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de Madrid & CIBER-BNN, Madrid, Spain
Correspondence*:
Irina Grigorescu
irina.grigorescu@kcl.ac.uk

ABSTRACT2

Deep learning based medical image segmentation has shown great potential in becoming a3
key part of the clinical analysis pipeline. However, many of these models rely on the assumption4
that the train and test data come from the same distribution. This means that such methods5
cannot guarantee high quality predictions when the source and target domains are dissimilar due6
to different acquisition protocols, or biases in patient cohorts. Recently, unsupervised domain7
adaptation (DA) techniques have shown great potential in alleviating this problem by minimizing8
the shift between the source and target distributions, without requiring the use of labelled data in9
the target domain. In this work, we aim to predict tissue segmentation maps on T2-weighted (T2w)10
magnetic resonance imaging (MRI) data of an unseen preterm-born neonatal population, which11
has both different acquisition parameters and population bias when compared to our training data.12
We achieve this by investigating two unsupervised DA techniques with the objective of finding13
the best solution for our problem. We compare the two methods with a baseline fully-supervised14
segmentation network and report our results in terms of Dice scores obtained on our ground truth15
test dataset. Moreover, we analyse tissue volumes and cortical thickness (CT) measures of the16
harmonised data on a subset of the population matched for gestational age (GA) at birth and17
postmenstrual age (PMA) at scan. Finally, we demonstrate the applicability of the harmonised18
cortical gray matter maps with an analysis comparing term and preterm-born neonates and a19
proof-of-principle investigation of the association between CT and a language outcome measure.20
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1 INTRODUCTION
Medical image deep learning has made incredible advances in solving a wide range of scientific problems,22
including tissue segmentation or image classification (Miotto et al., 2018). However, one major drawback23
of these methods is their applicability in a clinical setting, as many models rely on the assumption that the24
source and target domains are drawn from the same distribution. As a result, the efficiency of these models25
may drop drastically when applied to images which were acquired with acquisition protocols different than26
the ones used to train the models (Kamnitsas et al., 2017; Orbes-Arteaga et al., 2019).27

A class of deep learning methods called DA techniques aims to address this issue by suppressing the28
domain shift between the training and test distributions. In general, DA approaches are either semi-29
supervised, which assume the existence of labels in the target dataset, or unsupervised, which assume the30
target dataset has no labels. For example, a common approach is to train a model on source domain images31
and fine-tune it on target domain data (Kushibar et al., 2019; Ghafoorian et al., 2017). Although these32
methods can give good results, they can become impractical as more often than not the existence of labels33
in the target dataset is limited or of poor quality. Unsupervised domain adaptation techniques (Ganin and34
Lempitsky, 2014; Kerfoot et al., 2019) offer a solution to this problem by minimizing the disparity between35
a source and a target domain, without requiring the use of labelled data in the target domain.36

In our previous work (Grigorescu et al., 2020), we investigated two unsupervised DA methods with the37
aim of predicting brain tissue segmentations on 2D axial slices of T2w MRI data of an unseen neonatal38
population. We proposed an additional loss term in one of the methods, in order to constrain the network to39
more realistic reconstructions. Our models were trained using as source domain a dataset with majority of40
term-born neonates and as target domain a preterm-only population acquired with a different protocol. We41
calculated mean cortical thickness measures for every subject in the two datasets and we performed an42
ANCOVA analysis in order to find group differences between the predicted source and target domains. This43
analysis showed that our proposed method achieved harmonisation of our two datasets in terms of cortical44
gray matter tissue segmentation maps. In this paper, we build on the aforementioned framework, which45
we expanded in three main ways. First, we build and train 3D neural networks in order to capture more46
information about the neonatal brain. Second, we extend the validation of our trained models to subsets of47
the two cohorts matched for GA and PMA, for which we analyse tissue volumes and global and local CT48
measures. Finally, we perform an analysis comparing term and preterm-born neonates on the harmonised49
cortical gray matter maps and we show the importance of harmonising the data by a proof-of-principle50
investigation of the association between cortical thickness and a language outcome measure.51

