

1 **Rare genera differentiate urban green space soil bacterial communities in three cities**
2 **across the world**

3 Jacob G. Mills¹, Caitlin A. Selway¹, Laura S. Weyrich^{1,2}, Chris Skelly^{3,4}, Philip
4 Weinstein^{1,5,6}, Torsten Thomas⁷, Jennifer M. Young^{1,8}, Emma Marczylo⁹, Sudesh Yadav¹⁰,
5 Vijay Yadav^{10,D}, Andrew J. Lowe^{1,5}, Martin F. Breed^{1,5,8}

6 ¹ School of Biological Sciences, The University of Adelaide, Adelaide, Australia

7 ² Department of Anthropology and Huck Institutes of the Life Sciences, Pennsylvania State
8 University, USA

9 ³ Healthy Urban Microbiome Initiative

10 ⁴ Research & Intelligence, Public Health Dorset, Dorset County Council, UK

11 ⁵ Environment Institute, The University of Adelaide, Adelaide, Australia

12 ⁶ School of Public Health, The University of Adelaide, Adelaide, Australia

13 ⁷ Centre for Marine Science and Innovation, School of Biological, Environmental and Earth
14 Sciences, University of New South Wales, Sydney, Australia

15 ⁸ College of Science and Engineering, Flinders University, Bedford Park, South Australia

16 ⁹ Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards,
17 Public Health England, Chilton, Oxfordshire, UK.

18 ¹⁰ School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India

19 ^D Deceased

20 *Corresponding author:* Jacob G. Mills jacob.mills@adelaide.edu.au

21 *Keywords:* microbial conservation, urban green space, vegetation complexity, soil bacteria,
22 urban design

23 *Data access:* Raw sequence reads are available on [QIITA](#) (Gonzalez et al. 2018) with the

24 following details: Playford, AUS: Study ID 13064, EBI accession [ERP124074](#)

25 (<https://www.ebi.ac.uk/ena/browser/view/PRJEB40432>); Bournemouth, UK and Haikou

26 CHN: Study ID 13559, EBI accession [ERP126847](#)

27 (<https://www.ebi.ac.uk/ena/browser/view/PRJEB42921>). Sample metadata, ASV, reference
28 sequence and taxonomy tables and scripts used for analysis are available at

29 [https://figshare.com/articles/dataset/Rare genera differentiate urban green space soil bacterial](https://figshare.com/articles/dataset/Rare genera differentiate urban green space soil bacterial communities in three cities across the world/13900901)
30 [communities in three cities across the world/13900901](https://figshare.com/articles/dataset/Rare genera differentiate urban green space soil bacterial communities in three cities across the world/13900901).

31 Abstract

32 Vegetation complexity is potentially important for urban green space designs aimed at
33 fostering microbial biodiversity to benefit human health. Exposure to urban microbial
34 biodiversity may influence human health outcomes via immune training and regulation. In
35 this context, improving human exposure to microbiota via biodiversity-centric urban green
36 space designs is an underused opportunity. There is currently little knowledge on the
37 association between vegetation complexity (i.e., diversity and structure) and soil microbiota
38 of urban green spaces. Here, we investigated the association between vegetation complexity
39 and soil bacteria in urban green spaces in Bournemouth, UK; Haikou, China; and the City of
40 Playford, Australia by sequencing the 16S rRNA V4 gene region of soil samples and
41 assessing bacterial diversity. We characterized these green spaces as having ‘low’ or ‘high’
42 vegetation complexity and explored whether these two broad categories contained similar
43 bacterial community compositions and diversity around the world. Within cities, we observed
44 significantly different alpha and beta diversities between vegetation complexities; however,
45 these results varied between cities. Rare genera (< 1 % relative abundance individually, on
46 average 35 % relative abundance when pooled) were most likely to be significantly different
47 in sequence abundance between vegetation complexities and therefore explained much of the
48 differences in microbial communities observed. Overall, general associations exist between
49 soil bacterial communities and vegetation complexity, although these are not consistent
50 between cities. Therefore, more in-depth work is required to be done locally to derive
51 practical actions to assist the conservation and restoration of microbial communities in urban
52 areas.

53 Introduction

54 Microorganisms are important to every major biogeochemical process on Earth. They fix
55 nitrogen, draw carbon-dioxide down from the atmosphere, weather rocks, decompose organic
56 material, and, among many other things, form the base of the food web (Cockell & Jones
57 2009; Rousk & Bengtson 2014). Furthermore, microorganisms form symbiotic relationships
58 with many plants and animals where they often have important roles in regulating host health
59 (Rook et al. 2003; Rosado et al. 2018; Carthey et al. 2020). However, these ecosystem
60 functions and services are being degraded by anthropogenic global change leading to climate,
61 biodiversity and health crises. Urbanization in particular is linked to a public health crisis of
62 rapidly rising non-communicable disease rates that are linked to losses of human exposure to
63 microbial biodiversity (Rook et al. 2003; von Hertzen et al. 2011). Indeed, there have been
64 repeated calls to conserve and restore microbial biodiversity (Blanco & Lal 2008; Bello et al.
65 2018; Mills et al. 2019; Carthey et al. 2020) due to the impact of human activities on
66 ecosystem and human health (von Hertzen et al. 2011; Zuo et al. 2018).

67 One potential area where microbial communities could be conserved and restored is
68 urban green spaces, and these areas are already used to help mitigate many issues that
69 urbanization has on public health in general (Kabisch et al. 2017; Mills et al. 2019). Certain
70 urban green space designs can reduce air pollution (Ferkol & Schraufnagel 2014; Xing &
71 Brimblecombe 2020) and heat island effects (Aflaki et al. 2017), while potentially restoring
72 microbial biodiversity to benefit ecosystem services (Hoch et al. 2019; Joyner et al. 2019).
73 Indeed, restoring the urban microbiota by planting native vegetation could improve the
74 exposure to microbes that humans need for immune training and regulation, thus contributing
75 to reducing the immune disease prevalence found in cities (Rook et al. 2003; von Hertzen et
76 al. 2011; Mills et al. 2017). Further, there is growing evidence that environmental microbiota
77 can transfer readily to humans through inoculated play-ground media (Hui et al. 2019) or by

78 simply using green spaces (Selway et al. 2020), and that vegetation type or diversity near the
79 home is associated with human microbial diversity (Pearson et al. 2020).

80 Community characteristics of vegetation, such as species richness and functional
81 diversity, are closely linked to microbial communities, including urban soils (Hui et al. 2017;
82 Laforest-Lapointe et al. 2017; Mills et al. 2020). Soil in revegetated urban areas have
83 microbial communities more representative of remnant areas compared to typical Victorian-
84 era green spaces, such as lawns (Baruch et al. 2020; Mills et al. 2020). These associations are
85 likely driven by plant-microbe-soil chemistry feedback loops (Berendsen et al. 2012; Fierer
86 2017). However, this evidence for the relationship between vegetation complexity of urban
87 green space and their associated soil microbiota remains limited. As such, here we build on
88 our earlier work in a single city (Mills et al. 2020) to focus on the association of vegetation
89 complexity and soil bacterial communities both within and between three cities across
90 different regions of the world.

