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ABSTRACT

Deep learning based medical image segmentation has shown great potential in becoming a
key part of the clinical analysis pipeline. However, many of these models rely on the assumption
that the train and test data come from the same distribution. This means that such methods
cannot guarantee high quality predictions when the source and target domains are dissimilar due
to different acquisition protocols, or biases in patient cohorts. Recently, unsupervised domain
adaptation (DA) techniques have shown great potential in alleviating this problem by minimizing
the shift between the source and target distributions, without requiring the use of labelled data in
the target domain. In this work, we aim to predict tissue segmentation maps on T>-weighted (7>w)
magnetic resonance imaging (MRI) data of an unseen preterm-born neonatal population, which
has both different acquisition parameters and population bias when compared to our training data.
We achieve this by investigating two unsupervised DA techniques with the objective of finding
the best solution for our problem. We compare the two methods with a baseline fully-supervised
segmentation network and report our results in terms of Dice scores obtained on our ground truth
test dataset. Moreover, we analyse tissue volumes and cortical thickness (CT) measures of the
harmonised data on a subset of the population matched for gestational age (GA) at birth and
postmenstrual age (PMA) at scan. Finally, we demonstrate the applicability of the harmonised
cortical gray matter maps with an analysis comparing term and preterm-born neonates and a
proof-of-principle investigation of the association between CT and a language outcome measure.
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1 INTRODUCTION

Medical image deep learning has made incredible advances in solving a wide range of scientific problems,
including tissue segmentation or image classification (Miotto et al., 2018). However, one major drawback
of these methods is their applicability in a clinical setting, as many models rely on the assumption that the
source and target domains are drawn from the same distribution. As a result, the efficiency of these models
may drop drastically when applied to images which were acquired with acquisition protocols different than
the ones used to train the models (Kamnitsas et al., 2017; Orbes-Arteaga et al.,|2019)).

A class of deep learning methods called DA techniques aims to address this issue by suppressing the
domain shift between the training and test distributions. In general, DA approaches are either semi-
supervised, which assume the existence of labels in the target dataset, or unsupervised, which assume the
target dataset has no labels. For example, a common approach is to train a model on source domain images
and fine-tune it on target domain data (Kushibar et al., 2019; |(Ghafoorian et al., 2017). Although these
methods can give good results, they can become impractical as more often than not the existence of labels
in the target dataset is limited or of poor quality. Unsupervised domain adaptation techniques (Ganin and
Lempitsky, 2014; Kerfoot et al., 2019) offer a solution to this problem by minimizing the disparity between
a source and a target domain, without requiring the use of labelled data in the target domain.

In our previous work (Grigorescu et al., 2020), we investigated two unsupervised DA methods with the
aim of predicting brain tissue segmentations on 2D axial slices of 7ow MRI data of an unseen neonatal
population. We proposed an additional loss term in one of the methods, in order to constrain the network to
more realistic reconstructions. Our models were trained using as source domain a dataset with majority of
term-born neonates and as target domain a preterm-only population acquired with a different protocol. We
calculated mean cortical thickness measures for every subject in the two datasets and we performed an
ANCOVA analysis in order to find group differences between the predicted source and target domains. This
analysis showed that our proposed method achieved harmonisation of our two datasets in terms of cortical
gray matter tissue segmentation maps. In this paper, we build on the aforementioned framework, which
we expanded in three main ways. First, we build and train 3D neural networks in order to capture more
information about the neonatal brain. Second, we extend the validation of our trained models to subsets of
the two cohorts matched for GA and PMA, for which we analyse tissue volumes and global and local CT
measures. Finally, we perform an analysis comparing term and preterm-born neonates on the harmonised
cortical gray matter maps and we show the importance of harmonising the data by a proof-of-principle
investigation of the association between cortical thickness and a language outcome measure.

2 MATERIAL AND METHODS
2.1 Data Acquisition and Preprocessing

The Tow MRI data used in this study was collected as part of two independent projects: the developing
Human Connectome Project (dHC, and the Evaluation of Preterm Imaging (ePrim study. The dHCP
data was acquired using a Philips 3T scanner and a 32-channels neonatal head coil (Hughes et al., 2017,
using a Tow turbo spin echo (TSE) sequence with parameters: repetition time 7 = 12 s, echo time
Tr = 156 ms, and overlapping slices with resolution 0.8 x 0.8 x 1.6 mm?. All data was motion corrected
(Cordero-Grande et al., 2018}; Kuklisova-Murgasova et al., 2012) and resampled to an isotropic voxel size
of 0.5 mm?. The ePrime dataset was acquired with a Philips 3T system and an 8-channel phased array head
coil, using a Thw fast-spin echo (FSE) sequence with parameters: repetition time 7r = 14.73 s and echo

! http://www.developingconnectome.org/
2 https://www.npeu.ox.ac.uk/prumhc/eprime-mr-imaging-177
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time T = 160 ms (Ball et al., 2017). Images were acquired with a voxel size of 0.86 x 0.86 x 2 mm, with
1 mm overlap.

Our two datasets comprise of 402 MRI scans of infants born between 23 — 42 weeks GA at birth and
scanned at term-equivalent age (after 37 weeks PMA) as part of the dHCP pipeline, and a dataset of 485
MRI scans of infants born between 23 — 33 weeks GA and scanned at term-equivalent age as part of the
ePrime project. Figure |l{shows their age distribution.
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Figure 1. Age distribution of the subjects in our datasets, showing both their GA at birth, as well as their
PMA at scan.

