

1 **Competence-associated peptide BriC alters fatty acid biosynthesis in**
2 ***Streptococcus pneumoniae***

3

4 **Running Title:** Secreted peptide alters fatty acid biosynthesis

5

6 **Authors:** Surya D. Aggarwal¹, Jessica M. Gullett², Tara Fedder¹, J. Pedro F. Safi¹, Charles O.
7 Rock², N. Luisa Hiller^{1*}

8

9 ¹Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA

10 ²Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN

11

12

13 *corresponding author: lhiller@andrew.cmu.edu

14

15 **Keywords:** *Streptococcus pneumoniae*, fatty acid biosynthesis, membrane
16 phospholipid composition, biofilms, cell-cell communication, competence

17 **ABSTRACT**

18
19 Membrane lipid homeostasis is required for bacteria to survive in a spectrum of host
20 environments. This homeostasis is achieved by regulation of fatty acid chain length and
21 of the ratio of saturated to unsaturated fatty acids. In the pathogen *Streptococcus*
22 *pneumoniae*, fatty acid biosynthesis is encoded by a cluster of fatty acid biosynthesis
23 (*fab*) genes (FASII locus) whose expression is controlled by the *FabT* repressor.
24 Encoded immediately downstream of the FASII locus is *BriC*, a competence-induced,
25 cell-cell communication peptide that promotes biofilm development as well as
26 nasopharyngeal colonization in a murine model of pneumococcal carriage. Here, we
27 demonstrate that *briC* is co-transcribed with genes of the *fab* gene cluster and that a
28 reduction of *briC* levels, caused by decoupling its transcription from *fab* gene cluster,
29 negatively impacts biofilm development. *BriC* elevates *fabT* transcription, which is
30 predicted to alter the balance of saturated and unsaturated fatty acids produced by the
31 pathway. We find that *briC* inactivation results in a decreased production of unsaturated
32 fatty acids that impact the membrane properties by decreasing the abundance of di-
33 unsaturated phosphatidylglycerol molecular species. We propose that the link between
34 *BriC*, *FabT* and phospholipid composition contributes to the ability of *S. pneumoniae* to
35 alter membrane homeostasis in response to the production of a quorum-sensing
36 peptide.

37

38 **IMPORTANCE**

39 Adaptation of bacteria to their host environment is a key component of colonization and
40 pathogenesis. As an essential component of bacterial membranes, fatty acid
41 composition contributes to host adaptation. Similarly, so does cell-cell communication,
42 which serves as a mechanism for population levels responses. While much is known
43 about the pathways that control the biosynthesis of fatty acids, many questions remain
44 regarding regulation of these pathways and consequently the factors that impacts the
45 balance between saturated and unsaturated fatty acids. We find that BriC, a cell-cell
46 communication peptide implicated in biofilm regulation and colonization, is both
47 influenced by a fatty acid biosynthesis pathway and impacts this same pathway. This
48 study identified a link between cell-cell communication, fatty acid composition, and
49 biofilms and, in doing so, suggests that these pathways are integrated into the networks
50 that control pneumococcal colonization and host adaptation.

51

52

53 **INTRODUCTION**

54 *Streptococcus pneumoniae* (pneumococcus) is a major human pathogen. Worldwide, it
55 is responsible for over one million annual deaths in children and the elderly (1). Drug
56 resistant pneumococcus is classified as a serious threat by the CDC, such that there is
57 a need for new therapies. Fatty acid synthesis is a core function of the cell, and as such
58 a potential drug target.

59

60 In bacteria, fatty acids can be acquired by two independent pathways: *de novo*
61 production or uptake from host cells. *De novo* phospholipid synthesis in pneumococcus
62 is carried out by thirteen dissociated fatty acid synthesis genes that are a part of the
63 FASII system. These genes are encoded in a single cluster on the genome and act to
64 elongate and modify acetyl-CoA primers to produce saturated and unsaturated acyl
65 chains attached to an acyl carrier protein (ACP). Attachment to ACP allows binding of
66 any acyl chain to FASII enzymes. Uptake from the host is mediated by the fatty acid
67 kinase (Fak) system that incorporates exogenous fatty acids into the phospholipid
68 membrane (2, 3).

69

70 In pneumococcus, the regulation of the FASII locus is under control of FabT, which
71 autoregulates itself and represses most FASII genes except for FabM (4, 5). FabT is
72 constitutively expressed and binds with low affinity to the promoter regions of *fabT* and
73 *fabK*, thereby permitting some transcription of genes in the FASII locus. Long chained
74 acyl-ACPs, from FASII or exogenous sources, regulate FASII through FabT.

75 Specifically, the FabT-acyl-ACP complex which strengthens FabT's affinity for DNA and
76 blocks FASII gene transcription (2, 3, 6).

77

78 In the current model, the balance between saturated (SFA) and unsaturated (UFA) fatty
79 acids requires an isomerase, FabM. FabM catalyzes the conversion of *trans*-2- to *cis*-3-
80 enoyl-ACP (4, 5, 7). The SFA:UFA ratio is determined by the competition of FabM and
81 FabK for the available enoyl-ACP. If FabK utilizes the enoyl-ACP, SFA are produced,
82 and if FabM utilizes the intermediate, UFA are produced. Because FabM catalyzes an
83 equilibrium reaction, its overexpression has little impact on UFA levels compared to the
84 larger effects of independently manipulating either the FabK or FabF levels (Lu and
85 Rock, 2006). Because FabT regulates FabK and FabF, but not FabM, modulation of
86 FabT repression levels by the combination of *fabT* expression and/or acyl-ACP levels
87 impacts the balance between SFA and UFA synthesis.

88

89 In many Gram-positive bacteria, including pneumococcus, uptake of fatty acids blocks
90 *de novo* synthesis by triggering an inhibition of endogenous fatty acid synthesis (via
91 FabT in the pneumococcus). For example, like *S. pneumoniae*, *Enterococcus faecalis*
92 encodes two *acp* genes: *acpA* encoded within the fatty acid synthesis (*fab*) operon and
93 *acpB* encoded in an operon with the acyl-ACP:phosphate transacylase *plsX*. Long chain
94 acyl-ACP-dependent repression via exogenous fatty acids is selective for AcpB in *E.*
95 *faecalis*. The transcription of two ACPS, present in different neighborhoods, ensures that
96 acyl-ACPs originating from a host will regulate FASII synthesis; incoming acyl chains
97 are paired with AcpB while *acpA* and *fabT* are repressed (8). In this manner many

98 bacteria, via their ability to synthesize membrane from fatty acids acquired from the
99 host, can survive without *de novo* synthesis as long as external sources are available.
100 Another factor that regulates FASII is the WalRK histidine kinase signal transduction
101 system (also known as YycFG and VicRK). Overexpression of the response regulator,
102 WalR, modifies the expression of twelve FAS genes and results in cells phenotypically
103 similar to *fabT* mutants that have longer-chained fatty acids (9).

104

105 Immediately downstream of the pneumococcal FASII locus is the small peptide, BriC
106 (biofilm regulator induced by competence). BriC is a ribosomally-synthesized peptide
107 that belongs to the class of double-glycine secreted peptides in pneumococcus (10).
108 The expression of *briC* is induced directly by ComE, the master regulator of
109 competence, and BriC is secreted via the competence-associated ABC transporter,
110 ComAB (11). Some pneumococcal isolates, including those from the clinically important
111 PMEN1 and PMEN14 lineages, encode a RUPB1-containing *briC* promoter which
112 provides a competence-independent induction of *briC* in an otherwise competence-
113 dependent pathway. The production and secretion of BriC promote late stage biofilm
114 development *in vitro*, and nasopharyngeal colonization in a murine model of
115 pneumococcal carriage (11).

116

117 Here, we show that *briC* is co-transcribed with genes of the *fab* gene cluster, and that its
118 expression modulates the membrane fatty acid composition of *S. pneumoniae*. In
119 accordance with the role of BriC in promoting biofilm development, decreasing levels of
120 *briC* by decoupling its transcription from the *fab* gene cluster negatively influences

121 biofilm development. The *briC* knockout strains have altered levels of *fabT* expression
122 coupled with a distinct shift in membrane phospholipid molecular species composition.
123 Thus, BriC contributes to the regulation of *S. pneumoniae* FASII either directly or
124 indirectly by altering the transcription of the FabT regulon.