91

92 Methods

93 *Study sites*

94 We focused our study on urban green spaces that represented ‘low’ or ‘high’ complexity
95 vegetation in the cities of Bournemouth, UK; Haikou, China; and the City of Playford
96 (hereafter known as Playford), Australia (Figure 1). Bournemouth has a ‘marine’ climate
97 with short dry summers and heavy precipitation during mild winters, Haikou has a ‘humid
98 subtropical’ climate, and Playford has a ‘Mediterranean’ climate. The green spaces were
99 categorized as ‘high’ (i.e., remnant woodlands, revegetated woodlands, or regenerated
100 woodlands) or ‘low’ (i.e., lawns, vacant lots, or parklands) complexity vegetation based on
101 the diversity and structure of their vegetation (Figure 1). These two categories were based on
102 our previous quantification of vegetation diversity (i.e., plant species richness) and structure

103 (i.e., layers of plant growth-forms creating 3D structure) in the urban green space sites of
104 Playford (quantified in Mills et al. 2020). In each city, we selected six sites of ‘low’ and six
105 sites of ‘high’ complexity vegetation (example photos in Figure 1) by using local knowledge
106 of existing urban green space vegetation types. Within each site, a 25 x 25 m quadrat in a
107 NSEW orientation was sampled, with geo-references and photos taken at the SW corner.

108

109 *Soil sampling*

110 Soils were sampled for DNA extraction according to the Biomes of Australian Soil
111 Environments (BASE) project protocol (Bissett et al. 2016) in September and October 2016.
112 In brief, 100-200 g of soil from nine points within the quadrat were randomly sampled,
113 pooled, and homogenized. From this pooled sample, 50 g were stored at -20°C until microbial
114 analysis. The Bournemouth and Haikou samples have not been analyzed previously. The
115 Playford samples are a subset of those reported in (Mills et al. 2020), including all samples
116 except those from Parkland sites.

117

118 *Microbial community analysis*

119 Soil DNA was extracted (one extraction from 0.2 g of each 50 g sample) using the DNeasy
120 Powerlyser soil kit (QIAGEN) in the country of sampling, as per the manufacturer’s
121 instructions. Extraction blank controls were not used; however, high biomass samples, such
122 as soil, are less susceptible to contamination compared to those of low biomass and are
123 therefore unlikely to produce results heavily swayed by contaminants (Velásquez-Mejía et al.
124 2018; Eisenhofer et al. 2019). Extracted DNA was then shipped to the University of Adelaide
125 for downstream analysis as per Selway et al. (2020). Briefly, the bacterial 16S rRNA V4 gene
126 region was amplified using primers 515F and barcoded 806R (Caporaso et al. 2011;
127 Caporaso et al. 2012), and PCR components and cycling conditions were followed as

128 previously described (Selway et al. (2020). PCR products were pooled into groups of approx.
129 30 samples at equimolar concentrations. Pools were cleaned (AxyPrep Mag Clean-up kit;
130 Axygen Scientific), quantified and pooled together into a final sequencing pool before
131 sequencing the DNA at the Australian Genome Research Facility using a 2 x 150 bp kit on an
132 Illumina MiSeq.

133 In QIIME2 (v 2018.8), DNA sequences were merged, trimmed to 150 bp, and quality
134 filtered (>Q4), and resulting sequences were denoised with deblur (Amir et al. 2017) to create
135 amplicon sequence variants (ASVs), as previously described (Selway et al. (2020).

136 Representative ASVs were assigned to the SILVA database (version 132). To remove
137 laboratory contaminant sequences, ASVs were identified from PCR negative controls using
138 the prevalence method within the *decontam* package (v 1.8.0; Davis et al. 2018) in R (v 4.0.0;
139 RCoreTeam 2019) and with a threshold probability of 0.5. Any identified contaminants were
140 removed from all biological samples before downstream analysis. Additionally, ASVs
141 assigned to mitochondria, chloroplast, Archaea, or ‘unknown’ kingdom were also removed,
142 and ASVs with fewer than ten reads across all samples in the dataset were excluded. Post-
143 filtering, there were at least five ‘low’ and five ‘high’ complexity vegetation replicates for
144 each city (see sample metadata via links in ‘*Data access*’).

145

146 *Statistical analyses*

147 All statistics were done in R (v 4.0.0; RCoreTeam 2019). ASVs were agglomerated to genus
148 level for statistical analysis using the ‘tax_grom’ function of the *phyloseq* package (v 1.32.1;
149 McMurdie & Holmes 2013). During the genus agglomeration, all unresolved taxa at genus
150 level, i.e. ‘NA’ or ‘blank’, were removed.

151 Before alpha diversity was calculated, the agglomerated genus level data was rarefied
152 to 2,396 reads with the ‘rarefy_even_depth’ function of the *phyloseq* package. Alpha

153 diversity was calculated as observed genus richness and Shannon's diversity with the
154 'estimate_richness' function in *phyloseq* and Faith's phylogenetic diversity was calculated
155 with the 'pd' function of the *picante* package (v 1.8.1; Kembel et al. 2010). We used
156 generalized linear mixed models (GLMMs) to test for difference in alpha diversity by
157 crossing the fixed factors of 'city' and 'vegetation complexity' and nesting the random factor
158 of 'site' within 'city'. GLMMs were done with the 'glmer' function of the *lme4* package v
159 1.1-25 (v 1.1-25; Bates et al. 2007). Distributions for the GLMMs were Poisson for observed
160 genus richness (count data) and Gamma for Faith's phylogenetic diversity and Shannon's
161 diversity (positive, non-integer, non-parametric data). The Poisson GLMM was tested for
162 over-dispersion (result: ratio = 0.46). Main effects of the GLMMs were tested by Type II
163 Wald Chi² tests with the 'Anova' function of the *car* package (v 3.0-10; Fox et al. 2012).
164 Pairwise comparisons of 'city' and 'vegetation complexity' combinations were tested by z-
165 tests with Holm-Bonferroni P-adjustment with the 'glht' function of the *multcomp* package v
166 1.4-15 (v 1.4-15; Hothorn et al. 2014).

167 Ordinations of beta diversity were done with the 'ordinate' function in *phyloseq*.
168 Ordinations were based on unrarefied data in principal coordinates analysis (PCoA) with
169 Bray-Curtis and Jaccard distance matrices. We used PERMANOVA, with 999 iterations,
170 with the 'adonis' function of the *vegan* package (v 2.5-6; Oksanen et al. 2017) to test the
171 model of 'vegetation complexity' nested within 'city'. Pairwise comparisons between nested
172 vegetation complexities (e.g. Bournemouth Low vs. Bournemouth High) were tested by
173 PERMANOVA with 999 iterations with the 'pairwise.adonis2' function of the
174 *pairwise.adonis* package (v 0.0.1; Arbizu 2017).