2 MATERIAL AND METHODS
2.1 Data Acquisition and Preprocessing52

The T2w MRI data used in this study was collected as part of two independent projects: the developing53
Human Connectome Project (dHCP1), and the Evaluation of Preterm Imaging (ePrime2) study. The dHCP54
data was acquired using a Philips 3T scanner and a 32-channels neonatal head coil (Hughes et al., 2017),55
using a T2w turbo spin echo (TSE) sequence with parameters: repetition time TR = 12 s, echo time56
TE = 156 ms, and overlapping slices with resolution 0.8× 0.8× 1.6 mm3. All data was motion corrected57
(Cordero-Grande et al., 2018; Kuklisova-Murgasova et al., 2012) and resampled to an isotropic voxel size58
of 0.5 mm3. The ePrime dataset was acquired with a Philips 3T system and an 8-channel phased array head59
coil, using a T2w fast-spin echo (FSE) sequence with parameters: repetition time TR = 14.73 s and echo60

1 http://www.developingconnectome.org/
2 https://www.npeu.ox.ac.uk/prumhc/eprime-mr-imaging-177
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time TE = 160 ms (Ball et al., 2017). Images were acquired with a voxel size of 0.86× 0.86× 2 mm, with61
1 mm overlap.62

Our two datasets comprise of 402 MRI scans of infants born between 23 − 42 weeks GA at birth and63
scanned at term-equivalent age (after 37 weeks PMA) as part of the dHCP pipeline, and a dataset of 48564
MRI scans of infants born between 23− 33 weeks GA and scanned at term-equivalent age as part of the65
ePrime project. Figure 1 shows their age distribution.66

Figure 1. Age distribution of the subjects in our datasets, showing both their GA at birth, as well as their
PMA at scan.

Both datasets were pre-processed prior to being used by the deep learning algorithms. The ePrime67
volumes were linearly upsampled to 0.5 mm3 isotropic resolution to match the resolution of our source68
(dHCP) dataset. Both dHCP and ePrime datasets were rigidly aligned to a common 40 weeks gestational69
age atlas space (Schuh et al., 2018) using the MIRTK (Rueckert et al., 1999) software toolbox. Then,70
skull-stripping was performed on all of our data using the brain masks obtained with the Draw-EM pipeline71
for automatic brain MRI segmentation of the developing neonatal brain (Makropoulos et al., 2018). Ground72
truth tissue segmentation maps were obtained using the same pipeline (Draw-EM) for both cohorts.73

To train our networks, we split our datasets into 80% training, 10% validation and 10% test (see Table 1),74
keeping the distribution of ages at scan as close to the original as possible. We used the validation sets to75
keep track of our models’ performance during training, and the test sets to report our final models’ results76
and showcase their capability to generalize.77

2.2 Unsupervised domain adaptation models78

To investigate the best solution for segmenting our target dataset (ePrime), we compared three79
independently trained deep learning models:80

• Baseline. A 3D U-Net (Ronneberger et al., 2015) trained on the source dataset (dHCP) only and used81
as a baseline segmentation network (see Figure 2).82

• Adversarial domain adaptation in the latent space. A 3D U-Net segmentation network trained83
on source (dHCP) volumes, coupled with a discriminator trained on both source (dHCP) and target84
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Table 1. Number of scans in different datasets used for training, validation and testing the models, together
with their mean GA and PMA

Dataset #Subjects GA at birth [weeks] PMA at scan [weeks]
Train dHCP 340 (160♀ + 180♂) 39.1 (±2.7) 40.7 (±1.7)

Validate dHCP 32 (12♀ + 20♂) 39.3 (±1.6) 40.7 (±1.8)
Test dHCP 30 (12♀ + 19♂) 30 (±2.4) 41.4 (±1.7)

Train ePrime 417 (214♀ + 203♂) 29.6 (±2.3) 42.9 (±2.6)
Valid ePrime 38 (18♀ + 20♂) 29.8 (±2.3) 43 (±2.6)
Test ePrime 30 (13♀ + 18♂) 30 (±2.4) 41.4 (±1.7)

(ePrime) datasets (see Figure 3). This solution is similar to the one proposed by (Kamnitsas et al.,85
2017) where the aim was to train the segmentation network such that it becomes agnostic to the data86
domain.87

• Adversarial domain adaptation in the image space. Two 3D U-Nets, one acting as a generator, and88
a second one acting as a segmentation network, coupled with a discriminator trained on both real89
and fake ePrime volumes. The segmentation network is trained to produce tissue maps of the fake90
ePrime-like volumes created by the generator (see Figure 4). The normalised cross correlation (NCC)91
loss is added to the generator network to enforce image similarity between real and synthesised images,92
a solution which was previously proposed by (Grigorescu et al., 2020).93