125
126 **RESULTS**
127

128 ***briC* is co-transcribed with genes of the *fab* gene cluster**

129 BriC is a competence-induced gene product, yet a basal level of transcription is
130 observed even in the absence of competence (11). The coding region for *briC* is
131 immediately downstream of the *fab* gene cluster (159 base pairs downstream of *accA*
132 (*spd_0390*) in strain R6D) (**Fig. 1A**). Thus, we hypothesized that the basal levels of *briC*
133 may be attributed to its co-transcription with genes of the *fab* gene cluster. Since the
134 genes spanning from *fabK* through *accA* are transcribed as a polycistronic unit (4), we
135 tested whether *briC* is transcribed with the last two genes of this operon: *accD* and
136 *accA*. We performed PCR on cDNA synthesized using RNA from planktonic
137 pneumococcal cultures as a template and used it to determine whether transcripts
138 extend from *accD* or *accA* to *briC* (**Fig. 1B.i**). The results indicated that *briC* is co-
139 transcribed with genes of the *fab* gene cluster. An *in silico* search reveals two putative
140 promoter sequences, which may drive the co-transcription of *briC* and genes of the *fab*
141 gene cluster (**Fig. 1A**). The first is upstream of *fabK*, and the second is within the coding
142 sequence of *fabG*. These promoters contain putative -35 and -10 regions, and are in
143 agreement with promoters previously identified by Cappable-seq (12).

144

145 To study the importance of co-regulation of *briC* with genes of the *fab* gene cluster, we
146 opted to decouple the transcription of *briC* from that of the *fab* gene cluster. We
147 generated a strain with a transcriptional terminator immediately downstream of *accA*
148 (*term*⁺ strain). As expected, while a transcript with *briC* alone is present in the *term*⁺
149 strain, the *accA-briC* transcript is no longer detected (**Fig. 1B.ii**). Thus, introduction of
150 the terminator relieved *briC* of its co-transcription with genes of the *fab* gene cluster.
151 Further, the competence-dependent induction of *briC* was preserved in the *term*⁺ strain
152 (*briC* was induced 3.26-fold following CSP treatment). We conclude that *briC*
153 expression can be regulated in concurrence with the *fab* gene cluster, as well as
154 independently via CSP.

155

156 **Co-expression of *briC* with genes from the *fab* gene cluster contributes to biofilm
157 development**

158 We have previously demonstrated that BriC promotes biofilm development (11). Since
159 *briC* can be co-transcribed with the upstream fatty acid genes, we hypothesized that
160 decoupling *briC* from fatty acid synthesis would negatively impact biofilm development.
161 In support, we observe an approximately 15% reduction in biofilm biomass and
162 thickness in the *term*⁺ cells relative to WT cells, when testing biofilms at 72h post-
163 seeding on abiotic surfaces (**Fig. 2A, B**). While maximum thickness is a measure of the
164 distance of highest point or the peak from the bottom layer containing biomass, the
165 average thickness over biomass is an indicator of the general shape and spatial size of
166 the biofilm.

167

168 To establish whether the biofilm defect was associated with an alteration in the
169 competence-dependent induction of *briC*, we tested biofilm development in cells where
170 *briC* was regulated in a competence-independent fashion. We made use of a strain
171 where *briC* is overexpressed due to a promoter that encodes a RUP sequence
172 ($P_{briC_{long}}\text{-}briC$), and where *comE* is deleted (henceforth, referred to as $\Delta comE\text{/}briC$ -
173 OE). We have previously shown that expression of *briC* from $P_{briC_{long}}$
174 bypasses the impact of *comE* deletion on biofilm development (11). Thus, we tested
175 whether decoupling transcription of *briC* from the *fab* gene cluster by the introduction of
176 terminator (*term*⁺) influences biofilms in the $\Delta comE\text{/}briC$ -OE background. Akin to the
177 WT background, presence of the terminator (*term*⁺) leads to a significant reduction in
178 biomass and thickness of biofilms in the $\Delta comE\text{/}briC$ -OE strain compared to the *term*
179 strain in the same background (Fig. 2C, D). These results strongly suggest that
180 induction of *briC* via control of the *fab* gene cluster contributes to the role of BriC in
181 promoting biofilm development. Thus, regardless of the mechanism of induction,
182 increased expression of *briC* positively contributes to biofilm development.

183

184 **BriC contributes to membrane compositional homeostasis**

185 BriC is a secreted peptide that is co-transcribed with genes of the *fab* gene cluster.
186 Owing to this genomic organization, we investigated whether BriC played any functional
187 role in altering fatty acid synthesis in pneumococcal cells. FabT regulates genes of the
188 *fab* gene cluster, including itself (4). To test the impact of BriC on expression of *fabT*,
189 we generated a fusion of the *fabT* promoter with *lacZ* and measured the β -
190 galactosidase activity in WT and $\Delta briC$ strains. We observed approximately a 35%

191 decrease in β -galactosidase activity in $\Delta briC$ relative to WT cells (**Fig. 3**). We conclude
192 that BriC enhances *fabT* transcription from its autoregulated promoter. The reduced
193 expression of *fabT* signals repression of the entire regulon suggesting that the absence
194 of *briC* expression would alter the membrane phospholipid composition. Specifically, the
195 repression of the FabT regulon would increase UFA biosynthesis at the expense of SFA
196 (4).

197
198 This prediction was tested by determining the composition of the membrane
199 phospholipids in wild-type and $\Delta briC$ strains. Pneumococcus uses the FASII system to
200 produce acyl chains which are transferred, via positionally-specific acyltransferases, to
201 the 1- and 2-positions of glycerol-3-phosphate (G3P) that determine the composition of
202 phosphatidic acid, the precursor to all membrane glycerolipids. We employed liquid
203 chromatography-mass spectrometry (LC-MS) to determine the phosphatidylglycerol (PG)
204 membrane molecular species composition in wild-type, $\Delta briC$, and *briC*-overexpressing
205 cells (*briC*-OE) cells. LC-MS analysis determines the total carbon number of acyl chains
206 in the 1- and 2- position of the G3P backbone, as well as the number of double bonds,
207 and is an accurate representation of the acyl chain production of pneumococcal strains.

208
209 The wild-type strain made primarily mono- and di-unsaturated PG molecular species with
210 the predominant peaks containing 32, 34, or 36 carbons (**Fig. 4A**). The molecular species
211 distribution in these samples consisted of 16:0, 16:1, 18:0, and 18:1 acyl chains and is
212 typical of other pneumococcal strains (2, 13). The acyl chains comprising the predominant
213 peaks correspond to 16:0/16:1 (32 carbons), 18:1 Δ 11/16:1 and 16:0/18:1 Δ 11 (34

214 carbons), and 18:1Δ11/18:1Δ11 (36 carbons) (2). In the $\Delta briC$ strain, we observed a
215 reduction in the unsaturated molecular species at each carbon number in comparison to
216 the wild-type strain (**Fig. 4B**). None of these changes were observed in the *briC*-OE cells
217 relative to the WT strain (**Fig. 4C**). The quantification of three replicates shows a
218 consistent decrease in the unsaturated PG molecular species at each carbon number
219 (**Fig. 4D**). We conclude that FASII of the $\Delta briC$ strain produces a lower amount of
220 unsaturated fatty acids that, in turn, alters the membrane phospholipid molecular species
221 composition. Together, these results suggest that BriC, via *fabT*, alters the lipid
222 composition of pneumococcal cell membranes, tilting the balance toward unsaturated
223 fatty acids.

224

225 **DISCUSSION**

226 Long chain fatty acids serve as essential components of bacterial membranes and
227 compositional changes therein are essential for cellular survival and environmental
228 adaptation. The biosynthesis of fatty acids is tightly regulated. While much is known
229 about the regulation and synthesis of the cell membrane, gaps remain regarding the
230 nature of the molecular signals that activate this pathway. Here we present evidence
231 that BriC, a small, secreted peptide implicated in cell-cell communication, is co-
232 transcribed with genes of the *fab* gene cluster and participates in regulation of
233 phospholipid membrane composition via a role in *fabT* induction. Moreover, as we have
234 previously shown that BriC promotes biofilms, we demonstrate that this phenotype is
235 linked to co-regulation between FASII genes and *briC*.