Both datasets were pre-processed prior to being used by the deep learning algorithms. The ePrime
volumes were linearly upsampled to 0.5 mm? isotropic resolution to match the resolution of our source
(dHCP) dataset. Both dHCP and ePrime datasets were rigidly aligned to a common 40 weeks gestational
age atlas space (Schuh et al., 2018)) using the MIRTK (Rueckert et al., |1999) software toolbox. Then,
skull-stripping was performed on all of our data using the brain masks obtained with the Draw-EM pipeline
for automatic brain MRI segmentation of the developing neonatal brain (Makropoulos et al., 2018). Ground
truth tissue segmentation maps were obtained using the same pipeline (Draw-EM) for both cohorts.

To train our networks, we split our datasets into 80% training, 10% validation and 10% test (see Table[l),
keeping the distribution of ages at scan as close to the original as possible. We used the validation sets to
keep track of our models’ performance during training, and the test sets to report our final models’ results
and showcase their capability to generalize.

2.2 Unsupervised domain adaptation models

To investigate the best solution for segmenting our target dataset (ePrime), we compared three

independently trained deep learning models:

e Baseline. A 3D U-Net (Ronneberger et al., 2015)) trained on the source dataset (dHCP) only and used
as a baseline segmentation network (see Figure [2)).

e Adversarial domain adaptation in the latent space. A 3D U-Net segmentation network trained
on source (dHCP) volumes, coupled with a discriminator trained on both source (dHCP) and target
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Table 1. Number of scans in different datasets used for training, validation and testing the models, together
with their mean GA and PMA

I Dataset | #Subjects | GA at birth [weeks] | PMA at scan [weeks] ||
Train dHCP | 340 (1609 + 1805") 39.1 (£2.7) 40.7 (£1.7)
Validate dHCP 32 (122 +205) 39.3 (£1.6) 40.7 (£1.8)
Test dHCP 30 (122 + 19 30 (£2.4) 41.4 (£1.7)
Train ePrime | 417 (2149 + 2035") 29.6 (£2.3) 42.9 (£2.6)
Valid ePrime 38 (182 + 20" 29.8 (£2.3) 43 (£2.6)
Test ePrime 30 (132 + 18) 30 (£2.4) 41.4 (£1.7)

(ePrime) datasets (see Figure [3). This solution is similar to the one proposed by (Kamnitsas et al.,
2017)) where the aim was to train the segmentation network such that it becomes agnostic to the data
domain.

e Adversarial domain adaptation in the image space. Two 3D U-Nets, one acting as a generator, and
a second one acting as a segmentation network, coupled with a discriminator trained on both real
and fake ePrime volumes. The segmentation network is trained to produce tissue maps of the fake
ePrime-like volumes created by the generator (see Figure {). The normalised cross correlation (NCC)
loss is added to the generator network to enforce image similarity between real and synthesised images,
a solution which was previously proposed by (Grigorescu et al., [2020).

To further validate the harmonised tissue maps, we trained an additional network (a 3D U-Net) to segment
binary cortical tissue maps into 11 cortical substructures (see Table [2) based on anatomical groupings
of cortical regions derived from the Draw-EM pipeline. The key reasons for training an extra network
are: first, we avoid the time consuming task of label propagation between our available dHCP ground
truth segmentations and predicted ePrime maps, and second, we can train this network using ground truth
cortical segmentations, and apply it on any brain cortical gray matter maps as in this case there will be no
intensity shift between target and source distributions.

2.3 Network Architectures

The segmentation networks in all three setups and the generator used in the adversarial domain adaptation
in the image space model have the same architecture, consisting of 5 encoding-decoding branches with 16,
32, 64, 128 and 256 channels, respectively. The encoder blocks use 3% convolutions (with a stride of 1),
instance normalisation (Ulyanov et al., 2016) and LeakyReLU activations. A 23 average pooling layer is
used after the first down-sampling block, while the others use 23 max pooling layers. The decoder blocks
consist of 3% convolutions (with a stride of 1), instance normalisation (Ulyanov et al., 2016), LeakyReLLU
activations, and, additionally, 3% transposed convolutions. The segmentation network outputs a 7-channel
3D volume (of the same size as the input image), corresponding to our 7 classes: background, cerebrospinal
fluid (CSF), cortical gray matter (cGM), white matter (WM), deep gray matter (dGM), cerebellum and
brainstem. The generator network’s last convolutional layer is followed by a Tanh activation and outputs a
single channel image.

For our unsupervised domain adaptation models (Figures [3|and [4) we used a PatchGAN discriminator as
proposed in (Isola et al., 2016). Its architecture consists of 4 layers of 3D convolutions (of 64, 128, 256 and
512 channels, respectively), instance normalisation and LeakyReLLU activations.

