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Abstract 

Respiratory viral infections pose a serious public health concern, from mild seasonal influenza to 

pandemics like those of SARS-CoV-2. Spatiotemporal dynamics of viral infection impact nearly 

all aspects of the progression of a viral infection, like the dependence of viral replication rates on 

the type of cell and pathogen, the strength of the immune response and localization of infection. 

Mathematical modeling is often used to describe respiratory viral infections and the immune 

response to them using ordinary differential equation (ODE) models. However, ODE models 

neglect spatially-resolved biophysical mechanisms like lesion shape and the details of viral 

transport, and so cannot model spatial effects of a viral infection and immune response. In this 

work, we develop a multiscale, multicellular spatiotemporal model of influenza infection and 

immune response by combining non-spatial ODE modeling and spatial, cell-based modeling. We 

employ cellularization, a recently developed method for generating spatial, cell-based, stochastic 

models from non-spatial ODE models, to generate much of our model from a calibrated ODE 

model that describes infection, death and recovery of susceptible cells and innate and adaptive 

responses during influenza infection, and develop models of cell migration and other mechanisms 

not explicitly described by the ODE model. We determine new model parameters to generate 

agreement between the spatial and original ODE models under certain conditions, where 

simulation replicas using our model serve as microconfigurations of the ODE model, and compare 

results between the models to investigate the nature of viral exposure and impact of heterogeneous 

infection on the time-evolution of the viral infection. We found that using spatially homogeneous 

initial exposure conditions consistently with those employed during calibration of the ODE model 

generates far less severe infection, and that local exposure to virus must be multiple orders of 

magnitude greater than a uniformly applied exposure to all available susceptible cells. This 

strongly suggests a prominent role of localization of exposure in influenza A infection. We propose 

that the particularities of the microenvironment to which a virus is introduced plays a dominant 

role in disease onset and progression, and that spatially resolved models like ours may be important 

to better understand and more reliably predict future health states based on susceptibility of 

potential lesion sites using spatially resolved patient data of the state of an infection. We can 

readily integrate the immune response components of our model into other modeling and 

simulation frameworks of viral infection dynamics that do detailed modeling of other mechanisms 
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like viral internalization and intracellular viral replication dynamics, which are not explicitly 

represented in the ODE model. We can also combine our model with available experimental data 

and modeling of exposure scenarios and spatiotemporal aspects of mechanisms like mucociliary 

clearance that are only implicitly described by the ODE model, which would significantly improve 

the ability of our model to present spatially resolved predictions about the progression of influenza 

infection and immune response.  

Introduction 

Respiratory viral infections continue to be a serious public health concern, from mild seasonal 

influenza strains to the highly pathogenic SARS-CoV-2 pandemic. In recent influenza strains 

associated with highly pathogenic outcomes, excess inflammation and cytokine storm tend to be 

major causes of mortality (1). Similarly, the recent COVID-19 epidemic has shown this 

coronavirus induces a similar cytokine storm in many of the lethal infections (2). A deeper 

understanding of the mechanisms involved in the initiation, proliferation, and reduction of the 

inflammatory response is key to understanding the reasons why some infections can become lethal. 

Spatiotemporal dynamics impact nearly all components of the resolution of a viral infection 

both in vitro and in vivo. Viral replication rates, for example, depend on the type of cell the virus 

has invaded, the family and strain of the virus, and the strength of the immune response deployed 

against the pathogen. Viruses have been theorized to differ in replication rates between mucosal 

and bronchial epithelial cells (3). In addition, some viruses have been shown to localize to certain 

areas of the lungs rather than spread homogeneously throughout the respiratory tract. For instance, 

the 2009 pandemic H1N1 strain has been shown to replicate more extensively throughout the lower 

respiratory tract than either seasonal H1N1 or H5N1 (4). Seasonal H1N1 and H3N2 tend to 

replicate primarily in the bronchi, while H5N1 replicates largely in alveoli (5). In addition to these 

spatial differences, temporal differences in viral replication rates also play a part in differing levels 

of pathogenicity between viral strains. Multiple experimental studies have shown that strains 

exhibit distinct rates and mechanisms for cell entry, replication, and evasion of immune responses, 

allowing certain strains to be more virulent than others (5–8). The immune response to viral 

infection also includes many spatially-resolved biological processes, many of which are poorly 

understood, such as the search strategies of CD4+ and CD8+ T cells leading to antigen recognition, 

memory and effector T cell differentiation, migration via chemokinesis, chemotaxis and 

haptotaxis, and cytotoxic killing of infected cells (9). Heterogeneous spread of virus and infected 

cells has been theorized to affect the spread of infection through the lung; clusters of dead cells 

near productively-infected cells may prevent the virus from spreading (10). This effect has been 

seen after lethal H5N1 infection in ferrets (5); excessive damage in the lower respiratory tract 

prevents the virus from spreading further through the lung and limits the peak of the viral load. 

Thus, characterizing the spatial spread of the virus through the lung is critical to understanding the 

intrahost immune response to the infection. 

Mathematical modeling has long been used to explore various details of the immune 

response to respiratory viral infections using ordinary differential equation (ODE) models (11–

14). However, spatial effects cannot be explored in a typical ODE model, as these models are 

founded on a well-mixed assumption that neglects spatially resolved biophysical mechanisms 
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(e.g., lesion shape). Spatial models of the immune response have been developed in recent years 

to explore the effects of the spatial distribution of immune components on the resolution of 

infection (10,15–21). However, to our knowledge, no spatial model exists that describes host-

pathogen interactions during influenza infection with cellular resolution while considering detailed 

descriptions of local and systemic aspects of both the innate and adaptive immune responses.  

In this work, we combine the approaches of non-spatial ODE modeling and spatial, cell-

based modeling to develop a multiscale, multicellular model of influenza infection and immune 

response. We generate much of our spatial model from a calibrated ODE model that describes 

infection, death and recovery of susceptible cells and innate and adaptive responses during 

influenza infection (14) using cellularization (22), a recently developed method for generating 

spatial, cell-based models from non-spatial ODE models. We develop models of cell migration 

and other mechanisms not explicitly described by the ODE model, and determine new model 

parameters to generate agreement between the spatial and original ODE models under certain 

conditions. We compare results between the models to investigate the nature of viral exposure and 

impact of heterogeneous infection on the time-evolution of the viral infection.  

Models and Methods 

The ODE model of in-host response to influenza A virus from which the spatial model is generated 

describes infection and death of susceptible epithelial cells, and inflammatory, innate, adaptive 

and humoral responses. Population dynamics consist of explicit expressions for uninfected, 

infected and dead epithelial cells (𝐻, 𝐼 and 𝐷), macrophages (𝑀), neutrophils in the blood and 

infected tissue (𝑁̃ and 𝑁), antigen presenting cells (APCs, 𝑃), natural killer (NK) cells (𝐾), B cells 

(𝐵), and CD4+ and CD8+ T cells (𝑂 and 𝐸, respectively). Soluble signals of the model consist of 

tumor necrosis factor (TNF, 𝑇), interleukins 10 and 12 (IL-10 and IL-12, 𝐿 and 𝑊, respectively), 

types I and II interferon (IFN, 𝐹 and 𝐺, respectively), and generic chemokines (𝐶), antibodies (𝐴) 

and reactive oxygen species (ROS, 𝑋). We employ the method of cellularization (22) to generate 

a multiscale, multicellular, spatiotemporal model of local influenza A infection and immune 

response in an epithelial sheet. For details of the complete ODE model and cellularized spatial 

model, see Appendix 1 in Supplementary Materials.  

Cellularization describes the relationships of measurements of quantity at various scales of 

a biological system under well-mixed conditions. For a scalar quantity 𝑍 of a species at one scale, 

a scalar quantity 𝑧 of the same species at another scale, and a field distribution 𝑧̃ = 𝑧̃(𝑥𝑖 , 𝑡) of 

which 𝑧 measures, according to cellularization,  

𝑍 =
1

𝜂
𝑧 =

1

𝜃
lim

𝐷𝑍→∞
𝑧̃, 

where 𝜂 and 𝜃 are global and local scaling coefficients, respectively, and 𝐷𝑍 is the diffusion 

coefficient of 𝑧̃ for diffusive species. For diffusive species, 𝑧 is the volume integral of 𝑧̃ over a 

spatial domain, while for discrete objects of a particular type 𝑧 is the number of instances of the 

type of object (e.g., the number of neutrophils). Reaction-diffusion equations for locally 

heterogeneous soluble signals are generated from non-spatial descriptions. For a rate equation 𝑍̇ =
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𝑣(𝑌, 𝑍) + 𝑤(𝑌, 𝑍)𝑄 for chemical species 𝑌 and 𝑍 and number 𝑄 of a cell type 𝑄̂, the analogous 

reaction-diffusion equation for 𝑧̃ is  

𝜕𝑡𝑧̃ = 𝜕𝑗(𝐷𝑍𝜕𝑗𝑧̃) + 𝜃𝑣 (
𝑦̃

𝜃
,
𝑧̃

𝜃
) +

ℬ(𝜏(𝜎, 𝑡), 𝑄̂)

‖𝒱‖
𝑤 (

𝑦̅

𝜃
,
𝑧̅

𝜃
). 

Here 𝑦̃ is the heterogeneous distribution associated with 𝑌, 𝑦̅ = 𝑦̅(𝑠, 𝑡) and 𝑧̅ = 𝑧̅(𝑠, 𝑡) are the 

average value of 𝑦̃ and 𝑧̃, respectively, over the domain 𝒱 = 𝒱(𝑠, 𝑡) of cell 𝑠 with type 𝜏(𝑠, 𝑡), 

𝜎 = 𝜎(𝑥𝑖, 𝑡) = 𝑠 at every site 𝑥𝑖 occupied by cell 𝑠 at time 𝑡 (i.e., 𝒱(𝑠, 𝑡) = {𝑥𝑖 ∶ 𝜎(𝑥𝑖, 𝑡) = 𝑠}), 

and ℬ(𝑥, 𝑦) is a Boolean-valued function equal to one when 𝑥 = 𝑦 and otherwise equal to zero.  