236

237 The demonstration that *briC* is co-transcribed with the *fab* gene cluster, reveals the third
238 regulatory pathway for *briC* regulation. The regulation of *briC* by ComE, via the ComE-
239 binding box, is conserved across strains in the species and demonstrates a tight link
240 between competence induction and *briC* expression (11). In a subset of strains, the
241 transcription of *briC* is also influenced by the presence of transposable RUP (repeat unit
242 of pneumococcus) sequence in its promoter (11). RUP allows for a CSP-independent
243 pathway for the expression of *briC*. The discovery that *briC* can be co-transcribed with
244 the *fab* gene cluster, reveals a third pathway for regulation. Further, it suggests that
245 BriC may be regulated by multiple two component systems, ComE and WalRK. WalRK
246 triggers the activation of the *fab* gene cluster and *briC* is co-transcribed with genes of
247 this locus, thus it is likely that WalRK promotes *briC* expression. The activation of *briC*
248 by multiple pathways is consistent with a gene network where BriC is positioned to
249 respond to diverse regulatory inputs. Signaling through WalRK is important in
250 maintenance of cell shape, division, pathogenesis and in the response to stresses such
251 as oxidative stress (14–16). Competence activation has also been described of as a
252 general SOS response pathway, as well as a sensor of cell density. Thus, the
253 colonization factor BriC may respond to cell density and stress conditions and induce
254 changes in membrane composition and biofilm growth.

255

256 We have previously demonstrated that BriC promotes biofilm development and
257 nasopharyngeal colonization (11). In this study, we show that BriC influences
258 membrane lipid composition. Are these phenotypes connected? A study comparing
259 transcriptional profiles of pneumococcal cells growing in biofilm versus planktonic mode

260 of growth found an upregulation of fatty acid biosynthesis genes during biofilm
261 development (17). A role for fatty acid biosynthesis and metabolism in biofilm formation
262 has also been reported in other bacteria including *Bacillus subtilis*, *Staphylococcus*
263 *aureus* and *Pseudomonas aeruginosa* (18–21). It seems plausible that BriC-dependent
264 changes in membrane properties contribute to biofilm development. Alternatively,
265 enhanced cell-cell signaling associated with a biofilm-mode of growth, may enhance
266 BriC-mediated effects on lipid composition, and serve as a link between biofilms and
267 lipid composition.

268

269 In this work, we have revealed a link between a cell-cell communication peptide and the
270 regulation of fatty acid composition. Our findings reveal that *briC* is co-regulated with the
271 *fab* gene cluster, and, reciprocally, that it impacts membrane homeostasis by
272 influencing transcription of the FabT regulon.

273

274 MATERIALS & METHODS

275 Bacterial strains & growth conditions

276 The experimental work was performed with the R6D wild-type strain of *Streptococcus*
277 *pneumoniae* (Hun663.tr4) as this was used in our previous studies of BriC (11).
278 Colonies were grown from frozen stocks by streaking on TSA-II agar plates
279 supplemented with 5% sheep blood (BD BBL, New Jersey, USA). Unless otherwise
280 stated, streaked colonies were picked and inoculated in fresh Columbia broth (Remel
281 Microbiology Products, Thermo Fisher Scientific, USA) whose pH was adjusted to 6.6

282 by the addition of 1M HCl and thereafter, incubated at 37°C and 5% CO₂ without
283 shaking.

284

285 **Construction of mutants**

286 Mutant strains were constructed by using site-directed homologous recombination and
287 selected by the addition of an antibiotic resistance marker. The *term⁺* transformation
288 construct was generated by ligating the amplified flanking regions with antibiotic
289 resistance cassette followed by transcriptional terminator B1002. Between 1-2kb of
290 flanking regions upstream and downstream of the region of interest were amplified from
291 parental strain using Q5 2x Master Mix (New England Biolabs, USA). The antibiotic
292 resistance gene *ermB* was amplified from *S. pneumoniae* SV35-T23. The sequence of
293 the terminator was added to the primers. The PCR products were assembled by Gibson
294 assembly using NEBuilder HiFi DNA Assembly Cloning Kit (New England Biolabs,
295 USA).

296

297 **Bacterial transformations**

298 Bacterial target strains were grown in acidic Columbia broth until an OD₆₀₀ of 0.05 and
299 followed by addition of 125µg/mL of CSP1 (sequence: EMRLSKFFRDFILQRKK;
300 purchased from GenScript, NJ, USA) and 1µg of transforming DNA. The cultures were
301 incubated at 37°C and 5% CO₂ without shaking for 2 hours followed by plating on
302 Columbia agar plates containing the appropriate antibiotic: kanamycin (150µg/ml),
303 erythromycin (2µg/ml) and incubating overnight. Resistant colonies were cultured in

304 selective media, and the colonies confirmed using PCR. Bacterial strains generated in
305 this study are listed in Supplementary Table S1.

306

307 **RNA extractions**

308 For qRT-PCR, samples were grown until an OD₆₀₀ of 0.1, followed by CSP1 treatment
309 for 0 and 10 minutes. This was followed by addition of RNALater to preserve RNA
310 quality and pelleting of cells. The cells were lysed by resuspending the pellet in an
311 enzyme cocktail (2mg/ml proteinase K, 10mg/ml lysozyme, and 20µg/ml mutanolysin).
312 Then, RNA was isolated using the RNeasy kit (Genesee Scientific, USA) following
313 manufacturer's instructions. Contaminant DNA was removed by treating with DNase
314 (2U/µL) at 37 °C for at least 45 mins followed by RNA purification using the RNeasy kit.
315 The RNA concentration was measured by NanoDrop 2000c spectrophotometer
316 (Thermo Fisher Scientific, USA). The purity of the RNA samples was confirmed by the
317 absence of a DNA band on an agarose gel obtained upon running PCR products for the
318 samples amplified for *gapdh*.

319

320 **qRT-PCR**

321 Purified RNA was used as a template for first-strand cDNA synthesis by using qScript
322 cDNA Synthesis Kit (Quantabio, USA) followed by qRT-PCR using PerfeCTa SYBR
323 Green SuperMix (Quantabio, USA) in an Applied Biosystems 7300 Instrument (Applied
324 Biosystems, USA).16S rRNA counts were used for normalization.

325

326

327 **Biofilm development assay**

328 For biofilm development assays, pneumococcal cells were grown in acidic Columbia
329 broth until the cultures reached an OD₆₀₀ of 0.05. Then, 3mls of culture was seeded on
330 35MM glass bottom culture dishes (MatTek Corporation, USA) and incubated at 37°C
331 and 5% CO₂ without shaking. At 24h and 48h post-seeding, the supernatant from the
332 dishes was carefully aspirated with a pipette, followed by the addition of the same
333 volume of pre-warmed media made at one-fifth of the original concentration. The
334 biofilms were fixed for analysis at 72h post-seeding. For fixation, supernatants were
335 aspirated, and the biofilms were washed thrice with PBS to remove non-adherent and
336 weakly adherent cells. Thereafter, biofilms were fixed with 4% paraformaldehyde
337 (Electron Microscopy Sciences, USA) for 20 minutes. The biofilms were then washed
338 with PBS three times and stained for confocal microscopy.

339

340 **Confocal microscopy & quantification of biofilms**

341 SYTO59 Nucleic Acid Stain (Life Technologies, USA) was used to stain biofilms as per
342 manufacturer's instructions for 30 minutes. The stained biofilms were then washed three
343 times and preserved in PBS for imaging. Imaging was performed on the stage of Carl
344 Zeiss LSM-880 META FCS confocal microscope, using 561nm laser for SYTO dye. Z-
345 Stacks were captures at every 0.46 μm, imaged from the bottom to the top of the stack
346 until cells were visible, and reconstructed in Carl Zeiss black edition and ImageJ. The
347 biofilm stacks were analyzed using COMSTAT2 plug-in for ImageJ (22) and the different
348 biofilm parameters (biomass, maximum thickness, and average thickness over
349 biomass) were quantified. For depiction of representative reconstructed Z-stacks, empty

350 slices were added to the images so the total number of slices across all the samples
351 were the same. The reconstructed stacks were pseudo-colored according to depth
352 using Carl Zeiss black edition.