175 We created a relative abundance stack plot by converting the rarefied genus
176 abundances to percentages. All genera with total rarefied sequences across all samples being
177 less than 1 % of total rarefied sequences were pooled into a single group named '< 1 %

178 abund.'. The less than 1 % cut-off was determined by a rank-abundance curve of percentage
179 abundance across all samples (Figure S1). We tested for differentially abundant bacterial
180 genera between 'low' and 'high' complexity vegetation sites within each city. Log-2 fold-
181 change measurement of bacterial genera was done using the 'DESeq' function of the *DESeq2*
182 package in *phyloseq* (v 1.28.1; Love et al. 2014). *DESeq2* does an internal normalization,
183 where the count of each genus within a sample is divided by the mean of that genus across
184 samples. Differentially abundant genera (alpha = 0.05) were plotted into heatmaps using the
185 'pheatmap' function of the *pheatmap* package (v 1.0.12; Kolde & Kolde 2015). The
186 differential abundance heatmap scale represents the mean abundance of each genus across
187 samples as 0 with ± 3 standard deviations. The differential abundance heatmap rows and
188 columns were clustered based on Manhattan distance to most efficiently arrange the grid. The
189 heatmap trees represent how closely related a row or column are, not taxa, based on the scale
190 in each cell. Unclassified genera were not included in the heatmap.

191

192 Results and Discussion

193 *Each city had distinct soil microbial communities*

194 We compared soil bacterial genera between cities and found that the communities were quite
195 distinct from each other, regardless of vegetation complexity, both in terms of alpha diversity
196 (observed genus richness, $\text{Chi}^2 = 28.67$, $\text{Pr}(>\text{Chi}^2) < 0.001$; Faith's phylogenetic diversity,
197 $\text{Chi}^2 = 21.02$, $\text{Pr}(>\text{Chi}^2) < 0.001$; Shannon's diversity, $\text{Chi}^2 = 21.80$, $\text{Pr}(>\text{Chi}^2) < 0.001$; Figure
198 2a) and beta diversity distances (Bray-Curtis, $F = 19.61$, $\text{Pr}(>F) = 0.001$; Jaccard, $F = 10.68$,
199 $\text{Pr}(>F) = 0.001$; Figure 2b). Further, beta diversity at the ASV-level had similar patterns to
200 the genus-level results; however, the data were over-dispersed (i.e., significantly more
201 variable than predicted for the model) and therefore not used further (Figure S2). These
202 differences between cities were expected given their differences in geography and climate,

203 where for example, temperature, aridity, and distance from the equator vary and each are
204 strong predictors of soil microbial diversity (Delgado-Baquerizo et al. 2018). Moreover,
205 strong biogeographic zoning and distance-decay relationships have previously been observed
206 for urban soil bacterial communities across ten cities within China (Yang et al. 2021).

207

208 *'Low' and 'high' complexity vegetation soils have similar diversity*

209 We next compared diversity of sites with 'low' versus 'high' vegetation complexity within all
210 three cities. In Bournemouth, 'high' complexity vegetation green spaces were significantly
211 more diverse than 'low' complexity spaces for their bacterial genera (observed genus
212 richness, $z = 3.17$, $P = 0.014$; Faith's PD of genera, $z = -2.93$, $P = 0.034$), (Table 1 & Figure
213 2a). In contrast, alpha diversity of bacterial genera in soil from Playford and Haikou for all
214 three measures were non-significantly different between the 'low' and 'high' complexity
215 vegetation (Table 1). However, there was a significant interaction between 'city' and
216 'vegetation complexity' for all three alpha diversity measures (Figure 2a). This interaction
217 was caused by the Playford soils being lower in diversity in the 'high' complexity vegetation
218 soils relative to the 'low' complexity soils, whereas diversity was higher in these 'high' sites
219 in Bournemouth and Haikou.

220 The difference in diversity between 'low' and 'high' complexity vegetation soils in
221 Playford compared to Bournemouth and Haikou may be due to Playford's relatively drier
222 climate and the tendencies of native vegetation in this part of Australia to prefer relatively
223 arid conditions. Such conditions are less conducive to supporting high microbial biodiversity
224 (Delgado-Baquerizo et al. 2018). In these drier environments, areas of lower vegetation
225 complexity, such as urban lawns, are often heavily watered and fertilized. This practice can
226 lead to higher nutrient loads relative to higher vegetation complexity native soils, potentially
227 increasing microbial diversity independent of vegetation complexity. However, we note that

228 our previous work with the Playford samples (Mills et al. 2020) indicated a consistent pattern
229 in alpha diversity as found here in Bournemouth and Haikou (i.e. more vegetation complexity
230 associated with greater bacterial alpha diversity). Although, our earlier study reported data
231 from the V1-3 region of the 16S rRNA gene, rather than the V4 region reported here. As
232 such, future work should further explore the effect of marker choice on vegetation-bacterial
233 diversity associations.

234

235 *Differences in bacterial composition between vegetation complexities vary between cities*
236 We next tested relationships between soil bacterial composition at the genus-level and the
237 vegetation complexity of urban green spaces. The composition of bacterial communities was
238 significantly different between ‘low’ and ‘high’ complexity vegetation in both Haikou (Bray-
239 Curtis, $F = 4.05$, $Pr(>F) < 0.05$; Jaccard, $F = 3.19$, $Pr(>F) < 0.01$) and Playford (Bray-Curtis,
240 $F = 4.42$, $Pr(>F) < 0.05$; Jaccard, $F = 3.22$, $Pr(>F) < 0.05$) (Table 2 & Figure 2b). However,
241 Bournemouth had no significant difference between the vegetation complexities for both
242 Bray-Curtis and Jaccard distances (Figure 2b).

243 Vegetation type (e.g., lawn, remnant woodland) is a known driver of microbial
244 diversity and composition in urban soil (Hui et al. 2017; Mills et al. 2020). However, there is
245 little consistency between soil microbial communities in what seem to be broadly similar
246 ecological settings, as in our study, due to a complexity of multiple driving factors. Such
247 factors include plant species turnover and soil properties that vary on broad spatial scales,
248 such as temperature (Thompson et al. 2017) and, at finer scales, pH and salinity (Fierer &
249 Jackson 2006). Certainly, pH and salinity have previously been found to strongly associate
250 with urban soil bacterial community composition (Joyner et al. 2019; Mills et al. 2020).
251 While we did not measure soil physicochemical properties here, they may, in some instances,

252 override any effect of the vegetation community on the soil community and potentially lead
253 to results as we saw in Bournemouth.