To further validate the harmonised tissue maps, we trained an additional network (a 3D U-Net) to segment94
binary cortical tissue maps into 11 cortical substructures (see Table 2) based on anatomical groupings95
of cortical regions derived from the Draw-EM pipeline. The key reasons for training an extra network96
are: first, we avoid the time consuming task of label propagation between our available dHCP ground97
truth segmentations and predicted ePrime maps, and second, we can train this network using ground truth98
cortical segmentations, and apply it on any brain cortical gray matter maps as in this case there will be no99
intensity shift between target and source distributions.100
2.3 Network Architectures101

The segmentation networks in all three setups and the generator used in the adversarial domain adaptation102
in the image space model have the same architecture, consisting of 5 encoding-decoding branches with 16,103
32, 64, 128 and 256 channels, respectively. The encoder blocks use 33 convolutions (with a stride of 1),104
instance normalisation (Ulyanov et al., 2016) and LeakyReLU activations. A 23 average pooling layer is105
used after the first down-sampling block, while the others use 23 max pooling layers. The decoder blocks106
consist of 33 convolutions (with a stride of 1), instance normalisation (Ulyanov et al., 2016), LeakyReLU107
activations, and, additionally, 33 transposed convolutions. The segmentation network outputs a 7-channel108
3D volume (of the same size as the input image), corresponding to our 7 classes: background, cerebrospinal109
fluid (CSF), cortical gray matter (cGM), white matter (WM), deep gray matter (dGM), cerebellum and110
brainstem. The generator network’s last convolutional layer is followed by a Tanh activation and outputs a111
single channel image.112

For our unsupervised domain adaptation models (Figures 3 and 4) we used a PatchGAN discriminator as113
proposed in (Isola et al., 2016). Its architecture consists of 4 layers of 3D convolutions (of 64, 128, 256 and114
512 channels, respectively), instance normalisation and LeakyReLU activations.115

The cortical parcellation network has the same architecture as the tissue segmentation network, but116
outputs a 12-channel 3D volume corresponding to the following cortical substructures: frontal left, frontal117
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Tissue Name Cortical subregion
Anterior temporal lobe, medial part left
Anterior temporal lobe, lateral part left

Gyri parahippocampalis et ambiens anterior part left
Superior temporal gyrus, middle part left

Medial and inferior temporal gyri anterior part left
Lateral occipitotemporal gyrus, gyrus fusiformis anterior part left Temporal (left)

Gyri parahippocampalis et ambiens posterior part left
Lateral occipitotemporal gyrus, gyrus fusiformis posterior part left

Medial and inferior temporal gyri posterior part left
Superior temporal gyrus, posterior part left
Anterior temporal lobe, medial part right
Anterior temporal lobe, lateral part right

Gyri parahippocampalis et ambiens anterior part right
Superior temporal gyrus, middle part right

Medial and inferior temporal gyri anterior part right
Lateral occipitotemporal gyrus, gyrus fusiformis anterior part right Temporal (right)

Gyri parahippocampalis et ambiens posterior part right
Lateral occipitotemporal gyrus, gyrus fusiformis posterior part right

Medial and inferior temporal gyri posterior part right
Superior temporal gyrus, posterior part right

Insula left Insula (left)
Insula right Insula (right)

Occipital lobe left Occipital (left)
Occipital lobe right Occipital (right)

Cingulate gyrus, anterior part right
Cingulate gyrus, anterior part left Cingulate

Cingulate gyrus, posterior part right
Cingulate gyrus, posterior part left

Frontal lobe left Frontal (left)
Frontal lobe right Frontal (right)
Parietal lobe left Parietal (left)

Parietal lobe right Parietal (right)

Table 2. Grouping of cortical substructures showing their original tissue name obtained from Draw-EM
(Makropoulos et al., 2018) on the first column and their corresponding cortical subregion on the second
column.

right, cingulate, temporal left, temporal right, insula left, insula right, parietal left, parietal right, occipital118
left, and occipital right, respectively. The last class represents the background.119
2.4 Training120

The baseline segmentation network (Figure 2) was trained by minimizing the generalised Dice loss121
(Sudre et al., 2017) between the predicted and the ground truth segmentation maps (Equation 1).122

Lmethod1 = Lseg = 1− 2

∑M
l=1wl

∑
n plntln∑M

l=1wl
∑

n pln + tln
(1)

where wl = 1/(
∑

n tln)
2 is the weight of the lth tissue type, pln is the predicted probabilistic map of the123

lth tissue type at voxel n, tln is the target label map of the lth tissue type at voxel n, and M is the number124
of tissue classes. While training, we used the Adam optimizer with its default parameters and a decaying125
cyclical learning rate scheduler (Smith, 2015) with a base learning rate of 2 · 10−6 and a maximum learning126
rate of 2 · 10−3.127
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Figure 2. The baseline model consists of a 3D U-Net trained to segment source (dHCP) volumes. The
input T2w MRI images, the predicted segmentation and the ground truth segmentations are marked with S
as they all belong to the source (dHCP) dataset.

