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Abstract 13 

Eukaryotic organisms play an important role in industrial biotechnology, from the 14 

production of fuels and commodity chemicals to therapeutic proteins. To optimize these 15 

industrial systems, a mathematical approach can be used to integrate the description of 16 

multiple biological networks into a single model for cell analysis and engineering. One 17 

of the current most accurate models of biological systems include metabolism and 18 

expression (ME-models), and Expression and Thermodynamics FLux (ETFL) is one 19 

such formulation that efficiently integrates RNA and protein synthesis with traditional 20 

genome-scale metabolic models. However, ETFL is so far only applicable for E. coli. 21 

To therefore adapt this ME-model for Saccharomyces cerevisiae, we herein developed 22 

yETFL. To do this, we augmented the original formulation with additional 23 

considerations for biomass composition, the compartmentalized cellular expression 24 

system, and the energetic costs of biological processes. We demonstrated the predictive 25 

ability of yETFL to capture maximum growth rate, essential genes, and the phenotype 26 

of overflow metabolism. We envision that the extended ETFL formulation can be 27 

applied to ME-model development for a wide range of eukaryotic organisms. The 28 

utility of these ME-models can be extended into academic and industrial research.   29 
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Introduction 30 

Eukaryotic organisms are extremely important in industrial biotechnology (e.g., 31 

Saccharomyces cerevisiae1 and Yarrowia lypolytica2) and are host organisms for the 32 

production of fuels and specialty and commodity chemicals. Also eukaryotic, 33 

mammalian systems such as Chinese hamster ovary (CHO) cells are the main platform 34 

organism used for therapeutic protein production3. In contrast to bacterial cells, the 35 

eukaryotes have compartmentalized cell structure to localize macromolecules with 36 

different biological tasks. This fundamental difference renders the engineering of the 37 

eukaryotes more complex and challenging. To help optimize and plan for industrial 38 

applications, complex biological systems such as these can be represented in silico by 39 

specific networks designed to capture key processes.  40 

Metabolic networks are the most widely studied and modeled type of biological 41 

networks, with over 6,000 genome-scale metabolic models (GEMs) reconstructed for 42 

archaea, bacteria, and eukaryotes4, 5. One approach for analyzing these models is Flux 43 

Balance Analysis (FBA), which is a constraint-based optimization technique, where the 44 

metabolic flux of individual reactions are computed in a metabolic network by 45 

formulating a linear optimization problem6. However, FBA can predict biologically 46 

irrelevant solutions, including cycles with unrealistically high fluxes7 or 47 

thermodynamically infeasible solutions8, 9. Despite its wide applicability, FBA cannot 48 

predict some important features of metabolic networks, such as those that account for 49 

limited catalytic capacity of enzymes or limitations in cellular expression systems.  50 

To overcome some of the issues with FBA and eliminate unrealistic solutions, 51 

additional constraints that represent empirical or mechanistic evidence have been 52 

introduced. For example, Thermodynamic-Based Flux Balance Analysis (TFA)8, 9 53 

enforces the coupling between the directionality of each reaction with its corresponding 54 

Gibbs free energy to eliminate thermodynamically infeasible predictions. More 55 

importantly, TFA also directly integrates variables for the concentrations of 56 

metabolites, which enables the integration of metabolomics data. Genome-Scale 57 

Models with Enzymatic Constraints using Kinetic and Omics data (GECKO) is another 58 

FBA-based method that accounts for the limited catalytic activity of enzymes by 59 

inclusion of enzyme concentrations as variables10. Previous studies have shown that 60 

GECKO can capture a realistic maximum specific growth rate and the occurrence of 61 

overflow metabolism in Saccharomyces cerevisiae10. However, GECKO does not 62 
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explicitly consider the cost of protein synthesis. Instead, it assumes that the fractions of 63 

peptides within a protein pool are inversely proportional to their molecular weight. The 64 

molecular weight represents the cost of the enzyme within the context of proteome 65 

allocation. However, the actual cost of enzyme synthesis is absent from the formulation. 66 

Therefore, GECKO fails to account for the competition for amino acids required for 67 

enzyme synthesis, which is an important part of the expression system.  68 

Metabolic and Expression models (ME-models) are another class of constraint-69 

based models that include the cellular expression system in addition to metabolic and 70 

catalytic constraints11-13. ME-models include individual mRNA and enzyme 71 

concentrations as well as their cost of synthesis and cellular expression capacity. A new 72 

approach to construct ME-models, called expression and thermodynamics-enabled flux 73 

(ETFL)13, was recently proposed to address the significant drawback of needing to 74 

solve the nonlinear programming (NLP) problem. The approach avoids bilinear terms 75 

by discretizing growth and solving locally linearized mixed-integer problems instead 76 

of a NLP problem. Similar to published ME-models11, 14, the first ETFL model was 77 

developed for Escherichia coli. However, the ETFL formulation can readily be 78 

extended to the study of eukaryotic organisms. 79 

S. cerevisiae is an industrially relevant organism1, 15 that is widely used for 80 

biological and medical research studies16. Several GEMs of this organism have been 81 

published over the years due to its ubiquity in metabolic engineering17-22. However, 82 

likely due to additional requisite considerations in modeling the compartmentalized 83 

cellular expression systems of eukaryotes, no ME-model of S. cerevisiae has been 84 