254

255 *Rare genera contribute to differences in community structure*

256 We performed differential abundance testing to investigate which genera may have been
257 driving the differences between the ‘low’ and ‘high’ complexity vegetation soils. Rare genera
258 (i.e., < 1 % relative abundance) dominated the significantly differentially abundant bacteria
259 between ‘low’ and ‘high’ complexity vegetation soils. For example, in Bournemouth,
260 *Bacillus* (characteristic of ‘high’ complexity vegetation soils) was the only genus out of seven
261 differentially abundant genera ($P < 0.05$, Figure 3) that was also dominant in relative
262 abundance (> 1 % relative abundance, Figure 2c) between the vegetation complexity levels –
263 the other six genera were less than 1 % in relative abundance. In Haikou, *Rubrobacter*
264 (characteristic of ‘low’ complexity vegetation soils) was the only genus out of four
265 differentially abundant genera to also be greater than 1 % in relative abundance ($P < 0.05$,
266 Figure 3), and in Playford, *Flavisolibacter* and *Gemmata* (both characteristic of ‘low’
267 complexity vegetation soils) were the only differentially abundant genera out of twenty-three
268 that were also dominant ($P < 0.05$, Figure 3). Overall, differential abundance tests showed
269 that there are soil bacteria characteristic of either ‘low’ or ‘high’ complexity vegetation
270 within each city and that rare taxa are important in defining these communities. This result is
271 consistent with other findings that rare bacteria biogeographically distinguish forensic soil
272 samples (Damaso et al. 2018; Habtom et al. 2019).

273 The rare genera (< 1 % relative abundance) that dominated the differential abundance
274 testing between the vegetation complexities ($P < 0.05$, Figure 3) were potentially functionally
275 important to these locations as has been found in greenhouse soils (Xue et al. 2020). For
276 example, *Luteibacter* was the only genus to significantly represent ‘high’ vegetation

277 complexity across all cities in this study and species of this genus are known to live both in
278 soil and on humans (Kämpfer et al. 2009; Akter & Huq 2018). The ‘high’ complexity
279 vegetation soils of Bournemouth had significantly more *Sinorhizobium* (nitrogen-fixers;
280 Mitsui et al. 2004) and *Kaistia* (methanotrophs; Im et al. 2004) of the order Rhizobiales
281 (Garrido-Oter et al. 2018) than ‘low’ complexity soils. However, most differentially abundant
282 genera in Bournemouth were higher in only one site relative to others; therefore, they are not
283 characteristic of either vegetation complexity studied here. In Haikou, *Haliangium* (producer
284 of fungicidal haliangicins; Fudou et al. 2001), *Rubrobacter*, and *Acetobacter* were
285 significantly more abundant in the ‘low’ than in the ‘high’ vegetation diversity soils, whereas
286 *Erwinia* (genus of many plant pathogen species; Barras et al. 1994; Vanneste 2000) was more
287 abundant in the ‘high’ vegetation diversity soils. In Playford, *Rhizobium* (nitrogen-fixers;
288 Garrido-Oter et al. 2018) were significantly more abundant in the ‘high’ complexity
289 vegetation.

290 The differential abundance findings that imply rare genera are driving the community
291 differences are further supported by the similarity between Bray-Curtis and Jaccard
292 ordinations (Figure 2b). Further, ordinations of only the rare genera (those < 1 % relative
293 abundance) were similar to ordinations using the whole community (Figure S3), therefore
294 implying that rare genera are driving these patterns; however, these data were over-dispersed.
295 Additionally, the rank-abundance curve showed there were 300 of 318 genera with less than
296 1 % relative abundance across all sites (Figure S1), and, when pooled, had an average relative
297 abundance of 35 % across all sites (Figure 2c). These findings indicate that rare genera may
298 be quite valuable to urban soils and that they shouldn’t be overlooked when planning soil
299 microbial conservation. To that end, rare microorganisms have been identified to play key
300 functional roles, from biogeochemical cycles to holobiont health (Jousset et al. 2017). Further

301 exploration of the functional contribution of rare bacteria in urban green spaces would
302 provide deeper understanding of their value in conservation and restoration efforts.

303

304 *Conclusions*

305 Our study suggests that a global comparison of cities in terms of vegetation factors driving
306 microbial diversity may be limited due to the overall strength of their differences driven by
307 geographic or climatic factors. However, investigating trends related to vegetation
308 complexity within cities may produce general recommendations about fostering microbial
309 biodiversity. Certainly, rare taxa should not be overlooked when considering the conservation
310 of microbial biodiversity. Urban green space design for conservation of microbial
311 biodiversity, biogeochemical cycling, public health outcomes and public usability will likely
312 require complementary proportions of both ‘low’ and ‘high’ complexity vegetation green
313 spaces. However, what those proportions are will need to be investigated on a city-by-city, or
314 region-by-region basis.

315 Restoration of biodiversity in urban green spaces has the potential to build native
316 microbial communities. Such endeavors will require local adaptive management within urban
317 green space landscapes that will allow practitioners to understand the knowledge gaps
318 pertaining to their city and properly investigate the outcomes of their efforts (Gellie et al.
319 2018). Local knowledge gaps may include: understanding functional microbial biodiversity;
320 examining how differently designed green spaces influence environmental and human
321 microbiota (e.g., ‘low’ and ‘high’ complexity, native and novel species mixtures); and
322 determining if the use of remnant inoculations accelerates the recovery of native microbial
323 phylogenetic and functional diversity. Further, there is currently a strong call to ‘decolonize’
324 public spaces in colonial and imperial countries (Parker 2018; Giblin et al. 2019). Therefore,
325 it would be interesting to track whether such cultural modifications to urban designs

326 influences environmental and human microbiota given that ‘low’ and ‘high’ complexity
327 green spaces are somewhat representative of these cultural differences. More work is needed
328 to describe the functional contributions of rare bacteria in urban soils and to determine the
329 best ways to conserve and restore microbial biodiversity to provide the breadth of ecosystem
330 services that they could provide to the urban landscape.

331 Author statements

332 *Author contributions*

333 JM, CAS, LW, PW, AL, MB: conceptualization. JM, CAS, CS, LW, JY, EM, SY, VY, MB:
334 investigation. JM, CAS: data curation. JM, CAS, LW, JY, TT: formal analysis. PW, MB:
335 funding acquisition. JM, CAS, LW, JY, TT, AL, MB: methodology. JM, CAS: software. JM,
336 CAS, LW, CS, PW, AL, MB: project administration. JM, LW, EM, CS, SY, VY, AL:
337 resources. LW, CS, TT, PW, AL, MB: supervision. All: validation. JM: visualization. JM:
338 writing – original draft. All: writing – review & editing.

339

340 *Conflict of interest*

341 The authors declare that there are no conflicts of interest.

342

343 *Funding information*

344 This research was funded by the [Environment Institute](#) (The University of Adelaide). PW,
345 AL, MB were all Environment Institute researchers during the period of this research. The
346 directors of the Environment Institute did not contribute to the study design, collection,
347 analysis and interpretation of data, writing of the manuscript, nor the decision to submit the
348 article for publication.

349

350 *Acknowledgments*

351 Michael Rowland (Bournemouth, Christchurch and Poole Council) and Soumya Prasad
352 (Jawaharlal Nehru University, New Delhi) for assistance in selecting sites in Bournemouth
353 and New Delhi (even though this dataset was not used), respectively. Jo Park, Ken Daniel
354 and the City of Playford for assistance with site selection and access. Qiyong Liu and Keke
355 Liu from the Chinese CDC, and Peng Bi (University of Adelaide) for coordinating and
356 providing samples from China.

