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13 Abstract

14 Eukaryotic organisms play an important role in industrial biotechnology, from the
15  production of fuels and commodity chemicals to therapeutic proteins. To optimize these
16  industrial systems, a mathematical approach can be used to integrate the description of
17 multiple biological networks into a single model for cell analysis and engineering. One
18  of the current most accurate models of biological systems include metabolism and
19  expression (ME-models), and Expression and Thermodynamics FLux (ETFL) is one
20  such formulation that efficiently integrates RNA and protein synthesis with traditional
21  genome-scale metabolic models. However, ETFL is so far only applicable for E. coli.
22 To therefore adapt this ME-model for Saccharomyces cerevisiae, we herein developed
23 yETFL. To do this, we augmented the original formulation with additional
24 considerations for biomass composition, the compartmentalized cellular expression
25  system, and the energetic costs of biological processes. We demonstrated the predictive
26  ability of yETFL to capture maximum growth rate, essential genes, and the phenotype
27  of overflow metabolism. We envision that the extended ETFL formulation can be
28  applied to ME-model development for a wide range of eukaryotic organisms. The

29  utility of these ME-models can be extended into academic and industrial research.
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Introduction

Eukaryotic organisms are extremely important in industrial biotechnology (e.g.,
Saccharomyces cerevisiae' and Yarrowia lypolytica®) and are host organisms for the
production of fuels and specialty and commodity chemicals. Also eukaryotic,
mammalian systems such as Chinese hamster ovary (CHO) cells are the main platform
organism used for therapeutic protein production®. In contrast to bacterial cells, the
eukaryotes have compartmentalized cell structure to localize macromolecules with
different biological tasks. This fundamental difference renders the engineering of the
eukaryotes more complex and challenging. To help optimize and plan for industrial
applications, complex biological systems such as these can be represented in silico by
specific networks designed to capture key processes.

Metabolic networks are the most widely studied and modeled type of biological
networks, with over 6,000 genome-scale metabolic models (GEMs) reconstructed for
archaea, bacteria, and eukaryotes* °>. One approach for analyzing these models is Flux
Balance Analysis (FBA), which is a constraint-based optimization technique, where the
metabolic flux of individual reactions are computed in a metabolic network by
formulating a linear optimization problem®. However, FBA can predict biologically
irrelevant  solutions, including cycles with unrealistically high fluxes’ or
thermodynamically infeasible solutions® °. Despite its wide applicability, FBA cannot
predict some important features of metabolic networks, such as those that account for
limited catalytic capacity of enzymes or limitations in cellular expression systems.

To overcome some of the issues with FBA and eliminate unrealistic solutions,
additional constraints that represent empirical or mechanistic evidence have been
introduced. For example, Thermodynamic-Based Flux Balance Analysis (TFA)® °
enforces the coupling between the directionality of each reaction with its corresponding
Gibbs free energy to eliminate thermodynamically infeasible predictions. More
importantly, TFA also directly integrates variables for the concentrations of
metabolites, which enables the integration of metabolomics data. Genome-Scale
Models with Enzymatic Constraints using Kinetic and Omics data (GECKO) is another
FBA-based method that accounts for the limited catalytic activity of enzymes by
inclusion of enzyme concentrations as variables'®. Previous studies have shown that
GECKO can capture a realistic maximum specific growth rate and the occurrence of

overflow metabolism in Saccharomyces cerevisiae'®. However, GECKO does not
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explicitly consider the cost of protein synthesis. Instead, it assumes that the fractions of
peptides within a protein pool are inversely proportional to their molecular weight. The
molecular weight represents the cost of the enzyme within the context of proteome
allocation. However, the actual cost of enzyme synthesis is absent from the formulation.
Therefore, GECKO fails to account for the competition for amino acids required for
enzyme synthesis, which is an important part of the expression system.

Metabolic and Expression models (ME-models) are another class of constraint-
based models that include the cellular expression system in addition to metabolic and

catalytic constraints!!-!3,

ME-models include individual mRNA and enzyme
concentrations as well as their cost of synthesis and cellular expression capacity. A new
approach to construct ME-models, called expression and thermodynamics-enabled flux
(ETFL)!3, was recently proposed to address the significant drawback of needing to
solve the nonlinear programming (NLP) problem. The approach avoids bilinear terms
by discretizing growth and solving locally linearized mixed-integer problems instead
of a NLP problem. Similar to published ME-models!!- 4, the first ETFL model was
developed for Escherichia coli. However, the ETFL formulation can readily be
extended to the study of eukaryotic organisms.