Cellularization formulates cell-based stochastic dynamics using the Poisson cumulative 

distribution function from reaction kinetics that describe the inflow, outflow, and transitions by 

type (e.g., from alive to dead) of cell populations. For a number of cells 𝑄 of cell type 𝑄̂ with mean 

inflow rate 𝑓, mean outflow rate 𝑔𝑄, and mean transition rate 𝑢𝑄 to cell type 𝑆̂ (i.e., 𝑄̇ = 𝑓 −

𝑔𝑄 − 𝑢𝑄 and 𝑆̇ = 𝑢𝑆 for 𝑆 cells of type 𝑆̂) over a period [𝑡, 𝑡 + ∆𝑡),  

Pr(add 𝐽 𝑄̂ − type cells) = 1 − 𝑒−𝑓∆𝑡 ∑
(𝑓∆𝑡)𝑗

𝑗!
0≤𝑗≤𝐽

, 

Pr(remove 𝑠|𝜏(𝑠) = 𝑄̂) = 1 − 𝑒−𝑔∆𝑡, 

Pr(𝜏(𝑠, 𝑡 + ∆𝑡) = 𝑆̂|𝜏(𝑠, 𝑡) = 𝑄̂) = 1 − 𝑒−𝑢∆𝑡. 

Local cell populations can be modeled such that a fraction of the population is explicitly modeled 

in a spatial domain, and the rest of the population act homogeneously. Cellularization describes 

the cell-based stochastic dynamics of a contact-mediated process with mean rate 𝑟 (i.e., 𝑆̇ = −𝑟𝑄𝑆 

for 𝑄 and 𝑆 cells of types 𝑄̂ and 𝑆̂, respectively) using an equipollent rate 𝛾 for cell 𝑠 in an 

aggregate with total available contact surface area 𝐴𝑈. If a process for a cell with total available 

contact surface area 𝐴𝑠 is mediated by contact with a cell of type 𝑄̂ with total available contact 

surface area 𝐴𝑄̂, then for contact area 𝐴𝑠,𝑄̂ of cell 𝑠 with a 𝑄̂ − type cell,  

𝛾(𝑠; 𝑟, 𝑄̂, 𝐴𝑈) =
𝑟𝐴𝑈

𝐴𝑠𝐴𝑄̂

𝐴𝑠,𝑄̂ . 

Overview of Model Setup, Spatiotemporal Scaling and Cellularization 

The milieu of the spatial, cell-based model is constructed by adapting an ODE model of influenza 

A infection and immune response (14) to comparable work on multiscale, spatial, cell-based 

modeling of viral infection and immune response (21) using cellularization. We consider a quasi-

two-dimensional spatial domain in which local infection occurs in a fixed planar sheet of epithelial 

cells. Recruitment of various immune cell populations is governed by organismal-level dynamics 

coupled with signaling from within the spatial domain, where motile, locally acting immune cells 

are recruited from outside the spatial domain and placed on top of the epithelial sheet. Likewise 

organismal-level soluble signals are coupled with locally heterogeneous distributions of diffusive 
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species in the spatial domain. We refer to model objects whose dynamics are explicitly modeled 

in the spatial domain as local, and likewise to those modeled with an ODE as global.  

To model the spatial effects of infection, we model extracellular virus and uninfected, 

infected and dead cells as local (Figure 1). Type I IFN is modeled as local to model the spatial 

effects of antiviral resistance. Macrophages, chemokines and IL-10 are modeled as local to model 

the spatial effects of macrophage migration and diffusion in local inflammatory signaling. 

Likewise, NK and CD8+ T cells are modeled as local to model the effects of contact-mediated 

killing of infected cells in the immune response. B cells and blood neutrophils are not present at 

the local site of infection, and so are modeled as global. APCs primarily recruit other immune cell 

types according to the ODE model, and so we neglect the spatial aspects of their type I IFN release 

and model them as global. It follows that type II IFN, IL-12 and CD4+ T cells are modeled as 

global, since they immediately affect global objects. Antibodies, ROS and TNF could reasonably 

be modeled as local, however we assume that their rates of diffusion are sufficiently fast to 

approximate them as uniform throughout the simulation domain and model them as global. It 

follows that tissue neutrophils are modeled as global, since they release global ROS.  

  

Figure 1. Schematic of the cellularizatized model of influenza infection and immune response. Model objects inside the dashed 

box labeled “Spatial domain” are modeled explicitly in the spatial domain, which are shown with dashed boundaries, whereas 

other model objects are treated as homogeneously acting due to their absence in the spatial domain (e.g., blood neutrophils) or 

their spatial properties (e.g., highly diffusive ROS) and are shown in solid borders. Analogous spatial and cell-based models of 

processes within, and across the boundary of, the spatial domain are derived from the ODE model using cellularization.  
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To model migration of local immune cells, we use the Cellular Potts model (CPM, or 

Glazier-Graner-Hogeweg model). The CPM is a lattice-based hybrid kinetic Monte Carlo method 

that represents generalized cells and medium as discrete, deformable, volume-excluding objects 

(23). Cell motility in the CPM is modeled as the stochastic exchanging of lattice sites by cells and 

medium according to minimization of a system effective energy ℋ, in this work written as,  

ℋ = ∑ 𝜆𝑣 (‖𝒱(𝑠, 𝑡)‖ − 𝑣𝑐(𝜏(𝑠, 𝑡)))
2

𝑠

+ ∑ ∑ (1 − ℬ(𝜎(𝑦𝑖, 𝑡), 𝜎(𝑦𝑖
′, 𝑡))) 𝐽(𝜏(𝜎(𝑦𝑖, 𝑡), 𝑡), 𝜏(𝜎(𝑦𝑖

′, 𝑡), 𝑡))

𝑦𝑖
′∈𝒩(𝑦𝑖)𝑦𝑖∈𝒰

+ ∑ ∑
𝜆𝑐(𝜏(𝜎(𝑦𝑖, 𝑡), 𝑡))𝑐(𝑦𝑖, 𝑡)

1 + 𝑐𝐶𝑀(𝜎(𝑦𝑖, 𝑡), 𝑡)
𝑐𝑦𝑖∈𝒰

. 

The first term implements a volume constraint 𝑣𝑐 in each cell by cell type, the second term models 

adhesion at intercellular and cell-medium interfaces by cell type according to contact coefficients 

𝐽 using a neighborhood 𝒩(𝑥𝑖) of each site, and the third term models logarithmic chemotaxis by 

cell type and field distribution according to a chemotaxis parameter 𝜆𝑐, local field concentration 𝑐 

and center-of-mass measurement 𝑐𝐶𝑀 of 𝑐. In this work we use a second-order Manhattan 

neighborhood for adhesion calculations, while applications of adhesion and chemotaxis modeling 

are described in the following section. In general, the CPM randomly selects a pair of neighboring 

lattice sites and considers whether the identification at one of the sites copies itself to the other 

site, called a copy attempt, which occurs with a probability according to a Boltzmann acceptance 

function,  

Pr(𝜎(𝑦𝑖, 𝑡) → 𝜎(𝑦𝑖
′, 𝑡)) = 𝑒− max{0,

∆ℋ
ℋ∗ }

. 

Here 𝜎(𝑦𝑖, 𝑡) → 𝜎(𝑦𝑖
′, 𝑡) denotes the copy attempt where the identification at 𝑦𝑖

′ copies to 𝑦𝑖, ℋ
∗ 

is the intrinsic random motility that affects the stochasticity of copy attempts, and ∆ℋ is the change 

in ℋ due to the copy. One simulation step, called a Monte Carlo step (MCS), consists of having 

considered a number of copy attempts equal to the total number of lattice sites.  

Particularities of the Cellularization 

The ODE model defines a viral resistance 𝑅 of the epithelial cell population due to the presence 

of type I IFN. Viral resistance affects a number of uninfected and infected cell behaviors, including 

decreased viral release and tissue recovery. Using cellularization, a cell-based viral resistance 𝜌 =

𝜌(𝑠, 𝑡) of each cell 𝑠 with mean value of type I IFN in its domain 𝑓̅ = 𝑓(̅𝑠, 𝑡) takes the form,  

𝜌 = 1 − 𝜌′ =
𝑓̅

𝜃𝑎𝑟𝑓 + 𝑓̅
. 

Here 𝑎𝑟𝑓 is a model parameter of the ODE model.  
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Diffusive transport is assumed to occur in a homogeneous medium, where for extracellular 

virus, chemokines, IL-10 and type I IFN we define the diffusion coefficients 𝐷𝑉, 𝐷𝐶 , 𝐷𝐿 and 𝐷𝐹, 

respectively. The spatial model describes spatial and cell-based analogues of all mechanisms 

described by the ODE model for each heterogeneous species using partial differential equations 

(PDEs) of diffusive transport. Diffusive transport modeling of the extracellular virus 𝑣̃ includes 

general decay, decay by the action of antibodies, mucociliary clearance, uptake by uninfected cells 

and release by infected cells; of chemokines 𝑐̃ includes general decay, and release by macrophages 

regulated by TNF and the presence of dead cells; of IL-10 𝑙 includes general decay, release by 

macrophages regulated by TNF and the presence of dead cells, and release by uninfected cells; of 

type I IFN 𝑓 includes general decay, release by APCs, and release and uptake by infected cells 

(Table 1).  

Table 1. PDEs generated from cellularization of the influenza ODE model for virus 𝑣̃, type I IFN 𝑓, chemokines 𝑐̃ and IL-10 𝑙 
according to a general form for reaction-diffusion transport with diffusion coefficient. All symbols with subscripts are parameters 

from the ODE model. 𝜂 and 𝜃 are the global and local scaling coefficients, respectively, according to cellularization. ℬ(𝑥, 𝑦) is a 

binary function equal to one when 𝑥 = 𝑦 and zero otherwise. ‖𝒱(𝜎, 𝑡)‖ is the volume of a cell 𝜎 = 𝜎(𝑥𝑖 , 𝑡) at 𝑥𝑖 and time 𝑡 with 

type 𝜏(𝜎, 𝑡) (e.g., uninfected 𝐻̂, infected 𝐼, macrophage 𝑀̂). 𝑎, 𝑑, 𝑝 and 𝑇∗ are the total antibodies, dead cells, APCs and TNF in 

the spatial domain. 𝑧̅ is a mean cellular measurement of 𝑧̃.  