357 **References**

358 Aflaki A, Mirnezhad M, Ghaffarianhoseini A, Ghaffarianhoseini A, Omrany H, Wang Z-H,
359 et al. (2017) Urban heat island mitigation strategies: A state-of-the-art review on
360 Kuala Lumpur, Singapore and Hong Kong. *Cities* 62:131-145.

361 Akter S , Huq MA (2018) *Luteibacter pinisoli* sp. nov., a casein degrading bacterium isolated
362 from rhizospheric soil of *Pinus koraiensis*. *Archives of Microbiology* 200:1017-1023.

363 Arbizu PM (2017) pairwiseAdonis: Pairwise Multilevel Comparison using Adonis. R
364 package version 0.0.1.

365 Barras F, van Gijsegem F , Chatterjee AK (1994) Extracellular enzymes and pathogenesis of
366 soft-rot *Erwinia*. *Annual Review of Phytopathology* 32:201-234.

367 Baruch Z, Liddicoat C, Laws M, Marker LK, Morelli H, Yan D, et al. (2020) Characterising
368 the soil fungal microbiome in metropolitan green spaces across a vegetation
369 biodiversity gradient. *Fungal Ecology* 47:100939.

370 Bates D, Sarkar D, Bates MD , Matrix L (2007) The lme4 package. R package version 2:74.

371 Bello MGD, Knight R, Gilbert JA , Blaser MJ (2018) Preserving microbial diversity. *Science*
372 362:33-34.

373 Berendsen RL, Pieterse CM , Bakker PA (2012) The rhizosphere microbiome and plant
374 health. *Trends in Plant Science* 17:478-486.

375 Bissett A, Fitzgerald A, Meintjes T, Mele PM, Reith F, Dennis PG, et al. (2016) Introducing
376 BASE: the Biomes of Australian Soil Environments soil microbial diversity database.
377 *GigaScience* 5: 10.1186/s13742-016-0126-5.

378 Blanco H , Lal R (2008) *Principles of soil conservation and management*. Springer, New
379 York,USA.

380 Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al.
381 (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per
382 sample. *Proceedings of the National Academy of Sciences* 108:4516-4522.

383 Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. (2012)
384 Ultra-high-throughput microbial community analysis on the Illumina HiSeq and
385 MiSeq platforms. *Isme Journal* 6:1621-1624.

386 Carthey AJ, Blumstein DT, Gallagher RV, Tetu SG , Gillings MR (2020) Conserving the
387 holobiont. *Functional Ecology* 34:764-776.

388 Cockell CS , Jones HL (2009) Advancing the case for microbial conservation. *Oryx* 43:520-
389 526.

390 Damasso N, Mendel J, Mendoza M, von Wettberg EJ, Narasimhan G , Mills D (2018)
391 Bioinformatics approach to assess the biogeographical patterns of soil communities:
392 the utility for soil provenance. *Journal of forensic sciences* 63:1033-1042.

393 Davis NM, Proctor DM, Holmes SP, Relman DA , Callahan BJ (2018) Simple statistical
394 identification and removal of contaminant sequences in marker-gene and
395 metagenomics data. *Microbiome* 6:226.

396 Delgado Baquerizo M, Reith F, Dennis PG, Hamonts K, Powell JR, Young A, et al. (2018)
397 Ecological drivers of soil microbial diversity and soil biological networks in the
398 Southern Hemisphere. *Ecology* 99:583-596.

399 Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R , Weyrich LS (2019) Contamination
400 in low microbial biomass microbiome studies: issues and recommendations. *Trends in
401 Microbiology* 27:105-117.

402 Ferkol T , Schraufnagel D (2014) The global burden of respiratory disease. *Annals of the
403 American Thoracic Society* 11:404-406.

404 Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil
405 microbiome. *Nature Reviews Microbiology* 15:579-590.

406 Fierer N , Jackson RB (2006) The diversity and biogeography of soil bacterial communities.
407 Proceedings of the National Academy of Sciences 103:626-631.

408 Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S, et al. (2012) Package ‘car’.
409 Vienna: R Foundation for Statistical Computing.

410 Fudou R, Iizuka T, Sato S, Ando T, Shimba N , Yamanaka S (2001) Haliangicin, a novel
411 antifungal metabolite produced by a marine myxobacterium. 2. isolation and
412 structural elucidation. The Journal of Antibiotics 54:153-156.

413 Garrido-Oter R, Nakano RT, Dombrowski N, Ma K-W, Team TA, McHardy AC, et al.
414 (2018) Modular traits of the Rhizobiales root microbiota and their evolutionary
415 relationship with symbiotic rhizobia. Cell host & microbe 24:155-167. e155.

416 Gellie NJ, Breed MF, Mortimer PE, Harrison RD, Xu J , Lowe AJ (2018) Networked and
417 embedded scientific experiments will improve restoration outcomes. Frontiers in
418 Ecology and the Environment 16:288-294.

419 Giblin J, Ramos I , Grout N (2019) Dismantling the master’s house: thoughts on representing
420 empire and decolonising museums and public spaces in practice an introduction.
421 Third Text 33:471-486.

422 Gonzalez A, Navas-Molina JA, Koscioletk T, McDonald D, Vázquez-Baeza Y, Ackermann
423 G, et al. (2018) Qiita: rapid, web-enabled microbiome meta-analysis. Nature Methods
424 15:796-798.

425 Habtom H, Pasternak Z, Matan O, Azulay C, Gafny R , Jurkovich E (2019) Applying
426 microbial biogeography in soil forensics. Forensic Science International: Genetics
427 38:195-203.

428 Hoch JM, Rhodes ME, Shek KL, Dinwiddie D, Hiebert TC, Gill AS, et al. (2019) Soil
429 microbial assemblages are linked to plant community composition and contribute to
430 ecosystem services on urban green roofs. Frontiers in Ecology and Evolution 7:198
431 10.3389/fevo.2019.00198.

432 Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A , Scheibe S (2014)
433 Multcomp: simultaneous inference in general parametric models. R package version
434 1.3-2.

435 Hui N, Jumpponen A, Francini G, Kotze DJ, Liu X, Romantschuk M, et al. (2017) Soil
436 microbial communities are shaped by vegetation type and park age in cities under
437 cold climate. Environmental Microbiology 10.1111/1462-2920.13660.

438 Hui N, Grönroos M, Roslund MI, Parajuli A, Vari HK, Soininen L, et al. (2019) Diverse
439 environmental microbiota as a tool to augment biodiversity in urban landscaping
440 materials. Frontiers in microbiology 10: 10.3389/fmicb.2019.00536.

441 Im W-T, Yokota A, Kim M-K , Lee S-T (2004) *Kaistia adipata* gen. nov., sp. nov., a novel
442 α-proteobacterium. The Journal of general and applied microbiology 50:249-254.