S. cerevisiae is an industrially relevant organism! 5 that is widely used for
biological and medical research studies!¢. Several GEMs of this organism have been
published over the years due to its ubiquity in metabolic engineering!’-?2. However,
likely due to additional requisite considerations in modeling the compartmentalized
cellular expression systems of eukaryotes, no ME-model of S. cerevisiae has been

H-13" with one

developed. The previous ME-models were constructed for bacteria
ribosome and one RNA polymerase being sufficient to represent the cellular expression
machinery. In contrast, S. cerevisiae as a eukaryotic organism additionally has
mitochondrial ribosomes and RNA polymerases. In this work, we extended the ETFL
formulation and code for applicability to eukaryotic systems. In this new formulation,
we account for the additional ribosomes and RNA polymerases within the eukaryotic
mitochondrial expression system. We also included an allocation constraint for the
fraction of proteins that are allocated to metabolism and cellular expression. Herein, we
propose an ETFL model for S. cerevisiae, named yETFL, which is based on the

extended ETFL formulation. The methodological advancements in ETFL provide

avenues towards development of such models for the study of other eukaryotes.
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97 Results and Discussion

98
99 In this work, we present an ETFL model for S. cerevisiae, named yETFL (Table

100  1).yETFL is based on the latest S. cerevisiae genome-scale model Yeast8. Towards the
101  generation of yETFL, we first performed a thermodynamic curation of Yeast8, which
102  contains 1326 unique metabolites (a total of 2691 compartmentalized metabolites),
103 3991 reactions, 1149 genes, and 14 compartments (including the extracellular space).
104  There are 2614 reactions that are associated to genes.

105 Information about the thermodynamic properties of reactions allows us to (i)
106  integrate the available metabolomics and fluxomics data into the models, (ii) compute
107  thermodynamically consistent values of metabolic fluxes and metabolite
108  concentrations, and (iii) determine thermodynamically feasible directionalities. Using
109  the group contribution method (GCM), we estimated the Gibbs free energies of
110 formation for 1092 of 1326 total unique metabolites. We then estimated the Gibbs free
111  energies for 1880 reactions in the Yeast§ GEM, which only includes reactions in an
112 aqueous environment (see Materials and Methods). Yeast8 has 1304 reactions in the
113 membrane compartments (non-aqueous environment). We did not apply
114  thermodynamic constraints for these 1304 reactions as thermodynamic relations for
115  membrane-associated metabolites require correction based on information about the
116  non-aqueous environments, which is not always available.

117 In yETFL, we modeled the synthesis of 1059 enzymes coupled to 2588 of 2614
118  reactions with associated genes. The catalytic constraints are specified by coupling the
119  reactions and the enzymes, which requires information on k.4, or the enzyme turnover
120 numbers. We found k., values for 943 enzymes and approximated this number for a
121 further 166 enzymes from the median k.,; value in S. cerevisiae (see Materials and
122 Methods). Of these enzymes, 77 were transporters associated to 167 transport reactions,
123 there are 107 complexes among the enzymes, and the remainder are monomeric
124 enzymes composed of a single peptide. A complexation reaction is considered for each
125  enzyme to account for its synthesis from the constituent peptides.

126 While one RNA polymerase and one ribosome can sufficiently represent
127  bacterial expression system, in a eukaryotic cell such as S. cerevisiae, there are different
128  RNA polymerases and ribosomes. Notably, the mitochondria have their own RNA

129  polymerase and ribosome. The extended ETFL formulation, presented here, enables


https://doi.org/10.1101/2021.02.17.431671
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431671; this version posted February 18, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

130  implementing multiple ribosomes and RNA polymerases, the latter of which includes:
131 (i) the RNA polymerase II, which transcribes nuclear genes and (ii) the mitochondrial
132 RNA polymerase, which transcribes the mitochondrial genes. The model also includes
133 three ribosomes, where one ribosome is associated with mitochondrial genes and the
134 other two ribosomes are associated with nuclear genes, but differ in their composition
135  (see Materials and Methods). Altogether, yETFL includes 1149 metabolic genes from
136 Yeast8 and an additional 244 genes that encode the composition of the aforementioned
137  ribosomes and RNA polymerases.

138 To study the inclusion or exclusion of thermodynamic constraints and a variable
139  or constant type of resource allocation (Materials and Methods), we developed four
140  different types of models (Table 2). The inclusion of thermodynamic constraints is
141  reflected by the presence of “T” in the name of the model (i.e., ETFL.cb and ETFL.vb),
142 and the “cb” points to a version with a constant biomass composition, while “vb”
143 indicates the biomass composition is variable with growth. The number of variables
144 and constraints in each model is detailed in Table 2. We used 128 bins to discretize the
145  growth in the range of [0, Wnax], Where 4, 1S the maximum growth rate of S.
146  cerevisiae as observed in rich growth medium (see Salvy and Hatzimanikatis!® for
147  details). This resulted in 135 (i.e., 128 + log, 128) binary variables in the models
148  without thermodynamic constraints, denoted as EFL.cb and EFL.vb. In the models with
149  thermodynamic constraints, two binary variables were added per reaction to account

150  for the directionality, which resulted in 8073 binary variables.

151

152 The cellular growth rate should plateau when high values of substrate uptake
153  are attained, as limitations in the expression system and catalytic activity of enzymes
154  cause shift the growth rate from a glucose-dependent limitation to an enzyme-
155  dependent one. This phenomenon is described by established empirical models of
156  microbial growth, where the growth shifts from nutrient limitation to proteome
157  limitation®*. However, standard FBA models predict that the growth rate increases
158 linearly with increased carbon uptake. Since ETFL accounts for expression limitations,
159  itis expected to predict this shift in the cellular growth rate.