The cortical parcellation network has the same architecture as the tissue segmentation network, but
outputs a 12-channel 3D volume corresponding to the following cortical substructures: frontal left, frontal
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Tissue Name

Anterior temporal lobe, medial part left
Anterior temporal lobe, lateral part left
Gyri parahippocampalis et ambiens anterior part left
Superior temporal gyrus, middle part left
Medial and inferior temporal gyri anterior part left
Lateral occipitotemporal gyrus, gyrus fusiformis anterior part left
Gyri parahippocampalis et ambiens posterior part left
Lateral occipitotemporal gyrus, gyrus fusiformis posterior part left
Medial and inferior temporal gyri posterior part left
Superior temporal gyrus, posterior part left
Anterior temporal lobe, medial part right
Anterior temporal lobe, lateral part right
Gyri parahippocampalis et ambiens anterior part right
Superior temporal gyrus, middle part right
Medial and inferior temporal gyri anterior part right
Lateral occipitotemporal gyrus, gyrus fusiformis anterior part right
Gyri parahippocampalis et ambiens posterior part right
Lateral occipitotemporal gyrus, gyrus fusiformis posterior part right
Medial and inferior temporal gyri posterior part right
Superior temporal gyrus, posterior part right
Insula left
Insula right
Occipital lobe left
Occipital lobe right
Cingulate gyrus, anterior part right

| Cortical subregion

Temporal (left)

Temporal (right)

Insula (Ieft)
Insula (right)
Occipital (left)
Occipital (right)

Cingulate gyrus, anterior part left Cingulate
Cingulate gyrus, posterior part right
Cingulate gyrus, posterior part left
Frontal Iobe left Frontal (left)
Frontal lobe right Frontal (right)
Parietal lobe left Parietal (left)
Parietal lobe right Parietal (right)

Table 2. Grouping of cortical substructures showing their original tissue name obtained from Draw-EM
(Makropoulos et al., 2018)) on the first column and their corresponding cortical subregion on the second
column.

118 right, cingulate, temporal left, temporal right, insula left, insula right, parietal left, parietal right, occipital

119 left, and occipital right, respectively. The last class represents the background.
120 2.4 Training

121 The baseline segmentation network (Figure [2) was trained by minimizing the generalised Dice loss
122 (Sudre et al| [2017) between the predicted and the ground truth segmentation maps (Equation T)).

M
| _ g 2d=1 W2y Pintin
Zi\il wy Zn Pin + tin

123 where w; = 1/(3_, tin)? is the weight of the I'” tissue type, p,, is the predicted probabilistic map of the
124 1" tissue type at voxel n, t;, is the target label map of the I*” tissue type at voxel n, and M is the number
125 of tissue classes. While training, we used the Adam optimizer with its default parameters and a decaying
126 cyclical learning rate scheduler (Smith, 2015) with a base learning rate of 2 - 1075 and a maximum learning
127 rate of 2- 1073,

)

Emethodl = Eseg =
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Figure 2. The baseline model consists of a 3D U-Net trained to segment source ({HCP) volumes. The
input 75w MRI images, the predicted segmentation and the ground truth segmentations are marked with S
as they all belong to the source (dHCP) dataset.
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Figure 3. The latent space domain adaptation setup consists of a 3D U-Net trained to segment the source
(dHCP) Tow MRI volumes, coupled with a discriminator network which forces the segmentation network to
learn domain-invariant features. Both source ({HCP) and target (ePrime) images are fed to the segmentation
network, but only source (dHCP) ground truth labels are used to compute the segmentation loss. Source
domain images are marked with S, while target domain images are marked with T, respectively.

128  The segmentation network from the adversarial domain adaptation in the latent space model was trained
129 to produce tissue maps on the source ({HCP) volumes. In addition, both target and source volumes were
130 fed to the segmentation network, while the feature maps obtained from every level of its decoder arm
131 were passed to the discriminator network which acted as a domain classifier. This was done after either
132 up-sampling or down-sampling the feature maps to match the volume size of the second deepest layer.
133 This model was trained by minimizing a Cross-Entropy loss between predicted and assigned target labels
134 representing our two domains. The final loss function for our second model was therefore made up of the
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Figure 4. The image space domain adaptation setup uses a generator network to produce ePrime-like

Tow MRI images (marked with T), which are then used as input into the segmentation network. The
discriminator is trained to distinguish between real (ePrime) and fake (ePrime-like) volumes, while the
generator is trained to produce realistic images in order to fool the discriminator. The NCC loss enforces
image similarity between real and synthesised volumes.

generalised Dice loss and an adversarial loss:

'Cmethodg = ﬁseg — al gy (2)

where o was a hyperparameter increased linearly from O to 0.05 starting at epoch 20, and which remained
equal to 0.05 from epoch 50 onward. As explained in (Kamnitsas et al., 2017), the aim was to both maximise
the domain classification loss, while minimizing the segmentation loss. The segmentation network was
trained similarly to the baseline model, while the discriminator network was trained using the Adam
optimiser with 81 = 0.5 and B2 = 0.999, and a linearly decaying learning rate scheduler starting from
2-1073.

The generator network used in the image space domain adaptation approach was trained to produce fake
ePrime volumes, while the segmentation network was trained using the same loss function, optimizer and
learning rate scheduler as in the other two methods. For both the discriminator and the generator networks
the Adam optimizer with 81 = 0.5 and J2 = 0.999 was used, together with a linearly decaying learning
rate scheduler starting from 2 - 1073, The loss function of the discriminator was similar to that of the Least
Squares GAN (Mao et al.,2016): Lp = E,7[(D(z) —b)?] + E,ws[(D(G(z)) — a)?] where a signified the
label for fake volumes and b was the label for real volumes. The generator and the segmentation network
are trained together using the following loss:

/Cmethodg = £seg + ‘Cadv (3)
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where L4, = E,s[(D(G(x))—b)?]. An additional NCC loss was used between the real and the generated
volumes in order to constrain the generator to produce realistic looking ePrime-like images. Without the
additional NCC loss, the generator tends to produce synthesized images with an enlarged CSF boundary in
order to match the preterm-only born distribution found in the ePrime dataset, as we previously shown in
(Grigorescu et al., [2020).