443 Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. (2017) Where less
444 may be more: how the rare biosphere pulls ecosystems strings. The ISME journal
445 11:853-862.

446 Joyner JL, Kerwin J, Deeb M, Lozefski G, Prithiviraj B, Paltseva A, et al. (2019) Green
447 infrastructure design influences communities of urban soil bacteria. Frontiers in
448 microbiology 10:982 10.3389/fmicb.2019.00982.

449 Kabisch N, van den Bosch M , Laforteza R (2017) The health benefits of nature-based
450 solutions to urbanization challenges for children and the elderly—A systematic review.
451 Environmental Research 159:362-373.

452 Kämpfer P, Lodders N , Falsen E (2009) *Luteibacter anthropi* sp. nov., isolated from human
453 blood, and reclassification of *Dyella yeojuensis* Kim et al. 2006 as *Luteibacter*
454 *yeojuensis* comb. nov. International Journal of Systematic and Evolutionary
455 Microbiology 59:2884-2887.

456 Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. (2010)
457 Picante: R tools for integrating phylogenies and ecology. *Bioinformatics* 26:1463-
458 1464.

459 Kolde R, Kolde MR (2015) Package ‘pheatmap’. R Package 1.

460 Laforest-Lapointe I, Paquette A, Messier C, Kembel SW (2017) Leaf bacterial diversity
461 mediates plant diversity and ecosystem function relationships. *Nature* 546:145-147.

462 Love M, Anders S, Huber W (2014) Moderated estimation of fold change and dispersion for
463 RNA-seq data with DESeq2. *Genome biology* 15: 10.1186/s13059-014-0550-8.

464 McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis
465 and graphics of microbiome census data. *PLoS One* 8:e61217.

466 Mills JG, Weinstein P, Gellie NJC, Weyrich LS, Lowe AJ, Breed MF (2017) Urban habitat
467 restoration provides a health benefit through microbiome rewilding: The Microbiome
468 Rewilding Hypothesis. *Restoration Ecology* 25:866-872 10.1111/rec.12610.

469 Mills JG, Bissett A, Gellie NJ, Lowe AJ, Selway CA, Thomas T, et al. (2020) Revegetation
470 of urban green space rewilds soil microbiotas with implications for human health and
471 urban design. *Restoration Ecology* 10.1111/rec.13175.

472 Mills JG, Brookes JD, Gellie NJ, Liddicoat C, Lowe AJ, Sydnor HR, et al. (2019) Relating
473 urban biodiversity to human health with the ‘holobiont’ concept. *Frontiers in
474 microbiology* 10: 10.3389/fmicb.2019.00550.

475 Mitsui H, Sato T, Sato Y, Ito N, Minamisawa K (2004) *Sinorhizobium meliloti* RpoH 1 is
476 required for effective nitrogen-fixing symbiosis with alfalfa. *Molecular Genetics and
477 Genomics* 271:416-425.

478 Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. (2017) vegan:
479 Community Ecology Package. R package version 2.4-3. p.^pp. <https://CRAN.R-project.org/package=vegan>.

480 Parker LA (2018) Decolonising our minds and public spaces p.^pp. *The Ecologist*,
481 <https://theecologist.org/2018/aug/24/decolonising-our-minds-and-public-spaces>.

482 Pearson AL, Pechal J, Lin Z, Benbow ME, Schmidt C, Mavoa S (2020) Associations
483 detected between measures of neighborhood environmental conditions and human
484 microbiome diversity. *Science of the Total Environment* 745:141029.

485 RCoreTeam (2019) R: A language and environment for statistical computing. p.^pp. R
486 Foundation for Statistical Computing, Vienna, Austria.

487 Rook GAW, Martinelli R, Brunet LR (2003) Innate immune responses to mycobacteria and
488 the downregulation of atopic responses. *Current opinion in allergy and clinical
489 immunology* 3:337-342.

490 Rosado BH, Almeida LC, Alves LF, Lambais MR, Oliveira RS (2018) The importance of
491 the phyllosphere on plant functional ecology: a phyllo trait manifesto. *New Phytologist*
492 10.1111/nph.15235

493 Rousk J, Bengtson P (2014) Microbial regulation of global biogeochemical cycles. *Frontiers
494 in microbiology* 5:103.

495 Selway CA, Mills JG, Weinstein P, Skelly C, Yadav S, Lowe A, et al. (2020) Transfer of
496 environmental microbes to the skin and respiratory tract of humans after urban green
497 space exposure. *Environment International* 145:106084.

498 Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. (2017) A
499 communal catalogue reveals Earth’s multiscale microbial diversity. *Nature* 551.

500 Vanneste JL (2000) *Fire blight: the disease and its causative agent, Erwinia amylovora*.
501 CABI.

502 Velásquez-Mejía EP, de la Cuesta-Zuluaga J, Escobar JS (2018) Impact of DNA extraction,
503 sample dilution, and reagent contamination on 16S rRNA gene sequencing of human
504 feces. *Applied Microbiology and Biotechnology* 102:403-411.

506 von Hertzen L, Hanski I, Haahtela T (2011) Natural immunity. Biodiversity loss and
507 inflammatory diseases are two global megatrends that might be related. *EMBO*
508 *reports* 12:1089-1093.

509 Xing Y, Brimblecombe P (2020) Traffic-derived noise, air pollution and urban park design.
510 *Journal of Urban Design* 25:590-606.

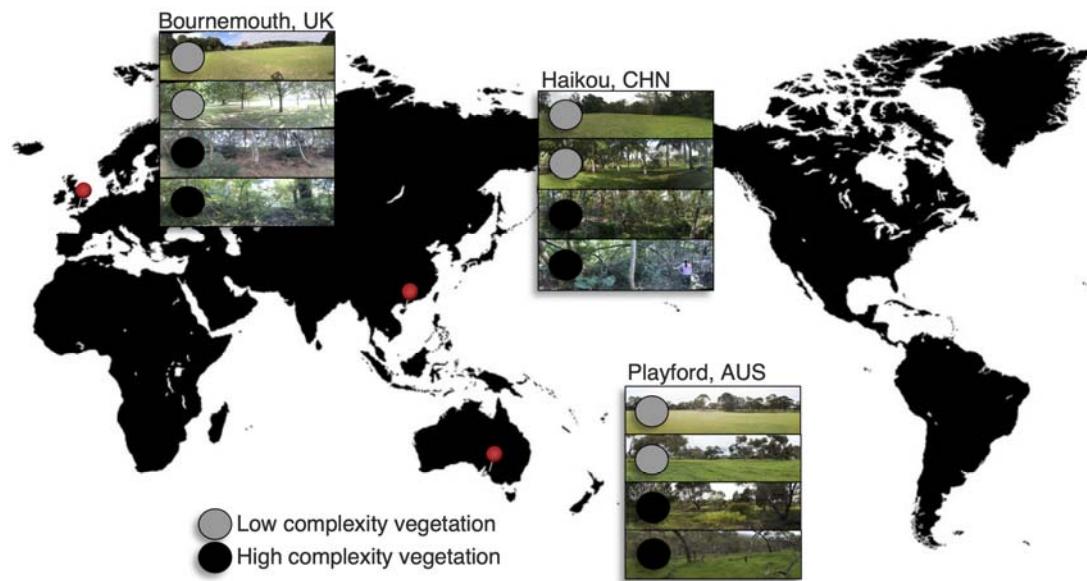
511 Xue M, Guo Z, Gu X, Gao H, Weng S, Zhou J, et al. (2020) Rare rather than abundant
512 microbial communities drive the effects of long-term greenhouse cultivation on
513 ecosystem functions in subtropical agricultural soils. *Science of the Total*
514 *Environment* 706:136004 10.1016/j.scitotenv.2019.136004.