General form 𝜕𝑡𝑧̃ = (𝐷𝑍𝜕𝑖
2 − 𝑞)𝑧̃ + 𝑟 

Field Decay rate 𝑞 Source rate 𝑟 

Virus 𝑣̃ 𝜇𝑣 +
𝑔𝑣𝑎𝑎

𝜂
+

𝜃𝑔𝑣

𝑎𝑣𝑣̃ + 𝜃
+

ℬ(𝜏(𝜎, 𝑡), 𝐻̂)𝑔𝑣ℎ

𝜃‖𝒱‖
 

ℬ(𝜏(𝜎, 𝑡), 𝐼)𝑔𝑣𝑖𝜌
′

‖𝒱‖
 

Type I IFN 𝑓 𝜇𝑓 +
ℬ(𝜏(𝜎, 𝑡), 𝐼)𝑔𝑓𝑖

𝜃‖𝒱‖
 

𝜃𝑏𝑓𝑝𝑝

𝜂
+

ℬ(𝜏(𝜎, 𝑡), 𝐼)𝑏𝑓𝑖𝜌
′

‖𝒱‖
 

Chemokines 𝑐̃ 
𝜇𝑐 ℬ(𝜏(𝜎, 𝑡), 𝑀̂)𝑏𝑐

‖𝒱‖𝜁
 

IL-10 𝑙 
𝜇𝑙 1

‖𝒱‖
(

ℬ(𝜏(𝜎, 𝑡), 𝑀̂)𝑏𝑙

𝜁
+ ℬ(𝜏(𝜎, 𝑡), 𝐻̂)𝜇𝑙𝑏𝑙ℎ𝜌′) 

Auxiliary 

forms 
𝜁 = 1 +

𝜂(𝑔1𝑙 ̅ + 𝜃𝑔2)

(𝑎11𝑇∗ + 𝑎12𝑑)(𝑙 ̅ + 𝜃𝑑2)
 𝑧̅ =

1

‖𝒱(𝜎, 𝑡)‖
∫ 𝑧̃𝑑𝑉

𝒱(𝜎,𝑡)

 

 

The ODE model employs the Allee effect with a critical population of uninfected cells, 

above which recovery of uninfected cells occurs, and below which additional death of uninfected 

cells occur. We cellularize this mechanism by splitting it into individual stochastic events, of which 

a mean rate of death 𝑎𝐷(𝑠) due to the Allee effect is considered for each uninfected cell, and a 

mean rate of recovering a dead cell 𝑎𝐻(𝑠) is considered. The process of cell recovery is 

implemented as the transitioning of a dead cell to an uninfected cells (21). By treating both 

mechanisms of the Allee effect as contact-mediated and applying the well-mixed conditions (see 

Appendix 1 in Supplementary Materials for derivations),  

𝑎𝐻(𝑠) = 𝛾 (𝑠; √
𝑏ℎ𝜌′(𝑠)

𝐻0
, 𝐻̂, 𝐻0𝐴𝑠) max {𝛾 (𝑠; √

𝑏ℎ𝜌′(𝑠)

𝐻0
, 𝐻̂, 𝐻0𝐴𝑠) − √𝑏ℎ𝐻0𝜌′(𝑠)

𝐴𝐻
∗

𝐴𝑠
, 0}, 
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𝑎𝐷(𝑠) = 𝛾 (𝑠; √
𝑏ℎ𝜌′(𝑠)

𝐻0
, 𝐷̂, 𝐻0𝐴𝑠) max {√𝑏ℎ𝐻0𝜌′(𝑠)

𝐴𝐻
∗

𝐴𝑠
− 𝛾 (𝑠; √

𝑏ℎ𝜌′(𝑠)

𝐻0
, 𝐻̂, 𝐻0𝐴𝑠) , 0}. 

Here 𝑏ℎ is an ODE model parameter, 𝐻0 is the total number of epithelial cells according to the 

ODE model parameters and 𝐴𝐻
∗  is a critical contact area with uninfected cells derived from the 

critical population value above which dead cells can recover, and below which uninfected cells 

can die. Using these forms and the cellularization of the remaining ODE model, the stochastic 

dynamics of the epithelial sheet occur according to the forms shown in Table 2, including infection 

of uninfected cells by extracellular virus, death of uninfected cells by ROS and the Allee effect, 

death of infected cells by ROS, contact-mediated killing by NK and CD8+ T cells, recovery of 

dead cells by the Allee effect and recruitment of local macrophages and NK and CD8+ T cells. 

Each type transition is considered once per simulation step for each cell in simulation, in the order 

of dead cells, infected cells, uninfected cells.  

Table 2. Stochastic dynamics of the epithelial sheet generated from cellularization of the influenza ODE model for epithelial cells 

of uninfected 𝐻̂, infected 𝐼 and dead 𝐷̂ types and immune cells of macrophage 𝑀̂, NK cell 𝐾̂ and CD8+ T cell 𝐸̂ types. The transition 

from type 𝑌̂ to type 𝑍̂ is denoted 𝑌̂ → 𝑍̂. All symbols with subscripts are parameters from the ODE model. Mean cellular 

measurement of extracellular virus 𝑣̅ is calculated according to the form described in Table 1. 𝑐, 𝑝 and 𝑥 are the total chemokines, 

APCs and ROS in the spatial domain, and 𝜌(𝑠) = 1 − 𝜌′(𝑠) is the resistance of cell 𝑠.  

Type transition Transition rate 

Infection 𝐻̂ → 𝐼  
𝑔ℎ𝑣𝑣̅

𝜃
 

Uninfected death 𝐻̂ → 𝐷̂  
𝑔ℎ𝑥𝑥ℎ𝑥

𝑥ℎ𝑥 + (𝜂𝑎ℎ𝑥)ℎ𝑥
+ 𝑎𝐷 

Infected death 𝐼 → 𝐷̂  
𝑔𝑖𝑥𝑥ℎ𝑥

𝑥ℎ𝑥 + (𝜂𝑎𝑖𝑥)ℎ𝑥
+ 𝛾(𝑠; 𝑔𝑖𝑘𝜌, 𝐾, 𝐻0𝐴𝑠) + 𝛾(𝑠; 𝑔𝐼𝑒𝜌, 𝐸̂, 𝐻0𝐴𝑠) + 𝜇𝑖𝜌

′ 

Recovery 𝐷̂ → 𝐻̂  𝑎𝐻 

Local immune type Inflow rate Outflow rate 

Macrophage 𝑀̂  𝜂 (
𝑏𝑚𝑐𝑐ℎ𝑚

𝑐ℎ𝑚 + (𝜂𝑎𝑚𝑐)ℎ𝑚
+ 𝑏𝑚𝜇𝑚) 

𝜇𝑚 

NK cell 𝐾  𝜂 (
𝑏𝑘𝑐𝑐ℎ𝑘

𝑐ℎ𝑘 + (𝜂𝑎𝑘𝑐)ℎ𝑘
+ 𝜇𝑘𝑏𝑘) 𝜇𝑘 +

𝑔𝑘𝑖

𝜂
∑ 𝜌(𝑠)

𝑠∈{𝑠′∶𝜏(𝑠,𝑡)=𝐼}

 

CD8+ T cell 𝐸̂  
𝜂𝑏𝑒𝑝𝑝ℎ𝑒

𝑝ℎ𝑒 + (𝜂𝑎𝑒𝑝)
ℎ𝑒

 𝜇𝑒 +
𝑏𝑒𝑖

𝜂
∑ 𝜌(𝑠)

𝑠∈{𝑠′∶𝜏(𝑠′,𝑡)=𝐼}

 

 

Additional Spatial Mechanisms 

Beyond the cell-based models that can be generated from the ODE model using cellularization, 

the ODE model implicitly describes spatiotemporal aspects of influenza A infection and immune 

response that we can infer, impose or propose using additional data, assumptions and hypotheses. 

For the simplest case, employing the CPM requires imposing a volume constraint on each cell, the 

quantities, but not geometries, of which the ODE model describes. As such, we impose an 

approximate cell diameter of 10 µm on all cells according to the typical size of epithelial cells and 

simplification of negligible differences in typical volume among cell types (Table 3).  
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Table 3. Model parameters of spatial mechanisms used for all simulation.  

Parameter Value Source/Justification 

Volume constraint 𝑣𝑐  100 µm2 Chosen for an average cell diameter of 10 µm 

Volume multiplier 𝜆𝑣  9 (21) 

Diffusion coefficients 

Extracellular virus  0.0119 µm2 s-1 Chosen for a diffusion length of 5 cell diameters (21) 

Chemokines  1.04 µm2 s-1 Chosen for a diffusion length of 10 cell diameters (21) 

Type I IFN  0.520 µm2 s-1 Chosen for a diffusion length of 2 cell diameters for short-range anti-viral signaling  

Interleukin-10  0.327 µm2 s-1 Chosen for a diffusion length equal to that of chemokines  

Chemotaxis parameters 𝜆𝑐  

Macrophage – virus 5,000 Chosen for strong chemotaxis according to typical field values 

NK – chemokines 5,000 Chosen for moderate chemotaxis according to typical field values 

CD8+ T – chemokines 10,000 Chosen for strong chemotaxis according to typical field values 

Adhesion parameters 𝐽  

Uninfected – immune 20 Chosen for preferential attachment to infected cells 

Infected – immune 10 Chosen for preferential attachment to infected cells 

Dead – immune 20 Chosen for preferential attachment to infected cells 

Homotypic immune 25 Chosen to prevent aggregation of immune cells 

Heterotypic immune 10 Chosen to prevent aggregation of immune cells 

 

The ODE model describes the killing of infected cells proportionally to the number of NK 

and CD8+ T cells. In the spatial model, we place macrophages and NK and CD8+ T cells at the site 

of infection and explicitly model their shape and motility, which provides the opportunity to 

generate an explicit description of the spatiotemporal mechanisms involved in local immune cells 

locating and eliminating infection. We model immune cell locomotion by introducing chemotaxis 

and haptotaxis modeling to the biological objects and processes of the ODE model under the 

premise that NK and CD8+ T cells perform contact-mediated killing of infected cells, and that 

macrophages perform phagocytosis of virus and release soluble inflammatory signals (Figure 2). 