developed. The previous ME-models were constructed for bacteria11-13, with one 85 

ribosome and one RNA polymerase being sufficient to represent the cellular expression 86 

machinery. In contrast, S. cerevisiae as a eukaryotic organism additionally has 87 

mitochondrial ribosomes and RNA polymerases. In this work, we extended the ETFL 88 

formulation and code for applicability to eukaryotic systems. In this new formulation, 89 

we account for the additional ribosomes and RNA polymerases within the eukaryotic 90 

mitochondrial expression system. We also included an allocation constraint for the 91 

fraction of proteins that are allocated to metabolism and cellular expression. Herein, we 92 

propose an ETFL model for S. cerevisiae, named yETFL, which is based on the 93 

extended ETFL formulation. The methodological advancements in ETFL provide 94 

avenues towards development of such models for the study of other eukaryotes. 95 

96 
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Results and Discussion 97 

Model Description 98 

In this work, we present an ETFL model for S. cerevisiae, named yETFL (Table 99 

1). yETFL is based on the latest S. cerevisiae genome-scale model Yeast8. Towards the 100 

generation of yETFL, we first performed a thermodynamic curation of Yeast8, which 101 

contains 1326 unique metabolites (a total of 2691 compartmentalized metabolites), 102 

3991 reactions, 1149 genes, and 14 compartments (including the extracellular space). 103 

There are 2614 reactions that are associated to genes.  104 

Information about the thermodynamic properties of reactions allows us to (i) 105 

integrate the available metabolomics and fluxomics data into the models, (ii) compute 106 

thermodynamically consistent values of metabolic fluxes and metabolite 107 

concentrations, and (iii) determine thermodynamically feasible directionalities. Using 108 

the group contribution method (GCM), we estimated the Gibbs free energies of 109 

formation for 1092 of 1326 total unique metabolites. We then estimated the Gibbs free 110 

energies for 1880 reactions in the Yeast8 GEM, which only includes reactions in an 111 

aqueous environment (see Materials and Methods). Yeast8 has 1304 reactions in the 112 

membrane compartments (non-aqueous environment). We did not apply 113 

thermodynamic constraints for these 1304 reactions as thermodynamic relations for 114 

membrane-associated metabolites require correction based on information about the 115 

non-aqueous environments, which is not always available. 116 

In yETFL, we modeled the synthesis of 1059 enzymes coupled to 2588 of 2614 117 

reactions with associated genes. The catalytic constraints are specified by coupling the 118 

reactions and the enzymes, which requires information on 𝑘!"#, or the enzyme turnover 119 

numbers. We found 𝑘!"# values for 943 enzymes and approximated this number for a 120 

further 166 enzymes from the median 𝑘!"# value in S. cerevisiae (see Materials and 121 

Methods). Of these enzymes, 77 were transporters associated to 167 transport reactions, 122 

there are 107 complexes among the enzymes, and the remainder are monomeric 123 

enzymes composed of a single peptide. A complexation reaction is considered for each 124 

enzyme to account for its synthesis from the constituent peptides.  125 

While one RNA polymerase and one ribosome can sufficiently represent 126 

bacterial expression system, in a eukaryotic cell such as S. cerevisiae, there are different 127 

RNA polymerases and ribosomes. Notably, the mitochondria have their own RNA 128 

polymerase and ribosome. The extended ETFL formulation, presented here, enables 129 
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implementing multiple ribosomes and RNA polymerases, the latter of which includes: 130 

(i) the RNA polymerase II, which transcribes nuclear genes and (ii) the mitochondrial 131 

RNA polymerase, which transcribes the mitochondrial genes. The model also includes 132 

three ribosomes, where one ribosome is associated with mitochondrial genes and the 133 

other two ribosomes are associated with nuclear genes, but differ in their composition 134 

(see Materials and Methods). Altogether, yETFL includes 1149 metabolic genes from 135 

Yeast8 and an additional 244 genes that encode the composition of the aforementioned 136 

ribosomes and RNA polymerases. 137 

To study the inclusion or exclusion of thermodynamic constraints and a variable 138 

or constant type of resource allocation (Materials and Methods), we developed four 139 

different types of models (Table 2). The inclusion of thermodynamic constraints is 140 

reflected by the presence of “T” in the name of the model (i.e., ETFL.cb and ETFL.vb), 141 

and the “cb” points to a version with a constant biomass composition, while “vb” 142 

indicates the biomass composition is variable with growth. The number of variables 143 

and constraints in each model is detailed in Table 2. We used 128 bins to discretize the 144 

growth in the range of [0, 𝜇$"%], where 𝜇$"% is the maximum growth rate of S. 145 

cerevisiae as observed in rich growth medium (see Salvy and Hatzimanikatis13 for 146 

details). This resulted in 135 (i.e., 128 + log& 128) binary variables in the models 147 

without thermodynamic constraints, denoted as EFL.cb and EFL.vb. In the models with 148 

thermodynamic constraints, two binary variables were added per reaction to account 149 

for the directionality, which resulted in 8073 binary variables. 150 

Prediction of specific growth rate 151 

The cellular growth rate should plateau when high values of substrate uptake 152 

are attained, as limitations in the expression system and catalytic activity of enzymes 153 

cause shift the growth rate from a glucose-dependent limitation to an enzyme-154 

dependent one. This phenomenon is described by established empirical models of 155 