515 Yang T, Shi Y, Zhu J, Zhao C, Wang J, Liu Z, et al. (2021) The spatial variation of soil
516 bacterial community assembly processes affects the accuracy of source tracking in ten
517 major Chinese cities. *Science China Life Sciences* 1-14.

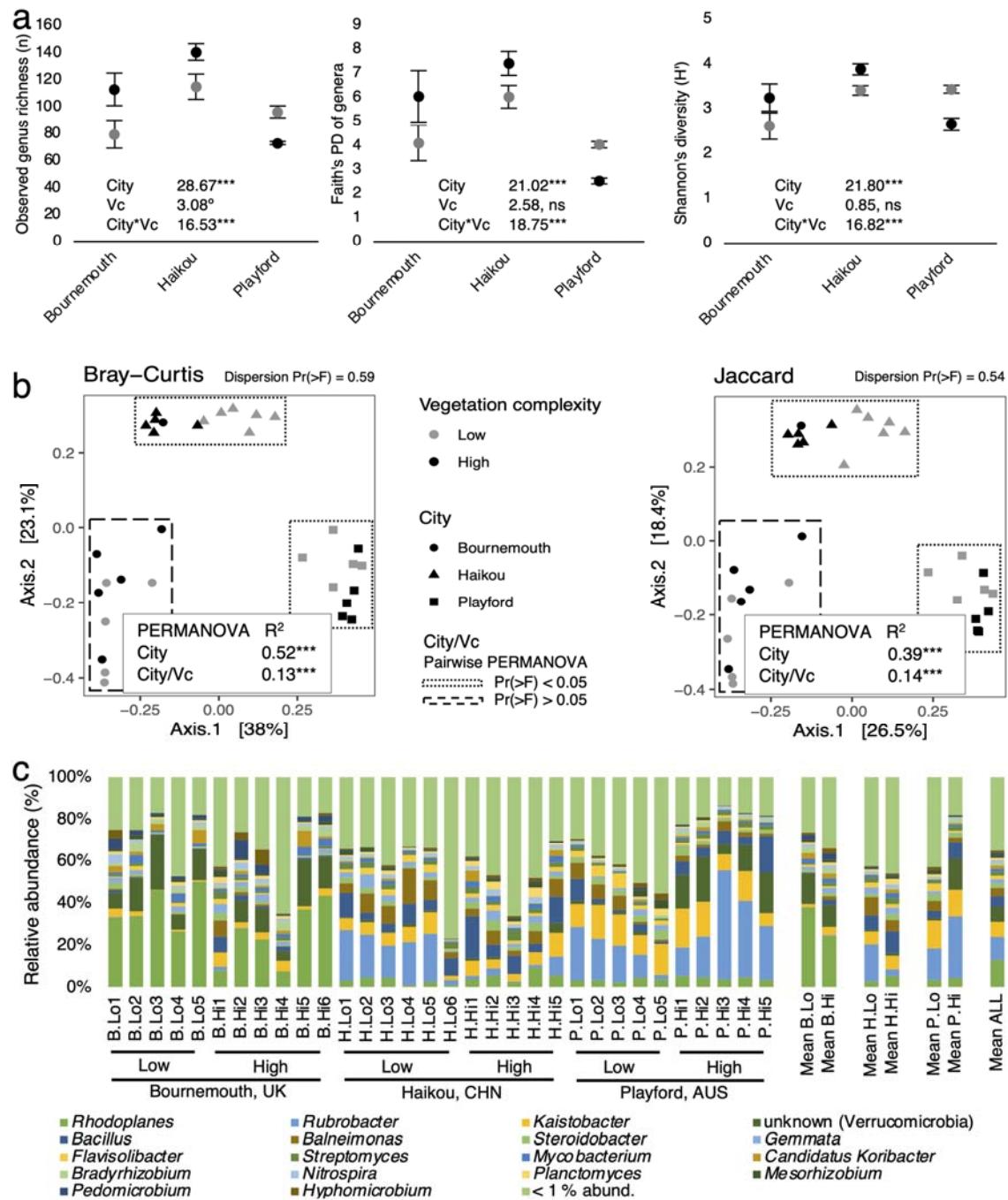
518 Zuo T, Kamm MA, Colombel J-F, Ng SC (2018) Urbanization and the gut microbiota in
519 health and inflammatory bowel disease. *Nature Reviews Gastroenterology &*
520 *Hepatology* 15:440-452.

521

Tables


Table 1 Pairwise alpha diversity – observed genus richness, Faith's phylogenetic diversity (PD), and Shannon's diversity – of soil bacterial genera under the GLMM interaction of 'City' by 'Vegetation complexity'. Significance codes: 'ns' not significant; ‘◦’ $P < 0.10$; ‘*’ $P < 0.05$; ‘**’ $P < 0.01$; ‘***’ $P < 0.001$.

City * Vegetation complexity	Observed genus richness			Faith's PD of genera			Shannon's diversity		
	z-value	Pr(> z)	Sig.	z-value	Pr(> z)	Sig.	z-value	Pr(> z)	Sig.
Bournemouth High - Haikou High	-2.22	0.183	ns	2.98	0.032	*	2.78	0.058	◦
Bournemouth High - Playford High	3.81	0.002	**	-2.04	0.209	ns	-1.21	0.790	ns
Bournemouth High - Bournemouth Low	3.17	0.014	*	-2.93	0.034	*	-2.79	0.058	◦
Bournemouth High - Haikou Low	-0.24	1.000	ns	0.64	1.000	ns	1.38	0.790	ns
Bournemouth High - Playford Low	1.36	0.521	ns	0.75	1.000	ns	1.70	0.619	ns
Haikou High - Playford High	5.76	0.000	***	-4.80	0.000	***	-3.82	0.002	**
Haikou High - Bournemouth Low	5.15	0.000	***	-5.66	0.000	***	-5.33	0.000	***
Haikou High - Haikou Low	2.00	0.276	ns	-2.37	0.124	ns	-1.46	0.790	ns
Haikou High - Playford Low	3.43	0.007	**	-2.13	0.198	ns	-1.03	0.790	ns
Playford High - Bournemouth Low	-0.62	1.000	ns	-0.86	1.000	ns	-1.51	0.790	ns
Playford High - Haikou Low	-4.04	0.001	***	2.65	0.068	◦	2.53	0.092	◦
Playford High - Playford Low	-2.36	0.145	ns	2.67	0.068	◦	2.79	0.058	◦
Bournemouth Low - Haikou Low	-3.40	0.007	**	3.54	0.005	**	4.10	0.001	***
Bournemouth Low - Playford Low	-1.74	0.405	ns	3.53	0.005	**	4.30	0.000	***
Haikou Low - Playford Low	1.59	0.447	ns	0.14	1.000	ns	0.39	0.790	ns


Table 2 Main and pairwise PERMANOVA on soil bacterial genus communities for vegetation complexity nested within cities. Significance codes Pr(>F): ‘ns’ not significant; ‘’’ P < 0.10; ‘*’ P < 0.05; ‘**’ P < 0.01; ‘***’ P < 0.001.

