackermann Misfeldt, A., Costa, R.H., and Gannon, M. (2008). Beta-cell proliferation, but not
481 neogenesis, following 60% partial pancreatectomy is impaired in the absence of FoxM1.
482 *Diabetes* 57, 3069-3077.

483 Alan, L., Olejar, T., Cahova, M., Zelenka, J., Berkova, Z., Smetakova, M., Saudek, F., Matej, R., and
484 Jezek, P. (2015). Delta Cell Hyperplasia in Adult Goto-Kakizaki (GK/MolTac) Diabetic Rats. *J
485 Diabetes Res* 2015, 385395.

486 Alberti, K.G., Christensen, N.J., Christensen, S.E., Hansen, A.P., Iversen, J., Lundbaek, K., Seyer-
487 Hansen, K., and Orskov, H. (1973). Inhibition of insulin secretion by somatostatin. *Lancet* 2,
488 1299-1301.

489 Arrojo, E.D.R., Jacob, S., Garcia-Prieto, C.F., Zheng, X., Fukuda, M., Nhu, H.T.T., Stelmashenko, O.,
490 Pecanha, F.L.M., Rodriguez-Diaz, R., Bushong, E., *et al.* (2019). Structural basis for delta cell
491 paracrine regulation in pancreatic islets. *Nat Commun* 10, 3700.

492 Baran, Y., Bercovich, A., Sebe-Pedros, A., Lubling, Y., Giladi, A., Chomsky, E., Meir, Z., Hoichman,
493 M., Lifshitz, A., and Tanay, A. (2019). MetaCell: analysis of single-cell RNA-seq data using K-nn
494 graph partitions. *Genome Biol* 20, 206.

495 Baron, M., Veres, A., Wolock, S.L., Faust, A.L., Gaujoux, R., Vetere, A., Ryu, J.H., Wagner, B.K.,
496 Shen-Orr, S.S., Klein, A.M., *et al.* (2016). A Single-Cell Transcriptomic Map of the Human and
497 Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. *Cell Syst* 3, 346-360 e344.

498 Bonner-Weir, S., Baxter, L.A., Schupp, G.T., and Smith, F.E. (1993). A second pathway for
499 regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic
500 development. *Diabetes* 42, 1715-1720.

501 Caspi, E., and Rosin-Arbesfeld, R. (2008). A Novel Functional Screen in Human Cells Identifies
502 MOCA as a Negative Regulator of Wnt Signaling. *Molecular Biology of the Cell* 19, 4660-4674.

503 Chen, Q., Peto, C.A., Shelton, G.D., Mizisin, A., Sawchenko, P.E., and Schubert, D. (2009). Loss of
504 Modifier of Cell Adhesion Reveals a Pathway Leading to Axonal Degeneration. *Journal of
505 Neuroscience* 29, 118-130.

506 Chera, S., Baronnier, D., Ghila, L., Cigliola, V., Jensen, J.N., Gu, G., Furuyama, K., Thorel, F.,
507 Gribble, F.M., Reimann, F., *et al.* (2014). Diabetes recovery by age-dependent conversion of
508 pancreatic delta-cells into insulin producers. *Nature* 514, 503-507.

509 Dor, Y., Brown, J., Martinez, O.I., and Melton, D.A. (2004). Adult pancreatic beta-cells are formed
510 by self-duplication rather than stem-cell differentiation. *Nature* 429, 41-46.

511 Fagan, S.P., Azizzadeh, A., Moldovan, S., Ray, M.K., Adrian, T.E., Ding, X., Coy, D.H., and
512 Brunicardi, F.C. (1998). Insulin secretion is inhibited by subtype five somatostatin receptor in the
513 mouse. *Surgery* 124, 254-258; discussion 258-259.

514 Farack, L., Egozi, A., and Itzkovitz, S. (2018). Single molecule approaches for studying gene
515 regulation in metabolic tissues. *Diabetes Obes Metab* 20 Suppl 2, 145-156.

516 Farack, L., and Itzkovitz, S. (2020). Protocol for Single-Molecule Fluorescence In Situ
517 Hybridization for Intact Pancreatic Tissue. *STAR Protoc* 1, 100007.

518 Ferguson, L.A., Docherty, H.M., Mackenzie, A.E., and Docherty, K. (2009). An engineered zinc
519 finger protein reveals a role for the insulin VNTR in the regulation of the insulin and
520 adjacent IGF2genes. *FEBS Letters* 583, 3181-3186.

521 Fernandes, A., King, L.C., Guz, Y., Stein, R., Wright, C.V., and Teitelman, G. (1997). Differentiation
522 of new insulin-producing cells is induced by injury in adult pancreatic islets. *Endocrinology* 138,
523 1750-1762.

524 Fonseca, S.G., Gromada, J., and Urano, F. (2011). Endoplasmic reticulum stress and pancreatic
525 beta-cell death. *Trends Endocrinol Metab* 22, 266-274.