353

354 **Construction of *lacZ* fusions**

355 Chromosomal transcriptional *lacZ*-fusions to the target promoters were constructed as
356 previously described (11). Briefly, *lacZ*-fusions were generated in the *bgaA* gene using
357 modified integration plasmid pPP2. The *fabT* and *fabK* promoter regions were amplified
358 from R6D strains and modified to contain KpnI and XbaI restriction sites. The products
359 were then digested with restriction enzymes followed by sticky-end ligation of the
360 products. These plasmids were transformed into *E. coli* TOP10 strain, and selected on
361 LB (Miller's modification, Alfa Aesar, USA) plates, supplemented with ampicillin
362 (100µg/ml). The plasmids were then purified by using E.Z.N.A. Plasmid DNA Mini Kit II
363 (OMEGA bio-tek, USA), and transformed into pneumococcal strains and selected on
364 Columbia agar plates supplemented with kanamycin (150µg/ml).

365

366 **β-galactosidase assay**

367 β-galactosidase assay was performed as previously described (23). For assaying the β-
368 galactosidase activity, cells were grown in TY media (TH medium supplemented with
369 0.5% yeast extract) until exponential phase and frozen. The frozen cells were thawed
370 and re-inoculated in TY media and grown until mid-exponential phase for analysis.

371

372

373 **Membrane Lipid Composition Analysis**

374 Bacterial cells were inoculated in CDM-Glucose and incubated at 37°C and 5% CO₂
375 without shaking until they reached an OD₆₀₀ of 0.5. CDM-Glucose was prepared as
376 previously described (PMID: 23505518). The cells were then pelleted by centrifuging at
377 4000rpm for 15 minutes followed by washing with PBS three times. The PBS was
378 decanted and the washed cells were frozen at -20°C before being resuspended in 1 ml
379 deionized water and vortexed. Lipids were resuspended in chloroform:methanol (2:1) and
380 extracted using the Bligh and Dyer method (24). PG was analyzed using a Shimadzu
381 Prominence UFC attached to a QTrap 4500 equipped with a Turbo V ion source (Sciex).
382 Samples were injected onto an Acquity UPLC BEH HILIC, 1.7 µm, 2.1 x 150 mm column
383 (Waters) at 45°C with a flow rate of 0.2 ml/min. Solvent A was acetonitrile, and solvent B
384 was 15 mM ammonium formate, pH 3. The HPLC program was the following: starting
385 solvent mixture of 96% A / 4% B, 0 to 2 min isocratic with 4% B; 2 to 20 min linear gradient
386 to 80% B; 20 to 23 min isocratic with 80% B; 23 to 25 min linear gradient to 4% B; 25 to
387 30 min isocratic with 4% B. The QTrap 4500 was operated in the Q1 negative mode. The
388 ion source parameters for Q1 were: ion spray voltage, -4500 V; curtain gas, 25 psi;
389 temperature, 350°C; ion source gas 1, 40 psi; ion source gas 2, 60 psi; and declustering
390 potential, -40 V. The system was controlled by the Analyst® software (Sciex). The sum
391 of the areas under each peak in the mass spectra was calculated, and the percent of
392 each molecular species present was calculated with LipidView software (Sciex).

393

394

395

396 **Statistical tests**

397 For comparisons between only two groups, student's *t*-test was performed. *p*-values of
398 less than 0.05 were considered to be statistically significant. Statistical analyses of the
399 ratios of PG molecular species were determined using an ANOVA and Tukey's Test.

400

401

402 **Acknowledgements.** We thank Matthew Frank for mass spectrometry and Jason
403 Rosch for thoughtful suggestions. This research was supported by NIGMS (GM034496
404 to CR), the American Lebanese Associated Charities (CR), NIAID (R01 AI139077-01A1
405 to NLH), the Eberly Family Trust (NLH) and Glen de Vries Fellowship (SDA). The
406 content is solely the responsibility of the authors and does not necessarily represent the
407 official views of the National Institutes of Health.

408 **FIGURE LEGENDS**

409 **Fig. 1. *briC* is co-transcribed with genes of the *fab* gene cluster. (A)** Genomic
410 organization of the *fab* gene cluster and *briC*. The *fab* gene cluster consists of thirteen
411 genes ranging from *fabM* to *accA*. *FabT* regulates the expression of two operons: *fabT-*
412 *acpP* and *fabK-accA*. *briC* is situated downstream of *accA*. Small dark green boxes
413 indicate promoters with a *FabT*-binding site, while light green box indicates an additional
414 putative promoter. Inset: *term⁺* strain contains *ermB* cassette followed by the terminator
415 B1002 immediately downstream of *accA*. Transcripts *fabT-acpP* and *fabK-accA* are
416 labelled. Labels A, B and C refer to the different transcripts tested below. **(B.i)** *briC* is
417 transcriptionally linked to genes of the *fab* gene cluster. gDNA and cDNA from WT
418 strain were amplified using primers expected to produce three different amplicons: A:
419 *briC* only (177bp), B: *accA-briC* (1088bp), C: *accD-briC* (1912bp), visualized on agarose
420 gel. **(B.ii)** Insertion of the terminator relieves co-transcription of *briC* with *accA*. gDNA
421 and cDNA from *term⁺* strain was amplified using primers expected to produce amplicons
422 A, B and C (as above), visualized on agarose gel. cDNA for *term⁺* shows a positive
423 band only for *briC* alone. Amplicons B & C from gDNA have a higher molecular size in
424 *term⁺* relative to WT because of the presence of *ermB* and terminator (additional
425 1051bp).

426

427 **Fig. 2. Co-expression of *briC* with the *fab* gene cluster promotes biofilm
428 development. (A, C)** Representative confocal microscopy images showing top view of
429 the reconstructed biofilm stacks of *term* and *term⁺* cells in **(A)** WT and **(C)** Δ *comE/briC*-
430 OE genomic background of strain R6D stained with SYTO59 dye at 72h. Images are
431 pseudo-colored according to depth (scales shown). **(B, D)** COMSTAT2 quantification of
432 72h biofilm images. Y-axis denotes units of measurement: $\mu\text{m}^3/\mu\text{m}^2$ for biomass, and
433 μm for maximum thickness and average thickness over biomass. Error bars represent
434 standard error of the mean calculated for biological replicates ($n = 3$); ** $p < 0.01$, ***
435 $p < 0.001$ and **** $p < 0.0001$ using Student's *t*-test.

436

437 **Fig. 3. BriC induces the levels of *fabT*. β -galactosidase assay comparing the LacZ
438 activity of *fabT* promoter in WT and Δ *briC* cells.** Cells were grown in TY medium
439 until mid-log phase. Y-axis denotes promoter activity in Miller Units expressed in nmol
440 p-nitrophenol/min/ml. Error bars represent standard error of the mean for biological
441 replicates ($n = 3$); "ns" denotes statistically non-significant comparison, ** $p < 0.01$ using
442 Student's *t*-test.

443

444 **Figure 4. BriC promotes a membrane composition enriched in unsaturated fatty
445 acids.** Mass spectrometry analysis of the PG molecular species of R6D pneumococcal
446 strain and its isogenic mutants. Representative spectrum of PG molecular species of
447 **(A)** WT, **(B)** Δ *briC*, and **(C)** *briC*-OE strains. The most unsaturated molecular species for

448 each carbon number are highlighted in red. **(D)** The PG species from three biological
449 replicates were quantified and the ratios for each carbon number were calculated. *p*-
450 values were calculated in Prism software using ANOVA followed by Tukey's test for
451 multiple comparisons.

452

453

454 **BIBLIOGRAPHY**

455 1. GBD 2016 Lower Respiratory Infections Collaborators. 2018. Estimates of the
456 global, regional, and national morbidity, mortality, and aetiologies of lower
457 respiratory infections in 195 countries, 1990–2016: a systematic analysis for the
458 Global Burden of Disease Study 2016. *Lancet Infect Dis* 18:1191–1210.

459 2. Gullett JM, Cuypers MG, Frank MW, White SW, Rock CO. 2019. A fatty acid-
460 binding protein of *Streptococcus pneumoniae* facilitates the acquisition of host
461 polyunsaturated fatty acids. *J Biol Chem* 294:16416–16428.

462 3. Parsons JB, Broussard TC, Bose JL, Rosch JW, Jackson P, Subramanian C,
463 Rock CO. 2014. Identification of a two-component fatty acid kinase responsible
464 for host fatty acid incorporation by *Staphylococcus aureus*. *Proc Natl Acad Sci U*
465 *S A* 111:10532–10537.