160 We investigated the variations in growth rate with constant (E[T]FL.cb) and
161  variable (E[T]FL.vb) biomass composition by examining the predicted maximum

162  growth rate versus the glucose uptake (Figure 1). With a constant biomass composition,
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163  the stoichiometric coefficients are constant in the growth reaction. Likewise, the
164  stoichiometric coefficients change with growth in the variable composition. In both
165  cases, and in contrast to FBA, the growth rate plateaued at higher values of glucose
166  uptake rate, which is in accordance with the experimental results?*. That is, we observed
167 a shift from glucose-limited growth to proteome-limited growth. The maximum
168  predicted growth rate was 0.46 h'! and 0.42 h! for E(T)FL.cb and E(T)FL.vb,
169  respectively. Both agree with experimentally measured maximum growth rates
170  reported in the literature, which are in the range of 0.4-0.45 h'! for different strains?>-
171 27, The accuracy of our predictions with experimental observations is important, as the
172 maximum growth rate was highly overestimated in previously reported ME-models'?
173 B, likely due to the lack of an allocation constraint on the total amount of metabolic
174  enzymes (see Eq. 5). Integration of this allocation constraint into the yETFL
175  formulation was straightforward, but previous ME-model formulations disallowed the
176  addition of this constraint without fundamental modification of the solving process'*.
177 We observed small discrepancies in the maximal growth rate between the
178  experimental data and the yETFL results for the glucose uptake rate, which ranged from
179 ~4 mmol/gDW/h to ~11 mmol/gDW/h (Figure 1). One cause of these discrepancies
180 might be the growth dependence of certain parameters, such as the ribosomal
181  elongation rate. To avoid excessive constraints in the model and to preserve
182  experimental observations with a feasible solution space, we used the highest reported
183  values for ribosomal elongation rate, which typically corresponds to higher growth
184  rates®® ?°. Since our formulation accounts for growth-dependent parameters, we
185 anticipate the facile integration of new information on the variation of the parameters
186  with the growth rate into yETFL.

187 Another contributor to experimental and predicted discrepancies might be the
188  regulation system that is used by S. cerevisiae during the transition from nutrient-
189  limited to proteome-limited growth. Like other ME-models, yETFL works under the
190  assumptions of optimality (e.g., maximal growth rate) and that the cellular system
191  evolved under selection pressure to match this optimality. In this context, the regulatory
192 network of S. cerevisiae can be seen as a control system that drives the metabolism
193 towards optimality. Deviations from model optimality in transition regions are simply
194 limitations of the regulatory system. Therefore, the predictive ability of the model can
195 be enhanced by the addition of regulatory constraints from improved input on

196  mechanisms and parameters that regulate the phenotypic transition.
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197

198 To investigate the quality of yETFL, we examined the ability of the model to
199  predict which genes are essential for the cellular growth. We discovered that the gene
200  essentiality results for metabolic genes were identical for the EFL.cb and FBA models
201  (Table 3A). This includes 1149 genes associated with metabolic reactions in the Yeast8
202  model. We compared the predicted essentialities to the experimental observations,
203  which were available for 5061 genes, to assess the quality of the model. However, this
204 is not comprehensive of S. cerevisiae genes. The results in Table 3A show the
205  essentiality of metabolic genes with the available experimental data. Compared to the
206  FBA model, yETFL models have more genes that correspond to RNA polymerases and
207  ribosomes (expression genes). We could not do gene essentiality for these 244
208  expression genes with FBA, as these genes are not associated to any function in the
209  Yeast8 model. There are 222 expression genes with available experimental data that
210 are represented alongside the metabolic genes in Table 3B. From these results, we
211  performed gene essentiality for a greater number of genes in YETFL (1393 genes) than
212 in Yeast8 (1149 genes), with a slight improvement in the Matthews correlation
213 coefficient (Table 3). We also found that the integration of thermodynamic constraints

214  into FBA or EFL.cb did not change the essentiality results.

215
216 Overflow metabolism is a shift from an optimal to a non-optimal metabolic
217  phenotype and is observed in different organisms at high growth rates®* 3% 3!, Overflow

218  metabolism in S. cerevisiae, also called the Crabtree effect, occurs when cells shift from
219  pure respiration to a combination of respiration and fermentation in the presence of
220  oxygen. This happens after cells reach a critical growth rate, which is strain-specific
221  though can be estimated at about 0.3 h™!. Because one hypothesis for why overflow
222 metabolism occurs is proteome limitation®*** and because the yETFL model takes this
223 into account, we therefore next looked at the ability of yETFL to predict this metabolic
224 shift.