Formula = distance ~ City/Vegetation complexity						
Main PERMANOVA	Bray-Curtis			Jaccard		
	R ²	F	Pr(>F)	R ²	F	Pr(>F)
	df _{2,26}	0.52	19.61	***	0.39	10.68
City/Vegetation complexity	df _{3,26}	0.13	3.25	***	0.14	2.56
Pairwise PERMANOVA	Bray-Curtis			Jaccard		
	R ²	F	Pr(>F)	R ²	F	Pr(>F)
Bournemouth High - Haikou High	df _{1,9}	0.30	3.82	**	0.23	2.70
Bournemouth High - Playford High	df _{1,9}	0.60	13.36	**	0.45	7.35
Bournemouth High - Bournemouth Low	df _{1,9}	0.16	1.78	ns	0.14	1.49
Bournemouth High - Haikou Low	df _{1,10}	0.42	7.19	***	0.32	4.75
Bournemouth High - Playford Low	df _{1,9}	0.54	10.54	**	0.40	5.95
Haikou High - Playford High	df _{1,8}	0.69	17.99	**	0.53	8.94
Haikou High - Bournemouth Low	df _{1,8}	0.56	10.30	**	0.43	6.13
Haikou High - Haikou Low	df _{1,9}	0.31	4.05	*	0.26	3.19
Haikou High - Playford Low	df _{1,8}	0.61	12.58	**	0.46	6.76
Playford High - Bournemouth Low	df _{1,8}	0.72	20.44	**	0.56	10.35
Playford High - Haikou Low	df _{1,9}	0.58	11.81	**	0.45	7.34
Playford High - Playford Low	df _{1,8}	0.36	4.42	*	0.29	3.22
Bournemouth Low - Haikou Low	df _{1,9}	0.61	13.86	**	0.48	8.25
Bournemouth Low - Playford Low	df _{1,8}	0.67	16.22	*	0.52	8.52
Haikou Low - Playford Low	df _{1,9}	0.49	8.74	**	0.39	5.71

Figures

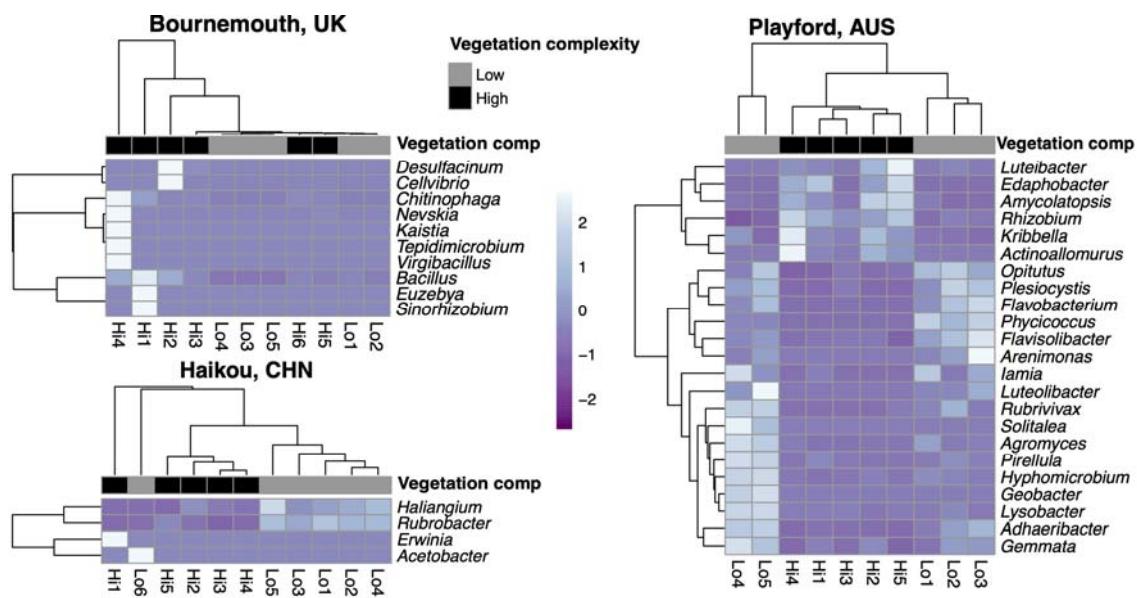


Figure 1 'Low' and 'high' complexity vegetation urban green spaces were sampled in Bournemouth, UK; Haikou, CHN; and Playford, AUS.

Figure 2 (a) ‘City’ by ‘Vegetation complexity’ (Vc) for the alpha diversity GLMMs on observed genus richness, Faith’s phylogenetic diversity (PD), and Shannon’s diversity. Results are χ^2 values from Type II Wald χ^2 tests on the GLMMs followed by significance codes for $\text{Pr}(>\text{Chi}^2)$. See Table 1 for pairwise results. Significance codes: ‘ns’ not significant; ‘°’ $P < 0.10$; ‘*’ $P < 0.05$; ‘**’ $P < 0.01$; ‘***’ $P < 0.001$. **(b)** PCoAs of soil bacterial genus communities in urban green spaces by Bray-Curtis and Jaccard distance. Main PERMANOVA test with 999 iterations of ‘Vegetation complexity’ (Vc) nested within ‘City’ (distance \sim City/Vc); R^2 and P-value significance codes (‘***’, $\text{Pr}(>F) < 0.001$). Within city ‘Vegetation complexity’ differences were tested with pairwise PERMANOVA.

Cities surrounded by dotted boxes were significantly different between their ‘low’ and ‘high’ vegetation complexity green spaces. Cities surrounded by dashed boxes were not significantly different between their ‘low’ or ‘high’ vegetation complexity green spaces. For detailed main and pairwise PERMANOVA results see Table 2. **(c)** Relative abundance (%) of soil bacterial genera across all sites. Genera read left to right by rows in the legend and correspond to bottom to top in the stack plot.

Figure 3 Differentially abundant bacterial genera from Bournemouth, Haikou, and Playford measured by log-2 fold-change with P-value < 0.05. Extreme ends of the heat color scale represent 3 standard deviations from the mean rarefied abundance for each genus across samples. Hierarchical clustering of genera (rows) and vegetation replicates (columns) are both by Manhattan distance.