These three methods were trained with and without data augmentation for 100 epochs, during which
we used the validation sets to inform us about our models’ performance and to decide on the best
performing models. For data augmentation we applied: random affine transformations (with rotation angles
6; ~ U(—10°,10°) and/or scaling values s; ~ U(0.8,1.2)), random motion artefacts (corresponding to
rotations of 0; ~ U(—2°,2°) and translations of ¢; ~ U(—2 mm, 2 mm)), and random MRI spike and
bias field artifacts (Pérez-Garcia et al., [2020). The cortical parcellation network was trained in a similar
fashion as the baseline tissue segmentation network, with data augmentation in the form of random affine
transformations (with the same parameters as above).

The test set was used to report our final models’ results and to showcase their capability to generalize on
the source domain. Finally, we produced tissue segmentation maps for all the subjects in our datasets, and
used them as input into ANT’s DiReCT algorithm (Tustison et al., 2013) to compute cortical thickness
measures. To validate our results, we compared cortical thickness measures between subsets of the two
cohorts matched for GA and PMA, for which we expect no significant difference in cortical thickness if
the harmonisation was successful. We also assessed the association between PMA and cortical thickness in
the two cohorts.

baseline —Ilatent —image —mean
baseline —Ilatent —image —median
10 w/ augmentation w/ augmentation w/ augmentation
) N.S.
— NS - N.S.
0.975 N.S. j = T i - [ —
0.95 i1 Y . ; 'l ! s nER
dill ¢ ] Il ‘
0 0.925 i =—2h i
bl L d I
) ! ‘
0.9 1 ;
_g 0.875
(@]
0.85
0.825
0.8
CSF cGM WM dGM cerebellum brainstem

Figure 5. The results on our dHCP test dataset for all six methods. Models with non-significant differences
in mean Dice Scores when compared to the baseline with augmentation method are shown above each pair.
The yellow diamond highlights the model which obtained the highest mean Dice score for its respective
tissue type.
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Tissue | min | max | mean || Tissue | min | max | mean
Frontal (left) 0.98 | 0.99 | 0.99 || Frontal (right) 0.98 [ 0.99 | 0.99
Temporal (left) | 0.96 | 0.99 | 0.98 || Temporal (right) | 0.97 | 0.98 | 0.98
Insula (left) 0.95 | 0.97 | 0.96 || Insula (right) 095 | 0.97 | 0.96
Parietal (left) 0.96 | 0.98 | 0.97 || Parietal (right) 0.96 | 0.98 | 0.97
Occipital (left) | 0.94 | 0.98 | 0.97 || Occipital (right) | 0.95 | 0.98 | 0.97
Cingulate 0.93 1 0.97 | 0.96

Table 3. Dice Scores obtained on the dHCP test set for the trained cortical parcellation network.

3 RESULTS
3.1 dHCP test dataset

Baseline and domain adaptation models. Figure [5| summarizes the results of our trained models when
applied on the test dataset of the source domain (dHCP) for which we have ground truth segmentations.
The figure shows the mean Dice scores computed between the predicted tissue segmentation maps and the
ground truth labels for each of the six trained models. The model that obtained the highest mean Dice scores
is highlighted with the yellow diamond. Out of the six models, the baseline with augmentation and image
with augmentation methods performed best on the source domain test dataset for CSF, dGM, cerebellum
and brainstem, with no significant difference between them. For cGM and WM, the best performance was
obtained by the baseline with augmentation model, while the domain adaptation methods showed a slight
decrease in performance. The three models trained without augmentation always performed significantly
worse than their augmented counterparts. These results show that our trained models were able to generalise
to unseen source domain data, and that the performance on the dHCP dataset was not compromised by
using domain adaption techniques.

Cortical parcellation network. Table [3] summarizes the results of applying the trained cortical
parcellation network on the dHCP test dataset. When compared with the ground truth segmentations
obtained using the Draw-EM pipeline (Makropoulos et al., 2018)), the network obtained an overall mean
Dice score of 0.97.

3.2 Validation of data harmonisation

In order to evaluate the extent to which each of the trained models managed to harmonise the segmentation
maps of the two cohorts, we looked at tissue volumes and mean cortical thickness measures between
subsamples of the dHCP (/N = 30; median GA = 30.50 weeks; median PMA = 41.29 weeks) and ePrime
(N = 30; median GA = 30.64 weeks; median PMA = 41.29 weeks) cohort which showed comparable
GA at birth and PMA at time of scan (see Table [I)). For these two cohort subsamples with similar GA
and PMA, we expected both volumes and cortical thickness measures not to differ after applying the
harmonisation procedures. We also investigated the relationship between PMA and volumes and cortical
thickness respectively, before and after applying the harmonisation. Linear regressions were performed
in the comparable data subsets testing the effects of PMA and cohort on volumes (or cortical thickness),
controlling for GA and sex.

Volumes. Figure [6] shows the tissue volumes for both the original and the predicted segmentations.
Significant volume differences between the two subsamples (i.e., significant effect of cohort in the regression
model) are reported above each tested model. To summarise, the image with augmentation model performed
best, by showing no significant differences in the two cohorts for cortical gray matter, white matter, deep
gray matter, cerebellum and brainstem. The cerebrospinal fluid volumes were significantly different
between the two cohorts for all our trained models, as well as for the original ePrime segmentation masks.
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Figure 6. Volume measures of CSF, cGM, WM, dGM, cerebellum and brainstem in our test datasets.
In magenta we show the original dHCP tissue volumes, while in light blue we show the original ePrime
tissue volumes. The results of the linear regression are reported above groups which showed significant
differences in terms of cohort.