466 4. Lu Y-J, Rock CO. 2006. Transcriptional regulation of fatty acid biosynthesis in
467 *Streptococcus pneumoniae*. *Mol Microbiol* 59:551–566.

468 5. Marrakchi H, Choi K-H, Rock CO. 2002. A new mechanism for anaerobic
469 unsaturated fatty acid formation in *Streptococcus pneumoniae*. *J Biol Chem*
470 277:44809–44816.

471 6. Zuo G, Chen ZP, Jiang YL, Zhu Z, Ding C, Zhang Z, Chen Y, Zhou CZ, Li Q.
472 2019. Structural insights into repression of the Pneumococcal fatty acid synthesis
473 pathway by repressor FabT and co-repressor acyl-ACP. *FEBS Lett* 593:2730–
474 2741.

475 7. Fozo EM, Quivey Jr. RG. 2004. The fabM gene product of *Streptococcus mutans*
476 is responsible for the synthesis of monounsaturated fatty acids and is necessary
477 for survival at low pH. *J Bacteriol* 186:4152–4158.

478 8. Zhu L, Zou Q, Cao X, Cronan JE. 2019. *Enterococcus faecalis* encodes an
479 atypical auxiliary acyl carrier protein required for efficient regulation of fatty acid
480 synthesis by exogenous fatty acids. *MBio* 10:e00577-19.

481 9. Mohedano ML, Overweg K, de la Fuente A, Reuter M, Altabe S, Mulholland F, de
482 Mendoza D, López P, Wells JM. 2005. Evidence that the essential response
483 regulator YycF in *Streptococcus pneumoniae* modulates expression of fatty acid
484 biosynthesis genes and alters membrane composition. *J Bacteriol* 187:2357–
485 2367.

486 10. Aggarwal SD, Yesilkaya H, Dawid S, Hiller NL. 2020. The pneumococcal social
487 network. *PLoS Pathog* 16:e1008931.

488 11. Aggarwal SD, Eutsey R, West-Roberts J, Domenech A, Xu W, Abdullah IT,
489 Mitchell AP, Veening J-WW, Yesilkaya H, Hiller NL. 2018. Function of BriC
490 peptide in the pneumococcal competence and virulence portfolio. *PLoS Pathog*
491 14:e1007328.

492 12. Slager J, Aprianto R, Veening J-W. 2018. Deep genome annotation of the
493 opportunistic human pathogen *Streptococcus pneumoniae* D39. *Nucleic Acids*
494 *Res* 46:9971–9989.

495 13. Parsons JB, Frank MW, Eleveld MJ, Schalkwijk J, Broussard TC, Jonge MI de,
496 Rock CO. 2015. A Thioesterase Bypasses the Requirement for Exogenous Fatty
497 Acids in the plsX Deletion of *Streptococcus pneumoniae*. *Mol Microbiol* 96:28–41.

498 14. Kadioglu A, Echenique J, Manco S, Trombe MC, Andrew PW. 2003. The MicAB

499 Two-Component Signaling System Is Involved in Virulence of *Streptococcus*
500 *pneumoniae*. *Infect Immun* 71:6676–6679.

501 15. Dubrac S, Bisicchia P, Devine KM, Msadek T. 2008. A matter of life and death:
502 Cell wall homeostasis and the WalkR (YycGF) essential signal transduction
503 pathway. *Mol Microbiol* 70:1307–1322.

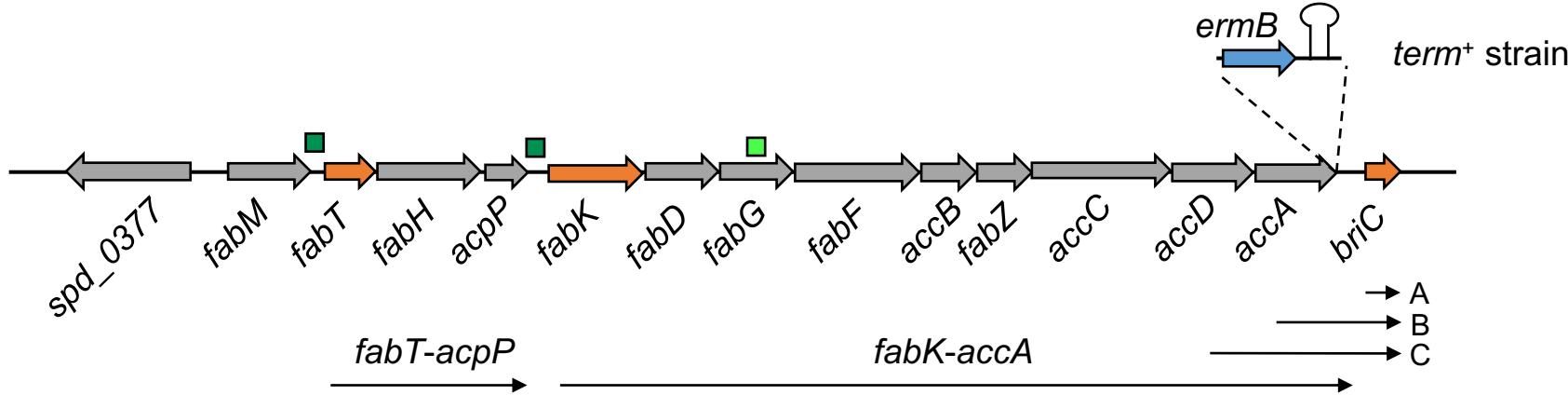
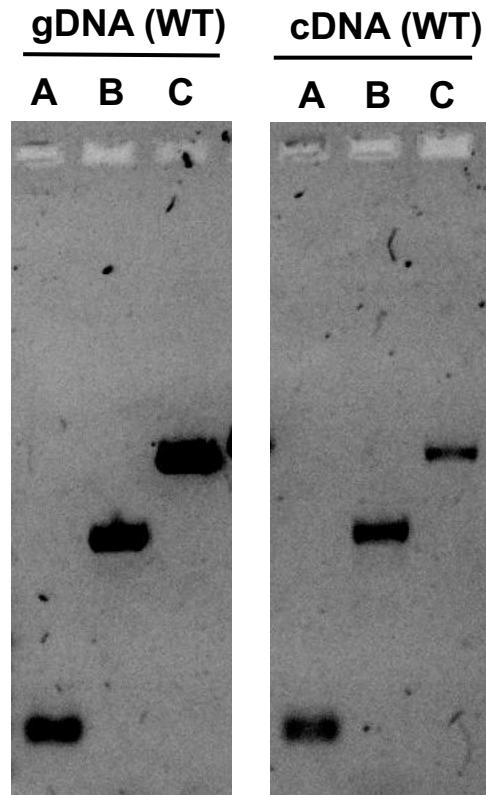
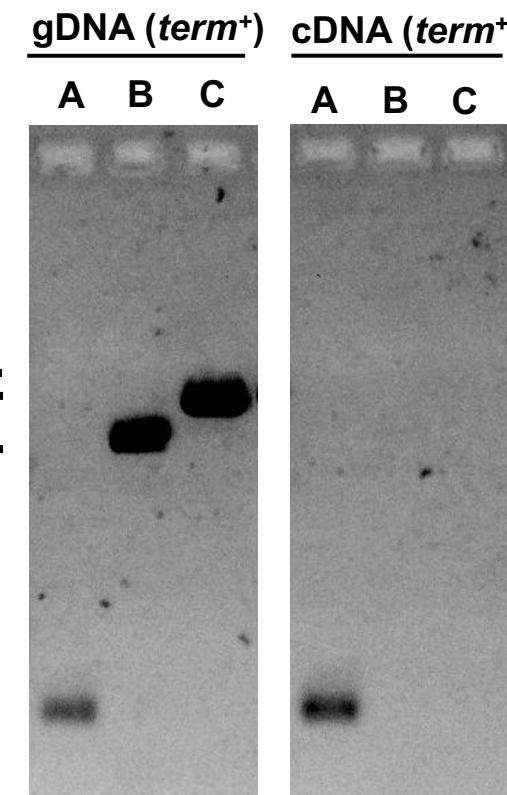
504 16. Winkler ME, Hoch JA. 2008. Essentiality, bypass, and targeting of the YycFG
505 (VicRK) two-component regulatory system in gram-positive bacteria. *J Bacteriol*
506 190:2645–2648.