225 The Crabtree effect in S. cerevisiae cannot be predicted with FBA unless some
226  ad hoc assumptions are made in the constraints or the objective function®?. In contrast,
227  we successfully predicted the shifts in fluxes at higher growth rates with yETFL, which
228  considered limitations in the catalytic capacity of the enzymes and protein expression

229  machinery (Figure 2). In fact, yETFL could capture the shift in metabolism at high
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230  growth rates, where ethanol was secreted, and CO: production increased while O2
231  consumption decreased. The model had good qualitative agreement with the
232 experimental data acquired from aerobic, glucose-limited chemostat cultures.

233 The E[T]FL.vb models (see Materials and Methods) presented an earlier onset
234  of the Crabtree effect relative to the E[T]FL.cb models (Figure 2). We can attribute the
235 onset to the Yeast8 protein fraction used in E[T]FL.cb, which is close to the
236  experimentally observed values at higher growth rates. Thus, the E[T]FL.cb models are
237  less constrained than the E[T]FL.vb ones. In general, models with higher protein ratios
238  are less tightly constrained. Hence, their maximum growth rate and the Crabtree effect
239 occur at higher growth rates (Figure 2). We also observed a slight deviation of the
240  model predictions from the experimental observations in the transition region for the
241  growth rates between 0.3 and 0.38 47/, the onset of Crabtree effect with the experimental
242  data and yETFL, respectively (Figure 2). A potential method to enhance the predictive
243  ability of yETFL in light of these slight discrepancies would be through the inclusion
244 of regulatory mechanisms by integration of regulatory constraints. Another next step
245 would be to account for the growth dependence of more parameters. These
246  improvements can be facilitated by further experimental investigations into S.
247  cerevisiae physiology.

248 It is of note that yETFL was able to capture the Crabtree effect solely by
249  integration of experimentally measured data and without ad hoc modifications in the
250  model or the formulation. In an earlier study'’, an additional parameter was introduced
251  to further constrain the availability of enzymes. Since the saturation rate of individual
252 enzymes is not known, this parameter was introduced as the saturation rate of the total
253  enzymatic pool and it was calculated by fitting the model predictions to the
254  experimental data. Here, we captured the Crabtree effect without additional parameters,
255  as yETFL explicitly accounts for the saturation rates of individual enzymes. Moreover,
256  yETFL also allows for integration of experimentally observed saturation rates of
257  individual enzymes by the addition of saturation parameters to the catalytic constraint
258  of each enzyme. These parameters can then be found by fitting the model predictions
259  to the experimental data, as has been reported®*. Following a similar procedure, we can
260 also integrate different experimental transcriptional and translational efficiencies into

261  the model.
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262 Conclusion

263  In this work, we developed a model for a eukaryotic organism, S. cerevisiae, by
264  extension of the recently published formulation of ETFL to consider
265  compartmentalized expression systems with separate ribosomes and RNA polymerases.
266  This is the first model for yeast that includes RNA and enzyme concentration data, and
267  this explicit simulation of expression broadens the applications of yETFL to the
268  simulation of the impacts of different perturbations on cellular mechanisms. To test the
269  accuracy of yETFL, we validated the predictions of the model against experimental
270  data. Moreover, we reproduced the emergence of the Crabtree effect, and observed the
271  secretion of ethanol in aerobic conditions without needing to integrate experimental
272 data as with previous descriptions of the Crabtree effect!”.

273 Overall, a key advantage of the ETFL formulation is its direct extension to other
274  types of analyses, such as the study of the Crabtree effect at the steady-state as we have
275  presented in this work. Future work in understanding the emergence of this effect in a
276  dynamic setting, as previously shown for the E. coli overflow metabolism*>, will yield
277  valuable insights on the optimality of the regulatory mechanisms in S. cerevisiae. We
278  envision that this information can be applied to design industrially valuable strains.
279  Also, yETFL can be used as a scaffold to integrate other biological networks, such as
280 regulatory or signaling networks®, as a vital step towards constructing a whole-cell
281  model®. Finally, the extension of the ETFL formulation presented here is readily
282  adaptable to any eukaryotic organism for which a well-curated GEM is available. The
283  quality of the information about enzymes (i.e., catalytic rate constants and protein
284  composition) will affect the quantitative predictions of the model, though new data is
285  easily inputted into ETFL such that the predictions will always be as good as the
286  available data. We envision that the availability of eukaryotic ME-models will improve
287  the understanding and engineering of industrial hosts for the refinement and creation of
288  better eukaryotic systems in biotechnology, for applications ranging from the

289  production of fuels and commodity chemicals to therapeutic proteins.

10
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290 Materials and Methods

291
292  yETFL is based on the ETFL formulation, which was previously described in detail in
293  Salvy and Hatzimanikatis.!3. The ETFL constraints can be divided into five main

294  categories:

295 e Metabolic constraints: Enforce all metabolite and macromolecule
296 concentrations to be at steady-state. These constraints are the same as in FBA®,
297 e Thermodynamic constraints: Couple the directionality of reactions with their
298 Gibbs free energy. These constraints are the same as in TFAS°,

299 e Catalytic constraints: Define upper bounds on the reaction fluxes based on the
300 enzymatic capacity of the associated enzymes.