For a complete list of all behaviors, roles and properties of the cell types and fields of the model, 

see Appendix 2 in Supplementary Materials.  

 

Figure 2. Local immune response model. A. Schematic of select model objects and processes in the spatial domain associated 

with infection, local immune response and local immune cell locomotion. Macrophages 𝑀 chemotax towards extracellular virus 
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𝑉 released by infected cells 𝐼, and release chemokines 𝐶. NK and CD8+ T cells 𝐾 and 𝐸 chemotax towards chemokines, and 

haptotax towards and kill infected cells through contact-mediated cytotoxic killing. B. Detailed view of local immune cells over 

six hours of simulation. Two CD8+ T cells (annotated “1” and “2”) migrate towards a common target, perform cytotoxic killing 

of underlying infected cells (not shown) and then migrate towards different targets. A macrophage is recruited to the local 

domain at hour 5 (annotated “3”). Aggregates of immune cells in the bottom left and top right of the detailed view respond to 

dense distributions of infected cells. Macrophages, NK cells and CD8+ T cells shown as maroon, cyan and green, respectively.  

Based on phagocytosis and inflammatory signaling by macrophages, we model 

macrophages as chemotaxing up gradients of extracellular virus, and NK and CD8+ T cells as 

chemotaxing up gradients of chemokines. We also model the specialization of CD8+ T cells as 

their chemotactic sensitivity being twice that of NK cells. Based on contact-mediated killing of 

infected cells, we model stronger adhesion of immune cells to infected cells compared to 

uninfected and dead cells. We determined in early computational experiments that generating an 

effective local immune response also required preferential attachment that prevents excessive 

homotypic aggregation of immune cells but allows both heterotypic aggregates of immune cells 

and dispersion of immune cell aggregates according to chemoattractant distributions. As such, we 

model adhesion of immune cells to other immune cell types and the medium the same as to infected 

cells, and to immune cells of the same type the same as to uninfected and dead cells.  

We approximated the diffusive characteristics of local soluble signals by diffusion length 

(i.e., √(𝛿/𝑞) for diffusion coefficient 𝛿 and decay rate 𝑞) in units of cell diameters, using the decay 

parameters of the ODE model. Diffusion of extracellular virus and chemokines were approximated 

with diffusion lengths of five and ten cell diameters, respectively, based on previous, comparable 

modeling work on local infection and immune response (21). The diffusion length of IL-10 was 

assumed to be the same as that of chemokines, while type I IFN was modeled with a diffusion 

length of two cell diameters to model local anti-viral signaling.  

Implementation Details 

Simulations were performed with comparable configurations to those in similar modeling work on 

local infection and immune response (21). All simulations were executed in CompuCell3D (24) 

with either a lattice planar dimension of 0.3 mm or 1.0 mm. Every lattice was discretized with a 

discretization length of 2 µm for cells that, on average, occupied 25 sites (Table 4). The local 

scaling coefficient 𝜃 = 4×10-8 µm-2 was calculated from the total number of epithelial cells 

according to the ODE model (250k) and cell volume constraint 𝑣𝑐. The local scaling coefficient 𝜂 

was calculated as the ratio of the number of epithelial cells in the simulation domain to those in 

the ODE model parameters, and was 0.0049 and 0.04 for lattices with planar dimensions of 0.3 

mm and 1.0 mm, respectively. Neumann and periodic conditions were applied to boundaries 

parallel and orthogonal, respectively, to the epithelial sheet. Epithelial cells were arranged in a 

uniform grid of 5x5 squares. All simulations used a time step of one minute per step, which was 

determined to be sufficiently small for numerically stability, particularly of type I IFN signaling. 

All ODE model parameters were taken from (14). Scaling was performed by epithelial cell 

population for an ODE model epithelial cell population of 250k cells. Using the prescribed volume 

constraint, simulations using only the ODE model showed the potential for local immune cells to 

exceed the available space in the immune cell layer, an event called overcrowding in 

cellularization. To mitigate overcrowding, we employed the cellularization strategy of partially 
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homogenizing local immune cell populations, where all macrophages are explicitly represented in 

the spatial domain (since they provide directional signaling), while 25% of NK and CD8+ T cells 

act homogeneously as scalar-valued functions. All local immune cells were seeded into the 

immune cell layer with a seeding fraction of 1% according to field values of their chemoattactrants 

(i.e., by virus for macrophages, by chemokines for NK and CD8+ T cells).  

Table 4. Implementation parameters used in all simulations.  

Parameter Value Source/Justification 

Time step ∆𝑡 1 min. step-1 Chosen for numerical stability 

Lattice width 2 µm Chosen for epithelial cell size of 5 x 5 sites 

Intrinsic random motility ℋ∗  10 (23) 

Seeding fraction 1% Chosen for efficient local immune response (22) 

Local fraction 

Macrophages 100% Chosen to explicitly model directional signaling in immune response 

NK cells 75% Chosen to mitigate overcrowding according to ODE model results 

CD8+ T cells 75% Chosen to mitigate overcrowding according to ODE model results 

Results 

In this section we present results from simulations of the spatial, cell-based model of influenza A 

infection and immune response. Given the stochasticity of the cell-based models, we simulate 

multiple simulation replicas for all initial conditions and parameter sets to demonstrate both their 

qualitative dynamical and stochastic features. In all scenarios, we employ one of two types of 

initial conditions: initial viral load, where simulations are initialized with a nonzero amount of 

virus, which is uniformly applied in the extracellular virus field; or initial infection fraction, where 

a fraction of epithelial cells are randomly selected at the beginning of simulation and initialized as 

infected. All replicas were executed for two weeks of simulation time at most, and were terminated 

early if all epithelial cells were dead (a determined lethal scenario), or if all were uninfected and 

total extracellular virus was less than 0.001, which was several orders of magnitude less than 

typical values during infection (an assumed non-lethal scenario). To compare results between the 

ODE and spatial models, we also simulated all scenarios using the ODE model while scaling 

results to the size of the spatial model.  

Testing Agreement in Small Epithelial Patches 

To evaluate the agreement between the ODE and spatial models using the described cellularization 

in Models and Methods, we first simulated fifty replicas of small epithelial patches of area 0.3 mm 

x 0.3 mm with high initial infection fraction, which has been shown to mitigate potential spatial 

effects of initial infection in cellularized models of viral infection (22). As such, we imposed an 

initial infection fraction of 5% comparably to related previous work (25,26).  

5% initial infection generated a lethal outcome in all simulation replicas within four days 

of simulation time, with marginal stochasticity among simulation replicas (Figure 3). Spatial 

distributions of local immune cells showed mostly sparsely distributed macrophages in the first 

day of simulation, with some aggregation near groups of infected cells. By one day of simulation 

time, NK and CD8+ T cells began arriving at the site of infection and accumulated in locations 

with high chemokines. By two days of simulation time, after most, if not all, epithelial cells had 

died, local immune cells formed branching patterns and intermixed by type. In general, simulation 
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replicas well recapitulated ODE model results. Type I IFN results demonstrated the most notable 

differences around the time when the number of infected cells was at its maximum, with 

corresponding downstream effects. In particular, paracrine regulation of type I IFN release was 

inhibited by diffusion, which lead to greater production of type I IFN and, to a lesser extent, 

extracellular virus. Slightly greater extracellular virus resulted in slightly less antibodies and 

slightly earlier infection and death of all epithelial cells in some simulation replicas.  

  

Figure 3. Spatial model results for 5% initial infection fraction. A. Spatial distribution of epithelial cells (top) and local immune 

cells (bottom) in a simulation replica at 0, 0.25, 0.5, 1, 1.5 and 2 days. Uninfected cells shown as blue, infected cells as red, dead 

cells as black, macrophages as maroon, NK cells as cyan, and CD8+ T cells as green. B. Results from 50 simulation replicas of 

the spatial model (colored lines) compared to ODE model results (black line) for epithelial cells, extracellular virus, and select 

immune cell types and signals.  

Disagreement in Large Epithelial Patches 

Having shown acceptable agreement between the spatial and ODE models under marginally 

stochastic initial infection conditions, we generated a spatial equivalent of the lethal scenario to 
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which the ODE model was calibrated by exposing large, uninfected epithelial patches to an initial 

viral load. We simulated 50 replicas of 1.0 mm x 1.0 mm epithelial patches, which, for the chosen 

spatial model parameters and 250k epithelial cells in the original ODE model simulations, 

collectively total two model organisms of the ODE model.  

In all simulation replicas, at most, marginal infection occurred, in strong disagreement with 

ODE model predictions of a lethal outcome at around ten days (Figure 4). Figure 4A shows spatial 

distributions of one representative replica where any notable infection occurred, which consisted 

of an isolated lesion of infected and dead cells that recovered within two weeks. During early 

progression of such lesions, inflammatory signaling recruited significant numbers of macrophages, 

which localized at the lesion and subsequently recruited local NK and CD8+ T cells. Some new, 

later infection sites were also observed but well mitigated by present antibodies and quickly 

eliminated by the already stimulated immune response. In these cases, present local immune cells 

migrated with the general pattern of macrophages chemotaxing towards infected cells, followed 

by present, and reinforced by newly recruited, local NK and CD8+ T cells. In many other 

simulation replicas, no infection occurred, and the initial viral load decayed with no indication in 

the epithelial patch of exposure to virus (Figure 4B).   
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Figure 4. Spatial model results for the lethal exposure scenario. A. Spatial distribution of epithelial cells (top), local immune cells 

(middle) and extracellular virus (bottom) in a simulation replica at 0, 1, 2, 4, 5 and 10 days. Cell types shown as in Figure 3. The 

color bar shows contour levels of the extracellular virus distribution. B. Results from 50 simulation replicas of the spatial model 

(colored lines) compared to ODE model results (black line) for uninfected cells (left), extracellular virus (center), and CD8+ T 

cells (right).  