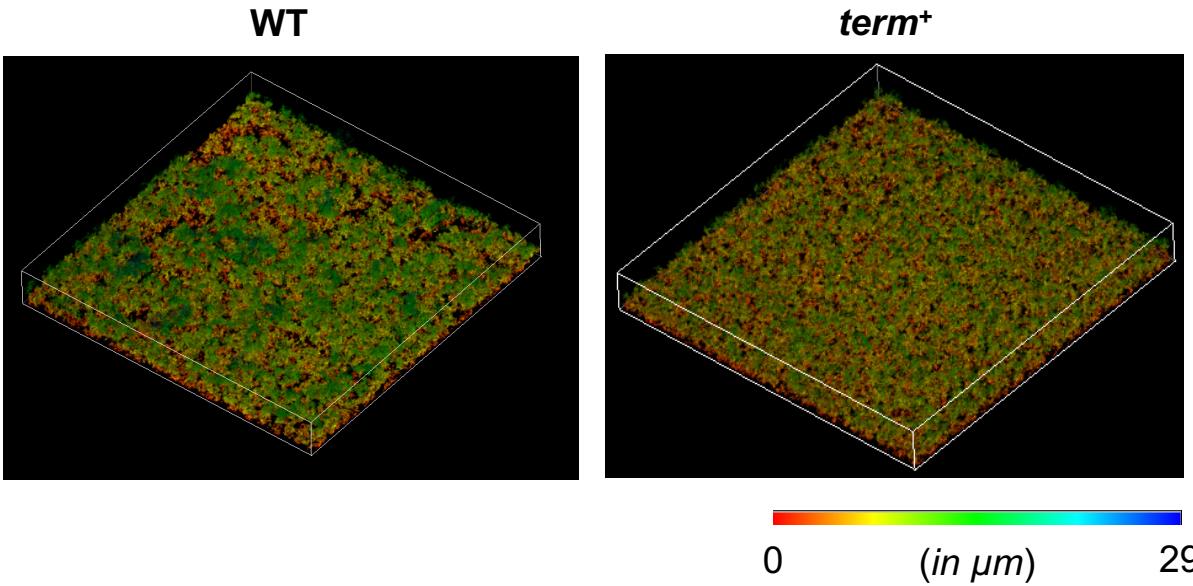
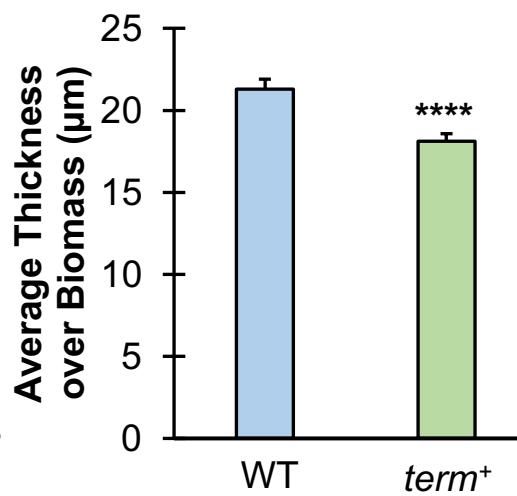
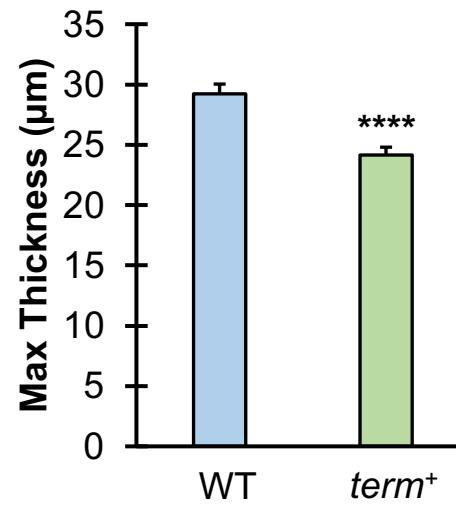
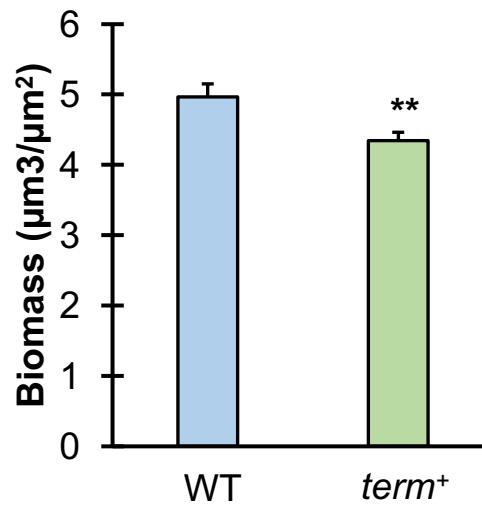
507 17. Blanchette KA, Shenoy AT, Milner II J, Gilley RP, McClure E, Hinojosa CA, Kumar
508 N, Daugherty SC, Tallon LJ, Ott S, King SJ, Ferreira DM, Gordon SB, Tettelin H,
509 Orihuela CJ. 2016. Neuraminidase A-Exposed Galactose Promotes
510 *Streptococcus pneumoniae* Biofilm Formation during Colonization. *Infect Immun*
511 84:2922–2932.

512 18. Comella N, Grossman AD. 2005. Conservation of genes and processes controlled
513 by the quorum response in bacteria: Characterization of genes controlled by the
514 quorum-sensing transcription factor ComA in *Bacillus subtilis*. *Mol Microbiol*
515 57:1159–1174.

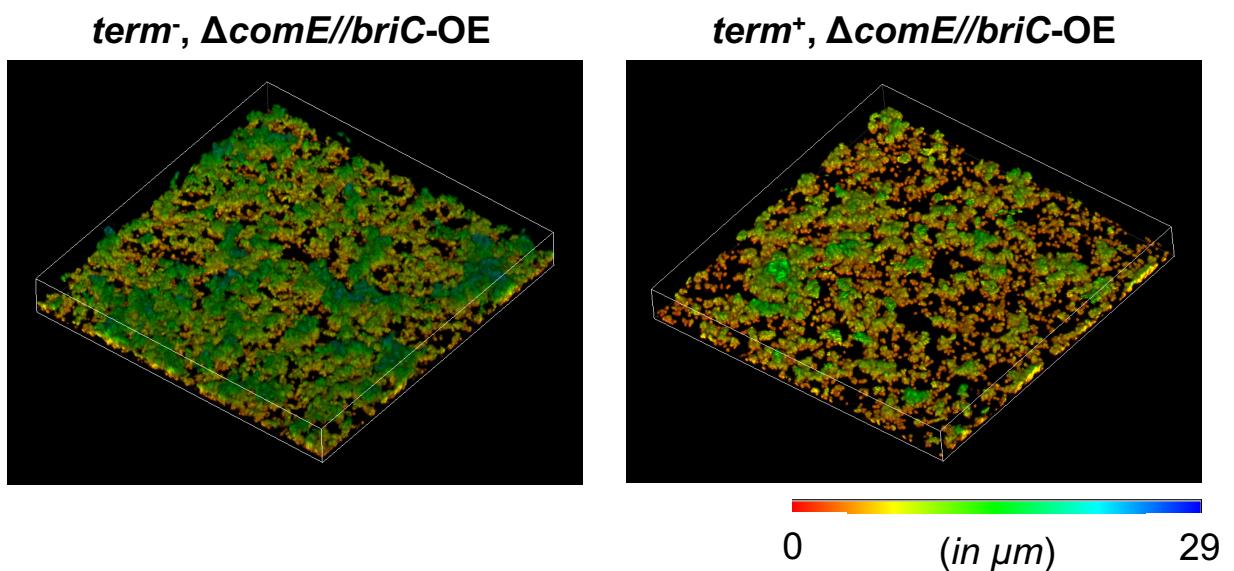
516 19. Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg F, Wu S, Brown
517 EL, Zagursky RJ, Shlaes D, Projan SJ. 2001. Transcription Profiling-Based
518 Identification of *Staphylococcus aureus* Genes Regulated by the agr and/or sarA
519 Loci. *J Bacteriol* 183:7341–7353.

520 20. Schuster M, Lostroh CP, Ogi T, Greenberg EP. 2003. Identification, Timing, and
521 Signal Specificity of *Pseudomonas aeruginosa* Quorum-Controlled Genes: a
522 Transcriptome Analysis. *J Bacteriol* 185:2066–2079.