301 o Expression constraints: Model the synthesis of mRNAs, peptides, and
302 proteins, and constrain synthesis rates based on the limitations of transcription
303 and translation machinery.

304 e Allocation constraints: Determine the available amounts of DNA, RNA, and
305 proteins in the cell. If experimental data is available, the ETFL formulation
306 allows for modeling the growth-dependent abundance of these macromolecules.
307 Whenever the experimentally measured abundance of these macromolecules
308 during growth is not available, we assume that the ratio between these quantities
309 is growth-independent, an assumption already made in FBA.

310

311

312 The most recent GEM of Saccharomyces cerevisiae, Yeast8??, was used as a basis to
313 construct the yETFL model. The latest published version of Yeast8 model, Yeast8.3.4,
314  was obtained from the GitHub as it was provided by Laboratory of Systems and
315  Synthetic Biology at Chalmers University (https://github.com/SysBioChalmers/yeast-
316 GEM).

317  The following modifications to Yeast8 were made:

318 e Pseudometabolites defined for RNAs and proteins as well as pseudoreactions

319 defined for their synthesis were replaced by the explicit expressions for RNAs

11
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320 and protein synthesis (according to the procedure described in Salvy and
321 Hatzimanikatis'?).

322 e tRNAs and their reactions were adapted into a formulation that accounts for
323 dilution effects, according to the ETFL procedure!®. This is necessary as the
324 dilution effect is not necessarily negligible for tRNAs.

325 e The biomass reaction was modified to account for growth-dependent
326 composition, as discussed in detail in the section Allocation Data and
327 Constraints.

328

329  We used Group Contribution Method (GCM)*’ to determine the standard Gibbs free
330  energy of formation in aqueous, ionic environments*® for 1092 out of 1326 (82.4%)
331 unique metabolites from Yeast8 (Figure 3). We were not able to determine the
332 thermodynamic properties for the remaining 234 metabolites because: (i) 89
333  metabolites (6.7%) represented abstract compounds, such as pools of proteins,
334  nucleotides, lipid chains; (ii) 92 metabolites (6.9%) did not have a known molecular
335  structure or they contained structural groups for which the estimated standard Gibbs
336  energy of formation is unknown (e.g., acyl carrier protein group); and (iii) 53
337  metabolites (4%) contain groups with unknown energy in their composition. Using the
338 standard Gibbs free energy of formation of compounds, we integrated the
339  thermodynamic properties only for reactions in the aqueous solution. We estimated the
340 standard Gibbs free energy of reactions for 1880 out of 2687 (70.0 %) such reactions
341  from Yeast8. The standard Gibbs free energy of reactions with at least one metabolite
342  associated with a membranous compartment (including 1304 reactions) was not
343  calculated using this procedure, as the standard Gibbs free energy of formation of

344  compounds was determined for the aqueous environments.

345

346  The sequences for the peptides and mRNAs were obtained from the KEGG database®.
347  Information about the stoichiometry of peptides forming enzymatic complexes in S.
348  cerevisiae was obtained by combining available information in YeastCyc*® and

349  Complex Portal*!. Turnover numbers (k.q;) were retrieved from BRENDA using

350 functions provided by GECKO!°,

12
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351

352  We created yETFL models using either a constant or variable biomass composition.
353  For constant biomass composition (E[T]FL.cb), we used the macromolecular fractions
354  from the Yeast8 biomass reaction. The mass fractions for different macromolecules
355  were calculated using the equation:
fe = z nMw; . (1)
iEM),
356

357  For each type of macromolecule, My, 1 ey, is the stoichiometric coefficient of the

358  metabolites belonging to this macromolecule class in the biomass reaction, and MW, is
359  their molecular weight. For example, to find the protein fraction in the biomass, fp,o¢ »
360  the stoichiometric coefficients of individual amino acids were multiplied by their
361  molecular weight to find their mass fractions in the biomass. The sum of these amino
362  acid ratios indicates how much of the biomass is protein. By definition, the weight of

42,43
9

363  biomass should be 1 gram ie.,

nMW; — z niMw; = 1. 2)
i€EBBBreactants jebyproducts

364  Inthis equation, BBBreactants is the set of reactants in biomass reaction and byproducts
365 is the set of all products except biomass.

366  When generating an ETFL model, it is important to remove protein and RNA
367 metabolites from the biomass equation to prevent double-counting of the metabolic
368  requirements, since the explicit mRNA and peptide synthesis reactions already account
369  for their respective participation in cell growth.

370 In ETFL, we model the participation of macromolecules in the cellular biomass

371  composition as follows:

D MWiE = P (3)
J

zMWlFl == Rm ) (4)
l

372 where P™ and R™ are, respectively, the protein and RNA mass fractions in g/gDW, and
373  E; and F; represent, respectively, the concentration of enzyme j and RNA [ in
374 mmol/gDW. P™ and R™ can either be constant (E[T]FL.cb) or variable and discretized
375  (E[T]FL.vb).
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376  To create an E[T]FL.vb model, it is necessary to know the fraction of each biomass
377  component at different growth rates. We gathered this information for S. cerevisiae by
378  reviewing the literature (data available on the online ETFL repository, see Code and
379  Dependencies)** * 4. Since the data is usually reported for a few particular growth

380 rates, we resampled it using piecewise-linear interpolation.