Only Large Initial Viral Load Produces Agreement 

Because the initial viral load in the calibrated lethal scenario of the ODE model did not generate a 

lethal outcome in the spatial model, we tested varying initial viral loads to determine at what order 

of magnitude of initial viral load the spatial model generates a lethal outcome. Since the ODE 

model was calibrated to both non-lethal and lethal scenarios, where the lethal scenario differed 

from the non-lethal scenario only by a 10-fold increase in initial viral load, we performed a 

logarithmic parameter sweep of initial viral load by beginning with the spatial model equivalent 

to the non-lethal scenario, and increasing the initial viral load by a factor of 10 until the spatial 

model produced lethal outcomes in twenty simulation replicas.  

 

Figure 5. Results from simulation replicas of the spatial model (colored lines) compared to ODE model results (black line) for 

uninfected cells (top), infected cells (top-middle), extracellular virus (bottom-middle), and antibodies (bottom) for initial viral 

load multipliers, from left to right, of 1, 10, 100, 1000 and 10000.  
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We found that the spatial model begins to generate lethal outcomes when the initial viral 

load is at least greater than the initial viral load of the calibrated lethal scenario by a factor of 100 

(Figure 5). Increasing the initial viral load of the lethal scenario (Figure 5, initial viral load of 10) 

by factors of 10 and 100 did not produce a lethal outcome in any simulation replica over two weeks 

of simulation time, though, besides the difference in outcome, the latter produced comparable 

predictions to those of the ODE model. A 1k increase in initial viral load from the lethal scenario 

produced at least nearly lethal outcomes in all simulation replicas, with the number of uninfected 

cells reaching minima at least as low as 10 cells (i.e., 0.1% uninfected). Many simulation replicas 

produced no uninfected cells at times as early as three and a half days, compared to about two and 

a half days according to the ODE model (i.e., when the number of uninfected cells is less than 1 

according to the ODE model). In some replicas, marginal numbers of uninfected cells persisted as 

late as twelve and a half days, while two replicas demonstrated recovery of the epithelial patch and 

a corresponding non-lethal outcome. For this initial viral load, spatial model results disagreed 

otherwise only in amount of extracellular virus for replicas that produced a non-lethal outcome. 

We found these differences to be due to the difference in treatment of cell populations (i.e., as 

continuous quantities in the ODE model and as discrete quantities in the spatial model), where cell 

populations being less than one exhibits no notable effects in the ODE model, whereas discrete 

cell populations in the spatial model cease to exhibit any effects by having a number of cells equal 

to zero. For the calibrated non-lethal scenario (Figure 5, initial viral load of 1), no infection 

occurred in 19 out of 20 replicas, and in the one replica that did experience any infection, the 

maximum number of infected was two orders less, and occurred about two days earlier, than that 

of the ODE model.  

For simulation replicas that did experience significant amounts of infection (e.g., for those 

with lethal outcomes), we observed multiple sites of significant infection within the first day after 

exposure (Figure 6). These sites were locations of significant recruitment of local macrophages 

and subsequent recruitment of local NK and CD8+ T cells, as well as localized type I IFN, which 

later became more homogeneous due to production by nonlocal APCs. Spatial distributions of 

chemokines and IL-10 showed gradients most apparently at around two days of simulation time, 

with IL-10 being greater in regions with significant accumulation of local immune cells, and 

became mostly homogeneous by around one week of simulation time when immune cells mostly 

covered the epithelial patch. For simulation replicas with the highest initial viral load that 

recovered (e.g., as in Figure 6), groups of uninfected epithelial that survived infection and immune 

response by around one week of simulation time became the sites of recovery of the epithelial 

patch, which became apparent by about two weeks of simulation time as outgrowths of uninfected 

cells into a distribution of otherwise dead cells.  
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Figure 6. Spatial distribution of, from top to bottom, epithelial cells, local immune cells, and extracellular virus, type I IFN, 

chemokines and IL-10 in a simulation replica with 1000 initial viral load at 0, 1, 2, 4, 7 and 14 days. Cell types shown as in 

Figure 3. The color bar shows contour levels of diffusive species from zero to the maximum value per field. Each field maximum 

shown along the right border. 

Only Large Initial Fractions of Infected Cells Produce Agreement 

Since much higher initial viral loads were required to generate significant infection in large 

epithelial sheets using the spatial model compared to the ODE model, we then tested agreement 

between the ODE and spatial models while varying initial infection fraction in 1 mm x 1 mm 

epithelial patches. We varied the initial infection fraction in a logarithmic sweep at intervals of 

0.1%, 0.5%, 1% and 5% and simulated twenty simulation replicas for each initial infection 

fraction. As in Testing Agreement in Small Epithelial Patches, 5% initial infection fraction can 
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produce fatal outcomes but in large epithelial sheets, though at times no earlier than about five 

days, but can also produce non-fatal outcomes (Figure 7). For all simulation replicas subjected to 

5% initial infection fraction, the epithelial patch experienced infection comparably to that 

predicted by the ODE model, however in some cases a few uninfected cells survived and initiated 

recovery. As initial infection fraction decreased, peak extracellular virus and infected cells in the 

spatial model occurred later and with lesser magnitude, and all simulation replicas produced a non-

fatal outcome for initial infection fraction less than or equal to 1%, all of which are fatal according 

to the ODE model.  

 

Figure 7. Results from simulation replicas of the spatial model (colored lines) compared to ODE model results (black line) for 

uninfected cells (top), infected cells (top-middle), extracellular virus (bottom-middle), and antibodies (bottom) for initial 

infection fraction, from left to right, of 0.001, 0.005, 0.01 and 0.05. 
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Discussion 

Our simulation scenario (i.e., the periodic boundary conditions) implies that our simulation 

replicas are constituent elements of a patterned system, the collection of which the ODE model 

describes. Comparable work using cellularized models of viral infection have shown that this 

premise can produce spatial model replicas that are valid spatiotemporal microconfigurations of 

an ODE model when initially infected cells are essentially spatially homogeneous (22). We 

showed that simulation replicas using the cellularized model and introduced spatial model 

mechanisms of this work can also serve as microconfigurations of the original ODE model of 

influenza infection and immune response under the same boundary and initial infection conditions. 

However, using spatially homogeneous initial exposure conditions consistently with those 

employed during calibration of the ODE model generated far less severe infection. This strongly 

suggests the role of localization of exposure in influenza A infection, in particular that local 

exposure to virus must be multiple orders of magnitude greater than a uniformly applied exposure 

to all available susceptible cells. As such, we propose that the particularities of the 

microenvironment to which the virus is introduced plays a dominant role in disease onset and 

progression. This is particularly important in therapeutics and modeling, alike, in that spatially 

resolved patient data of the state of infection may elucidate future health states based on 

susceptibility of potential lesion sites, which could be better understood and more reliably 

predicted with spatially-resolved models of the type presented in this work.  

Differential adhesion and chemotaxis parameters of the introduced spatial model 

mechanisms were formulated qualitatively, and only roughly calibrated to recapitulate ODE model 

results in Testing Agreement in Small Epithelial Patches. Interestingly, the employed differential 

adhesion was necessary to recapitulate ODE model results, the role of which is currently not well-

defined. These roles are fairly intuitive when considering the observed temporary aggregation of 

NK and CD8+ T cells in simulations. Were the differential adhesion scheme employed such that 

NK and CD8+ T cells show a preferential attachment to each other, then the observed aggregations 

at sites of infection due to recruitment would result in ineffective subsequent elimination of 

infected cells due to the continued aggregation of NK and CD8+ T cells. As such, the model 

predicts that aggregation of local cytotoxic immune cells is due to chemotactic signaling and 

preferential attachment to infected cells, and that ineffective binding between cytotoxic immune 

cells makes their subsequent dispersal and translocation, and thus effective contact-mediated local 

immune response mechanisms, possible.  

The most prominent differences between the spatial and ODE models all resolve to 

localization of type I IFN and recovery. The ODE model, and correspondingly the cellularized 

spatial model, describe saturated release of type I IFN, the saturation of which is diffusion-limited 

in the spatial model. This leads to differences not only in total over-production of type I IFN in the 

spatial models, but also in downstream over-production of virus (i.e., diffusion-limited anti-viral 

resistance), with corresponding lesser availability of total antibodies due to interactivity with virus. 

However, such differences between the ODE and spatial models were shown to be marginal under 

certain exposure conditions (e.g., very high initial viral load or infection fraction) and, as 

previously described, to be significant when the lack of representing localization of virus in the 

spatial model significantly inhibits the progression of infection (or even its occurrence) in the 
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spatial model epithelial patch. The cellularized Allee effect, which was recast to make associated 

death and recovery mechanisms dependent on the state and local conditions of individual cells, 

also produced differences in ODE and spatial model results by allowing recovery with very few 

total uninfected cells in the spatial model. While we found differences in associated cell deaths to 

be marginal (and hence, not shown), the spatial model can produce recovery of the epithelial patch 

in scenarios where associated cell death and a corresponding fatal outcome occur in the ODE 

model (e.g., Figure 5), depending on the state and local conditions of uninfected epithelial cells.  

Future Work 

The cellularized model of influenza infection and immune response present a number of 

opportunities for future model development, integration and application. The components of the 

immune response in the cellularized model can be readily integrated into modular frameworks of 

viral infection dynamics and immune response that do detailed modeling of other mechanisms like 

viral internalization and intracellular viral replication dynamics (21). Such activities present two-

fold opportunities for novel insights into host-pathogen interactions, in that the immune response 

components represented here can be leveraged in other viral applications, and likewise integration 

with other modeling work can be inform further development of the cellularized model presented 

here. In the case of modeling influenza, detailed modeling of intracellular viral replication while 

leveraging simulation capabilities like those available in BioNetGen (27) may provide insights 

into the role of the timing of viral internalization and release, and into the meaning of the calibrated 

model parameters of the ODE model.  

An approach to effectively modeling local features of exposure would significantly 

improve the ability of our cellularized model to present spatially resolved predictions about the 

progression of influenza infection and immune response, though will likely require considering 

mechanisms that are only very implicitly described by the ODE model such as mucociliary 

clearance. As such, future work should combine the cellularized model presented here with 

available experimental data and modeling of exposure scenarios. Likewise, future work should 

further explore and develop a cellular basis for the mechanisms represented by the Allee effect, in 

particular what all is represented when imposing an organismal-level property like the number of 

a particular cell type onto the fate of individual cells (e.g., levels of growth factors, hormones, 

blood pressure).  