microbial growth, where the growth shifts from nutrient limitation to proteome 156 

limitation23. However, standard FBA models predict that the growth rate increases 157 

linearly with increased carbon uptake.  Since ETFL accounts for expression limitations, 158 

it is expected to predict this shift in the cellular growth rate. 159 

We investigated the variations in growth rate with constant (E[T]FL.cb) and 160 

variable (E[T]FL.vb) biomass composition by examining the predicted maximum 161 

growth rate versus the glucose uptake (Figure 1). With a constant biomass composition, 162 
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the stoichiometric coefficients are constant in the growth reaction. Likewise, the 163 

stoichiometric coefficients change with growth in the variable composition. In both 164 

cases, and in contrast to FBA, the growth rate plateaued at higher values of glucose 165 

uptake rate, which is in accordance with the experimental results24. That is, we observed 166 

a shift from glucose-limited growth to proteome-limited growth. The maximum 167 

predicted growth rate was 0.46 h-1 and 0.42 h-1 for E(T)FL.cb and E(T)FL.vb, 168 

respectively. Both agree with experimentally measured maximum growth rates 169 

reported in the literature, which are in the range of 0.4–0.45 h-1 for different strains25-170 
27. The accuracy of our predictions with experimental observations is important, as the 171 

maximum growth rate was highly overestimated in previously reported ME-models12, 172 
13, likely due to the lack of an allocation constraint on the total amount of metabolic 173 

enzymes (see Eq. 5). Integration of this allocation constraint into the yETFL 174 

formulation was straightforward, but previous ME-model formulations disallowed the 175 

addition of this constraint without fundamental modification of the solving process14.  176 

We observed small discrepancies in the maximal growth rate between the 177 

experimental data and the yETFL results for the glucose uptake rate, which ranged from 178 

~4 mmol/gDW/h to ~11 mmol/gDW/h (Figure 1). One cause of these discrepancies 179 

might be the growth dependence of certain parameters, such as the ribosomal 180 

elongation rate. To avoid excessive constraints in the model and to preserve 181 

experimental observations with a feasible solution space, we used the highest reported 182 

values for ribosomal elongation rate, which typically corresponds to higher growth 183 

rates28, 29. Since our formulation accounts for growth-dependent parameters, we 184 

anticipate the facile integration of new information on the variation of the parameters 185 

with the growth rate into yETFL.  186 

Another contributor to experimental and predicted discrepancies might be the 187 

regulation system that is used by S. cerevisiae during the transition from nutrient-188 

limited to proteome-limited growth. Like other ME-models, yETFL works under the 189 

assumptions of optimality (e.g., maximal growth rate) and that the cellular system 190 

evolved under selection pressure to match this optimality. In this context, the regulatory 191 

network of S. cerevisiae can be seen as a control system that drives the metabolism 192 

towards optimality. Deviations from model optimality in transition regions are simply 193 

limitations of the regulatory system. Therefore, the predictive ability of the model can 194 

be enhanced by the addition of regulatory constraints from improved input on 195 

mechanisms and parameters that regulate the phenotypic transition. 196 
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Gene Essentiality Analysis 197 

To investigate the quality of yETFL, we examined the ability of the model to 198 

predict which genes are essential for the cellular growth. We discovered that the gene 199 

essentiality results for metabolic genes were identical for the EFL.cb and FBA models 200 

(Table 3A). This includes 1149 genes associated with metabolic reactions in the Yeast8 201 

model. We compared the predicted essentialities to the experimental observations, 202 

which were available for 5061 genes, to assess the quality of the model. However, this 203 

is not comprehensive of S. cerevisiae genes. The results in Table 3A show the 204 

essentiality of metabolic genes with the available experimental data. Compared to the 205 

FBA model, yETFL models have more genes that correspond to RNA polymerases and 206 

ribosomes (expression genes). We could not do gene essentiality for these 244 207 

expression genes with FBA, as these genes are not associated to any function in the 208 

Yeast8 model. There are 222 expression genes with available experimental data that 209 

are represented alongside the metabolic genes in Table 3B. From these results, we 210 

performed gene essentiality for a greater number of genes in yETFL (1393 genes) than 211 

in Yeast8 (1149 genes), with a slight improvement in the Matthews correlation 212 

coefficient (Table 3). We also found that the integration of thermodynamic constraints 213 

into FBA or EFL.cb did not change the essentiality results. 214 

Crabtree Effect 215 

Overflow metabolism is a shift from an optimal to a non-optimal metabolic 216 

phenotype and is observed in different organisms at high growth rates24, 30, 31. Overflow 217 

metabolism in S. cerevisiae, also called the Crabtree effect, occurs when cells shift from 218 

pure respiration to a combination of respiration and fermentation in the presence of 219 

oxygen. This happens after cells reach a critical growth rate, which is strain-specific 220 

though can be estimated at about 0.3 h-1. Because one hypothesis for why overflow 221 

metabolism occurs is proteome limitation32, 33 and because the yETFL model takes this 222 

into account, we therefore next looked at the ability of yETFL to predict this metabolic 223 

shift. 224 

The Crabtree effect in S. cerevisiae cannot be predicted with FBA unless some 225 

ad hoc assumptions are made in the constraints or the objective function33. In contrast, 226 

we successfully predicted the shifts in fluxes at higher growth rates with yETFL, which 227 

considered limitations in the catalytic capacity of the enzymes and protein expression 228 

machinery (Figure 2). In fact, yETFL could capture the shift in metabolism at high 229 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.17.431671doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431671
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 9 

growth rates, where ethanol was secreted, and CO2 production increased while O2 230 

consumption decreased. The model had good qualitative agreement with the 231 

experimental data acquired from aerobic, glucose-limited chemostat cultures24. 232 