381
382  Since ME-models do not consider all the cellular tasks of proteins, ETFL defines a
383  generic, so-called dummy protein to represent the fraction of the proteome not

13, such as structural proteins, signaling proteins, or
9

384  accounted for in the mode
385  chaperones. However, since the dummy protein is not associated with a cellular
386  function, the optimization procedure will apportion the whole protein content to the
387  proteins that are associated with a cellular task (i.e., metabolic enzymes, ribosomal
388  peptides, and RNA polymerase). Consequently, the concentration of the latter proteins
389 is overestimated, which results in overestimating the maximum growth rate, and the
390  Crabtree effect emerges at higher growth rates. To realistically account for enzyme
391  participation in the proteome, we can define ¢, the proportion of proteins that is
392  associated with a metabolic task, in the total protein content of the cell. Then, we can
393  add the following constraint in the optimization problem:
MW;E; = ¢ - P™. (5)
j#=dummy protein

394

395  This way, the constraints in Eq. 3 and 5 enforce the optimization procedure to allocate
396  a fraction of the proteome, i.e., (1 — @), to the proteins with cellular functions not
397  considered in the model, i.e., dummy protein. We used the latest protein abundance

398  dataset for S. cerevisiae available in PaxDB* to compute this fraction as ¢ =

399 O-Ssg/gprotein'

400
401  The growth dependence of the DNA abundance in the cell was modeled as proposed in
402  the original ETFL formulation'?.

403

404  To consider the growth dependence of the biomass composition, we introduced the

405  variation of the other biomass components in the ETFL formulation. To this end, we

14
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406  first defined a metabolite pool for each of these macromolecules. In Yeast8, each
407  biomass component is attached to a pooling reaction that transforms the sum of specific
408  metabolites (e.g. all carbohydrate metabolites) into a single metabolite pool (e.g.
409  carbohydrate). The mass balance equation for these modeling metabolites is the

410  following:

d[X; .
% = ppiomassy _ pPoolyPool e (Carbohydrate, Lipid, Ion},  (6)
pool . . : pool biomass
411  where v; " is the flux through the pooling reaction, and ; ~ and 7; represent
i g p g i i

412  stoichiometric coefficients of the modeling metabolite i in the pooling and biomass
413 reactions, respectively. When it is desired to model a growth-dependent stoichiometric
414  coefficient in the biomass reaction, the said stoichiometric coefficient can be redefined

415  as a function of u and calculated as follows:

. . X
pbiomass — r)ffwrrgﬁssx% ,i € {Carbohydrate, Lipid, [on}. (7)
ref,i

416  In this equation, X} is the discretized mass fraction of component i in the discretized

417  growth state number u, following notations from Salvy and Hatzimanikatis'3. nf r:z}th

418  is the stoichiometric coefficient in the biomass reaction, and X7, ; is the mass ratio of

419  component i in a reference model (e.g. FBA).

420

421  Tomodel the ribosomes and the RNA polymerases, information about their constituting
422  peptides, ribosomal RNA, and catalytic rate constants is required. To consider the
423 eukaryotic complexity of S. cerevisiae, we defined multiple RNA polymerases and

424  ribosomes in yETFL (Table 1):

425 e RNA polymerase: Similar to the other eukaryotes, S. cerevisiae has three
426 different types of nuclear RNA polymerases. However, most of the mRNA
427 transcripts are transcribed by RNA polymerase I1*7. In yETFL, we implemented
428 this nuclear RNA polymerase, and we modeled such that all the nuclear genes
429 could be transcribed only by this enzyme, similar to the previous work!3. For
430 mitochondrial genes, we defined a mitochondrial RNA polymerase, which was
431 characterized by its own composition and kinetic parameters*’.

432 e Ribosome: The structure of the cytosolic ribosomes in S. cerevisiae contains
433 four ribosomal RNA (rRNA) molecules encoded by four different genes. In
434 addition to these four rRNAs, the cytosolic ribosomes contain 78 peptides

15
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encoded by 137 genes*. Out of 78 peptides, 19 are encoded by a single gene
and 59 peptides are encoded by either of two alternative genes. To account for
alternative ribosomal peptides, we defined two sets of genes: set A containing
59 genes encoding for the 59 peptides (designated with “A” in their standard
names, e.g., RPL1A), and set B containing the alternative genes of set A
(designated with “B” in their standard names, e.g., RPL1B). Then, we
constructed two cytosolic ribosomes, one where we constructed the 59 peptides
using the set A and the other where we used the set B. We assumed a similar
elongation rate for both cytosolic ribosomes.

A mitochondrial ribosome was also defined to translate mitochondrial genes.

This ribosome is composed of two rRNAs and 78 peptides®.