Cortical thickness. Figure [/|summarizes the results of applying the cortical thickness algorithm on the
predicted segmentation maps for all six methods. Before harmonisation, the matched subsets from the
dHCP and ePrime cohorts showed a significant difference in mean cortical thickness (dHCP: M = 1.73,
SD = 0.12; ePrime: M = 1.93, SD = 0.13; t(58) = 6.33, p < .001). After applying the harmonisation
to the ePrime sample, mean cortical thickness no longer differed between the two subsamples for four of
our methods. These results are summarised in panel H from Figure[7, where the models which obtained
harmonised values in terms of mean cortical thickness measures are shown in bold. Figure [7 also shows
the association between PMA and mean cortical thickness before (panel A) and after applying the models
(panels B-G) on the matched dHCP and ePrime subsets. A linear model regressing unharmonised mean
cortical thickness on PMA, GA, sex, and cohort revealed a significant effect of cohort (5 = 0.20; p < .001),
consistent with a group difference in mean cortical thickness reported above, as well as a significant effect
of PMA (5 = 0.04; p < .001), consistent with an increase in cortical thickness with increasing PMA.
After applying the methods, the effect of cohort was rendered non-significant for four of the methods
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(see highlighted panels C, E, F, G from Figure |Z[), while the effect of PMA remained stable across all six

methods.

We performed a similar analysis on thickness measures of the cortical substructures. To obtain these
measures, we used the original and the predicted cortical gray matter segmentation maps (obtained by
applying each of our six methods) as input to the trained cortical parcellation network to predict cortical
substructure masks. We then used these masks to calculate local cortical thickness measures. Our results

are summarised in Figure §]
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Figure 7. Mean cortical thickness measures computed for the two dHCP and ePrime subsamples with

similar GA and PMA.
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Figure 8. Local mean cortical thickness measures before (first column) and after (columns 2-7) applying
the models. The results of the linear regression are reported above groups which showed significant

differences in terms of cohort.
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Example Predictions. To further narrow down which of the four remaining methods was best at
harmonising our ePrime neonatal dataset, we looked at the predicted segmentations. Figure [9] shows two
example neonates from the ePrime dataset with GA = 32.9w, PMA = 43.6w, and with GA = 28.7w,
PMA = 44.7w, respecitvely. The first column shows Tow saggittal and axial slices, respectively, while the
following four columns show example tissue prediction maps produced by the four models: baseline with
augmentation, latent with augmentation, image and image with augmentation, respectively. Although all
four methods performed well in terms of harmonising tissue segmentation volumes and global mean cortical
thickness values for the two subsamples with similar GA and PMA, previously presented quantitative
results as well as the example above suggest that the image with augmentation method was more robust.

3.3 Analysis of harmonised cortical substructures

In this section we analyze the harmonised cortical gray matter segmentation maps using the image with
augmentation model. We produce tissue segmentation maps for the entire ePrime dataset and calculate
cortical thickness measures on the predicted and ground truth cortical gray matter tissue maps of both
cohorts. In addition, we use the trained cortical parcellation network to produce cortical substructure masks.
We perform a term vs preterm analysis on the harmonised cortical gray matter maps and we show the
importance of harmonising the data with a proof-of-principle application setting where we investigate the
association between cortical thickness and a language outcome measure.

T2w MRI (ePrime)

baseline+aug latent+aug image image+aug

~ v

32.9w
43.6w

GA
PMA

28.7w
447w

GA
PMA

@ cerebrospinal fluid @ cortical gray matter white matter deep gray matter cerebellum @ brainstem

Figure 9. Example predicted segmentation maps for the best performing models. On the first row we show
an example where three of the models (baseline with augmentation, latent with augmentation and image)
misclassified a part of the cortex as being deep gray matter. This is more pronounced in the baseline with
augmentation model, while the latent with augmentation and image show a slight improvement. The image
with augmentation model corrected the problem entirely. On the second row the yellow arrow points to an
area of CSF where the baseline with augmentation model misclassified it as dGM, while the other three
models did not have this problem. The red arrow on the other hand points to an area where the latent with
augmentation model misclassified cGM as deep gray matter. This problem does not appear in the other
models.

Comparison of term and preterm cortical maps. Associations between cortical thickness and GA or
PMA in the full dHCP and ePrime datasets (excluding subjects with PMA > 45 weeks and PMA < 37
weeks at time of scan) for the whole cortex are depicted in Figure[T0] where we show individual regression
lines for preterm-born and term-born neonates. The first column consists of dHCP-only subjects, while
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the following two columns showcase both cohorts together, before and after harmonising the cortical gray
matter tissue maps.

A linear model regressing dHCP-only mean cortical thickness on PMA, GA, sex, birth weight and the
interaction between PMA and GA revealed a significant effect of PMA (5 = 0.19; p < 0.001), a significant
effect of GA (6 = 0.16; p = 0.002), and a significant effect of the interaction between PMA and GA
(8 = —0.004; p = 0.002), indicating that infants born at a lower GA showed a stronger relationship
between PMA and CT. When performing the same analysis in the pooled ePrime and dHCP data before
harmonising the maps, the effect of GA and the effect of the interaction were rendered not significant
(GA: g = 0.009; p = 0.7 and PMAxGA: = —0.0006; p = 0.5, respectively). This is corrected after
harmonising the tissue maps, where the effects of GA (5 = 0.06; p = 0.02) and the effects of the GA and
PMA interaction (8 = —0.001; p = 0.02) are, again, significant.