The E[T]FL.vb models (see Materials and Methods) presented an earlier onset 233 

of the Crabtree effect relative to the E[T]FL.cb models (Figure 2). We can attribute the 234 

onset to the Yeast8 protein fraction used in E[T]FL.cb, which is close to the 235 

experimentally observed values at higher growth rates. Thus, the E[T]FL.cb models are 236 

less constrained than the E[T]FL.vb ones. In general, models with higher protein ratios 237 

are less tightly constrained. Hence, their maximum growth rate and the Crabtree effect 238 

occur at higher growth rates (Figure 2). We also observed a slight deviation of the 239 

model predictions from the experimental observations in the transition region for the 240 

growth rates between 0.3 and 0.38 h-1, the onset of Crabtree effect with the experimental 241 

data and yETFL, respectively (Figure 2). A potential method to enhance the predictive 242 

ability of yETFL in light of these slight discrepancies would be through the inclusion 243 

of regulatory mechanisms by integration of regulatory constraints. Another next step 244 

would be to account for the growth dependence of more parameters. These 245 

improvements can be facilitated by further experimental investigations into S. 246 

cerevisiae physiology. 247 

It is of note that yETFL was able to capture the Crabtree effect solely by 248 

integration of experimentally measured data and without ad hoc modifications in the 249 

model or the formulation. In an earlier study10, an additional parameter was introduced 250 

to further constrain the availability of enzymes. Since the saturation rate of individual 251 

enzymes is not known, this parameter was introduced as the saturation rate of the total 252 

enzymatic pool and it was calculated by fitting the model predictions to the 253 

experimental data. Here, we captured the Crabtree effect without additional parameters, 254 

as yETFL explicitly accounts for the saturation rates of individual enzymes. Moreover, 255 

yETFL also allows for integration of experimentally observed saturation rates of 256 

individual enzymes by the addition of saturation parameters to the catalytic constraint 257 

of each enzyme. These parameters can then be found by fitting the model predictions 258 

to the experimental data, as has been reported34. Following a similar procedure, we can 259 

also integrate different experimental transcriptional and translational efficiencies into 260 

the model. 261 
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Conclusion 262 

In this work, we developed a model for a eukaryotic organism, S. cerevisiae, by 263 

extension of the recently published formulation of ETFL to consider 264 

compartmentalized expression systems with separate ribosomes and RNA polymerases. 265 

This is the first model for yeast that includes RNA and enzyme concentration data, and 266 

this explicit simulation of expression broadens the applications of yETFL to the 267 

simulation of the impacts of different perturbations on cellular mechanisms. To test the 268 

accuracy of yETFL, we validated the predictions of the model against experimental 269 

data. Moreover, we reproduced the emergence of the Crabtree effect, and observed the 270 

secretion of ethanol in aerobic conditions without needing to integrate experimental 271 

data as with previous descriptions of the Crabtree effect10.  272 

Overall, a key advantage of the ETFL formulation is its direct extension to other 273 

types of analyses, such as the study of the Crabtree effect at the steady-state as we have 274 

presented in this work. Future work in understanding the emergence of this effect in a 275 

dynamic setting, as previously shown for the E. coli overflow metabolism35, will yield 276 

valuable insights on the optimality of the regulatory mechanisms in S. cerevisiae. We 277 

envision that this information can be applied to design industrially valuable strains. 278 

Also, yETFL can be used as a scaffold to integrate other biological networks, such as 279 

regulatory or signaling networks5, as a vital step towards constructing a whole-cell 280 

model36. Finally, the extension of the ETFL formulation presented here is readily 281 

adaptable to any eukaryotic organism for which a well-curated GEM is available. The 282 

quality of the information about enzymes (i.e., catalytic rate constants and protein 283 

composition) will affect the quantitative predictions of the model, though new data is 284 

easily inputted into ETFL such that the predictions will always be as good as the 285 

available data. We envision that the availability of eukaryotic ME-models will improve 286 

the understanding and engineering of industrial hosts for the refinement and creation of 287 

better eukaryotic systems in biotechnology, for applications ranging from the 288 

production of fuels and commodity chemicals to therapeutic proteins.   289 
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Materials and Methods 290 

Formulation of the ETFL model 291 

yETFL is based on the ETFL formulation, which was previously described in detail in 292 

Salvy and Hatzimanikatis.13. The ETFL constraints can be divided into five main 293 

categories: 294 

• Metabolic constraints: Enforce all metabolite and macromolecule 295 

concentrations to be at steady-state. These constraints are the same as in FBA6. 296 

• Thermodynamic constraints: Couple the directionality of reactions with their 297 