The current type I IFN model constitutes the overwhelming majority of computational cost 

of the spatial model. In particular, calculating a cellular property like resistance 𝜌 from the mean 

value of a local diffusion field requires sufficiently small time steps, since its downstream effects 

include regulation of future type I IFN production. We plan to make improvements to cellularized 

mechanisms associated with type I IFN production, as well as to CompuCell3D, to permit larger 

time steps and better facilitate computational performance. Such improvements are particularly 

critical to modeling bigger tissue patches and more complicated tissue geometries, and simulating 

longer scenarios.  

Lastly, we are particularly interested in further developing other spatial aspects of the 

cellularized model to further elucidate associated cellular and spatial aspects of influenza infection 
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and immune response, as well as the immune response, in general. We can use in vitro data of cell 

migration to refine the proposed locomotion model of local immune cells at a site of infection, 

both to better understand how adhesion and chemotaxis affect the effectiveness of the immune 

response, and to isolate necessary additional model mechanisms to better represent local aspects 

of immune response. At a broader level, we can perform similar activities to this project but for 

other sites of interest associated with the ODE model. For example, the ODE model presents 

systemic response data that can guide development of spatiotemporal, cell-based models of B cell 

maturation, antigen presentation, and antibody production and circulation. We envision a 

computational framework consisting of multiple compartments simulating spatiotemporal models 

of various sites of interest throughout an organism (e.g., multiple sites of infection, lymph nodes, 

thymus), which could be interconnected using the techniques of cellularization in similar fashion 

to what was employed in this work.  

Conclusion 

In this work we developed and employed a multiscale, spatiotemporal, stochastic, cell-based model 

of influenza infection and immune response by cellularization of an existing, calibrated ODE 

model. We developed spatial models of necessary mechanisms related to differential adhesion and 

chemotaxis of local immune cells to recapitulate ODE model results using the spatial model, and 

generated a cellularized form of the Allee effect to describe recovery of epithelial cells in terms of 

cell state and local conditions. We used the developed spatial model to show how exposure to virus 

should be locally concentrated to generate significant infection in an epithelium, while uniform 

exposure to virus is likely ineffective. We also used our developed spatial models to elucidate the 

necessary roles of differential adhesion and local chemotaxis for an effective local immune 

response, both concerning the locating by macrophages, and the eliminating by NK and CD8+ T 

cells, of infected cells.  
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Supplementary Materials  

Appendix 1 

This section presents the complete cellularization of the ODE model. The cellularized form of each 

ODE is presented along with the original ODE form according to the cellularization scheme 

described in Models and Methods. In general, we employ the notation that for a number of cells 𝑍 
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of cell type 𝑍̂ according to the scale of the ODE model, the corresponding number of cells of type 

𝑍̂ in the spatial domain is written as 𝑧. The same notation is employed for soluble signals (e.g., 𝐴 

measured at the scale of the ODE model is 𝑎 measured at the scale of the spatial model), with the 

exception that we write 𝑇∗ as the total amount of TNF in the spatial domain (so as not to be 

confused with time). For the soluble signals chemokines 𝐶, IL-10 𝐿, type I IFN 𝐹 and extracellular 

virus 𝑉 with explicitly represented spatial distributions 𝑐̃, 𝑙, 𝑓 and 𝑣̃, respectively, the global 

amounts 𝑐, 𝑙, 𝑓 and 𝑣 are calculated as the volume integral of their respective spatial distribution 

over the spatial domain. For all other soluble signals, their spatial distribution is treated as uniform 

over the spatial domain when appropriate (e.g., for antibodies, 𝐴 = 𝜂−1𝑎 = 𝜃−1𝑎̃).  

The ODE model describes two pro-inflammatory signals Σ1 and Σ2, the first of which 

describes dead cells and TNF as stimuli for production of chemokines and IL-10 and stimuli to the 

second signal, and the second of which describes the first and extracellular virus as stimuli for 

production of TNF. For the first signal,  

Σ1 = 𝑎11𝑇 + 𝑎12𝐷, 

and for the second signal,  

Σ2 = Σ1 +
𝑎21𝑉

𝑎22 + 𝑉
. 

Both signals are treated as global signals in the spatial model with corresponding values 𝜎1 = 𝜂Σ1 

and 𝜎2 = 𝜂Σ2, such that for the first signal,  

𝜎1 = 𝑎11𝑇∗ + 𝑎12𝑑, 

and for the second signal,  

𝜎2 = 𝜎1 +
𝜂𝑎21𝑣

𝜂𝑎22 + 𝑣
. 

Soluble Signals 

The model mechanisms for chemokines, IL-10, type I IFN and extracellular virus are described in 

Models and Methods, where also a cell-based description of viral resistance 𝜌 due to type I IFN is 

described. In the ODE model, the corresponding model of viral resistance 𝑅 of the epithelial cell 

population takes the form,  

𝑅 =
𝐹

𝑎𝑟𝑓 + 𝐹
. 

The rate equation for extracellular virus has the form,  

𝑑𝑉

𝑑𝑡
= 𝑔𝑣𝑖(1 − 𝑅)𝐼 − 𝑔𝑣ℎ𝐻𝑉 − 𝑔𝑣𝑎𝑉𝐴 −

𝑔𝑣𝑉

1 + 𝑎𝑣𝑉
− 𝜇𝑣𝑉. 

The rate equation for chemokines in the ODE model has the form,  
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𝑑𝐶

𝑑𝑡
=

𝑏𝑐Σ1𝑀

Σ1 +
𝑔1𝐿 + 𝑔2

𝐿 + 𝑑2

− 𝜇𝑐𝐶. 

The rate equation for IL-10 in the ODE model has the form,  

𝑑𝐿

𝑑𝑡
=

𝑏𝑙Σ1𝑀

Σ1 +
𝑔1𝐿 + 𝑔2

𝐿 + 𝑑2

− 𝜇𝑙(𝐿 − 𝑏𝑙ℎ(1 − 𝑅)𝐻). 

The rate equation for type I IFN has the form,  

𝑑𝐹

𝑑𝑡
= 𝑏𝑓𝑖(1 − 𝑅)𝐼 + 𝑏𝑓𝑝𝑃 − 𝑔𝑓𝑖𝐼𝐹 − 𝜇𝑓𝐹. 

In the inflammatory response, the ODE model describes production of TNF by the second 

pro-inflammatory Σ2 and macrophages, and regulated by IL-10,  

𝑑𝑇

𝑑𝑡
=

𝑏𝑡Σ2𝑀

Σ2 + (Σ2 +
𝑔1𝐿 + 𝑔2

𝐿 + 𝑑2
)

𝑘1𝐿 + 𝑘2

𝐿 + 𝑑1

− 𝜇𝑡𝑇. 

The spatial model treats TNF as uniformly distributed, with the corresponding rate equation,  

𝑑𝑇∗

𝑑𝑡
=

𝑏𝑡𝜎2𝑚

𝜎2 + (𝜎2 +
𝜂(𝑔1𝑙 + 𝜂𝑔2)

𝑙 + 𝜂𝑑2
)

𝑘1𝑙 + 𝜂𝑘2

𝑙 + 𝜂𝑑1

− 𝜇𝑡𝑇∗. 

The ODE model describes production of ROS by tissue neutrophils and its uptake by uninfected 

and infected cells,  

𝑑𝑋

𝑑𝑡
=

𝑏𝑥𝑛𝑁

𝑁 + 𝑎𝑥𝑛
− 𝑔𝑥𝑖𝐼𝑋 − 𝑔𝑥ℎ𝐻𝑋 − 𝜇𝑥𝑋. 

The spatial model treats ROS as uniformly distributed, with the corresponding rate equation,  

𝑑𝑥

𝑑𝑡
=

𝜂𝑏𝑥𝑛𝑛

𝑛 + 𝜂𝑎𝑥𝑛
−

𝑔𝑥𝑖𝑖𝑥

𝜂
−

𝑔𝑥ℎℎ𝑥

𝜂
− 𝜇𝑥𝑥. 

In the immune response, the ODE model describes production of IL-12 by APCs mediated 

by CD4+ T cells,  

𝑑𝑊

𝑑𝑡
=

𝑏𝑤𝑜𝑂𝑃

𝑂 + 𝑎𝑤𝑜
− 𝜇𝑤𝑊. 

The spatial model treats IL-12 as uniformly distributed, with the corresponding rate equation, 

𝑑𝑤

𝑑𝑡
=

𝑏𝑤𝑜𝑜𝑝

𝑜 + 𝜂𝑎𝑤𝑜
− 𝜇𝑤𝑤. 

The ODE model describes production of type II IFN by NK and CD4+ T cells mediated by IL-12,  
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𝑑𝐺

𝑑𝑡
=

𝑏𝑔𝑜𝑊𝑂

𝑊 + 𝑎𝑔𝑜
+

𝑏𝑔𝑘𝑊𝐾

𝑊 + 𝑎𝑔𝑘
− 𝜇𝑔𝐺 

The spatial model treats type II IFN as uniformly distributed, with the corresponding rate equation,  

𝑑𝑔

𝑑𝑡
=

𝑏𝑔𝑜𝑤𝑜

𝑤 + 𝜂𝑎𝑔𝑜
+

𝑏𝑔𝑘𝑤𝑘

𝑤 + 𝜂𝑎𝑔𝑘
− 𝜇𝑔𝑔. 

The ODE model describes production of antibodies by B cells, their reaction with extracellular 

virus, and a homeostatic nonzero level,  

𝑑𝐴

𝑑𝑡
= 𝑏𝑎 + 𝑏𝑎𝑏𝐵 − 𝑔𝑎𝑣𝑉𝐴 − 𝜇𝑎𝐴. 

The spatial model treats antibodies as uniformly distributed, with the corresponding rate equation,  

𝑑𝑎

𝑑𝑡
= 𝜂𝑏𝑎 + 𝑏𝑎𝑏𝑏 −

𝑔𝑎𝑣𝑣𝑎

𝜂
− 𝜇𝑎𝑎. 