The second and third columns of Figure[I0|show that after harmonising the tissue segmentation maps,
the ePrime preterm-born neonates (green dots) are brought downwards into a comparable range of values
to the dHCP preterms (red dots). Moreover, when plotting the cortical thickness measures against PMA,
after harmonising the tissue maps, the intersection between the two individual regression lines (term and
preterm-born neonates) happens at roughly the same age (PMA = 38.5 weeks) as in the dHCP-only dataset.

o5 dHCP only dataset o5 Before Harmonisation o5 After Harmonisation
' preterm ' . dHCP ' dHCP
== term S I - ePrime - ePrime
w % o ::’ R :)reterm - preterm
20 ~ erm term
£
E
-
o
1.5
25 30 35 40 25 30 35 40 25 30 35 40
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2.5 preterm 2.5 Jhce i 25 .
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o‘.. : oS
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Figure 10. Mean cortical thickness measures in our dHCP dataset (first column), and in both of our cohorts
before (second column) and after (third column) harmonising the tissue segmentation maps. The first
row plots the cortical thickness measures against GA, while the second row plots the cortical thickness
measures against PMA, with individual regression lines on top.

We extended the term vs preterm analysis on cortical thickness substructures. Figure [[1] shows the results
of applying a linear model regressing mean cortical thickness measures on PMA, GA, sex, birth weight
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and prematurity, where significant differences (p < 0.05) between the two cohorts (term and preterm-born
neonates) are highlighted in the image.

Comparison of cortical thickness measures
between term and preterm-born neonates

Tissue . p-val [Tissue p-val
él.o.bél., S 0009 v Cﬂiﬁg'm'a'tve ...... :. . 074 .
Frontal (left) 0.001 (Frontal (right) 0.0004
Temporal (left) i 0.270 |Temporal (right) | 0.827
Insula (left) © 0.376 |Insula (right) 0.093
Parietal (left) 0.005 [Parietal (right) 0.488

Occipital (left) : 0.058 |Occipital (right) . 0.052

Figure 11. Comparison of cortical thickness measures for the whole cortex and for each of the 11 cortical
subregions between term and preterm-born neonates. The results of the linear regression are reported in the
table in terms of differences between term and preterm-born neonates.

Behavioural outcome association. As a final proof-of-principle, we demonstrate the importance of data
harmonisation in an application setting investigating the association between neonatal cortical thickness
and a behavioural outcome measure. For this, we consider language abilities as assessed between 18 and
24 months in both dHCP and ePrime cohorts using the Bayley Scales of Infant and Toddler Development
(Bayley, [2006). Age-normed composite language scores were available for 203 toddlers from the dHCP
cohort (M = 96.43; SD = 14.89) and 136 toddlers from the ePrime cohort (M = 91.25; SD = 17.37). For the
neonatal cortical thickness measure, we focus on the left and right frontal cortex for illustration.

Regressing composite language score against ground truth left or right frontal cortical thickness in
each cohort separately, controlling for PMA, GA, sex and intracranial volume showed that there was no
significant association between neonatal left/right frontal cortical thickness and language abilities at toddler
age in either of the cohorts. However, when pooling data from both cohorts together and rerunning the same
analysis (using un-harmonised, ground truth cortical thickness), a significant association between left/right
frontal cortical thickness and language abilities is seen (left: 3 = —17.56, p < 0.05, right: 5 = —18.76,
p < 0.05), suggesting that greater frontal cortical thickness at term-equivalent age is associated with
reduced language abilities at toddler age.

However, as can be seen in Figure[I2] this is likely a spurious effect due to (artefactually) heightened
cortical thickness values in un-harmonised ePrime data combined with lower language composite scores in
the ePrime cohort (consistent with effects typically observed in preterm cohorts). Indeed, when rerunning
the same analysis on harmonised data pooled across both cohorts, the effect of cortical thickness on
language ability is rendered non-significant in both left (5 = —13.99, p = 0.15) and right (5 = —16.69,
p = 0.068) frontal cortex, consistent with the ground-truth findings in each individual cohort.

4 DISCUSSION AND FUTURE WORK

In this paper we studied the application and viability of unsupervised domain adaptation methods for
harmonising tissue segmentation maps of two neonatal datasets (dHCP and ePrime). We proposed an
image-based domain adaptation model where a tissue segmentation network is trained with real dHCP and
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Figure 12. Language composite score against predicted left and right frontal cortical thickness measures
before and after harmonising the tissue segmentation maps

fake ePrime-like 75w 3D MRI volumes. The generator network was trained to produce realistic images in
order to fool a domain discriminator, while also minimizing an NCC loss which aimed to enforce image
similarity between real and synthesised images (Grigorescu et al., [2020). We trained this model using
dHCP ground truth segmentation maps, and we compared it with a baseline 3D U-Net (Ronneberger et al.,
2015), and a latent space domain adaptation method (Kamnitsas et al., 2017). The three methods were
trained with and without data augmentation (Pérez-Garcia et al., [2020).

We then analysed the extent to which each of the 6 trained models managed to harmonise the tissue
segmentation maps of our two cohorts, by looking at tissue volumes and mean cortical thickness measures
between subsamples of the dHCP and ePrime cohorts which showed comparable GA at birth and PMA
at time of scan. Our results showed that our proposed model (image with augmentation) harmonised
the predicted tissue segmentation maps in terms of cortical gray matter, white matter, deep gray matter,
cerebellum and brainstem volumes (Figure [6)). In terms of mean global cortical thickness measures, four
of the trained methods (baseline with augmentation, latent with augmentation, image and image with
augmentation) achieved comparable values when compared to the dHCP subset. In fact, we hypothesize
that these four methods provided the best overall results because either they were trained using data
augmentation or they acted as a deep learning-based augmentation technique (Sandfort et al., [2019), which
made the segmentation network more robust to the different contrast and acquisition protocol of the ePrime
dataset.