523 21. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglesias BH. 2003. Microarray
524 Analysis of *Pseudomonas aeruginosa* Quorum-Sensing Regulons : Effects of
525 Growth Phase and Environment. *J Bacteriol* 185:2080–2095.





526 22. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK, Molin S.
527 2000. Quantification of biofilm structures by the novel computer program
528 COMSTAT. *Microbiology* 146:2395–2407.

529 23. Miller JH. 1972. Assay of β -galactosidase, p. 352–355. In Miller, JH (ed.),
530 Experiments in Molecular Genetics. Laboratory Press, Cold Spring Harbor, New
531 York.


532 24. Bligh EG, Dyer WJ. 1959. A Rapid Method of Total Lipid Extraction and
533 Purification. *Can J Biochem Physiol* 37:911–917.

534

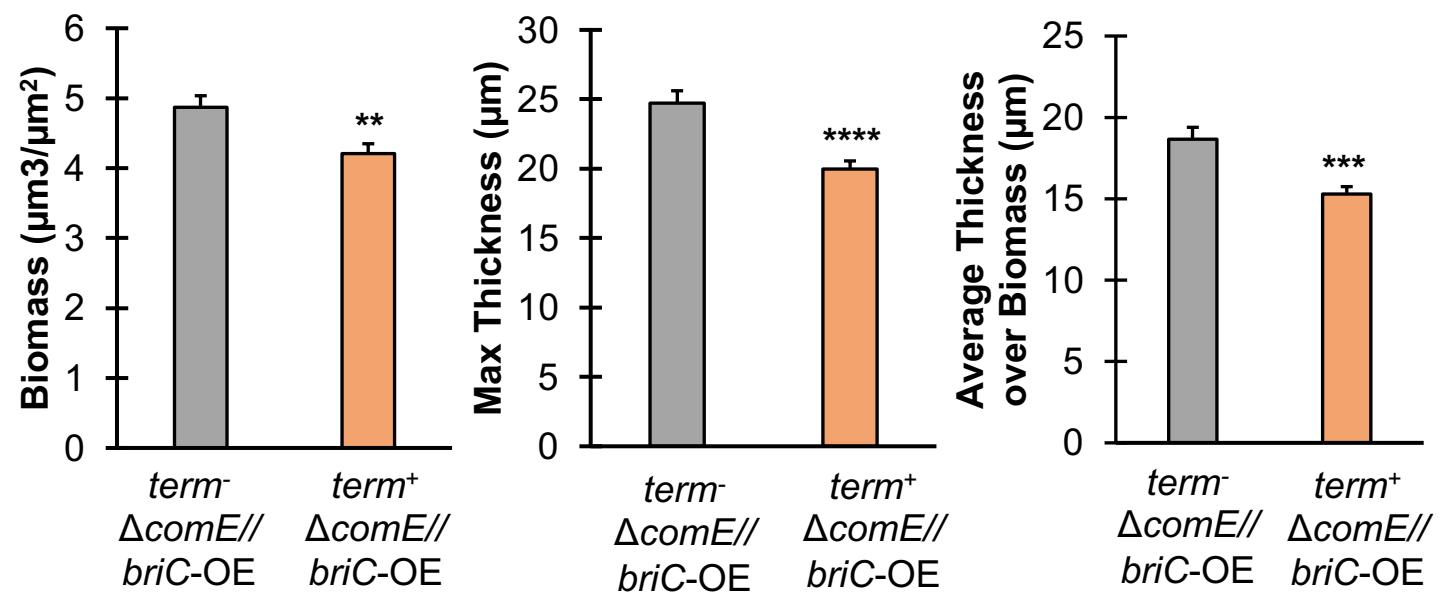
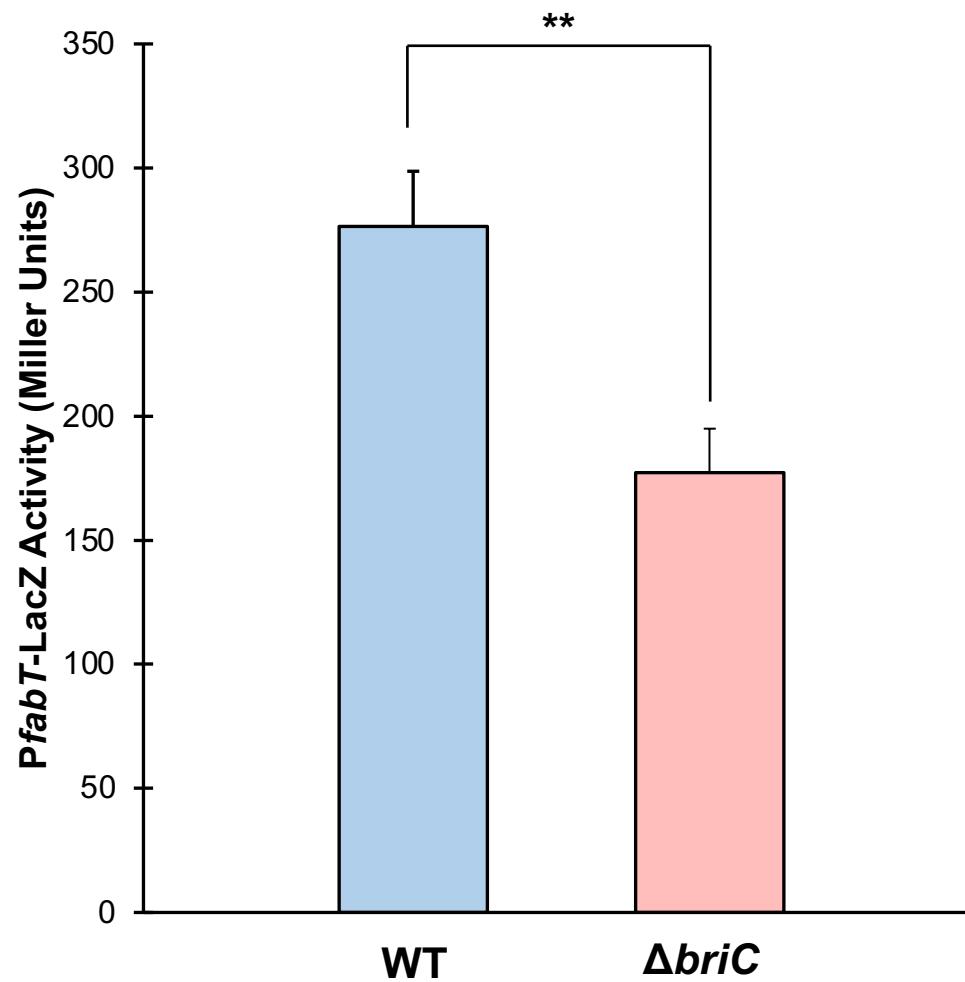

Figure 1**(A)****(B.i)****(B.ii)**

Figure 2**(A)****(B)**


(C)