Figure 3. The latent space domain adaptation setup consists of a 3D U-Net trained to segment the source
(dHCP) T2w MRI volumes, coupled with a discriminator network which forces the segmentation network to
learn domain-invariant features. Both source (dHCP) and target (ePrime) images are fed to the segmentation
network, but only source (dHCP) ground truth labels are used to compute the segmentation loss. Source
domain images are marked with S, while target domain images are marked with T, respectively.

The segmentation network from the adversarial domain adaptation in the latent space model was trained128
to produce tissue maps on the source (dHCP) volumes. In addition, both target and source volumes were129
fed to the segmentation network, while the feature maps obtained from every level of its decoder arm130
were passed to the discriminator network which acted as a domain classifier. This was done after either131
up-sampling or down-sampling the feature maps to match the volume size of the second deepest layer.132
This model was trained by minimizing a Cross-Entropy loss between predicted and assigned target labels133
representing our two domains. The final loss function for our second model was therefore made up of the134
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Figure 4. The image space domain adaptation setup uses a generator network to produce ePrime-like
T2w MRI images (marked with T̃), which are then used as input into the segmentation network. The
discriminator is trained to distinguish between real (ePrime) and fake (ePrime-like) volumes, while the
generator is trained to produce realistic images in order to fool the discriminator. The NCC loss enforces
image similarity between real and synthesised volumes.

generalised Dice loss and an adversarial loss:135

Lmethod2 = Lseg − αLadv (2)

where α was a hyperparameter increased linearly from 0 to 0.05 starting at epoch 20, and which remained136
equal to 0.05 from epoch 50 onward. As explained in (Kamnitsas et al., 2017), the aim was to both maximise137
the domain classification loss, while minimizing the segmentation loss. The segmentation network was138
trained similarly to the baseline model, while the discriminator network was trained using the Adam139
optimiser with β1 = 0.5 and β2 = 0.999, and a linearly decaying learning rate scheduler starting from140
2 · 10−3.141

The generator network used in the image space domain adaptation approach was trained to produce fake142
ePrime volumes, while the segmentation network was trained using the same loss function, optimizer and143
learning rate scheduler as in the other two methods. For both the discriminator and the generator networks144
the Adam optimizer with β1 = 0.5 and β2 = 0.999 was used, together with a linearly decaying learning145
rate scheduler starting from 2 · 10−3. The loss function of the discriminator was similar to that of the Least146
Squares GAN (Mao et al., 2016): LD = Ex∼T [(D(x)−b)2]+Ex∼S [(D(G(x))−a)2] where a signified the147
label for fake volumes and b was the label for real volumes. The generator and the segmentation network148
are trained together using the following loss:149

Lmethod3 = Lseg + Ladv (3)

Frontiers 7

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.17.431611doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431611
http://creativecommons.org/licenses/by/4.0/


Irina Grigorescu et al. Harmonised segmentation of neonatal brain MRI

where Ladv = Ex∼S [(D(G(x))−b)2]. An additional NCC loss was used between the real and the generated150
volumes in order to constrain the generator to produce realistic looking ePrime-like images. Without the151
additional NCC loss, the generator tends to produce synthesized images with an enlarged CSF boundary in152
order to match the preterm-only born distribution found in the ePrime dataset, as we previously shown in153
(Grigorescu et al., 2020).154

These three methods were trained with and without data augmentation for 100 epochs, during which155
we used the validation sets to inform us about our models’ performance and to decide on the best156
performing models. For data augmentation we applied: random affine transformations (with rotation angles157
θi ∼ U(−10o, 10o) and/or scaling values si ∼ U(0.8, 1.2)), random motion artefacts (corresponding to158
rotations of θi ∼ U(−2o, 2o) and translations of ti ∼ U(−2 mm, 2 mm)), and random MRI spike and159
bias field artifacts (Pérez-Garcı́a et al., 2020). The cortical parcellation network was trained in a similar160
fashion as the baseline tissue segmentation network, with data augmentation in the form of random affine161
transformations (with the same parameters as above).162