Using the cortical parcellation network, we also produced cortical thickness measures for the 11 cortical
subregions (see Table [2). Again, the models trained with augmentation performed better than their
no augmentation counterparts (see Figure [§). However, our proposed image with augmentation model
performed best, whereby ePrime values, tending towards higher values before harmonisation, were brought
downwards into a comparable range of values to dHCP, for 10 out of 11 cortical subregions (see Figure [§]
last column). For the right parietal lobe, our proposed method outperformed the original segmentations
and the other 5 models, but did not manage to bring the values down to a non-significant range. One
potential reason for this is that, on a visual insepction, the ePrime cohort appears to suffer from more partial
volume artifacts than its dHCP counterpart, which can confuse the segmentation network and can lead to
overestimation of the cortical gray matter / cerebrospinal fluid boundary. Moreover, a close inspection of
the predicted tissue segmentation maps (see Figure[9)) also showed that our proposed model (image with
augmentation) corrected misclassified voxels which were prevalent in the other 3 methods.
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We used the harmonised cortical segmentation maps to look at differences in both global and local
cortical thickness measures between term and preterm-born neonates. We showed in Figure |1 1| that our
harmonised cortical gray matter maps resulted in global thickness measures which were comparable with
the dHCP-only neonates, while also revealing a significant effect of GA and the interaction between age at
scan and at birth. We performed a similar analysis on the local cortical thickness measures and highlighted
three regions of interest (frontal left, frontal right, and parietal left) which showed significant differences
between the two cohorts (see Figure [IT)). These regions are consistent with previous studies (Nagy et al.|
2011) where cortical thickness measures were shown to differ in preterm-born neonates when compared to
term-born neonates in an adolescent cohort.

Finally, we showed the importance of harmonising the cortical tissue maps by investigating the association
between neonatal cortical thickness and a language outcome measure. After harmonisation, regressing
language composite score against predicted left or right frontal cortical thickness in the two pooled datasets,
showed no significant effect of cortical thickness (second column of Figure[I2), consistent with the ground-
truth results seen in each cohort individually. This analysis demonstrates that without data harmonisation,
pooling images from separate datasets can lead to spurious findings that are driven by systematic differences
in acquisitions rather than by true underlying effects. Our harmonisation allows for our two datasets to
be combined into joint analyses while preserving the underlying structure of associations with real-world
outcomes.

Our study was focused on unsupervised domain adaptation approaches; in future we would like to
investigate semi-supervised approaches as well by including reliable segmentations of the ePrime cohort.
Moreover, the latent based domain adaptation method was trained using the features at each layer of the
decoding branch, without analysing different combinations of the encoding-decoding layers. In future, we
aim to extend our work to harmonise diffusion datasets.

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

L.G. prepared the manuscript, implemented the code for the domain adaptation models and the analysis. L.V.
participated in the implementation of the analysis code, the study design and interpretation of the results.
A.U. assisted with data preprocessing, design of the study and interpretation of the results. D.B. performed
preprocessing of the dHCP and ePrime datasets. L.C.-G. developed MRI acquisition protocols for the
neonatal dHCP datasets. C.N. participated in the study design and interpretation of the results. A.D.E.,
J.V.H. are coordinators of the dHCP project. M.M. supervised all stages of the current research. M.D.
conceptualised the study, supervised all stages of the current research and preparation of the manuscript.
All authors gave final approval for publication and agree to be held accountable for the work performed
therein.

FUNDING

This work was supported by the Academy of Medical Sciences Springboard Award (SBF004\1040),
European Research Council under the European Union’s Seventh Framework Programme (FP7/
20072013)/ERC grant agreement no. 319456 dHCP project, the Wellcome/EPSRC Centre for Medical
Engineering at King’s College London (WT 203148/Z2/16/Z), the NIHR Clinical Research Facility (CRF)
at Guy’s and St Thomas’ and by the National Institute for Health Research Biomedical Research Centre

Frontiers 17


https://doi.org/10.1101/2021.02.17.431611
http://creativecommons.org/licenses/by/4.0/

358
359

360
361
362
363

364
365

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431611; this version posted February 18, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Irina Grigorescu et al. Harmonised segmentation of neonatal brain MRI

based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. The views expressed
are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

ACKNOWLEDGMENTS

We thank everyone who was involved in acquisition and analysis of the datasets. We thank all participants
and their families. The views expressed are those of the authors and not necessarily those of the NHS, the
NIHR or the Department of Health. This paper is an extension of our previous work (Grigorescu et al.,
2020).

SUPPLEMENTAL DATA
DATA AVAILABILITY STATEMENT

The dHCP datasets analyzed for this study will become available after the public release of the dHCP data.
The code developed for this study will become available online after publication of the article.