526 Giladi, A., Cohen, M., Medaglia, C., Baran, Y., Li, B., Zada, M., Bost, P., Blecher-Gonen, R.,
527 Salame, T.M., Mayer, J.U., *et al.* (2020). Dissecting cellular crosstalk by sequencing physically
528 interacting cells. *Nat Biotechnol* 38, 629-637.

529 Itzkovitz, S., Lyubimova, A., Blat, I.C., Maynard, M., van Es, J., Lees, J., Jacks, T., Clevers, H., and
530 van Oudenaarden, A. (2011). Single-molecule transcript counting of stem-cell markers in the
531 mouse intestine. *Nat Cell Biol* 14, 106-114.

532 Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., Mildner, A., Cohen,
533 N., Jung, S., Tanay, A., *et al.* (2014). Massively parallel single-cell RNA-seq for marker-free
534 decomposition of tissues into cell types. *Science* 343, 776-779.

535 Jonas, J.C., Laybutt, D.R., Steil, G.M., Trivedi, N., Pertusa, J.G., Van de Castele, M., Weir, G.C.,
536 and Henquin, J.C. (2001). High glucose stimulates early response gene c-Myc expression in rat
537 pancreatic beta cells. *J Biol Chem* 276, 35375-35381.

538 Kashiwa, A., Yoshida, H., Lee, S., Paladino, T., Liu, Y., Chen, Q., Dargusch, R., Schubert, D., and
539 Kimura, H. (2001). Isolation and Characterization of Novel Presenilin Binding Protein. *Journal of*
540 *Neurochemistry* 75, 109-116.

541 Keren-Shaul, H., Kenigsberg, E., Jaitin, D.A., David, E., Paul, F., Tanay, A., and Amit, I. (2019).
542 MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-
543 cell RNA sequencing. *Nat Protoc* 14, 1841-1862.

544 Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph-based genome
545 alignment and genotyping with HISAT2 and HISAT-genotype. *Nat Biotechnol* 37, 907-915.

546 Kopp, J.L., von Figura, G., Mayes, E., Liu, F.F., Dubois, C.L., Morris, J.P.t., Pan, F.C., Akiyama, H.,
547 Wright, C.V., Jensen, K., *et al.* (2012). Identification of Sox9-dependent acinar-to-ductal
548 reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma.
549 *Cancer Cell* 22, 737-750.

550 Laybutt, D.R., Weir, G.C., Kaneto, H., Lebet, J., Palmiter, R.D., Sharma, A., and Bonner-Weir, S.
551 (2002). Overexpression of c-Myc in beta-cells of transgenic mice causes proliferation and
552 apoptosis, downregulation of insulin gene expression, and diabetes. *Diabetes* 51, 1793-1804.

553 Lee, C.S., De Leon, D.D., Kaestner, K.H., and Stoffers, D.A. (2006). Regeneration of pancreatic
554 islets after partial pancreatectomy in mice does not involve the reactivation of neurogenin-3.
555 *Diabetes* 55, 269-272.

556 Leiter, E.H., Gapp, D.A., Eppig, J.J., and Coleman, D.L. (1979). Ultrastructural and morphometric
557 studies of delta cells in pancreatic islets from C57BL/Ks diabetes mice. *Diabetologia* 17, 297-309.

558 Ludvigsen, E., Olsson, R., Stridsberg, M., Janson, E.T., and Sandler, S. (2004). Expression and
559 distribution of somatostatin receptor subtypes in the pancreatic islets of mice and rats. *J*
560 *Histochem Cytochem* 52, 391-400.

561 Madisen, L., Zwingman, T.A., Sunkin, S.M., Oh, S.W., Zariwala, H.A., Gu, H., Ng, L.L., Palmiter,
562 R.D., Hawrylycz, M.J., Jones, A.R., *et al.* (2010). A robust and high-throughput Cre reporting and
563 characterization system for the whole mouse brain. *Nat Neurosci* 13, 133-140.

564 Menge, B.A., Tannapfel, A., Belyaev, O., Drescher, R., Muller, C., Uhl, W., Schmidt, W.E., and
565 Meier, J.J. (2008). Partial pancreatectomy in adult humans does not provoke beta-cell
566 regeneration. *Diabetes* 57, 142-149.

567 Muraro, M.J., Dharmadhikari, G., Grun, D., Groen, N., Dielen, T., Jansen, E., van Gurp, L., Engelse,
568 M.A., Carlotti, F., de Koning, E.J., *et al.* (2016). A Single-Cell Transcriptome Atlas of the Human
569 Pancreas. *Cell Syst* 3, 385-394 e383.

570 Peshavaria, M., Larmie, B.L., Lausier, J., Satish, B., Habibovic, A., Roskens, V., Larock, K., Everill,
571 B., Leahy, J.L., and Jetton, T.L. (2006). Regulation of pancreatic beta-cell regeneration in the
572 normoglycemic 60% partial-pancreatectomy mouse. *Diabetes* 55, 3289-3298.