The test set was used to report our final models’ results and to showcase their capability to generalize on163
the source domain. Finally, we produced tissue segmentation maps for all the subjects in our datasets, and164
used them as input into ANT’s DiReCT algorithm (Tustison et al., 2013) to compute cortical thickness165
measures. To validate our results, we compared cortical thickness measures between subsets of the two166
cohorts matched for GA and PMA, for which we expect no significant difference in cortical thickness if167
the harmonisation was successful. We also assessed the association between PMA and cortical thickness in168
the two cohorts.169

Figure 5. The results on our dHCP test dataset for all six methods. Models with non-significant differences
in mean Dice Scores when compared to the baseline with augmentation method are shown above each pair.
The yellow diamond highlights the model which obtained the highest mean Dice score for its respective
tissue type.
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Tissue min max mean Tissue min max mean
Frontal (left) 0.98 0.99 0.99 Frontal (right) 0.98 0.99 0.99
Temporal (left) 0.96 0.99 0.98 Temporal (right) 0.97 0.98 0.98
Insula (left) 0.95 0.97 0.96 Insula (right) 0.95 0.97 0.96
Parietal (left) 0.96 0.98 0.97 Parietal (right) 0.96 0.98 0.97
Occipital (left) 0.94 0.98 0.97 Occipital (right) 0.95 0.98 0.97
Cingulate 0.93 0.97 0.96

Table 3. Dice Scores obtained on the dHCP test set for the trained cortical parcellation network.

3 RESULTS
3.1 dHCP test dataset170

Baseline and domain adaptation models. Figure 5 summarizes the results of our trained models when171
applied on the test dataset of the source domain (dHCP) for which we have ground truth segmentations.172
The figure shows the mean Dice scores computed between the predicted tissue segmentation maps and the173
ground truth labels for each of the six trained models. The model that obtained the highest mean Dice scores174
is highlighted with the yellow diamond. Out of the six models, the baseline with augmentation and image175
with augmentation methods performed best on the source domain test dataset for CSF, dGM, cerebellum176
and brainstem, with no significant difference between them. For cGM and WM, the best performance was177
obtained by the baseline with augmentation model, while the domain adaptation methods showed a slight178
decrease in performance. The three models trained without augmentation always performed significantly179
worse than their augmented counterparts. These results show that our trained models were able to generalise180
to unseen source domain data, and that the performance on the dHCP dataset was not compromised by181
using domain adaption techniques.182

Cortical parcellation network. Table 3 summarizes the results of applying the trained cortical183
parcellation network on the dHCP test dataset. When compared with the ground truth segmentations184
obtained using the Draw-EM pipeline (Makropoulos et al., 2018), the network obtained an overall mean185
Dice score of 0.97.186
3.2 Validation of data harmonisation187

In order to evaluate the extent to which each of the trained models managed to harmonise the segmentation188
maps of the two cohorts, we looked at tissue volumes and mean cortical thickness measures between189
subsamples of the dHCP (N = 30; median GA = 30.50 weeks; median PMA = 41.29 weeks) and ePrime190
(N = 30; median GA = 30.64 weeks; median PMA = 41.29 weeks) cohort which showed comparable191
GA at birth and PMA at time of scan (see Table 1). For these two cohort subsamples with similar GA192
and PMA, we expected both volumes and cortical thickness measures not to differ after applying the193
harmonisation procedures. We also investigated the relationship between PMA and volumes and cortical194
thickness respectively, before and after applying the harmonisation. Linear regressions were performed195
in the comparable data subsets testing the effects of PMA and cohort on volumes (or cortical thickness),196
controlling for GA and sex.197

Volumes. Figure 6 shows the tissue volumes for both the original and the predicted segmentations.198
Significant volume differences between the two subsamples (i.e., significant effect of cohort in the regression199
model) are reported above each tested model. To summarise, the image with augmentation model performed200
best, by showing no significant differences in the two cohorts for cortical gray matter, white matter, deep201
gray matter, cerebellum and brainstem. The cerebrospinal fluid volumes were significantly different202
between the two cohorts for all our trained models, as well as for the original ePrime segmentation masks.203
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Figure 6. Volume measures of CSF, cGM, WM, dGM, cerebellum and brainstem in our test datasets.
In magenta we show the original dHCP tissue volumes, while in light blue we show the original ePrime
tissue volumes. The results of the linear regression are reported above groups which showed significant
differences in terms of cohort.