Gibbs free energy. These constraints are the same as in TFA8, 9. 298 

• Catalytic constraints: Define upper bounds on the reaction fluxes based on the 299 

enzymatic capacity of the associated enzymes. 300 

• Expression constraints: Model the synthesis of mRNAs, peptides, and 301 

proteins, and constrain synthesis rates based on the limitations of transcription 302 

and translation machinery. 303 

• Allocation constraints: Determine the available amounts of DNA, RNA, and 304 

proteins in the cell. If experimental data is available, the ETFL formulation 305 

allows for modeling the growth-dependent abundance of these macromolecules. 306 

Whenever the experimentally measured abundance of these macromolecules 307 

during growth is not available, we assume that the ratio between these quantities 308 

is growth-independent, an assumption already made in FBA. 309 

Data Collection 310 

Genome-scale Metabolic Model 311 

The most recent GEM of Saccharomyces cerevisiae, Yeast822, was used as a basis to 312 

construct the yETFL model. The latest published version of Yeast8 model, Yeast8.3.4, 313 

was obtained from the GitHub as it was provided by Laboratory of Systems and 314 

Synthetic Biology at Chalmers University (https://github.com/SysBioChalmers/yeast-315 

GEM). 316 

The following modifications to Yeast8 were made: 317 

• Pseudometabolites defined for RNAs and proteins as well as pseudoreactions 318 

defined for their synthesis were replaced by the explicit expressions for RNAs 319 
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and protein synthesis (according to the procedure described in Salvy and 320 

Hatzimanikatis13). 321 

• tRNAs and their reactions were adapted into a formulation that accounts for 322 

dilution effects, according to the ETFL procedure13. This is necessary as the 323 

dilution effect is not necessarily negligible for tRNAs. 324 

• The biomass reaction was modified to account for growth-dependent 325 

composition, as discussed in detail in the section Allocation Data and 326 

Constraints. 327 

Thermodynamic curation of Yeast8  328 

We used Group Contribution Method (GCM)37 to determine the standard Gibbs free 329 

energy of formation in aqueous, ionic environments38 for 1092 out of 1326 (82.4%) 330 

unique metabolites from Yeast8 (Figure 3). We were not able to determine the 331 

thermodynamic properties for the remaining 234 metabolites because: (i) 89 332 

metabolites (6.7%) represented abstract compounds, such as pools of proteins, 333 

nucleotides, lipid chains; (ii) 92 metabolites (6.9%) did not have a known molecular 334 

structure or they contained structural groups for which the estimated standard Gibbs 335 

energy of formation is unknown (e.g., acyl carrier protein group); and (iii) 53 336 

metabolites (4%) contain groups with unknown energy in their composition. Using the 337 

standard Gibbs free energy of formation of compounds, we integrated the 338 

thermodynamic properties only for reactions in the aqueous solution. We estimated the 339 

standard Gibbs free energy of reactions for 1880 out of 2687 (70.0 %) such reactions 340 

from Yeast8. The standard Gibbs free energy of reactions with at least one metabolite 341 

associated with a membranous compartment (including 1304 reactions) was not 342 

calculated using this procedure, as the standard Gibbs free energy of formation of 343 

compounds was determined for the aqueous environments. 344 

mRNA, Peptide, and Protein Data 345 

The sequences for the peptides and mRNAs were obtained from the KEGG database39. 346 

Information about the stoichiometry of peptides forming enzymatic complexes in S. 347 

cerevisiae was obtained by combining available information in YeastCyc40 and 348 

Complex Portal41. Turnover numbers (𝑘!"#) were retrieved from BRENDA using 349 

functions provided by GECKO10. 350 
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Allocation Data and Constraints 351 

We created yETFL models using either a constant or variable biomass composition. 352 

For constant biomass composition (E[T]FL.cb), we used the macromolecular fractions 353 

from the Yeast8 biomass reaction. The mass fractions for different macromolecules 354 

were calculated using the equation: 355 

 𝑓' = , 𝜂(𝑀𝑊(
(∈*!

	.		 (1) 

 356 

For each type of macromolecule, 𝑀', 𝜂	(∈*! 	is the stoichiometric coefficient of the 357 

metabolites belonging to this macromolecule class in the biomass reaction, and 𝑀𝑊( is 358 

their molecular weight. For example, to find the protein fraction in the biomass, 𝑓,-.# , 359 

the stoichiometric coefficients of individual amino acids were multiplied by their 360 

molecular weight to find their mass fractions in the biomass. The sum of these amino 361 

acid ratios indicates how much of the biomass is protein. By definition, the weight of 362 

biomass should be 1 gram42, 43, i.e., 363 

 , 𝜂(𝑀𝑊(
(∈///-0"!#"1#2

− , 𝜂3𝑀𝑊3 = 1
3∈456-.78!#2

. (2) 

In this equation, BBBreactants is the set of reactants in biomass reaction and byproducts 364 

is the set of all products except biomass. 365 

When generating an ETFL model, it is important to remove protein and RNA 366 

metabolites from the biomass equation to prevent double-counting of the metabolic 367 

requirements, since the explicit mRNA and peptide synthesis reactions already account 368 

for their respective participation in cell growth.  369 

In ETFL, we model the participation of macromolecules in the cellular biomass 370 

composition as follows: 371 

 ,𝑀𝑊3𝐸3 = 𝑃$
3

, (3) 

 ,𝑀𝑊9𝐹9 = 𝑅$	
9

, (4) 

where 𝑃$ and 𝑅$ are, respectively, the protein and RNA mass fractions in g/gDW, and 372 

𝐸3 and 𝐹9 represent, respectively, the concentration of enzyme j and RNA l in 373 

mmol/gDW. 𝑃$ and 𝑅$ can either be constant (E[T]FL.cb) or variable and discretized 374 