573 Rankin, M.M., and Kushner, J.A. (2009). Adaptive beta-cell proliferation is severely restricted
574 with advanced age. *Diabetes* **58**, 1365-1372.

575 Rorsman, P., and Huisings, M.O. (2018). The somatostatin-secreting pancreatic delta-cell in
576 health and disease. *Nat Rev Endocrinol* **14**, 404-414.

577 Segerstolpe, A., Palasantza, A., Eliasson, P., Andersson, E.M., Andreasson, A.C., Sun, X., Picelli, S.,
578 Sabirsh, A., Clausen, M., Bjursell, M.K., *et al.* (2016). Single-Cell Transcriptome Profiling of
579 Human Pancreatic Islets in Health and Type 2 Diabetes. *Cell Metab* **24**, 593-607.

580 Seymour, P.A. (2014). Sox9: a master regulator of the pancreatic program. *Rev Diabet Stud* **11**,
581 51-83.

582 Seymour, P.A., Freude, K.K., Tran, M.N., Mayes, E.E., Jensen, J., Kist, R., Scherer, G., and Sander,
583 M. (2007). SOX9 is required for maintenance of the pancreatic progenitor cell pool. *Proc Natl
584 Acad Sci U S A* **104**, 1865-1870.

585 Soeda, T., Deng, J.M., de Crombrugge, B., Behringer, R.R., Nakamura, T., and Akiyama, H.
586 (2010). Sox9-expressing precursors are the cellular origin of the cruciate ligament of the knee
587 joint and the limb tendons. *Genesis* **48**, 635-644.

588 Strowski, M.Z., Parmar, R.M., Blake, A.D., and Schaeffer, J.M. (2000). Somatostatin inhibits
589 insulin and glucagon secretion via two receptors subtypes: an in vitro study of pancreatic islets
590 from somatostatin receptor 2 knockout mice. *Endocrinology* **141**, 111-117.

591 Szot, G.L., Koudria, P., and Bluestone, J.A. (2007). Murine pancreatic islet isolation. *J Vis Exp*,
592 255.

593 Tatsuoka, H., Sakamoto, S., Yabe, D., Kabai, R., Kato, U., Okumura, T., Botagarova, A., Tokumoto,
594 S., Usui, R., Ogura, M., *et al.* (2020). Single-Cell Transcriptome Analysis Dissects the Replicating
595 Process of Pancreatic Beta Cells in Partial Pancreatectomy Model. *iScience* **23**, 101774.

596 Teta, M., Rankin, M.M., Long, S.Y., Stein, G.M., and Kushner, J.A. (2007). Growth and
597 regeneration of adult beta cells does not involve specialized progenitors. *Dev Cell* **12**, 817-826.

598 Togashi, Y., Shirakawa, J., Orime, K., Kaji, M., Sakamoto, E., Tajima, K., Inoue, H., Nakamura, A.,
599 Tochino, Y., Goshima, Y., *et al.* (2014). beta-Cell proliferation after a partial pancreatectomy is
600 independent of IRS-2 in mice. *Endocrinology* **155**, 1643-1652.

601 Tritschler, S., Theis, F.J., Lickert, H., and Bottcher, A. (2017). Systematic single-cell analysis
602 provides new insights into heterogeneity and plasticity of the pancreas. *Mol Metab* **6**, 974-990.

603 Wang, Y.J., and Kaestner, K.H. (2019). Single-Cell RNA-Seq of the Pancreatic Islets--a Promise Not
604 yet Fulfilled? *Cell Metab* **29**, 539-544.

605 Wang, Y.J., Schug, J., Won, K.J., Liu, C., Naji, A., Avrahami, D., Golson, M.L., and Kaestner, K.H.
606 (2016). Single-Cell Transcriptomics of the Human Endocrine Pancreas. *Diabetes* **65**, 3028-3038.

607 Xin, Y., Kim, J., Ni, M., Wei, Y., Okamoto, H., Lee, J., Adler, C., Cavino, K., Murphy, A.J.,
608 Yancopoulos, G.D., *et al.* (2016). Use of the Fluidigm C1 platform for RNA sequencing of single
609 mouse pancreatic islet cells. *Proc Natl Acad Sci U S A* **113**, 3293-3298.

610 Xu, X., D'Hoker, J., Stange, G., Bonne, S., De Leu, N., Xiao, X., Van de Casteele, M., Mellitzer, G.,
611 Ling, Z., Pipeleers, D., *et al.* (2008). Beta cells can be generated from endogenous progenitors in
612 injured adult mouse pancreas. *Cell* **132**, 197-207.

613 Zhou, Q., and Melton, D.A. (2018). Pancreas regeneration. *Nature* **557**, 351-358.