Cortical thickness. Figure 7 summarizes the results of applying the cortical thickness algorithm on the204
predicted segmentation maps for all six methods. Before harmonisation, the matched subsets from the205
dHCP and ePrime cohorts showed a significant difference in mean cortical thickness (dHCP: M = 1.73,206
SD = 0.12; ePrime: M = 1.93, SD = 0.13; t(58) = 6.33, p < .001). After applying the harmonisation207
to the ePrime sample, mean cortical thickness no longer differed between the two subsamples for four of208
our methods. These results are summarised in panel H from Figure 7, where the models which obtained209
harmonised values in terms of mean cortical thickness measures are shown in bold. Figure 7 also shows210
the association between PMA and mean cortical thickness before (panel A) and after applying the models211
(panels B-G) on the matched dHCP and ePrime subsets. A linear model regressing unharmonised mean212
cortical thickness on PMA, GA, sex, and cohort revealed a significant effect of cohort (β = 0.20; p < .001),213
consistent with a group difference in mean cortical thickness reported above, as well as a significant effect214
of PMA (β = 0.04; p < .001), consistent with an increase in cortical thickness with increasing PMA.215
After applying the methods, the effect of cohort was rendered non-significant for four of the methods216
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(see highlighted panels C, E, F, G from Figure 7), while the effect of PMA remained stable across all six217
methods.218

We performed a similar analysis on thickness measures of the cortical substructures. To obtain these219
measures, we used the original and the predicted cortical gray matter segmentation maps (obtained by220
applying each of our six methods) as input to the trained cortical parcellation network to predict cortical221
substructure masks. We then used these masks to calculate local cortical thickness measures. Our results222
are summarised in Figure 8.223

Figure 7. Mean cortical thickness measures computed for the two dHCP and ePrime subsamples with
similar GA and PMA.
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Figure 8. Local mean cortical thickness measures before (first column) and after (columns 2-7) applying
the models. The results of the linear regression are reported above groups which showed significant
differences in terms of cohort.
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Example Predictions. To further narrow down which of the four remaining methods was best at224
harmonising our ePrime neonatal dataset, we looked at the predicted segmentations. Figure 9 shows two225
example neonates from the ePrime dataset with GA = 32.9w, PMA = 43.6w, and with GA = 28.7w,226
PMA = 44.7w, respecitvely. The first column shows T2w saggittal and axial slices, respectively, while the227
following four columns show example tissue prediction maps produced by the four models: baseline with228
augmentation, latent with augmentation, image and image with augmentation, respectively. Although all229
four methods performed well in terms of harmonising tissue segmentation volumes and global mean cortical230
thickness values for the two subsamples with similar GA and PMA, previously presented quantitative231
results as well as the example above suggest that the image with augmentation method was more robust.232

3.3 Analysis of harmonised cortical substructures233

In this section we analyze the harmonised cortical gray matter segmentation maps using the image with234
augmentation model. We produce tissue segmentation maps for the entire ePrime dataset and calculate235
cortical thickness measures on the predicted and ground truth cortical gray matter tissue maps of both236
cohorts. In addition, we use the trained cortical parcellation network to produce cortical substructure masks.237
We perform a term vs preterm analysis on the harmonised cortical gray matter maps and we show the238
importance of harmonising the data with a proof-of-principle application setting where we investigate the239
association between cortical thickness and a language outcome measure.240

Figure 9. Example predicted segmentation maps for the best performing models. On the first row we show
an example where three of the models (baseline with augmentation, latent with augmentation and image)
misclassified a part of the cortex as being deep gray matter. This is more pronounced in the baseline with
augmentation model, while the latent with augmentation and image show a slight improvement. The image
with augmentation model corrected the problem entirely. On the second row the yellow arrow points to an
area of CSF where the baseline with augmentation model misclassified it as dGM, while the other three
models did not have this problem. The red arrow on the other hand points to an area where the latent with
augmentation model misclassified cGM as deep gray matter. This problem does not appear in the other
models.