(E[T]FL.vb). 375 
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To create an E[T]FL.vb model, it is necessary to know the fraction of each biomass 376 

component at different growth rates. We gathered this information for S. cerevisiae by 377 

reviewing the literature (data available on the online ETFL repository, see Code and 378 

Dependencies)24, 44, 45. Since the data is usually reported for a few particular growth 379 

rates, we resampled it using piecewise-linear interpolation. 380 

Protein allocation 381 

Since ME-models do not consider all the cellular tasks of proteins, ETFL defines a 382 

generic, so-called dummy protein to represent the fraction of the proteome not 383 

accounted for in the model13, such as structural proteins, signaling proteins, or 384 

chaperones. However, since the dummy protein is not associated with a cellular 385 

function, the optimization procedure will apportion the whole protein content to the 386 

proteins that are associated with a cellular task (i.e., metabolic enzymes, ribosomal 387 

peptides, and RNA polymerase). Consequently, the concentration of the latter proteins 388 

is overestimated, which results in overestimating the maximum growth rate, and the 389 

Crabtree effect emerges at higher growth rates. To realistically account for enzyme 390 

participation in the proteome, we can define 𝜑, the proportion of proteins that is 391 

associated with a metabolic task, in the total protein content of the cell. Then, we can 392 

add the following constraint in the optimization problem:  393 

 , 𝑀𝑊3𝐸3 = 𝜑 · 𝑃$	
3:78$$5	6-.#0(1

. (5) 

 394 

This way, the constraints in Eq. 3 and 5 enforce the optimization procedure to allocate 395 

a fraction of the proteome, i.e., (1 − 𝜑), to the proteins with cellular functions not 396 

considered in the model, i.e., dummy protein. We used the latest protein abundance 397 

dataset for S. cerevisiae available in PaxDB46 to compute this fraction as 𝜑 =398 

0.55𝑔/𝑔6-.#0(1. 399 

DNA  400 

The growth dependence of the DNA abundance in the cell was modeled as proposed in 401 

the original ETFL formulation13. 402 

Carbohydrates, Lipids, and Ions 403 

To consider the growth dependence of the biomass composition, we introduced the 404 

variation of the other biomass components in the ETFL formulation. To this end, we 405 
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first defined a metabolite pool for each of these macromolecules. In Yeast8, each 406 

biomass component is attached to a pooling reaction that transforms the sum of specific 407 

metabolites (e.g. all carbohydrate metabolites) into a single metabolite pool (e.g. 408 

carbohydrate). The mass balance equation for these modeling metabolites is the 409 

following: 410 

 𝑑[𝑋(]
𝑑𝑡 = 	𝜂(4(.$"22𝜇 − 𝜂(

6..9𝑣(
6..9 	 ∈ {𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒, 𝐿𝑖𝑝𝑖𝑑, 𝐼𝑜𝑛},	 (6) 

where 𝑣(
6..9 is the flux through the pooling reaction, and 𝜂(

6..9 and 𝜂(4(.$"22 represent 411 

stoichiometric coefficients of the modeling metabolite i in the pooling and biomass 412 

reactions, respectively. When it is desired to model a growth-dependent stoichiometric 413 

coefficient in the biomass reaction, the said stoichiometric coefficient can be redefined 414 

as a function of 𝜇 and calculated as follows: 415 

 𝜂(4(.$"22 =	𝜂(,			-0<4(.$"22 𝑋8,(
$

𝑋-0<,($ 	 , 𝑖 ∈ {𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒, 𝐿𝑖𝑝𝑖𝑑, 𝐼𝑜𝑛}.	 (7) 

In this equation, 𝑋8,($  is the discretized mass fraction of component i in the discretized 416 

growth state number u, following notations from Salvy and Hatzimanikatis13. 𝜂(,			-0<
=-.>#? 417 

is the stoichiometric coefficient in the biomass reaction, and 𝑋-0<,($  is the mass ratio of 418 

component i in a reference model (e.g. FBA).  419 

Ribosomes and RNA Polymerases 420 

To model the ribosomes and the RNA polymerases, information about their constituting 421 

peptides, ribosomal RNA, and catalytic rate constants is required. To consider the 422 

eukaryotic complexity of S. cerevisiae, we defined multiple RNA polymerases and 423 

ribosomes in yETFL (Table 1): 424 

• RNA polymerase: Similar to the other eukaryotes, S. cerevisiae has three 425 

different types of nuclear RNA polymerases. However, most of the mRNA 426 

transcripts are transcribed by RNA polymerase II47. In yETFL, we implemented 427 

this nuclear RNA polymerase, and we modeled such that all the nuclear genes 428 

could be transcribed only by this enzyme, similar to the previous work13. For 429 

mitochondrial genes, we defined a mitochondrial RNA polymerase, which was 430 

characterized by its own composition and kinetic parameters47. 431 

• Ribosome: The structure of the cytosolic ribosomes in S. cerevisiae contains 432 

four ribosomal RNA (rRNA) molecules encoded by four different genes. In 433 

addition to these four rRNAs, the cytosolic ribosomes contain 78 peptides 434 
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encoded by 137 genes48. Out of 78 peptides, 19 are encoded by a single gene 435 

and 59 peptides are encoded by either of two alternative genes. To account for 436 

alternative ribosomal peptides, we defined two sets of genes: set A containing 437 