Epithelial Cell Dynamics 

In the epithelial sheet, the ODE model describes, in order, an Allee effect, infection and killing by 

ROS, in the dynamics of the uninfected cell population,  

𝑑𝐻

𝑑𝑡
=

𝑏ℎ(1 − 𝑅)𝐻𝐷(𝐻 − 𝐻∗)

𝐻0
− 𝑔ℎ𝑣𝑉𝐻 −

𝑔ℎ𝑥𝑋ℎ𝑥𝐻

𝑋ℎ𝑥 + 𝑎ℎ𝑥
ℎ𝑥

, 

where 𝐻∗ is a critical population value above which recovery occurs, and below which additional 

death of uninfected cells occurs. In the dynamics of the infected cell population, the ODE model 

describes, in order, infection and killing by ROS, NK cells, CD8+ T cells and resistance-associated 

effects,  

𝑑𝐼

𝑑𝑡
= 𝑔ℎ𝑣𝑉𝐻 −

𝑔𝑖𝑥𝑋ℎ𝑥𝐼

𝑋ℎ𝑥 + 𝑎𝑖𝑥
ℎ𝑥

− 𝑔𝑖𝑘𝑅𝐾𝐼 − 𝑔𝐼𝑒𝑅𝐸𝐼 − 𝜇𝑖(1 − 𝑅)𝐼. 

The Allee effect is split into the discrete, stochastic processes of uninfected cells becoming 

dead cells, and of dead cells becoming uninfected cells. Both processes occur due to neighborhood 

conditions of individual cells. Using the notation 𝐴𝑠,𝑍̂ to denote the contact area between cell 𝑠 and 

𝑍̂ − type cells and 𝐴𝑠 to denote the total contact area of cell 𝑠, the following equalities are true 

under well-mixed conditions,  

𝐴𝑠

𝐻0
=

𝐴𝑠,𝐻̂

𝐻
=

𝐴𝑠,𝐷̂

𝐷
=

𝐴𝐻
∗

𝐻∗
, 

where 𝐴𝐻
∗  is a critical contact area with uninfected cells above which dead cells can recover, and 

below which uninfected cells can die. The probability of recovery in each dead cell 𝑠 then occurs 

according to an equipollent recovery rate 𝑎𝐻 = 𝑎𝐻(𝑠),  
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𝑎𝐻(𝑠) =
𝑏ℎ𝐻0𝜌′(𝑠)

𝐴𝑠
2

𝐴𝑠,𝐻̂ max{𝐴𝑠,𝐻̂ − 𝐴𝐻
∗ , 0}. 

Likewise the probability of death of an uninfected cell due to the Allee effect occurs according to 

an equipollent Allee death rate 𝑎𝐷,  

𝑎𝐷(𝑠) =
𝑏ℎ𝐻0𝜌′(𝑠)

𝐴𝑠
2

𝐴𝑠,𝐷̂ max{𝐴𝐻
∗ − 𝐴𝑠,𝐻̂, 0}. 

Noting that for epithelial cells, 𝐴𝑠 = 𝐴𝐻̂ = 𝐴𝐷̂, and using the contact-mediated equipollent rate 𝛾 

from cellularization, the recovery and Allee death rates can then be written as  

𝑎𝐻(𝑠) = 𝛾 (𝑠; √
𝑏ℎ𝜌′(𝑠)

𝐻0
, 𝐻̂, 𝐻0𝐴𝑠) max {𝛾 (𝑠; √

𝑏ℎ𝜌′(𝑠)

𝐻0
, 𝐻̂, 𝐻0𝐴𝑠) − √𝑏ℎ𝐻0𝜌′(𝑠)

𝐴𝐻
∗

𝐴𝑠
, 0}, 

𝑎𝐷(𝑠) = 𝛾 (𝑠; √
𝑏ℎ𝜌′(𝑠)

𝐻0
, 𝐷̂, 𝐻0𝐴𝑠) max {√𝑏ℎ𝐻0𝜌′(𝑠)

𝐴𝐻
∗

𝐴𝑠
− 𝛾 (𝑠; √

𝑏ℎ𝜌′(𝑠)

𝐻0
, 𝐻̂, 𝐻0𝐴𝑠) , 0}. 

Applying these cellularized forms of the Allee effect and the other mechanisms described 

in the ODE model, the probability of infection and death for each uninfected cell are, respectively,  

Pr(𝜏(𝑠, 𝑡 + ∆𝑡) = 𝐼|𝜏(𝑠, 𝑡) = 𝐻̂) = 1 − 𝑒−
𝑔ℎ𝑣𝑣̅∆𝑡

𝜃 , 

Pr(𝜏(𝑠, 𝑡 + ∆𝑡) = 𝐷̂|𝜏(𝑠, 𝑡) = 𝐻̂) = 1 − 𝑒
−(𝑎𝐷+

𝑔ℎ𝑥𝑥̅ℎ𝑥

𝑥̅ℎ𝑥+(𝜃𝑎ℎ𝑥)ℎ𝑥
)∆𝑡

, 

where 𝑔ℎ𝑣, 𝑔ℎ𝑥 and 𝑎ℎ𝑥 are ODE model parameters. The probability of death for each infected 

cell is then  

Pr(𝜏(𝑠, 𝑡 + ∆𝑡) = 𝐷̂|𝜏(𝑠, 𝑡) = 𝐼) = 1 − 𝑒
−(

𝑔𝑖𝑥𝑥̅ℎ𝑥

𝑥̅ℎ𝑥+(𝜃𝑎𝑖𝑥)ℎ𝑥
+𝛾(𝑠;𝑔𝑖𝑘𝜌,𝐾̂,𝐻0𝐴𝑠)+𝛾(𝑠;𝑔𝐼𝑒𝜌,𝐸̂,𝐻0𝐴𝑠)+𝜇𝑖𝜌′)∆𝑡

, 

where 𝑔𝑖𝑥, 𝑎𝑖𝑥, 𝑔𝑖𝑘, 𝑔𝐼𝑒 and 𝜇𝑖 are ODE model parameters. The probability of recovery for each 

dead cell is then  

Pr(𝜏(𝑠, 𝑡 + ∆𝑡) = 𝐻̂|𝜏(𝑠, 𝑡) = 𝐷̂) = 1 − 𝑒−𝑎𝐻∆𝑡 . 

Immune Cell Dynamics 

In the inflammatory response, the ODE model describes recruitment of macrophages by 

chemokines and a resident macrophage population,  

𝑑𝑀

𝑑𝑡
=

𝑏𝑚𝑐𝐶ℎ𝑚

𝐶ℎ𝑚 + 𝑎𝑚𝑐
ℎ𝑚

− 𝜇𝑚(𝑀 − 𝑏𝑚). 

The spatial model explicitly models macrophages in the spatial domain. Inflow of macrophages is 

described by the cellularized probability,  
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Pr(add 𝐽 𝑀̂ − type cells) = 1 − 𝑒−𝑎𝑀∆𝑡 ∑
(𝑎𝑀∆𝑡)𝑗

𝑗!
0≤𝑗≤𝐽

, 

𝑎𝑀 = 𝜂 (
𝑏𝑚𝑐𝑐ℎ𝑚

𝑐ℎ𝑚 + (𝜂𝑎𝑚𝑐)ℎ𝑚
+ 𝑏𝑚𝜇𝑚), 

and outflow of macrophages is described by the cellularized probability,  

Pr(remove 𝑠|𝜏(𝑠) = 𝑀̂) = 1 − 𝑒−𝜇𝑚∆𝑡. 

The ODE model describes recruitment of blood neutrophils by TNF regulated by IL-10 and 

recruitment of tissue neutrophils from blood neutrophils by chemokines. For blood neutrophils 

according to the ODE model,  

𝑑𝑁̃

𝑑𝑡
=

𝑏𝑛𝑡𝑇

𝑇 + 𝑎𝑛𝑙𝐿 + 𝑎𝑛𝑡
−

𝑔𝑛𝑐𝐶𝑁̃

𝐶 + 𝑎𝑛𝑐
− 𝜇𝑛𝑁̃, 

and for tissue neutrophils according to the ODE model,  

𝑑𝑁

𝑑𝑡
=

𝑔𝑛𝑐𝐶𝑁̃

𝐶 + 𝑎𝑛𝑐
− 𝜇𝑛𝑁. 

The spatial model treats both blood and tissue neutrophils as globally acting populations. As such, 

in the spatial model blood and tissue neutrophils are also modeled with an ODE scaled to the size 

of the spatial domain. In the spatial model, for blood neutrophils,  

𝑑𝑛̃

𝑑𝑡
=

𝜂𝑏𝑛𝑡𝑇∗

𝑇∗ + 𝑎𝑛𝑙𝑙 + 𝜂𝑎𝑛𝑡
−

𝑔𝑛𝑐𝑐𝑛̃

𝑐 + 𝜂𝑎𝑛𝑐
− 𝜇𝑛𝑛̃, 

and for tissue neutrophils,  

𝑑𝑛

𝑑𝑡
=

𝑔𝑛𝑐𝑐𝑛̃

𝑐 + 𝜂𝑎𝑛𝑐
− 𝜇𝑛𝑛. 

In the immune response, the ODE model describes the generation of APCs by extracellular 

virus and dead infected cells 𝐷𝐼 upregulated by type II IFN and a resident population,  

𝑑𝑃

𝑑𝑡
= 𝑝0 (

𝑔𝑝𝑣𝑉

𝑉 + 𝑎𝑝𝑣
+ 𝑔𝑝𝑖𝐷𝐼) (𝑔𝑝 +

𝑏𝑝𝑔𝐺

𝐺 + 𝑎𝑝𝑔
) − 𝜇𝑝(𝑃 − 𝑏𝑝). 