Comparison of term and preterm cortical maps. Associations between cortical thickness and GA or241
PMA in the full dHCP and ePrime datasets (excluding subjects with PMA > 45 weeks and PMA < 37242
weeks at time of scan) for the whole cortex are depicted in Figure 10, where we show individual regression243
lines for preterm-born and term-born neonates. The first column consists of dHCP-only subjects, while244
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the following two columns showcase both cohorts together, before and after harmonising the cortical gray245
matter tissue maps.246

A linear model regressing dHCP-only mean cortical thickness on PMA, GA, sex, birth weight and the247
interaction between PMA and GA revealed a significant effect of PMA (β = 0.19; p < 0.001), a significant248
effect of GA (β = 0.16; p = 0.002), and a significant effect of the interaction between PMA and GA249
(β = −0.004; p = 0.002), indicating that infants born at a lower GA showed a stronger relationship250
between PMA and CT. When performing the same analysis in the pooled ePrime and dHCP data before251
harmonising the maps, the effect of GA and the effect of the interaction were rendered not significant252
(GA: β = 0.009; p = 0.7 and PMA∗GA: β = −0.0006; p = 0.5, respectively). This is corrected after253
harmonising the tissue maps, where the effects of GA (β = 0.06; p = 0.02) and the effects of the GA and254
PMA interaction (β = −0.001; p = 0.02) are, again, significant.255

The second and third columns of Figure 10 show that after harmonising the tissue segmentation maps,256
the ePrime preterm-born neonates (green dots) are brought downwards into a comparable range of values257
to the dHCP preterms (red dots). Moreover, when plotting the cortical thickness measures against PMA,258
after harmonising the tissue maps, the intersection between the two individual regression lines (term and259
preterm-born neonates) happens at roughly the same age (PMA = 38.5 weeks) as in the dHCP-only dataset.260

Figure 10. Mean cortical thickness measures in our dHCP dataset (first column), and in both of our cohorts
before (second column) and after (third column) harmonising the tissue segmentation maps. The first
row plots the cortical thickness measures against GA, while the second row plots the cortical thickness
measures against PMA, with individual regression lines on top.

We extended the term vs preterm analysis on cortical thickness substructures. Figure 11 shows the results261
of applying a linear model regressing mean cortical thickness measures on PMA, GA, sex, birth weight262
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and prematurity, where significant differences (p < 0.05) between the two cohorts (term and preterm-born263
neonates) are highlighted in the image.264

Figure 11. Comparison of cortical thickness measures for the whole cortex and for each of the 11 cortical
subregions between term and preterm-born neonates. The results of the linear regression are reported in the
table in terms of differences between term and preterm-born neonates.

Behavioural outcome association. As a final proof-of-principle, we demonstrate the importance of data265
harmonisation in an application setting investigating the association between neonatal cortical thickness266
and a behavioural outcome measure. For this, we consider language abilities as assessed between 18 and267
24 months in both dHCP and ePrime cohorts using the Bayley Scales of Infant and Toddler Development268
(Bayley, 2006). Age-normed composite language scores were available for 203 toddlers from the dHCP269
cohort (M = 96.43; SD = 14.89) and 136 toddlers from the ePrime cohort (M = 91.25; SD = 17.37). For the270
neonatal cortical thickness measure, we focus on the left and right frontal cortex for illustration.271

Regressing composite language score against ground truth left or right frontal cortical thickness in272
each cohort separately, controlling for PMA, GA, sex and intracranial volume showed that there was no273
significant association between neonatal left/right frontal cortical thickness and language abilities at toddler274
age in either of the cohorts. However, when pooling data from both cohorts together and rerunning the same275
analysis (using un-harmonised, ground truth cortical thickness), a significant association between left/right276
frontal cortical thickness and language abilities is seen (left: β = −17.56, p < 0.05, right: β = −18.76,277
p < 0.05), suggesting that greater frontal cortical thickness at term-equivalent age is associated with278
reduced language abilities at toddler age.279

However, as can be seen in Figure 12, this is likely a spurious effect due to (artefactually) heightened280
cortical thickness values in un-harmonised ePrime data combined with lower language composite scores in281
the ePrime cohort (consistent with effects typically observed in preterm cohorts). Indeed, when rerunning282
the same analysis on harmonised data pooled across both cohorts, the effect of cortical thickness on283
language ability is rendered non-significant in both left (β = −13.99, p = 0.15) and right (β = −16.69,284
p = 0.068) frontal cortex, consistent with the ground-truth findings in each individual cohort.285