The energetic cost of growth, including maintenance of the cell and polymerization of
the macromolecules®, is quantified in genome-scale models using the growth-
associated maintenance (GAM). In ETFL, we consider the energetic cost of protein
synthesis explicitly, and this cost should be removed from the GAM to avoid the

overestimation of energetic requirements in the polymerization of peptides (Eq. 8).

(8)

+ 2LL,(GDP + Pi + HY),

where aa; is the i amino acid, nfwi represents its count in the /th peptide (Pep,), and

L%, is the length of the peptide in amino acid.
Since 2 moles of GTP are needed to attach 1 mole of amino acid to the peptide (Eq. 8),
and from
ATP + GDP — ADP + GTP, 9)
1 mole of ATP is required to produce 1 mole of GTP. Therefore, we can deduce that

peptide polymerization requires 2 moles of ATP per 1 mole of amino acid.
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460 We also know that the stoichiometric coefficients of amino acids in the biomass
461  reaction of Yeast8 give information on how many mmol/gDW of each amino acid are
462  required to produce 1 gram of biomass. From there, it is straightforward to compute the
463  total amount of amino acids (~4.1 mmol) required for the production of 1 gram of
464  biomass. Combined, we can calculate that to produce 1 gram of biomass, the energetic
465 costis 2 X 4.1 = 8.2 mmol/gDW of ATP for peptide synthesis, which we removed
466  from the GAM.

467

468  Coupling the reactions in metabolic networks with their enzymes is the most important
469  step in the process of creating an ETFL model. Ideally, assigning enzymes to reactions
470  requires information about: (i) gene-protein-reaction rules; (ii) catalytic rate constants
471  (kcqe); and (iil) type and stoichiometry of the peptide assembly into enzymes.
472  Whenever we did not have access to all required information, we made the following

473  assumptions (Figure 4):

474 e We assumed similar composition for isoenzymes if composition information
475 was only available for one of them. For example, if one of the isoenzymes is a
476 dimer, the other is also assumed to be a dimer.

477 e We assumed that monomeric enzymes catalyze reactions (i) that depend on a
478 single gene, and (ii) for which information about their enzyme composition was
479 not available.

480 e If an enzyme peptide composition is identified, either from databases or by
481 approximation, but its k., was not found, we set the k.4 equal to 70.9 s71,
482 which is the median for k,4;s in S. cerevisiae'”.

483 e While the reactions that transport a metabolite from one compartment to another
484 one are associated with genes, their k., information is scarce. As a result, these
485 reactions were not catalytically constrained in similar models such as
486 GECKO!. We set k., of the proteins that catalyze these reactions to a large
487 number (1E+9 A7), which ensures that these reactions are not catalytically
488 constrained and only the gene-protein-reaction relationship is preserved. We
489 also checked the impact of constraining the transport reactions. To this end,
490 these reactions were constrained by the median k., but no significant change
491 was observed in the results.
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492

493  We used gene essentiality analysis® to assess the quality of yETFL. The ETFL
494  formulation enables single-gene knockouts by blocking the flux through transcription
495  reaction for each gene. The predicted essential genes were compared against
496  experimental data for S. cerevisiae  obtained  from http://www-
497  sequence.stanford.edu/group/yeast deletion project/downloads.html. Before deleting
498  the genes, the culture medium was modified according to Lu ef al.?2. Briefly, the
499  minimal medium supplemented with amino acids and nucleotides was used for the
500 simulations, and the model was allowed to uptake glucose as the sole carbon source.
501  The Matthew’s correlation coefficient (MCC) was used as a metric to evaluate the
502  quality of predictions for FBA and ETFL because of its robustness to the imbalance in
503  the number of essential and non-essential genes. MCC can take values from -1 to 1,
504  where values of MCC close to -1 indicate predictions opposed to the ground truth, 0

505  random predictions, and 1 perfect predictions.

506

507  The results of this paper were obtained by simulating the cell growth as a function of
508  different carbon uptake rates. This allows the exhibition of proteome-limited behavior
509 and overflow metabolism in the presence of excess glucose. For all simulations, the
510  model was allowed to uptake glucose as a carbon source, some essential inorganic
511  compounds, and oxygen. To prepare the model for the simulations, it was modified as
512 described previously in Sanchez et al.!°.

513  To capture the Crabtree effect, the substrate uptake rate was minimized for different
514  values of the growth rate. Then, we fixed the values of the substrate uptake rates at the
515 computed minima and minimized the total fluxes®? and then the total enzyme
516  concentrations!?, consecutively, to account for the parsimonious enzyme usage. Finally,

517  the Chebyshev center of the enzyme space was used as a representative solution?>.

518

519  The code was implemented in Python 3.7, and the commercial solver Gurobi was used
520  to solve the MILP problems. The code relies on the ETFL!3 and pyTFA>? packages,
521  which use COBRApy>* and Optlang®®. The code to generate yETFL models and
522  reproduce the results of this paper is freely available at https://github.com/EPFL-
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523  LCSB/etfl/tree/dev_yetfl and https://gitlab.com/EPFL-LCSB/etfl/-/tree/dev_yetfl. The
524  supporting data is available in https://doi.org/10.5281/zenodo.4541577.