The spatial model describes APCs as globally acting with a scaled ODE model,  

𝑑𝑝

𝑑𝑡
= 𝜂𝑝0 (

𝑔𝑝𝑣𝑣

𝑣 + 𝜂𝑎𝑝𝑣
+

𝑔𝑝𝑖𝑑𝐼

𝜂
) (𝑔𝑝 +

𝑏𝑝𝑔𝑔

𝑔 + 𝜂𝑎𝑝𝑔
) − 𝜇𝑝(𝑝 − 𝜂𝑏𝑝). 

The ODE model describes the recruitment of NK cells by chemokines regulated by resistant 

infected cells and a resident population,  
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𝑑𝐾

𝑑𝑡
=

𝑏𝑘𝑐𝐶ℎ𝑘

𝐶ℎ𝑘 + 𝑎𝑘𝑐
ℎ𝑘

− 𝑔𝑘𝑖𝑅𝐼𝐾 − 𝜇𝑘(𝐾 − 𝑏𝑘) 

The spatial model explicitly models NK cells in the spatial domain. Inflow of NK cells is described 

by the cellularized probability,  

Pr(add 𝐽 𝐾̂ − type cells) = 1 − 𝑒−𝑎𝐾∆𝑡 ∑
(𝑎𝐾∆𝑡)𝑗

𝑗!
0≤𝑗≤𝐽

, 

𝑎𝐾 = 𝜂 (
𝑏𝑘𝑐𝑐ℎ𝑘

𝑐ℎ𝑘 + (𝜂𝑎𝑘𝑐)ℎ𝑘
+ 𝜇𝑘𝑏𝑘), 

and outflow of NK cells is described by the cellularized probability,  

Pr(remove 𝑠|𝜏(𝑠) = 𝐾̂) = 1 − 𝑒−𝑟𝐾∆𝑡, 

𝑟𝐾 = 𝜇𝑘 +
𝑔𝑘𝑖

𝜂
∑ 𝜌(𝑠)

𝑠∈{𝑠′∶𝜏(𝑠,𝑡)=𝐼}

. 

Note that the effects of infected cells on the NK cell population could also be interpreted as 

resulting from NK cell death by contact-mediated interactions, as with killing of infected cells by 

NK cells. We instead implement the simpler case here and assume that the infected cell population 

has an indirect, inhibitory effect on recruitment of NK cells to the local domain. The ODE model 

describes the recruitment of CD4+ T cells by APCs,  

𝑑𝑂

𝑑𝑡
=

𝑏𝑜𝑝𝑃ℎ𝑜

𝑃ℎ𝑜 + 𝑎𝑜𝑝
ℎ𝑜

− 𝜇𝑜𝑂. 

The spatial model describes CD4+ T cells as globally acting with a scaled ODE model,  

𝑑𝑜

𝑑𝑡
=

𝜂𝑏𝑜𝑝𝑝ℎ𝑜

𝑝ℎ𝑜 + (𝜂𝑎𝑜𝑝)
ℎ𝑜

− 𝜇𝑜𝑜. 

The ODE model describes the recruitment of CD8+ T cells by APCs regulated by resistant infected 

cells,  

𝑑𝐸

𝑑𝑡
=

𝑏𝑒𝑝𝑃ℎ𝑒

𝑃ℎ𝑒 + 𝑎𝑒𝑝
ℎ𝑒

− 𝑏𝑒𝑖𝑅𝐼𝐸 − 𝜇𝑒𝐸 

The spatial model explicitly models CD8+ T cells in the spatial domain. Inflow of CD8+ T cells 

is described by the cellularized probability,  

Pr(add 𝐽 𝐸̂ − type cells) = 1 − 𝑒−𝑎𝐸∆𝑡 ∑
(𝑎𝐸∆𝑡)𝑗

𝑗!
0≤𝑗≤𝐽

, 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.20.432089doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.20.432089
http://creativecommons.org/licenses/by/4.0/


27 

 

𝑎𝐸 =
𝜂𝑏𝑒𝑝𝑝ℎ𝑒

𝑝ℎ𝑒 + (𝜂𝑎𝑒𝑝)
ℎ𝑒

, 

and outflow of CD8 + T cells is described by the cellularized probability,  

Pr(remove 𝑠|𝜏(𝑠) = 𝐸̂) = 1 − 𝑒−𝑟𝐸∆𝑡, 

𝑟𝐸 = 𝜇𝑒 +
𝑏𝑒𝑖

𝜂
∑ 𝜌(𝑠)

𝑠∈{𝑠′∶𝜏(𝑠′,𝑡)=𝐼}

. 

As with NK cells, that the effects of infected cells on the CD8+ T cell population could also be 

interpreted as resulting from CD8+ T cell death by contact-mediated interactions. We also 

implement the simpler case for CD8+ T cells and assume that the infected cell population has an 

indirect, inhibitory effect on recruitment of CD8+ T cells to the local domain. The ODE model 

describes the recruitment of B cells by the combined action of IL-12 and APCs and a resident 

population,  

𝑑𝐵

𝑑𝑡
= 𝑏𝑏 + 𝑏𝑏𝑝𝑊𝑃(𝑏0 − 𝐵) − 𝜇𝑏𝐵. 

The spatial model describes B cells as globally acting with a scaled ODE model,  

𝑑𝑏

𝑑𝑡
= 𝜂𝑏𝑏 +

𝑏𝑏𝑝𝑤𝑝(𝜂𝑏0 − 𝑏)

𝜂2
− 𝜇𝑏𝑏. 

Appendix 2 

Table A2.1. Cell types and their mathematical symbols, behaviors and properties in the model. Locally modeled cells are denoted 

with (*).  

Cell Types Symbol Behaviors/Properties 

B cell 𝐵  - homeostatic population 

  - releases antibodies 𝐴  

Dead* 𝐷  - promotes release of TNF 𝑇 by macrophages 𝑀  

  - promotes release of chemokines 𝐶 by macrophages 𝑀  

  - promotes release of IL-10 𝐿 by macrophages 𝑀  

  - recruits APCs 𝑃  

CD8+ T cell* 𝐸  - chemotaxes towards chemokines 𝐶  

  - haptotaxes towards infected cells 𝐼  

  - kills infected cells 𝐼 by contact-mediated interaction 

Uninfected* 𝐻  - uptakes virus 𝑉  

  - releases IL-10 𝐿  

  - uptakes ROS 𝑋  

Infected* 𝐼  - releases virus 𝑉  

  - releases type I IFN 𝐹  

  - uptakes type I IFN 𝐹  

  - uptakes ROS 𝑋  

  - inhibits recruitment of NK cells 𝐾  

  - inhibits recruitment of CD8+ T cells 𝐸  
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NK cell* 𝐾  - chemotaxes towards chemokines 𝐶  

  - haptotaxes towards infected cells 𝐼  

  - kills infected cells 𝐼 by contact-mediated interaction 

  - releases type II IFN 𝐺  

Macrophage* 𝑀  - homeostatic resident population at site of infection 

  - chemotaxes towards virus 𝑉  

  - haptotaxes towards infected cells 𝐼  

  - releases chemokines 𝐶  

  - releases IL-10 𝐿  

  - releases TNF 𝑇  

Tissue neutrophil 𝑁  - releases ROS 𝑋  

Blood neutrophil 𝑁̃  - transforms to tissue neutrophils 𝑁̃  

CD4+ T cell 𝑂  - promotes release of IL-12 𝑊 by APCs 𝑃  

  - releases type II IFN 𝐺  

APC 𝑃  - homeostatic population 

  - releases type I IFN 𝐹  

  - releases IL-12 𝑊  

  - recruits CD4+ T cells 

  - recruits CD8+ T cells 

  - promotes B cell production 

 

Table A2.2. Fields and their mathematical symbols, roles and properties in the model. Locally modeled fields are denoted with (*).  

Fields Symbol Roles/Properties 

Antibodies 𝐴  - homeostatic level 

  - antagonizes virus 𝑉  

Chemokines* 𝐶  - chemoattractant for NK cells 𝐾  

  - chemoattractant for CD8+ T cells 𝐸  

  - recruits macrophages 

  - recruits tissue neutrophils 𝑁 from blood neutrophils 𝑁̃  

  - recruits NK cells 𝐾  

Type I IFN* 𝐹  - inhibits release of virus 𝑉 by infected cells 𝐼  

  - inhibits release of IL-10 𝐿 by uninfected cells 𝐻  

  - inhibits release of type I IFN 𝐹 by infected cells 𝐼  

  - inhibits Allee effect recovery 

  - inhibits Allee effect death 

  - promotes killing of infected cells 𝐼 by NK cells 𝐾  

  - promotes killing of infected cells 𝐼 by CD8+ T cells 𝐸  

  - inhibits apoptosis by infected cells 𝐼  

  - promotes inhibition of recruitment of NK cells 𝐾 by infected cells 𝐼  

  - promotes inhibition of recruitment of CD8+ T cell 𝐸 by infected cells 𝐼  

Type II IFN 𝐺  - promotes recruitment of APCs 𝑃 by virus 𝑉  

  - promotes recruitment of APCs 𝑃 by dead cells 𝐷  

IL-10* 𝐿  - inhibits release of chemokines 𝐶 by macrophages 𝑀  

  - inhibits release of IL-10 𝐿 by macrophages 𝑀  

  - inhibits release of TNF 𝑇 by macrophages 𝑀  

  - inhibits recruitment of blood neutrophils 𝑁̃  

TNF 𝑇  - promotes release of TNF 𝑇 by macrophages 𝑀  

  - promotes release of chemokines 𝐶 by macrophages 𝑀  
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  - promotes release of IL-10 𝐿 by macrophages 𝑀  

  - recruits blood neutrophils 𝑁̃  

Virus* 𝑉  - chemoattractant for macrophages 𝑀  

  - promotes release of TNF 𝑇 by macrophages 𝑀  

  - cleared by environmental mechanisms 

  - antagonizes antibodies 𝐴  

  - infects uninfected cells 𝐻  

  - recruits APCs 𝑃  

IL-12 𝑊  - promotes release of type II IFN 𝐺 by NK cells 𝐾  

  - promotes release of type II IFN 𝐺 by CD4+ T cells 𝑂  

  - promotes B cell production 

ROS 𝑋  - kills uninfected cells 𝐻 by diffusion-mediated interaction 

  - kills infected cells 𝐼 by diffusion-mediated interaction 
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