4 DISCUSSION AND FUTURE WORK
In this paper we studied the application and viability of unsupervised domain adaptation methods for286
harmonising tissue segmentation maps of two neonatal datasets (dHCP and ePrime). We proposed an287
image-based domain adaptation model where a tissue segmentation network is trained with real dHCP and288
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Figure 12. Language composite score against predicted left and right frontal cortical thickness measures
before and after harmonising the tissue segmentation maps

fake ePrime-like T2w 3D MRI volumes. The generator network was trained to produce realistic images in289
order to fool a domain discriminator, while also minimizing an NCC loss which aimed to enforce image290
similarity between real and synthesised images (Grigorescu et al., 2020). We trained this model using291
dHCP ground truth segmentation maps, and we compared it with a baseline 3D U-Net (Ronneberger et al.,292
2015), and a latent space domain adaptation method (Kamnitsas et al., 2017). The three methods were293
trained with and without data augmentation (Pérez-Garcı́a et al., 2020).294

We then analysed the extent to which each of the 6 trained models managed to harmonise the tissue295
segmentation maps of our two cohorts, by looking at tissue volumes and mean cortical thickness measures296
between subsamples of the dHCP and ePrime cohorts which showed comparable GA at birth and PMA297
at time of scan. Our results showed that our proposed model (image with augmentation) harmonised298
the predicted tissue segmentation maps in terms of cortical gray matter, white matter, deep gray matter,299
cerebellum and brainstem volumes (Figure 6). In terms of mean global cortical thickness measures, four300
of the trained methods (baseline with augmentation, latent with augmentation, image and image with301
augmentation) achieved comparable values when compared to the dHCP subset. In fact, we hypothesize302
that these four methods provided the best overall results because either they were trained using data303
augmentation or they acted as a deep learning-based augmentation technique (Sandfort et al., 2019), which304
made the segmentation network more robust to the different contrast and acquisition protocol of the ePrime305
dataset.306

Using the cortical parcellation network, we also produced cortical thickness measures for the 11 cortical307
subregions (see Table 2). Again, the models trained with augmentation performed better than their308
no augmentation counterparts (see Figure 8). However, our proposed image with augmentation model309
performed best, whereby ePrime values, tending towards higher values before harmonisation, were brought310
downwards into a comparable range of values to dHCP, for 10 out of 11 cortical subregions (see Figure 8311
last column). For the right parietal lobe, our proposed method outperformed the original segmentations312
and the other 5 models, but did not manage to bring the values down to a non-significant range. One313
potential reason for this is that, on a visual insepction, the ePrime cohort appears to suffer from more partial314
volume artifacts than its dHCP counterpart, which can confuse the segmentation network and can lead to315
overestimation of the cortical gray matter / cerebrospinal fluid boundary. Moreover, a close inspection of316
the predicted tissue segmentation maps (see Figure 9) also showed that our proposed model (image with317
augmentation) corrected misclassified voxels which were prevalent in the other 3 methods.318
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We used the harmonised cortical segmentation maps to look at differences in both global and local319
cortical thickness measures between term and preterm-born neonates. We showed in Figure 11 that our320
harmonised cortical gray matter maps resulted in global thickness measures which were comparable with321
the dHCP-only neonates, while also revealing a significant effect of GA and the interaction between age at322
scan and at birth. We performed a similar analysis on the local cortical thickness measures and highlighted323
three regions of interest (frontal left, frontal right, and parietal left) which showed significant differences324
between the two cohorts (see Figure 11). These regions are consistent with previous studies (Nagy et al.,325
2011) where cortical thickness measures were shown to differ in preterm-born neonates when compared to326
term-born neonates in an adolescent cohort.327

Finally, we showed the importance of harmonising the cortical tissue maps by investigating the association328
between neonatal cortical thickness and a language outcome measure. After harmonisation, regressing329
language composite score against predicted left or right frontal cortical thickness in the two pooled datasets,330
showed no significant effect of cortical thickness (second column of Figure 12), consistent with the ground-331
truth results seen in each cohort individually. This analysis demonstrates that without data harmonisation,332
pooling images from separate datasets can lead to spurious findings that are driven by systematic differences333
in acquisitions rather than by true underlying effects. Our harmonisation allows for our two datasets to334
be combined into joint analyses while preserving the underlying structure of associations with real-world335
outcomes.336

Our study was focused on unsupervised domain adaptation approaches; in future we would like to337
investigate semi-supervised approaches as well by including reliable segmentations of the ePrime cohort.338
Moreover, the latent based domain adaptation method was trained using the features at each layer of the339
decoding branch, without analysing different combinations of the encoding-decoding layers. In future, we340
aim to extend our work to harmonise diffusion datasets.341
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