525 Acknowledgments

526  The authors would like to thank Dr. Kaycie Butler for her help in improving the wording
527  and structure of this manuscript. This work has received funding from the European
528  Union's Horizon 2020 research and innovation programme under grant agreement No
529 814408 (0OO), the Swiss National Science Foundation under grant agreement
530 200021 188623 (OO), the European Union’s Horizon 2020 Research and Innovation
531  Programme under the Marie Sktodowska-Curie grant agreement No. 722287 (PS), the
532 European Union's Horizon 2020 research and innovation program under the Marie
533 Sktodowska Curie grant agreement No 675585 (MM), and the Ecole Polytechnique

534  Fédérale de Lausanne.

535 Author contribution

536 OO, PS and VH designed the study. OO and PS wrote the code to adapt ETFL to
537  eukaryotic organisms. OO ran the simulations and did the enzymatic data curation. OO,
538 LM and VH analyzed the results and provided the discussion. MC, MM and LM
539  performed the thermodynamic curation of the Yeast§ GEM. OO, PS, MM, LM and VH

540  wrote and reviewed the manuscript.

19


https://doi.org/10.1101/2021.02.17.431671
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431671; this version posted February 18, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

541 Table 1: Properties of the yETFL (variable biomass composition with thermodynamics) model created from
542 Yeast8.3.4.

yETFL

Growth upper bound () 0.75h?
Number of bins (N) 128
Resolution (Gi/N) 0.0058 h't
Number of species

- Metabolites 2689

- mRNAs 1393

- Peptides 1393

- rRNAs 6
Number of enzymes

- Metabolic enzymes 1059

- RNA polymerases 2

- Ribosomes 3
Number of reactions

- Metabolic 2678

- Transport 1047

- Exchange flux 243

- Transcription 1393

- Translation 1393

- Complexation 1065

- Degradation 2458
Thermodynamic data

- Number of metabolites AG '’ 2433

- Number of reactions AG ', 3184

- Percent of metabolites AG "¢ 90%

- Percent of reactions AG ' 80%

543
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544 Table 2: The nomenclature, number of variables, and constraints of different ETFL models. EFL denotes Expression
545 and Flux. T denotes Thermodynamic. .cb and .vb represent constant and variable biomass composition, respectively.

Growth-

Abbreviated . dependent Number of  Number of
Thermodynamics : . .

name biomass variables constraints

composition

EFL.cb No No 43,527 70,918
ETFL.cb Yes No 66,714 92,338
EFL.vb No Yes 43,565 71,012
ETFL.vb Yes Yes 66,746 92,429

546

21


https://doi.org/10.1101/2021.02.17.431671
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431671; this version posted February 18, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

547 Table 3: Gene essentiality results for (A) only metabolic genes (FBA and E[T]FL.cb) and (B) metabolic and
548 expression genes (E[T]FL.cb) compared with experimental results. Matthew’s correlation coefficient (MCC) was
549 used as a metric to assess the quality of the predictions.

FBA,
(A) E|[T]FL.cb Predictions
(metabolic genes)
MCC =0.48 Essential Non-essential
Essential 53 106
Experimental
P Non-essential 12 945
E|[T]FL.cb
(B) (metabolic and Predictions
expression genes)
MCC=0.50 Essential Non-essential
Essential 72 118
Experimental
xper! Non-essential 16 1132

550
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553
554
555 Figure 1: The maximum specific growth rate (h'!) at different glucose uptake rates (mmol/(gDW.h)) for models (A)

556 with and (B) without thermodynamic constraints. The results are shown for the FBA model and ETFL models with

557 constant (E[T]FL.cb) and variable (E[T]FL.vb) biomass composition. The experimental data were taken from van
558  Hoek et al®.
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559 Figure 2: The simulation of the Crabtree effect for (A) EFL.cb, (B) ETFL.cb, (C) EFL.vb, and (D) ETFL.vb
560  models. The experimental data were taken from van Hoek ef al.?*.
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1326 metabolites
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Real metabolites

89 metabolites
Yes No
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Known structure

92 metabolites

Yes No

ACP containing or unkown structure
Full structure

202 metabolites
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Yes Generate SMILES
e
manually

Decomposition into GCM groups
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Inorganics or groups with unkown
energy
1092 metabolites
Found formation Gibbs energies
561

562 Figure 3: Schematic representation of the thermodynamic curation of the metabolites in Yeast8. Abbreviations:

563 ACP: Acyl Carrier Protein; GCM: Group Contribution Method; SMILES: Simplified Molecular Input Line Entry
564  System.
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for R, in GEM
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annotated by No
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databases? > single gene?

No
No
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565 Integrated to the Model

566 Figure 4: Workflow for the integration of enzymes into the model. The enzyme composition for the complex
567 enzymes was sourced from YeastCyc and ComplexPortal. We used the function Match Kcats from GECKO' to
568 find turnover numbers.
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