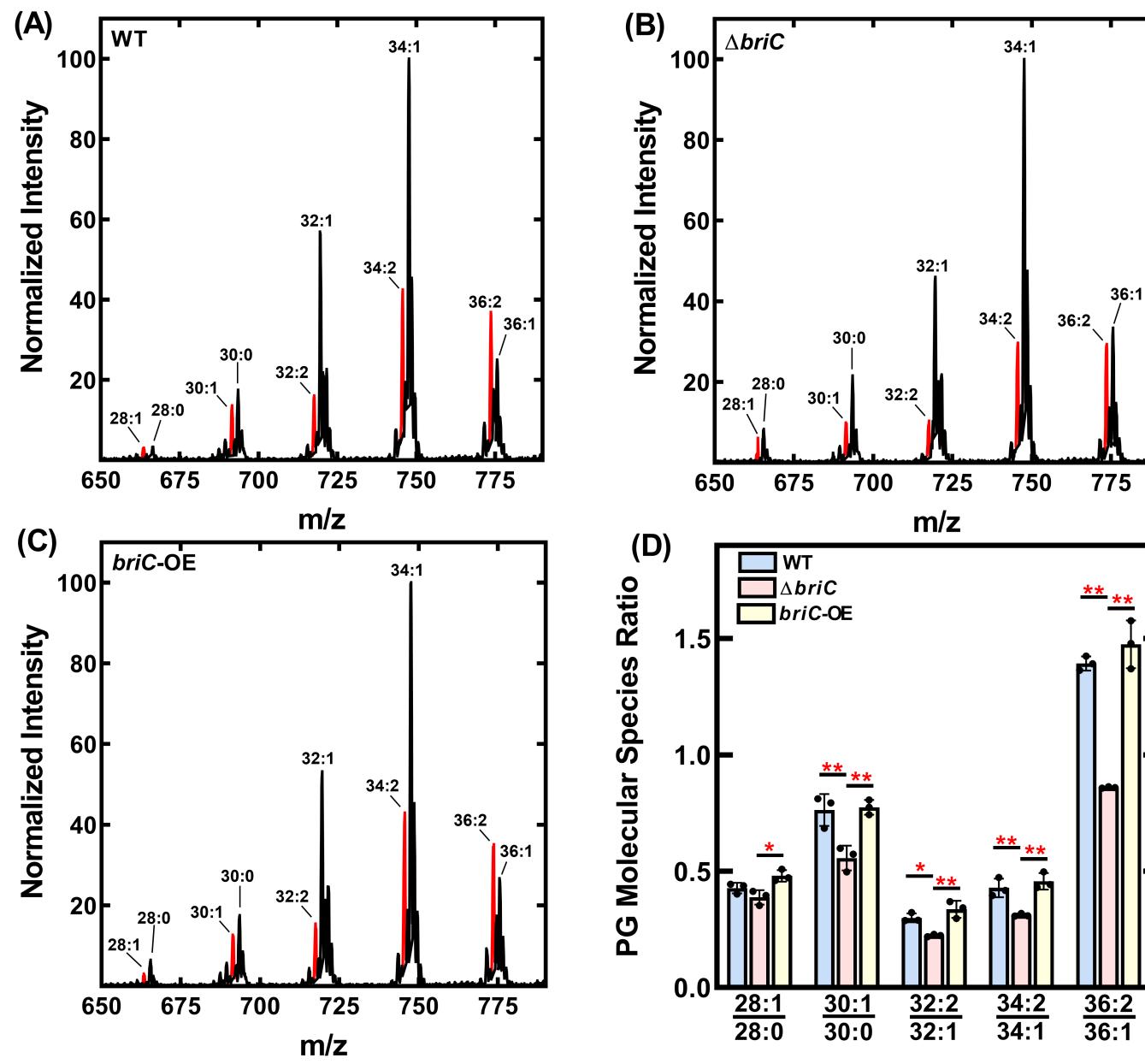

(D)

Figure 3

Figure 4

Table S1: Strains used in this experimental work

Strain ID	Strain Name	Description	Source
LH339	R6D	Penicillin-resistant R6-derivative, Hun663.tr4	Severin <i>et al.</i> 1996
LH65	R6D Δ briC	<i>briC</i> (spr_0388) replaced with <i>ermB</i> in R6D; Ery ^R	Aggarwal <i>et al.</i> 2018
LH825	<i>term</i> ⁺	<i>ermB</i> ligated with terminator inserted downstream of <i>accA</i> in R6D	This study
LH366	Δ comE//briC-OE	<i>comE</i> (spr_2041) replaced with <i>aad9</i> in R6D <i>PbriC_{long}-briC</i> ; Spec ^R , Kan ^R	Aggarwal <i>et al.</i> 2018
LH845	<i>term</i> ⁺ , Δ comE//briC-OE	<i>ermB</i> ligated with terminator inserted downstream of <i>accA</i> in Δ comE:: <i>PbriC_{long}-briC</i> ; Spec ^R , Kan ^R , Ery ^R	This study
LH920	E. coli TOP10 (PfabK-lacZ)	E. coli strain transformed with modified pPP2 containing R6D <i>fabK</i> promoter fused with <i>lacZ</i> ; Kan ^R , Amp ^R	This Study
LH921	E. coli TOP10 (PfabT-lacZ)	E. coli strain transformed with modified pPP2 containing R6D <i>fabT</i> promoter fused with <i>lacZ</i> ; Kan ^R , Amp ^R	This Study
LH922	R6D (PfabK-lacZ)	R6D <i>fabK</i> promoter fused with <i>lacZ</i> in R6D; Kan ^R	This Study
LH925	R6D (PfabT-lacZ)	R6D <i>fabT</i> promoter fused with <i>lacZ</i> in R6D; Kan ^R	This Study
LH928	Δ briC (PfabK-lacZ)	R6D <i>fabK</i> promoter fused with <i>lacZ</i> in R6D Δ briC; Ery ^R , Kan ^R	This Study
LH931	Δ briC (PfabT-lacZ)	R6D <i>fabT</i> promoter fused with <i>lacZ</i> in R6D Δ briC; Ery ^R , Kan ^R	This Study
LH360	R6D:: <i>PbriC_{long}-briC</i>	<i>briC</i> , along with PN4595-T23 <i>briC</i> promoter inserted downstream of <i>bga</i> in R6D; Kan ^R	Aggarwal <i>et al.</i> 2018

Table S2: Primers used in this study

Primer No.	Primer	Sequence	Strain Constructed	Restriction Site (if present)
SDA210	<i>term</i> ⁺ Flank 1 F	ATGGCTCTATTTAGTAAAAAAAG ATAAGTATATTCGAATC	<i>term</i> ⁺ & <i>term</i> ⁺ , $\Delta comE :: P_{briC \text{ long-} briC}$	
SDA224	<i>term</i> ⁺ Flank 1 R	AGGAATTAATCTAACCTAGTAT TTTCTAAATCGTTGATAGCGTT CTTC	<i>term</i> ⁺ & <i>term</i> ⁺ , $\Delta comE :: P_{briC \text{ long-} briC}$	
SDA225	<i>term</i> ⁺ <i>ermB</i> F	TTTAGAAAATACTAAGTTAGAT TAATTCCTACCAAGTGACTAAT CTTATG	<i>term</i> ⁺ & <i>term</i> ⁺ , $\Delta comE :: P_{briC \text{ long-} briC}$	
SDA226	<i>term</i> ⁺ <i>ermB</i> R	GCGGGGTTTTTCGCTACCCC TTATCGATACAAATTCCC	<i>term</i> ⁺ & <i>term</i> ⁺ , $\Delta comE :: P_{briC \text{ long-} briC}$	
SDA227	<i>term</i> ⁺ Flank 2 F	TATCGATAAGGGTAGCGAAA AAACCCCGCCGAAG	<i>term</i> ⁺ & <i>term</i> ⁺ , $\Delta comE :: P_{briC \text{ long-} briC}$	
SDA228	<i>term</i> ⁺ Flank 2 R	ATGCGCTTTCAAGCTCTCAT G	<i>term</i> ⁺ & <i>term</i> ⁺ , $\Delta comE :: P_{briC \text{ long-} briC}$	
SDA245	<i>PfabK</i> F	ATATATGGTACCGCAGAATAT TAGTAGAAGGAGTAGG	<i>E. coli</i> TOP10 (<i>PfabK</i> - <i>lacZ</i>)	KpnI
SDA246	<i>PfabK</i> R	ATATATTCTAGAAGTGCCTCC AACCTTCC	<i>E. coli</i> TOP10 (<i>PfabK</i> - <i>lacZ</i>)	XbaI
SDA247	<i>PfabT</i> F	ATATATGGTACCAAAATCCTT GCATCATTCTTG	<i>E. coli</i> TOP10 (<i>PfabT</i> - <i>lacZ</i>)	KpnI
SDA248	<i>PfabT</i> R	ATATATTCTAGATTTCATATC CCTCCTTCTTCA	<i>E. coli</i> TOP10 (<i>PfabT</i> - <i>lacZ</i>)	XbaI
SDA47	<i>fabZ-briC</i> F	AGATTGAAGGAGTGCAGAC CAATG	N/A (Transcript Check)	
SDA51	<i>accD-briC</i> F	AATCCCAATCGTTGGTTA GG	N/A (Transcript Check)	
SDA178	<i>accA-briC</i> F	ATGAATATTGCAAAAATAG TCAGAGAAG	NA (Transcript Check)	
SDA195	<i>briC</i> F	AAGAAGGTACTTGCAATGA CAGGTACAAATACATTAC AGTTCTTTC	NA (Transcript Check)	
SDA111	<i>briC</i> R	TGTTCGGAAGCCGTACTT	NA (Transcript Check)	