59 genes encoding for the 59 peptides (designated with “A” in their standard 438 

names, e.g., RPL1A), and set B containing the alternative genes of set A 439 

(designated with “B” in their standard names, e.g., RPL1B). Then, we 440 

constructed two cytosolic ribosomes, one where we constructed the 59 peptides 441 

using the set A and the other where we used the set B. We assumed a similar 442 

elongation rate for both cytosolic ribosomes.  443 

A mitochondrial ribosome was also defined to translate mitochondrial genes. 444 

This ribosome is composed of two rRNAs and 78 peptides49. 445 

Modifying the Growth-associated Maintenance 446 

The energetic cost of growth, including maintenance of the cell and polymerization of 447 

the macromolecules50, is quantified in genome-scale models using the growth-448 

associated maintenance (GAM). In ETFL, we consider the energetic cost of protein 449 

synthesis explicitly, and this cost should be removed from the GAM to avoid the 450 

overestimation of energetic requirements in the polymerization of peptides (Eq. 8). 451 

 452 

 

, 𝜂"""
9

"""∈@

𝑡𝑅𝑁𝐴"""
!?"-=07 + 2𝐿""9 (𝐺𝑇𝑃 + 𝐻&𝑂) 	

→ 	𝑃𝑒𝑝9

+ , 𝜂"""
9

"""∈@

𝑡𝑅𝑁𝐴"""
81!?"-=07

+ 2𝐿""9 (𝐺𝐷𝑃 + 𝑃𝑖 + 𝐻A), 

(8) 

 453 

where 𝑎𝑎( is the ith amino acid, 𝜂"""
9  represents its count in the lth peptide (𝑃𝑒𝑝9), and 454 

𝐿""9  is the length of the peptide in amino acid.  455 

Since 2 moles of GTP are needed to attach 1 mole of amino acid to the peptide (Eq. 8), 456 

and from 457 

 𝐴𝑇𝑃 + 𝐺𝐷𝑃 → 𝐴𝐷𝑃 + 𝐺𝑇𝑃, (9) 

1 mole of ATP is required to produce 1 mole of GTP. Therefore, we can deduce that 458 

peptide polymerization requires 2 moles of ATP per 1 mole of amino acid.  459 
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We also know that the stoichiometric coefficients of amino acids in the biomass 460 

reaction of Yeast8 give information on how many mmol/gDW of each amino acid are 461 

required to produce 1 gram of biomass. From there, it is straightforward to compute the 462 

total amount of amino acids (~4.1 mmol) required for the production of 1 gram of 463 

biomass. Combined, we can calculate that to produce 1 gram of biomass, the energetic 464 

cost is 2 × 4.1 = 8.2 mmol/gDW of ATP for peptide synthesis, which we removed 465 

from the GAM. 466 

Gene-protein-reaction Coupling 467 

Coupling the reactions in metabolic networks with their enzymes is the most important 468 

step in the process of creating an ETFL model. Ideally, assigning enzymes to reactions 469 

requires information about: (i) gene-protein-reaction rules; (ii) catalytic rate constants 470 

(𝑘!"#); and (iii) type and stoichiometry of the peptide assembly into enzymes. 471 

Whenever we did not have access to all required information, we made the following 472 

assumptions (Figure 4): 473 

• We assumed similar composition for isoenzymes if composition information 474 

was only available for one of them. For example, if one of the isoenzymes is a 475 

dimer, the other is also assumed to be a dimer. 476 

• We assumed that monomeric enzymes catalyze reactions (i) that depend on a 477 

single gene, and (ii) for which information about their enzyme composition was 478 

not available.  479 

• If an enzyme peptide composition is identified, either from databases or by 480 

approximation, but its 𝑘!"# was not found, we set the 𝑘!"# equal to 70.9	𝑠BC, 481 

which is the median for 𝑘!"#s in S. cerevisiae10. 482 

• While the reactions that transport a metabolite from one compartment to another 483 

one are associated with genes, their 𝑘!"# information is scarce. As a result, these 484 

reactions were not catalytically constrained in similar models such as 485 

GECKO10. We set 𝑘!"# of the proteins that catalyze these reactions to a large 486 

number (1E+9 h-1), which ensures that these reactions are not catalytically 487 

constrained and only the gene-protein-reaction relationship is preserved. We 488 

also checked the impact of constraining the transport reactions. To this end, 489 

these reactions were constrained by the median 𝑘!"#, but no significant change 490 

was observed in the results. 491 
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Gene Essentiality Analysis 492 

We used gene essentiality analysis51 to assess the quality of yETFL. The ETFL 493 

formulation enables single-gene knockouts by blocking the flux through transcription 494 

reaction for each gene. The predicted essential genes were compared against 495 

experimental data for S. cerevisiae obtained from http://www-496 

sequence.stanford.edu/group/yeast_deletion_project/downloads.html. Before deleting 497 

the genes, the culture medium was modified according to Lu et al.22. Briefly, the 498 

minimal medium supplemented with amino acids and nucleotides was used for the 499 

simulations, and the model was allowed to uptake glucose as the sole carbon source. 500 