REFERENCES

Ball, G., Aljabar, P, Nongena, P., Kennea, N., Gonzalez-Cinca, N., Falconer, S., et al. (2017). Multimodal
image analysis of clinical influences on preterm brain development. Annals of Neurology

Bayley, N. (2006). Bayley scales of infant and toddler development (PsychCorp, Pearson)

Cordero-Grande, L., Hughes, E. J., Hutter, J., Price, A. N., and Hajnal, J. V. (2018). Three-dimensional
motion corrected sensitivity encoding reconstruction for multi-shot multi-slice MRI: Application to
neonatal brain imaging. Magnetic Resonance in Medicine

Ganin, Y. and Lempitsky, V. (2014). Unsupervised domain adaptation by backpropagation

Ghafoorian, M., Mehrtash, A., Kapur, T., Karssemeijer, N., Marchiori, E., Pesteie, M., et al. (2017).
Transfer learning for domain adaptation in MRI: Application in brain lesion segmentation. In
International conference on medical image computing and computer-assisted intervention (Springer),
516-524

Grigorescu, 1., Cordero-Grande, L., Batalle, D., Edwards, A. D., Hajnal, J. V., Modat, M., et al. (2020).
Harmonised segmentation of neonatal brain MRI: A domain adaptation approach. In Medical Ultrasound,
and Preterm, Perinatal and Paediatric Image Analysis (Cham: Springer International Publishing),
253-263

Hughes, E. J., Winchman, T., Padormo, F., Teixeira, R., Wurie, J., Sharma, M., et al. (2017). A dedicated
neonatal brain imaging system. Magnetic Resonance in Medicine

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2016). Image-to-image translation with conditional
adversarial networks

Kamnitsas, K., Baumgartner, C., Ledig, C., Newcombe, V., Simpson, J., Kane, A., et al. (2017).
Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In Information
Processing in Medical Imaging (Cham: Springer International Publishing)

Kerfoot, E., Puyol-Antén, E., Ruijsink, B., Ariga, R., Zacur, E., Lamata, P, et al. (2019). Synthesising
images and labels between MR sequence types with CycleGAN. In Domain Adaptation and
Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data (Springer)

Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M. A., Hajnal, J. V., and Schnabel, J. A. (2012).
Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Medical image
analysis

This is a provisional file, not the final typeset article 18


https://doi.org/10.1101/2021.02.17.431611
http://creativecommons.org/licenses/by/4.0/

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431611; this version posted February 18, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Irina Grigorescu et al. Harmonised segmentation of neonatal brain MRI

Kushibar, K., Valverde, S., Gonzélez-Villa, S., Bernal, J., Cabezas, M., Oliver, A., et al. (2019). Supervised
domain adaptation for automatic sub-cortical brain structure segmentation with minimal user interaction.
Scientific reports 9, 1-15

Makropoulos, A., Robinson, E. C., Schuh, A., Wright, R., Fitzgibbon, S., Bozek, J., et al. (2018). The
developing human connectome project: A minimal processing pipeline for neonatal cortical surface
reconstruction. Neuroimage

Mao, X., Li, Q., Xie, H., Lau, R. Y. K., Wang, Z., and Smolley, S. P. (2016). Least squares generative
adversarial networks

Miotto, R., Wang, F., Wang, S., Jiang, X., and Dudley, J. T. (2018). Deep learning for healthcare: review,
opportunities and challenges. Briefings in bioinformatics

Nagy, Z., Lagercrantz, H., and Hutton, C. (2011). Effects of preterm birth on cortical thickness measured
in adolescence. Cerebral Cortex 21, 300-306

Orbes-Arteaga, M., Varsavsky, T., Sudre, C. H., Eaton-Rosen, Z., Haddow, L. J., Sgrensen, L., et al.
(2019). Multi-domain adaptation in brain MRI through paired consistency and adversarial learning. In
Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and
Imperfect Data, eds. Q. Wang, F. Milletari, H. V. Nguyen, S. Albarqouni, M. J. Cardoso, N. Rieke, Z. Xu,
K. Kamnitsas, V. Patel, B. Roysam, S. Jiang, K. Zhou, K. Luu, and N. Le (Cham: Springer International
Publishing), 5462

Pérez-Garcia, F., Sparks, R., and Ourselin, S. (2020). TorchlO: a Python library for efficient
loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning.
arXiv:2003.04696 [cs, eess, stat] ArXiv: 2003.04696

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image
segmentation

Rueckert, D., Sonoda, L. 1., Hayes, C., Hill, D. L. G., Leach, M. O., and Hawkes, D. J. (1999). Nonrigid
registration using free-form deformations: application to breast MR images. IEEE Transactions on
Medical Imaging

Sandfort, V., Yan, K., Pickhardt, P. J., and Summers, R. M. (2019). Data augmentation using generative
adversarial networks (cyclegan) to improve generalizability in ct segmentation tasks. Scientific reports 9,
1-9

Schuh, A., Makropoulos, A., Robinson, E. C., Cordero-Grande, L., Hughes, E., Hutter, J., et al. (2018).
Unbiased construction of a temporally consistent morphological atlas of neonatal brain development.
bioRxiv

Smith, L. N. (2015). No more pesky learning rate guessing games. CoRR

Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S., and Jorge Cardoso, M. (2017). Generalised dice overlap
as a deep learning loss function for highly unbalanced segmentations. Lecture Notes in Computer
Science

Tustison, N. J., Avants, B. B., Cook, P. A., Song, G., Das, S., van Strien, N., et al. (2013). The ANTs
cortical thickness processing pipeline. In Medical Imaging 2013: Biomedical Applications in Molecular,
Structural, and Functional Imaging

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016). Instance normalization: The missing ingredient for
fast stylization

Frontiers 19


https://doi.org/10.1101/2021.02.17.431611
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Material and Methods
	Data Acquisition and Preprocessing
	Unsupervised domain adaptation models
	Network Architectures
	Training

	Results
	dHCP test dataset
	Validation of data harmonisation
	Analysis of harmonised cortical substructures

	Discussion and Future Work