The Matthew’s correlation coefficient (MCC) was used as a metric to evaluate the 501 

quality of predictions for FBA and ETFL because of its robustness to the imbalance in 502 

the number of essential and non-essential genes. MCC can take values from -1 to 1, 503 

where values of MCC close to -1 indicate predictions opposed to the ground truth, 0 504 

random predictions, and 1 perfect predictions. 505 

Chemostat Simulations 506 

The results of this paper were obtained by simulating the cell growth as a function of 507 

different carbon uptake rates. This allows the exhibition of proteome-limited behavior 508 

and overflow metabolism in the presence of excess glucose. For all simulations, the 509 

model was allowed to uptake glucose as a carbon source, some essential inorganic 510 

compounds, and oxygen. To prepare the model for the simulations, it was modified as 511 

described previously in Sánchez et al.10.  512 

To capture the Crabtree effect, the substrate uptake rate was minimized for different 513 

values of the growth rate. Then, we fixed the values of the substrate uptake rates at the 514 

computed minima and minimized the total fluxes52 and then the total enzyme 515 

concentrations10, consecutively, to account for the parsimonious enzyme usage. Finally, 516 

the Chebyshev center of the enzyme space was used as a representative solution35. 517 

Code and Dependencies 518 

The code was implemented in Python 3.7, and the commercial solver Gurobi was used 519 

to solve the MILP problems. The code relies on the ETFL13 and pyTFA53 packages, 520 

which use COBRApy54 and Optlang55. The code to generate yETFL models and 521 

reproduce the results of this paper is freely available at https://github.com/EPFL-522 
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LCSB/etfl/tree/dev_yetfl and https://gitlab.com/EPFL-LCSB/etfl/-/tree/dev_yetfl. The 523 

supporting data is available in https://doi.org/10.5281/zenodo.4541577. 524 
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Table 1: Properties of the yETFL (variable biomass composition with thermodynamics) model created from 541 
Yeast8.3.4. 542 

 yETFL 

Growth upper bound (ū) 0.75 h-1 
Number of bins (N) 128 
Resolution (ū/N) 0.0058 h-1 
Number of species  

  -    Metabolites 2689 
  -    mRNAs 1393 
  -    Peptides 1393 
  -    rRNAs 6 
Number of enzymes  

  -    Metabolic enzymes 1059 
  -    RNA polymerases 2 
  -    Ribosomes 3 

Number of reactions  

  -    Metabolic 2678 
  -    Transport 1047 
  -    Exchange flux 243 
  -    Transcription 1393 
  -    Translation 1393 
  -    Complexation 1065 
  -    Degradation 2458 
Thermodynamic data  
  -    Number of metabolites ΔG '°f 2433 
  -    Number of reactions ΔG '°r 3184 
  -    Percent of metabolites ΔG '°f 90% 
  -    Percent of reactions ΔG '°r 80% 

  543 
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Table 2: The nomenclature, number of variables, and constraints of different ETFL models. EFL denotes Expression 544 
and Flux. T denotes Thermodynamic. .cb and .vb represent constant and variable biomass composition, respectively. 545 

Abbreviated 
name Thermodynamics 

Growth-
dependent 
biomass 

composition 

Number of 
variables 

Number of 
constraints 

EFL.cb No No 43,527 70,918 

ETFL.cb Yes No 66,714 92,338 

EFL.vb No Yes 43,565 71,012 

ETFL.vb Yes Yes 66,746 92,429 
  546 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.17.431671doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431671
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 22 

Table 3: Gene essentiality results for (A) only metabolic genes (FBA and E[T]FL.cb) and (B) metabolic and 547 
expression genes (E[T]FL.cb) compared with experimental results. Matthew’s correlation coefficient (MCC) was 548 
used as a metric to assess the quality of the predictions. 549 

(A) 
FBA, 

E[T]FL.cb 
(metabolic genes) 

Predictions 

   MCC = 0.48 Essential Non-essential 

Experimental 
Essential 53 106 

Non-essential 12 945 

   
   

(B) 
E[T]FL.cb 

(metabolic and 
expression genes) 

Predictions 

  MCC = 0.50  Essential Non-essential 

Experimental 
Essential 72 118 

Non-essential 16 1132 
    

550 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.17.431671doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431671
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 23 

   551 

 552 
(A) 

 
(B) 

 
 553 

 554 
Figure 1: The maximum specific growth rate (h-1) at different glucose uptake rates (mmol/(gDW.h)) for models (A) 555 
with and (B) without thermodynamic constraints. The results are shown for the FBA model and ETFL models with 556 
constant (E[T]FL.cb) and variable (E[T]FL.vb) biomass composition. The experimental data were taken from van 557 
Hoek et al.24.  558 
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(D) 

 

Figure 2: The simulation of the Crabtree effect for (A) EFL.cb, (B) ETFL.cb, (C) EFL.vb, and (D) ETFL.vb 559 
models. The experimental data were taken from van Hoek et al.24.  560 
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 561 
Figure 3: Schematic representation of the thermodynamic curation of the metabolites in Yeast8. Abbreviations: 562 
ACP: Acyl Carrier Protein; GCM: Group Contribution Method; SMILES: Simplified Molecular Input Line Entry 563 
System.  564 
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 565 
Figure 4: Workflow for the integration of enzymes into the model. The enzyme composition for the complex 566 
enzymes was sourced from YeastCyc and ComplexPortal. We used the function Match Kcats from GECKO10 to 567 
find turnover numbers.  568 
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